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Abstract 

The critical properties ofFejW(llO) ultrathin films with thickness between 

1.5 and 2.0ML have been studied using magnetic ac-susceptibility Xm. Using a careful 

statistical fitting routine that allows simultaneous extraction of the critical exponent 

'Y and the transition temperature T e , the FejW(llO) films were found to belong to the 

2d Ising universality class. Measuring the 2d Ising 'Y value of t from the data appears 

to be dependent on how close to T e the data allows fitting. This in turn is dependent 

upon film thickness, likely through changes in film uniformity. For measurements 

of the susceptibility that show power-law scaling below a reduced temperature value 

of 4.75xlO-3 , the average value of'Y = 1.75±.02. Further analysis of the complex 

susceptibility allows the extraction of the critical slowing down exponent z. It has 

been found that bilayer films that exhibit a static critical exponent 'Y near 1. 75 show a 

value of z = 2.09±.06 (95% confidence). This finding represents the first experimental 

measurement of the critical slowing down exponent which supports the current the

oretically predicted value for a 2d Ising system. Further analysis also allows insight 

into various saturation processes that affect the magnetic ac-susceptibility near T e 

and the effect that oxygen doping of the surface has on the saturation. 
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Chapter 1 

Introduction 

Phase transitions are a comparatively old subject in the world of physics. Ever since 

the discovery that ice, water, and steam are all different phases of H20, scientists have 

been working to discover the physics behind the transformation of materials from one 

phase to another. 

The phase of a material is defined by the value of its order parameter. The 

order parameter can be any intrinsic measure of a material property that defines the 

different phases. For example, in the case of water, the relevant order parameter is 

the local density. The value for the order parameter will change for a different value 

of an extrinsic material property, such as temperature and pressure. When a block 

of ice is placed in contact with an environment of temperature higher than 273.15K, 

it will undergo a phase transition from its solid phase to the liquid water phase. If 

the temperature rises one hundred degrees higher, the water will turn into its gaseous 

form, namely steam. This all assumes that the pressure stays constant and at a value 

of one atmosphere for the numbers quoted above to be correct. Water can also turn to 

steam or ice if the ambient pressure environment decreases or increases respectively. 

At the heart of any phase transition mechanism is the notion that the value of the 

order parameter changes with external coercion. 

1 



2 

Phase transitions generally fall into two categories: discontinuous (also called 

first order) and continuous (second order). The discontinuous transition has associ

ated with it what is referred to as the latent heat, which is the amount of energy 

the system acquires when it orders and then releases when it disorders (or sometimes 

vice versa). The continuous transition occurs with no latent heat. The reason for this 

and the reason behind there being two types of transitions is reflected in the form 

of the system's free energy. The free energy is defined as the energy of the system 

that is available to do work or, more exactly, the difference between the total inter

nal energy and the entropic energy. The reason for the nonintuitive first and second 

order nomenclature is from considerations of what derivative of the free energy is 

discontinuous at the transition. 

This thesis is a study of phase transitions in magnetic thin films. For these 

materials and most magnetic systems in general, the magnetic properties are due 

to the cooperative nature of the individual magnetic moments, which are the local 

sources of magnetic fields that arise from the angular momentum of subatomic parti

cles. A ferromagnet is a material where all of the magnetic moments in the material 

spontaneously order along a certain direction (called the easy axis). Ferromagnets 

will typically undergo a continuous phase transition as a function of temperature to 

become paramagnets. The paramagnet has all of its moments pointing in random 

directions. The net magnetic properties of the common iron bar magnet is entirely 

due to this spontaneous ordering. But, if the bar magnet was heated up past l043K, 

all the paper clips and thumb-tacks attached to the end would fall due to the mate

rial undergoing a phase transition as a function of temperature to its paramagnetic 

form. The temperature of l043K is where the phase transition occurs in iron. In 

ferromagnets, this temperature is called the Curie temperature, usually abbreviated 
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In a ferromagnet, the order parameter of interest is the net or average mag

netization m. For T> T c, where all the moments are randomly aligned in the param

agnetic state, the average value of m is zero. In a ferromagnet, the ordering of the 

moments causes m to have a non-zero value. The ordering is very sensitive to the 

amount of thermal energy in the material. Once the thermal energy of the system 

increases to the point where it is on par with the energy that causes the alignment of 

the moments (called the exchange energy), the moments disorder and the temperature 

where that happens is called the Curie temperature. 

There is a lot of interest in the mechanism of how the disordering and hence 

the phase transition occurs. It has been found that the magnetization of a ferromagnet 

behaves as a power law as Tc is approached from below in temperature (T-+T~). The 

exponent of the power law is called the critical exponent of the order parameter and 

it is symbolised by the Greek letter fJ. Figure 1.1 shows a modeled power-law for the 

magnetization as a function of temperature. 

The value of fJ can tell a great deal about the phase transition. The concept 

of scaling has shown that a phase transition is not sensitive to the microscopic details 

of a system's Hamiltonian but to the long range symmetry of the material as well as 

its dimensionality and the degrees of freedom of its order parameter. These concepts 

lead to the conclusion that as long as a few macroscopic criteria are met, then two 

seemingly completely different phase transitions will have identical critical exponents! 

A group of materials that have the same set of critical exponents are said to belong 

to the same universality class. 

As can be inferred by the previous paragraph, there are more critical expo

nents that just fJ. The other exponents describe how other properties of the material 
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Figure 1.1: Graph showing magnetization as a function of temperature. In this 
idealisation of data, T c is marked where m goes to zero and j3 is ~. E is the reduced 
temperature (1 - T /Tc). 

behave at the phase transition. These include (but are not limited to): 

• Specific Heat 

The specific heat (usually symbolised as C) is a measure of the amount of 

energy required to raise the temperature of the system. The exponent of the power 

law that describes the temperature dependence is 0;' . 

• Correlation Length 

If a moment spontaneously flips away from its equilibrium position, this sets 

up a fluctuation the effects of which will be felt by moments out to a certain mean 

distance. The average value for this distance is the correlation length and is denoted 

by the Greek letter~. At Tc, the thermal energy is equal to the energy that orders 

the moments and therefore only a small amount of additional energy is required to 

create a fluctuation and once created, the effects of it will carry farther than it would 
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at lower temperatures. ~ will theoretically diverge to infinity at T c via a power-law 

with an exponent 1/ . 

• Susceptibility 

The susceptibility is a measure of how sensitive the order parameter is to an 

external field. In magnetic systems, this is usually the susceptibility of the magneti

zation to an externally applied magnetic field, written formally as the derivative ~r;:, 

where m is the average net magnetic moment and h is the externally applied magnetic 

field. The susceptibility is denoted by the Greek letter X. The susceptibility, like the 

correlation length, diverges at T c according to a power-law governed by the critical 

exponent 1' . 

• Relaxation Time 

The relaxation time T is a measure of the average time it takes for fluctuations 

of the order parameter to dampen out. For small deviations from equilibrium, the 

relaxation of the magnetization in a ferromagnet will behave as an exponential, with 

an argument of -tiT. The value of T will diverge with the correlation length and the 

exponent of its divergence as a function of temperature is the product of 1/ and z, 

where z is called the critical slowing down exponent. 

These last two quantities, X and T, and their exponents are the major subjects 

of this thesis. 

1.1 Experimental Studies of Phase Transitions in 
Ultrathin Films 

Experimental studies on phase transitions in ultrathin magnetic films (generally de

fines as being between 1-10 atoms thick) face problems and advantages that make 

them different from the usual studies done on bulk magnetic materials. While the 
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nature of the sample make it an excellent real world manifestation of two-dimensional 

theories, the same extreme sample dimensions also rules out the use of such standard 

techniques as x-ray and neutron diffraction. 

Almost all studies in the literature tend to focus on measuring the static criti

cal exponents f3 and ,,/, the former being more popular than the latter. Earliest studies 

of f3 used various electron-probe techniques such as ESP (electron spin polarimetry) 

or SPLEED (spin-polarised low energy electron diffraction). While other techniques 

such as FMR (ferromagnetic resonance) and TOM (torsion oscillation magnetometry) 

have been successful, most studies make use of SMOKE (surface magneto-optic Kerr 

effect). See section 3.6 for more details about SMOKE. 

The first major body of work on magnetic monolayer phase transitions began 

to appear in the late 1980s, early 1990s. One of the first papers to report a value for 

f3 was by Rau et al[3], who made measurements on V(100)/ Ag(100) monolayers using 

ESP. They found a f3 value of 0.128±0.0l, very close to the 2d Ising (meaning a two

dimensional system with spins that can have one of two opposite orientations) value 

of 0.125. This was closely followed by several other papers including measurements 

on Ni/Cu(lll) using SMOKE[4], Fe/ Au(100) using SPLEED[5], Ni/Cu(lll) again 

using SMOKE (this paper found a higher value for f3 than the previous paper), 

Co/Cu(lOO) using SMOKE[6], Ni(lll)/W(llO) using FMR[7] [the Ni(l11)/W(llO) 

system seems to be unmeasurable by standard SMOKE techniques as judged by 

repeated attempts to make such measurements by the author]' Fe/Ag(lll) using 

SMOKE[8], and Fe/W(llO) by a combination of techniques[9]. This last paper is 

discussed in more detail in chapter 4. 

There are two interesting studies, one on Ni(1l1)/W(1l0)[10] and one on 

Ni/Cu(llO)[ll], that find strong evidence for dimensional crossover from two to three 
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dimensional behaviour as a function of thickness. The Ni/W(llO) system was found 

to go from behaving as a 2d Ising system for less than 4ML to a 3d exponent in the 

range of 0.35 for systems thicker than SML. The intervening thicknesses showed a 

steadily increasing value of (3 between the two limiting boundaries. The NijCu(llO) 

system seems to transform as a function of thickness at 7ML from three dimensional 

Heisenberg to a two-dimensional XY system. 

A paper by Kohlhepp et al[12] made arguments that any measurement of (3 in 

ultrathin magnets should be made using the saturated magnetisation in the presence 

of a magnetic field instead of the standard remnant magnetisation. They noted the 

marked difference between the two quantities on a perpendicularly magnetised film of 

CojCu(lll). Their treatment however ignores the fundamental problems of domains 

in films with perpendicular moments. The dipole energy in such a system leads to a 

multi-domain ground state that, especially near T e, gives zero net magnetisation in 

zero field. 

One of the first measurements of "f from an ultrathin film was measured on 

Gd(1000)jW(1l0)[13] using electron spin resonance. A 2d Ising exponent is reported 

but the important question of the determination of T e is raised. It could be argued 

that finding the transition temperature in the magnetisation data is a simpler task 

than determining it from the susceptibility. For T e, they used the temperature at 

which there is an inflection point in the high temperature tail, citing agreement with 

bulk phenomenon. They also report they allowed T e to vary in a least-square fit 

and the resulting value of T e agreed with the inflection point temperature to within 

a degree. However, they do not state which they used for Te , the fit value or the 

inflection temperature. It is certain the changing T e within the range of a degree 

would give a much different result for the value of "f. 
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Other 'Y papers report results for Gd(lOOO) jW(110) using ac-susceptibility[14], 

monolayer FejW(110) using SPLEED[15], Fe(lOO)jW(lOO) using electron spin diffrac

tion and Mossbauer spectroscopy[16] and FejW(110) using SMOKE[17]. This last pa

per was written mainly to display a new technique that improves the signal-to-noise 

in SMOKE measurements, a technique used for all the susceptibility measurements 

in this thesis. The analysis of the critical exponent therein contains numerous faults, 

including the means by which the weighted least-square fits were performed. 

Besides the determination of T c, the analysis of the susceptibility to find 'Y 

is further complicated by the demagnetisation factor (see section 2.3.2). This subtle 

yet extremely important point is treated very inconsistently in the literature, usually 

either ignored completely[17] or greatly overestimated[18] for films that are magne

tised within the plane. For perpendicular films, the demagnetisation factor prevents 

the measured magnetic susceptibility from diverging at all. 

This thesis will focus on measurements of the critical exponent 'Y and the 

product exponent zv in two-dimensional magnetic systems, namely ultrathin films of 

iron grown atop a tungsten (110) crystal. To the knowledge of the author, there has 

been no experimental study of critical slowing down in ultrathin ferromagnets (there 

has been some work done on two-dimensional bulk samples. These will be discussed 

in sec. 4.2). A method of fitting susceptibility data will be presented that will allow 

the extraction of both the value for 'Y and T c' The results will show that the critical 

exponent 'Y depends on how close to T c that data can be fit to a power-law and that 

this is in turn is related to film thickness. The complete complex susceptibility will 

then be analysed for critical slowing down and results will be presented that exper

imentally confirm the current theoretical value for zv for two dimensional magnetic 
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systems. 

Following this introduction, chapter 2 will go into some detail on the theory 

behind many of the subjects that have been briefly mentioned here. Chapter 3 will 

outline the workings of the experimental methods used to make the careful measure

ments, as well as a brief description of the growth and characterisation of ultrathin 

films. Chapter 4 will present the major findings of this research. Included in their 

entirety will be two papers which have recently been submitted to APS journals; the 

first (on measurement of the exponent 'Y) to Physical Review B and the second (on 

critical slowing down and saturation effects in critical measurements of X) to Physical 

Review Letters. Following the unexpurgated text of the papers will be extra material 

filling in some details of the material in the papers as well as sections on the effect 

that doping the tungsten surface with oxygen has on the structural and magnetic 

properties of the iron films. Chapter 5 will present the major conclusions of the work. 



Chapter 2 

Theory 

2.1 Introduction 

This chapter will outline the theoretical background to the experimental results of 

this thesis. The sections will roughly follow a two part structure. In the first part, the 

basic phenomenon of ferromagnetism will be presented along with various other topics 

of importance such as magnetic anisotropy and demagnetisation. Following this will 

be a treatment of the statistical mechanics of phase transitions, with accompanying 

information on topics such as scaling and universality. 

2.2 Magnetism 

Classically, magnetic fields arise from the movement of electric charge. The equations 

of Maxwell accurately describe the creation of magnetic and electric fields due to 

electric currents (and vice-versa) in a classical context, even though most of the 

concepts they describe are relativistic in detail. 

The magnetic field created by a coil of conducting material carrying an electric 

current I is (in cylindrical coordinates): 

H(r 0) = J.1-oIA(2cos(O)f - sin(O)O) 
, 47rr3 

(2.1) 

10 
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Figure 2.1: Dipole Field Lines. Solid dots represent cross-section of current-carrying 
wire. 

where H is the magnetic field, A is the area of the loop, and the center of the loop is 

the origin of the coordinate system defined by f and {j. This is the classical magnetic 

dipole field and is illustrated in figure 2.1. 

Microscopically, for a single electron, the magnetic moment is created by the 

angular momentum of the particle. According to quantum mechanics, the angular 

momentum of a particle is described by the orbital angular momentum L and its 

quantum number, 1, and the spin angular momentum S and its quantum number, s. 

The total angular momentum is J =L+S. The total moment of a single particle with 

angular momentum J is: 

/-tohej 
m=-g--

2me 
(2.2) 

where /-to is the permeability of free space (41r x 10-7 ~), h is Planck's constant 

(6.63xlO-34 Js), me is the mass of the electron (9.1 x 10-31 kg), e is the electron charge 

(1.60x 1O-19C), and 9 is the relativistic gyromagnetic ratio. This leads to the defini-



tion of the Bohr magneton: 

,",,0 eli 
,""B =--

2me 
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(2.3) 

This of course is a constant and thus magnetic moments are often quantified in units 

of MB. 

The magnetic moment is a vector whose orientation is more important in 

most studies of magnetic phase transitions that its size. The alignment of moments 

in a material defines how magnetic materials are classed. The mechanism behind the 

macroscopic alignment of moments will be discussed in detail in the next section. The 

following list sketches the important types of magnetic behaviour (see figure 2.2 for 

schemata of the principle three). 

Ferromagnetism 

In a ferromagnet, the moments all align in the same crystallographic direction for 

temperatures lower than a critical temperature (called the Curie temperature, T c). 

The mutual alignment is due to the very short-ranged exchange interaction. This 

alignment is a cooperative phenomenon which decreases the overall system energy. 

The direction of spontaneous alignment is dependent on the magnetic anisotropy but 

the moments can also be aligned along the direction of an applied magnetic field. 

Antiferromagnetism 

Antiferromagnets are systems where the total system energy is decreased when neigh-

bouring moments are aligned in opposite directions below a certain critical tempera-

ture (called the N eel temperature, TN). In a perfectly ordered antiferromagnet, the 

total average moment will be zero as all contributions to the total moment will be can

celed by their neighbour and as such, is not sensitive to small applied magnetic fields. 

Like ferromagnets, the source of this ordering is the exchange interaction. Antifer-
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Figure 2.2: Schematic diagrams of three classes of magnetic behaviour. 

romagnets have formed the basis of interesting research on triangular lattices where 

the system ground state is degenerate due to conflicting interactions from having an 

uneven number of near-neighbours. 

Paramagnetism 

Paramagnets are systems where the moments are arranged in random directions. This 

is due to either an insignificant exchange interaction or to the fact that the system 

is above a critical temperature where the thermal kinetic energy is larger than the 

energy saved by ordering. Paramagnets are susceptible to applied fields and will have 

a net moment that varies linearly (to a point) with the size of the field. 

Diamagnetism 

Diamagnets are unordered in the undisturbed state but will align in such a way as 

to repel external magnetic fields from the bulk of the material. The dipole fields of 

the moments act against the applied field. The Meissner effect in superconductors is 

a good example of diamagnetic behaviour. 
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2.2.1 The Exchange Interaction 

The exchange interaction is the cause behind almost all magnetic phenomenon in 

metals. The effect of exchange is very localised, usually only affecting near neighbour 

atoms in the lattice. The origin is based in the Coulomb interaction between two 

like-charged particles and the quantum mechanical need for systems of fermions to 

have wavefunctions that are anti-symmetric under particle exchange. 

As a simple illustrative example, let us look at the case of a hydrogen molecule 

[H2J consisting of two electrons orbiting around two positively charged nuclei. The 

allowed state of a two particle system is the product of the individual one particle 

states. The quantum state of the electrons has a spatial and a spin component. There 

are four possible configurations for the spin wavefunction that give rise to two possible 

values for the total spin value s. These eigenfunctions are as follows: 

Itt> 

I-!--!-> 
1 

J2 (I t -!-> + I -!-t> ) 
1 

J2 (I t -!-> -I -!-t> ) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

The first three of these wavefunctions are the triplet states. They are sym

metric functions under particle exchange (S1S2 f-t S2S1) and have s = 1. The fourth 

is the singlet state. It is antisymmetric and has s = O. The total wavefunction must 

also contain a spatial part, which has two basic configurations that are of the form: 

(2.8) 

and 

(2.9) 
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where ¢>i(rj) is the spatial wavefunction of particle i at position rj. The first of these 

is a symmetric function under particle exchange while the second function is antisym-

metric. For the complete wavefunction with both the spatial and spin configurations 

represented, it is seen that to maintain proper symmetry conditions that the symmet-

ric spatial state must be joined with the antisymmetric spin function (singlet state) 

and vice-versa. The difference in energy between these two states is: 

Es - Et = < 1f;sl1ll1f;s > _ < 1f;tl1l l1f;t > 
< 1f;sl1f;s > < 1f;tl1f;t > 

(2.10) 

where 1f;s and 1f;t are the total wavefunctions that include the singlet and triplet states 

respectively. The Hamiltonian 1l takes a form that includes the Coulomb potential 

between the two particles and the two nuclei as follows (in the large separation ap

proximation) : 

(2.11) 

where Vc(a, b) = la~bl is the Coulomb potential, r is the electron position, and R is 

the nucleus' position. The large separation approximation removes Coulomb terms 

between the electron of one atom and the nucleus of the other. After sufficient algebra, 

eq.(2.10) becomes: 

(2.12) 

which is the electrostatic interaction between the two single particle electronic states. 

It is this interaction that helps to determine the spin state of the system. Since like

aligned spins occur in the triplet state, they lower the Coulomb potential energy of 

the system and are therefore preferred. 

This is the simplest example to show the origin of the exchange interaction. 

