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Abstract

The clinical utility of aminoglycoside antibiotics is undermined by the action of
bacterial modifying enzymes that inactivate these antimicrobial agents and confer drug
resistance. Basic research on the aminoglycoside modifying enzymes has contributed to a
greater understanding of the molecular mechanism of aminoglycoside detoxification by
these proteins, information that is relevant to inhibitor studies and other approaches
aimed at reversing bacterial aminoglycoside resistance in vivo. Described here is the
characterization of AAC(6’)-li, a chromosomally encoded aminoglycoside 6°-N-
acetyltransferase from the Gram positive pathogen Enterococcus faecium and a member
of the GCN5-related superfamily of acyltransferase enzymes.

Research on AAC(6°)-Ii has focused on the kinetic and catalytic mechanism of
aminoglycoside modification by this enzyme, in addition to inhibitor studies and
investigations into a possible alternate role for this acetyltransferase in vivo. Using steady
state-kinetic analysis of product and dead-end inhibition of protein activity, we have
determined that AAC(6’)-1i follows a ternary complex, ordered bi-bi kinetic mechanism,
with additional evidence supporting subunit cooperativity in the AAC(6°)-Ii dimer. This
work was complemented by studies that characterized substrate-induced conformational
changes in AAC(6°)-1i, as well as analysis of solvent viscosity and isotope effects that
identified the catalytic steps governing the steady-state rate of aminoglycoside
inactivation. Together with the structural details of AAC(6°)-1i in complex with AcCoA,

site-directed mutagenesis and related studies have also identified amino acid residues
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important to the chemistry of drug acetylation as well as those involved in the binding of
aminoglycoside substrates, providing us with a better understanding of the molecular
mechanism of AAC(6°)-1i catalysis. Our results to date have been applied to numerous
inhibitor studies, which have resulted in the identification of cationic peptides and semi-
synthetic aminoglycosides that demonstrate potent inhibition of AAC(6°)-1i activity in
vitro. Finally, the acetylation of E. faecium proteins by AAC(6’)-Ii has been shown by
both in vitro and in vivo analysis, complementing the structural and functional homology
observed for this enzyme and protein acetyltransferases, in addition to supporting our
hypothesis that AAC(6’)-Ii may have an alternate function in the host bacteria. As a
whole, these studies have extensively characterized the activity of AAC(6°)-1i, which is
relevant to ongoing and future inhibitor studies and to an understanding 6f the similarities

and differences among enzymes in the GCN5-related N-acetyltransferase superfamily.
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Introduction
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1.1 Discovery and Use of Antibiotics to Treat Bacterial Infections

The infectious nature of some microorganisms, including bacteria, was only
beginning to be understood when Louis Pasteur presented his Germ Theory of Disease in
1878 (Pasteur & Lister, 1996). Complementing Pasteur’s theory was the pioneering work
of Joseph Lister on antiseptic techniques and Robert Koch’s isolation of bacteria on solid
media, which helped to revolutionize the field of early bacteriology (Levy, 1992a). These
advances ultimately led to the use of antimicrobial agents to treat specific bacterial
infections, such as the early use of synthetic sulfonamides in the treatment of haemolytic
streptococcal infections in the 1930’s (Greenwood, 2003). The famous discovery of
penicillin by Alexander Fleming in 1929 was the first documented account of a natural
product with antibacterial activity (Fleming, 1929), with the subsequent use (and
overuse) of this antibiotic in the 1940s said to define the beginning of an antibiotic era
(Greenwood, 2003).

For over 70 years, the use of antibiotics as well as synthetic and semisynthetic
antimicrobials continues to be the fundamental treatment regimen for both Gram positive
and Gram negative bacterial infections. The underlying effectiveness of these agents is
due to their selective toxicity towards bacteria, targeting basic prokaryotic metabolic
processes and cellular machinery that differ in eukaryotic cells. Currently, the vast
number of antimicrobial agents available, estimated at over 100 in 1992 (Neu, 1992),
interfere with such processes as bacterial cell wall synthesis, protein synthesis, nucleic
acid metabolism and folic acid synthesis (Sefton, 2002). Table 1 provides a brief

overview of current antimicrobial agents and their mechanism of action.
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Table 1.1: Classes of antibacterial agents and their mode of action

Antimicrobial Target  Drug Class Examples Recent Reviews
Protein Synthesis
30S Ribosomal subunit ~Aminoglycosides  Gentamicin Boehr et al., 2003b
Tobramycin
Tetracyclines Doxycycline Chopra & Roberts, 2001
Minocycline
508 Ribosomal subunit =~ Macrolides Azithromycin Blondeau, 2002
Erythromycin
Lincosamides Clindamycin Carrasco et al., 2002
Lincomycin
Streptogramins Pristinamycin Johnston et al., 2002
Virginiamycin
Formation of 70S Oxazolidinones Linezolid Moellering, 2003
initiation complex
Cell Wall Synthesis
Transpeptidases Cephalosporins Cefotaxime Marshall & Blair, 1999
Ceftriaxone
Penicillins Amoxicillin Wright, 1999a
Carbenicillin
Acyl-D-Ala-D-Ala Glycopeptides Vancomycin Allen & Nicas, 2003
of peptidoglycan Teicoplanin
Folate Biosynthesis
Dihydrofolate Diamino- Trimethoprim Fishman, 1998
reductase (DHFR) pyrimidines Trimetrexate
Pteroate sythase Sulfonamides Sulfadiazine Smith & Powell, 2600
Sulfamethoxazole
DNA Replication & Transcription
DNA Gyrase/ Quinolones Ciprofloxacin Schmitz et al., 2002
Topoisomerase IV Nalidixic acid
RNA Polymerase Rifamycins Rifampicin Khasnobis ef al., 2002
Rifapentine
DNA strands Nitroimidazoles Metronidazole Edwards, 1993
Nitrofurans Nitrofurazone Guay, 2001
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1.2 Bacterial Resistance to Antimicrobial Agents

