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.o ABSTRACT
LAY | /

A firgt principles method of calculating combined

radiative and eonductive hea£ flow in fibrous insul;tion ié
presented. Using the measdred complex refractive index for
the bulk material, the scgtfering and absorption cross-sections
are calculated for an isolated cylinder from expressions
ana;oéous to thase of Mie theory for spheres. An average
over fibre angl§§ gives‘thé cross-sections for the insulation
matergal. Results for extinction and absorption csmpare well
with direct measurements on poiyester insuiation materials.
The scatteridg.is found to be highly anisotropic. A properly- ;
weighted average over §cattering aﬁgles, combined with the
calculated absorption cross-section, gives the parameters 3
needed for a diffusion model of radidtive heat trénsport.

The equations describing combined radiative and con-
" ductive heat flow ére’solvéd by.an approximate method, and
the results are compared with.ﬁeasuréﬁents of thermal resis- .
taﬂce on several samples of commercial polyester=-£fibre insula-
tion. The excellent agreement, with no adjustable pérameters
in the theory,’ indicates that the diffusion moﬁel adéqpately
describes radiative heat transport in such materiais. The

méthod is used to predict the effect of possible alterations

to the fibres. -
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CHAPTER 1

INTRODUCTION

Heat is transferred through fibre insulation materials
by cenduction tbrough the fibres and surrounding air, by con-
vectivglmotion of the air, and by inffared radiation propaga-
ting:ffom fibre to fibre. WRadiation has. long been recognized:-
as an imporfant mechanism of heat transfer in low—éensity
glass-fibre insulation (Verschoor and Greebler, 1952; Larkin
.and Chu;chill 1959; Bankvall , 197§). -Until recently, ther-
mal radiation in polyester and cher_texfgme fibre iﬂ;ulation
maferials was igndred,xfnd the Eéat transfer was assumed to
result from conductiorf and convecti@n leferences in perfor-
mance among various materials were ascrlbed to varying amounts

. L * v

of convection.
. While invesﬁiéating the p%rforﬁance of sleeping bag
insulation materials for the Canadian Army, Dr. Brian Farn—
worth of the Deﬁfnce Research Lstabllshment Ottawa was able
to show that convection in these materlais is completely ab-~
sent, and the.dverall thermal conduct1v1ty could be explained
by a comblnatlon of conduction through the air and fibres
and thermal radiation (Farnworth, 1983%; Farnworth et al.
1979). They used a 2-flux model with a single absorption

parameter fitted to the thermal measurements. At McMaster

we 1nvest1gated whether we cdﬁld determine this parameter
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from purely optical measurements on the insulation materials.

s
»

In the course of this we were obliged to con;ider in more
detail the behaviour of thermal radiation in polyester sleep-
ing-bag insulation and in fibrous insqlation in general.

We first discovered that in these materials the scat-

N .

tering cross-sections were at leastras large as the absorption,
and the pure-absorption model had to be ab;hdgned. Similarly
a simple model based on isotropic scattering which used mea-
sufed extinction (absbrption plus total .scattering) c;oss—
sections .gave thermal conductivi%ies much lower than those
observed experimentally. The problem wés that the scattering’
was strongly péaked in ?he forward direction, and the aniso-
tropy in the scattering had to be included. in the model. This
was possible because of the very simple geometrical structure
of the material. The fibres were of uniform diameter, were
.. reasonably well separated from each other, and were fairly d
random in orientationi We were able to caiculéte all the
optical parameters in detail as functions of scattering angle
and radiation'frequency, and predict accurately the heat flow,

which had not previously been done for any commercial fibrous'ﬁ

insulation.

-

&
in gene;él diffi-

The problem of radiative transfer is
cult, involving an integrodifferential equation’ (the equation
of transfer) with three or more variables-- the radiation

frequency, one or two angular variables, and at least one



space variable. In the case of heat transfer in insulation
materials used at ofdinary temperatures, it is possible to
simplify the problem consideraply,_pecause the radiation is
eveggwhere close to thermodynamic equilibrium. Chandrasekhar
(1960) and Pomraning (1973) both describe numerical procedures
which can provide arbitrary accuracy in the general problem, -
as well.as simpler procedures for approximate solutions.
- “Viskanta (1965) has pubiifhéd accuraté numerical solutions
'T%or heat flow 'in grey (ffequency—independent optical proper-
t}es) aégg;bing, scatteriﬁg, and conducting media for various
values of the parametersf fuen and Tien (1980) and Yuen and
Wong (1980) have investigated methods of solving the heat-
transfer probdlem and obtaininglaccu;ate temperature profiles
"in thg case of linear-anisotropic sc%gtering. Modest and
Azad (1980) have also published accurate numerical results
for theoretical materials, and found that simplified models
coulé be reasonably successful.. These results ére discussed
further in Chapter. 2. .
In the case of heat transfer in reasonably thick

insulation materials at ordinary temperatures it is'poséible
to obtain sufficient accuracy with a simplified model. Chap-
ter 2 describes a dif%usiOn model which iﬁgludes the scgtter-
.ing anisotropy in a natural way. Essentially the model re-

moves the gular variable from the problem by assuming that

the intensity of the radiation varies smoothly with direction,



and may be represented by the zeroth and first-degree
Legendre polynomials in cos 0. For this reason it is
called the P-1 model by Poﬁraning (1973). Né assumptioﬁs
about the form of the scattéring function are required; the
scatfering in thé polyester materials we investigated varies
strongly and unpredictably with angle. Explicit expressions
for the optical parameters in terms of the differential scat-
tering and absorption cross-sections are derived in Chapter
2 for an isotropic material (eg. randomly-oriented fibres);
these have beén given elsewhere. We alsd derive such ex-
pressions in the case-of an axially—symmetric'material (eg.
fibres randomly-oriented in the plane of the gatt) and show
that the model and its method of solution are not essential-
ly changed, although' the calculation of the optical parame-
ters is somewhat more complicated. The relation between this
diffusion model and the commonly-used two-flux model is also
described here. A modified form 5f the two-flux modél which
is occasionally used (ég. Bergquam and Seban, 1971) is shown
to be exactly equivalent to the diffusion model used here.
The frequency variable is aiso removed from.the prob-
lem by averaging over frequency with appropriate thermal
‘weight functions, to give an approximate description in terms
of freguency-independent “grey" optical parameters. We are
left with a.pair of coupled nonlinear differential e&dations

for the total radiative flux and énbrgy density, and the



temperature T(x). A third equation is added by requiring
that the total heat flux, the sum of the radiative and
conductive contributions, be constant. Grey Lambertian
boundaries are added to give a complete descriétipn of the
problem. It is solved by an approximate method which
linearised the aifferential equations, rather than by an
exact numerical guadrature. This method leads to a better
intuitive understanding of the relation between the heat
flow and the optical parameters of ﬁhe material and the
boundary walls. Terms dﬁe to condpétion, radiation, boun-
dary surfaces, and the interactioﬁ between radiative and
conductive heat transport can be related qualitatively to
typical length scales of the insulation slab.

A car®ful investigation of the approximations at the
end of Chapter 2 indicate that the solution ought to be ac-
curate if the optical parameters can be determined with
sufficient-precision.

Several methods have been used to obtain the optical
parameters of fibrous materials. The simplest is simply to
fit one or more parameters of a single radiative-transfer
model to the thermal measurements. Then the dependence of
thermal resistance on temperature, density, thickness, etc.
may‘be tested against the model. Battacharyya (1980) fits

*

a backscattering parameter to a two-flux model which assumes
. .

zero absorption and finds good agreemenéiwith the measure-

ments of Hollingsworth (1980) on glass-fibre materials.
ks , : .

)



Farnworth et al. (1979) fit a fibre emissivity (esséntially
an absorption parameter) to thermal measurements on Polar-
guard and Hollofil ({two polyster “sleeping-bag insulation
materials, made by Célanese and Dupont, respectively) and
also find the model agrees well with experiment. Davis and
Birkebak similarly fit an "emiésivity"~parameter in their
investigation of heat transport in animal fur. Such single-
parameter fits do not generally indicate the typé of process
(absorption or scattering) involved. As discussed in
Chapter 2, it is only the (uSually small) boundary effects
which change when an absorbing material is exchanged for one
which scatters isotropically. To distinguish between the
two types requires measurements with widely varying boundary
emissivities on thin samples. Indeed, our calculations
{Chapter 4) indicate that the assumptions mentioned above
are not correct. Polyester fibres are found to scatter
about as much radiation as they absorb, and glass fibres
are strongly absorbing in the thermal infrared region.
Direct optical measurements on insulation materlals
have been of two types - optlcally thin samples or optically
thick samples. The former employs samples thin enngh that
multiple -scattering is presumed Hot to b; a factor in the
measurement. The simplest experiment measures the transmis;
sion as a function of wavelength, which yields the extinction
coefficient (absorption pius total scattering). In general

this is not ciosely related to the heat transfer unless the



A Y
scattering 1is isotropic. Schuetz (1982) measured the trans-

ﬁdssion of thin samples of foam and of glass-fibre batting,
and'found\the results underestimated the radiative conducti;
vity by 10% and 60% respectively. Verschoor 3?d Greebler .
(1952) obtained good agreement (better than 10%) with heat-
transfer measurements on glass-fibre felts. The fibre dia-
meters were very small (1.5 -2.6 pm) , and the écattering
would be more neayly isotropic than for glass building insula-
tion {(fibre diam;ter typically ~ 12 um) or the 25-um poly-
ester insulaéion;. TN

Larkin and Churchill (1959) and Cabannes et al. (1979)
have measured transmission through thick samples and fitted
the results to a simple radiati&e—transfer model which des-
cribes both the diffusion of nonthermal radiation and the
heat transport in the same material. These fitted parameters
can therefore be used to predict the thermal resistance. In
both cases the agreement was reasonably good. This procedure
is similar to that of fitting the parameters diréetly to
thermad measurements, and no analysis has been given to demon-
strate that the method can in practice dlstlngulsh accurately
bétween absorption and scattering in the medium.

In general the theory indicates that the absorption,
the scattering, and the angular variation of the scattering

are all needed to describe the radiation. Schuetz (1982) has

measured the écattering as a function of angle for glass-



fibre and foam matérials, but used a laser to obtain a
sufficiently strong signal.” As a result the meésurement
was made only at a single wavelength (10 um}, and had to be
combined with other measurements and approximations to ine
frequency-averaged parameters.

Our approacﬁ was to measure the properties of the
bulk material, and then calculate the absorption and scat-

tering from electromagnetic theory. The fibres were treated
=

-

as uniform infinite gylinders randomly oriented in space.
One material (Hollofil) had a hole in the Eentre of the
~ fibre, but this was ignored for the purposes of the scatte-
ring calculations. We used ﬁhe solution of Wait (1955) for
scattering from infinite dielectric cylinders at oblique
incidence, and averaged the results over incident (fibre)
angles.

We describe the method and presen£ results for
various :efrﬁctive_indices in Chapter 3. It is shown from
simple geometrical argumeng; that the differential scattering
cFoss-section (and therefore the phase function) for randomly-
oriented cylinders diverges in the forward direction. This
explains the very slow convergence of expansions of this
functioﬁ in Legendre polynomi&ls. But the total scattering
and absorption cross-sections are shown to be qualitatively
similar to published resu}ts for aligned fibres at perpen-
dicular incidence (Kerker, 1969; Van de Hulst, 1957); Ex-

pressions for the scattering and absorption parameters of



the heat-transfer model are written in a form suitable for
rapid computation.
Chapter 4 presents the results of the calculations

and the experimental measurements. The complex refractive

index n-ik for polyester is obtained from measurements on

Mylar sheet. This is used togethef with the measured fibre
radius and the bulk density of pblyester to calculate ‘all
the gptical properties of the insulation materials. A check

on the procedure is provided by direct measurements of ex-

tinction and absorption cross-sections of the insulation

matériqls. Agreement is reasonably good. DisFrepancies in
tﬁe measured and calculated extinction for Hollofil are
gualitatively explained by the effect of the hole in the
fibres. ) '
Predictions of the thermal resistancé of both poly—'
esgér‘materials were compared with airect measurements per-
formed by Dr. Farnworth at_DﬁEO‘(Farn&orth et al. 1979;
McKay et al. 1984).‘ The agreement is excellent, generally
within the.S% accuracy of the measurements for a range of
batting densities and mean témpe;atures. Our calculaéion
used no adjustable parametérs and no measurements on the
insulation materials themselves except the fibre radius;
the other input parameters were the bulk properties of the

material from which the fibres were made.

Such realistic.first-principles calculations had not

been performed Prior to our reporting these results (McKay et al.
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1983). A similar procedure was developed independently by
Caps et al. (1983) and applied to micron-sized glass fibre
materials, with similar Success. The demonstrated accuracy
of the method for thgse materials allows us to make quanti-
tative predictions of the effect of vérying the size and
composition of the fibres. 1In the last section of Chapter -
4 we present.results of the radiative conductivity pérameter
as a functioh of fibre radius for a constant refractive in-
\ﬁgi approximating that of polyester , for metdllic fibres:
and for glass fibres and discuss the results.‘ It is shown
that there is an optimum fibre size for dielectric materials
(if we do not c?nsider the mechanical properties). The
variations as the fibre material is changed- are significant.
but not as dramatic as those brought about by varying the
fibre radius.
Finally in Chapter 5 we summarize the major results
presented here and indicate how the calculations may be

p .
refined in the future.



CHAPTER 2

HEAT TRANSPORT

2.1 Introduction

The thermal measurements which are used in Chapter ¢4
for comparison.with predicted vaiues of thermal resistaqce
were performed on low—den;ity polyesterufibre materials
designed for insulation in-clothing and sleeping bags. Both
the small-scale struéturg,of the material and the geometry
used for the thermal measurements have a simplicity which
facilitates the construction of an accurate model. 1In this
Chapter. we shall discuss the various modes of heat transport
in fibrous insulation and show how they can be calculated
from the properties of the bulk material from which the
fibres are made:

Throughout this work the, temperature will be assumed
to vary in one direéiion only: The thermal measurements,
performed by B. Farnworth at the Défence‘Research
Establishment, Ottawa, were arranged to have this one-
diﬁensional behaviour in order to simplify the analysis.

The samples used were large slabs 60 cm x 60 cm in area and
no more £han 5 cm in thickness. Effects due to heat loss at
the edges of the batt were eliﬁiﬁated by the design of the

experiments (Farnworth et al., 1979; Farnworth, 1983; McKay

et al., 1984a).

11
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The materials themselves consist of cylinariéal
fibrés with a very uniform diameter of about 25 pm. Under
normal conditions of use-or measurement, the filling factor
f (volume fraction occupded by the fibres) is small, at most
a few percent, and less than 1% for the uncompregséd batt.
We will repeatedly take advantage of this dilute nature of
the material, by assuming that the properties of a single
isolated fibre may be used to calculéte the optical
properties of the material as a whole and the fibre
cont;ibution to the conductive heaé losses.

The material 'Polarguard', made by Celanese,
consists of very long (~ l‘m or more)} solid polzester‘ .o
fibres. During manufacture they are given a roughly helical
or zig-zag structure with a segment or coil size of 1 or 2
mm. On a very large scale the fibres run approximately
parallel to the surface of the batt, but on a scale of a
millimeter or so thé material is very disorganised,
consisting of nearly straight segments with spatial
orientations which appear random on casual inspection. It
will be treated a; a collection of loﬂg straight cylinders
whose orientations are randomly distributed in three -
dimensions. Ultimateiy the only fifm jﬁstificatién for
these approximations will be the success of the model in
reproducing the thermal measurements.

The second material, 'Hollofil', is made by Dupont.

It consists of short (v 10 cm) fibres that are not solid,
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‘
. :

but have a central hole § um in diameter, so that about 10%

of the material ;s rémoved. There is no apparent large-scale

organisation to the fibres, and the approximation gf random

orien%atiop ought to be very accurate: The hdle in the fibre

is a complication which will be considered only by.applying

first-order corrections to calculations for solid_cylinders.

In the case of héqt conduction through the fibres, this

should be completely adequate. The contribution of the hole

should be roﬁghly proportiqnal to its volume, and is thus °

only a small correction to th? fibre conduction, which in

turn is a small part of the.total heat transfer. Its

contribution to the scattering, however, hay be much larger,

being approximately pfoportional to ﬁhe surface area of the hole,

e

which is about 30%, of the fibre area. This error will be

)

discussed further in subsequent chapters.

The function of the fibres in an insulation material

is to‘inhibit radiative transfer and to immobilise the air,
prevenéing heat loss by convection. Farnworth (1983) showed
ﬁhat convection is coﬁpletely negligible in these materials.
Heat transfer takes place by cénduction_throﬁgh thg air,‘by
conduction through'fhe fibres, and by propagation'of thermal
radiation from fibre to fibre. Each'of theserprocesses must
be included in a caicplation of the total heat lcss. .
Conduction is considered first. The idea is to
yeplace the heterogeneous mixture of air and fibres by a

homogEneous material characterised by a single thermal
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conductivity, which is taken to be the conductivity for the
mixture in the absence of radiative transport. To calculate
this parameter, we sblve Laplace's equation for a single
isolated long .fibre in air with the temperature gradient
uniform at large distances from the fibre. The eéxtra heat
flow as compéred to the case with no fibre bresent is .
obtained as a function of fibre angle (with respect to g;é
applied temperature gradient). Averaging over éngles ana -
multiplying by the number of fibres per unit volume gives an
,approximation to the conductivity K of the mixture which is
valid in the limit of small filling factor f.

For the case of hollow fibres, an approximate
correctiog for the hole is obtained by treating the hole as
a cylinder embedded in a medium (the fibre) in the same Qay.
The correction is wvalid if‘the volume of the hole ié small -
compared to the fibre volumg.l Since fhe‘fibre correction
itself is a small part of the total conducti&ity, this
procedure is more than a@gquate.

In Section 2.3 a model for the radiative part of the
heat transport is developed. Severél methods e;ist which-
allow the numerical solution of thé radiative eguation of
transfer to arbitrary accuracy (for example, éee.
Chandrasekhar, i960; viskan;a, 1§67; Yuen and Wong, 19805.
But for the problem of heat.transferkin insulation materials,

in which température gradients are modest and the materialé

are reasonably thick (at least 5 optical depths), sufficient
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accurécy~onbe obtained using ver§ simple models chosen to
include the effects of radiaﬁive'boundary conditions, of
anisotropy in the scattef;ng, and of interaction betweeq the_
conduction and radiation fluxes.r We develop a diffusion
model (also called the P-1 model.by Pomraning, 1973) which
includes these effects and is summarised in a pair of first;
order differential equations, together with a pair.of
algebraic boundary conditions. This model specifies a \,)_
procedure for weighting thg scattering according to angle to
account for the greater effectiveness of large-angle |
scattering compared with scattering in the forward directioﬁ;
The equations arewritten for a single gneup of frequencies,‘

-

with appropriately averaged scattering and absorption
parameters. oo : Q. ‘
The aiffusion—model equations are also developed for
a méteriél which is not isotropic! in the sense that the
scattering and absorption depend on the incident direction
~and not jﬁst on the angle between the incident and scattereé
réys. Normally thelmodel is developed onlygfor isotropic
- -media. Alégough the randomly-oriented fibres we consider
do not reguire this more general model, it is clear1y of '
inéerest foé some types of fibre insulaﬁion (for example,
"glass-fibre materials) in which the fibres are aligned
ki preferentially in the plane of the batt.
finally in this Section, two other differential

-,

approximations to the radiative transfer problem are

| ;
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»

s

described briefly and related to the diffusion model, as both
’ -
are frequently used in modelling heat transfer. The usual

two-flux model is shown to give somewhat dlfferent results,
while the other model, derived from the use of a 2-point
Gaussian quadrature to integrate the radiative 1nten51ty over
angle, is exactly equivalent to the diﬁfusion model.

Section 2.4 presents an approXImate analytic solution-
of the differential equatiohs similar to that of Lgrkin and
Churchill (19%59) and of Farnworth (1983). It is based on
linearising the equations in the temperature, and has the
advantage of providing a more intuitive understendiné of the
relationship between the heat flux and the material
parameters than a purely numerical solution would allow.(
Parameters are defined which characdterise the "radiative
thermal conductivity", the_interaotion°between conduction

and radiation' fluxes, and the apparent radiative therma¥®

resistance of the boundary surfaces.ﬂﬁ“i
In the last Section of this Chapter, the accuracy of
the various approximations is considered. For thg particular
conditions relevant to thermal measurements on 1nsulatlon,
the errors introduced are small, and probably add up to less

than 1%.

*

Two sources of error, the assumption that the fibres
i
are randomly oriented and the use of "grey"™ (or frequency-
independent} equations with frequency-averaged parameters,

are difficult to evaluate quantitatively, and may contribute



1 or 2% each. The comparison of calculated and measured

thermal resistances must be used to evaluate these two

approximations.