Most real systems are much more complicated as they involve many electron systems 
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where Slater determinants and other many-body techniques must be employed. Many 

systems will deal with itinerant electron bands as opposed to localised electrons on 

well-defined sites. However, the basic electrostatic nature of the interaction remains 

the same. 

In summary, for the total two-electron wavefunction, there is a difference in 

the total energy of a system of spin 1/2 particles depending on whether the system 

is in the singlet or the triplet state. This is due the fact that the system with the 

symmetric spin function must have an antisymmetric spatial function and vice versa. 

The different spatial functions will give rise to changes in the spatially dependent 

Coulomb energy and as such will act to prefer the spin state of the system. 

2.2.2 Itinerant and Local Magnetic Models 

In many real materials and especially in metals, the magnetic moments are not always 

localised at atomic sites in the system. The moments that are classically associated 

with the electrons are in the valence band of the material. For the traditional 3d ferro

magnets (Fe, Ni, and Co), the magnetic system is referred to as itinerant. This means 

that the magnetic interaction isn't between the localised electrons but is between the 

electrons in the delocalised band states. This band theory of ferromagnetism was first 

proposed by Stoner[19] and contains much of the physics of basic magnetism. 

For 3d transition metals, there exists the possibility of having electron band 

energies very near the Fermi surface. The 3d bands undergo some amount of overlap 

and there is also sharing of electrons with the 4s band. The presence of the crystal 

field (an electric field that exists due to the charged particles in the lattice) gives 

rise to a "quenching" of the orbital angular momentum of the bands, so L is often 

ignored and only S is used. Figure 2.3 shows the effect of exchange on the valence 

electron bands. On the left of the diagram, there is equal occupation between the up 
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Figure 2.3: Exchange level splitting. Figure modeled on similar figure in Kittel[1] 

and down spin states with some sharing with the 4s state. The presence of exchange 

(shown on the right) lowers the spin-up state and raises the spin-down and leads to 

a net, non-zero magnetic moment. 

The local moment theory of magnetism is a very phenomenological approach 

proposed by Heisenberg and also contains many important insights into magnetic 

behaviour and is the usual first step in many statistical theories of magnetism. The 

basic Heisenberg Hamiltonian takes the form: 

NN 
1-[ = -J 2.:: ai . aj 

i,j 

(2.13) 

where J is an energy term associated with the exchange integral that sets the strength 

of the interaction, a represents localised vector spins and N N signifies the sum is 

performed over all near-neighbours. This simple equation is very powerful and is the 

basis of many theoretical examinations of the magnetic phenomenon. The sign of J 

sets whether the interaction is ferromagnetic (+J) or antiferromagnetic (-J). 
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2.3 Magnetic Anisotropy 

The discussion on magnetism so far has been about how the spins spontaneously 

align. There has been no mention of whether or not there are preferred directions 

for the spins to point within the lattice. Such a direction, if it exists, is chosen 

by the magnetic anisotropy. The anisotropy is defined as the energy dependence 

on the direction of the magnetisation. It has its source in several different effects, 

the principle two of which will be discussed here as they are the most important in 

magnetic ultrathin films. They are crystalline anisotropy and the shape (or dipole) 

anisotropy. 

2.3.1 Crystalline Anisotropy 

The origin of the crystalline anisotropy is in the spin-orbit coupling term of the 

Hamiltonian and how it affects the itinerant electron bands that have degeneracies 

(either by symmetry or by accident) near the Fermi energy. The degeneracy is lifted 

by the inclusion of a spin-orbit term in the Hamiltonian, which is usually formally 

written as: 

where: 

1-LSO = ~(r)L . S 

~ r _ _ l_~DV 
( ) - 2m2 r Dr 

where V could be the center potential due to the atomic nucleus. 

(2.14) 

(2.15) 

Degeneracies can generally occur at any energy in k-space, but most often one 

finds them at high symmetry points in the lattice. At these points, the degeneracy 

is removed as the spin-up bands and the spin-down bands are split in energy. At 

the point on k-space where the degeneracy would occur, the spin-up and spin-down 

band states combine to form a linear combination of both states (the combination 
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Figure 2.4: Modeled energy bands plotted through a small area of k-space around the 
symmetry point f. Ovals show the area where spin-up and spin-down bands overlap 
and mixing of state occurs. SO removes the degeneracy and lowers the energy of the 
spin-up band at the symmetry point. 

is complicated and dependent on the value of k). Figure 2.4 shows two electron 

bands with degeneracies near the symmetry point f. The figure on the left shows 

the degeneracies near the Fermi energy (EF) that exist when spin-orbit coupling is 

neglected, while the right shows how the energy of the occupied band is reduced at 

f. For the 3d metal ferromagnets, the 3d bands are all tightly located near the Fermi 

surface, making the overlap more common that in other metals. 

The extent to which the energy is reduced is also dependent on the direction 

of the spin, as seen by eq.(2.14). The orbital angular momentum has a directional 

component that is affected by the crystal field and therefore tends to take on the 

symmetry of the lattice itself. The coupling of the spin angular momentum to the 

orbital means that the spin direction would also prefer to take on this symmetry. 

The anisotropy energy is usually treated in a much more phenomenological 

fashion than exact treatments of the spin-orbit coupling. The usual way to write the 
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anisotropy energy is of the form: 

(2.16) 

where Ki are constants and Fi are angular functions that describe the dependence of 

the energy on the angular orientation of the magnetisation (the i subscript merely 

refers to the order of the term). The first term is almost always the dominant term 

and it is usually sufficient to include only the first two terms. 

Ultrathin film magnetism also must include effects of the anisotropy that 

arise from the presence of surfaces and interfaces. Neel[20] first proposed that any 

magnetic system that was less than 100A must take interface effects into account. 

He proposed a phenomenological approach to calculating the anisotropy energy for 

planes where translational symmetry is broken. He wrote a pair-model lattice sum 

equation given by: 
NN 
'" ~ ~ 2 Ki = L..t 1]Li,j(ri,j . M) (2.17) 

j 

where Li,j is a coupling constant between atoms i and j, f is the unit vector between 

the atoms, M is the unit vector pointing in the direction of the magnetisation, and 

1] is a factor that equals 1/2 if both atoms are magnetic and equals 1 if only one 

is magnetic. The sum is performed only over near neighbours (NN) as would be 

expected near surfaces. 

2.3.2 Shape Anisotropy 

Shape anisotropy is an important effect especially in surface magnetism where local 

crystal symmetry breaking is much more important than for most bulk magnets. The 

origin resides in the dipole field created by individual moments. These fields give rise 

to the demagnetisation factor, which acts to restrict the magnetic moment to align 
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Figure 2.5: Dipole Diagram 

itself in such a fashion as to limit the amount of stray fields that exist outside the 

sample. The dipole energy n of a lattice of spins can be written as: 

(2.18) 

where no is a constant and rij is a unit vector between spins i and j. The first term 

tells us that the energy of the spin system is reduced if the moments are anti-parallel 

(figure 2.5) and thus this term acts against ordering in a ferromagnet (the exchange 

interaction is usually more than an order of magnitude stronger). The second term 

says that the dipole energy is reduced more significantly if the moments are aligned, 

in a sense, tip-to-tail as seen in the right diagram in figure 2.5. This significantly 

increases the energy if there are moments that exist at the system boundary with the 

direction of the moments oriented perpendicular to the system boundary. The long 

range 1/ r3 nature of the interaction is truncated at the boundaries of the system and 

is therefore dependent upon the shape of the sample (hence the name). The shape 

anisotropy is responsible for the creation of "capping" domains in bulk materials and 

is the reason why the long axis of an iron bar magnet is always the easy axis of the 

magnetisation. 

The dipole field is sometimes called the demagnetising field because it acts 
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Table 2.1: Table of N values for various geometries. 

Geometry Nx Ny Nz 

Sphere (x=y=z) 1 1 1 
:3 :3 :3 

flat plate (x=y=oo ,z=O) 0 0 1 
long cylinder (x=y, z=oo) 1 1 0 2 2 

against ferromagnetic ordering. A geometric argument has been formulated to calcu-

late the demagnetising field based on the factor N, called the demagnetisation factor. 

The demagnetising field for a uniformly magnetised ellipsoid is written as: 

(2.19) 

where N is calculated based on the macroscopic geometry of the system and the 

direction of the magnetisation. There is an N factor for each principle direction in 

the magnet (Nx , Ny, Nz ) and the sum of them must equal 1. Values of N for various 

geometries are given in table 2.1. 

An ultrathin film with the moment oriented in-plane is approximated by 

a flat-plate geometry. A more general treatment of systems where the two lateral 

directions are much greater than the third axis (a> b » c) is [21]: 

Na = ~~ (1 _ a - b _ 3(a - b?) 
4 a 4a 16a2 

(2.20) 

and 

N = ~~ (1 5(a - b) 21(a - b)2) 
b 4 a + 4a + 16a2 

(2.21) 

and by definition, Nc = 1- (Na + Nb). If we assume that the lateral a and b dimensions 

are equal in an ultrathin system, then the demagnetisation factor for an in-plane film 

is proportional to the thickness c divided by the width a. The extreme aspect ratio of 

ultrathin films means that the N factor can usually be ignored for films magnetised 
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in-plane but it is extremely important in films that are magnetised perpendicular to 

the surface. 

2.4 Ultrathin Film Magnetism 

Thin film magnetic research generally falls into two main categories. There is the 

basic research and the applied field of data storage and device manufacture. The 

engineering of magnetic materials with microscopic domain "bits" has been one of 

the most important drivers of modern information technology. As well as acting as 

a storage medium, magnetic thin films are also the main component of hard drive 

read heads. Applications that are the subject of much current research involve topics 

such as MRAM and spintronic systems, both of which seek to revolutionise computer 

technology. 

The basic research side has approached many different questions that arise 

from the effect of the extreme dimensionality on magnetic properties. While the 

theory of Mermin and Wagner[22] forbids magnetic ordering in a two-dimensional 

system at any non-zero temperature due to the presence of a logarithmic divergence 

in the density of states leading to long-wavelength spin-wave modes, it has been 

found that only a small amount of anisotropy is required to remove this restriction 

[23, 24]. Most traditional studies on two dimensional magnetic systems have used 

multilayer bulk samples (for example, see [25]), where magnetic layers are separated 

by non-magnetic spacers. These studies often quote the ratio between interlayer to 

intra-layer coupling. These ratios, while low, never reach zero and arguably are not 

true two dimensional materials. However, true two dimensional behaviour will occur 

in a thin film when the magnetic interactions can be treated as uniform across the 

thickness of the sample. The two interfaces of the film are against vacuum on one 
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side and a magnetically inert substrate on the other, thus giving important magnetic 

properties such as fluctuations and domain wall motion only one "route" to follow 

through the medium. This makes such systems ideal for examining two-dimensional 

magnetic behaviour in the laboratory. 

The effect of the interface can also lead to a heightening of the magnetic 

anisotropy energy of the system. Broken symmetry at the surface for cubic systems 

lead to significant second order terms in the anisotropy energy in the phenomeno-

logical formulation [see eq.(2.16, 2.17)] instead of the fourth order as it does in bulk 

cubic materials. The anisotropy will most often be expressed as an energy per unit 

volume and this leads to expressions where bulk and surface anisotropy are treated 

separately as [26]: 

Ks 
Ea=KB+

t 
(2.22) 

where Ea is the total anisotropy energy per unit volume, KB is the bulk anisotropy 

energy per unit volume, and Ks is the surface energy per unit of the surface. Dimen-

sional analysis accounts for the fact that Ks must be divided by the film thickness 

t. It is straightforward to see that once t becomes large enough, the bulk term will 

dominate the total energy. Convention states that a positive anisotropy energy value 

means that the moment of the film prefers to lie in-plane and a negative value for 

a preferred perpendicular moment [27]. Bulk anisotropy and shape anisotropy will 

usually prefer an in-plane moment and it can be seen that if Ks is negative and large 

enough to make Ea negative for thin enough films, a thickness will be realised where 

the moment will reorient itself from the perpendicular direction to lie in-plane. This 

is the origin behind the spin-reorientation transition [28, 29]. 

Perpendicular films are themselves interesting for several reasons. As a conse

quence of the magnetic dipole interaction, they cannot support a single domain state. 



25 

It has been found that perpendicular films will break up into alternating domains 

of up and down spins, the population of which will increase exponentially as a func

tion of temperature [30). This domain explosion makes the transition temperature 

extremely difficult to determine experimentally, as the film seems to disorder through 

domain randomisation as opposed to more usual mechanisms. Perpendicular domain 

structures are currently under heavy study for the data storage industry as they can 

be made more compact than in-plane domains, leading to higher density data storage. 

Other topics that have been the subject of recent work is the relationship 

between film stress and magnetic properties [31), looking at the dynamics of spins 

[32), and the phenomenon of exchange bias [33). Some work has been done restricting 

lateral dimensions of the system either by growing the films on specially designed 

substrates and vicinal surfaces [34) or by using involved lithography techniques [35). 

2.5 Phase Transitions 

A phase transition occurs whenever a system changes from one phase to another. 

The definition of 'phase' is somewhat arbitrary, as it only serves to define the status 

of a material property as it pertains to the value of a defined order parameter. An 

order parameter is an intrinsic property of the material, meaning that its value is not 

dependent (at least to first order) upon system size, although there are exceptions 

to this. Some examples of common order parameters are density, chemical potential, 

entropy, and magnetic order. 

The changing value of an order parameter is usually accomplished by the 

application of external fields or extrinsic variables such as pressure and temperature. 

Each phase of a material is defined by a certain range of values of its order parameter. 

We will use Figure 2.6, which shows the well-known phase diagram for H20, 
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Figure 2.6: Phase diagram of water. Liquid-gas coexistence curve ends at critical 
point. 

as an example to illustrate many concepts of phase transitions. The solid lines of the 

diagram show phases boundaries where the two phases may coexist. If the pressure 

or temperature are changed such as to move the phase across a boundary, then a 

phase transition will occur. In the case of this diagram, the transitions involved are 

of first order. 

The liquid-gas phase boundary ends abruptly with increasing temperature 

and pressure at a point called the critical point. As can be seen, it is possible to 

change phases of water from liquid to gas by navigating around the critical point in 

phase space. The solid-liquid-gas curve all intersect at the tricritical point, a unique 

place where all phases can coexist. 
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Figure 2.7: Simple schematic of magnetic moments on a lattice. 

2.5.1 Mean Field Theory 

One of the first successful theories of phase transitions in magnetic systems was mean 

field theory. It makes several assumptions about real systems which are not completely 

valid for most ferro magnets but provides a good first step in the understanding of the 

Curie transition. 

The first of these assumptions is that magnetic moments are localised on a 

well-defined lattice, usually the atomic lattice. The second assumption is that, in its 

most basic form, it deals with only the average magnetisation and as such, neglects 

the importance of fluctuations in the average system behaviour near T c' Since these 

fluctuations, as we shall see later, are extremely important at Tc , it is difficult if not 

impossible to make accurate predictions of real systems close to the transition using 

mean field theory. 

The following is a typical mean field calculation for a simple magnetic system 
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of Ising moments[36, 37] (they can have a normalised value of either +1 or -1) going 

through a phase transition at the Curie temperature. Figure 2.7 shows a square 

lattice of magnetic moments. The exchange interaction is extremely short range on 

the order of most inter-atomic interactions, only affecting near-neighbour moments. 

The first step is to define the Hamiltonian of the system: 

NN 

1-£ = -JI)O"i· O"j) - h :LO"i (2.23) 
i,j 

where the first term is just the Heisenberg Hamiltonian (J is positive, favouring the 

ferromagnetic state) and the second term is added to allow for an external magnetic 

field, h (the field is normalised to correctly give proper energy units), along which the 

moments will prefer to orient themselves. We now choose an arbitrary center spin 

(0"0) from the infinite lattice and rewrite 1-£ for the individual spin as: 

(2.24) 

E O"i is the average total value of the magnetisation in the vicinity of the 

center spin and is equivalent to mq, where m is the average value of the individual 

near-neighbour magnetic moments and q is the number of near neighbours (there are 

four near neighbours in the lattice shown in figure 2.7). Rewriting the Hamiltonian 

again gives us: 

(2.25) 

which allows us to define the effective mean field acting upon the center spin as (Jmq 

+ h). We can now write the partition function Z of the system as the trace of the 

exponentials of all possible values of the Hamiltonian: 

Z = Tr(exp( -(31-£a)) = Tr (exp( -(30"0 (Jmq + h))) (2.26) 
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where (3 is the reciprocal of the Boltzmann constant (kB ) multiplied by the temper-

ature, T. (Yo can only have values of ±1, so Z can be written as: 

Z = exp((3(Jmq + h)) + exp( -(3(Jmq + h)) = 2 cosh((3(Jmq + h)) (2.27) 

Using well defined statistical mechanics relations, having the partition func

tion allows us to define the free energy of the system as: 

F = -kBTln(Z) = -kBTln(2cosh((3(Jmq + h))) (2.28) 

and then the average magnetisation is: 

of 
m = - oh = tanh((3(Jmq + h)) (2.29) 

This equation is obviously recursive and it is impossible to algebraically isolate m. 

If we take the case where the external field is zero, there is an obvious solution at 

m=O and a second solution that is easiest to see graphically, as in figure 2.8. The 

existence of a non-zero solution for the magnetisation is dependent upon the value of 

the argument of the tanh function. For any qJ IkB T value greater than one, there is 

a second solution to eq.(2.29) as seen by the intersection of the red and the dotted 

line in the figure. It is at qJ IkB T < 1 that the second solution is lost. Thus, we find 

the phase transition occurs at qJ IkB T = 1 and that we can now define the transition 

temperature Tc as having a value of qJ IkB. 

In a fairly straightforward way, this solution makes sense. The ratio of 

qJ IkB T is a relationship between the total energy of the magnetic exchange energy 

qJ (assuming all moments are aligned as they should be below T c) and the thermal 

energy kBT. What the mean field solution says is that once the thermal energy is 

greater than the exchange energy, the moments are no longer able to maintain order 

due to the thermal energy which acts to randomize the moments. 
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Figure 2.8: Graph showing recursive relationship of m. Red line, showing a stable 
non T=O solution indicates T < Tc. Blue line with only T=O solution is T > Tc and 
green line represents the point of crossover between the two regimes. 

We can take mean field theory a step further and define the susceptibility of 

the magnetisation above T c. For temperatures much greater than T Cl we can write the 

tanh function of the magnetisation as the leading term of an expanding series ( though 

it should be remembered that we are losing some amount of accuracy by doing this), 

glvmg: 

and therefore 

Jqm+h 
m~ kBT 

am 1 
X = ah = kBT (1 _ -2L.) 

kBT 

(2.30) 

(2.31) 

Since we know that qJ IkB is T Cl what we have left is a susceptibility that diverges 

to infinity at Tc as a power law with an effective exponent of -1. This relationship is 

known as the Curie Law and holds true for temperatures well above T c. 

To extract a power-law relationship for the magnetisation as a function of 
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temperature, we set h=O and expand the tanh function to higher order. If we write: 

(2.32) 

then we have: 

(2.33) 

which gives a power-law equation with an effective exponent of 1/2. 

By expanding eq.(2.29) to find temperature relationships for the susceptibil-

ity and the magnetisation, we make the assumption that the temperature is much 

greater than and much less than T c respectively. This assumption illuminates the 

inherent limitation of mean field theory. It tells us how the system behaves only at 

temperatures (in this example, though other effective fields for different systems would 

show the same effect) far away from the transition. As will be seen, it is precisely the 

effects close to T c that define the true nature of the transition. The mean field theory 

presented here also ignores such important phenomenon as easy axis anisotropy and 

the dimensionality of the system. 

2.5.2 Mean Field and Ginzburg-Landau Theory 

Ginzburg-Landau (G-L) theory in the simplest form is another formulation of mean

field theory. However, it is much more powerful in extended forms and is a helpful way 

to examine the nature of phase transition and to show just what system properties 

are important to the transition. 