Bacterial resistance to antimicrobial agents is an alarming and well known
phenomenon, the result of a combination of the misuse and overuse of antimicrobials as
well as the outstanding ability of bacteria to adapt under selective pressure. It is
interesting to note that bacterial resistance was predicted by Alexander Fleming in the
1940s, even prior to the inevitable emergence of penicillin-resistant staphylococci after
this antibiotic was misused and widely available without a doctor’s prescription (Levy,
1992b). Since then, the use of various antimicrobials to combat bacterial infections has
consistently been paralleled with the emergence of bacteria resistant to these compounds.
In fact, bacterial resistance has been observed for all known classes of antimicrobial
agents (Normark & Normark, 2002), even for the newest oxazolidinone drug linezolid
(Tsiodras et al., 2001; Herrero et al, 2002; Rahim et al, 2003). The impact of
antimicrobial resistance on the clinical treatment of bacterial infections is therefore
enormous, as recently discussed in several excellent reviews (Virk & Steckelberg, 2000;
Normark & Normark, 2002; Sefton, 2002).

Bacteria utilize several mechanisms to resist the action of antimicrobials. Resistance
can be broadly classified as intrinsic or acquired, with the latter having the greatest
impact on the emergence of resistance in a clinical setting. Intrinsic resistance occurs in
the absence of antimicrobial selective pressure and is predominately the result of some
natural property of a bacterial species, an example being the resistance of mycoplasma to

B-lactams due to the lack of peptidoglycan in their cell wall (Normark & Normark,
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2002). In contrast, acquired bacterial resistance is the result of selective pressure after

exposure to an antimicrobial, commonly occurring by acquisition of mobile genetic

elements such as plasmids or transposons containing resistance genes, or by

chromosomal mutations that confer bacterial resistance (Neu, 1992). The major

mechanisms by which bacteria resist the action of antibiotics and other antimicrobials are

summarized in Table 1.2;

Table 1.2: Major mechanisms of bacterial resistance to antimicrobial agents

Mechanism of Resistance Examples References
Drug inactivation Aminoglycoside Modifying Enzymes  Wright, 1999b
e expression of e N-acetyltransferases
modifying enzymes O-phosphotransferases,
O-nucleotidylyltransferases
B-lactamases Miller et al., 2001
Alterations in drug target Quinolone Resistance Hooper, 2002
e mutation or e mutation of DNA gyrase
target modification & topoisomerase IV
Macrolide Resistance Blondeau, 2002
e methylation of 23S rRNA
Target Bypass System Diaminopyrimidine Resistance Huovinen et al., 1995

e changes to metabolic

e acquisition of altered

pathway DHFR enzyme
Active efflux Tetracycline Resistance Chopra & Roberts,
e drugs are extruded out e TetH' antiporters 2001
of the cell by membrane
proteins Multi-Drug Resistance Van Bambeke et al.,
e ABC Transporters 2000
Altered Uptake Aminoglycoside Resistance Young et al., 1992
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1.3 The Aminoglycosides
1.3.1 Discovery and General Properties of the Aminoglycosides

The aminoglycosides (AGs) represent an important class of antimicrobial agents that
have found use in the treatment of bacterial infections for over 50 years (Begg & Barclay,
1995). The first AG to be discovered was streptomycin in 1944, isolated from the
producing organism Streptomyces griseus (Schatz et al., 1944). This was followed by the
identification of similar compounds also produced by Strepfomyces spp., such as
neomycin, kanamycin and tobramycin, in addition to the gentamicins isolated from
Micromonospora (Lortholary et al., 1995). Table 1.3 lists common AGs, including
natural and semisynthetic derivatives of this antibiotic class (Boehr et al., 2003b).

Aminoglycosides are cationic molecules characterized by a central aminocyclitol
ring, with two or more aminosugars attached (Figure 1.1). Further classification is based
on the presence (or absence) of a 2-deoxystreptamine ring and the glycosyl linkages,
which defines the three classes of aminoglycosides (Table 1.3 and Figure 1.1).

Table 1.3: Classes of aminoglycoside antimicrobials

Aminoglycosides With a Other
2-Deoxystreptamine Ring Aminoglycosides
4.6-disubstituted 4.5-disubstituted
Amikacin Butirosin Apramycin
Arbekacin Lividomycin Fortimicin
Dibekacin Neomycins Hygromycin
Gentamicins Paromomycin Spectinomycin
Isepamicin Ribostamycin Streptomycin
Kanamycins
Netilmicin
Sisomicin
Tobramycin
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Figure 1.1: Representative structures of the three classes of aminoglycosides.
Shown in A is the 4,6-disubstituted deoxystreptamine AG kanamycin B, with the
prime, aminocyclitol, and double prime rings indicated. Ribostamycin, a 4,5-
disubstituted 2-deoxystreptamine AG, is shown in B. AGs that do not contain a
2-deoxystreptamine ring make up the third class, such as streptomycin shown in C.
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1.3.2 Aminoglycoside Uptake

AGs enter bacterial cells by a multi-step process involving three main phases. This
process was initially characterized for streptomycin uptake by Escherichia coli and
Pseudomonas aeruginosa, utilizing both susceptible and resistant strains of bacteria
(Bryan & Van den Elzen, 1976). The first stage of AG uptake consists of the rapid
adsorption of cationic AGs to the negatively charged surface of the bacterial outer
membrane, occurring predominantly by reversible electrostatic interactions (Taber ef al.,
1987). Subsequent steps are dependent upon electron transport, and are therefore termed
energy-dependent phases (Bryan & Van den Elzen, 1976; Bryan & Kwan, 1983; Muir et
al., 1985). Energy-dependent phase I (EDP-I) is the second, rate-limiting step of AG
uptake and involves the transport of AGs across the cell membrane, most likely by a
facilitated transport mechanism that remains poorly understood (Taber er al, 1987).
EDP-II describes the last stage of drug uptake, characterized by the initial binding of AGs
to the 30S subunit of the bacterial ribosome (Bryan & Kwan, 1983). This event has
previously been shown to cause misreading and premature termination of nascent
polypeptide chains without disruption of initiation complex formation (Melancon et al.,
1992; Mingeot-Leclercq et al, 1999). Mistranslated proteins have been found to
accumulate in the plasma membrane during the energy-dependent phases of AG uptake,
causing membrane damage and efflux of cations and other cytoplasmic components out
of the cell (Davis er al., 1986; Busse ef al., 1992). These events are believed to play a role
in the bactericidal action of AGs in addition to their inhibition of protein synthesis, as

described in more detail in the following section.
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1.3.3 Aminoglycoside Mode of Action