L
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2.2 -Heat Traﬁsport'by Conduction

In the absence of convection, the total heat flux H

may be written
H=pF - K 22 : i (2-1)

for a uniform slab perpendiculér to the x-direction, which
approximates the conditions of the thermal measurements.
The radiative flux is F, and T is the temperature, assumed
to vary only in the x-direction. There are no sources or
sinks of energy in the medium, so~%hat under steady-state
conditions, H is a constant independent of x.- Th?
heterogeneous mixture of fibres aﬁd air ig represented by a
single thermal conduc;ivity K whose value can be calculated
from the conductivities of the two separate media..
Consider the contribution to the heat éonduction of
a single long straight fibre isolated from its neighbours.
Assuming temporarily that the radiative flux is zero, the
divergence of the heat flux-KVT must vanish. If the weak
temperature dependence of K is ignored, then T must obey
Laplace's equation ekéept at the surface of the fibre. In

cylindrical coordinates,

Q2
Pa -
ar

+ 22T 2T, (2-2)
N .

+
=
153

@
H
3]
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LY

Suppose the fibre occupiegfiiiﬂregion r<a, and that the
appiied temperature gradient fat large distancg from the
fibre) makes an angle Bf to the fibre axis. We can express
this by applying a boundary condition on a cylindrical
surface r=R, with the intention of letting R become very

large compared to the fibre radius a:

T(r=R} = T0 + Tl(z cos Bf + R sin Df cos 5}) . {2-3)

~ /

-

The solution to Laplace's equation (2-2) which has the
appropriate symmetry has the form

T = 1§ A r" cos ny + Bz (2-4)

n=-—-w n

where the coefficients An and B are chosen separately for
r>a (outside the fibre) and for r<a. A term in log r has
been omitted because it would imply a heat source or sink in
the fibre. Matching terms in (2-4) and (2-3) gives, in the

3 <r<
region a<r<R,

-
T = TO + Tl cos Bf-z + (A_lr_l + Alr)cos ¢ (2-5)
where
AR'1+AR=T sin 0,R . ' - (2-6)

1 1 f

Matching (2-5) with (2f4) at r=a, and requiring that T is

finite at r=0 gives, for r<a,
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T T0 + Tl cos Of z + Al r cos ¢ (2-7)
with

+ Aja . {2-8)

We further require that the heat flux -KYT be continuous

across the boundary, so that
= K_A! {2-9)

where Kair'and Kf are the thermal'conductivities of air and
of the fibre material (polyester), respectively. ‘Then (2-9),

(2-8), and (2~6) are solved to give

2T, sin ©
Al = , lK £ 5 (2-10)
(1-a}(—-§-—+1+£

—)
R2 air - R

Ay .= 5 ' (2-11)

A, = . (2-12)

The fibre contribution to the heat flux is calculated by

integrating K(r)fi-VT over a surface perpendicular to the

)
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average temperature gradient, and subtracting the value
obtained if there is no fibre and the temperature gradient

is constant. The unit vector A is given by
A = 2 cos Of + (¥ cos $ + § sin ¢)sin Of

where §, 2, agd Z are the coordinate vectors, and the
surface element normal to A may be written as
ds = (r/cos Gf)d¢dr. Since VT is independent of z the

integral is easily performed. For r<a, we have

e

-
n _ 2 . .
A-vT = Tl cos Of + Al s1in Gf
and for r>a,
A-VT = T c052 8. + A, sin 6_ - A r-2 cos 2¢
1 f 1 £ -1

The term in cos 2¢ vanishes on integration. In the absence
of the fibre, the total integrated heat flux would be just

2 . . C ..
Kair-Tl-ﬂR /cos Bf, and with the fibres present it is

2 2 2, ..
{cos sf[a (Kf_—Kair) + R Kair] '1'l

. 2 2
+ sin ef[a {A'K —AlKair)rR AlK 11 . (2-13)

1°f air

The difference is the contribution of the fibre, and using
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(2-10), (2-11), and (2-13} it may be written

Ta“T . 5
JAH ds = <5 (KfﬂKair){cos Of
2 sin2 U
+ £ )
aZ a2 Kf-'
1+ 25+ (1 - 2y
r% R Kair
or, as R+,
nale 2 sin2 ef
JAH-ds o5 T (Kf—Ka r){cos Bf + R } . (2-14)
£ f
: 1l +
K .
air

As might be expéctéd, this expression is proportional to the
average temperature gradient Tyr SO it is easily convér?ed
to a thermal conductivity. For a collection of parallel
wfibres, the number of fibres crossing unit area (where the
area ‘element is perpendicular to the temperature gradient)
is f cos af/ﬂaz, where f is again the volume fraction-
occupied by the fibres. So the thermal conductivity of the

mixture of air and aligned fibres is
[
.2
5 2 sin Gf

K(ef) = Kair + f(Kf—Kair)(cos Gf + ——u——?q;—) . {2-15)

1l +
air

For randomly-oriented fibres, (2-15) is ihtegrated over

angles to obtain

¥ Re * SKair
K=K_._ + f(K.-K_._) - .
air f Tair 3Kf + 3Kair

(2-16)

"



Bhattacharyya (1980) obtained an expression which reduces
to (2-16) for small volume fractions f by considering a
fibre as the limiting casé of a prolate spheroid.

For polyester, the fibre thermal conductivity is
about 5 times that of air, so the fractional correction to
Kair is about 2f, which will be in the range 2% to at most
10%. 1In the case of hollow fibres, we can correct further
for the presence of the hole, but it is clear that such
corrections will be small and need not be calculated with
great precision. The ;implest pfocedure is simply to]‘
replace the filling factor £ in (2-15) and (2-16) with
(f—fh), where.fh is. the fraction of the total insulation
volume occupied by the holes in thé fibres. Thiswestimate

can be improved with little extra work by noting that the

temperature inside the solid fibre considered above has a

.
[
constant gradient, although the direction differs from that
of the average temperature gradient in the medium (see
equations (2-7) and (2-10)). If the hole diameter is
sufficiént}y small compared to the fibre diameter, the same
aﬁalysis may be used for the hole as was used for the solid
“fibre. Then, in place of (2-15), we have for aligned fibres
K=K_, + (K.~K_., ){(f-£f ) cos® 0
air f Tair h £
.2
2fh 2 sin Bf -
+ (f - ) B } (2-17)
air f
i+ R 1+ K

£ air
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which may be averaged over angles to give

Kf + SKair
K= Kair * (Kf_Kair)[(f_fh) 3Ke + 3K
] air
2 Kf/Kair_l .
- £, % I : (2-18)
(Kf/Kair+l)

for a randomly-oriented collection of hollow fibres. Terms
of highér order in the ratio of hole cross-section to fibre
cross-section (the ratio f;/f) have been discarded. For the
Hollofil fibres we are dealing with, this ratio is about 10%,
meaning that in (2-18) the-hole correction itself will be
accurate to about 10%, .and in any case will be less than 2%
of the total conductivity K. Ignoring the hole entirely
would introduce a bardly discernable errdr in the final heat
transpbrt calculation. |

In deriving the expression (2-16) for the
conduétivity, we discarded texrms in az/Rz, the ratio of the
squared radius of the fibre to that of the boundary cylinder.
Since R can be increased to about half the separation between
fibtes_beforé the assumptions used in the calculation are
violated, this ratio a2/R2 is approximately the filling factor
f. Therefore the correction for the fibres in (2-16) ignores
terms of order f2, leading to errors in the conductivity K
of about 1% or less at large batting compressions (£f~5-10%)

and much smaller errors at normal densities (fx1%).
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2.3 The Diffusion Model of Radiative Transfer

.

The second major component of the heat %ransfer in
low-density insulation materials is the radiative flux F.

In contrast to the conduction transfer discussed in the
previous section, the behaviour of the radiation is entirely
determined Sy the properties of the fibres. In this section
we develop a description of the radiative part of the heat
flow for a homogeneous material whose infrared optical proper-
ties are obtained in Chapter 3 by averaging the properties

of a single fibre over angle.

A complete description of thé radiation involves
specifying the radiative intensity I(x,v,8) as a function of
frequency v, position X, and angle 9 (measured from the x-~
axis). The medium is assumed to beleither isotropic, or at
least symmeﬁric with respect to rotations about the Xx-axis,
so that I is independent of the azimutﬁal angle ¢. It is
also assumed that the radiation is unpoldrised. From the
definition of the intensity as radiative power per unit
area per unit solid angle and per unit frequency iﬁterval,
we see'that the radiative flux of equation (2-1) is

oo "l
F(x) = [ dv-27rf I(x;v,u)- -udy (2-19)
0 -1
where as usual u = cos 8. Therefore the variations of I with

angle and frequency, which greatly complicate the radiative
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transfer problem, are.not needed in detail in heat transport.
calculations. In the model developed below, appfoximations
to the angle and frequency.dependence of.the inténsity are
introduced, in order to remove these ;ariables from the
problem. The result is a pair of approximate differential
equétions which, together with (2-1), may be solved for the
temperature T and the radiative flux F.

For unpolarised radiation in a slab, the eéuation.of

transfer is (e.g., Chandrasekhar, 1960)

v E-ae,n -1+ J [I(R')s(R",Q)
4

T

- I{Q)s(e,a")y)aq’ (2-20)

where (Q represents the direction (8,¢) and the solid angle
element is 40 = sin 6d0d¢. The absorption cross—section per
unit volume is represented.by A, and 5{Q,Q") is the croés—
section per unit solid angle dQ' for scattering from the
direction Q to the direction Q'. The Planck blackbody

2, _hv/kT_ ., ~1

intensity is B(v,T) = 2hv3/c (e 1) —, where h is

Planck's constant, k is Bp#tzmann's constant, \and ¢ is the

speed of light. The frequency dependence has Heen suppressed,
as has the direction Q of the radiation ( ept jin the

integral). The equation expresses the change in I(x,v,u)

.with X as a sum of thermal emission into the beam, absorption

from the beam, scattering into the beam,.and scattering out
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of the beam. For an isotropic material, A is independent of
angle. The scattering S is symmetric in its angular
arguments, and for an isotropic material, such as the
randomly-oriented fibres we are considering, it is a function
only of the angle OS between %he incident and scattered
directions. *

The diffusion model takes advantage of'thg fact that\
in heat transfer problems involviﬁg thick media and small
temperature gradieqts, the intensity I(v,8) mus t approach
the isotropic blackbody intensity regardless of the
particular properties of the insulating medium. We define
angular moments of the intensity

In = 27 J () p™ay . T (2-21)

Then multiplying the equation of transfer (2-20) by unity and
¥ in turn and integrating over all angles Q yields a pair of

differential equations for these moments:

a1, / .
aFx - A(4nB(T) - IO) _(2-22)
dIz

—_— = - ' ! - —

ax (A+SO)Il_+ J dq J df S(BS)I‘M ) -u (2-23)

4w 41 F)
where the total scattering cross-segtion is
1 .
S0 = 2% [ sS{uydu . . (2-24)
1

-1
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The "argument Gs of the scattering function in (2-23)
depends on both integration variables. It is convenient to
change the integration over scattered directions @ to an
integral over scattering angle eS’ that is, over angles
relative to the direction Q'. wWe write

AN

cos 8 = 4 = cos 0. cos O' + sin 6 sin 6' cos ¢ 5
. S . S S .

(2-25)

where ¢S describes the azimuthal rotation of the scattered
(R') direction about the incident’diréction. This relation
is the first—O{der case of the addition theorem for
spherical harmonics.

Using (2-25) to substitute for ¥ in the integral in
(2-23) allows ﬁs te write this integral as

-

1 1 21 ‘
2n f dp' f dus [ d¢s S(US)I(D')
-1 rjl 0

X (usu'+ sin Bg sin 8' cos ¢S) .

l (‘ - L » .
The term in cos ¢S conveniently vanishes on integration over

¢S; leaving a product of two independent integrals. Definingy

1 . ) .
Sy = 2m J us (u) du (2-26)
~1

we may rewrite (2-23) as, -

~—
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= - (A+ 5, - S)I; . Co(2-27)

To close the system of equations (2-27) and (2-23) we set
= 1 ’ . _
12 3 I0 . ‘ {2-28)

which is équivalent to_demanding'that the second Legéndre
moment of I(8) vahish. Geherally Qe shall assume the
slightly stronger condition that I is a linear'function of
cog-e,-thét is that all Legendre moments higher than.first
order vanish. This is-necessary in formulating bohndéry.
conditions. .Because the Legegz}e expansion is truncated
after n=1, this description is also,called the P-1 model
(Pomraning, 1973), and higher-order approximations can be
éenerated by proceeding to higher moments (and mo£e
differential equations) before truncating the expansion.

| It is important to note that no approximations to the
scattering function were required, except that the medium be
isotropic. The diffusion model takes account of ¥'sotropy
in the scattering by weighting the scattering at large ‘
angles more than scattering in the forwérd direction. The
scattering enters in (2-27) only as g_gifferepce SO-Sl; which ___
can be thought of as a single scattering parameter defined

using a weight function of (1 - cos BS):
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5, - 8, = 2ﬂ'fl S(u) (k-p)du . (2-29} -
-1 ‘_

Scattering at 190° receives twice the weight of scattering
at ;ight angles, and forward (OS=O) scattering has zero
welght.

| So far the fregquency variable has been ignored in
the derivations. Both the absorﬁtion and scatterﬁﬁg
coefficiente are.stronglf frequency—dependent,;but again. 4
these variations are largely washed out in the intensity
I(8,v) if the system is close to thermodynamlc equlllbrlum.
Equations (2-22) and (2-27) are”integrateq over fregquency te

give the approximate "grey" equations

. ‘ r

= = ok, (403? ~ 1) | 3 C(2-30)
au _ _ : _

with (2—28) substltuted into (2-27) before integrating. Here,
~ -
U and F are the frequency 1ntegrals of I0 and Il’ respectlvely,

" so that U is proportional to the energy density, and F is the

radiative flux‘defined previously The Stefan—Boltzmann
constant is denoted by o, and the density of the.battlng is
p. We have introduced the frequency averaged cross-sections

per ‘unit méss defined by %
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4
1 1 f“ 1 " dB(v,T)
Y 12 qu (2-32),
PEn N : A(v) + so(v) - $4f”) aT _
J 2 _
) _ l: w dB(\)’T) ) _
i m i J arv) BLLD , (2-33)
_where 0
' L7 ae(v,T)
N=f @
5 .

The avereging:qumula used for the 'trané;e}t opacity' Ko ®s -

the usual Rosseland prescription and ariges because ‘

Ig{x,v) = B(T(x),v) in (2-28) and thus in (2-27) if the

med:um is close to. thermodynamic thilibrium, as is the case

if the insulation is optically thick and the temperature -
gradient is small. Similarly the formula (2-33) for the

mean absorption is obtalned byxassumlngkln equation (2-22)

that e difference between I. and 4ﬂB(T) is to first order
0

egquivalent to a dlfference in temperature\b&tweep the
. .
radiation and the material at a given position x. . Other

averaging prescriptions have been suggested but are less

suitable for this particular problem (Pomraning, 1973). _

Boundary surfaces ef temperature TH and ?C er% .

placed at x=0 and x=L, respectiveiy, assuming grey walls

cbeying Lambert's law with emissivities H and €o- The

incoming radiation . at each surface is considered to have an
angular distribution linear in cos 6, and the net flux at the

wall is mateheq to that in the material to give a boundary

% L e . =
condition for the radiation. J

“~
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At x=0, the incoming intensity is

|~

I(p) = (I0 + BIl-u) r u<0

¥sY

and so the incoming flux is

27 J dv J IG)pudy = - % U + % F
0 -1 ' ' -
where U and F refer to the radiation iﬁ‘the medium.

A fraction €y of this incoming flux is absorbed at
the wall, and the remainder is reflected diffusely, éa that
it adds to the outgoi:; flux EHUTé emitted by the wall.
dTherefore the net power/unit area radiated by the wall is

the difference of the emitted and absorbed fluxes, given by

[

I S | . ey,
. Fig = eH(oTH + 3 U 5 F) . (2-35)

In this equation, F really represents the coefficient of the
cos U term in the incoming radiation (within a factor 3/4m)
and not ﬁeceséarily'the total flux. Deep in fhe medium the
radiative intensity is linear in cos 6 over all solid angles,
N—

but et the wall we are assuminé thé’in£ensity is uniform in
the outgoing hemisphere, and has the form (2-34) in the
incoming hemisphere, with a discontiﬁuity at y=0. The usual
boundary condition results frbm sgfting F~F in (2-35),

effectively matching the flux in the ‘medium away from the
e ‘
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wall with the flux at the boundary. This yields

. - 4 1 -
F(0) = 2_EH (20TH 5 U(0)) (2-36)
e 4 1 :
F(L) = & 2_€C (2UTC - -2— U(L)) . (2—3?)
I . .
» A'discussion of other methods of generating boundary 3

‘conditions for differential approximations to the radiative
transfer problem may be found in the book by Pomranlng (1973)
and in Shokair and Pomraning (1981).

Equations (2-1), (2-30), and (2-31), along with the
definitions (2-32) and (2-33) form a-system of coupled non-
linear differential equations in T(x), F(x), #Kd U(x).
Together with the boundary conditions (2-36) and (2-37) and
the specified values of the teﬁperature at the walls, these
equations constitute an approximate description &f combined
radiative and conductive heat transport in a slab of
insulation.

Although the equaeionsAof the diffusion model are
usually develgped only for the case of an isotropic medium
(in which absorptlon and scatterlng properties do.not depend

\, on the 1n01dent dlrectlon) the model is readily extended to
more general materlals. For fibrous insulations, these
‘would include in pParticular materials in which the fibres
.are not fandomly distributed in space, bu; are aligned to

' some degree parallel or perpendicular to the heat flow
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directio™ Then in the equation of transfer (2—20) the . oy

Y

absorption constant will be' a function of direction 1, and we

~

will ngt be able to make the simplifying assumption that the

scattering function depends only on the scattering angle. We

restrict ourselves to materials whose properties depend on 4

but not on the azimuthal angle about the direction of heat

flow, as would be the case for a fibrous material in which

the fibres tend to lie in the piane of the slab, but are not

aligned with respect to the long edges of the batt. We also

require that the batt look the same from both sides, that is,

the properties are identical in the ¥ and -p directions.

1

Then, writing explicitly I(u) = i (IO+3Ilu) and proceeding

as before to multiply the equatidn of transfer by 1 or by u

and integrating over all angles gives

dIl

T - AO(QHB(T) -

ar
0 + s
X

1 ;
T = - (A

d 2

where

n

47 .

S - (n+¥} (m+1)
a7

n,m

L

I

2,0

A = E}l f A0\ u"ae

4

o)

(2-38)

- S (2-39)

1,01

(2-40)

a

s(e,2) " "anant . (2-41)
an

The normalisation on the optical parameters An and S has

n,m

been chosen to make the correspondence between (2-38), (2-39)

and (2-22), (2-27) simple.

The only difference in the case
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of an oriented material is in the definition of the
~absorption and scattering parameters.

Throughout this chapter we have dealt with cross-
sections per unit volume for the fréquency—dependent optical
parameters. It is common in theoretical d}scugsions to use
dimensionless parameters for the angular part of the
scattering {(phase function), for the ratio of scattering to
%otal extinction cross-section (albedo for single scattering)
and for the first angular moment of the scattering
{anisotropy parameter). To facilitate comparisons between
" this work and others, Table 2-1 lists several optical
parameters found in the literature with definitions in terms
of the notation used in this chapter. For our purposes, the
total scattering cross-section is an awkward parameter to use
for normalisation. As we shall see in the next chapter, the.
scattering is strorgly peaked in the forward direction.
Direct measureﬁents of tﬁé scattering cross-section és a
function of angle will generally yield a phase functian {for
instance) whichdis larger than the ca}éulated values because
of the difficulty of measuring the scattering very close to
the incfﬂﬁ?t beam (Shuetz, 1983) and which causes the-total
Cross-se tion to be underestimat®d. Similarly, for opaque
objects 1 EQE compared to the wavelengtﬁ, the total extinction
cross-section calculated from geometrical optics is jdst half
that calculated from wave optics (Van de Hulst, 1957). fhe

difference is just the diffracted radiation which fills the
£
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TABLE.2-1

Definitions of Radiation Parsﬂgtgfs

Typical Corresponding
Parameter Sy%bbl Parameter in
Y Present Work
Scattering Cross- S
Section per Unit o 0
Volume
Extinction
Coefficient g Sp * A
Single- w S0
Scattering 0 R
Albedo 0
1
Phase Function P(Q,0") S(%én )
0 i
..- <
Anisotropy { cos 85>} E&
Parameter ) wl/wo S0
Effective or - -
Modified *
Extinction Kg A+ S0 Sl
Coefficient

All the above parameters are in general functions
of the radiation freguency v.