G-L assumes that the free energy can be written as a polynomial of the order 

parameter. For an arbitrary system with order parameter m, we can write the Landau 

free energy .c as: 

.c = am + bm2 + em3 + ... (2.34) 
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The form of the Landau energy function should reflect the properties and 

symmetries of the system being modeled. The coefficients (a, b, ... ) are also depen

dent on the various coupling constants such as J and also conjugate fields such as 

temperature and external magnetic fields. For a Ising magnetic system, the free 

energy must be an even function [C(m) = C( -m)] as the sign of the moment is im

material to the energy of the system. So, right away, we can set all coefficients of odd 

powers of m to zero. We shall now see that with this form of C, we can easily get the 

results from section(2.5.1). If we write out C to 0(4) and make the coefficient of a 

directly dependent on how close the system temperature is to T c, we get: 

(2.35) 

To determine the magnetisation, we minimize by differentiating C with respect to m, 

to get: 
ac 
am = 2a(T - Tc)m + 4bm3 = 0 (2.36) 

Solving for m, this becomes: 

_ J-a(T - Tc) 
m- 2b (2.37) 

This result gives us two pieces of information. One is that either of the coefficients 

a or b must be negative and the second is that the the power-law exponent of the 

magnetisation (~) is the same as the exponent discovered in section(2.5.1). 

We can also look at the result for the susceptibility. If we add in a small 

external field h, C becomes: 

(2.38) 

where, since the field breaks the Ising symmetry, the field must be associated with 

an odd exponent of m. Since the field is small, we only include the first odd power 
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and we will neglect the m4 term as well. Differentiating as before and then taking 

the derivative with respect to h gives: 

am 1 x---- ah - 2a(T - Tc) 
(2.39) 

which again retrieves the mean field result for the power-law exponent for the sus-

ceptibility -1. 

2.6 Power Laws and Critical Exponents 

It was seen as statistical mechanic theory became advanced beyond mean field theory 

that many systems that undergo a phase transition as a function of some external 

variable did so as a power-law of that variable. Temperature, density, and pressure 

are the most common (though in no way the only) extrinsic variables that appear. 

These expressions that arise from the free energy are often expressed as a function 

of the proximity of the value of the extrinsic variable to the critical value where the 

phase transition occurs. For systems where a transition can occur as a function of 

two or more variables, you can have, as seen in figure 2.6, a critical point where the 

two effects intersect in the relevant phase space. 

Critical exponents calculated via mean field theory have little significance 

in real-world systems as they are found in a model that ignores the very important 

effect of fluctuations at the critical point. While it is obvious that no expression of a 

power-law function will be analytical at the divergent point, it is possible to construct 

theories that take these fluctuations into account and make predictions about critical 

exponents possible. The basis of almost all of this type of work is the powerful 

technique referred to as renormalization group theory. The depth of this theory is 

profound and will not be delved into too deeply in this chapter, except to outline its 

basic precepts and to briefly derive some simple results that arise from them. 
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2.6.1 Scaling and Scaling Laws 

Fluctuations in the order parameter have associated with them a correlation length 

that diverges at a phase transition. In simplest terms, the correlation length is the 

extent that a fluctuation affects the system's inherent order. If the system has a 

correlation length of 100A then all local values of the order parameter within that 

length will exhibit some effect due to that fluctuation. The fact that the correlation 

length (symbolised by the Greek letter ~) diverges to infinity at the transition forms 

the basic foundation of the renormalised group. 

Kadanoff[38] (and later, more rigourously, Wilson[39]) proposed the idea that 

since ~ gets so large at the transition, the microscopic details of the system are no 

longer as important as the global, macroscopic behaviour. If the system can be 

redefined on a longer length scale than individual lattice sites with local values of the 

order parameter, the newly defined basic block of the averaged order parameter will 

then ignore all fluctuations that are smaller than the basic block of spins. But (and 

this is the clever bit) if it is only the long-scale correlated fluctuations that matter 

at the transition (remember that ~ -+ 00 as T-+ Tc), then this new renormalised 

system should have the same critical exponents as the unnormalised system. The 

chief argument of scaling theory is that the free energy does not change with the 

renormalisation of the length scale. 

Scaling laws are relationships between critical exponents that arise from this 

idea. If we use the common definition of the specific heat (C(t) = Coca where E is 

the reduced temperature (T -T c)) and we rescale the temperature by A, we get: 

C(AE) = KC[E] (2.40) 

where K is a scalar that rescales the specific heat for the newly renormalised system. 
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We can now find the analytical form for K by writing: 

(2.41) 

which then gives us: 

(2.42) 

Comparing eqs.(2.40) and (2.42) tells us that K is equal to ..\-a and we now have an 

expression for the critical exponent: 

-In(K) 
a = In(..\) (2.43) 

This rescaling argument is true and therefore universal for all systems as long as the 

specific heat behaves as a power law near the transition. 

Rushbrooke Scaling Law 

One of the most well-known of the scaling laws is the Rushbrooke scaling law[40]. It 

states that: 

(2.44) 

where, to repeat, a, (3, and 'Yare the critical exponents associated with the specific 

heat, the order parameter, and the susceptibility respectively. This law is universal 

for all systems that undergo a phase transition. As such, its derivation is of the most 

general sort and is based almost solely on scaling arguments. To begin outlining this 

derivation (following the formalism from Stanley[41] and Collins [2]) , we write the 

rescaled free energy as: 

(2.45) 

where Yt and Yh are exponents related to the dimensionless reduced temperature 

E and to the conjugate dimensionless field h (h = 1:¥) respectively and d is the 
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system dimension. Scaling theory makes the assumption that the free energy is a 

homogeneous function[41] with a solution of the form: 

where g is an arbitrary function. Now we can write:: 

F()..YtE,)..Yhh) = ()..Ytltl)xg ( ~) = )..XYtF(E,h) 
Itl Yt 

From this and eq.(2.45), we get a solution for x: 

d 
x=-

Yt 

(2.46) 

(2.47) 

(2.48) 

With an expression for the free energy, we can now go on to derive the 

important statistical quantities. First, the specific heat in zero field: 

(2.49) 

This means that in this formulation, 2 - x = a and therefore we can now relate the 

dimensionality of the system d to the specific heat exponent by using eq.(2.48) to get: 

d 
2-a=-

Yt 
(2.50) 

The magnetisation of the system can be written as (using eq.(2.50)): 

(2.51) 

where .6. is inserted for '!lJJ. and g'(O) is the first derivative of the arbitrary function Yt 

9 with respect to the field and then evaluated at h=O. Since the exponent for the 

magnetisation is defined as f3, this gives us an expression for .6. in terms of the 

established exponents: 

.6.=2-a-f3 (2.52) 
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For the last step in this derivation, we calculate the susceptibility in zero field 

as follows: 

(2.53) 

where g" is the second derivative of g with respect to h. The critical exponent for the 

susceptibility is defined as " so we can now finally write: 

,= 2~ + a - 2 (2.54) 

and then substituting eq.(2.52), we have at last: 

(2.55) 

in agreement with eq.(2.44). 

This derivation was made without regard for the exact nature of the free en

ergy, only that it obey scaling and basic dimensional analysis. Thus, the Rushbrooke 

Law will apply across all universality classes. It also tells us that once we have two of 

the exponents then no further calculation is necessary to find the third, making for a 

truly powerful relationship. 

Other Scaling Laws 

There are other scaling laws that will be listed here. They are: 

(2.56) 

where t5 is the exponent associated with the critical field (ht as t ---+ 0). Also, there 

is Fisher's Law: 

,= v(2 - 'f}) (2.57) 

where v is the exponent associated with the correlation length ~ and 'f} is an exponent 

that is by definition expressed in terms of the correlation function C at the critical 
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point as: 

C(r) = r2- d-'f/ (2.58) 

We can test these laws quickly using the mean field exponents (ex=O, (3=1/2, 

1'=1, 6=3, v=1/2, 7}=O) to find: 

ex + 2{3 + I' = 0 + 2 (~) + 1 = 2 (2.59) 

Confirming the others is left as a mental exercise for the reader. 

2.6.2 Universality Classes 

It was soon confirmed that the critical exponents of a system undergoing a phase 

transition were dependent not upon the microscopic details of the Hamiltonian but 

on more macroscopic properties. Systems that classically have seemingly very little 

similarity exhibited the same behaviour as it approached the transition. For the case 

of static phase transitions, the important properties were the dimensionality of the 

system d and the degrees of freedom of the order parameter D. Systems that shared 

these properties are grouped together into their universality classes and each class 

has its own set of exponents. 

Table (2.2) shows a few examples of different classes and their exponents. 

The mean field model is now known to the reader. Ising systems are models where 

the local order parameter can have one of two possible values at each individual site 

in the lattice. 2d and 3d refers to the dimensionality of the lattice. X-Y is a system 

where the order parameter is a vector that is constrained to values within the x-y 

plane. Heisenberg systems are one where the order parameter is free to move in three 

principle quadrature directions and spherical means the vector moment is free to take 

on any value within the full 47r degrees of freedom. 
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Table 2.2: Various universality classes and their associated exponents. Values quoted 
taken from Collins([2]). Values given without decimal or as fractions are exact, all 
others are estimates from both theory and experiment. 

Model Mean Field 2d Ising 3d Ising X-V Heisenberg Spherical 
D all 1 1 2 3 00 

d all 2 3 3 3 3 
v 0 1 0.6312 .669 0.707 1 
a 0 0.106 -0.01 -0.121 -1 
(3 1/2 1/8 .326 0.345 0.367 1/2 
'Y 1 7/4 1.2378 1.316 1.388 1 
8 3 15 4.78 4.81 4.78 5 

rJ 0 1/4 0.039 0.03 0.037 0 

Some classes have exact solutions such as the 2d Ising system that was solved 

analytically by Lars Onsager in what is often called a mathematical tour de force[42]. 

Most other models have no exact solution. The inexact numbers from the table reflect 

the best estimate from theory and experiment. 

This thesis deals with experiments performed on a magnetic system that will 

be shown to be a 2d Ising system. However, the 2d Ising class includes non-magnetic 

systems as well. The Ising class can almost be thought of as a binary system, where 

the local order parameter can have only one of two values. A system of spins that are 

either up or down can easily be mapped onto an on/off, true/false system. Indeed, 

this is the basis of the entire magnetic data storage industry and will be for many 

years to come. Lattice gas absorption can be modeled as a 2d Ising system, where a 

lattice point can either be occupied or not. The average vacancy state of the system 

is the order parameter. 
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2.7 Dynamic Properties and Critical Slowing Down 

The properties of phase transitions that have been discussed up to now are what are 

referred to as static properties. All the arguments made thus far have assumed that 

all processes occur infinitesimally slowly on an infinite time scale. In actual fact, there 

is time dependence involved in the equilibration of the system at a given temperature. 

This is the subject of dynamic scaling. The time for the order parameter to return 

to equilibrium after a fluctuation scales with the correlation length ~ as: 

(2.60) 

and therefore the temperature dependence of the relaxation rate goes as: 

(2.61) 

where z is the critical slowing down exponent. Dynamic scaling universality classes 

depend on the same system properties as the static classes with the extra condi-

tion regarding conservation laws of the order parameter with respect to the system 

Hamiltonian. 

To see in more detail how dynamic scaling comes about, we follow the formu-

lation given by Goldenfeld [36] and Hohenberg [43] and use time dependent Ginzburg-

Landau theory with the Markoffian equations of motion where: 

(2.62) 

where r is a damping coefficient that does not diverge at the critical point, m is the 

order parameter, t is time, and £ is the Landau free energy which to low order is 

given as: 

(2.63) 
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where the first term is the standard spatially varying term added to introduce fluc

tuations and E is again the reduced temperature IT;~cl. 

In the linear approximation for small deviations, the time rate of relaxation 

is defined as: 
am 
at 

bm 

T 
(2.64) 

Equating the right-hand side of eqs.(2.62) and (2.64) and differentiating £', we get: 

(2.65) 

where we set m to a value of bm. To get a clearer understanding of the spatial 

fluctuations, it is advantageous to take the Fourier transform to get: 

(2.66) 

Eq.(2.66) gives us an expression with two terms for the relaxation time T. 

The first: 
1 

- = 2faE 
Tu 

(2.67) 

is uniform and will diverge at T c' In fact, we can rewrite this term in terms of the 

mean-field susceptibility from eq.(2.39) as: 

1 X 
Tu f 

The second term contributing to T is non-uniform and is given by: 

(2.68) 

(2.69) 

where z is the exponent of k that has, as we've seen in eq.(2.66), a value of 2 in this 

mean-field treatment. We change the value of 2 to a generic exponent to make for a 

more general approach. 
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Both equations 2.67 and 2.69 are the limits of the relaxation time for k going 

to zero and for when T=T c respectively. A single scaling function to satisfy both of 

these conditions is given as: 

(2.70) 

where g(k~) is an arbitrary function ofthe wave-vector k and the correlation length~. 

9 must be a function of k and ~ and is assumed to be a function of the product of those 

terms to satisfy dimensionality. This equation is the dynamic scaling assumption [43] 

and has its origin in classical theories of relaxation[44]. 

The scaling function consists of a reduced temperature component that di

verges with a generic critical exponent y. According to the scaling assumption, the 

9 function does not diverge as E -+ 0 and as such, the diverging nature of ~ must be 

addressed (~ ex: ell as T -+ Tc). To remove the divergence, g(k~) is set to (k~)7. 

This cancels out both the divergence in ~ and the prefactor e Y • Since eq.(2.69) states 

that at T=T c, T must go as k-z , this gives the scaling relation: 

z=~ 
v 

Substituting this back into equ.(2.70) gives: 

(2.71) 

(2.72) 

which gives the same reduced temperature dependence as the result quoted in eq.(2.61). 

It is seen that the arbitrary exponent z is now (perhaps not so surprising to the far

sighted reader) formally identified as the critical slowing down exponent. 



Chapter 3 

Experiment 

3.1 Introduction 

This chapter will describe the details of the experiments performed in this thesis. 

The format of the following presentation will be in the form of a step-by-step process, 

from the preparation of the vacuum environment to the final susceptibility measure

ment, used to make magnetic measurements from ultrathin films. While the main 

conclusions of this thesis rely on measurements of the magnetic susceptibility, various 

other measurements and techniques (some unique to surface science) are important 

to the final results. By the end of the chapter, the reader will know in some detail 

how the susceptibility data in figure 3.1 was measured. 

Sections will include information on the basics of ultra-high vacuum (URV). 

The necessity and the realization of URV environments will be discussed in detail. 

The process of molecular beam epitaxy that is used to grow the films will be outlined 

with a brief section on the choice and preparation of the substrate upon which the 

films are grown. Film growth, thickness, and quality is tested using A uger electron 

spectroscopy (AES) and low energy electron diffraction (LEED). Magnetic properties 

are measured using surface magneto-optic Kerr effect (SMOKE), which is used to 

make measurements of both magnetic hysteresis and magnetic susceptibility. 

43 
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- Real X 
- Imaginary X 

Figure 3.1: Typical measurement of the magnetic susceptibility from an ultrathin film 
of FejW(llO). Both the real and the imaginary part of the complex susceptibility 
are shown. 

3.2 Ultra-high Vacuum Environment 

The ultrathin limit in film growth usually means a thickness of between one and ten 

atomic layers or monolayers (ML). Such an extreme aspect ratio means that the sam-

ples are extremely sensitive to contamination and thus experiments require excellent 

vacuum conditions for both ensuring proper film growth and for providing a suffi

cient time window for the subsequent studies to be performed in situ. The minimum 

base vacuum required for such work is in the range of 10-10 torr (which corresponds 

roughly to about one ten-trillionth (10,OOO,oo~,ooo,ooo) of a standard atmosphere). Pres

sure at this extremely low level allows for several hours of experiment time before 

contamination sets in and possibly changes the film properties. 

This section will detail the procedure of how a vacuum chamber is prepared so 

as to achieve URV pressures. Qualitatively, this information will apply to all general 

URV systems but it should be understood that all numbers and times quoted are 

appropriate to a chamber of similar dimension to the one used in the research of this 
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thesis. 

Basic URV chambers (refer to diagram in figure 3.2) are equipped with several 

pumps that are designed to act most efficiently over various different ranges of the 

pressure. In the process of pumping a chamber down from atmosphere, the first step 

is to use a mechanical rotary pump. After sufficient time, this will reduce the pressure 

down to approximately 10-4 torr, or even lower with the use of a cold trap. A cold 

trap is a complicated u-tube on the pump fore-line before the chamber that is cooled 

in a liquid-nitrogen bath. This allows molecules in the flow to become "trapped" on 

the walls of the trap and not diffuse back into the chamber. This also serves the 

task of preventing oil molecules from the rotary pump from diffusing forward and 

disastrously contaminating the chamber. Prolonged use of a cold trap (about an 

hour or so) allows for a base pressure using only the mechanical pump to reach a low 

enough pressure to allow the pump line to be valved off and to allow the opening 

of a gate valve into a secondary chamber containing an already operating ion pump, 

which quickly reduces the pressure of the entire system down to a pressure in the 

range of 10-6 torr. 

The ion pump works by ionising individual particles in a plasma localised 

in a strong magnetic field. A strong electric field is then used to accelerate the 

ions into a titanium plate that is several millimeters thick. The gas particles will 

become embedded in the plate with an extremely low probability of ever becoming 

disassociated from the target. The efficiency of an ion pump varies depending on the 

particles being removed from the chamber, but works very well on usual atmospheric 

gases like nitrogen and oxygen. 

The ion pump operates continuously from this point on, maintaining low 

pressure. It acts as the primary pump during the "bake-out" process, which is when 
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Figure 3.2: Diagram of URY chamber with associated pumps. 
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the chamber is heated as evenly as possible typically to about 150°C. This will remove 

water vapour and as much of the adsorbed gas off of surfaces as possible. The bake

out will usually operate for about 12-24 hours, the length of time depending on several 

factors such as how long the chamber has been exposed to atmosphere, whether new 

equipment has been installed within the chamber, and environmental concerns such 

as ambient humidity levels in the lab. After bake-out and once the chamber has 

cooled back to room temperature, the pressure will be in the low-10-9torr range. 

At this stage, the titanium sublimation pump (TSP) is used to reduce the 

pressure to the final base level of low-lO- lO torr. The TSP consists of thick (~ 2cm) 

filaments of titanium that are heated to high temperature by the application of high 

current (45A). In the time span of about 1 minute or less, the filament sublimates and 

deposits a layer of titanium on the sides of the chamber (the area of the chamber where 
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this occurs usually has a plate or some other kind of barrier to prevent deposition 

of titanium on the more sensitive experimental apparatus). Titanium has what is 

referred to as good "getting" qualities. This means that any atoms that interact with 

it tend to strongly adsorb (a property that is exploited in the ion pump as well). 

Many gas atoms such as nitrogen are very reactive with titanium and will form stable 

compounds with it. These compounds are then either firmly fixed to the side of the 

chamber or are efficiently pumped away by the ion pump. 

Once various instruments in the chamber have undergone a "degas" (heated 

up or actuated so as to remove any remnant surface contamination), the chamber is 

now ready for surface science. This entire process takes between 24-48 hours. 

3.3 Considerations for Film Growth 

To successfully fabricate quality magnetic ultrathin films, there are several considera

tions that need to be addressed. Not all materials will deposit in a controlled fashion 

on all surfaces. This section will briefly outline the important points involved. 

Substrate 

A good substrate for use in a magnetic ultrathin film study should possess 

several qualities. 

(1) It should be non-magnetic. It is probably too obvious to point out that 

any net magnetic moment present in the substrate will overwhelm any measurement 

of film properties. 

(2) It usually should be composed of a material from which large single crys

tals can be produced. This ensures that the film structure will be uniform across a 

measurable area. Also, it should be polishable to a high-degree so as to present a 

very regular surface and have as few atomic steps as possible, assuming of course that 
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one does not wish to study the effects of such steps. 

(3) The lattice constant between atoms at the surface should ideally match 

well with the bulk lattice constants of the film material. Films of thickness of less 

than about three monolayers will sometimes grow pseudomorphically, which means 

they will use the atomic structure of the surface as a template for its own growth. 

Even if the film takes on its own structure from the start of growth, it is usually best 

that the strain at the interface be as small as possible. This is best accomplished by 

lattice matching. 