AGs fall into the class of antimicrobial agents that inhibit protein synthesis (Table
1.1), with their main target being the prokaryotic ribosome. More specifically, these
drugs bind to the 16S rRNA A site of the 30S ribosomal subunit, shown initially by
chemical footprinting studies (Moazed & Noller, 1987; Miyaguchi ef al., 1996; Recht et
al., 1996). Recent structural determinations of various AGs bound to the 30S ribosomal
subunit or RNA oligonucleotides have also revealed the subtle differences in the mode of
binding to the A site decoding region, shown by crystallographic studies with
paromomycin, streptomycin, and spectinomycin (Carter et al, 2000), as well as
hygromycin (Brodersen et al., 2000), and tobramycin (Vicens & Westhof, 2002). AG
specificity for bacterial versus eukaryotic ribosomes has also been characterized, and is
due to differences in the rRNA A site (Recht et al., 1999).

In general, AG binding to the 30S ribosomal subunit disrupts protein synthesis in
bacteria, causing the inhibition of translation initiation (Gale ef al., 1981) as well as the
mistranslation and premature termination of nascent polypeptides (Davies ef al., 1965,
Davies et al., 1966; Davies & Davis, 1968; Lando et al., 1973). These effects alone,
however, do not explain the bactericidal action of AGs, as other antimicrobials that bind
to the prokaryotic ribosome (see Table 1.1) are only bacteriostatic in nature (Lortholary
et al., 1995; Wright, 2002). The lethal activity of AGs appears to involve secondary
effects on cell membrane integrity, with the incorporation of mistranslated proteins into
the bacterial cell membrane and the subsequent formation of membrane channels

believed to play a critical role (Lando et al., 1973; Davis, 1987; Davis, 1988).
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1.3.4 Clinical Use of Aminoglycosides

The AGs remain an important drug class used in the current treatment of serious
Gram positive and Gram negative bacterial infections (Boehr et al., 2003b). The major
advantages of AG use are attributed to their potent bactericidal activity and
concentration-dependent  killing towards pathogenic enterococci, staphlococci,
mycobacteria, gram negative bacilli and others (Gonzalez & Spencer, 1998; Edson &
Terrell, 1999; Boehr et al., 2003b). In addition, AGs are often co-administered with a cell
wall active agent such as a B-lactam or glycopeptide to treat serious infections that result
in endocarditis or sepsis (Boehr et al., 2003b). Some AGs have even found other clinical
uses, such as paromomycin in the treatment of parasitic infections (Davidson, 1998;
Nyirjesy et al., 1998). Table 1.4 provides examples of select aminoglycosides and their

use in clinical treatment.

Table 1.4: Examples of aminoglycoside clinical use ?

Aminoglycoside Clinical Use

Gentamicin Gram negative septicaemia
Endocarditis

Neomycin Topical treatment of skin infections
Prophylaxis prior to surgery

Spectinomycin Gonorrhea (single dose)

Streptomycin Mycobacterium tuberculosis
(tuberculosis)

Tobramycin Pseudomonas aeruginosa
(cystic fibrosis)

“ The information in this table was gathered from Gonzolez & Spencer (1998),
Edson & Terrel (1999), and Boghr et al. (2003b).

10
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1.4 Mechanisms of AG Resistance

Similar to other antimicrobial agents, resistance to AGs was observed shortly after
their introduction into clinical use, with the first cases of streptomycin resistance noted in
the 1950s, followed by kanamycin, neomycin, and gentamicin resistance in the 1960s
(Davies & Wright, 1997). Bacteria utilize several mechanisms to resist the action of AGs,
including altered drug uptake, AG efflux, ribosomal modification, and AG inactivation.
1.4.1 Altered AG Uptake

Since AG uptake is an energy-dependent process (see section /.3.2), resistance can
occur as a result of bacterial mutations that affect electron transport, a mechanism which
has been observed in both Gram positive and Gram negative bacteria (Bryan & Van Den
Elzen, 1977; Muir & Wallace, 1979; Miller et al., 1980; Muir ef al., 1981; Taber et al.,
1981; Taber et al., 1987). Variations in the outer membrane of some bacteria can also
account for reductions in AG uptake, seen in Burkholderia cepacia (Moore & Hancock,
1986), P. aeruginosa mutants overexpressing OprH outer membrane protein (Young ef
al., 1992), and muténts of E. coli with reduced levels of oligopeptide binding protein
OppA (Kashiwagi er al., 1998). In general, bacteria with altered AG uptake are not
clinically relevant, as electron transport or cell membrane mutants are often not viable
and do not arise as a result of AG exposure (Wright, 2002).
1.4.2 AG Efflux

Another form of resistance is the active efflux of AGs out of bacterial cells.
Although this mechanism is also not regarded as clinically important, it does account for

the intrinsic AG resistance observed in Burkholderia pseudomallei (Moore et al., 1999)

11
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and P. aeruginosa (Aires et al., 1999; Li et al., 2003). Additional multi-drug efflux
pumps conferring AG resistance have also been characterized from other bacteria,
including Mycobacterium fortuitum (Ainsa et al., 1998) and E. coli (Edgar & Bibi, 1997).
The emerging picture therefore appears to be that this mechanism may be intrinsic to
many different bacteria (Van Bambeke ef al., 2000; Wright, 2002).
1.4.3 Ribosomal Modification and Drug Inactivation