.
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geometrical shadow of the scatterer. It is scattered at very
small angles, and has no significant effect on the radiative
transfer. Some authors (Modest and Azad, 1980a, 1980b;

Shuetz, 1983) introduce a modified total scattering cross-
section with part or all of this forward-scattering peak
excluded, and a corresponding modified phase function. The
missing scattering is reintroduced into the problem as a

delta function{ and eventually contributes nothing to the heat’

.transport. Note that the scattering enters into the diffusion

model only through the difference $.-S., to which the

0“3’
scattering at zero degrees contributes nothing (eguation
(2-29)). We may therefore calculate this parameter by
geometrical or wave methods as appropriate, without the
necessity for simultaneously keeping an eye on the total
cross-section SO.

At this point we should mention other common ly-used
differential approximations for radiative transfer and
distyss their relationship with the diffusion model. Moéels

/based on the assumption of isotropic scattering or pure

.absorption are essentially special cases of the diffusion
model, and can be obtéined by setting Sl=0 {(for isotropic
scattering} OI.SO=SI=0 (for pure absorption) in equation
(2-32), which defines Kme For the polyester fibre
insulations we are consideringyipoth assumptions are

inadequéte and lead to very inaccurate predicti¢hs for

radiative heat transfer.
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The two-flux model is widely used to charécterise
radiative transfer in insulationkmaterials {Larkin and
Churchill, 1959; Farnworth, 1983; Berguam and.Seban, 1971).
Here the radiation is divided into two hemispheres and the
left and right fluxes F aﬁd Fpn are treated separately.
Differential equations are developed by considering the,
change in FR and FL in passing through a thin slab of
insulation of thickness dx. Calculating the various
contributions in terms of the basic absorption and scattering
cross-sections requires an assumption about the angular
variation of the intensity. Generally the radiation is
assumedﬁ;o be isotropic in each hemisphere separately, with

a discontinuity at 90°. Neglecting the frequency dependence

of the optical parameters, we have

dFR 4 '

5 = = 2A(oT" - FR) - 2bSO(FR-FL) (2-42)
dFL 4 ) .

- % = - 2A{oT" - F ) o+ 2bS g (F-F) . . (2-43)

The backscattering fraction b is calculated by
conéidering the fragtion.of an incident ray in the left
hemisphere wﬁich'is scattered into the right hemisphere, and
integrating over incident angles. For isotropic scattering,
b = %. The othgr ﬁarame%ers A and S0 are the same absorption
and total scattering cross-sectioné used above, but here thef

are assumed frequency-independent for simplicity. The
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!
relationship between the two-flux and the diffusion ‘model is

clearly seen if we take the sum and difference of the two-
flux equations, giving

d - 4 i _
a;(FR—FL) = A[40T - 2(FR+FL)] (2-44)

d —_ — 4 — | —
2 E}?(FR+FL) = 4(A + 2bso) (FR PL) . (2-45)

To compare with the diffusion model we note that the
net. flux F is FR—FL, and the enefgy density U corresponds to
2(Fo*+F ). Then, (2-44), (2-45) are identigal to the
diffusion-model eguations (2-30), (2-3L1) except tﬁat the
factor 3 in (2-31) is replaced by 4 in (2-45), and Sy-S; in
the definition of KT has been replaced by 2bSO. For isotropic
scattering, b = %, and the two scattering parameters are
identical. Therefore the factor 4/3 indicates a real ‘
difference between the models. For a thic& batt, the two-
flux model predicts only 3/4 of the radiative flux given by'
the diffusion model. Diréct comparisons (Bergquam and Seban,
1871; McKay et al., 1983) confirm the superior accuracy ‘of
the diffusion approximation. The two-flux m del is
sometimes modified Ey adding a factor /372 in front of Fo
and Fp on the right hand side of (2-42) hnd (2-43) (Berguam
and Seban, 1971). Thislwill make the prediction for thé&heat
flux identical to that of the diffusioh model. This strange-

looking factor arises from a very different'approximate

-
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solution of the equation of transfer in which the angular
moments of the intensity are evaluated by a low-order
Gaussian quadrature (e.g., Pomraning, 1973). Consider
equagions {2-22) and (2-27), which were derived as
intermediéte steps in the diffusion model and involve no
approximations to the equation of transfer. Instead of
setti§? 12 = % I0 in (2-27), as in the diffusion model, we

evaluate the moments IO’ Il’ and 12 by a 2-point Gauss-

Legendre quadrature. Recall that this means setting

1 + _

[ EGwdp = £(u') + £(u) (2-46)

_l .
where ui = l/(? are the zeros of the Legendre polynomial
Pz(u)- Then .

I, * 17 4+ 17 , (2-47)

1, = L 1t -1 ‘ (2-48)

V3
1+ - -
.12 3 (I" + 1) | ’ -(2-49).

“.A' r -
where 1% = I(ui). Substituting in (2-22) and (2-27) gives a
pair of differential equations for I' and I™ which may be
rearranged into the form of the' two~flux equations (2-42),

(2-43) if desired. 'Note that (2-47) and (2-49) guarantee ~

that 12 = % IO' sSo the resulting equations must be identical

- ot .
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to those of the diffusion model. 1In the present case, the
crucial approximation is generated by assumlng that the
angular variation of I(y) is sufficiently smooth that a two-
point Gaussian quadrature is adeguate,_whereas in the
diffusion model we use the similar requirement that the
second Legendre moment of I(u) be small compared to-IO.

This two-point or two-beam model keeps track of the.
intensity only at two particular aMgles, one in each
hemisphere, and in this is 51mllar to the usual 2 ~flux model.
But the two flux model assumes a particular shape for the
angular radiation in each hemlsphere, w;th a dlfferent oyerall
constant for left and rlght—going radiation and an unphysical
discoﬂtinuity at 90°. 1In ithe other case, it does not matter
how the angular part of the radlatlon behaves as long as it
remairnis smooth enough that the Gaussian quadrature is

accurate. 1In this it better represents radiative transport

of heat under near-equilibrium conditions.
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2.4 Approximate Solution of the Model Equations

Thelequations (2—1), {2~30) and-(2-31) are nonlinear,
and must be solved numerically. However, an important - //
advantage of a differential formulatioq of the heat-transfe.
problem iies in the intuitive understandyng of the process
which results from an approximate analytic solution. For
our purposes, thé'approximation can also be reasonably
accu;a%e‘\\ESi\fhe modest temperature diffe;ences across the
batt (10-20 K 3t-a temperature of about 300 K) used in the
thérmal Teasurements, the equations are "nearly" linear. '

The nonlinearity arises priﬁarily because of the T4 e
term in (2—30).- The thermal cohductivity of air is
approximateiy proportional to T%, a much slower'vé}iation.

The optical parameters Kp and Kp also depend on temperd re
since they are thegmallyLweighted averages bver frequency
 but as we shall see in Chapter 3, £his variation is small.
Therefore, we ignoée the temperature dependence of K, KT and
Kp» evaluating them all at the mean temperaturé

Tm = (TH + TC)/Z. The temperature is written as

T(x) = T+ t(x) and, therefore, | . .
) ,
/PO . N (2-50)
m m .

The first neglecteg term, as a fraction of T;, is 6t2/Ti.

For T, = 300 K and t < 10 K, equation (2-50) is accurate to



better than 1%. Under the same conditions, K is constant to
about 1}5%_if we assume % = T%, as is %he case for a dilute
gas of hard spheres. "The calculations of the next chapter
show that'xA and kp for the polyester materials are also
constant within 1 or 2% over the same temperature range.

The method of linearising the differential equations
has been used by Larkin and Churchill (1959) and more .
recently by Farnworth (1983) to solve a two-flux model of
combined radiative and COnductiﬁe heat transport, Which leads
to differential equations with essentially the same stfuéturé
as the diffusion model. The solution Qili be outlined here,-
- and formulae presented for fhe simpler case of identical
boundary walls, €y = €c- A FORTRAN program which calculates
the heat flux for ~any set of parameters is listed in Appendix
I. s

To begin with, we use (2 31) to substitute for F in

(2 1), giving

- -l au _ , at - | _e1y
11-3,9'(’116—:‘E K 5 _ (2-51)

after some/rearrangement,

Ux) = U(0) - 3pkg [Hx + K(£(x)-£(0))] . (2-52)

Sinée K is assumed constant, and H is constant, (2-1) may be
-, .
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differentiated to give _ _ .
dzt 1 dr
- v i . {2-53)
dx2 - K dx

Finally gwe use (2-52) to substitute for U(x) in (2-30) , and
combine this with (2-53) to obtain a second-order differential

equation in the temperature alone,

2 )

% = - pZCO - pzélx + p2t . (2~54)
dx ’ ‘
where _
[ KR 1 h '
p— —— 2 -
p = [(3DKT)(PKA)( z * 1] (2-55)
) 160} a o | .
K = — - ' . ’ (2—56)
R BDxT ..
2. 4 o
P7Cor= = Prp[KI4OT] = U(0)) - 3pkyt(0)] (2£37)
- _ _H .
€1 = KR+K ’ (2-58)

The solution to (2-54) has the form

s
[

Lo -pX
£x) = ¢y + Cix +c,e P 4 ¢,

%b(x;L) - \
0 1 e _ . (2%9)

1

,/ﬁ@\ﬁee.immediaﬁely that Cl represents the temperature

gradient at peeitions‘sufﬁiciently far from the boundaries i.
thé% the exponentials are small. - Thus-f(R is interpreted

. ' ~ >
L]
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of the abéorption length (OKA)-

 of heat flow.
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(from (2-58)) as a radiative conductivity, although éhis is

ki

onlyfstrictly meaningful if the boundary effects can be
. - . o) -
ignored. The typical penetration depth for the boundary

effects is p_l, which is proportional to the geometiic mean
1

aﬂd (OKT)- . which we might

call an effective extinction length. The rate of energy

‘exchange between radiative and conductive modes of transport .

is df/éx, given by equation (2-53). Thus p-l may also be
understood as the typical interaction depth for the two tyﬁ%é
We can substitute (2-59) into (2-52) to give an
éxplicit expression for U(x), and similarly we can substitute
for dt/dx in (2-1) to obtain- an expression for F(x). The
- A~ -~

constant.C1 is eliminated in fawour of H using (2-58) and we

eliminagg Co in.favour_of t(0) by evaluating (2-59) at x=0:

L

S or(0) - - -p _
C0 = t(O?‘ C, CBE ‘(2 60)
. ~ L.
Next (2-57) is used to express U(0) as - S
- pd L am3 L ane ) -pL
u(o)y = 40(Tm_+ 4Tmt(0)) 3pr(KR+K)[C2 + Cqe ]
(2-61)

So finally we are left with expressions U(x); F(x) and t(x)
which-contéin only four unknown parameters, Cz, Ca, Héd

t{0). The condition T(0) = TH determines t(0); the other 3
. »

Qafe taken care of by the condition T(L) =AEC;and the two

ra

\



46

-

radiative boundary conditions (2-36) and (2-37) which relate
U and F at x=0 and at x=L. This 3x3 llnear algebraic system
is stralghtforward but tedious to solve. In the.common

C H

for the heat flux has the reasonably compact form

51tuat10n of identical boundaries, €. = ¢, = €, the solution -

-

T -T : . K
H "¢ : R -1
H = (K_+K) {1 + }
L R L pL pL
) 5% (K+KR) 5 + K > coth 5
{2-62)
where
4
D = - (2-63)
BDhT ,

For the general case of boundary surfaces which are not
1dent1cal the algebraic expre551on for H is much more
complicated. Appendix I lists a FORTRAN program which solves
for the heat flux in the general case. . .

As the coupllng coefficient p goes to zero -- that
is, as the absorption goes to zero while the Scattering
remains constant —-— the radiative and conductive heat
transf?r become uncoupled. Since x coth x‘+ l as x + o0, we-
can rewrite (2-62) in .the case of a purély‘scattering medium
as

'

l . .
v Z-n L) T

R 40T
: Bl

In this case the total heat flux is.the sum of two

independent contributions. The conductive part is inversely

-
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“
proportional to the thickness L, but the radiative part is

not. We can think f the radiative heat transfer aslbeing
determined by a £h;1mal resistance L/KR in series with a
bbundarx resistance Y4UT£)~1(§-1), wh?ch is indé;endent of
the thickness of the batt, and may be assigned half to eéch
lboundary. It is this "boundary" résistance which limits the
radiative heat transfer to a finite vélue when theé medium is

*

transparent to thermg] radiationy If the emissivity € of

»

either boundary goes to zero, the 'boundary resistahce'>
becomes infinite and there is no radiative heat transPdrt in -

equation (2-64). Note that such is not the case. if there igpl
-y
absorption as well as scattering,,as in (2-62). Although

the radiative flux near the reflecting wall is zero, over a

distance p_l energy is transfered into the radiation field

L}

by thermal emission from the fibres. If the batt is
sufficiently thick, the effective total thermal conductivity

becomes just K+Kp, independent of the value of boun@ary ¥

emissivity €.
L]

These two. effects, the boundary resistance.det;rmined
by the emissivity ;f the boundary surfaces, and the
rearrangement of enéggy between radiation and conduction in
a_regidn near the walls, are respé%sible for the well-known
“"thickness effeét" in low-density insulati materials '
(Shirtliffe, 1980;‘ﬁollingsworth, 1980).. The total thermal

resistance of a stack of insulation batts is observed to be

'smaller than the sum of the resistances measured

-

e
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individually, because of the boundary terms in the radiative

part of the heat transfer.

-
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2.5 Accuracy of-the Model

There are several parfs to the guestion of the
.accnracy of the model for combined radiative and conductive
Qeat transport thoh is summarised in equation (2-62). The
combining of gas and fibre conductivities inﬂo a single
parameter K involved approx1matlons whlch relied on the volume
fraction f being small Later, in comblnlng the conductlve
and radlatlve portions of the problem, we assumed that the
medium could be treated as homogeneous, essentially _by-
passrng the question of thermal contact between t;e fibres
{which part1c1pate in the radiative transport) and the air.

The soldtion of the differential equatlons was performed by
replacing nonlinear terms with approximate linear terms.
Finally, the question of the intrinsic aecuracy of the
diffusion model as a solution og/t&e eqoation of transfer
must be considered. k\Jﬁ
The accuracy of the formula (2-16) for the
conductivity of the mixture of fibres and air has already
been considered in SecBion 2.2. For polyester flbres, the
fibre correctlon‘&o K is about 2 Kf,~and ignores terms in
sz For f between 1% and 5% the resulting eXror in K
shonld be less than about 0.5%, and wiil be mu smaller at
fzﬁé er densities. This, howevér, includes o ly the
: mathematlcal agproxlmatrons, and not the p0551b111ty that

i
.the)flbres are not randomly orlented in space. In theg\
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‘-\_--_

extreme' case of the fibres lying flat in the plane of the
batting, the fibre correction (again, for polyester) would
be reduced from ‘about 2 Kf to .about 1.2 Kf, 'a difference of
about 0.8f as afraction of K. This could be &s high as 4%
for f = 6?65, although we have chosen an extreme case. It
should be safe to assume that (2~16) estimates K to an
accuracy of 1% for the real material at f = 0.05, if K air’
Kf and f can be determined with sufficient precision.

To 1nvestlgate the thermal contact between- the
fibres and the alr: we return to the isolated sylinder of J
radius a inside a concentrlc boundary cylinder of radius R,
and relnstate the 2n r term in the temperature which was
dropped from (2-4). We assume the temperature of t;e fibre
is T,, and at the boundary surface it is Tp- Wé let the

temperature for a < r < R be given by

T T2
"R

£n =
- a

T(r) =

in L+ | ' | (2-65)
a a o

T%g presence of additional‘tefms of the form (2—4f does not
affect the argument. The function T in (2-65) is a soluézgn'
of Laplace's equatign, as required. The fotal'heat flowing'
outwards at the fibre surface, per unit length, is |

A Y

h _ dr i
VLT BTl = Ky g L)
- S ix=a
T_-T
A = 21 R _ | (2-66)
9 & ”
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The net heat flowing from the fibres into the air must be
balanced by a net flow of radiétion into the fibres.
Consider a slice of the medium of area A and thickness dx.
The net power disappearing from the radiation field into
this slice is

dar

h = 3x A cdx ‘ ‘ : (2-67)

rand the net outward transport of heat from all the fibres in

E]
the, slice, from (2-64), is

T_-T

R "a £ .
h=o2mk . 2.2. L 2 4x. , (2-68)
alx on R Tra2 .

Equating (2-67) and (2-68) leads to

—

a2 in

fE‘Ta T TTIE

Y
L&

. ’ (2-69)

»

It is reasohable to. take R as approximately half tﬁa mean

distance between fibres, so.in % X % &n f-l. 'Wg,can'estimate

%; using the solution of the previous section. The scale

length for energy exchange between radiative and conductive

£> modes is p T, where P is given by (2-55). So we write'-
R . ”
aF _ - T
ax = °PF |
~ AT 77
& apKR AX
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where o 5 1, and AT/AX represents the average{temperature
gradient in the batting. Finally, (2-69) is rewritten as

K
1 l( R )-8

~ 1 -
Tp=T, = a(ap)(z &n £ 7)£ R N

- AT . {(2-70)
air -

For the polyester materials at normal densities, a = 10 um,

-

-1 ~ - (5 :
P = 5 mm, KR z Kair' and £ ¥ 0.01. Then (2-62) gives
T _-T
R "a _ -3 a2 a _
aT T 2 0T g gy (2-71)

.f By choosing 4X = a, f =‘p.01, we can say that the temperature

K difference between the fibres and the air half-way between
two fibres is less than about 20% of the average temperature
‘difference inlthe-batt ovexJ a distance of one fibre radius.
Perhaps a more meaningful way to:express {2-71) is to take

Ax = R, and write f = a2/R2, so that
- -3 o R _
T -T x 2 x 10 — ix AT . (2-72)

' This means that the temperature diffg;;hce Tp~T, is less
" than about 2% of the average temperature gradient.éver the
same distance R. In éeneralm the factor o will be
substantiallg smaller thqn'unity, SO the‘difference will be .
smaller. The effect of such a difference between the fibre

and its surroundings is in any case not so much to reduce .;:5

the total heat flux directly as to increase the distance -
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over which the raaiaﬁiye and conductive parts of tHerheat
flux reach their equ%}ibrium proportions. So the 2% factor
applies only to a region near the boundary surfaces, and the
error in the tota; heat . flux will be smaller by a factor of
about (pL)-l, typically about 0.1.. .The_ total error in the”
heat flux H will be of the order of 0.2% and is negligible
for the calculations in this work.

The error intfoduced by linearising the differential
equations can also be roughly estimated. We noted in Séction
2.4 tha; for a temperature difference of 20 degrees across a -
batt at a mean temperature of 300 K, the individual terms in
the differential eqeations never vafied by more than 2% from

e approximete forms assigned to -them. But since the net
heat flux depends on the insulation properties integrated
through the ﬁhickness of the.batt, the errors tend to cancel
to fi:§Plorder. The approximate parameters are correct af tﬁe
mean temperature, and so are underestimdted in half the
material and overestimated in the other half. To put this

more clearly, we can formally integrate (2-1) to give

A e -
HxL = j_ F d J K(T)aT . _ (2-73)

0 Ty

But using (2-30)rand (2-31), we can write

S L T C 3 : : _
. B 16T _ 1 dr. L _
) f F dx = j 2 ar gty Gxlao - (2-74)
0 D T A
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The object of this is to show how the heat flux H depends on

KT, KA and T3 can be repiaced by

their values at the mean temperature Tm. The largest part

the assumptions that K,

of H is represented by the two integrals over T, which can

be evaluated using the relation

(b—a)2 f"(xm)]
.24 fix )
m

a : ——

b .
J f(x)dx = (b—a)f(xm)[l + (2-75)

where x_ = %(b+a) and terms of higher order in (b-a) have

been ignored. So, ignoring for the moment the term in %%
in (2-74), we see that the approximations T3 = Tm’ K = K(Tm),
etc., introduce in H errors of about
2 | 2
{Ty=Te) Tn a2 (Ty=Te) ™ (n-1) (n-2)
247 dT|T T 5
m m m N
—_— Ty, ‘ ’
where the function G (T) can represent K(T) or KR(T). For
Ty = 300 K, Ty TC = 20°, the error in the radiative part is

O.l%; and in the conductive part, (with K « T%) less than' __
0.01%. . : | .