(4) If the film is to 'wet' the surface (grow in fiat, two dimensional layers, not 

in three dimensional blobs), then the surface energy per unit area of the substrate 

should be higher than the equivalent surface energy presented by the film. This high 

surface energy also prevents the formation of surface alloys at the interface. It is 

worth mentioning that if one wishes to do experiments on three dimensional blobs 

with interface alloying, then the opposite properties are what is sought. 

(5) An added plus to any substrate choice is that it should be easy to clean. 

The maxim that 'cleanliness is next to godliness' is not more true anywhere else than 

in surface science. 

Film 

The film must consist of material that can be deposited on the surface in a 

controlled way. While there are several different methods of deposition, most are not 

suitable for the careful fabrication process required for films in the ultrathin limit. 

For the study of magnetic films, it is usual to use materials that are magnetic 

in their bulk form. The 3d ferromagnets (iron, nickel, cobalt) have been studied 

extensively on many different substrates, looking at the effects of strain and structure 

on magnetic properties. 
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3.3.1 Molecular Beam Epitaxy 

Molecular beam epitaxy refers to the process where a flux of atoms, usually evaporated 

from a high purity bulk source, is directed at the substrate where they will adsorb to 

the surface. 

The evaporator used in this thesis contains a very high purity (+99.99%) wire 

of evaporant material held at a voltage of 1750V. The tip of the wire is held about 

a centimeter behind a ground-potential semi-circular coiled tungsten wire filament 

that has a current of 4-5A running through it. The heated filament thermionically 

emits electrons that bombard the tip of the wire and evaporate the material. The end 

of the evaporator contains two apertures that are aligned towards the center of the 

substrate where one wishes the deposition to occur. The first aperture is grounded but 

the second is floating at +23V and is connected to a high-precision electrometer. The 

electrometer measures a current of ions hitting the second aperture (on the order of 

nanoamperes) and it is this current, which is quite stable and directly proportional to 

the flux of atoms leaving the evaporator, that is used to control the amount of material 

being deposited. Typical second aperture current measured during deposition with an 

iron source is 1-2nA, which will correspond with sufficient flux of material to deposit 

a single monolayer in approximately five minutes. 

The position of the deposition on the surface is very sensitive to how well cen

tered the source wire is behind the aperture. The profile of the deposition through the 

second aperture is roughly Gaussian on the surface. In our apparatus, the evaporators 

are usually oriented to deposit the material at an angle of 30° from the surface nor

mal, thus allowing for a more even distribution of material along one lateral direction 

of the surface. 

The center of deposition and the spread of material is monitored using Auger 
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Figure 3.3: A diagram of a molecular beam evaporator of the type used for the 
experiments in this thesis. (a) is the high voltage post which holds the wire. (b) is 
the high purity wire source. (c) is the heated filament. 

electron spectroscopy which is also the chief method used for measuring film thickness. 

This technique is the subject of the following section. 

3.4 Thickness Calibration using Auger Electron 
Spectroscopy (AES) 

Auger electron spectroscopy is a vital tool in surface science. It is a highly sensitive 

probe that is chemically sensitive to different species of elements and as such it is 

extremely useful in making measurements of contamination and film composition. 

Measured spectra taken both before and after film deposition can be compared and 

the change in signal can be calibrated to quantify film thickness. Most elements have 

significant Auger electron energies less than 200eV, thus making it an ideal surface 

probe. 
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3.4.1 Basic Physics of Auger Electrons 

An Auger electron is produced via a self-ionization process. When an inner-core 

electron is removed from the atom, the exclusion principle leads to a cascade of 

higher shell electrons that fall to fill the vacancy. Basic quantum mechanics says that 

each de-excitation is associated with a quantity of energy related to the spacing of 

the energy levels. This energy is carried off by a variety of means including photons 

and the release of an Auger electron. 

Auger electrons are produced for the purpose of measurement in the labora

tory by bombarding the surface with high-energy (2kV) electrons. The cross-section 

for an Auger event is quite small in comparison to other effects (such as elastic scatter

ing) but a detectable number of Auger events can be produced with just microamperes 

of bombardment current from the electron source. 

Auger events are commonly labelled according to the energy levels involved 

in the transitions. An event labelled KLL means than a K-shell electron was ejected 

from the atom, an L-shell electron fell to fill the now vacant K-shell and a second L 

electron was ejected to carry away the energy. Figure 3.4 shows a simple schematic 

of this process. 

Auger electrons have an energy typically in the range of 30-600eV. These low 

energies mean that, according to the universal curve, the electrons have an inelastic 

mean-free path of only three or four lattice lengths. The universal curve[45] is a plot 

from a series of experiments made in the late 1970s that found that to first order 

the mean free path of electrons in metals is based on the energy of the electrons 

themselves and not on the metal they are in. This means only atoms near the surface 

will emit Auger electrons that will be detectable in the vacuum. 

The number of Auger events is quite small in relation to the background 



52 

-------------------------+------------Vacuum 

... 1 _________________ ..... _ ..... +-________ ---111 Valence Levels 

-----------------------... ~--------- E(L 2,3 ) 

------------T--------------- E(L I) 

.....; __ ---__ ---------- E(K) 

Figure 3.4: Schematic of a typical Auger event. K-shell electron is ejected, L-shell 
electron De-excites to K-shell and a second L-shell electron (the Auger electron) is 
emitted. This sequence would be labelled a KLL transition. 

events occurring when the surface is being bombarded with the incident, high-energy 

electron beam. As such, measurement of a high quality spectrum requires a sophisti-

cated technique which will now be described in some detail. 

3.4.2 Basic Measurement Technique 

The Auger spectrometer used in this thesis is a retarding grid design. It consists 

primarily of an electron gun capable of providing a small, steady current of high

energy electrons for bombardment, a multi-grid screen for both electron collection 

and low energy electron retardation, a lock-in amplifier, and a computer for data 

collection and process control. 

To make a simple measurement of an Auger spectrum as a function of kinetic 

energy Ek , the surface is placed perpendicularly near the electron gun, which pro

trudes from the center of the collector grid. The retarding voltage on the collector 

grid (made of a highly conductive, fine gold mesh) is kept at a value to reject any 
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Figure 3.5: Modeled data of Auger electron collection. Shaded area represents all 
electrons that are collected by the spectrometer. Small interval at Ek represents the 
electrons that are sensitive to the ac-voltage applied at the collection grid. 

electrons with a kinetic energy lower than Ek so that the collected current consists of 

all electrons with a kinetic energy larger that Ek . The retardation voltage on the grid 

has a small ac-voltage (v) at a frequency 1/ of 4.8kHz. By using a lock-in amplifier 

to measure the component of the current at a frequency 1/, one can obtain only the 

current collected at Ek (see figure 3.5) 

As has already been mentioned, Auger electrons form only a small part of 

the total current measured. Auger events appear in the spectra of N (E) as a small, 

sharp feature on a slowly varying background. Instead of the number of electrons 

(N(E) = gb), it is better to measure the differential of the number 8~((~~)). This can 

be accomplished by measuring the current not at the frequency 1/ but at the second 
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harmonic, 2v. This fact can be easiest seen by performing a Taylor expansion on the 

current as a function of energy. Expanding around the cutoff energy Ek , we get: 

The second term which is proportional to the modulation frequency v is also 

proportional to the number of total electron measured including all backscattered 

as well as Auger electrons. The third term goes as 2v [sin2(O) ex: cos(20)], and is 

proportional to the first derivative of N, dN/dV. Measuring this signal will remove 

most of the background and leave only Auger peaks which have a much higher first 

derivative. 

3.4.3 Surface Contamination Detection and Substrate Clean-. 
lng 

Before the film can be deposited, the substrate must be cleaned and checked for any 

evidence of surface contamination. 

All of the experiments in this thesis use a tungsten single crystal substrate 

that has been cut and polished to expose the (110) crystallographic direction. Tung-

sten is an excellent substrate for iron films in that it has a very high surface energy 

and good lattice matching criteria for iron. It also has a very high melting point 

(3695K), which allows one to use thermal desorption to clean the surface. 

Most materials (with the significant exception of carbon) on the surface of 

tungsten will thermally desorb from the surface upon annealing to 2600K. Thus, 

before film deposition, the crystal is heated to 2600K for about 10 seconds in a 

process known colloquially as "flashing". After cooling, the crystal is checked for the 

presence of any carbon atoms using AES. Carbon is a natural contaminant in bulk 

tungsten and can come to the surface upon heating. 
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Figure 3.6: Auger spectrum showing tungsten and carbon Auger features. 

Figure 3.6 shows an Auger spectrum taken to show the tungsten Auger peaks 

(170-220eV) and to to compare their amplitude against the carbon peak at 274eV. 

The figure shows that there is a small carbon peak just above the level of noise in the 

spectrum. 

To clean the carbon from the surface, the crystal is annealed in the presence 

of oxygen for one minute. An oxygen partial pressure of between 10-7 and 1O-6torr is 

used, depending on the amount of carbon detected. Heating the surface with oxygen 

causes the carbon to form carbon monoxide, which easily desorbs from the surface 

on flashing. This process is repeated until no evidence of carbon is detectable. The 

residual oxygen (itself relatively stable on tungsten) is removed by a standard flash 

into vacuum. 

The size of the Auger peak in the differential spectrum can tell us how much 

material is present and to some extent whether the material on the surface is wetting 

the surface. The following section will detail how these calibrations are done and how 
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Figure 3.7: Attenuation of clean W auger signal as a function of deposition time of 
iron material. Clear breakpoint is shown at approximately 8.5min. 

wetting can be inferred from the data. 

3.4.4 Thickness Calibration 

For a film that grows layer by layer, thickness calibration is possible using AES. As 

long as the material being deposited goes down a layer at a time, the increase in the 

size of the Auger signal for the film material (or the attenuation of the Auger signal 

from the substrate) will change linearly with coverage. Linear behaviour will continue 

past the completion of the first monolayer but at a different slope. Looking at where 

the slope changes tells you when the first monolayer is completed. If the material 

was being deposited in a less-regular fashion, the Auger signal would act more as 

an exponential as a function of time. It is by looking at the linearity of the signal 

versus exponential behaviour that allows some conclusions to be drawn about the film 

growth mode. The Auger signal for layer-by-layer growth (also called Franck-Van der 
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Merwe or simply FV growth) changes as a function of coverage as: 

(3.2) 

where Si is the Auger signal from areas of the substrate that have been covered with 

i layers of film material and Xi is the occupancy of the atoms in the ith layer. The 

S factors include the exponential factor due to the shielding effect they have on the 

probability of electrons being emitted from the surface. 

It is easy to see that a change in slope will occur as a function of X once 

the second layer starts to fill in. This is shown clearly in figure 3.7 where the Auger 

signal from the tungsten substrate is plotted as a function of the deposition time of 

iron. The rate of iron deposition was held constant by use of the flux monitor on 

the evaporator. The depositions in this case were annealed to high temperature after 

each step so as to accentuate the change in slope, as the second monolayer is not 

thermally stable at temperatures above 600K. 

The methods outlined here only describe the uses of Auger spectroscopy used 

in this thesis. There are several other ways in which Auger events can be used 

in surface science. AES can be employed to perform research on film structure by 

employing an angle-resolved technique. This experiment relies upon the fact that 

there is some preferred direction for Auger electrons that are emitted from atoms 

below the first layer. The directionality is due to a mild "focusing" effect of the 

electrons as they pass by the positively charged nuclei. There is also the technique 

of scanning Auger microscopy (SAM). This uses a small Auger electron detector that 

travels across the surface of a sample and maps the chemical composition as a function 

of position. 
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3.5 Structure Measurements using Low Energy Elec
tron Spectroscopy 

Low energy electron diffraction (LEED) is a powerful technique used for studies of sur

face crystallography. Elastically backscattered electrons at low energy (rv50-500e V) 

show a reciprocal space picture of the atoms at the surface, allowing the interested re-

searcher to get information on lattice spacing, surface strain, and the degree to which 

the surface atoms are ordered. Used mainly as a qualitative tool in the research of 

this thesis, it can be used to extract quantitative data as well. 

The basics of LEED are the same as for most diffraction techniques used 

in condensed matter physics. An incident probe of electrons that have a deBroglie 

wavelength on the order of the lattice spacing (Angstroms) will diffract in the lattice 

of atoms. An electron with a kinetic energy of 150e V has a wavelength of about IlL 

This energy also corresponds to the minimum in the mean free path of electrons in 

metals as shown by the universal curve. According to the curve, a 150eV electron has 

a mean free path of about 6lL This makes the low energy electron an ideal surface 

probe as only electrons that diffract within 6A of the surface will be detected. 

In the LEED system used for this thesis, the geometry of the set-up is in the 

back-scattering mode. This means that all incident electrons have a momentum k i 

perpendicular to the surface. Surface diffraction requires the scattered electrons to 

have a component of the momentum in the plane parallel to the surface. To conserve 

the momentum, this means that the parallel component of the momentum of the 

diffracted electron must be the negative of the reciprocal lattice vector of the surface 

G. The conservation of momentum equations will go as: 

(3.3) 



59 

• • 
• • 

• • 
• • 

• • • 
• • 

Figure 3.8: This figure represents a recipocal lattice. All points within the circle 
represent possible scattering centers. k J is the parallel component of the the scattered 
electron and G is a reciprocal lattice vector. 

where G is of course is entirely parallel to the surface and k J has both parallel 

and perpendicular components. The diffraction condition is shown in fig. 3.8. The 

possible range of diffraction centers is contained within a circle that is defined by 

the energy of the incident electron. Any reciprocal lattice point within the circle will 

satisfy the diffraction condition as long as -kJ,=G. 

3.5.1 Measurement Technique 

A LEED diffraction pattern in usually measured in a back-scattering geometry. The 

surface to be examined is positioned normal to a high-efficiency electron gun. The 

electrons that scatter from the surface atoms then travel through two retarding grids 

that only allow elastically scattered electrons to pass. These electrons are then ac

celerated into a phosphor screen that can be observed through a window in the URY 

system, allowing real-time observation of the diffraction pattern. 

With the use of a CCD device, the intensity and the profile of the LEED 

spots can be recorded. For the LEED pictures used in this thesis, a new 640x480 
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Figure 3.9: Simple schematic of LEED experiment. P is the phosphor screen. G 1 
and G2 are the retarding grids. 

CCD digital camera was used. The camera was capable of recording black and white 

images with lO-bit resolution (1048 levels). The resulting image is passed into a 

computer with a high-quality image acquisition board. The data is stored as an 

640x480 array of intensity values. 

As LEED spots will sometime be quite faint against the background light 

noise, very good signal-to-noise is required when recording the images. It was discov-

ered soon after the camera system and software was implemented that there was a 

horizontal noise pattern in the recorded images. The horizontal regions of noise were 

seen to travel from the bottom to the top of the image while observing the screen in 

video mode. 

A very simple yet powerful filtering algorithm (sometimes used in astronomy 

for image filtering[46]) was implemented to reduce and eliminate this horizontal noise. 

The LEED screen is framed to the right of the viewable rectangle of the camera image. 
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Figure 3.10: LEED picture of clean W(llO) surface taken at 120eV. The top image in 
the unfiltered data while the bottom is the same photo processed with a filter-width 
of ten pixels. 

To the left of the frame, a darkened area was formed with black electrical tape. All 

ambient light sources (including the ion gauge which measures the pressure inside the 

chamber) were extinguished and the camera and the observing window were covered 

by an opaque black shroud. The image was then recorded and stored to computer. 

For each row of pixels in the image, the filter averages the intensity to a specified 
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Figure 3.11: LEED image from a poorly grown iron film. The box in the top section 
shows the region of the image that comprises the intensity data shown below. 

width starting at the left edge of the image for each row of pixels. The filter then 

subtracts that average from the entire span of the image. It was seen that only a 

small width needed to be averaged over to achieve the desired results. Figure 3.10 

shows before and after pictures of a LEED pattern measured from a clean W(110) 

surface. The filtered image used an averaging width of only 10 pixels. 

The recorded images can also be used to measure the diffracted spot intensity 

and half-width of the peaks. This can be especially useful when trying to find faint 

spots in the image. Figure 3.11 shows a LEED image from a poorly grown iron film. 
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Oxygen contamination of the film will cause faint extra diffraction spots to appear 

in the LEED image. These types of features are often faint and can be difficult to 

discern with the eye but they will show up clearly in the intensity profile. 

3.5.2 Interpretation of Diffraction Images 

A LEED diffraction experiment measured by the method described provides a real

time image of the reciprocal lattice. One of its main uses in surface science is to 

determine the coordination of the film atoms with respect to the underlying lattice. 

While interpretation can become quite difficult when glide planes and rotations need 

inclusion, this thesis only deals with systems with centered structures and as such 

will be the sole topic here. 

A film which grows pseudomorphically on the substrate lattice will have a 

LEED pattern unchanged from the pattern seen on the clean surface. This is because 

the atoms of the film have arranged themselves so as to not change the diffraction 

conditions at the surface. This reasoning ignores factors associated with how well 

certain atoms will act as scattering centers, but such a consideration should only 

affect the intensity of the diffraction point and not the geometry. 

A common nomenclature used for labelling film symmetries uses the length 

of the film's unit cell in units of the primitive unit cell of the substrate. So, a film 

that has a unit cell that is two times the size of the unit cell of the substrate is said 

to have a 2x2 pattern (this assumes a cubic symmetry). For instance, oxygen will 

form a 2x2 pattern on W(llO) once the oxygen coverage on the film exceeds about 

two-thirds of the surface[47]. Nickel monolayers on W(llO) forms a highly strained 

7xl pattern[48]. This means that along one direction of the film, the unit cell of the 

film is only commensurate with the substrate on the order of seven unit cells of the 

substrate, but is fully commensurate along the other direction. Examples of both of 
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Figure 3.12: Diffraction images of (a) 2x2 oxygen and (b) a 7x1 nickel monolayer on 
W(llO) surface. (Nickel image courtesy of Q. Li.) 

these diffraction patterns are shown in figure 3.12. 

3.6 Magnetic Measurements using Surface Magneto
optic Kerr Effect 

Magnetic measurements that use the surface Magneto-optic Kerr Effect (SMOKE) 

are perhaps the most commonly used in surface magnetometry. Using experimental 

methods from ellipsometry and taking advantage of the fact that cheap, high-quality 

ReNe lasers have a wavelength on the order of the typical energy spacing of the 3d 
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electron bands, SMOKE is capable to measuring robust magnetic signals from the 

smallest samples. 

The following subsections will attempt to highlight that concepts behind 

SMOKE from the point of view of optics and quantum mechanics. More technical 

details on how the measurements are made in the laboratory will follow. 

3.6.1 SMOKE via Optics 

The Kerr effect is related to its much better known cousin, the Faraday effect. The 

Faraday effect is the rotation of the polarisation of the incident light as it is trans

mitted through a magnetic medium. The Kerr effect is simply this same effect but as 

it applies to reflected light. 

A simple optical explanation behind the Kerr effects is as follows. Linearly 

s or p (s and p designations refer to the orientation of the polarisation axis to the 

scattering plane) polarised laser light will reflect from a metal surface with the same 

polarisation it possessed on incidence. This assumes that the metal surface is isotropic 

or in more technical terms, that the reflection matrix in Jones notation has only 

diagonal components as follows: 

( Tss rsp) = (rss 0 ) 
Tps rpp 0 rpp 

(3.4) 

The off-diagonal components take on non-zero values when the symmetry of 

the metal is reduced, as it is in magnetic materials. The elements of the reflection 

matrix can be calculated using the dielectric tensor of the material. A diagonal 

dielectric tensor will give rise to a diagonal reflection matrix. For a magnetic metal, 

the dielectric tensor can be written as: 

EFEd( + iQ 0) 
1 0 
o 1 

(3.5) 
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where Ed is the dielectric constant (the subscript d is used here only to differentiate 

this constant from the reduced temperature which is also symbolised by E) and Q is 

the magneto-optic Voigt parameter, which introduces the change in the polarisation. 

The size of Q depends on the size of the average magnetic moment of the surface and 

sets the degree to which the polarisation axis is rotated and how much ellipticity is 

introduced. 