The most clinically relevant mechanisms of AG resistance involve modification of
the AG target, the bacterial ribosome, and by the production of AG modifying enzymes
(AMES) that inactivate this class of antimicrobials. In general, ribosomal modification is
achieved through point mutations in ribosomal proteins or rRNA, as well as by
methylation of rRNA (Wright, 2002). Streptomycin resistance in the pathogen
Mycobacterium tuberculosis, for example, is predominantly the result of mutation of the
rpsL gene coding for ribosomal protein S12, or mutation of the 16S rRNA rrs gene
resulting in various base substitutions (Honore & Cole, 1994; Sreevatsan et al., 1996).
Methylation of 16S rRNA by ribosomal RNA methyltransferases is another form of
target modification, but is predominantly found only as a self-protection mechanism in
AG-producing bacteria (Thompson er al., 1985; Beauclerk & Cundliffe, 1987; Skeggs er
al., 1987, Kelemen er al., 1991; Kojic et al., 1992). The biochemical basis for AG
resistance by target modification is the disruption or decreased affinity of drug binding to
the ribosome (Davies & Wright, 1997), a phenomenon also observed when AGs are
modified (Llano-Sotelo er al., 2002). The mechanism of AG inactivation by bacterial

modifying enzymes is described in more detail in the following sections.

12
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1.5 Aminoglycoside Modifying Enzymes

Of greatest clinical concern is AG resistance conferred by modifying proteins, which
are commonly encoded on transferable plasmids and transposons for easy dissemination
of the resistance genes to other strains, and even other species, of bacteria (Courvalin &
Carlier, 1981; Shaw et al., 1993). The AMEs are divided into three main classes based on
the chemistry of drug modification, grouped as AG O-phosphotransferases (APHs), O-
adenylyltransferases (ANTs), or N-acetyltransferases (AACs) (Table 1.5). AME
nomenclature proposed by Shaw ef al. (1993) is used to identify AMEs and also provides
important details on modification activity. Using the AME AAC(6°)-1i as an example, the
naming scheme indicates the class of modifying enzyme (AAC), followed by the
regiospecificity of group transfer (6”) and the resistance phenotype (I), designated with a
roman numeral. A small case letter (i) is also used to signify a unique protein (Shaw et
al., 1993). This nomenclature has proved invaluable, especially considering the large
number of AMEs (>50) that have been identified (Davies & Wright, 1997). Several
excellent reviews have covered the topic of AMEs in detail (Davies, 1991; Shaw et al.,
1993; Bush & Miller, 1998; Wright, 1999b; Azucena & Mobashery, 2001; Smith &
Baker, 2002). The following sections will therefore give only a brief overview for each of
the APH and ANT class of enzymes, followed by a more in-depth review of the AAC

protein class.
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Table 1.5: Regiospecificity and examples of AG modification catalysed by the AMEs

Class of AME and typical modification reaction

Typical regiospecificities & AG substrates

Aminoglycoside N-Acetyltransferases (AACs) Q
HyN* )\\ CHy
3 HN

AAC(6")

gentamicin, tobramycin, netilimicin

HO 6 HO 6’ tobramycin, netilimicin, sisomicin
HO 0 HO 0 1  apramycin, paromomycin, ribostamycin
AcCoA CoA ’ ’
H,N* H;N* 3  gentamicin, tobramycin, sisomicin
SN [VaV¥aVaVa W)
Aminoglycoside O-Phosphotransferases (APHs) 3’  kanamycin, neomycin, ribostamycin
+ +
H3N H;N 2” amikacin, gentamicin, tobramycin
HO APH(3) _HO ., 8
HO_ 3 0 0 0 0 3” streptomycin
ATD A P\\/ 4  hygromycin
H,N* O  HN?t 6  streptomycin
b b 9  spectinomycin
Aminoglycoside O-Adenylyltransferases (ANTs)
4’ amikacin, tobramycin, isepamicin
2” gentamicin, tobramycin, kanamycin
37 streptomycin, spectinomycin
6 streptomycin
9  spectinomycin

oyeI Y - SISYL ‘dud

Anstuayosolg - IRISBAPDIA
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1.5.1 Aminoglycoside Phosphotransferases (APHs)

Phosphorylation of AGs is achieved through the activity of APH enzymes, which are
ATP-dependent kinases that transfer the y-phosphate of ATP to a free hydroxyl group,
generating modified AG and ADP (Table 1.5). APHs represent the second largest group
of AMESs, with varying regiospecificity for the 3°, 5, and 2” hydroxyls on 2-
deoxystreptamine-containing AGs, as well as the 4 & 7” positions on hygromycin, the 9
hydroxyl on spectinomycin, and the 3” & 6 positions on streptomycin (reviewed in
Wright & Thompson, 1999). APH enzymes are present in pathogenic enterococci,
staphylococci, and enterobacteriaceae, commonly encoded on resistance plasmids or
transposons (Shaw et al., 1993; Wright, 2002). Chromosomally encoded APH genes have
also been identified, however, in AG producing bacteria and others (Wright &
Thompson, 1999). From a clinical standpoint, the AG resistance conferred in Gram
positive cocci by the phosphotransferase activity of the bifunctional AAC(6’)-APH(2”)
enzyme is particularly disturbing, as it can inactivate virtually all 2-deoxystreptamine-
containing AGs (Culebras & Martinez, 1999). Characterization of numerous APHs has
contributed to a greater understanding of AG resistance conferred by these kinases
(Wright & Thompson, 1999; Azucena & Mobashery, 2001; Smith & Baker, 2002). In
particular, the crystal structure of APH(3’)-Illa reveals that this phosphotransferase is
structurally homologous to eukaryotic protein kinases (Hon et al., 1997), suggesting an

evolutionary link and also complementing previous inhibitor studies (Daigle ef al., 1997).
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1.5.2 Aminoglycoside Adenylyltransferases (ANTs)