So far the last term in (2-74) has 5een ignored. 1It
clearly can be thought of as a boundary term, and using the
definition (2-55) of the parameter p, we write it as

K

— ] 1+ dF L ' | '
AH = f T—- dx X_ - a . (2-77)

%15

Again, setting X, = K,

R = ap/2*H, we have
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\
. bHy “
_/\‘ _H_ = FE rTJ 0.1 l (2_78)
where « £ 1. The terms in (2-77) do not cancel since dr/dx

has opposite signs at the two boundaries Therefore,
replgc1ng ali parameters by their mean values in (2-74) will
ntroduce an error of a few percent in this "boundary term"

the_#rror will be linear in TH—TC). Because of (2-78),
however, we can be confidenr'that the tofal heat flux H will
be accuiate to several tenths of a perCent

The accuracy of the model depends on the parameters

£ (the filling factor), ﬁT/T (AT = TH—TC), and (pL)ul,
which represents an average value of L/F|dF/dx| in the batt.
The error in K due to the approximate method of combining
the individual comductivities of the air and the fibres is
about f2K Ignotring the detalls of the net absorption of
radiation by the fibres and the subsequent conduction into
the air introduces_oniy a negligible error of the'order of
a/(LVE). where a is the fibre radius. Replacement of T3, K,
and the optica;J;a_ﬁ.eters by Eheir valuee at the mean
temperature 1ntroduces an error in the total apparent
conductivity of the batt which is ~about

(0.2 Kp + 0.02 K)(AT/Tm) » Plus a part connected with the )
behaviour of the solution near the boundaries. This last 15
more difficult to estimate, but should be of the order of

(AT/T )(pL) l. All of these together add up to an error of

<



)

s

56

e

rd
a@put 1% or less under the .conditions. of the thermal

A0

“/mTésurements'in Chapter )T\szre significant is the possible

error introduced by the ass@mption of randomly—oriented

fibres. The necessary correction to K is about.-0.8 fK if

_ the fibres are completely paraliel to the plane of the batt,

and would be some appreciable fraction of this for more

realistic distributions. It is linear in f, and may be of
the order of 1% for the denser batts (f = 5%).

The accuracy of the diffusion approximation itself
—-- that is, the replacement of the complete equation of
transfer‘ for a ho;nogeneous material by (2-31), (2-32), and
the approximate boundary éohditions (2-36) and (2-37) -- has
been inveétigated by a few authors who have compared the
model with accurate numerical solutions for various
hypothetical materials. Berguam and Seban (1971) compared
the two-flux model with the numerical results of Yiskanta |
(1965) for isotropic scattering. For two.gets of parameters,
they:also cglcuiatgd the fesults of a "modified two-flux"
.ﬁqdel, with factors of 1//3 introduced in the equations.
As explained in Section 2}3, this moéél ig fﬁlly equivalent
to thg.diffuéionlmodel. - All their calculations were for
élabs of unit optical depth, thin®tr by a factor of at

least 5 than the batts considered in this work; their

.

calculations thus test the model under more stripgent
conditions, as the approximations oughf to imprgie for

thick@é.materials. /qu;results werg\rqPorted using the
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“modified/pwb—flux" model. Both had black boundaries and
KR(TH) =13.3 K. In the first case, with equal. scattering
1

and absorption parameters and TC = 5 TH, the‘diffusion

model predicted a heat flux smaller than the exact solution

—

T, = 0.1 TH’ and t

by 1.7%. The seconi case assumed no scattering and
C h

diffusfon model result was too high b
0.5%. 1In both caéEs,thé accuracy was much better than the
ordinary twq—fldx mbdgl; Note that the temperatﬁre
differencés-considered aré\yéry large, aﬁd the medium is
0pti§a%ly th}hﬁer than a practical insgldﬁion layer.
Schuetz (1982) similarly .compared the results of a
diffusion—moéel calculation with‘exac£ numérieal résulté,
obtained this time from a finite-difference computkr
program. He used exper;mentally—determined §ca£tering
functions obtained from monochromatic measuremeﬁts-bn foam
gnd glass-fibre insulations.'_The scattering was strongly
anisotropic in both &ases. Bouﬂdary emissivitids Qere
Ey = €c ='0.86, aﬁd the thickness L was 38 mm. For the
gléss fibres, this éorresponded to an optiéél thickpess\of
27, and for the foam; a thicgness of 75. Mean temperatu%e
was 298 K and the température difference was 24°. As |
expected for an optically thick batt,.the heat flux
predicted by the diffusion model'was very,_ accurate, wiﬁhin
0.2% the éxact esult. Thesé:conditions are:?ypibal of
the m:f;H;EEEiE’::zpressed polyester battings. Tha:lbﬁer—
density batts are 0pticaliy thinner; with‘a greate;

*~
—
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temperature differenceApef eéﬁinction iength, but £he
diffusion model should still give much more accurate results
that the 1% or so in the calculations of Berquam and Seban
discussed previously. ) -

We should also mentioq thelcglculations of Modest "
and Azad (1980a, 1980b} who co;siéered pure radiative -’
transfer;in clouds of spherical particles with or without
absorption. They calculated the anisotropic sc§tte:in;
'funcxionq £rom qie theory,.and sofved:the'equatioﬂ ofh
+ transfer exactly by expanding the éhaseifuncgion in up‘to

. 4 . -
35 Legendre polynomials. They theén approximated the

scattering function by a part linear in ‘cos 6 plus a delta-
P p

functizn at & = 0 (and in some cases, a second delta-function
. ~
at 8 = T). This apprbximate scattering function was used in
a diffusidn—model solution (afM® also in an -exact solution,
which is possible for linear-anisotropic scattering
functions). The resulting heat f}ux'iS'generally close to
the exact solution, parti larly for optical depths greatér
than 4 or 5. It would appear from their graphs that the
errors could be as large as 5% in some cases. However, I

- [+ ]
'~ believe this is due to the proggdure of approximating the

scattering function.: Essentially this‘invoived placing all

the*scattering for u > into a deltaufunction_at L= 1.

They do'not specify the v but it appears to have

been chosen as 0.7-0.9, i he shape of the
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- 4+ " 3 B ’ - . 3 -.
will lie in this peak. ' Remember that the, diffusion model
. uses the moment S =5, the integral ngéﬁ; scattering

0
weighted by a factor (l-p). So the frae}iﬁhal error
(reductibp) in Sd—él will be about 0.2 (l—pf), withwthe
‘numerical factor depend%Pg on the shaée of the peak. Thus
for n; = 0.8, we would.expect the heat flux to e
overpredicted bylabout 4% (for pure scattering)’ which is‘
.indeed obseérved in Fhéir calculations. _.The other two
Calculations méntioned, which solved the diffusion model and

the exact equation using‘the same scattering function for

both, give a better picture of the accuracy of this

approximation. K\\\

[N

. : (ﬂothlng we- have sald so far bears on the questlon
-

of how acéurate it 1s to define the fréquency—averaged
parameters x, and K and™solve the equations with a single
group of frequéncies. It is difficult to estimate |
precisely the error involved.. Certainly thlg“_gerbroup
approx1matlon becomes exact as the temperature gradlent is
\re@gced and the 1nsulatlon appreaches -thermal equilibrium.

\\_An approx1mate, and probably optlmlstlc, estimate of the

" Terror can be obtained by expandmngﬁphe blackbody function

B(v, T) in powers of GT‘ where 6T = L 47 is the

k pKT dx _
temperaturé difference per optical depth. This first term,
ST g%, leédé to the frequency-a&eraged-equations (2-31),
(2-32). The correction to this is smaller by a factor 'of
6T/T, which is about 1 or 2%. his is a qualitative *°

L



_argument at best, but should give a rodgh idea of the

accuracy of the one-group approach. The frequency depegdéig

effective extinction cross-— section Whlch enters 1nto KT does

-

not vary too dramatically with frequency, which improves the
approximation. The absorption cross~section, however, is
ther strongly frequency-dependent, and those effects

depending on kp (the coupling be tween radiatiqn\;nd

EOnduction) will probably be less accurately pretdicted.

Ultimately, the accuracy of_this approxlmatlon could
be tested by solving the dlfferentlal equations for several
frequency groups 51multaneously. Until the precision of
thermal measurements impreveé, this would' seem to invelve an
unjustifiable increase in the complekity of the calgulaﬁions.

-~ A

=M
\

./ w

L7



. _ W4
CHAPTER 3 : '

o ' SCATTERING FROM CYLINDERS

3.1 Introduction o : PN

In order to apply'the radiative transfer model -
cribed in the previous Cchapter to a practlcal lnsulatlejé\H’f—
material we need the absorptlon and total scattering cross-
settions per unit volume and the first angular moment of the
-scattering. The peak of the thermal weight functlon dB/dT -
is at about 800 cm * (or a wavelength of about r;’s um) at
-300°h, and 99% of the weight is at frequencies below 2500

cm—l (wavelengths longer than 4'um). ‘These wavelengths are
comparable to the fibre diameter of 25 um for Polarguard and
Hollofil. It w1ll be necessary to consrder~\\4~hehav1our of «
the far- 1nfrared radlatlon as an electromagnetic wave in or-
der to obt accurate scatterlng and”absorption functions.
Furthermore, as we shall see in the next chapter, the refract-
ive index of polyester varies strongly with frequency in this .
region, and the optical properties of the fipres exhibit cor-
respondingly fine detail in their frequency spectra.

Although the absorption and total scgttering'cross-

sections as functions of frequency may be measured directly

for the fibres themselves, measuring the angular part S(8)
the scattering in order to obtain the first moment S' has

required the use of a monochromatic (laser) source to

61
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proviée a sufficieﬁtly strong signal (Schuetz, 1982). It
is easier to %Easure the complex refractive index of the
»bulk material for the réquired frequency range and calculate
the scattering aﬁd absorption functions for the fibr@é from

electromagnetic theory. This is only practicab because

of the uniform size of the fibres and the sumption of a

reoorigntations.

particular (random) distribution of Ffi
- 4

In section.3.1 we descri the exact thsory of elec-

tromagnetic scattering from infinistely long dielectric

¥ cylinders at oblique incidence, which is due to J.R. Wait

r
(1955). An alternative method is described by Aronson et al

{1979) in which scattering at short-wavelengths-(ghick fibres)
is described by ray optics, angd sc;Ztering at wavelengths

much iargeg than the fibre diameter is éﬁven by a simplified
wave thegty (dielectric reedle approximation) with an ad hoc.

bridging formula used in the intifwediate region. However,

> _
the ray-optics theonfﬁr guires consideration of multiple

. L]
& . . - _
AronSon et al. are not much sidgler than the formulae of

internal refléections in the fibre, and the expressions of

L

the exact theory. \fﬁe results are presented in terms of

the efficiency functions q(¢);thich represent the scatter-

ing cross-section normalized the fibre geometrical cross

- \

section length x aiameter.
- ’ N, +
Section 3.3 gives expressions for tﬁa\sbattering,

absorption, and extinction efficiencies Q (again normalized
' b

to the fibre geometrical cross-section) for a collection of

-
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randomly oriented'cylinders The computer programs which
calculate the single-fibre cross-section from Wait's solution

and perform the integrals over fibre angles are described.
s

In the final section of this chapter, we' present
numerical results for the extinct;on, absorption, and scat-
tering functlons’for randomly- orlented fibres w1thN\5élous
%frequency 1ndepepdent) refractlve lndlces These curves
show behaviour which is qualitati?ely similar to published
results for perpendicmlar incidence. .WE'diSCUSS the basic

features of these functions and their dependence omr refrac-

t&ve“ndex and on the ratio of fibre diameter to wavelength.

-
-

~>—~3.2 - Scattering Functions

The problem of electromagnatic‘scattering from an in-
finite cifcular:cylinder at obligque incidence was solved by
Wait (1955), generallslng the much earlier work of Lord Ray—
" leigh (1918) for the case of perpendlcular incidence. Wait's
solutlon is descrlbed brl/ﬁdy in the book by vaﬁ'da-ﬂulst
(1957) in a chapter devoted'primarily‘to-perpandicular inci-
dence. Kerker (1969) presents a much more detailed account
of scattering at.oblique incidence, together with exﬁlicit
.expressions for the gcattering coefficients and numerical
results from the work of Kerker et al. (1966). Liou (1972)
also prasents the solution in full, along with numerical .n

“results for thin cylinders of ice. In this section we shall

be content to outline briefly the method of solving the scat-

-
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tering problem and present the results for,the far—field

P

scattered intensity as a function of direction and polarisa-

3

tion. For more aetail the reader is referred to any of the
works mentioned-above. The‘paper by Liou is particularly
recommended for its completeness and clarity.

Figure 3-1 shows the geonetry of‘the scattering.
Cylindriéal poiar coordinates are defined with the. z-direc—
tion ‘along the- fibre axis,.snd the incideﬁf/geam at an angle

Bf to the fibre axis;'forming a cone tangent toc the incident

direction. The scattered int varies with angle ¢

measured around the éBne with ¢ =0 a he 1nc1dent dlrectlon,

and falls off as l/r, where r is the dlstance from the fibre
axis. - The fibre itself thus oewuples the region r <a. .

Also shown in Fig. 3—1 i3 the direction of the elec~
fr

tric fleld vector for each of two polarlsatlons on the inci-

: 4
dent and scattered rays. Transverse magnetic (TM) polarisa-

' tlon meass that the magnetlc vector is perpendlcular to the
“plane containing_the fibre and the incident or scattered ray;
theh the electric vector;'shownein'Fig 3-1, has a compenent
}élong zhe fibre axis. TFor transverse electri polarlzatlon,
the eleetric vector, is pe _enaidﬁlar to this plane, an@, )
therefore has no componé;igalong the fibre direction. For
oblique incidencef th& scattered radiation is.in generaf a
mixture of both pblarjszkiens, even if' the incident?ﬁévexis
pure TE or purg TH. In‘this;the problem is more complicated

-’1



Fig. -3-1

‘Geometry of scat%ering from a long cylinder of radius a.

—

The dlrectlon of the electric vectOr for transverse electrlc

(TE) and transverse magnetic (TM) polarisations is shown

J R »~
\ .
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than inthe case of perpendicular incidence. If Bf =90°,

there is complete reflection eymmetry in the scattering

- plane, and TE (TM) incident radiation can produce only TE

(TM} scattered radiation. Similarly, reflection symmetry in
the plane of the fibre and incident beam precludes scattering

between unlike modes in the forward (¢ =0) direction for any qﬂx/j\\\

value of Of.

What we require then is the function T(¢), defined by

</43n de Hulst through the relation
q

u{z,r) .=

3ﬂi/4—ikrsin9f . | _ |
Z,1=0) _ (3-1) |

o (20 T (8)e

where u is the amplitude of the scattered radiation, p =27y
is the angular freqﬁency, k = 2n/wavelength is the usual - .

havenumber, and the incident radiation has hmﬁlitude

. k .—ik(zcosef+rsin0fcos¢)+iwt -
u, = e ' R -0 (3-2).

There will be four such functions, 22, le, and T

ll’ 21°
where the 1nd1ces represent the polarisation of the incident
(flrst index) and scattered (second index) radiation,‘l for
™ and‘ 2. for TE. Reflection symmetry in the ¢ =0 plane re-
quires that T, M= T, L) Ty (0) = Ty, (-), T, (6)
l2((1:); and by lnterchanging incident and scattered direct-
loﬂﬁi 12 () = 2l(¢). The intensity of the rediation is pro-
portional to the square of the amplitudes in (3-1) and (3-2).

It is convenient to ditide the scattered intensity by the !
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L . _
incident flux and the fibre diameter 2a, and multiply by the

distance r from‘the fibre axis. The reshlt is a dimensionless
f-./\.
» Scattering efficiency per radian,
sinf _
f 2
— |T(¢) | _ (3-3)

q(¢') =

. whgré & = ka. This efflﬁigncy gi;: the scattering cross-
. section per unit angle ‘¢ divided by the fibre geometrical
‘ cfoss—section, length x diameter. To put it another way,
the power s;attered between angles ¢ and ¢+d¢ by a section
of fibre of length AL is given by

-~

- *\ . "
4P = qu(¢)¥2aAL-d¢ (3-4)

‘where I0 is the incident flux. Note that q(¢) is normalized

to the total geometrical ¢ross-section, and not to the pro- -

jected area éaALsinef normal to the incident beam.-

i 3 ' The solution of the scattering problem'begins with
~the vector wave equation, which botﬁ the electric and magne-
tic field vectors must sgtisfy in a uniform medium. It is

a sténdard technique to. replace ﬁhis with a correquﬁding

scalar wave equation,

vy + k%m2y = o : (3-5)

& .

where the time dependence of the potential function ¢ is

.

: . 1wt . .
contained in a factor e . The complex refractive index

is m, and the wave number k is meant to represent the free-

Space value, w/c. Stratton (1941) gives a detailed discussion

"
“

of how such scalar potential fﬁnctions may be ﬁsed to con-
L "
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struct field vectors which are guaranteed to be solutions of
the vector wave equation; two independent solutions are
reqﬁired. As Liou {(1972) points out,:the solution to (3-3)

is a sum of- terms of the form

1n¢e-1hzelwt (3-6)

g o= Zn(jr)e

n
where

h = kcos@f

to match the incident wave in (3-2) and
‘ - 3
- j = m’k%n?)”

Zn is any solution to Bessel's equation of order n, that is,

a linear combination of Béései funqtidhs of the first and
second kind. We let m répresent the coﬁplex refractive_inﬂe&ﬁi
inside the cylinder; outside, we assume nlél, and replace

j in (3-6). with : . -

v = /x%n? = ksing, . /">

The solution inside the cylinder must be finite at r=0, so
it is constructea?exclusively from the Bessel functions of
the first kind, Jn(jr)._ The scatteped wave is expressed in

. T
terms of Hankel functions oi/}he second kind, defined as
(2} (op) = -1
Hn (Lr) = Jh(lr)—lYn(Z;)
where Y is the Neumann fbnc&ﬁﬁg, or Bessel function of the

Ry
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-

(2)

second kind. Hn has the correct behaviour at large r

given in (3-1) where J and Yn alone, being purely real, do
-3'ﬂ'i/4- .
in

-

not. The rather odd-looking factor e (3-1) origi-
nates in the asymptotic expansion of the Hankel function.
The final term in the electromagnetic field is the

incident plane wave of (3-2), which Tin be expressed as a

series of Bessel functions in the form -

uo = 3 (_i)nei(mt&n¢—hz)

n=-o | ‘-
(see, for example, Stratton, 1941). At the surface of the
cyllnder, ¥ =a, the tanqentlal components of the vectors E.

- and H must be contlnuous. This leads to 4 equations, 2 for

¢ components and 2 for z-components. E and H are constructed
from a pair of independent potential functions, u and v, ”
representing the two polarisatién ‘states. Each potential is
expaqded in the appreptiate functions ¥, of the form (3-4)
for the region inside the cylinder and for the scattered'
wave outside the cylinder. There are then four sets of ex-
pansion coefficients to be.determined for each polarisation
of the incident'wave The boundary condltlons are applled
term by term yielding four algebralc equations which can be
solved for these coefflclents.~ '

The‘solutiqnlfer the scettered wave is compared with

7 :
- (3-1) using the .asymptotic form for the Hankel function at

-/

"large argument, .- .
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(2) - 2.5 n_-i(x+3n/4)
H gx) " (;;) (-1)"e -

This defines the T-functions of (3-1) in terms of the scat-.

< tering coefficients#® The results for the scattering ef-

‘ficiencies, q = l/na[T|2 are \ C\\ ) -
L - ) .

. 24 .
-9 1£9) — IbOI +2 I b _cosng| , (3-7)
nil

1.
‘q§£?¢? = ¥a 311 * 2

- ey

n

|

) an!IICOSﬁ(I’[z (3-8) B

f o1 8

n
A -

g . s . 2
dyy (8} =¢qq, () #;T—]é ]‘.?&nil anIsn.md)I - (3-9) .

Again, the index 1 represents TM pcéarisati%p;, and 2 re-

presents TE. - \\J : : ' - a

Liou gives the most compact ex ressigns for the co-
: g P > P 9

efficieﬁts, ‘'which ar,e\re-.froducéd below: ‘\ =

. LY
2
» _ D'n+An(El)Bn(EZ)
- an B C}n D2+A (e .)A_(e.) ‘
n’ntt17%att2t =

D +Bn(t-:l)An(s:2)

D

+An(El)An(52) o ' | .