This dielectric tensor will lead to eigenvectors of the reflected light with differ

ent values based on whether the incident light is left or right circularly polarised. As 

such, a small rotation of the polarisation is introduced in the reflected light (linearly 

polarised on incidence), the size of which is dependent on the size of the magnetic 

moment at the surface. This measurement technique is sensitive to all magnetic 

moments within the skin-depth of the light (on the order of the laser wavelength). 

The macroscopic formulae for the Kerr effect rotation in ultrathin films are 

dependent upon Q, the layer thickness d, N (the refractive index of the material), 

the incident angle of the light (), and A (the wavelength of the incident light). These 

formulae apply as long as the ultrathin condition is satisfied[49] as follows: 

27r 
TINld~l (3.6) 

The Kerr rotation for longitudinal (in-plane) and polar (out-of-plane) mo

ments is then given as follows[49]: 

(3.7) 

¢LON = sin(()) (47r) ( ~SUb2 ) Qd 
A 1 Nsub 

(3.8) 

where the angular dependence arises from the requirement that there must be some 

component of the magnetisation vector coincident with the propagating vector of the 
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incident light. At 45° incidence, the only difference between the two effects is in the 

difference between the square of the refractive index of the film N and the unsquared 

index of the substrate N sub ' For typical values of N, this means that the polar effect 

is a more sensitive measurement than the longitudinal. 

3.6.2 SMOKE via Quantum Mechanics 

SMOKE is inherently a quantum mechanical effect. As long as the wavelength of the 

laser light used as a probe is on par with the relevant energy spacing between the 

bands of the itinerant electrons, the Kerr effect should be observable. 

The effect in 3d transition metals can be understood at a fundamental level 

by looking at transitions induced by the incident light of electrons from the 3d band 

to the 4s (see diagram in Figure 3.13). The 3d electron bands are spin degenerate in 

the absence of a magnetic field. Dipole selection rules state that electrons can only 

transit between two states if the change in the orbital angular momentum number (l) 

is ±1 and the change in ml is +1 for right polarised photons and -1 for left polarised 

photons. 

In the presence of a magnetic field due to the inherent magnetic moments, 

there will be a lifting of the 3d electron degeneracy due to the Zeeman effect. The 

Zeeman effect will decrease the spin-up 3d level and vice-versa. This will give rise to 

a different transition probability for left and right circularly polarised photons. It is 

this difference that will give rise to small changes in the polarisation of the reflected 

light. 

3.6.3 Measurement Techniques 

The Kerr effect is most commonly exploited in two ways for the purpose of magne

tometry. A dc technique can be used to measure magnetic hysteresis while an ac 
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Figure 3.13: Level splitting leads to a broken symmetry between the transition prob
ability for left and right polarised photons. 

technique can be used to explore the magnetic susceptibility. This subsection will 

detail how each of these are used in the McMaster laboratory. 

SMOKE TECHNIQUE 1 - dc Measurement of Magnetic Hysteresis 

Once the a magnetic surface has been prepared, laser light is made incident 

upon the magnetic surface at an angle of 45°. This is not an ideal angle for in-plane 

measurements as SMOKE is sensitive to only the magnetic moments that have a 

component that is parallel to the incident light (Kerr ex k· M). The 45° was chosen 

for two main reasons. One is simply a question of chamber geometry which makes 

other angles difficult. The other reason is that the apparatus is routinely used for the 

study of both in-plane and perpendicularly magnetised films. 

The light is sent through a lens and mirror system that first expands the 

beam out of the laser and then redirects and focuses it onto the film. The expansion 
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ReNe Laser 

Figure 3.14: Level splitting leads to a broken symmetry between the transition prob
ability for left and right polarised photons. Labelled components are as follows: P1 -
initial polariser, BE - beam expander, RC - recollimator, M1 - mirror, FL - focusing 
lens, P2 - analysing polariser, PD - photodiode, W - window. 

allows for a slight reduction in the size of the beam spot on the film. Figure 3.14 

shows an outline of the optics used. The minimum beam spot obtained was O.75mm 

diameter. 

The incident light is linearly polarised using a commercial Glan-Thomson 

polariser which is mounted on a rotational stage. The reflected light passes through 

a second GT polariser that is set to almost right-angle to the initial polariser. The 

light then passes into a photo-diode where the intensity of the light is measured. The 

light intensity is related to the rotation of the polarisation by: 

(3.9) 

where (J is the angle between the crossed polarisers (zeroed at 7r /2), Imx is the max-

imum intensity, and €r is the extinction ratio of the polarisers. The extinction ratio 

is a measure of the intensity of light that will pass through two polarisers that are 

crossed at exactly ninety degrees and is an indicator of the quality of the polarisers. 
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The GT polarisers used in this measurement typically give a value of Er on the order 

To achieve this good a value for ETl it is necessary to account for unwanted 

contributions to changes in the polarisation due to the effects of the light being 

transmitted through URV windows. These windows are generally composed of quartz 

which will become birefringent (meaning that the material has a different index of 

refraction depending on the polarisation of the light) when put under stress. Since 

the quartz is held in a stainless steel ring which is bolted tightly to the main URV 

chamber, such stresses will unavoidably be introduced. As well, further strains will 

occur during the repeated bake-out procedure described earlier to achieve low vacuum 

conditions. It was found[50] that the ellipticity introduced by the windows could in 

fact be exploited to improve the signal-to-noise of the measurements and removes the 

need for a quarter-wave plate that is often used in ellipsometry measurements. 

Before any SMOKE measurements can be made, the intensity of the s

polarised laser light transmitted through the second polariser is minimized by ro

tating the polariser until it is 90° to the initial polarisation. This intensity is not the 

minimum achievable, however, due to the ellipticity introduced at the windows and 

the reflecting surface. It's been found that by rotating the initial polariser such that 

the incoming polarisation is slightly away from s-polarisation, the ellipticities can be 

negated, leaving only rotations in the polarisations as a function of applied magnetic 

field to be measured. 

Once the polarisers are arranged to negate the window contributions to the 

polarisation, the angle between the polarisers needs to be set to maximise the contrast 

of the dc signal. We can write the contrast, C, as: 

C = 61 = 2()~() 
1 ()2 + Er 

(3.10) 
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A simple differentiation shows that this is maximized at () = Fr. It is easy 

to see from eq.(3.9) that when the rotation angle of the polariser is set to En this will 

double the extinction intensity of the light to the detector. So for maximum contrast, 

the second polariser is rotated so as to double the intensity of light that is recorded 

as extinction. 

The intensity is measured as a function of the applied magnetic field. The 

field in our apparatus can be applied either perpendicular to the plane of the film 

or in-plane along one direction by passing current through Helmholtz coils attached 

to the sample holder. The size of the field is limited to the amount of current that 

can pass through the coils without heating the wire enough to cause the insulating 

varnish on the wire to melt and contaminate the entire chamber. 

Figure 3.15 shows a typical hysteresis measurement taken from a 1.4ML 

FejW(llO) film at a temperature of approximately 270K. The field was ramped slowly 

between -60 and 60 Oe multiple times and the value of M for each branch of the loop 

is averaged from the multiple field cycling. 

SMOKE TECHNIQUE 2 - ac-SUSCEPTIBILITY 

The susceptibility measurement uses the same optical setup as the hysteresis 

measurement. The magnetic susceptibility (Xm) is measured by applying a sinu

soidally varying magnetic field to the film. The intensity at the photo-diode is mea

sured now by a lock-in amplifier, which measured the intensity only at the frequency 

of the applied field. The digital lock-in used is capable of measuring two phases of 

the oscillatory response of the magnetism, allowing for simultaneous measurement of 

both the real and the imaginary components of the complex susceptibility. 
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Figure 3.15: Magnetic hysteresis loop measured using the surface magneto-optic Kerr 
effect from a 1.45ML Fe film at 270K. Magnetisation is plotted in units of radians of 
Kerr rotation. 

The angle of the analyzing polariser is set to a different value in the ac 

measurement than in the de hysteresis. This is due to more complicated frequency-

dependent signal-to-noise issues that arise in the ac technique. A complete treatment 

of the SIN as a function of set angle for a susceptibility measurement is given in 

reference[17]. It was found in that study that a set angle of 10 arc-minutes for our 

equipment maximized the signal-to-noise. 

The signal is calibrated from small photo-diode voltages to radians using the 

first derivative of eq.(3.9): 

fl()= ~ 
2()Imx 

(3.11) 

where fll is the ac voltage measured from the photodiode and fl() is the rotation angle 

of the polarisation. This is approximately converted to Sl units of susceptibility by 

the following equation: 

(3.12) 
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where MFe is the saturated moment value for bulk iron in cgs units, Happ is the applied 

field in Oersteds, 8 Kerr is the Kerr rotation that results from a single monolayer of 

magnetic material of unit moment, and t is the thickness in monolayers. 8 Kerr has a 

value of 250 x 10-6 for iron. The prefactor of 16~o is to convert between cgs and 81 

units. 

The final parameter for the calibration of the susceptibility is the set phase 

angle of the dual-phase lock-in amplifier used to record the complex signal. There 

are phase lags between the output oscillator of the lock-in and the final detection of 

quadrature components x and y. It is important for the phase angle to be correct 

to properly rotate x and y into the real (in-phase) and imaginary (~ out-of-phase) 

signals. The phase angle p enters the calibration via a simple rotation matrix: 

( cos(p) - sin(p) ) ( x ) = ( Re(x) ) 
sin(p) cos(p) y Im(x) 

(3.13) 

p is dependent on all of the experimental apparatus used. There are phase 

differences to be considered in the power amplifier that amplifies the oscillator signal 

from the lock-in into current used to drive the magnetic field in the Helmholtz coils. 

This phase difference is frequency dependent and was measured carefully by exam-

ining the input and output waveforms on an oscilloscope. The trend as a function 

of frequency is then extracted from the plotted phase differences. The coils them

selves have a natural resistance (R = 5.20) and inductance (L = 5.7j.lH) , creating 

another frequency phase difference of wL/ R. The final contribution to the phase 

angle comes from the amplifier in the amplifier of the photo diode detector. It has 

a natural time lag due to RC nature of the inverting amplifier used (R= 100MO, 

C= 1. 7pF for the 108 gain scale used in all the susceptibility measurements in this 

thesis). Each of these effects has been painstakingly quantized to account for phase 

differences for a given value of the frequency. For this thesis, almost all data was 
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taken at either 150 or 400Hz although there were some at other frequencies, all less 

than a kiloHertz. For these values of the frequency, the phase angle p is 220.75 and 

77.80 degrees respectively. 



Chapter 4 

Results 

4.1 Measurement of the Static Critical Exponent 
of the Magnetic Susceptibility r 

The following section contains a paper that was recently submitted to the journal 

Physical Review B. The authors list is M.J. Dunlavy and D. Venus. To maintain 

consistency with the text of the complete thesis, references and labelling of citations, 

figures, equation, and tables have been modified from the original draft. Otherwise, no 

changes have been made from the submitted manuscript. The seven figures associated 

with the paper are located at the end of the section. 

As of this writing, the manuscript has been resubmitted to the editors to 

address a small concern of the referee. It is expected to be accepted soon. 
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The critical phase transition in ferromagnetic ultrathin FejW(llO) films has been 

studied using the magnetic ac susceptibility. A statistically objective, unconstrained 

fitting of the susceptibility is used to extract values for the critical exponent 1, the 

critical temperature T c, the critical amplitude XO and the range of temperature that 

exhibits power-law behaviour from individual experimental measurements of X(T). 

This avoids systematic errors and generates objective fitting results. An ensemble 

of 25 measurements on many different films are analyzed. Those which permit a 

fitting range in reduced temperature extending lower than approximately 4.75 x 10-3 

give an average value 1=1.76 ±0.01. Bilayer films give a weighted average value of 

1 = 1.75±0.02. These results are in agreement with the 2-dimensional Ising exponent 

1= ~. Measurements that do not exhibit power-law scaling as close to Tc (especially 

films of thickness 1. 75ML) show a value of 1 higher than the Ising value. Several 

possibilities are considered to account for this behaviour. 

Introduction 

Experiments that seek to measure critical phase transitions are very impor

tant to physics at a fundamental level. Careful experiments can be used to test the 

theoretical models of universality and scaling. The true nature of the order parameter 

of a system, both in terms of dimensionality and degrees of freedom, is revealed at 

the transition and important physical insight is gained in the looking. 
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An ultrathin magnetic film closely approaches the physical realization of a 

truly two dimensional magnetic system, and offers a better system for studying critical 

phase transitions in two dimensions than more traditional layered bulk materials such 

as Rb2CoF 4 [25], where interlayer interactions will always be present, even if only to 

a small degree. Bander and Mills [23] have shown that when ferromagnetic thin films 

have uniaxial anisotropy, the critical regime near the Curie temperature is described 

by the 2 dimensional Ising model. For this reason, a great number of measurements 

of the static critical exponents of ultrathin ferromagnetic films have been reported. 

Almost all of this experimental work concentrates on the critical exponent of the 

magnetization, fJ [15, 10, 9, 4, 11, 7, 16, 12]. To our knowledge, there are only a 

handful of reports in which the critical exponent of the magnetic susceptibility, ,,/, 

is investigated experimentally for an ultrathin magnetic film [51, 15, 16, 17, 18, 14]. 

Unfortunately, almost all of these susceptibility studies have at least one of a number 

of deficiencies which call the results into question. 

A common difficulty in the determination of critical exponents is the deter

mination of T c' Small variations in the assumed value of T c have a profound effect 

on the fitted value of the critical exponent, and introduce confidence limits that are 

usually much larger than those derived from a simple two parameter fit for the critical 

exponent and amplitude. The extreme sensitivity of the results to T c implies that the 

same data must be used to determine both T c and the critical parameters. This is 

particularly true for metastable ultrathin films, since very small shifts in the critical 

temperature are often introduced by temperature cycling and annealing, or by resid

ual vacuum contamination. A second difficulty is determining the temperature range 

where scaling is observed. Since real, finite systems do not show infinite divergences, 

the order parameter departs from power law behaviour close to T c because of finite 
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size effects, dynamical effects (in ac measurements), a finite demagnetization factor, 

and so on. To fit the data properly, an objective, four parameter power-law fit of the 

data is required. In addition to Tc and 'Y, the fit should find values for the critical 

amplitude XO and the cutoff for power-law behaviour near T c' Finally, in order to 

demonstrate true systematic behaviour, it is clear that the analysis of many films and 

measurements is necessary. 

It is perhaps surprising that after two decades of investigating the critical 

properties of ultrathin ferromagnetic films, that no published measurements of'Y meet 

these criteria. An impressive study by Back et al. [9] on FejW(llO) ultrathin films 

determines j3 and the exponent of the critical isotherm J using the dc magnetization, 

and then derives 'Y using the scaling relations between different exponents. The 

value of T c is not fit, but rather taken to lie at the peak of the dc susceptibility 

for a particular experiment. The results agree with the predictions of the 2d Ising 

model. This represents a check of the internal consistency of the data and scaling 

relations, but is not an independent measurement of 'Y- EImers et al. [15] report dc 

susceptibility results for a series of submonolayer films of FejW(llO) and find 'Y = 

2.8 ± 0.2, significantly different than the 2d Ising value of 1.75 [42]. It is not clear 

to what extent this finding is a result of using an incomplete film layer or if, as they 

suggest, the material is exhibiting the behaviour of an anisotropic Heisenberg system. 

Other studies report results only for a single measurement from a single film [17]. Still 

others use questionable criteria for determining T c, such as the disappearance of the 

imaginary component of the susceptibility in an ac measurement [18], the peak of the 

real ac susceptibility [14, 52], or the presence of a "shoulder" above the peak of the 

susceptibility [51] under special circumstances. 

This paper presents the results of a collection of 25 measurements of the 
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ac magnetic susceptibility of Fe films between 1.5 and 2.0ML grown epitaxially on 

W(llO), and the values of'Y derived from them using an objective minimization of 

the statistical variance between the data and a power law fit using four parameters: 

Te , 'Y, the amplitude Xo, and the low reduced-temperature cutoff tx for fitting. Error 

estimates on T e and 'Yare provided by 10- variations in the statistical X2. The results 

fall into two distinct classes. Measurements exhibiting power law behaviour over a 

long range of reduced temperature extending down to a cutoff tx < 4.75 X 10-3 give 

an average critical exponent 'Y = 1.76 ± 0.01. Measurements which exhibit power law 

behaviour down to larger values of tx show a systematic trend to higher values of 'Y 

which depends rather linearly on In(tx). The possibility that films which give a high 

value of'Y have a distribution of transition temperatures will be addressed to explain 

this unexpected result. 

Theory 

According to scaling theory, the real component of the intrinsic magnetic sus-

ceptibility (Xint = 8M / 8H) above the Curie temperature of a critical phase transition 

is described by the power-law equation: 

, () -, 
Xint t = Xot (4.1) 

where XO is the critical amplitude, 'Y is the static critical exponent for the susceptibility 

of the order parameter and t is the reduced temperature above T e, given as: 

(4.2) 

For experimental measurements of the magnetic ac susceptibility, additional 

terms need to be added to account for both demagnetization and dynamical effects. 
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The demagnetizing factor N is folded into the expression for the intrinsic susceptibility 

by augmenting the magnetic field by: 

Hejj =H -NM (4.3) 

where Hej j is the effective field acting on the ferromagnet. This gives rise to an 

effective susceptibility of: 

I (T) X~nt (T) 
Xejj = 1 + NX~nt(T)· (4.4) 

It is easy to see that for a non-zero value of N, the susceptibility cannot diverge at 

Te. N will "dampen" any experimental measurement of X as long as the value of the 

product N Xint is comparable to or greater than one. 

To accurately describe results from ac susceptibility, it is necessary to add the 

effect of the relaxation time of the magnetization to the effective susceptibility. In the 

linear response approximation, for systems with an exponential relaxation time (T) 

[M(T) ex: exp(-T/T)] where T is time. Under the influence of an externally applied 

sinusoidal field, the real dynamic susceptibility (X') can be written as: 

I (T) _ X~ff (T) 
X-I + (wT(T))2 (4.5) 

where w is the driving frequency of the magnetic field 1 This final form of the 

magnetic susceptibility limits the ability of experiments to probe critical behaviour 

very close to the transition. To observe any critical scaling in the experimental data, 

two requirements must be met: we must have N sufficiently small and we must have 

(WT)2 « 1.0. 

The extreme aspect ratio of ultrathin films leads to very small values of N. 

For systems that have their moments oriented in-plane, N is proportional to first 

lIn these equations, the relaxation time of the magnetization is used, where dff = -~(M -Moo). 
Dissipation can also be expressed in terms of the relaxation of the effective field using the Landau
Liftshitz equation and the damping parameter A. The two terms are related by T = x"{ f . 



81 

order to the thickness divided by the effective lateral dimension of the film [21]. 

For films that are one or two atomic layers thick and many thousands of lattice 

spacings wide, N will be extremely small. This is another reason why ultrathin films 

are ideal for studies of critical phenomenon in two dimensions. Previous studies of 

the susceptibility on ultrathin films have attempted to estimate N (and include the 

estimation in the power-law fits) by using the maximum value of the real susceptibility 

[18]. The argument proceeds by rearranging eq.(4.4) as follows: 

1 1 +N 
Xint(T) 

(4.6) 

This leads one to the conclusion that at Tc, when Xint is infinite, N = IjXmax. This 

simple treatment has several problems even for dc susceptibility measurements (where 

w = 0) in that it ignores other effects (finite field, saturated correlation length, etc.) 

that will saturate the susceptibility and will give a value for N that is artificially too 

high and is at best an upper limit [53]. If this limit of N is then used in the power-law 

analysis, the resulting quoted values for 'Y should be called into question. 

Dynamic effects are only significant near T c where critical slowing down will 

lead to a large relaxation time for the equilibration of the order parameter[43]. This 

can be less of a problem in dc measurements, but the increased signal-to-noise that is 

achieved in ac measurements make it worthwhile to deal with the dynamics problem. 

In fact, critical slowing effects should disappear once the temperature is increased 

more than a degree or two above T c. Dynamic effects will change the temperature 

at which the susceptibility exhibits a maximum (depending on the measurement fre

quency used), making the evaluation of Tc by that method difficult if not impossible. 