ANTs catalyse the regiospecific transfer of an adenylyl group from ATP to an AG
hydroxyl group, generating pyrophosphate (PPi) and modified drug (Table 1.5). Enzymes
with regiospecificity for the 4’& 2” hydroxyls on 2-deoxystreptamine-containing AGs,
the 6 & 3” positions on streptomycin, and the 9 & 3” hydroxyls on spectinomycin have
been identified (Shaw er al., 1993). The ANTs are currently the smallest group of
AMESs, with less than 10 unique proteins identified to date (Wright, 2002). Similar to
other AG inactivating enzymes, ANTs are encoded on resistance plasmids and
transposons for easy dissemination of an#(2”) and ant(3”) genes among Gram negative
bacteria and ant(4’), ant(6), and ant(9) genes among Gram positive bacteria (Shaw et al.,
1993). The ant(6’)-Ib gene from Bacillus subtilis, however, is encoded on the
chromosome (Ohmiya et al, 1989). AG modification by ANT(2”) enzymes is of
particular clinical relevance, as this activity confers resistance to the important AGs
tobramycin and gentamicin in several Gram negative pathogens (Miller er al., 1997).
Characterization of ANT(2”)-Ia from E. coli has provided valuable information regarding
the mechanism of AG modification by this important subclass of ANTs (reviewed in
(Wright, 2002)). Further insight has come from the structural determinations of ANT(4°)-
Ia from S. aureus, which represented the first reported crystal structures of any AME
(Sakon et al., 1993; Pedersen ef al., 1995). Interestingly, the overall fold of this enzyme
showed high structural homology to eukaryotic DNA polymerases, which led to the
recognition that ANTs are members of a larger nucleotidylyltransferase superfamily

(Aravind & Koonin, 1999).
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1.5.3 Aminoglycoside Acetyltransferases (AACs)

The AACs represent the largest group of AG inactivating enzymes, with over 48
unique enzymes identified from both Gram positive and Gram negative bacteria (see
Table 1.6). These AMEs transfer the acetyl group from AcCoA to AG free amino groups
predominantly, producing acetylated AG and CoA (Table 1.5). This family is grouped
into AAC(1), AAC(3) AAC(2’), and AAC(6’) enzymes, based on the regiospecificity of
modification to 2-deoxystreptamine-containing AGs as well as fortimcin and apramycin
(Shaw et al., 1993). A current list of known AAC enzymes is included in Table 1.6.

Acetyl transfer to the aminocyclitol ring of AGs occurs by the action of AAC(1) and
AAC(3) enzymes. Two AAC(1) enzymes have been identified to date, one conferring
apramycin resistance in E. coli (Lovering et al., 1987) and the other acetylating
paromomycin in an actinomycete strain but oddly not conferring resistance to this drug
(Sunada et al., 1999). Both proteins are of little clinical relevance. In contrast, AAC(3)
enzymes complicate the treatment of many bacterial infections due to their inactivation of
tobramycin and gentamicin (Miller et al., 1997; Wright, 2002). AAC(3)-1 from Serratia
marcescens was studied in detail in the 1970s by Northrop’s group, revealing a broad AG
substrate specificity for this AAC and the kinetic mechanism of acetyl transfer (Williams
& Northrop, 1976, 1978a, 1978b). An inhibitory bisubstrate analog for this protein was
also designed by this group (Williams & Northrop, 1979). More recent findings have
come from the structural elucidation of AAC(3)-I in complex with CoA, the first AAC

crystal structure to be reported (Wolf ez al., 1998).
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Table 1.6: AAC family of enzymes

Enzyme Host Bacteria AG Resistance Reference’
Profile”
AAC) Escherichia coli Apr, Liv, Paro, Ribo Lovering et al., 1987
Actinomycete strain unknown Sunada et al., 1999
AACO)-I Gent, Fort
AAC(3)-1 Serratia marcescens Javier Teran ef al., 1991
AAC(3)-Ib P. aeruginosa Schwocho et al., 1995
AAC(3)-Ic P. aeruginosa Riccio et al., 2003
AAC3)-IT Gent, Tob, Dbk, Ntl,
2°Ntl, 6°Ntl, Siso
AAC(3)-lla Enterobacteriaceae Allmansberger et al., 1985
AACQ3)-IIb° S. marcescens Rather et al., 1992
AACQ3)-Iic E. coli Javier Teran et al., 1991
AAC3)-IIT Gent, Tob, Dbk,
Kan, 5-Epi, Siso,
Neo, Paro, Liv
AAC(3)-1Ia P. aeruginosa Vliegenthart et al., 1991
AACQ3)-IIIb P. aeruginosa AAA25682
AAC(3)-ilc P. aeruginosa AAA25683
AAC(3)-IVa E. coli Apr, Gent, Tob, Dbk, Hedges & Shannon, 1984
Ntl, 2°Ntl, 6’Ntl, Siso
AAC(3) misc
AAC(3)-Vla Enterobacter cloacae Gent, 6’Ntl, Siso Rather ez al., 1993a
AAC(3)-VIL Streptomyces rimosus unknown Lopez-Cabrera et al., 1989
AACQ3)-VIII Streptomyces fradiae unknown Salauze ef al., 1991
AACQ)-IX Micromonospora chaicea unknown Salauze et al., 1991
AAC(3)-X S. griseus Gent, Kan, Dbk Hotta ef al., 1988
AAC(2°)-I Gent, Tob, Dbk,
Ntl, 2°Ntl, Siso
AAC(2)-Ia Providencia stuartii Rather er al., 1993b
AAC(2’)Ib Mycobacterium fortuitum Ainsa et al., 1996
AAC(2’)Ic Mycobacterium tuberculosis Ainsa et al., 1997
AAC(2*)-Id Mycobacterium smegmatis Ainsa et al., 1997
AAC(2’)-Ie Mycobacterium leprae Cole et al., 2001
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Table 1.6: continued