_ A, (1) -B_(e,)
nl nIi n'n _2 .
Di+A (e )A_(c,)

p -

.with il




;(Ra) J (ja)
B (El,Z) ni a) Jnljai
~ El = l , E:z _ n}z | *
- (2) .
Cn —,Jn (_R.a‘) ./Hn (La)
D, = inh(£%-5%)/(a2y) . '

-

The primes on the Beseel and Hankel,fqnctiqns indicete
a first derivative with.respect to the argumeﬁt In Wait's
(1955) original solution,'the an 's. and b s Wwere the expansion
coeff1c1ents of the- fleld vectors dlrectly, rather than of the
potential functlonsﬂ Consequently thex'are defined Qomewhat
differently than those used here Our notation follows ‘that

| offVan de Hulst (1957) and 1ater worﬂs

. We note from the expre551ons (3~7)-(3-9) for the scat—

_ tering eff1c1en01es that the cross—mode scatterlng 9q2 is

» zero in the forward dlrectlon, aevpredlcted from the symmetry. -
'-Furthermore, at perpendlcular incidencge. the dlrectaOn cosine

h\“\kcosef is zero, and- so all the cross—mode coefficients

3,y vanish. (The factor D in (3—12)'15 proportional to h.)
- : &

Fraom the equatlons above the a and b coefficients may \
,

—d/fJ// = be calcuIated from the scatterlng parameter a (= 2w¢$radius/'

KWave;ength), the incident angle 6z, -and the complex'refree§

? l N ‘ | Coe . ;c_/‘ YL R .. ‘
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s

\:
tive index m for the desired.frequency. Each order n re-
quireé one revaluation of the ?}tﬁ order Bessel functions of
the’ first and second kind and their first dérivatives with
re;l argumeﬁt‘ﬂa = ;sinef,' and .the Bessel function of. the

first kind and its derivative with mplex (if m is complex)

argument ja = m2=c0526 .

f ‘
Knowing the scattering ampliﬁudé and bhase agra func-
tion of angle allows calculatibn‘offthe remaieipg optical

quantities, the extinction and absorption._/%he loss of

energy from the incident wave can be described as ‘the result ,

of interference between the incident wave and the scattered
wave close to the inciéﬁnt direction. A widely-used theorém

. {van de Hulst, 1917) relatgs the extinction to the imaginafy

part of the foiward—scattering amplitude for a point scat-

terer (that is, for an object which is small in all dimensions -

compared to the observation distance). Van de Hulst derives
L2

the analogous theorem in his book (1957) for a line scatterer

at perpendicular incidence; the argument is essentially

unchanged for oblique incidence. The extincttbﬂmggficieﬁgf
. em e, -

is ' * ha N
is . ‘ 4 ‘ )).
-2
qE =2
* v o, oy
so for TM radiation, we have

R

Re {T (0) } \ (%13) -

N
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‘polarlsatlons of the outhLng yave, it 1s sufﬁ§01ent for our

f".#'

_ 2 o .
=3 Rela +2 ifl anII} . (3-15)

Note that there is no contribution from the cross-mode scat-
teriné T,, and T21, as these vanish in the forward ddarection.

The efficiency dg is normalised in.the same way as the scat-

‘tering efficiencies, so the extinction cross-sectior per

unit length for a fibre'at any angle to the incomirlg beam is
just qE><diameter. For an opaque fibre whlch is large com- -
pared to the wavelength the eff1c1ency qp as defined here

w1ll be proportional to smnef. |
4 There are two contributions, scatteripg and absorption,

to the extinction. The - total scattering efficiency is ob-

tained by integrating (3-7)-(3-9)_over all angles ¢ Although

the total scattering for, say, T incident radiation can

meanlngfully be divided into two contributions with different *

purposes to consider only the total scattered energy for a

given incident polarisation. So we write .-

2 2 L a
1 ntl ahrrl’} (3-16)

-
for TM incident radiation, and 51m11a;1y (w1th b 1 replaced
by a II) for the total scatterlng qg w1th TE incident po-
larisation. The absorption cross—sectlon is fhst thgldlf-

ference of the extinction and the total scatterlga.

S o
1 - 7 ‘ ‘ E

) s \“_;),:l .
. . - _’——-% . Pl . -- . -
I.\ . -5"." - -. ‘ . ‘ | X &
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(3-17)

Ly

: -0
. 91,a 7 9.5 9),s

and similarly for the other (TE) tode. Nete that for a pure-
'ly real refra;tive index, the absorptioh is zere, and the

" extinctidon (3<14) must equal the total scettering (3—§€ﬁ.
This relation between the sum of the real parts of theqan"e

and the sum of the squares of both real and imaginary parts

) : . . ’ &
~ of the an d a8 11 Coefficients provides a useful.check on
F . T . . v
the computer\krograms_whlqh'calpulate the coefficients.
2 tWe shoul pointfoﬁf¥ihat formulae for "intgnsity" of
<

scattered radiatis given by different authors te to differ \
by faetors ef sinef from each other and from the 8efinitions

of the.efficiencies used here. ' In part this is due to

* 14
variafreﬁ; in ,the deflnltlon of 1nten51ty, which is used here *
ﬁ; exclu51vely to mean the power Ccrossing unit area (in' the direc-

-

tion of propagation) per steradlan Kerker (1969) does n?f
deflne exp11c1tly the 1nten51t1es Ill etc., but it would
appear that tﬂey are equal to the radiant energy flux (i. -e.
the Poynting vector) multlplled by 51n8f In Kerker et al.
(1966) the equivalent guantity is termed the radiance and )/ |
measured in W/m /sr, although the. beam divergence is in one |

- - ]
only - the power per steradian dlverges, or at

is llmlted by the angular width of tht. 1nc1dent beam
and the 1ength of the fibre. In Wait's paper (195 he

_formulae are glven in .terms_of the field vectors, S0 there

L7
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is no ambigﬁity; _we have already ngﬁed that his co?fficients_'
contain an extra factor of sin® compared to the definitions
used here. ©TLiou (1972) expreséés the "intensity", which he

" defines as the enerqgy flu;:”in terms of the length R measured -
along tg;\scattering Cone in Fig. 3-1 (the distance 6f ﬁ;gpa—
gation of the waves) but he has apparently replaced R =rsind f
(1nstead of the correct R r/51n8 } at one point} and the
expre551ons he glves for the 1nten51ty cannot be reconc1led

SN

The scattering coefflcients for a perfectly conduc- -

Wlth tﬁgse of other authors

. L
ting cyliﬁﬁgr (or a fibre coqzsd with a metallic layer thick-
er than the skin deﬂih) are obtained by letting m +« (Wait
18955; Kerker 1969). The cross-mode coefficients go to zero,

.
as can be seen from (3- 12), ‘which, has a term proportlonal (/,\

2 0 BEEN
tom in the denominator. Kerker gives the remalnlng co-. & |
efficients as simply =~ ' ; (/f\

* " J . [ ]

J_(asing )
b, = —3 £ (3-18)
n H(z)(asine } *
. n £
/ ' “-.- . A
* 1
: . J_(osinG ) _
O T i (1)
i , H (asing ) o

The extinction and scat&sffng cross-sections are clearly
. ‘ N “ A -

; . 9™
equal in this, K case - we have Re{b } = [bnl2 for all n,. and
[ ; .-

similarly for a ..

Expressions have l!! been given for the coefficients

- . . ' : .
>7 : - | T SRS
.o . k .
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a, and b for scattering from a cylinder composed of two

-5 . .

concentric layers (a hollow cylinder would be a special“

case of this) at perpendicular incidence (Kerker, 1969;

Kerker and ﬁatijevic 1961). However Samgddar (1950) has

~ . shown that this solution cannot be generalised to obligue ;
incidence, and there is no simple solution for arbitrarily-
oriented two-layer cylindexs. .

] s S
3.3 Scattering Functions for Fibre Insulations '

“Practical’ insulation materials are composed of fibres

-

which are(not parallel, and an average over fibre orienta-

tions is reguired. O large scale the material is homo-

geneous, and sb it is ed that its optical propertieg Y
may be approximated by verage properties of a randomly-
'chqseﬂ'volume eiementt. The éverage extinction, absorption,.
N and QA(GS)
with anadditional:subSCr?pt to indicate polarisa?ion {or two .(f ‘

" and scattering efficiencies are denoted by QE' Q
v -

subscripts in the case of scattering\functions), following .’
the conventions used in the previoys sectdon. The samé ™ ‘f/’h-“

normalisation is’ used as for thé®single-fibre efficiences q,

that is, the tbtal_abéonption (fﬁf example) cross-section of
"™

is Q, times the geometrical

a small volume of the ﬁédium

cross-section, length x diameter, of the fibres in that volumed
- . B ’ “.

elément.2~¥nc1uded in QA is a fac:Tr expressing the average

projection of the‘f}bres on thegiwcident dirfection. The _J{ >

L

scattering efficiency Q/ (®.) is defined as the normalised .
¥ ¥ s - o -

oo R L

FLY
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ey - 3!

crosé—sectiqn per/steradian for scattering at angle es (to

the incident diréction? into solid angle d@ = sinesd S ¢S.

All these effiéiency factors are related to the cross-sections

per unit volume of Chapter‘Z through the factor 2f/na, which

is the fibre diameter x length per unit volume of the insula-

tion material. Theréfore, in the notation of Chapter 2,
x A = QA-(bf/?h), and S(SS) = Qs(es)-(Zf/ng). The "phase
function", which is the angu}ar part of the scattering norma-
lised to the total s@uttering cross-section is given hy

: N

_ - 0
p(8) = Q. (8.)/Qg

-

The absorption and extinction efficiencies for a
\ fil¥ous- material are readily obtained from the single—fibre‘ '

functions ,(3-14) and. (3-17% by integrating over the assumed

Q}stribution of fibre angles. For randomly-oriented fibres,

RTT/2 \ / | \ @ J
QA = qA(?f)sinedef . - (3-20)
" 0 -
P ; (m/ | . |
. 'QE.="J qE(Bf)siandef . | (3—?1).
f 0 ) * | ©

.~

The scattering effici cy QS(BS)‘is derived from,xhe
single-fibre functions o

o . : .
through.the relation

.l

() of (3-7), (3-8), and (3-9)

'
3

: 2 -2 '
cosf_ = cos Bf +sin gfcos¢ N J{3-22)

- s‘ /e T | F.

SR
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which has been used before. A fibre at. angle Bf contributes
to the'scattering at all angles Bs <28f. The relationship

may be expressed rather awkwarfily as

(3-23)

) 21 m/2
QS(B = J d¢ { dBf'q(¢)6(8—§S)5int

0 0

~

where BS is a function of ¢ and ef;' ﬁéweyer the numerical
computation is straightforward and_easy.to_understand. The
range‘(O,ﬂf of'eé is divided into 64 equal intervals, which
are separated by lines of latitude on the sdattering sphere.
Eor two angles,el apd 92 (Qe drop the s subscript) which
are smaller than 26f édhétion (3-21) gives the corresponding
angles ¢1 and"¢a¢ restricted to the range (0,n%) since the
intensity in the éﬁhék half of the cone is a mirror image.
Then we sipply place all of the scatéered power in the range

(¢,+4,) into. the interval (6,+6,), and similarly for the

. other 63 biné.y The integral over fibre angles is performed

.numericaily_by a Simpson's rule Procedure with 128 steps in Be.

The individual contributions to the ifiterval (61,82)'
can be evaluated exactly as a. function of fibre angle. We

need to intégrate g(¢) over the range(¢1,¢2). First we ex-

‘pand the squared sum in the definitions 03-7) = (3-9) in

@erms 6¥ £he form cosnécosil¢ or sinn¢sinfé. . But

N
bcosn¢cos£¢ = % cos(n+l) ¢ + % cos(n~2)¢
sinné¢sini¢ = % cos{n-R)¢ - % cos (n+4) ¢ ;;/J/" ﬁ\‘E&
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%, so the efflclenCJ.es g can be expanded in a Fourler cosine

~

v

‘series. Collectlng llke terms gixe

| Ll

q(¢) = 515 {%— I |c |2(1 t cos2n¢)

n=0 n
+ I [ E Re(CnCn+Q) s L Re(CnCR_n)]cosz¢ . (3-24)
2=1 n=0 . < 1
Il'(EQ. {
\
For q,, and q,,, we pick the + sign, and for the cross-mode .

" scatterin 9q5- the - sign is used. The.coefficieuts.cn

represent 2b 2anII' or ZanI according to the polarisation,

nI’

except for C0 whi'ch is bOI'or 2511 without the factor of 2.

In this form, g(¢) is readily integrated term-by-term
. } .

between the limits ¢l and by ' to give the contribution to

each of the 64 scattering bins exactly These contributions -

are smodqh”funbtions of ef over the range’ 8 /2 <8 <n/2, and

—

may be 1ntegrated over flbre angles u51ng SlmpSOH s rule.
The results ?re mpch superlor to ‘the more direct procedure
of taking a large number of points for both the flbre angle -

and the angle p;/and addlng conLr;hgtlons to the scatterlng |

S
bins one at a time. Essentially, thls performs both 1n“‘§rals

by the trapezoidal rule, and. required a larger number of S %

\ :
points for reasonable accuracy ) .

. , . - & .
. When the procedurehas complete4 we have the (approprlate-'

T ——

ly ° normallsed- total power scattered 1nto each of 64
g ——
annular reglohs of width AB =7/64. The solid angle of. the

AN




3
bin between 6-A8/2 and . 8+A6/2 is

y

2m[cos(8-46/2) -cos (6+88/2) ]

)

80

,
or 'approximately 2msinf. Therefore we need only divide by

21sin® to obtain the function Qs(e). The whole procedure

is straightforwarg, althbugh the bookkeeping is a little

L]

. “ ? . -
complicated. In Appendix 2 the%FORTRﬁ& program which cal-

* culates QS(95 is listed. On our Digital LSI-11/23 micro-

. computer, the calculation of a function Qg(8) for a refrac-

tive index ImP v ¢ takes a few minutes, depending'én the

. + scattering parameter o (2wafwavelength). For a =15, running

time is about 8 minutes, and is less for smaller‘values._

By aﬁalogylwith (2-24) and (2—29);.we Ffine the

jj:otal scattering efficienty
. . I
J I Qg=2w{ Q. (8) sin@as
. . 6 _
and the weighted scattering éfficiency
S ‘ .
) Q; = 2ﬁ.f Qg (8) (1-cos8) sin6de .
0
. We also will use phé ;transpo$t' efficiency

< ..

) 1
Qg = Qp +Qg

(3-25)

(3-%27)

) <<- which is averaged over frequency to give KT‘in (2-32) . ;!.'

®

v
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. 1
Qg and Qg are not calculated from the expressions just

- . giveﬁ, but rather from the single-fibre functions'difectly.

Thus

{3-28})

n/2 ‘
_ 0 .
Q = J qs(ef)51n8fd8f .

0
P .
By using (3~22¢)to replace the integration over stwith'an

;ntegration over ¢, we can show that

LN o
o2 2 L 12 2
s°3 [. {|bOI| + 2 nil (Ian] +la 11%)

0 .

*

*
(b _b +a _a ) I sin 8 de

~2Re (b nI'n+1l,I" *nI®n+l1,1 gd0¢

0L 11) =2Re

Il e~ 8

n=1

T (3-29)

. .
L . F g
.
- .

This expression results from expandlng the q(¢) functlons
as in (3-24). AI1 the terms in. co§p¢ for n #0 then vanish

on integration over ¢\ We have shown the result‘for ™
¢ .

inciden%'radiation; for TE radiation we replace b with

N

nl

_anII ln (3- 29).

. Inside ‘an’ 1nsulat10n materlar/rihe radlatlon can be

"assumed to be unpolarlsed. In what follows we. shall deal
X /7
prlmarlly with eff1c1ency functlodvfor unpolarmsed lnc;dent

ra 1t10n, and without regard to polarlsatlon on the scat—v

tered wave. These will be représented bny s without nu-
merical subscrlpts, and w111 be obtalned hy summlng over

‘
out901ng modes and averaglng over 1nCLdent pPlarisation.

\ -

j B /T‘ﬂ I K\ !

-/




réproduced in (3-10), (3-11), and (3-12) , \and is consequently'

-40 are required for positive real guments and for complex
. . V‘ -

( B2

So, for example, we set - .

1
th(Q )

A +Q

l'A 2;A

Qé(e) =5 {?ll's(e)+02?’s(e)fzglz,s(8)} .

.
Table 3-1 lists severdl parametérs commonly used in

_lthe radiative transfer literature with their definitions in

terms of the‘efficiencies(Q. o

In_Appendix 3 the FORTRAN érogram which calculates
the scattering coefficients-an and bn_is listed. This rou-.

tine was derived from the expressions given by Kerker (1969)

‘rather than the more cpncise forms of Liou (1972) fhich are

L 2

more difficult to follow. Also given is a simpler version

. - N | - : .
which calculates the coefficients, for a perfectly-conducting

-

cylinder from (3-18) and (3-19}.

Most of the computational labofr flies in the calcula-

, ) . .
tion of the Bessel functions. Ordeps-from 0 to abqht 30 or

-

- » 1Y f\ ; .
arguments with absolutg values up to about 25. Following
: : r ?
the usual praé?}ce, we evaluated these functions usingathe

e A
algorithm of Abramowitz and Stegun (1965)., in which tﬁé\J

Bessel functions of* all qrdérs for a gingle argument are cal-

culated together, using a'ﬂéégward recursion based on the
’ - - '
formula ' . Ciﬂ\ .
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TABLE 3-1

Radiation Paramgters Related to Optical Efficiencies

-

-

L]

83 Vs

1

Parameter Usual. Corresponding r
: Symbol Parameter
- ,
Extinction Coefficient ‘ B 2f 0
(cross-section/unit volume) . Ta “E \\\
Abs tion Coef iy i t - 2£ Q
| orptio oe Qap en 73
. 0
Single-scattering albedo LUy gg
‘ ¢ N QE
L |
4 Qg (8) -
.Phase function p(8) 0
QS
1
’ - Q 1]
Anisotropy parameter {«bose>} iy —g
o N v -wl/mo QS A 2
. s * 2f
Efffective or modified K 7= 9 dé
xtinction coefficient e a
ex 7 B(1-w,<cos>)
‘ o \
' -
) .
/e )
\)._ - \ ‘ -3
-
- . . ; .



2n : . .
g =0T g . o »

" For,sufficiently high orders n (greater than ~ x) the Bessel
functions of the first kind increase Eapidly with decreasing

order, and therefore errors in g /J n1 decrease quickly as

*

the recur51on is contlnued. If the pProcess is begun at order-

- 2 2 .. '
n+k, then the error' in J /J n+1 is about Jn+k/Jn times the

v ! [

error in the starting values. So the starting values Jk

" and Jk+l can be chosen’ arbitrarily, and will yield a’%equence

of functions which are accurate ey¥cept for an oﬁerall constant
for orders .Q, through n,. prov1d1ng k is chosen to be suf- r~
f1c1ently large. ?hese_functlons are nqrmallsed ud&ng the

Sum rule >

) . T
J. =2 L J. (x) =1."° -
el 2n"’ 7 . s

The Neumann functions (Bessel functions of the eecond kind)
R . .

!

Y éx) become large at orders n >>x, so an upwards recursion :}\;‘;-

is used. The startlng values YO and Yl are calculated ac-

curately from the sequence {Jn} using relations in Abramo-

witz and Stegun,(lBGS), S0 no normalisation is required. fr)‘x

- On the LST~11/23 computer, the maximum range for ‘
floatlngﬂp01nt numbers is about 10 ~38 tQ‘10+38. Even when-,
' the reeurs;onuie begun at very small values of 10 2° or so,
it is necessary to choose the etart;pg order carefuliy when‘__

the argument x is large to avoid everflow in the recursion
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or in‘the normalisation sum. A routine designed for use on
larger machines was found to be uusatisfactory in this res-
pect. Adequaté expressions for the starting order n as a
function of argument x were derived from the asymptotic ex-
pansions of the Bessel functions. The routines were_tested
along the positive real axis and in a few directions in the
coﬁ;lex plane for which tabulated values are avallable
(Abramowitz and Stegun, 1965) and give at least §- dlglt
accuracy withodt causing arlthmetlc overflow for arguments
up to 50 in absolute value.‘ (If x"1is close to a zero of J '
the accuracy is of course poorer for that particulaY order
I, but the error does not pr0pagate to'lower orders. ) Ap-
pendlx 3 also lists these FORTRAN routines for real and

complex Bedsel functions. The derivatives J and Y are
&

evaluated using the relatlons o .
L]
.
Jo (%) = = Jn(x)—Jn+l(x)
J. (x) = -J, (x)

(Abramowitz and Stegun, 1965) which -also hold for the

Neumann .functions Yn.
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3.4 Numerical Results for Constant Refractjive Index
¥

This section présents numerical results for a collec--
tion of ggndomly—oriented cylindexrs. It is useful for the
“time being toldeal with a refractive index which is indepen-
dent of frequency in order to show separately the behaviour
which depends on tﬁe ratio of fibre size to wavelength, and
that which depenas explicitly on the refraétive index.l TQF

functions are gualitatively similar to those published for
perpendicular incidence (vaﬁ de Hulst, 1957; Kerker, 1969;
Farone et al., 1963). T¢ provide a scale for inte?preting
the Q-functions which are shgwn in this section, the average
(over fibre angles) of the factor sinef which gives the
projectidn of the fibre areas onto the incident direcﬁion

is /4 % 0.78. To put it more clearly, the extinctibn ef-
ficiency calculated purely from geometrical optics for opaque -
randomly oriented fibres would be w/4 rather than unity
because of the way the efficienciés'have been norﬁalised.