Experiment 

FejW(llO) ultrathin films with high quality epitaxial layers can be grown at 
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least up to 2 ML [54]. Previous studies of FejW(110) have shown that the magnetic 

properties of the films depend sensitively on the film thickness [55]. Some studies 

of films less than 1.5ML show an interesting perpendicular magnetisation due to the 

film structure which results from step-flow growth [56, 57]. Pietzsch et al [58] find 

perpendicular domains for narrow bilayer stripes on a Fe monolayer at low temper

atures (about 16K) grown on a miscut surface. For this study, we concentrate on 

the thickness range from 1.5 to 2.0 ML, where many studies have confirmed a large 

in-plane anisotropy for this system. 

The experiments were performed in an UHV environment with a base pressure 

of lx10- lOtorr. The films were grown by molecular beam epitaxy (MBE) from a 

99.995% pure iron wire. The substrate was a tungsten single crystal that had been cut 

and polished to expose the [110] face. The cut is accurate to within 0.4°. The first Fe 

layer was deposited at room temperature and then annealed for one minute to 500K. 

This slight annealing produces increased sharpness of the resulting pseudomorphic 

LEED pattern. Further depositions were performed at room temperature with no 

annealing. The film growth, thickness and quality were monitored by Auger electron 

spectroscopy (AES) and LEED. 

The aC-Xm measurements were made via the surface magneto-optic Kerr ef

fect (SMOKE) using a focussed He-Ne laser spot with a diameter of approximately 

0.75mm. Small coils near the surface produced a sinusoidally oscillating magnetic 

field, H, which influences the moments in the paramagnetic film above T c' The field 

was applied along the film's easy axis [110]. The surface magneto-optic Kerr effect 

produces a rotation of the polarization of the laser light reflected off of the magnetic 

surface. After the reflected light passes through a polarizer almost crossed with the 

incident polarization, the signal manifests itself in changes in the light intensity at 
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the photo-diode detector. The 1f signal is read by a dual-phase lock-in amplifier that 

can simultaneously record both the in-phase (or real) susceptibility (X' (T)) and the 

out-of-phase (or imaginary) susceptibility (X" (T)). The raw signal is calibrated to SI 

units and the entire signal can be represented as 

X(T) = X' (T) + iX" (T). (4.7) 

Fig. (4.1) shows a typical measurement of the complex susceptibility measured from a 

1.8ML iron film. The measurement was made with an applied field amplitude of 0.7 

Oersteds at a frequency of 400Hz. 

It would be best to use an infinitesimally small field, but of course this is not 

possible experimentally. A study of magnetic susceptibility peak shape as a function 

of field was conducted to see what value of the field would give the best compromise 

between signal and finite field effects. Fig.(4.2a) and (4.2b) show the maximum value 

and full-width, half-maximum (FWHM) for the susceptibility peaks respectively as a 

function ofthe amplitude of the applied field. The trend below 1.0 Oe in both graphs 

is independent of field size, (except at extremely low fields where the signal itself 

disappears) but deviates for higher fields. Resulting measurements of a susceptibility 

peak measured in these small fields give a FWHM typically between two and three 

and a half degrees. In these measurements, smaller field amplitudes were accessible 

but this generally lead to a degradation of the signal-to-noise ratio. 

Sample heating was accomplished by running ac current (no more than 1A 

rms) through a small tungsten wire filament located behind the tungsten crystal. 

AC-current at 60Hz was used to reduce the effects of stray offset fields at the surface. 

It had been found in the past that a dc-current introduced a 0.1 Oe offset field at the 

surface. The 0.1 Oe field caused by the heating filament is much less than the applied 

field used in the measurement (typically 0.7 Oe) and is much less than the field which 
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increases the FWHM of the susceptibility peak (Fig.4.2). Any questions about the 

effect of the heating current were answered by comparing data taken while increasing 

and decreasing the film temperature respectively. The value of current used in the two 

methods differed by a factor of three, and there was absolutely no difference in the 

final data. The temperature of the film was measured using a W /WRh thermocouple 

embedded in the tungsten crystal and the rate of temperature increase/decrease was 

in most cases limited to 0.2deg/min. This low rate more than adequately compensates 

for thermal variations in the crystal and permits even heating of the film over the 

entire surface (app. lcm2). 

In a few cases, the susceptibility was also measured in the two directions 

orthogonal to the assumed easy axis: [001] (in-plane) and [110] (perpendicular) in 

order to check that no perpendicular magnetization was present. These measurements 

showed zero signal, indicating no moments along those directions. This result does 

not necessarily contradict the findings of Pietzsch et al[58] since the temperature and 

substrate step density are very different in the two experiments. 

Data Analysis 

To fit the susceptibility data to eq.(4.1), an objective, many-parameter fit 

was used to determine the best values for the Curie temperature, T c, the critical 

exponent ,,(, the critical amplitude, xo, and tx which is the smallest value of the 

reduced temperature to show power law scaling. 

The fit is performed in double logarithm space [In(x) vs In(t)], the slope of 

which will correspond to the critical exponent. Taking the logarithm of the suscep

tibility necessitated the removal of data points where X(T) goes to zero. Since these 

points are weighted the least, this "weeding" out of points does not adversely affect 
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the final fit. A small range of temperatures close to the peak was chosen for possi

ble values of T e used in the reduced temperature. For each considered value of Te , 

a weighted least-squares fit was performed on the data in the new In-In data space 

from In(tmax ) (which always corresponds to the data point measured at the highest 

temperature) to a cutoff value In(tx). 

tx was itself varied over a range from just below tmax to a value of t where 

the power-law scaling was obviously no longer valid. The variance of the fit was 

minimized for the best value of Tc and the cut-off, t x' The variance is the best test 

for a fit made in a many-parameter space [59J where the number of points does not 

remain constant. It is given by: 

8 2 = ~ (In(Xi) -; F(ti))2 / ~ :~ 
itmaro O"i itmaro ~ 

(4.8) 

where Xi is the ith data point, F(ti)=ln(xo) + /,In(ti) is the fitted function, and O"i is 

the error associated with the logarithm of each data point. Fig.(4.3) shows data for 

which a contour plot of S2 as a function of Te and In(tx) is presented in Fig.(4.4) . 

There is a global minimum at Te = 455.84K and In(tx ) = -5.355 (corresponding to a 

temperature of 457.99K). There are local minima exhibited in the graphs that have 

higher values for tx than the global minimum. The fact that the global minimum fits 

the data closer to T e increases its significance. 

To get an error estimation on T e, the fits were recalculated while keeping 

the optimum value of In(tx)=-5.36 to allow for a careful statistical X2 analysis for 

a consistent number of data points. According to statistics for a multi-variable fit 

[59], the 65% confidence range for a parameter is given by the parameter values 

that increase the unreduced X2 by one. Fig. (4.5) shows X2 versus T c for the data 

in fig.(4.3). Due to the good signal-to-noise of the data and the large number of 

points in the limited temperature range, the error for T e is very small. The number 
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of points in the fit used for Fig.4.5 is 1905, which gives a reduced X2 for the fit of 1.8, 

signifying a very good fit to the data. The Tc value from this analysis is 455.84±0.03. 

While this range of T c creates an uncertainty in '"Y on the order of the error from 

the least-square analysis, the two effects should compound to increase the confidence 

limit on '"Y slightly. The value for the critical exponent from the particular data set 

in fig. (4.3a) is '"Y = 1.75 ± 0.02. The fitted critical amplitude XO is 7.3 ± 0.3 x 10-3. 

It now becomes necessary to check for both dynamic and demagnetization 

effects in the data. It has already been remarked that a demagnetization factor equal 

to l/Xmax provides an upper limit on the value of N. This assumption would lead 

to a value of N for the data in fig.(4.3a) to be about 1/150 or 6.67x10-3. Numerical 

simulations show that once the value of the product N X approaches 0.05, the observed 

power law behaviour of the intrinsic susceptibility is lost (see eq.{4.4)). For this 

data set, this would occur at a temperature of 464.2 K, giving a value of In(tx) 

approximately equal to -4.0. In other words, if we believe the above estimate for N, 

then no linear segment in double-log space would extend closer to T c than this. The 

results in fig.{4.3b) clearly show the linear segment extending much lower than -4.0. 

The value of N must therefore be much smaller. The power-law behaviour in fact 

deviates at a temperature of approximately 458.0K. If we take the '5% rule' a step 

further, the maximum value of N then becomes approximately 1/1632 or 6.1x10-4, a 

full order of magnitude lower than the previous estimate. This lower value is more in 

keeping with the value of N expected from geometric arguments and provides a new 

upper limit on N. 

Checking the saturation from dynamic effects requires a more definite knowl

edge of the time response of the moments as a function of temperature than these 

measurements currently allow. However, a simple calculation can be made on a the-
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oretical basis. Near T e , the relaxation time of the magnetization will undergo critical 

slowing down which, by theory, follows the formula: 

(4.9) 

where 1/ is the critical exponent associated with the correlation length and z is the 

critical slowing down exponent. While there are very few experiments that measure 

the critical slowing down of the relaxation time, T, on ferromagnetic systems, the

oretical simulations [60, 61] suggests that the value of z should be approximately 

2.2 for the 2d Ising system. The value for To should be very small, on the order of 

inverse-GHz to agree with FMR resonance frequencies. 

To see no dynamic effect in Xint as per eqn.(4.5) requires (WT)2 < 0.05. Using 

Z1/ = 2.2, To = lx10-9s and w=(21f)150.0Hz, we find that In(tx ) will be -5.6. This 

is close to the fit value for In(tx) and may be the reason for the saturation of the 

susceptibility. Better estimates of To and Z1/ are required to pursue this question 

further. 

Results from Many Films 

Critical power-law fitting was performed on a sample of 25 different measure

ments from many films grown between 1.5 and 2.0 ML. Fig. (4.6) shows a plot of'Y as 

a function ofln(tx) for all 25 measurements. For films with a smallln(tx), 'Y is consis

tently close to the 2d Ising value. For films with larger In(tx), 'Y grows systematically 

larger. It is also apparent that the value of'Y is correlated to the film thickness. 

The following weighted and unweighted average results for 'Y can be given: (1) 

For bilayer films, the weighted average value of'Y is 1.75±0.015 with an unweighted 

average of 1.74±0.023 (2) For sesqilayer films, the weighted average is 1.63±0.O1. 

(This weighted average is suspect as there are only 3 data points with small individual 



88 

error which do not overlap). The unweighted average is 1.68±0.13. (3) The weighted 

average value of "I for films with In(tx) less than -5.35 is 1.76±.O1. The unweighted 

average is 1. 76±0.04. Most of the films with values of tx in this last range are either 

2.0 or 1.5ML, but there is also one measurement at 1.75ML and another just below 

1.5ML. 

Films with a thickness of 2.0ML and 1.5ML consistently have the lowest 

values of In(tx) and these are the films that give (on average) the 2d Ising result. If 

these data are re-analysed by artificially increasing In(tx), the value of "I does not 

increase significantly. Fig. (4.7) shows data for a 1.75 ML film which gives a non-Ising 

value of ry. It is clearly not meaningful to decrease In(tx) for this data. It is thought 

that the higher values of tx are an indicator of an as-yet not understood process that 

affects the power law scaling when the film thickness is just below 1.5 ML or between 

1.5 and 2.0ML. It is possible that this process is also responsible for the high value 

of "I reported for films of 0.8ML thickness [15]. 

We have examined several possible explanations for this behaviour. The first 

involved using corrections to scaling arguments [36, 62] that should be taken into 

account for fitting data far away from T c. If this is the case, then the effective value 

of the exponent, "Ie!! is approximated by 

"Ieff = "I - a~ltT'~, (4.10) 

where a is a constant, t is some "average temperature" representing the fitting range, 

and the exponent ~ is close to 0.5 for Ising systems [36] regardless of the dimensional

ity of the system. If tx is chosen as t, the data in fig. (4.6) can be reasonably described 

by eq.(4.10) with ~ ~ 3. The large discrepancy between the fitted and theoretical 

value of ~ suggests that corrections to scaling are not the important factor here. 

Another possibility for the rising value of "I is dimensional crossover from 
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an Ising system to an anisotropic Heisenberg system as a function of temperature 

[63]. It is well known that true two-dimensional Heisenberg systems cannot support 

long range magnetic order above T=O [22], but only a small amount of anisotropy 

is required to lift this restriction [23]. It is possible that the films that exhibit high 

values of In(tx ) are showing higher values of'"'f because they have a smaller anisotropy 

and the exponent is measured in a temperature range where it is still crossing over 

from one universality class to another. This explanation was also offered by EImers 

et.al. [15] for their O.8ML results, and it is interesting to note that the value of In( tx ) 

in their result would be -5.3, which is consistent with the onset of high '"'f values in 

this study. However, there are several arguments against this idea. First, none of 

the data with an Ising exponent show a crossover to larger '"'f when tx is artificially 

increased. Second, none of the data used in this work, including those data sets 

that fit with a In(tx) value less than -6, shows anything resembling a 'break point' in 

the double-log slope indicating different critical power laws over different temperature 

ranges. Therefore, there is no clear indication that dimensional crossover is occurring. 

Finally, a reduced anisotropy should result in a change in the trend of the transition 

temperature as a function of thickness [24], an effect which we do not observe. 

The third possibility is that the films in the sensitive thickness range have 

a wider distribution of transition temperatures. It is easy to understand how this 

would effect the fitted slope. If some fractional area of the film undergoes a phase 

transition at a temperature slightly above the average "mean" value of Tc used to 

reduce the temperature for the logarithmic plot, then those areas will register as 

an artificially high slope in the fit. While the exact nature of the distribution is 

unknown, it is certain that any distribution with values above the T c used in the 

fitting routine will increase the fitted exponent. To gauge the effect quantitatively, a 
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series of data sets were modeled using a normalized Gaussian distribution of T c and 

an intrinsic value of ry of 1.75. No significant increase is found to occur as long as the 

half-width is less than 0.25K. A half-width of just over 0.5K to cause a 1% increase in 

ry, and a half-width of lK gives a fit exponent of 1.81, a 3.5% increase. To achieve a 

fitted value for ry of 3 (near the maximum fit value in the 25 measurements), requires 

a half-width of 2.5K. The high values are the result that with this distribution of 

transition temperatures, a simple power-law fit is no longer valid. It may be that 

the films less than 1.5ML and between 1.5 and 2.0ML are more sensitive to small 

structural inhomogeneities that give rise to a wider distribution of T c' Films with 

a complete second monolayer will be more homogeneous than films that are slightly 

thinner. We speculate that the distribution of transition temperatures may be related 

to the distribution of atoms that are located at step edges between the first and 

the incomplete second monolayer. For the complete 2ML, the films should be very 

homogeneous and a narrow distribution may be expected. The 1.5ML films have 

equal areas that are IML and 2ML thick respectively and as such present a uniform 

configuration of steps which have been shown [57] to give a correlated magnetic state. 

The 1.75 films are on the threshold of the percolation limit of the second monolayer 

and it is possible that slight structural deviations are more likely to cause a wider 

distribution of transition temperatures. This suggestion may also explain the high 

value of ry reported for 0.8 ML films[15]. 

Conclusion 

We report the results of fitting measurements of the magnetic ac-susceptibility 

for critical power law exponents. We find that the critical exponent for bilayer 

FejW(llO) films to be 1.75±0.02 and for films in general with a value of tx be

low 4.75xlO-3 , ry = 1.76 ± 0.01. This result confidently place this system in the 
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2d Ising universality class. The fitting routine allows the simultaneous extraction 

of the critical exponent and the critical temperature from a single measurement of 

the susceptibility. There is evidence of another process which affects fitting of the 

susceptibility for certain thicknesses. This may be due to these films having a larger 

distribution of critical temperatures. 

The authors wish to acknowledge the many technical contributions made by 

Marek Kiela. This work was supported by the National Science and Engineering 

Research Council of Canada. 
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Figure 4.1: Magnetic ac-susceptibility measured from a 1.8ML film ofiron grown upon 
W(llO). The real and imaginary components of the susceptibility were measured 
simultaneously. 
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Figure 4.2: (a) The maximum value of the magnetic susceptibility as a function of 
applied magnetic field. (b) FWHM of the real susceptibility peak plotted as a function 
of applied field amplitude. The minimum half-width is achieved for fields less than 1 
Oersted. 
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Te. (b) Fit in log-log space, with dotted lines showing position of tmax and t x · tmax 

always corresponds to the maximum temperature which was measured. The solid line 
represents the linear function fit in the double-log space. 
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4.2 Measurement of the Critical Slowing Down Ex
ponent z 

The following section contains the complete manuscript of a manuscript that has 

been submitted to Physical Review Letters. The authors list is M.J. Dunlavy and D. 

Venus. As with the manuscript included in the previous section, references to and 

labelling of citations, figures, tables and equations have been modified for the sake of 

consistency with the complete thesis. All figures for this paper are located at the end 

of the subsection. 

Some material on experiment details, the relaxation model, and some of the 

analysis are repeated from the previous section as the two projects are closely related. 

As of this writing, the paper is currently under review. 
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Measurements of Critical Slowing Down in 2d Ferromagnetic Ultrathin 

Films 

M.J. Dunlavy, D. Venus 

Dept. of Physics and Astronomy, McMaster University, 1280 Main St. West, 

Hamilton Ontario, Canada 

Abstract 

Critical slowing down has been experimentally measured in the dynamics of 

the magnetisation of a two dimensional Ising ferromagnetic system. The relaxation 

time was measured from a bilayer of iron grown atop a W(llO) substrate using the 

complex magnetic ac-susceptibility X. The observed value of the critical exponent for 

the slowing down of the relaxation time T near the Curie transition is Zl/ = 2.09±0.06 

(95% confidence), in agreement with most contemporary theories and simulations. 

Further analysis of T reveals the saturation of the correlation length due to finite size 

effects (on the order of several hundred lattice spaces) as the temperature is decreased 

towards Te. 

The dynamic scaling hypothesis originated in the late 1960s [64, 65] as an extension 

of the very successful application of the static scaling hypothesis to the description 

of critical phase transitions. The dynamic scaling hypothesis implies that as the 

characteristic correlation length of the system diverges near a transition, fluctuations 

in the correlated regions take longer to equilibrate and thus the dynamics of the 

system become slower. The characteristic time T for a correlated region to change 

grows as the power Z of the correlation length, leading to the phenomenon of critical 

slowing down. 
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Dynamic universality classes difficult to realize in the laboratory have pre

sented an experimental challenge in the study of the dynamics of magnetic systems. 

An important example of this is the 2d Ising model. The dynamical behavior of this 

model has gained prominence as the study of ultrathin magnetic films matures and 

it becomes clear that two dimensional ferromagnets can exist, in contradiction to the 

Mermin-Wagner theorem [22], due to the presence of magnetic anisotropies which 

transform the universality class to that of the 2d Ising model close to the magnetic 

phase transition[23]. Consequently, there have been many theoretical studies of crit

ical slowing down for this model (which belongs to Model A in the Hohenberg and 

Halperin hierarchy of dynamic universality classes [43]). Lacasse et al [60] give an 

excellent survey of this work up to 1993. As simulations and theories became more 

sophisticated, most current studies place the value of z between 2.1 and 2.25 with 

many theoretical results clustered near 2.13. 

There has been little agreement between these theoretical predictions and 

experiments. This is partially due to the difficulty in producing magnetic systems 

that show true two dimensional behaviour. Experimental investigations have been 

confined to a few studies of layered bulk antiferromagnetic materials which approach 

the 2d Ising model because of the very small effective exchange between layers. Slivka 

et al find z = 1. 77±0.05 for KFeF 4, [66] and Keller et al find 1.29±0.09 for the same 

material[67], both using Mossbauer spectroscopy. Hutchings et al find 1.69±.05 for 

Rb2CoF 4, [68] using neutron scattering. However, no matter how small interlayer 

interactions are in bulk compounds, they can lead to difficulties near T c where the 

extended correlation length of the fluctuations can give rise to additional modes of 

dissipation. 