McMaster - Biochemistry

Enzyme Host Bacteria AG Resistance Reference’
Profile’
AAC(6)-1 Tob, Dbk, Amk, 5-Epi
Ntl, 2°Ntl, Siso
AAC(6’)-1a Citrobacter diversus Tenover et al., 1988
AAC(6°)-Ib S. marcescens Tran van Nhieu & Collatz, 1987
AAC(6’)-Ic S. marcescens Shaw et al., 1992
AAC(6”)-Id Klebsiella pneumoniae Schmidt ez al., 1988
AAC(67)-Ie Enterococcus faecalis & Fort Ferretti et al., 1986
AAC(6°)-If Enterobacter cloacae Teran et al., 1991
AAC(67)-Ig Acinetobacter haemolyticus Lambert et al., 1993
AAC(6’)-Ih Acinetobacter baumanni Lambert et al., 1994
AAC(6’)-Ii Enterococcus faecium Costa et al., 1993
AAC(6°)-j A. baumanni Lambert et al., 1994
AAC(6°)-Ik Acinetobacter sp. CIP-A165 Rudant et al., 1994
AAC(6°)-11 Enterobacter aerogenes Bunny et al., 1995
AAC(6°)-Im Citrobacter freundii Hannecart-Pokorni et al., 1997)
AAC(6°)-In C. freundii Wu et al., 1997
AAC(6°)-Iq Klebsiella pneumoniae Centron & Roy, 1998
AAC(6’)-Ir Acinetobacter sp. 14 Rudant et al., 1999
AAC(6°)-Is Acinetobacter sp. 15 Rudant et al., 1999
AAC(6°)-It Acinetobacter sp. 16 Rudant et al., 1999
AAC(6°)-Tu Acinetobacter sp. 17 Rudant et al., 1999
AAC(6’)-Iv Acinetobacter sp. 631 Rudant et al., 1999
AAC(6°)-Iw Acinetobacter sp. 640 Rudant et al., 1999
AAC(6)-Ix Acinetobacter sp. BM27222 Rudant et al., 1999
AAC(6°)-ly Salmonella enterica Magnet et al., 1999
AAC(6°)-1z Stenotrophomonas maltophilia Lambert et al., 1999
AAC(6°)-11 Gent, Tob, Dbk, 5-Epi
Ntl, 2°Ntl, Siso

AAC(6’)-Ila P. geruginosa ' Rather et al., 1993a
AAC(6°)-IIb Pseudomonas fluorescens AAA25680
AAC((6)-Ilc P. aeruginosa AAD46626

9 AG resistance profile refers to the in vivo resistance conferred by the enzyme which identifies the regiospecificity
and AG resistance profile (information gathered fom Shaw ef al. (1993)). The abbreviations used are;
Gent, gentamicin; Tob, tobramycin; Dbk, dibekacin; Ntl, netilimicin; 2°Ntl, 2°-N-ethylnetilmicin; 6’Ntl,
6’-N-cthylnetilmicin; Siso, sisomicin; 5-Epi, 5-episisomicin; Fort, fortimicin; Apr, apramycin; Liv, lividomycin;

Paro, paromomycin; Ribo, ribostamycin; Kan, kanamycin, Neo; neomycin.

? protein sequences that were submitted directly into the NCBI databank are referenced with the protein id.
¢ also referred to as AAC(3)-Vb (Shaw et al., 1993)
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Most remarkable about the AAC(3)-I fold was the striking structural homology it
shared with the yeast histone acetyltransferase yHAT1 (Dutnall ef al., 1998), even in the
absence of significant amino acid sequence homology. Based on their structures, these
two enzymes became the first representative members of the GCN5 related N-
acetyltransferase (GNAT) superfamily, a diverse group of prokaryotic and eukaryotic
enzymes that share conserved structural motifs important for the binding of AcCoA
(Neuwald & Landsman, 1997; Dyda et al., 2000). Interestingly, the three dimensional
structures of AAC(6°)-1i from E. faecium (Wybenga-Groot ef al., 1999) and AAC(2’)-Ic
from M. tuberculosis (Vetting et al., 2002) reveal that these proteins are also GNAT
members, suggesting that all AAC enzymes, regardless of regiospecificity, share a
common structural fold. The GNAT superfamily is discussed in more detail in chapter 4
and has also been reviewed elsewhere (Dyda et al., 2000).

The final two subclasses of AACs modify the primed ring of 2-deoxystreptamine-
containing AGs. The AAC(2’) group of enzymes is made up of 5 unique proteins that are
chromosomally encoded in Providencia or Mycobacterium species (Table 1.6). Although
these enzymes do not confer clinically relevant AG resistance, characterization of
AAC(27”)-1a from P. stuartii (Payie et al., 1995; Payie & Clarke, 1997) and AAC(2”)-Ic
from M. tuberculosis (Hegde et al., 2002; Vetting et al., 2002) have pointed to alternate
functions for these proteins in vivo. In addition, the structural elucidation of AAC(2’)-Ic
in complex with CoA and various AG substrates has provided valuable information on

the binding of AGs by this enzyme, with possible relevance to other AACs.
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The AAC(6") subfamily of modifying enzymes is the largest of any AME subclass,
with 27 unique enzymes (Table 1.6). The majority of these genes are encoded on
transferable resistance plasmids and transposons, with exceptions including the
chromosomally encoded aac(6°)-Ic, aac(6°)-1i, aac(6’)-Iy, and aac(6’)-Iz genes, as well
as the aac(6’) genes identified from species of Acinetobacter (see Table 1.6). Clinically
relevant resistance conferred by the activity of these N-acetyltransferases is almost
exclusive to Gram negative bacteria, with the exception of AAC(6’)-li activity in
enterococci (Costa er al., 1993) and AAC(6’)-APH(2”) activity in enterococci and
staphylococci (Ferretti e al., 1986). AG Modification by the bifunctional enzyme has
been shown to account for almost half of the observed AG resistance in pathogenic
Staphlococcus aureus and E. faecalis (Miller et al., 1997). Similarly, the low-level
intrinsic resistance conferred by AAC(6’)-Ii complicates the clinical treatment of
infections caused by E. faecium (Costa et al., 1993).