Figure 3-2 shows the scattering efficiency as a func-
ﬁion of scattering angle. 'The dashed curve is for n =1.85,

1 ‘
k =0.033 where the complex refractive index is

m=n-1ik .

These are the values determined for polyester at a frequency

of 1000 cm_l. For comparison, results are shown for a much

more strongly absorbing material, n ;1_85,fk =0.33. The



\

Fig. 3-2

Calculated scattering efficiency-QS multiplied by 27nsinf as
a_function of scattering angle 6, for two values of refréq—

tive index and a scattering parameter o' = 7.35. The ca}cu—

lation is for a collection of randomly &riented cylinders.

The dasheq curve is for n = 1.85, k = 0.033, and the solfé

curve is for n.= 1.85, k = 0.33.
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fibre radius is given as 11.7 uym (the value for Polarguard)

and the frequency as 1000 cm—l, although any pair of values

which give the same value 7.35 for the Scattering parameteg

-
-

@ would serve equally well.

Note that‘we hayé plotted not QS(é) but gwsinGQs(B).
The scattering efficiency per unit solid angle diverges at
small 'scattering angles 6. This results from the ptocess of
.averaging over fibre directions. Cgnsider again the fibre
shown in Fig. (3-1), which lies at;angle Bf to the incident
beam.” The scattered energy is spread around the edge of a
cone centred on the fibre. If we considér a Qery narrow
incident beam and imagine the fibre to be surrounded by a
spherical screen, wé would see a ring of scattered light
projected onto the screen tarigent to the spot made by the
incident beam. As we now rotate the fibre around the inci-
dent direction - keepln; Bf constant - this spot remains
fixed. The total poWwer scattered between angles *4¢ close
to the incident direction is propdrtional to.2A¢q(¢): By
the time the fibre direction has swept through_360o in
azimuth, this energy has, been spread over a solid angle of
H(A¢)2, and so the intensity per unit solid angle diverges
like 1/4¢ as A¢ »0. This is not true in the generai direc-
tion 6 in which the solid angle Zﬂsinege decreases 1ineariy
with AB. There will be another cusp divergence at the

maximum scattering angle 6§ = 26 where the relation (3-22)

fl’



between 6 and ¢ becomes singela:. However, this second
singul?riqy changes position as we integrate over polar
angles Bf, and so contrlbutes only a smooth curve to Q (8).
In the forward direction, however, the cross-sectloq per
unit solid anglie« diverges for every angle Bf, and so the
singularity remains in the everage over all fibre directions.
It is more useful to plochnéiquS(B), which gives the
hormalised cross-section for 3cattering between angles §
and 6+d6, per raéian The total scattering efficiency Q
is now just the 1ntegral over 8 of the curves in Fig. (3-2)
“with ?fj%ddltlonal solid angle factors.

It is clear that the scattering in Fig. (3-2) is
strongly peakéd'in the forward direction (note the log scale).
This forward peak contains abeﬁt half the total scattered
radiation, and changes rather little with the large change
in the bulk absorptlon between the two curves. Tt can‘be -
thought of as the Fraunhofer dlffractlon which fills in the
geometrical shadow of the flbres. The first zero of the
diffraction pattern for an opaque cylinder of the Same size
would occur at 25°, 1In Fig.'(3—3), where the frequenqg -
(or equivalently, the radius) has been Halved, the Pirst
zero would be at about 60°. We seé that the pattern fs.in—

;deed broader, although in both cases the forward peak is
narrower than the.simple diffraction theory would suggest,

Presumably because the refracted rays wash out the minimum.



Fig. 3-3

Calculated scattering efficiency QS(B) times 2nsin® as a
function of scattering angle'B for a scattering parameter
. .

o = 3.87, and random orientation.
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-

Al%hough'the scattering at 500 an ! in Fig. 3-3
varies more smoothly with angle tha; the curves in Fig. 3;2,
it is clear.that scaﬁtering is predominately in the forward
diréction. It is for this reason that radiatiye-transport
models based on isotropic scattering are unsatisfactory for
these fibrous materials.

Figures (3-4) and (3-5) show extinction and total
scattering efficiencies-.for thg ;ame two refractive indices,
n =ll.E!S, k = 0.033 and n = 1.85, k = 0.33 respectively. The
horizontal scale is mérked in frequency for cylinders of
'thé 23.4-um diameter of Polarguard fibres. Since the re-
fractive index is independent of wavelength, this is really
a scale in écattering parameter o, with a = 14.7 corres-
pending to v = 2000 cm—l.

The oscillations in both the scattering and the ex-
tipétion in Fig. (3-4) are typical of cylinders made from
weakly-absorbing mateéaal. Van de Hulst (1957) sbows that
this large-scale structure is a function only of,ﬁhe para- .
- meter (m-1l)a for small k, although the smaller ripples de-
pend more specifically on the refractive index m. Thus the
major effect of reducing n is to move. the broad peaks in
~(3-4) to hiéher frequenéies. This slow frequency variation
can be calculated by consideripérthe interference between

the incident wave and the wave that passes once through the

cylinder without reflection at either interface. Such a’



N ‘
Figzrjﬂﬁ//, .
Calculated extinction and total scattering efficiencies for

randomly oriented fibres of 23.4 um diameter and constant

refractive index 1.85 -0.033i.

[T,
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‘Fig. 3-5

- +

Calculated extinction and total scéttéring efficiencies for

randomly oriented 23.4-um fibres with a constant'refracti{g

index 1.85 -0.33i.

r | 3
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calculation-does not indicate where the energy removed from
the beam ends up, however.
In Fig. (3#3}\\where the bulk absorptlon is much

stronger, the structure is largely absent. In both figures,

note that the extlnctlon eff1c1ency approaches at high fre-

+

quencies' e value /2 « 1. 57 . which we «would expect for

an opaque object large compared with the wavelength Van
‘de Hulst (1957) shows that the extlnctlon Cros&-— sectlon in
this limit approaches ‘twice the geometrical cross-section.

In Figures- 3 6 and 3-7 we see the absorptlon {solid
line) and welghted scatterlng (dashed curves) efficiencles, :

.whlch are of more direct 1nterest in -the heat transfer ‘prob-
;

5
multlplylng the scattering Qg {8) of ‘Figs. 3-2 and 3-3 by a

lem The welghted scattering eff1C1ency Q is obtained by -

factor 1-cosB which expresses the relative effectiveness of

scattering through an angle 8 and integrating over scatterlng'
angles. As such it represents a 'backscatterlng eff1c1ency
normallsed 50 that At equals the total scattering eff1c1ency

Aln the case of 1sotrop1c scatterlng, and is correSpondlngly @
.smaller if .the scatterlng is-directed prlmarlly forward.

Note the change of scale in going from Fig. 3—4 to Fig. 3-6

or from Flg. 3-5 to Flg 3-7. _In both cases,.QS is. dramati-

cally smaé%er than the total scattering efficiency QO an
!
1nd1catlon of the degree to Wthh the scatterlng is dlrected

forward. Also note that although the absorptlon Q is clearly



. ‘ A
«Hfi Fig. 3-6 .
x
The efficiencies for 23.4-um randomly oriented fibres with

refractive index 1.85 -0.033i. Qa is the absorption ef-

» ' N ’ .
ficiency, and QS is the scattering efficiency weighted with

‘a factor l-cos#.
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Fig.'3—7

Absorption and weighted scattefing efficiencies for randomly

oriented fibres 23.4 um in diameter with refractive index

1.85 -0.33i.
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~
stronger in Fig. 3-7 than in Fig. 3-6, the difference is

much smaller than the tenfold increase in the bulk -absorption
coefficiegl. From geometrical optics, we would expect the
absorption efficiency to saturate at 0.78 for a collection
of black fibres. At a value of k = 0.33 the extinction is
already about equally divided between scattering and ab-
sorption.

Finally, gig. 3-8 shows the 'transport' effic%encies

QT for the two refractive indices nr = 1.85, k = 0.033 (dashed

curve) and n = 1.85, k = 0.33 (solid curve). These.are
simply the sum of the two curves Qé and Q, in Fig. 3-6

and Fig. 3-7. Recall from’the previous chapter that the
'radiative conductivity' KR is iﬁversely proportional to the
thermal average KT of QT over frequencies. For reasonably
thick batts and‘reasonably black boundary walls, the radia-
tive part of the heat flux is approximately proportional to

K Therefore-QT, as shown in Fig. 3-8, gives a good measure

R’
of the thermal behaviour of the insulation..

Most striking is the similar magnitude of the two
curves, considering the large differepce in the absbfption_
crbss-sections and weighted scattering cross-sections for
the two-materials. An increase in k leads to increased ab-
sorption QA, but this is surprisingly well compensated by a

1
decrease in the weighted scattering QS' Despite a tenfold

increase in the bulk absorption, leading té a change from



Fig. 3-8

+ . 1
Transport efficiency QT = QA +QS, calculated for randomly
oriented 23.4 pm fibres for two values of the {(constant)

refractive index n-ik.
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moderate absorption to strong absorption in the fibrous
material, the overall change in the radiative conductivity
appears to be sbout 10%. In practical terms, this means
that only rapher modest changes in the radiative transfer
properties can be effected by choosing different materials
for the fibres - always assuming black walls and thick

battings.



CHAPTER 4

MEASUREMENTS AND THEORETICAL RESULTS

4.1 Introduction

| In this chapter the optical and thermal measurements
are described and the results are compared with calculations
using the theory of the previous two chapters. Section 4.2
describes the optical mea§Urements. The infrared complex
‘refractive index for polyester was obtained from transmission
measurements on Mylér sieet. Values in the literature for
the upper and lower endg of the frequency region of interest

S - . .
our results. These optical constants

compafed well with
were then used together with the theory of scattering from
cylinders to prédict the optical properties of the polyester
insulation materials. .

As a check on the procedure so far, the extinction
and absorption of samples of Polarguard were measured. The
absorption was measured in a non-resonant cavity and compared
very well withixhe calculations. Differences between mea-
sured and calculated spectra could be due in part to dif-
ferences in the mechanical and thermal histories of the Mylar
film (used to measure n and k) agd the insulation materials.
The extinction measurements were less accurate due to dif-
ficulties in preparing a sufficiently thin and sufficiently
uniform sample, but the prominent features of the spectra

.

100
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agreed reasonably well in the case of Polarguard. The
_measured extinction cross-section of Hollofil showed de-
finite differences fro' the extinction calculated using the
solid-fibre theory. Qua itativély the discrepancies agreed
with calculated results in: the litgraturé for scaétering
from holloﬁ éylinders at perpendicular incidence. -

Thermal méasurements by Dr. Brian Farnsworth of
DREQ are described in section 4.3, aﬁd the results compared
with calculations for Polarguard and Hollofil using the n
and k spectra of Mylar and the measured fibre diameters.

The agreement is very good for the Polarguard measurements,
with no adjustable parameters. For the Hollofil samples the
caléulations give.thermal resistances about 10% too low,
which may be explained by additional scatéering from the
hole in the fibres.,

Section 4.4 presents theoretical results for metallic
fibres, for figres of varying ‘diameter, and for glass fibres,
without making'any comp;risons with experiment. It is shown
that there is an optimum fibre size for dielectric materials-
which maximises the thermal resistance per unit ﬁeight if
the batting dengity can bekept constant. For glass fibres
this diameter is about 2 ym, For a material with é constant
refractive index which approximates polyester, the optimum
diameter is about 1.5 p. A considerable improvement in per-

formance is possible if the average fibre diameter is



§

-

reduced (neglecting problems of reduced fibre stiffness).
Smaller but eignificant improvements appear to’ be possible
if the fibres and boundary walls are given a reflective

(metallic).coating._

4.2 Optical Measurements

The complex refractive index of the bulk material

" was determined by‘Dr. Timusk from far-infrared transmit-
tance measurements. Polyester (polyethylene terephthalate;
or PET) is aveilable in thin films of very uniform thickness
under the paﬁedMylar. Transﬁ&ssion spectra were obtained

for several films ranging from 1.5 um to 24 um in thickness
in orxder to-cover accurately regions of the spectrum where
the absorption was”$trong and those where it was weak. Such
Spectra show effects of bulk absorption in the medium (which
depends on the imaginary part k of the refractive index), of
reflection from both surfaces, and of interferénce ‘betwee'n
the various orders of internally reflected waves. The posi-
tlon and amplitude of these interference fringes in frequency
space depend both on the complex refractive index and on the
film thlckness. In addltlon, the frequency spectra of n and
k are related to each other through a Kramers-Kronig relation -
(Moss, 19i9). The transmission spectra contain enough in-
formatien to determine both the real and the imaginary parts
of the refractive index. | ' .

¢
- The two are calculated alternately in an iterative



Fig. 4-1 ’

Refractive index n for pPolyester (PET) obtained from trans-

mission measurements on Mylar film.
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procedure in which the film thickness and the high—frequency
index of refraction are adjusted for the best fit. After
several iterations the n and k spectra converge. When these
final values are used to calculate the orlglnal transmlttance
data as a check, the agreement is better than l% (or 2% if
data from one film thickness is used fo predlct the trans-
mittance for a different thicéness). All measurements were"
made with unpolarised lrght. * The procedure is d;;crlbed in
morehdetail'in Mckay‘et.al. (1984) . .

Figures 4*l and 4-2 show the results for h'and.k_at
frequencies up to 2000 cm—l. Other workers haﬁe ohtalned

results over portlons of this range which agree well w1th

_ those shown- here. Loewenstein and Smlth (1971) report values
" for n at.50.cnm -1 of 1.71 and ‘1.75 for the two polarlsatlon

r‘dlrectlons, compared to our value of 1.75. At optical fre-

Juencies, we get n =1, 64, whlch agrees w1th the values
1. 573 1. 541, and 1. 645 for the thrqe principal axes‘of the
materlal cbtained by Jarvrs et. al. (1980). Ther}elatlve

strength of the absorptlon llnes shown in Fig. 4-2 varies

raccordang to tne tnermal and mechanlcal history of the sample,

which affects the molecular allgnment and degree of crystal-
linity.in the material (Koenlg and ‘Hannon; 1967). Some
dlfferences are expectéd between the spectra=wof Fig. 4-1
and F1g 4-2 and the other publlshed results. There are

also llkely to be srgglflcant dlfferences between the Mylar



r

e

‘Fig. 4-2 g

©oke

Imaginary'part k of the refractive index of Fig. 4-1
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values and the true opt&tglﬁgznstants for the poiyester
f}bres in some frequency re?ions. L
With these n and k values, all the optical proper-
ties of the fibre battings were calculated by the methods of
Chapter 3. Table 4-1 lists the fibre parameters and the
physical properties of polyester which were used for the
optical and heat—transfér caleulations. The specific gravity
can vary from the value listed by 0.7% for moderate varia-
tions in the crystétlinity of the material (Hefflinger and
Knox, 1951). Probably there is a similar uncertainty .in the.
thermal conductivity of PET, but since the fibre contribu-
tion is a small part of the heat flow, little error is intro-
duced. ‘The fibre sizes were determined by B. Farnworth by
electron microscopy, and have an accﬁracy of * 0.5 um.. For

the scattering calculations, the Hollofil fibres were trea-
’ ™~

L

ted as solid polyester c&linders. As noted previously,
there is no simple solution for electromagnetic scattering
from hollow dielectric cylinders, except at perpendiéular
incidenQe. For each value of the fibre radius, the ef-
fiéiencies QE; le and Qé were calculated at 500 ééually—
spaced frequency poinﬁs from 0 to more than 2500 cm_l. Each
calculation required about 16 hours on the Digital LSI-11/23
microcomputer.

The aqforption cross—section of a Polarguard fibre

was measured directly in a non resonant cavity. Llewellyn-
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TABLE 4-1

- Bulk Properties of Polyester.

£

S

Density of Polyester (PET) l.38><103 kg/m
(Hefflinger and Knox, 1971) '

Thermal Conductivity of PET 0.15 W/m-°K
(R.C. Steere, 1966) ' <

Fibre Radius: Polarguard 11.7 um

= Hollofil (outer) 13.2 um
Hollofil (inner) ~4.2 um

(from Farnworth et al. 197§)

Lengthxdiameter .
mass :

Polarguard 39.4 mz/kg

Hollofil 38.9 mz/kg



-

- Fig. 4-3

Nonresonant cavity used to measure the infrared absorption

cross—section of fibres. -
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Jones et al. (1980) describe the technique at microwave
lengths. For our infrared measurements we used a gold-
plated cylindrical cavity 20.0mm in diameter and lg.g mm
deep (Fig. 4-3). 1Infrared radiation from the Michelson in-
terferometer (modified for Fdurier transform spectroscqpy)
entered through a 3.2 mm hole in one of the circular faces.
Another 3.2 mm hole in the curved wall of the cavity led to.
a pyroelectric detector. The entrance and exit holes were
at right angles to ‘each other in order to increase the num-
ber of reflections undergone by those rays which reach the
detector. It was necessary to place a 2l1-cm length of 0.75
mm diameter gold wire in the cavity, crumpled so_as to fill
the volume, in ofder to improve the pattern of the energy
distribution. Ideally,.the intensity should be isotropic
and uniform throughout the cavity volume. ‘ -
The absorption cross-section of a small sample placed

in the cavity is given by

) 0? = oO(FO/Fa -1} o . (4-1)
where-F0 is the measured flux emerging from the empty cavity,
and Fa the flux from the cavity with an absorbing sample in
Cit. The effective total cross-section of the cavity walls
and the entrance and exit holes is It To callbrate o, we
used a sample of known absorptlon cross-section, a rectangu-

‘lar strip of black polyethylene. This material absorbs all

infrared between 400 cm * and 2000 em %, except for a small
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-reflectance co;rection. -The strip was 40 mm in length, 50
uwn thick, and had an average width (measured with a travel-
ling microscope} of 0.375 mm. The total surféce area, in-
luding both sides and edges, was 34+1 mﬁz. For a convex
(:bject of arbitrary shape, the geometric cross—séction,
averaged over viewing angles,'is 1/4 the surface area. Since
the strip‘is large compared to the wavelength, we ignored
diffraction effects, and éet the absorpti;n cross-section of
the polyéthylene equal to 1/4 its total surface'areé.

First there was a'corréction for reflection‘at the
surface. Using the value' n =1.5 for polyéthylene,’the
Fresnel equations for the reflectance (Jackson, 1975) were
averaged over polarisations and incident .angles. The result
was th?t 9% of the eneréy'would be reflected, and the absorp-
tion cross-section was reduced accordingly. Spectra of the
polyethylene strip and of the empty cavity were measufed,
and the factor (FO/Fa—l) of Egq. (4-1) was averaged over the
region 500 cm_l - 1500 cm_l where the noise was lowest. This
gave ‘a cavity cross—seétion-oc = 20 mmz,lwith an uncertainty
of 5%. "After the contribution of the entrance and exit holes
is subtracted, this implies an aﬁerage loss at the gold walls
and wire surface of 2.8%, which seems reasonable in light of
the value of 1.7% in this wavelength range indicated by
Bennett and Bennett (1966) for freshly-evaporated gold films

prepared under 'standard vacuum conditions'.
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With this calibration of the cavity completed, the
absorption of a 40-cm long Polarguard fibre was measured.
The results are shown in Fig. 4-4, plotted as absorption
efficiency QA' Alsp shown (solid curve) is the fesult of
the theoretical calqglation using the complex refractive
index measured on Mflér sheet along with ﬁhe fibre parame-
ters }n Table 4-1. Four separate spectra were averaged to
give the experimental curve; the error bars indicatg the
size of the variation from run-to run, &ue-in part tﬁ';oise
(which varies with frequéﬁ&y according to the source spectrum
and beamsplitte} efficiency) and in part.to the nonuniform-
"ity of the enexgy density in_the cavity, as the sample was
moved between runs. - The agreement overall is very good,
considering that the two materials were produced by different °
processes. At some wavelengths, the discrepancies can be
assigned to particular microscﬁpic characteristics of the
material. The lower absofption for the fibre in the peak
at 970 cm ! 'and in the region 1300 =¥ to 1400 em~) ingi-
cates that the fibre material is less crystalline than the
Mylar sheet used for the n and k measurements (Koenig and
Hannon, 1967). Jarvis et.d4l. (1980) show "that the peak at
875 cm—l is very depende;t on the’orientation of the mole-
cules; the fibres may have more randomly-oriented molecules.
A limitation on the information which can be derived from

Fig. 4-4 comes from the use of a Mylar beamsplitter. The

i



Fig. 4-4

Calculated (solid curve) and measured (dotted curve) absorp4

tion efficiency of Polarguard.



112

2000

1500

1000
FREQUENCY (cm™)

- 500

|

2 ©

o o
AONIDI443 NOILdHOSay

[.2




113

efficiency 6f this beamsplitter can decrease abruptly (with
a consequent increase in noise) at the absorption lines which
are of most interest.