This Letter reports measurements of the critical slowing down exponent as-
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sociated with the 2d Ising phase transition of an ultrathin ferromagnetic film. These 

films provide a nearly ideal system for the study of phase transitions in two dimen

sions. The extreme dimensional ratio between the film thickness (on the order of 

atomic layers) and the lateral film length allow for the design and fabrication of 

true two dimensional structures where the critical properties do not vary over the 

thickness of the film. Several studies exist that use various surface magnetometry 

techniques such as Kerr effect and spin polarised spectroscopies to measure static 

critical exponents such as f3 [15, 10, 9] and 'Y [69, 70, 71] for the magnetisation and 

the susceptibility respectively. There is a distinct advantage in using ferromagnetic 

materials for studies of critical slowing down in that it takes only small fields to create 

disturbances in the magnetisation near the transition. Studies using antiferromagnets 

must wait for the excitations to be spontaneously created and stabilised on a time 

scale that becomes prohibitive near the transition. 

Critical slowing occurs in a system that is about to undergo a phase transition. 

Fluctuations near Tc give rise to excitations (bm) in the value of the order parameter. 

For small deviations, the relaxation of the order parameter at temperature T will 

follow an exponential law given by [72]: 

bm(t) ex exp (7(;)) (4.11) 

where t is time and 7 is the relaxation time. 7 is dependent upon the correlation 

length ~ of the fluctuations in the system. As such, it will diverge at Tc according to 

a power-law equation given by: 

(T) (~(T)) Z ( -V)Z 
7 =70 ~ =70 t (4.12) 

where v is the critical exponent associated with the diverging correlation length (v 

= 1.0 in the 2d Ising universality class [2]), 70 and ~o are amplitudes and t is the 
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reduced temperature given by [(T - Tc) /Tc] above Tc. 2 

The intrinsic magnetic susceptibility of a ferromagnetic system follows the 

power-law relationship given by: 

(4.13) 

where XO is the critical amplitude and '"Y is the critical exponent of the static sus

ceptibility. In an ac-susceptibility measurement in the presence of a small applied 

oscillatory magnetic field at frequency w, the dynamic complex susceptibility in the 

relaxation approximation becomes: 

(4.14) 

The expression is more complicated if the demagnetisation factor of the system is 

significant. For 2 ML Fe/W(llO), the extreme aspect ratio of the system combined 

with the fact that the magnetic moment is strongly oriented in the plane of the film 

combines to give a demagnetisation factor small enough that it can be effectively 

ignored [71]. With a measurement of the complex susceptibility, the value of T can 

be derived from the ratio of the imaginary to the real component of the susceptibility 

[74] as follows: 

Im(x(T)) = T(T). 
wRe(x(T)) 

( 4.15) 

This method gives an average value of the relaxation time over the whole of the system 

[75]. It is assumed that the average value will be sufficient for the measurement and 

that the distribution is narrow for a good quality film. 

2 An alternate formulation of dissipation uses the Landau-Lifshitz [73] damping parameter A : 
8~7 = -AHeff = -A( -1!L - H). Analysis of A has the advantage of removing from the slowing 
v Xeif . 

down exponent that portion of the temperature dependence which is due to the divergence of the 
static susceptibility. The relationship between the two formulations is T = X'fi. We use eq.(4.11) 
to allow comparison to the majority of theoretical work. 
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The power law divergences in eq.(4.13) and (4.12) cannot be observed in 

experimental data very near to T c. Once a sample is cooled as T -+ T/, the correlation 

length will saturate at some value that is dependent on a relevant length scale like 

sample or grain size and the measured susceptibility will reach a maximum value 

based on this length scale. The maximum value of the susceptibility data will also be 

affected by the measurement frequency, as can be seen from eq.(4.14). 

Measurements of the ac magnetic susceptibility were made from iron bilayers 

that were grown epitaxially and pseudomorphically upon a tungsten single crystal 

that had been cut and polished to expose the (110) face [76]. Film thickness and 

quality were monitored using Auger electron spectroscopy (AES) and low energy 

electron diffraction (LEED). All magnetic properties were measured using the sur

face magneto-optic Kerr effect (SMOKE) with a focussed HeNe laser with a diameter 

of 0.7mm. Susceptibility was measured using a standard lock-in technique [17] which 

determines the real (in-phase) and imaginary (out-of-phase) components simultane

ously. A small magnetic field is applied from a set of Helmholtz coils that have been 

calibrated at the substrate surface using a Hall probe. Temperature is measured using 

a W /WRe thermocouple inserted into the tungsten substrate and the rate of tem

perature increase/decrease is on the order of 0.2deg/minute, which is small enough 

to remove thermal variations across the film. Heating is accomplished by radiative 

emission from a small tungsten wire filament located beneath the substrate. 

The size of the sinusoidal magnetic field used in the measurements IS an 

important parameter. If the field is too large, then the finite field will saturate Xdyn (T) 

at a higher temperature than does the correlation length and critical scaling will not 

be observed. If the field is too small, then the signal-to-noise ratio of Im(x(T)) would 

be too small to allow meaningful analysis for T(T). For these samples, a separate study 
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has shown that the amplitude and half-width of the susceptibility peak is independent 

of field amplitude for applied fields less than 1.0 Oe [71]. A field of 0.7 Oe was used 

in the present experiments to maximise the signal-to-noise but minimise finite field 

effects. It is not clear a priori that this field is small enough to allow the asymptotic 

critical region to be observed. However, since the analysis that follows shows that 

this choice allows the robust extraction of the 2d Ising exponent "/ from Xdyn, it is 

clear a posteriori that the field is small enough. 

In the first part of the data analysis, the real susceptibility data is analysed for 

T c and T The real part has a large signal above T c so that a statistically significant 

analysis for T c can be performed. As well, the fitted value of "/ ensures that the film 

is properly behaving as a two dimensional Ising system. 

Figure 4.8 shows a typical measurement of the complex ac-susceptibility for 

a 2.0±0.lML FejW(llO) film, measured in a applied field frequency of 400Hz. As is 

normal, the peak of the imaginary susceptibility occurs at a temperature lower than 

the peak of the real due to a combination of dynamical and dissipative effects. A 

objective statistical fitting method (related in detail in ref. [71] and similar to that 

performed by Arnold et al [77]) simultaneously fits the critical temperature T c, the 

critical amplitude xo, the critical exponent ,,/, and the value of the reduced temper

ature c'Y where power-law scaling no longer holds near T c' A weighted linear least

squares fit for XO and "/ was performed on the data from the maximum temperature 

point to the cutoff c'Y in double-log space for varying values of Tc and c'Y' The variance 

of the fit is shown in a contour plot inset to figure 4.8. The minimum of the variance 

gives the best values of Tc and c'Y' The fitted values of the power-law for this data set 

are as follows: "/ = 1.80 ± 0.06, XO = 5.53±0.5xlO-3 (81 units), Tc = 453.03 ± 0.02K 

and In(c'Y) = -5.71 (approximately 2.1K above Tc). Tc was found to be just slightly 
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Table 4.1: Fitted values for dynamic scaling from four separate measurements of the 
complex susceptibility. Statistical errors are 1 a. 

Film W "f ZlI 

1 27r( 400) 1.80±.06 2.09±.03 
1 27r( 400) 1.67±.10 2.01±.07 
2 27r(150) 1.75±.02 2.13±.04 
2 27r(150) 1.81±.06 2.04±.06 

average 1.76±.02 2.09±.02 

2.6±0.6 x 10 10 

4.0±0.3 x 10-10 

1.7±0.3 X 10-9 

2.1±0.5 x 10-9 

730 
720 
425 
475 

below the peak in the real susceptibility, in agreement with a previous susceptibility 

measurement on FejW(llO) monolayers [15]). 

Continuing to step two of the analysis for the relaxation time, the ratio of the 

complex susceptibility is taken as in eq.(4.15). The result is plotted on a double-log 

graph to determine the linear segment that shows power law scaling. Because the real 

and imaginary X(T) are measured simultaneously, the value of the Curie temperature 

for'T is precisely the same value as determined by the fit for "f. Fig.(4.9) shows that 

the data between In(E) values of -5.26 and the cutoff In(Ez) of -6.51 form a significant 

linear segment composed of 137 data points. A weighted least square fit finds a 

critical exponent product ZlI of 2.09 ± .03 with an amplitude 'To = 2.6 ± 0.6x10- lOs. 

The order of magnitude of the amplitude (inverse GHz) is consistent with the value 

of 'To expected from FMR measurements. The reduced X2 of the fit is 2.69. 

Among a number of susceptibility measurements made from 2ML films, four 

have a large enough number of data points in the range between E'Y and Ez to allow 

meaningful analysis for ZlI. The individual fitting results are listed in table 4.1. The 

resulting average value for "f is 1.76±0.06 (95% confidence), in agreement with the 

2d Ising value of~. The average for ZlI is 2.09 ± .06 (95% confidence). Since it is well 

known that the 2d Ising value of II is 1.0, the value for the product of ZlI is in fact 

the value for Z itself. To our knowledge, this is the first measurement of Z to confirm 
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the current theoretical consensus value. We speculate this is due to the fact that this 

is the first reported measurement made from a ferromagnetic ultrathin film, which is 

a true realisation of a 2d Ising system. 

These measurements of the critical slowing down are difficult because the 

region of data above T c that shows dynamical scaling is the 1.8-2.0K range between 

t z and t'Y' Far above the transition temperature, the signal-to-noise of the data 

becomes very low, because zv > 'Y and 7 disappears very quickly. However, at t'Y 

the susceptibility stops growing like a power law because of the dynamical factor in 

eq.(4.14). Using the fitted values of 70 and zv from fig.(4.9), the dynamical factor 

(W7)2 = 0.01 at t'Y' This is consistent with numerical modeling which shows that 

departures from linearity on a log-log plot are clearly evident when (W7)2 ~ 0.05. 

Unlike Re(x), the power law behaviour of 7 continues because the dynamical factor 

cancels out in eq.(4.15). Even closer to the transition, finite size and finite field effects 

cause 7 to deviate from power law behaviour. In the small range between t z and t'Y' 

the scaling of 7 is most prominent because it is the only quantity which shows power 

law behaviour. 

The following simple analysis allows an estimate to be made for the limiting 

correlation length, ~sat. We write: 

~ = { 
t > t z 

t« t z 

An ansatz to interpolate between these two extremes is: 

~ = [~sat][(~ocV)l 1 

[(~sat)~ + (~ocv)~l;< 

(4.16) 

( 4.17) 

where K, is a mixing exponent the size of which sets the range of reduced temperature 

over which ~ goes from power-law behaviour to its saturated value. The size of this 

exponent is related to the distribution of length scales that act to saturate ~. Eq. (4.17) 
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is then substituted into eq.(4.12) in place of C V in order to fit the T data all the way 

to Te. Using the previously fitted value of z and TOl the data analysed fits quite well 

with ;;,=2.7 and ~=730. This fit is shown in figure 4.10. Assuming a value of ~o of a 

single lattice space (~3A), the value for ~sat for the data in fig. (4.8) is about 219nm or 

730 lattice spacings. According to a STM survey of the substrate surface, the average 

step terrace width is 500±50 lattice spacings. The similarity of these length scales 

suggests that the correlation length is limited by the atomic steps of the surface. 

The authors wish to thank Martin Grant of McGill University for useful 

discussions. The authors wish to acknowledge the many technical contributions made 

by Marek Kiela. This work was supported by the National Science and Engineering 

Research Council of Canada. 
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Figure 4.8: Plot of the real and the imaginary components of the complex magnetic 
susceptibility measured from a 2ML FejW(llO) film. Dashed atop the real suscepti
bility shows power-law fit used to extract the value for "y and the dotted line shows 
the position of T c=453.03. The inset shows contour plot of the variance of the critical 
fit as a function of Tc and the cutoff value of In(t). Solid contours are separated by 
variance levels of 2 xl 0-4 . 
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Figure 4.9: Double log graph of the 'T plotted against the reduced temperature E. A 
linear fit is shown over a small temperature range between In(E) values of -6.51 and 
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4.2.1 Saturated Effects in the Real Susceptibility 

This subsection contains analysis of the real susceptibility that had to be edited from 

the submitted paper from the previous section for length considerations. However, it 

is considered part of the complete analysis of the susceptibility data. 

Once T has been completely fit and values for ~sat and K, have been found, we 

can turn our attention back to the real susceptibility and model saturation processes 

there. The saturated T is insufficient to explain the effect here. X' saturates at a 

temperature slightly higher from T c than the relaxation time, as shown in figure 

4.11. The reason for this is due to the fact that the real susceptibility is affected by 

dynamical effects from the (1 + (WT)2) term in the denominator of equ.(4.14). This 

term does not affect the relaxation time as it cancels in the taking of the ratio of the 

complex susceptibility. 

To improve the model for the real susceptibility, an ansatz mixing equation 

similar to equ. (4.17) was used to modify the intrinsic susceptibility to include sat

uration efFects not included in the saturation of T (such as finite field effects). We 

find: 

I ( [Xsat] [XoE-'Y] ) ( 1 ) 
Xdyn = [(Xsat)1\;2 + (XoC'Y)1\;2 )]1<12 X 1 + [wT(T)]2 

(4.18) 

where Xsat is a constant equal to the maximum value of the static dc-susceptibility 

(which, as it would be free of dynamic effects, should have a higher value than the ac

susceptibility maximum) and K,2 is the mixing exponent for the intrinsic susceptibility. 

All other terms keep their values from previous steps in the fitting process. To model 

the real data successfully, a mixing exponent K,2 = 1.75 is used. Like the fitting for 

the saturated relaxation time, K,2 sets the curvature of the "knee" in the double-

logarithmic data. The value found is almost half of the mixing exponent K, used for 

modeling T, which is perhaps indicative of a wider distribution of effects occurring 
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Figure 4.11: Log-log plots of the real susceptibility (top) and the relaxation time 
(bottom). Vertical lines show where linear power-law behaviour is lost. Note that the 
relaxation time fits closer to T c due to the lack of dynamic effects. 

than for the finite size effects. Figure 4.12 shows the complete fit (dashed line) 

for the real susceptibility, giving a value for Xsat of 260, which is about 508I units 

higher than the maximum of the ac-susceptibility peak. This is typical for the 400Hz 

measurements. The 150Hz measurements give a Xsat value 358I units greater than 

the ac-susceptibility peak. This is in keeping with the systematics that arise from 

equ.(4.14), where it can be seen that a higher value of w will reduce the measured value 

of the peak more than for lower frequencies. Fitting lower frequency measurements 

was attempted to try and extend this trend further, but it was found that these were 

of insufficient signal-to-noise to allow meaningful analysis of the relaxation time. 
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If the fitting numbers are correct, then it should be possible to fit the imag

inary part with no new parameters. Most of the fitting of the complete dynamic 

susceptibility has involved the use of the real susceptibility with the imaginary part 

used only in the ratio for the relaxation time. Even though the imaginary part does 

constitute part of the previous fit, only a small range of it is useful for the critical 

slowing down analysis (maybe 2 or 3 degrees out of the entire range of data). Figure 

4.12 shows the imaginary data compared to the model which consists of the real sus

ceptibility multiplied by wT(T), as per eq.(4.14). The model is found to fit extremely 

well except for temperatures within a half-degree of T c' The divergence of the fit to 

the data so close to the transition temperature is not surprising given the complexity 

of a system undergoing a phase transition and the fact that the model being used 

is based entirely upon linear response theory. It is possible that the data could be 

fit even closer to T c with the inclusion of higher order terms in the relaxation model 

or with the inclusion of a distribution for the effective value for Tc. However, given 

the complexity of fitting the data to the present model and the already high number 

of terms that need to be fit, such a model would be too difficult to use with only 

the present data. As for the imaginary part, it is seen that it fits extremely well for 

temperatures above T c, providing further proof for the significance of the relaxation 

model used to describe the data. 

For complete fits for all of the complex susceptibility data sets used in section 

4.2, see figure A.2 in appendix A. 

4.2.2 Critical Slowing for Films Less than 2ML 

The previous sections have dealt with critical slowing down only in 2ML films. As 

figure 4.6 shows, 2d Ising behaviour is seen in films with a thickness of iron less than 

that value. 
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Figure 4.12: Log-log plots of the real susceptibility (top) and the relaxation time 
(bottom). Vertical lines show where linear power-law behaviour is lost. Note that the 
relaxation time fits closer to T c due to the lack of dynamic effects. 

Since fitting data for zv occurs over such a small range of temperature data, 

the analysis for the critical slowing down requires much higher quality data that the 

analysis for the static susceptibility exponent f. As such, it was not possible to 

extract a significant value for zv for each measurement shown in figure 4.6. However, 

results exist for some of those films as well as for films where the fitted value for I 

does not indicate 2d Ising behaviour. 

Fig 4.13 shows a graph of the fit value for zv plotted as a function of the 

fitted value of I for the same data set. There is clear clustering at zv just greater 

than 2.0 for films that give a value of I near 1. 75. Films with higher values of I also 

show (with one exception) higher values for zv. This is most probably due to the 

same reason given to explain this behaviour in the I fits, that of the presence of a 

wider distribution of transition temperatures in the sample. The same effect there 
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section 4.2. 

that should lead to higher values of ry will have the same effect here. Indeed, as the 

value of T c used to reduce the temperature data for the dynamic exponent fits comes 

from the static fitting analysis, it is not surprising to see the trend shown in the figure. 

4.3 Effects of O2 Surface Doping 

This final section of results will deal with the effects that doping the tungsten surface 

with oxygen prior to deposition has on the magnetic properites of the film. It will 

be shown that while small amounts of oxygen do not adversely affect the critical 

properties of the system, they do have a pronounced effect on the saturation of the 

magnetic susceptibility. As well, the presence of small amounts of oxygen can give 

rise to a change in the features of the magnetic susceptibility below T c, but in a way 
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that may perhaps be counter-intuitive. 

4.3.1 LEED Reconstruction 

The presence of oxygen on the W(llO) surface will give rise to a 2x2 reconstruction 

LEED pattern once the oxygen coverage reaches approximately 75% of the surface[47], 

as can be seen in figure 3.12a. This 2x2 pattern will still be visible for higher coverages 

of oxygen as some coexistence between the 2x2 phase and a pseudomorphic phase will 

occur [47]. In the films grown for this thesis, a 2x2 pattern can be seen once the initial 

iron monolayer has completed even if there is a small amount of oxygen present on the 

surface prior to deposition. This differs from any previous study of the FejW(llO) 

system, which is pseudomorphic for thicknesses up to 3ML[76]. 

It is known from published studies that iron film growth on the W(110) sur

face proceeds via step-edge growth [78], which means that since iron prefers deposition 

sites at step edges, further growth tends to proceed outward from these sites. If there 

is oxygen on the surface prior to deposition, it is assumed that the iron, growing from 

the step edge, will proceed to "sweep" the oxygen atoms forward into regions of high 

oxygen concentration (see schematic representation of this in figure 4.14). This will 

give rise to concentrated islands of oxygen whereas before the oxygen would have 

been randomly dispersed across the surface. 

Given the method of flashing used to clean the tungsten surface prior to 

deposition, the amount of oxygen at the surface before deposition is typically very 

small. To test for the presence of oxygen, the surface was flashed several times and 

then the Auger spectrum for oxygen was measured. Oxygen only has Auger features 

at a relatively high energy 520e V [79], which means that the signal will be very small. 

Figure 4.15 shows that Auger peak for oxygen after one flashing cycle, the peak after 

several more flashes, and finally the peak after the iron deposition. 
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Minimal Iron Amount Full Iron Monolayer 

'. 

Figure 4.14: Diagram showing how step flow growth can "sweep up" oxygen atoms 
into small concentrated areas located near step edges. Red areas represent iron, 
blue areas represent oxygen. Left figure shows small iron amount, right figure shows 
completed monolayer. 

An analysis of this data shows that while the oxygen signal was reduced after 

the multiple flashing cycles, there is still strong evidence that some oxygen is still 

present. The size of the oxygen signal after the deposition of 1.2 ML of iron is about 

65% as big as the signal before Fe deposition. The amount of attenuation of the 

oxygen signal is in keeping with the attenuation of the tungsten Auger signal after 

it is covered by one iron monolayer (usually 60%). This is strong evidence for the 

fact that the oxygen remains on the surface of the tungsten and is not mixing with 

or "floating" to the top of the iron. 