All AAC(6’)s have the capacity to acetylate clinically useful AGs, including
amikacin in the case of the AAC(6")-I enzymes and gentamicin for the AAC(6")-1I class
(Shaw et al., 1993). As a large group, these enzymes share between 10 to 15 % amino
acid sequence homology (Shaw ef al., 1993), with sequence alignment of these proteins
identifying several distinct subgroups of 6' N-acetylating enzymes, represented in Figure
1.2 by a phylogenetic tree. In particular, AAC(6")-Ii from E. faecium shares over 40%
amino acid sequence homology with AAC(6")-Ia from Citrobacter diversus (Tenover et
al., 1988), AAC(6")-11 from Citrobacter freundi (Hannecart-Pokorni et al., 1997), and

AAC(6')-1q from Klebsiella pneumoniae (Centron & Roy, 1998).
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Figure 1.2: Phylogenetic relationships among the AAC(6’) subfamily of enzymes.
For simplicity, only the AG resistance profile (I or II) and the unique protein designation
is shown. The host organisms and other details for each of the AAC(6’) enzymes can be
found in Table 1.6. Sequences were aligned using the program Clustal W (Thompson et
al., 1994). The unrooted phylogenetic tree was generated using TreeView (Page, 1996),
with the branch scale at left signifying 0.1 nucleotide substitutions per site.
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Studies on several AAC(6’) proteins have helped to characterize the enzymatic
activity of these AG resistance determinants. Research on AAC(6”)-ly from Salmonella
enterica has characterized this enzyme and the mechanism by which the cryptic
chromosomal gene is activated (Magnet et al., 1999; Magnet et al., 2001; Hegde et al.,
2002). Studies in our lab have concentrated on the bifunctional AAC(6’)-APH(2’) and
AAC(6)-1i enzymes from Gram positive cocci, with several published reports on their
kinetic characterization (Wright & Ladak, 1997; Daigle et al., 1999a; Daigle et al.,
1999b), structural determinations (Wybenga-Groot ef al., 1999), and inhibitor studies
(Daigle et al., 1997; Sucheck et al., 2000; Boehr et al., 2003a; Boehr et al., 2003c). The
following section will give a brief overview of what is known about AAC(6’)-Ii, the

enzyme that is the focus of the research described in this thesis.

1.6 AAC(6’°)-Ii From Enterococcus faecium

The chromosomal aac(6')-Ii gene was characterized in 1993 by Costa et al., who first
reported the sequence of the gene and the encoded acetyltransferase protein of ~ 21 kDa
(Costa et al., 1993). Insertional inactivation of the aac(6’)-Ii gene confirmed that
expression of the modifying enzyme was responsible for the low-level aminoglycoside
resistance observed in E. faecium (Costa et al., 1993). The AAC(6°)-li enzyme was
subsequently overexpressed in E. coli and successfully purified by a three step
chromatography procedure, as shown in Figure 1.3A (Wright & Ladak, 1997). A robust
continuous kinetic assay first described by Williams & Northrop (1978a) is used to

monitor AAC(6°)-1i acetyl transfer activity in the steady-state (Figure 1.3B).
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Figure 1.3: AAC(6’)-Ii purification and spectrophotometric assay. Shown in A. is
the purification of AAC(6’)-1i from E. coli overexpressing the 21 kDa protein. The
SDS-20% polyacrylamide gel was stained with Coomassie blue. Lane 1, molecular
mass standards; lane 2, unpurified cell lysate; lane 3, pooled fractions after anion
exchange chromatography; lane 4, pooled fractions after gel filtration chromatography;
lane 5, pure AAC(6)-Ii collected after affinity chromatography. See Wright & Ladak
(1997) for additional purification details. B. Continuous spectrophotometric assay used
to detect AAC(6°)-1i acetyl transfer activity. The assay involves the in situ titration of
CoA product with DTDP, generating a thiolate species that absorbs at 324 nm.
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Initial in vitro studies on purified AAC(6’)-1i revealed a stable enzyme that exists as
a homodimer in solution and displays a broad AG substrate specificity and varying
kinetic properties depending on the aminoglycoside substrate (Wright & Ladak, 1997).
Different binding modes for the 4,5- and 4,6-disubstituted deoxystreptamine AGs were
hypothesized based on steady-state kinetic analysis (Wright & Ladak, 1997) and further
supported by NMR spectroscopy studies (DiGiammarino ef al., 1998). In addition,
specificity constants were found to be fairly low (kea/Km ~ 10* M'ls'l) and minimum
inhibitory concentrations (MICs) were observed to be positively correlated to kcy, the rate
at saturating AG, and not k. /Ky, the rate at subsaturating AG, revealing a suboptimal
level of AG detoxification by this AME (Wright & Ladak, 1997). These results, together
with the chromosomal origin of the aac(6°)-Ii gene, suggested that this protein may have
another function in E. faecium besides aminoglycoside modification (Wright & Ladak,
1997).

The structural determination of AAC(6’)-Ii in complex with AcCoA, solved by
Wybenga-Groot ef al. (1999), provided a great deal of information relevant to the binding
of substrates by this protein and the mechanism of acetyl transfer. It also identified this
enzyme as a member of the GNAT superfamily, which already included AAC(3°)-I and
the histone acetyltransferase yHAT based on the previously reported crystal structures
(Dutnall et al., 1998; Wolf et al., 1998). Biochemical evidence gathered by myself (see
chapter 7) also revealed that AAC(6°)-Ii can acetylate eukaryotic H3/H4 histones and a
number of small basic proteins, suggesting that certain members of the GNAT

superfamily are both structural and functional homologs (Wybenga-Groot er al., 1999).
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The AAC(6’)-1i monomer has an obvious V-like structure, consisting of N- and C-
terminal domains that diverge as a result of a GNAT-conserved B-bulge in B-strand 4
(Wybenga-Groot et al., 1999). This separation forms a cleft-like region between the two
domains and creates an AcCoA binding site, as shown in Figure 1.4. Interestingly, the
majority of contacts made between the protein and AcCoA are made through interactions
with the main chain backbone of the protein (Wybenga-Groot et al., 1999). A negatively
charged surface patch in active site proximity is also apparent from the structure and is
believed to draw in the cationic AG substrate (Wybenga-Groot et al., 1999). The
structure of the AAC(6’)-1Ii dimer with bound CoA has also been recently reported (Burk

et al., 2003), with relevance to some of the research described in the chapters that follow.