The extinctioﬁ cross-section of thin samples wa§
measured b§ Dr. Timusk using the arrangement described in
McKay et al. (1984). A small amount of the batting material
was spread as uniformly as possibie over a 20-mm aperture
and placed in front of the beam emerglng from the 1nterfen\
meter. A pair of curved mirrors focussed the undeflected
radiation onto the detector. Sample.den51t1es ranged from
5 to 20 g/m2 (a2 monolayer of fibres has density 25 g/mz, 'T
Table 4-1). At such low densities it is difficult to main-
tain a uniform thickness across the opening, and the accuracy
of thg measurements is only *20% because of this. Thicker
samples, however, wéuld allow-multiple scattering. The

extinction coef%?cient ap (cross-section per unit volume)

times the sample thickness d was'calculated from

aEd = - &n i : (4-2)
0
! ra ‘
where I is the measured intensity of the beam with the sample

in plaqe, I0 with no sample. Dividing aEd by the sample

mass per unit area gives the cross-section per kilogram Kp s

and dividing again by the geometrical cross—-section per unit

mass of a single fibre (about 40 mz/kg, Table 4-1) gives the

-

efficiency Qp: .

N

/
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-1
) ' (4-3)

1

Qp = apd x (/AL x (2

map.,

where Pe is the density of bulk polyest%r. |
Figure 4-5 shows the results for Polarguard and
Figure 4-6 for Hollofil (dotted curves). On both graphs
the values calculated from the measured n and k are shown
(solid curves) assuming solid fibfes with random orienta-
tions and radii of 11.7 um and 13.2 um resPectlvely in

1
both cases the’ agreement is generally good within the +20%

‘or:;éQl accuracy, although the smaller-scale structure'in

the spectra do not match well. The reduced amplitude of the
1arge peak at 300 cm -1 is prob\\ﬂy due to sample inhomo-
geneity; excess transmission. through the "thin spots" in

the sample has a stronger effect.when the extlnctlon is hlgh.
At higher frequencies peaks will be washed out becduse of
the variation (:5%) in radius gromzfibre té fibre. There
will also be an unavoidable difference‘between the calcula-
ted extinction, in—which all scattered {éys are considered
tobe removed from the beam, and the meastred'éxtindtion,'for
which radiation scattered suffic;entlf close to the forward
direction will still strike the detector. For the geometry
used in these measurements, the acceptance angle of the .de-
tector_was about 2°; from Figs.B:;Sand 3-3, we see that this
may include 5% -10% ot the scattered radiation. Pdssibly
this is the explanation for the missing péak between 700 -~

900 cm 1.
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Fig. 415

Calculated (solid curve) and measured extinction

‘for. Polarguard.
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, Fig. 4-6
o _ R

Extinction efficiency for Hollofil. The dotted curve is
the result of direct measurements. The calculated curve

ignores the hole in the. centre of the fibres.

A
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In Fig..4.6 the noise level is higher, but the
match between theory and experiment is excellent at high
frequa?cies. The broadening of the large peak at 200 - 700

cm is due to the hole in the fibre, an effect seen clearly
in published results for hollow cylinders at perpendicular
incidence (Rerker, 1969; Evans etal. 1964) . oOverall it would
appear that the effect of the hoie is not very large, but .
there is considerable uncertainty in these measurements.
Figures 4-7 and 4-8 show more of the calculated
optical functions. The efficiency QT' that is, the sum of
the absorption ané "backscattering" efficiency, is shown in
Fig. 4-7 (solid curve) QQ?% 11.7-pm radius fibres, along
with the thermal weight functi§n dB/dT evaluated at 300°K.
This weight function indicates the relétive contribution of
each frequency_to the radiative tfansport. More than 96%
of the integral of dB/AT lies below 2000 cm L. Figure 4-8
shows Qp (dashed curve) and the absorption efficiency Q.
(sclid curve) for polyester fibres with a radius of 13.2 um.
The curves are almost identical with .those for the smaller
fibres shown in Fig. 4-77 and FPig. 4-4,

In Fig. 4-8 th backscattering and absorption par-

tially complement eéch other so that QT is a smoother func-

tion of frequency sthan either of its components. In the re-
gion 500 -700 cm ¥ where the absorption. is low, the scattering

is relatively large; between 1000 and 1400 cm“l, the ab-



Fig. 4-7

" The transport efficiency Qp (sum of absorption and weighted
scattering efficiencies) calculated for Polarguard. Also
shown is the thermal weight function dB/dT at a temperature.

of 300°K.
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. Fig. 4-8

Transport efficiency Q and absorption efficiency Q calcula-
ted for randomly oriented polyester fibres with a dlameter

of 26.4 um. This represents Hollofil, if the hole in the

fibres.is ignored.



119

- (1=W2) ADNINDIYS .

000¢ 004Gl Q00| 000G
T T T
P
_.,_ __‘~~ / h
/ , N
___ ‘\:_1__ ._.a_ -{___ 3
B i _- ! -_ :_ 1 __ —.—" = w O ¢
\ ____ \ . n
1, W _ ___:_ [t
| g 1) 1 ) A
_ - v, o\ -ar___.__ _._ ' __..._h \ - .
- N RV v.! y _“ f_ ".3 = Imo
—_— _ I
O ___
o
| |

AON3ID1443



120

sorption is strong and the backscattering ;s very weZk. At
some frequencies QT is larger than the geometrical-optics
limit of 0.78 for opaque fibres which absorb and scatter
isotropically. The thermal average of QT is smaller, about
0.675. Note that QT is about half.(or'less) as large as
the extinction QE; in a radiative-transfer model based on .
isotrop;p scattering, QE wou;d replace QT' An early attempt
on our part to use such a model togéther with the measured
extinction cross-section led to very poor'agreement with the
measured heat transfer, for reasons that are cléar on com-—

paring these two spectra.

4.3 Thermal measufements

The parameters KA and KT.are obtained by averaging
QT and QA over-frequencies with the thermal wgight function
dB/dT shown in Fig. 4-8, according td (2-32) and (2—33); A
factor 2/(ﬂapf) is required in going from the efficiency Q
to the cross-section per uniélmass K. Foxr hollow fibres,
there is a correction to Pe to account for the material re-
moved. Table 4-2 shows Ka and Ko for Po}arguard and Hollo-
fil at a temperature of 30°C. Sévefal arameters which
characterise thelheét transport are cadculated at a nominél
batting density of 10 kg/m3 and listed\in the same table.
The optical paraméters kA and ¥, are nearly equal for the,

two materials, a conseguence of their having almost the same

surface area/unit mass; the average efficiencies themselves

-~
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/
change very slowly with radius for thi; size of fibre. Of
course, we have not inéluded the effect of the hole on the‘_
scattering; we have assumed that it Serves only to reduce
the weight and the thermal conductivity of the fipres.

At the nominal density of 10 kg/m3, a little lower
than the average uncompressed density of both materials, the
radiative conductivity is 20% larger than the total air
Plus fibre conductivity K. ER is inversely propqrtional Fo
density, and at p = 12 kg/mB_;f so, the radiative and con-
dhct%Ve-contributions arevequal. Note that K is enly . 7
slightly different from K. {p+ SO that only 2% of thedéohduq-
tive heat flow is carried by -the fibres. This contribution
is“of";ourse proportional to ‘the density.
| Two tyPiéal lggéth scales for the heat transfer, .D
andp;-‘l defined by (2-63) and (2-55) reééectiveiy, are
given in the last two columns. D is equal to 4/3 (DK ) 1,
and is the effective optlcal depth or dlffu51on length for
the Qhefmal radiation in the sénse that, for black bddndaries
and in .the absence of conduction, the thermal resistance of
a batt is proportional to (1+L/D). Here L is the thickness
of the batt, so L/D is the "optical" thickness, and the
extra 1 'is the boundary contribution. Each layer of thick-
ness D is equivalent to adding another. opaque sheet between

the walls. At a density of 10 kg/mB; D is about 5 mm.” Since

D « 0_1' we can restate this by saying tﬁat one diffusion

v
]
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length corresponds to a layer of surface.density 50 g/mz.

The other length scale, p_l, is the length scale for energy
transfer between the radiative-and conductive modes. At
lO_kg/mB, phl is less than 2 mm;‘which means that the pré—
portions of the total heat flux carried‘iq each mode quickly /
reaéh their limiting Qalues (i.e. the valﬁes appropriate to

an optically thick batt)'as we move aﬁay from the boundaries.

Unlike-fthe other pafamete;s, p_l is only approximately pro-
portional to -1; it also contains a factor'(l+KR/K)";/2’
lowly with increasing density. . A

which inﬁfeases
Two sets of thermal measurements are available to
‘cpmpére with the'preqictions of "the théory. Beth were made
by Brian Farnworth of DREQ using heat—%low meter apparatus.
The machine consists of two large parallel plates with black-
ened surfaces which afe_mainfained at differeﬁt uniform
_temperatures. Betﬁeen the piatés is the sample under test,
and in series with it (against one of the plates) is the
heat-flow méter itself. This is a slab of material (e.g.
cork) whose thermal resistance is known, equipped with ther&o—'
couples on both surfaceslto measure thé temperature difference

]

across it. Therefore the heat flow through the meter can be

calculated, and'the'deometry is such that ‘the same heat must
flow through the sample under test. From the heat flux and
the ¢Jemperature difference across: the sample, its thermal

A
resistance is calculated. The accuracy of such measurements
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is limited by the precision of the thermocouples, by the
uniformity of the temperature in the directions parallel to
the sample surface, and by the calibfation of the heat-filow
meter. ‘

Table\ 4-3 lists values for the experimental and
theoreticai fhermal resistance‘of S'Polaréuard and 3 Hollofil
samples. The experimental values were taken from Farnwofth
et.al. (1979) and were obtained using an apparatus calibra-
ted from measurements on air gaps of varying thickness. The
density is roughly the same for all samples, with thickness
varying by about a factor of 2. Values of L/D range from
"3 -6 for the Polarguafd measﬁrements,'and 4 -8 for Hollofil.
Thgoretical values were calculated from Eq. (2-62) using the
optical functionéiobtained from measuréments on-Mylar sheet.
No measurements on .the fibrous materials, themselves, excébt
for the fibre radius, went into the calculation, and no
adjustable parameters‘are used. The réSults are in exgellent
agreement (within tﬂé:experimental uncertainty of 2 - 4%) kor
all five Polarguard samples. For two of the three Hollofil
'samples,'fhe theoretical resistanées are about 10%-too low,
while the third agrees within'the experimental uncertainty.
The iar%?st source of error in the calculations ié,the un-
certaiﬁty in thé.fibre radius (or inner and outer radii for
Fhe hcllow fibeQVT' An errdr of' EO.S ﬁm on each radius

.o . . )
measurement gives an. uncertainty of *4% in K K, and KR for

AT U7
Polarguard, and *7% for Hollofil (because 2 measurements
. r -
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\_
are needed). Since the -radiative transfer aCcountgkger
about half the heat flow, the error in the thermal resistance

.wWill be ebout half these velues - The remaining dlscrepancy
in the Hollofil measurements may lndlcate extra scatterlng
ﬁrom the central hole, which has 30% of the surface area of :
the fibre. As noted in the previous'section, there was. in-
creased extinction_observed in meaSurements‘on Hollofil as
compared to that calculated for.solid fibres.  The absorption,
'howenef, is probably redyced somewhat, ané the net effect is

“difficult to guess.‘ Caieulations for hallow fibres at pexr-

‘ pendicular incidence using the Mylar n and k would probably
provide a .useful, though not exact, estimate of the effect
of the hole on K, and KT.x‘ -

~ On the other ‘hand, it should be noted that the dis-
ctebanty,between the-theoretical and experimental results
fo; the_three Hollofil samples has no regular behavior as

a function of sample density or thickness, and is probably

due in part to SOmewhat'larger experimentai uncertainty
‘than quoted in Table 4-3. ’ a

A second set of thermal measurements was made en
Polarguard by Dr; Earnworth using a new apparatus'calibre~
ted with the aid of standard samples (high~density glass
fibreboard) supplied by the National Research Council. The
apparatus and measurement technlques are described in McKay

et al. (1984) Flgs. 4-9 and 4-10 show the results and the

¢ theoret1ca1 predictions. A set of measurements at constant
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thickness (50 mm) and temperature (31.3°C) was made by

compressing 1l to 5 layers of 270 g/m2 (8 oz/sqg. yd) Polaré
gpard between the plates. These measurements are shown in
Fig. 4-9. The horizontal axis shows (density)—l, and the

vertical axis is the effective conductivity K defined

eff’
as the heat flow per un;t area divided by the average tem- -
peratufe gradient. The horizontal error bars - represent the
u;certainty in the batting density, due 'primarily to tge
error in meaéurement of the area 6f the batt. There is a 1%
error in the vegtical direction due to caliﬁration accuracy
of the apparatus; this is about the size of the experimen;
tal circles at the larger values of Keff' and half_that s%ze
at the lowest value. The solid curve shows Eﬂg/thebfeticél
calculation. Three of the experimei}al ppin£§ lie right on
the curve, two are below by about fhe maximum estimated un~. ®
certainty, and only one measurement appears to'differ sig-
nificantl& from the theory. It is possible the diffusion
model breaks down for the two lightest battings, which have .
densities of about 6.0 kg/mB'and 5.5 kg/m?. At such densi-
ties, the diffusion length is about 10 mm, or 1/5 the batt
thickness. Therefore 40% of the matérial is within one dif-
fusion length of a boundary surface, where ‘the assumptions.
of the diffusion model are less accurate. We should also

consider the uncertainty inthe fibre radius. A ' smaller fibre

radius would move the theoretical curve downward in Fig.



Fig. 4-9

A

Effective thermal conductivity of Polarghard batts of various
densities. Each point fepreéents a thermal measurement. The
. s0lid curve is the theoretical calculation using only the

fibre radius and the bulk properties of pélyeste:,
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4-9, with points at low density (the right-hand edge of

the graph) being more affected? as a larger proportion of
the heat transfer is by radiation.

" ) Fig. 4-i0 shows measurements at three different
temperatures for the same. batt. The error bqﬁs on the ex-
perimental points indicate the calibration uncertainty of
the heat-flow meter; the uncertalnty in the denSLty is in-
cluded in the theoretical results, which are shown as the
‘shaded band on the graph. Two points lie below thls region
by about twice the callbratlon error bars, while the thlrd
'agrees well with the predlctlon. However, the error in the
radiug'méasurement has not been inciuded. A 2% error in
the fibre diameter (+0.5 um) would nearly double the width
of the shadéd region,'and comfortably iﬁpiude the experimen-
tal points. For measurements wi;h\?n o§¢rall accuracy of a
few percent, the si@ple heat-transfer model appears to be

completely adequate. N

4.4 Other Materials

LY .
Since the heat-transfer model based on the -diffusion

. . <« X o o
approximation sugcessfully. redicts the thermal resistance
within the 5% or so total accuracy of the thermal and density

- ] .
F&é?gééégnts, we can use it to investigate theo etically

. the effect of changes on fibre size or composition. These
N ~

Qrépéxbressed most easily in terms of the effect on thag'

radlatlve conductivity parameter KR

[ . N



- !
Fig. 4+10 | .

o

Effective thermal conductivity of Polarguard vs. temperature.

. !
Thé points are thermal measurements, and the shaded region

is the range of théoretical values corresponding to densities

in the interval 10.9:0.3 kg/m3.

>
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.

For a constant (frequency-independent) refractive
index, there are two parts to the effect of variations in

fibre diameter. The 'radiative conductivity' K_ (equation

R
(2-56) is inverselg proportional to the thermally-averaged
cross~section per unit volume pKT,-which is defined in (2-32)
as an average over frequency of the absorp;iép plus weighted
écattering cross-section per unit volume, (A-+SO—Sl). In
chapter 3 this cross-section was expressed as the product

of the geometrical cross-section per unit volume 2f/7r and
thg 'transport' efficiency QT' For large radii (compare& to
wavelength), the efficiency QT approaches a constant, as
-shown in Fig. 3-8. Therefore the radiative conductivity,
ought to be proportional to fibre radius for large fibres.

As the fibre size is reduced, however, the efficiency itself
eventually drops to zero faster than the fibre é{ga/unit
volume'inpreases. In'Fig.'3—8 Ehis_drop in QT occurs where
the wavelength is roughly 4 times the fibre diameter, the
precise value depending someﬁhat on the refractive index of
tHe material. AtAvery small ?ibre diameter, the material
again becomes transparent and Ké:Epcreases. in between there
should be an optimum_fibre size whigh prgvides the maximum
thermal insulation per unit‘weight if the mechaﬁical stiff-
ness of the fibres is not a consideration. ' Jk\\

In'Fig. 4-11 the variation of KR with fibre diameter

is shown for a material with a ‘constant refractive indef:i>



Fig. 4-11

Calculated radiative conductivity parameter K, for two hypo-

R
thetical materials as a function of fibre radius. The solid
curve is for a_ material with a conétant refractive index

n=1.7, k-=0.02, and the &ashéd'curve is for perfectly-

conducting metallic fibres.
y ;

S
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n=1.7; k‘=0.02 The results shown are .for a temperature of

e

30°C and a constant volume fractlon f =0. 01 whlch means that

the battlng density is held constant.

At large diameters, Kp is approximately proportional;

to flbre size, with a slope correspondlng to Q ¥ 0.65. It

-

a5 a mlnlmum at about 1.5 uym diameter, and rises steeply

elow about 1 um. This suggests that by reducing the fibre

'diamefer} the weight of insulation required for a given le-

vel of performance could be 1ncreased by a factor of more
than 10 (as compared to 25- -um fibres), all else belng equal

In practlce the reduction in mechanical stiffness of the

fibres is a problem, but it is clear that no advantage at all

is gained by adding fibres smaller than about 1.5 uﬁ diameter
to the batting.

Fig. 4-11 also shows the predicted KR'for a mate;ial
composed of electrically conducting (infinite cohductivity)
fibres, which might inepractice be represented by fibres with
a metallic coating In this case there i5 no increase in KR'
at small diameter. ‘The reason for this is shown in Fig. * -

4-12, which gives the total scattering Qg and the weighted

scattering Qs (this is equal to QT if there is no absorﬁtion)

for conducting fibres 12 um in diameter, calculated from

{3-18) and (3-19). At low—frequencies both efficiencies

diverge as 1/v, due to TM scattering from Longitudiﬁal cur-

rents induced in the fibres. For a real material with a .

—

.4



Fig. 4-12
4 . ' _
Total scattering Qg and wqighted_scattering QS calculated

for metallic fibres 12 um in diameter.
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finite conductivity and finite.fibre length this divergence

t

. would be removed. At high frequepcies, QS in Fig. 4-12

approaches the value /4 % 0.78, and the KR curve in Fig.

L] -

4-11 is essentially identical to the straight line generated

by assuming a constant value Q = 0.78r The factor n/4 is 1'
T .
just the average projectlon of the geometrical cross- sectlon

of the fibres onto the z- dlrectlon It is easily shown that

T

the scatterlng from randomly-oriented large reflecting cy-

llnders (geometr;cal scattering only) is 1sotrop1c, ahd se
‘Q;‘= Q-s =_n/§._ In Fig.‘4-12,"Q5 has twiee thie yalue, the'
extra ecattering'being the diffracted wave'which fills the
shadowwbehind the fibre (Van @e Hulstt_l§5?). This scatte-
riné is ‘close to the forward directionh and does ngt con-
ltributefsignificantlyﬁto Qp- The 20% increase in Q.. and
cohsequent 20% reduction in Kgﬁfor conducting fibres as_
_compareefwith dielectric fibres in Fig. 4-11 (for 23.4~um

" . fibres, KR is reduced 16% from the value calculated for

Polarguard) corresponds to¥e out a'20% reduction in the ra-
.dlatlve.component of heat ransport in reasonably thick.

batts with black boundary surfaces. -A much greater reduc-
: .

. tion could result if reflectiversurfaces,are used and the

\

insulation is not tod thick. Because the absorption cross-

section is small, the c ing length p_l (equation (2-55))

is long.’ In principle, .th orption of the metallic fibres

could be calculated from the in optical.parameters for;

3
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metals such as alumlnum given by Bennett-and Benﬁett (196é),
but since n and k are ~ 50, the scatt ng coeff1c1ents would
need to be calculated fo;;hlgh orders (hi .er than n =100)
which would requlre excessive computer time, and tQF ‘Bessel

. function subroutlnes ,would have to be rewritten. 'In any

case the results would not apply very well to ;ﬁal~(1 e. some-
what, dirty) surfaces. Values reported by Bennett and Bennett
for reflectance of plane metallic suffaees.suggest'that 43

-

Dr .s0 absorptien is probably a reasonable estimate for Al--

-

coated fibres, within a factor of 2. Vexy approximately,
’ 1

this would result in a five-fold increase in p-.1 over the
values for Polarguard shown in Table 4-2. Thus the inté)aej

. L
tion lepgth for ‘energy transfer between radiative and con--

-

. - [ ] 2
ductive mbdes would be about .8 mm for Al-toated Polarguard

fibres at a density.of“&ﬂqo kg/m3. At best, then, the re-
duction 1nJradlat1ve thermal transport due to coating the
fibres and boundary walls glth a reflectlng“EiEEE;al would
be similar to the effect of adding 163 more material (be-

\céuse'KR'is reduced 16%) plus an extra 150 g/m2 (for the*

\\;Encreased "boundary resistance" due to the reflective walls)

¥

~#providing the material is several QPtical deptne thick. fThis .

is.‘afsubstantial'impf\vement, but by.no means as dramatic
as the effects-ofla large redugtion in.fibre radius.

o In Fig. 4-13 we show QA.and QT_for randomly—oriented
glass fibres of +6 um radius (an approximate value for. some

o “.1 ..