Figure 4.16 shows the LEED pattern captured at several stages on the depo

sition of the 1.2ML iron film. To the right of each pattern in the figure, there is an 

intensity profile for the horizontal distance between the two top primary diffraction 

spots. The first pair shows the clean surface (the right intensity peak is artificially 

reduced due to a small occlusion of the spot due to the presence of Helmholtz coils 

on the sample holder and because of a slight misalignment of the crystal which af

fects the averaging of the intensity) and a strong 1x1 pattern and narrow, intense 
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Figure 4.15: Three Auger spectra taken (a) before flashing the substrate (b) after 
flashing and prior to iron deposition (c) after iron deposition. Solid line represents 15 
point running average of the data. Auger spectrum taken after deposition is evidence 
towards no oxygen leaving the tungsten surface. 

diffraction spots. This, along with the Auger spectrum, indicates very low levels of 

contamination. 

The second pair shows the results after O.5ML of iron has been deposited. 

The 1x1 pattern remains, as would be expected for the pseudomorphically growing 

iron film. The LEED spots are now much dimmer and have a larger half-width, 

which is expected as the iron is at an insufficient coverage to percolate into a regular 

diffraction grating for the electrons. 

The third pair shows the results after another O.3ML of iron has been de

posited for a total of O.8ML. The image is still primarily lxI, although there is 

evidence of the beginning of an extra 2x2 spot starting to emerge. The fact that 

the iron coverage is now above the percolation limit (typically between two-thirds 

to three-quarters of a monolayer) means that the diffraction spots profiles are much 
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narrower again. 

The fourth pair shows the results from 1.2ML. A strong 2x2 pattern has 

emerged, in strict contrast to the lx1 pseudomorphic pattern one expects from 

FejW(llO) films. The primary spots are again diminished in size, due to the ex

tra second layer islands atop the now complete first monolayer. The only possible 

source for the extra reconstruction spots is the oxygen atoms. While it is possible the 

iron atoms are forming oxides with the oxygen atoms, the most likely cause for the 

reconstruction is that the oxygen atoms are gathering together, most probably near 

step edges due to the step-edge growth nature of iron. The argument against oxide 

formation is that once the iron is flashed off the surface, the oxygen atoms remain 

behind. The dense islands of oxygen would then take the 2x2 pattern that has been 

observed for dense oxygen coverage. Figure 4.17 shows the configuration of atoms 

that will produce a 2x2 pattern. A LEED experiment was performed to test whether 

step edge density is a factor in the appearance of the 2x2 pattern. The density of 

steps on the surface was measured using surface tunneling microscopy in two places: 

in the center of the crystal and near the edge. The edge of the crystal should have a 

greater density of steps due to the mechanical polishing process. 

Figure 4.18 shows STM images taken from the edge of the crystal and the 

middle of the single crystal region where all film growth is centered and measured. 

The scans were performed in atmosphere and the area of both scans is 1J.lmx1J.lm. 

The light bands seen in the images are the atomic step edges of the surface. Several 

scans were taken from both areas of the substrate (some scans over smaller areas) 

and the average step width was measured to be 150.1±15nm for the center area and 

87.5±18nm at the edge. This is a difference of about a factor of two. The distance 

between the two areas is approximately 3mm. 
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Figure 4.16: Four LEED pictures taken for clean W(llO) and then for each addi
tional iron deposition. LEED patterns show lxl pseudomorphic behaviour until the 
completion of the first monolayer, after which a 2x2 pattern is clearly observed. 
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Figure 4.17: Diagram of atoms that give rise to pseudomorphic (left) and 2x2 (right) 
LEED patterns. Black dots represent tungsten atoms, white circles represent oxygen 
(size not to scale). Parallelogram represents new unit cell. 

An iron film was grown over the two areas and the LEED pattern was ob-

served. The film thickness was 1.5ML. The width of the electron beam used for 

LEED experiments is slightly less than Imm. This width is important as the re

sulting diffraction pattern will blend in effects that happen on a length scale smaller 

than that. The substrate had been flashed only once prior to deposition, ridding the 

surface of all contaminants except for the stable oxygen atoms. This was confirmed 

by examining an Auger spectrum that showed a small feature that gave evidence of 

the oxygen present. 

LEED images were recorded for positions along the center z-axis of the film 

in Imm increments (starting at z=27.5mm which corresponds to the crystal edge and 

proceeding to z=30.5mm corresponding to the crystal center). Figure 4.19 shows the 

LEED profiles between the lower two primary diffraction spots. At z=27.5mm, there 

is only the slightest evidence of an extra 2x2 spot. If the scan at z=27.5 is normalised 

for the primary spots to the scan at z=30.5, the 2x2 spot appears to be of equal size 

and width (see inset of figure 4.19). This would indicate that the step-edge density, 
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Figure 4.18: STM images taken from the edge of the substrate and the middle of the 
single-crystal area. Dotted line shows relative position of the grain boundary. Area 
of STM scans in both cases was 1J.Lm2 • 

at least to this scale, does not affect the reconstruction. 

The implication for the model is that the step edge density has no obvious 

effect on the oxygen reconstruction, at least for these small levels of ovygen doping. 

4.3.2 Effects of O2 Doping on Magnetic Measurements 

There is some evidence that oxygen is concentrated at step edges in the magnetic 

susceptibility measurements. These measurements also show what appears to be a 

feature that is dependent not on the presence but rather on the absence of oxygen. 

A pure iron film will show a susceptibility peak at the Curie transition, as 
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Figure 4.19: LEED profiles between the two principle LEED spots shown as a function 
of position on the surface. Profile in red was taken as close to crystal edge as possible 
while the topmost profile is from crystal center where most measurements are made. 
Inset shows profiles from z=30.5 (black) and z=27.5 (red) renormalised to the primary 
peaks. 

evidenced by the successful critical analysis for temperatures above the peak (as seen 

in sec. 4.1), the loss of magnetic hysteresis, and the fact that the peaks coincide with 

critical temperatures reported in the literature (see reference [55] for an interesting 

study of Tc vs iron thickness for this system). The critical exponent measured seems 

not to be affected by the presence of oxygen. The data represented in figure 4.6 is 

a mixture of films that have or do not have small amounts of oxygen present on the 

surface. At temperatures less than the peak, the story changes. It is found that 

for temperatures less than T c, the susceptibility shows a "bench" or sometimes a 

secondary peak. 

Figure 4.20 shows the real magnetic susceptibility measured from a 2ML pure 

iron film, in fact the same film for which measurements of the critical slowing down 
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Figure 4.20: Real magnetic susceptibility measured from a pure 2ML iron film. Un
expected bench feature on the low temperature is assumed to be related to domain 
processes. Inset graphs show hysteresis loops measured from the same film. Precise 
temperture relationship between loops and susceptibility is not assured as the time 
taken between measurements was sufficient for changes in the temperature of certain 
features. 

were taken. The transition temperature for this data is approximately 452K. Just 

below 440K, the susceptibility begins to rise to about 2081 units and stays more or 

less constant up to about 445K, where it slowly increases until 450K where the major 

peak occurs. The major peak is due to the Curie transition as the peak coincides 

with the predicted value of T c for this film. The insets to the figure show two hys-

teresis loops taken before the susceptibility measurements. The time between loop 

and X measurements, as well as the repeated thermal cycling that occurs in all mea-

surements, makes comparing temperatures between the loops and the susceptibility 
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Figure 4.21: Figure (a) shows the saturated magnetisation (msat) measured from 
hysteresis loops as a function of temperature. (b) shows msat (black) plotted close to 
T c with the remenent magnetistion m rem (blue). 

difficult to do precisely. The loop measured at 441.2K appears to be a standard nar-

row rectangle shape one expects from a ferromagnet near the transition. The loop 

measured at 449.2K however shows much different behaviour. There appears to be 

an inner loop with a small hysteresis. The inner loop has a coercive field just under 

10e, which is smaller than the applied field of the susceptibility measurement, which 

was about 2.10e in this data. The high field is why the susceptibility maximum 

is less than expected, a trend shown in figure 4.2. The form of the hysteresis loop 

is surprisingly stable over a range of 10K, indicating that something besides typical 

ferromagnetic hysteresis is at work. The bench also appears in the imaginary part 

of the susceptibility, is very reproducible and shows no obvious hysteresis on small 

temperature cycling around the temperature where it first appears. 

Some type of extra feature (like a bench or a small, secondary peak) appears 
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whenever the substrate has been rigourously cleaned of oxygen and the resulting 

LEED pattern of the final film was pseudomorphic. Also, it has been found that 

these features always appear just below the Curie transition, indicating that their 

origin is likely tied to the weakening magnetic interactions. The loop measured at 

449.2K in figure 4.20 shows a two-step moment reversal with magnetic remenence 

less than the value of the saturated moment (see figure 4.21), as if some significant 

portion of the sample has its net magnetic moment nulled at zero field. In these 

loops, it requires a field of about 0.50e to see a response in the magnetisation. The 

field required to see this will be referred to as Ha. 

The possiblity that some part of the film has its moment aligned in a direction 

away from [1'10] was checked by measuring X along orthogonal to the assumed easy 

axis, [001] (in-plane) and [110] (perpendicular). It was found that these measurements 

always showed zero signal, indicating that no moment existed along those directions. 

This two-step state is the reason why the secondary feature is seen in the 

susceptibility data. For a susceptibility measured in a field larger than Ha , the mag

netisation will have the ability to trace the major loop and thus see a greater magnetic 

response than one would in a more typical ferromagnetic material where the coercive 

field is usually much higher, especially at temperatures so far below Te. In these 

films at some temperature T*, the remenent magnetisation (mr ) becomes less than 

the saturated magnetisation (ms). 

It is hypothesized that the reason behind this phenomenon is due to the 

system breaking up into Ising domains near the step edges. In the middle region of 

the film away from steps, the magnetisation is in large domains (if not in a single 

domain). Near the steps, local anisotropy effects may cause the system to break up 

into smaller domains. Complicated and interesting anisotropy effects have been seen 
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at step-edges in the FejW(llO) system [57, 80]. Domain walls ~re easily moved at 

high temperatures as long as they are not pinned by some local inhomogeneity. It has 

been found in FejW(llO) films just larger than one monolayer that domain walls near 

step edges are pinned at the regions where there are small second layer islands[81]. 

It has also been suggested that similar pinning will occur to a lesser degree for two 

mononlayer films with small third layer growth islands [81]. It is probable that, since 

the film grows from the step-edge out, that there are more third layer islands, and 

therefore more pinning centers, at the step edge. The pinning of the walls is slight 

enough that only small fields on the order of what is observed for Ha is required to 

break it. This hypothesis continues by saying that the presence of a small amount of 

oxygen at the step may ameliorate any thickness perturbation. It may also be possible 

that if there is oxygen at the step edge before the iron is deposited, it will lessen the 

step anisotropy contributions and therefore prevent the creation of the domains. 

4.3.3 Effects of O 2 Doping on ~sat 

The effect of oxygen surface doping on the analysis for !;,sat can be seen in table 4.1. 

While not stated in the submitted paper, the measurements made at 150Hz were 

made on an oxygen doped film and the 400Hz measurements were made from a pure 

iron film. The presence of small amounts of oxygen was found to have no effect on 

the film's critical properties, as seen by the fact that both films used in the critical 

slowing down analysis exhibit the same critical exponents. The difference arises in 

the values of !;'sat. 

The pure iron film measurements show a larger value of the saturated cor

relation length, supporting that idea that the oxygen presents a barrier to the spin 

fluctuations at the critical point. The value of about 750 lattice spaces (approximately 

225nm) is the same order of magnitude as the step edge spacing as noted in section 
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4.2. However, the oxygen-doped films show a ~sat of about 450 lattice spaces (app. 

135nm) which is almost exactly in agreement with the average step edge distance 

of the crystal. This gives some further circumstantial evidence towards the oxygen 

gathering at step edges on the surface. 

The limited distance due to the oxygen means that ~ is artificially curtailed 

as it diverges at T c' As such, the power law scaling of the relaxation time should not 

extend as close to the Curie temperature as it would for a pure film. An examination 

of the power law cutoff for the two films shows that the average value of Ez for the 

pure iron film is about -6.5 and is about -5.8 for the oxygen-doped films. 

The mixing exponent for T, K, for all four measurements is 2.7±0.1, which 

indicates that the crossover from power-law scaling and saturation for both types of 

film occurs in a similar fashion. This may mean that step edges still play a role in 

the saturation of the correlation length in the pure films, but the effectiveness of ther 

barrier is lessened and may be the case that more than one step edge is required to 

dampen the fluctuation. 

4.3.4 Effects of O2 Doping on Xsat 

As stated earlier, Xsat can be thought of as the amplitude of the dc-susceptibility. 

The susceptibility is related via the correlation function to the correlation length of 

the critical spin fluctuations and as such, given the limiting effect oxygen has on the 

diverging correlation length, it should come as no surprise that the oxygen doped 

films also show a smaller value for Xsat. 

The relationship between the two saturated quantities XSat and ~sat is difficult 

to establish numerically, but the trend that this simple model shows does work in the 

proper way. An increase in the saturated correlation length is directly related to an 

increase in the saturated value of the real susceptibility. Both measurements made 
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from the 150Hz film shows a value of Xsat of 19581, but with two different values for 

the mixing exponent "'2. One measurement has "'2 equal to 1.75 while the other set 

at 2.0. The reason behind the change is unclear, especially since the mixing exponent 

used for modeling the correlation length was almost the same for both measurements. 

The 400Hz measurements show Xsat equal to 26081 with a mixing exponent of 1. 75, 

the same as for one of the 150Hz measurements. 



Chapter 5 

Conclusion 

This thesis has dealt with experimental investigations into phase transitions in ferro

magnetic ultrathin films. The two dimensional Ising behaviour of iron bilayers grown 

atop a W(llO) single crystal substrate has been shown using measurements of the 

complex magnetic susceptibility. A thourough analysis of the real component of the 

susceptibility shows that the critical exponent of the susceptibility agrees with the 

theoretical value for the 2d Ising class for certain thicknesses of iron. The analysis 

algorithm used to find 'Y also simultaneously found the Curie Temperature T c, the 

critical amplitude Xo, and the range of data that obeyed critical power-law behaviour. 

The results show that the susceptibility exhibits a 'Y value within error of the 

2d Ising value of i will fit closer to Tc than films that show higher values of 'Y. It 

was found that films with a thickness of 2.0ML and 1.5ML will most probably show a 

power-law behaviour closer to the transition that films with a thickness between those 

two limits. Susceptibility measurements that show the reduced temperature cutoff of 

power-law behaviour less than 4.75x10-3 gives an average 'Y value of 1.75±.02. 

Further analysis of the complex susceptibility allows the extraction of infor

mation on the process of critical slowing down at the phase transition. Measurements 

of this effect are very difficult and as such, there has been very little experimental 
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work in the literature on it. Using a linear relaxation model for the susceptibility 

data, it has been shown that it is possible for data with a high quality signal-to-noise 

ratio to extract a value for the critical exponent product zv, where z is the critical 

slowing down exponent. One fact that makes this part of the analysis possible is the 

extraction of T c from the real susceptibility data. The critical exponent z was found 

to agree with the theoretically predicted value, the first experimental confirmation of 

this result. 

For bilayer films, using two measurements of the complex susceptibility mea

sured from two different films, the critical exponent product of zv was found to be 

2.09±.06. Since the analysis of l' shows the films to be in the 2d Ising class, the value 

of v should be exactly 1.0. Therefore, it is stated that the value quoted for zv is in 

fact equivalent to the value for z. Besides the bilayer films, it was found that any iron 

film that showed l' near 1. 75 also showed a value for z in keeping with the average 

bilayer value. 

Making measurements of the critical exponent at phase transitions is often 

complicated by saturation effects which spoil the power law divergence near T c' A 

simple model has been proposed here to extract the saturated correlation length from 

the relaxation time data. The results agree with the order of magnitude that is 

expected for this quantity and also agrees with the size that could be predicted based 

on the atomic step width that was measured using scanning tunnel microscopy. 

The final result of this thesis examines the effect of oxygen doping of the 

surface on iron film deposition and magnetic properties. The presence of oxygen was 

found not to affect the critical properties, but it will have an effect on how far the 

correlation length diverges before being saturated. The oxygen, thought to gather 

at substrate step edges, was found to restrict the saturated correlation length to a 
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smaller value (about half) of the length found for pure iron films. 

The full list of parameters that have been fit from the complex susceptibility 

data, including the two diverging quantities X and T and the saturated correlation 

length ~8at allow the relaxation model to successfully describe the data from the maxi

mum temperature down to T c, below which the relaxation becomes more complicated 

with the inclusion of hysteresis effects. The successfully modeled data confirms the 

significance of the fitting analysis. 



Appendix A 

Additional Figures and Data 

This appendix contains graphs and data which show mostly fits for more sets of data 

than are shown in the main body of the text. The figures include: 

Fig.(A.1) shows the complete T fits including saturation effects for all four measure

ments used in sec.(4.2). 

Fig.(A.2) shows the complete complex susceptibility fits including saturation effects 

for all four measurements used in sec.(4.2). 

Table (A.1) shows the major fitting parameters from the data plotted in fig.4.13 and 

fig. 4.6 
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Figure A.l: The complete 'T fits for the four susceptibility measurements used in the 
paper on critical slowing down. 
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Figure A.2: The complete fits for the four complex susceptibility measurements used 
in the paper on critical slowing down. Red lines are the fits, black the data. Fits only 
significant for temperatures above T c 
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Table A.l: Fit results for the data shown in figo4.13 
#ML J(Hz) 'Y Xo(SI) ZlJ 70 (S) Tc(K) 

2.0 150 1.75±.02 7.3±.3 x 10-3 2.13±.04 1.7±0.3 x 10-9 455.84 
2.0 150 1.81±.06 4.2±.5 x 10-3 2.04±.06 2.1±0.5 x 10-9 456.25 
2.0 400 1.67±.10 6.5±1.5 x 10-3 2.01±.07 4.0±0.3 x 10-10 452049 
2.0 400 1.80±.06 6.2±.6 x 10-3 2.09±.03 2.6±0.6 x 10-10 453.03 

1.75 400 2.02±.02 2.2±.1 x 10-3 2.52±.07 2.2±0.5 x 10-11 435.00 
1.75 400 2.37±.02 5.2±o4 x 10-4 404O±.17 1.97±1.1 x 10-15 434040 
1.75 400 3.06±.06 3.6±.6 x 10-5 4.50±.52 9.67±1.3 x 10-15 446.26 
1.75 400 2.89±.04 5.3±.6 x 10-5 2.94±.07 1.85±0.8 x 10-11 447.78 
1.75 45 2.55±.07 2.9±.5 x 10-4 4.26±.9 1.67±1.0 x 10-13 441.83 
1.5 150 1.84±.02 4.3±.3 x 10-3 2.54±.04 9.8±0.6 x 10-11 417.70 
1.5 150 1.63±.14 2.2±.8 x 10-3 2.05±.06 7.5±004 x 10-10 415.75 
1.4 330 1.96±.06 1.4±.2 x 10-3 2.31±.07 8.0±0.6 x 10-11 400.67 
104 150 3.51±.20 3.1±1.3 x 10-6 2.90±.09 2.42±004 x 10-10 397049 

Table A.2: Fit results for the data shown in figo4.6 that are not included in fig. 4.13 
#ML J(Hz) 'Y Xo(SI) Tc(K) 

2.0 150 1.66±.10 4.08±2.15 x 10-3 456.20 
2.0 150 1.67±.18 3.92±2.15 x 10-3 455.34 
2.0 150 1.81±.06 4.25±0.63 x 10-3 456.25 
2.0 150 1.79±.28 1.69±1.35 x 10-3 457.10 

1.75 400 2.52±.07 2.77±0048 x 10-4 447.75 
1.75 150 2.51±.04 204l±0.28 x 10-4 446046 
1.75 400 2.79±.06 7.56±1.2 x 10-5 434047 
1.5 150 1.42±.02 2.02±0.10 x 10-2 416.20 
104 150 2.31±.14 3045±1.24 x 10-4 402.10 
1.4 150 2043±.16 1.84±.75 x 10-4 395.86 
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