Figure 1.4: Structure of the AAC(6’)-li monomer in complex with AcCoA
(Wybenga-Groot ef al., 1999). As shown above, AcCoA is bound in the cleft-like
region between the N-terminal (left) and C-terminal (right) domains of the monomer.
This figure was generated using the pdb code 1b87 and PyMOL molecular graphics
software (DeLano, 2002).

26



Ph.D. Thesis - K. Draker McMaster - Biochemistry

1.7 AAC(6°)-Ii Research Described Here

This thesis describes the further characterization of the AAC(6°)-Ii protein, which
has entailed many different avenues of study. Chapter 2 summarizes research that was
done to better understand the substrate-induced conformational changes observed for this
enzyme, shown to be an essential part of acetyl transfer catalysis. The next chapter
reports the kinetic mechanism of AAC(6°)-li, which describes the order of substrate
binding and formation of a ternary complex required for productive AG inactivation.
Studies to further define the molecular mechanism of AAC(6°)-Ii catalysis is then
detailed in chapter 4, which describes the characterization of several GNAT-conserved
residues and their potential role in AAC(6°)-1i acetyl transfer chemistry. Similarly, the
chapter that follows investigates the role of several negatively charged amino acids in AG
binding. Chapter 6 summarizes various inhibitor studies, including the characterization of
several cationic peptides that were shown to inhibit AAC(6°)-1i as well as other AMEs.
Finally, chapter 7 describes numerous studies performed with wild type and mutant
strains of E. faecium in attempts to identify an alternate in vivo role for AAC(6’)-Ii.

Overall, the research described here contributes to a greater understanding of the
mechanism of AG modification by this resistance enzyme, with relevance to other AACs
and even other important proteins that are part of the GNAT superfamily. A detailed and
extensive understanding of the different classes of AMEs, achieved by studying the
enzymology and mechanism behind AG inactivation, will no doubt lead to methods to

ultimately overcome AG resistance.
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Chapter 2

Ligand-Induced Conformational Changes in AAC(6°)-Ii
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2.0 Summary

The research described in this chapter characterizes the conformational changes
observed for AAC(6°)-Ii in response to the binding of both AcCoA and AG substrates.
Through a series of studies including partial proteolysis, tryptophan fluorescence, circular
dichroism, and "N-'"H NMR, we have demonstrated that this enzyme undergoes a
significant structural rearrangement upon the binding of AcCoA, with changes also noted
in response to AG binding. Our results have established that AAC(6°)-1i is in a flexible,
open conformation in its ligand-free form and assumes a closed conformation upon
substrate binding, thereby generating a catalytically competent enzyme. The elucidation
of the AAC(6°)-Ili-AcCoA crystal structure that succeeded these studies (Wybenga-Groot
et al., 1999) allowed us to further interpret our results in the context of the proteins’
tertiary structure, as well as to identify the correct dimer interface from numerous
alternatives presented by the crystal structure data.

We gratefully acknowledge the ">N-'"H NMR work done by Dr. Kevin Gardner at the
University of Toronto, Department of Medical Genetics and Microbiology. We also thank
Dr. Kirk Green, who performed the mass spectrometry analysis of AAC(6’)-1i proteolytic
fragments at the McMaster Regional Center for Mass Spectrometry. Lastly, we thank
Leanne Wybenga-Groot, who solved the AAC(6°)-li-AcCoA binary complex structure at
McMaster and provided valuable crystallographic data that aided in the identification of

the AAC(6’)-1i physiological dimer.
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2.1 Introduction

Protein conformational changes in response to ligand binding are a well documented
phenomenon and the subject of many comprehensive reviews (Gerstein et al., 1994;
Hammes, 2002; Yon et al., 1998). The motions of structural domains within proteins
have been repeatedly demonstrated to be essential for a wide range of protein functions,
including efficient catalysis by several classes of enzymes such as dehydrogenases,
kinases, synthases, proteases, and many others (Gerstein et al, 1994). The idea that
substrate-induced conformational changes are a requirement for catalysis was first
proposed in Koshland’s induced-fit theory of enzyme specificity, which consists of a set
of postulates outlining the importance of structural rearrangements upon ligand binding in
order to generate enzyme specificity and the proper orientation of substrates in the active
site (Koshland, 1958). The extent of a substrate-induced conformational change can vary
greatly depending on the protein, with only subtle changes localized to the active site in
some instances and much larger movements, sometimes distant from the active site,
observed for other enzymes. A classic example of the latter case is ligand-induced
domain closure, in which a substrate binds in a cleft-like region between two domains
and induces a ‘“closed” protein conformation (Gerstein et al, 1994). X-ray
crystallography in particular has provided a wealth of information regarding enzyme
conformational changes, largely based on structural comparisons of an enzyme in
uncomplexed versus complexed forms (Gerstein et al, 1994; Yon et al, 1998).

Additional methods such as fluorescence spectroscopy and NMR can also aid in
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characterizing the nature and extent of ligand-induced protein movements (Yon ef al.,
1998), and often complement crystallographic studies.

Recent work on several different GNAT enzymes has revealed that substrate-induced
conformational changes are common for this superfamily. In particular, yeast histone
acetyltransferase (HAT) has been shown to become refractory to protease digestion upon
formation of the HAT-AcCoA complex, suggesting a change in protein conformation
upon association with cofactor (Dutnall er al., 1998). As well, crystal structures of the
tetrahymena GCNS enzyme with bound AcCoA as well as the ternary complex indicate
that cofactor binding of essential in orienting the protein for proper histone binding and
N-acetyltransfer (Rojas et al, 1999). Similarly, the structure of serotonin N-
acetyltransferase (AANAT) in complex with a bisubstrate analog shows that cofactor
binding is accompanied by both changes in secondary structure and conformation in order
to form the serotonin binding site (Hickman et al., 1999a; Hickman e al., 1999b).

This chapter focuses on the conformational changes in AAC(6°)-Ii in response to
both AcCoA and AG binding. In the absence of a three-dimensional structure of
AAC(6°)-Ii in unliganded or ternary complex forms, we turned to a series of experiments
including protease susceptibility and Trp fluorescence to probe local conformational and
general structural changes in response to ligand binding