3
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Fig. 4-13°

"

Absoxrption and transport‘ eff1c1ency Q and Q calculated

for randomly orlented glass flbres of 12 um dlameter.
. ~ -
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© Fig. 4-14 .

Calculated radiative conductivity parafieter K for glass

fibres' as'a function-of fibre diameter. Thg temperature is

Bdbﬂcianq‘:ggﬁfihi? volume ﬁ£335;on is £ = 0.01.
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commerc1al low-density bulldlng 1nsulatlon) The calcula-
tions used the n and k values for ordinary glass, measured by
Hsien and Su (1979). It is clear that absorption is the most
important part (ahout 80%) of'QT. In the absence of direct
measurements of optical properties, it-had ofteh been assumed
that‘scattering and not absorption was the dominant factor

in radiative thermal transport in glass—fibre insulation
(e.g. Shirtliffe, 1980). The predicted va:vation of Kp with
fibre radius is shown 1n Fig. .4-14 fpr a nominal filling
factor f =0.01. We see behaviour 5imilar to that-shown in

Fig. 4-11 for the dielectric fibFT S5 hough the minimum

. .
value of Kﬁ“ié not as low in th

: of.giass fibres, and it
occurs for fibre diameters of about 2 um (at 30°C).

"Similar calculatiqhs fot giézé fibre boafd (fibres
randomly arranged in a plaheY“bQ‘Frtske'et ai. (1983) shows
very good agreehent with thermhl measutemente'on evacuated
fibre ihsplation (Reiss and Ziegenbein, 1983). In orxdinary m.)
bulldlng insulation the fibres are not of uniform dlaT;xer
and the radlatlve portlon of the heat transport is a smaller.
-part of“the total (v 20%) than for PolarguarddEnd Hollofll,
s6 we have not made quantltatlve comparisons wfﬁh thermal

4 .
measurements for these ia;ﬂilals.

4



CHAPTER 5

CONCLUSION

. w

We have presented calculations of the infrared opti-
cal properties of polyester’fibre insulation materials based’
on the properties:of the bulk material from which the fibres
are made.- Comparison between the calculated abébrption and
extinction coefficients and direct measurements show reason- -
ably good agreement over’the frequency range- 100 -2000 cm-l.
Some discrepandies are noted for the material Hollofil, which
is actually a collectlon of hollow tubes. The measured ex-

*

tlnctlon cross-section shows behavrour similar to ‘that re- -
J -

' ported rn the llterature for‘hollow cyllnders at perpendicular

incidence The absorption cross-section of Polarguard shows

some differences from the calculated cross-section whlch may
be related to dlfferenbes in the mlCrOSCOplC structure of
the materlal in the fibre and the. Mylar fllms from whi'ch the
refractive, lndex was obtained,

Both the scattering and absorption cross-sections were

- found to be reasonably large and‘strongly frequency-dependent.
P l a

In addition the scattering was hlghly anlsotroplc being t
strongly peaked 1n the forward dirgction. a d1{§u51on model
which could accomodate absorptio and anlsotroplc ‘scattering
was used to model radiative heat transfer in the insulation.

It waaZfound that the combination of absorptlon and scattering

g- 139
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C -

¢
which was reqﬁired as a parameter in the model varied much
less dramatically with frequency than either the absorption
or the Scattering separately, which helped to j stify re-
placiﬁ; the frequency—debendent integrodifferq#i)al equations
with‘frequenpy;averaged "grey" differential equatlons. The
heat transpoft calculated from the model agréed very well
with direct measurements of the€rmal resistance as a function
Pf denﬁity and temperature for the polyester matérials. Dif~
ferences of about 10% in the case of Hollofil may again be
related to the presence of the hole in the centre of the
fisre. > _ .

The calculated thermal rei/glancegz;ere derived from

the bulk propertles of polyester énd used no adjustable para-
meters. The close agreement with experiment should eétabllsh
the adequacy of the dlf§u51on, or P- 1,approx1matlon forﬂ
thermal transport calculations in practlcal insulation ma-
terials. At ‘the saée time, it shows thét models' based on ,
pure abéorptioﬁ, buf; scattering, or isotrop{j scatteringa.

will not be accurate if correct optical parameters are used.

Nor will the two-flux model give correct results for reason-

ably thick materials, although this dépendé on exactly how

the model equdtions and gayﬁﬁeters arecﬁﬂﬁned, as explainéd
in Chapter 2. . At the same time, a qualitative discussion of
the dependence of the heat transfer on the proberties of the

medium indicates that all these models can represent a wide

/
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range of measurements if the parameter is fitted to tﬁermai
measurements rather than derived from specific oétical proper-
ties. .

Results for the "radrative conductivity" of two
materials as a function of radius.were presented in the last
section of Chapter 4. . For dielectric fibres there is a
minimem in the radiative conductivity for a fibre size of
one or two microns, depeeding on refractive index. The true
é»{gimum size would also include considerqtione of the me-
chanical stiffness of the fibres{.but calculations of the
tYpe presented here are- clearly useful for optimisihg in-
sulation properties. It is shown that modest 1mprovements
-could be obtalned bnglVlng the flbres a metallic coatlng,

. pgrtlcularly if the goundarles were also reflective A com-
pPlete calculatlon of the heat transfer would depend crltlcal—
ly on %he reflectance of the metal surfaces. It should be
possible to measure this using the nqﬁgesonant cavity, but

a saﬁple with surfeée area of a few cmz-eould be required.

A rough estimate sugge;ts -an iﬁprovement of about 50% for a
270 g/m batt with the characteristics of Polarguard and
less for thlcker slabs.

There are Several appfeximations in the solution
“which could be elininated if more accuracy is needed. The
'simﬁ!&st.improvement is to replace the approximate affalytic

'solution (] the nonlinear radiation and conduction equations
g
) '
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N
with an exact nqperical solution. This Q ld certainly be
rdesirable if the temperature difference atross the material
were much 1arger; Next in difficulty is an improvement in
- the treatment . of fhe angular variation of the raaia :
inteﬁsif&, particularly/%gar the boundaries. Methggjfj;ich
rely on an expahsion of’the scattering function in Legendre
_poiynomials‘should probable be avoided, or at least apT'
proached Qith care, as the phase function for randomly-
oriented fibres has a divergence at 8 =0, It may be possible
‘to ﬁormulatelthe problém in terms of an éypapsion of the
smoother quantity 2nsinBQs(8) in -appropriate functions. Most
- difficult to improve on is the app;ogimatioé thgt the ma-
ﬁerial is-grey.- Pomraning (19f3) discusses methods of -« .
formulatiné-the problem with several frequency groups. Un-
less;this question is tackled, it is probably not very use-
ful to\put a great deal of effort info improving the other

steps in the calculation.
) _

/ . _
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) APPENDIX 1 . o
‘ s N |
HEAT-FLOW PROGRAM :

- Subroutine HEAT (f/ﬂ
,Returas total heat flux in watts/square meter, given —H\\“\\______ﬁ;“

batt density, fibre bulk density, thermal conductivity of air
and. polyester, transport and absnnptioziﬁpan,opacities,

thickness, Celsius temperatures at the-fidundaries, and - N
emissivities at. the boundaries. All parameters are in MKS. K\

Inputs : . o ' . : »x
RHOB - density (kg/m3) of batting -\
RHOF - density of bulk fibre ‘naterial
KAIR - Thermal conductivity of~dir -
KPOLY  _ conductivity of fibre material '
KAPT — transport mean‘opacity, kappa-T
KAPA - mean absorption kappa-&
Z - thickness of batt .
- TC4,TH - Celsius temperatures at walls
EPC,EPH - emissiigties'of walls
Outputs:
H = hbeat flux in W/sg m
/PHEAT/ — common block containing the following
output parameters: .
- P - "interaction" coefficient p
ALPHO. - these are the coefficients of the solution
ALPH1 - for the temperature T(x), called CO - €3
ALPHZ - in the text.
. ALFH3 - T = ab +alx +aZ exp(-x)+ a3 exp(Z-x)
KCON -~ conductivity of air + fibres
KRAD - "radiative conductivity":
gggﬂgg;!gf HEAT(BHOB,RHOF,KAIR,KPOLY,KAPT,KAPA,Z,TC,TH, g
1 ’ . e - : . /\
REAL KAIR,KPOLY,KAPT,KAPA,KCON,KRAD & f
COMMON/PHEAT/P ,ALPHO, ALPH1 , ALPH2, AL.PES , KCON ,KRAD ))
DATA SIGMA/5.6L96E-8/ . ’ ..
TKC=TC+273.15 _ "
TKH=TH+273.15 - . : .

' TO=.5%(TKC+TKH) | W o P
DELT=TKH-TKC - %
GAMSQEHOB*(KPOLY+S.*KAIR)/(RHOF*S.*(KPOL::;QEE)) ..

AMF ) #KAIR+GAME*KPOLY?  ° 3 .

KCON=(1"

oo o . -
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c
€ This.is the cunductlve part for air + randomly-orlented fibres

- C : e

KRAD=14. *SIGNA*TD**&/(3 *RHOB*KAPT)

P=SQRT(14. *SIGHA*RHOB*hAPA*TD**3/KCON+3 *RHOB**Z*hAPA*KAPT)
C=1.5#RHOB*KAPT '
A=EPC/(2.-EPC)

DC=A%Z . ¥SIGMA% (TKC*%4~TO*%4)
EC=C#*A &
"A=EPH/ (2. -EPH)

DH=A*2 . *SIGMA* (TKH*#4—TD%*%4)
EH=C#*A

XPZI=EXP(-P*Z)

-

R1=1./1 . i} /-

IF(P.GT.1.E~15) R1=P/(1.-~XP1) : '
C3=DH+.5*DELT*#KCON* (EH+R1% (1 ,+XPZ))
C4=DC-.S5*DELT*KCON* (EC+R1# (1. +XPZ))
A3=KRAD*EH+KCON® (EH+P* (1. =XPZ}/ (1.+XPZ)),
A4=KRAD*EC+KCON* (EC+P% (1 .—XPZ)/(1.+XPZ))

B3=—~(KRAD+2. ¥R1*Z*KCON*XPZ/ (1 .%XPZ))

"B4=KRAD+EC*Z# (KRAD+KCON) +R1#Z #KCON# (1 . +XPI#%2) / (1. +XPZ)

DET=AS*B4~A4*B3 | -
ALPHO= (C3%B4—C4*B3) /DET
ALPH1=(C4#A3—C3#A4) /DET

ALPH2=0. .-

‘ALPH3=0. . .
IF(P.LE.1.E-15) GO TO 1 _
ALPH2=.5%DELT/ (1.-XPZ)~ALPHO/ (1.+XPZ)+ALPH1%Z/ (1. /XPI-XP1)
ALPH3==(.S#DELT/(1,-XPZ)+ALPHD/ (1.+XPZ)+Z¥ALPH1/ (1,=XPL¥%2))

1 H=ZALPH1# (KRAD+KCON) | C ] ﬁ[
. ALPHD=ALPHO+T0-273.15 . ! Gives starting .point in Celsius
RETLRN : | o
END | ‘
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APPENDIX 2

" PROGRAMS FOR RANDOMLY ORIENTED FIBRES . ) o

Program FIBRE-

This is the program that calculates the’extinctione
and total scattering cross—sections~ the (1-cos theta)
weighted scattéring, and the differential cross-section as a
function of ,angle for 64 scattering angles. The normalisatdon
is arranged so that the total scattering is just the sum o
the values for.individual angles (do hot divide by &4 or
multiply by sin theta).

Inputs : the program calls a routine SFIBR which fills the
COMMON block /SPAR/ with the following parameters:

-

KFMIN . -/ first frequency point to use
; * KFMAX -\li't A " n i " - i
: AZERO - scattering parameter alpha™tZD1 » radius/wavelength)
: at Airst fréquenc%/point
o

® 512'équa ly-spaced frequencies.

. . ‘ . oo
DA - increment i a-between successive frequeRgies
EN, CAY - real Warray, cdntaininﬁ refractive index n-i

L

Outputs: !ﬁen gﬂe program is finished, the array SAVG contains
- the efficiencies for extinction, total scattering, and
,,-\\r/ (1¢~ cos theta)-weighted scattering for each of up to
511, points (the 512th frequency may not be used). .
The array SCAT contains the differential scattering '
efficiency times (64/pidn(Zpi sin theta) for each of
b4equally-spaced scattering angles pi/128, 3pi/128,

--ey 127pi/1za. |

COMPLLEX RFRAC
" VIRTUAL DSPH(&4,647,54VG(3,511),5CAT (44 ,511) )
~ COMMON/SPAR FMIN,KFMAX,AZERO,DA,EN(S12) , CAY (512) ’
- COMMON/ASVBL /K12 . o . ‘
** DIMENSION FCOEF (82) : ‘
* DATA P1/3.1415926535/ _ -
DTHET=PI/256. — ‘}
. CALL SFIBR '!'Fills /SPAR/-and opens output file (12) '
- . ATL ! Initialisatiop for FILL
THET/1.5 ! The Simpson’s rule factor h/3; DTHET=pi/256

‘00-1 KF=KFMIN, KFMAX ! Bet output agrays to zero
SAVG(1,KF)=0, '
SAVG(Z,KFJ;D.

I 4
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00

c

10
11

48
20

-
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- * L]
Y SAVG(3,KF)=0.
“ DO 1 N=1,44
SCAT(N,KF)=0,

Now the real calculations begin. The outer‘logp runs through

fibre angles, and the inner loop through frequencies.
DO 20 I=1,128 : . :
MXBIN=1+(1-1)/2 ! MBx bin # of scattered radiation
THETA=FLOAT (1) *DTHET 7 -
SNTH=SIN(THETA) ; - ' - e
FACT=FCTR*SNTH ! For the total scattering integral e
IF(MOD(X,2) .EQ.1) FACT=2.¥FAGT ! Double weight on even pts /
IF(1.EQ.128) FACT=.5%FACT ! Half weight for endpoint
FACT2=FACT*SNTH##*Z2 +“for the (1-cos) weighted average
FACT3=FACT/P1 ! To normalise the bins: #*2 far other

N

half of integral; /2pi from defn. in INTNS

CALL FlLL(THETA,d,JMAX,DSPH) Y Fills DSPH ' ‘f\—h\\
!.will be highest JMAX reiuired by INTNS
Ay . .

DO\18 KF=KFMIN,KFMAX

RFR i&mﬂtX(EN(KFT,—AMAX1(CAY(KF),D.))' *
ALPHANAZERO+FLOAT (KF—1 ) #DA - i

CALL INTNSC(ALLPHA THETA,RFRAC,32, NEH,XTNCN,FCOEF)
JNEW=MI D(JNEthé) : ! These statements check
IMAX=MAXD(IMAX ZINEW) to see_if more

IF (JNEW.LE.JMAYS GO TO 9o

JMIN=JIMAX+1 L
JMAX=JNEW
CALL FILLGTHETA,JMIN,JMAX,DSPH)

1
! coefficients are

! needed, and update
! JMAX and DSPH if

' .

T
required. . ’ " . }H&h

SAVG(1,KF)=5AVG (1,KF)+XTNCNFACT ‘ , | (’F\k
SAVG (2, KF)=5AYG (2,KF) +F COEF (1) *FACT - : ' ‘
SAVG(3,KF)=SAVG (33KF) +(F COEF (1)~ . 5#F COEF (2) ) ¥FACT2 .

C The integral of 1 is 2pi, and of cos(phi)*#2 is pi-

00 11 KBIN=1,MXBIN L =
XSCAT=0. o e
e DO 10 J=1,JNEW A oo
- XSCAT=XSCAT+ECOEF (J) ¥DSRH(J ,KRIN)
. = 'CONT INUE
\. »  SCAT(KBIN,KF)=SCAT(KBIN,KFFXECAT*FACTS ~
1F (MOD(KF,5).EQ.1) TYPE 200,1,KF,JNEW

" CONTINUE :

CONTINUE . N | , ]
: \ i .

- v s
Now the arrays are ready for output.
DO 30 KR=KFMIN,KFMAX " 1~Rewrfte output file _
. . T . . ’ - \
' ‘/\ . e
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. ol

* IMX=INT(THETA/DTHET-.0

DSPH(i,IMAK)=PI—0LDPH

- - ' 151,

KF=KR ‘ -
WRITE(12'KF) (SAVG(N,KF),N=1,3),(SCAT (N,KF) ,N=1,b4)

CLOSE {UNIT=12)

STOP ‘' Finished at last.’

FORMAT('+ Angle #’,14,’ of 128, frequency #,14,16,
' goefficients’ ) ) A .
END

-
*******************************************************

s

Subroutine FILL

This subroutine fills _the array 0SPH with the values
of delta(sin kphi) for each interval of scattering angle and
all values of k up to KMAX, for the fihre angle specified.

a .

SUBROUT INE FILL(THETA,KMIN,KMAX, DSPH)
VIRTUAL DSPH(&4,64) ' (KMAX, number of bins)
COMMON/SBINSYSNB (64), CKI (64) ! Filled by SFILL
_DIMENSION SKOLD(@#),PHI(64)
DATA PI, THET/3.1415926536,2.45434692606E~2/

“

KI=KMIN
IF(K1.GT.0} GO TO 2 -

IMAX=IMX+1 .
IF(IMX.LE.0) GO TO &
SINV=1./SIN(THETA)
OLDPH=D, .
: -7 D01 I=1,IMX
SHPH=SINV*SNB (1) v v
PHNEW=2 . *ATAN(SHPH/SQRT (1.-SHPH#%2) )
PHI (1)=PHNEW
DSPH(1,1)=PHNEW-OLDPH
OLDPH=PHNEW

L

K1=1 .

IF (IMAX.LE.1) RETURN

D0 3 K=K1+1,KMAX+1 ™

SKOLD(KY=D. . |

) DO & I=1,IMX =~ & . .

PH=PHI(I) AP ¢

: DO 4 K=K1+1,KMAX+1
SKPH=SIN(PH#FLOAT (K-1)) .
DSPH(K, 1)=(SKPH-SKOLD (K) ) #CK1 (K)
SKOLD (K)=SKPH_ '

bR CONT INUE /j

-t

DO 5 K=K1+1,KMAX+1 .
DSPH(K,IMAX);-SKOLD(K)*CKI&K
>

o~ -

~

e
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5 . CONTINUE 7
' RETURN e :

6 "DSPH(1,1)=P1 j ! All scattering is inteo first binffkn_

DO 7 K=2,b4
7 DSPH(K,1)=0.
: RETURN . . ~—
END
[ -~ . ’ ‘I

C 30340300003 020606 36 3 00006 0 0006 30559090906 360006 6 96 9306 96 3096936932606 06 0 6

C

c . Subroutine SFILL

< ‘ \ : \

C "'eiThs constant arrays fog FILL.

c

SUBROUTINE SFILL
CQMNON/SBINS/SNB(&Q),QKI(bé)
DATA PI,DTHET/3.1415%&#536,2.4543692606E—2/

c )
. CKINV=1. \
© 00 1 K=1,64
CKI(K)=CKINV -
CK=FLOAT (K) ) .
SNB(K)=SIN(CK*DTHET) . , v
1° . CKINV=1,/CK. '

\Q RETURN ‘ _ A

S _ :
- .
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. A APPENDIX 3

-

SCATTERING COEFFICIENT AND BESSEL FUNCTION PROGRAMS

v

.
\

Subroutine SYL
Returns complex scattering coefficients AN1 ANz ENt for a éylinder
of complex refractive index M ywith axis at angle THET to the
incident direction. .

ALFA — Z#pi¥radius/wavelength.

NMAX - highest order dehlred (flPSt coefficient has
order 0 j.
NUM - highest order calculated NUM is at Ieast

unless NMAX is smallery Coefficients of hlgher
order are estimated to be small by a factor of
1E-8. and ate set to Q. .
AN1, etc. must have length at least (2,NMAX+1). Lo
If ALFA*sin(THET)<1E- 10, routine gives NUM=0 and fills arrays-
with zeroes. ) '
SUBROUTINE SYL (ALFA,THET,M,NMAX s NUM, ANt , ANZ, BNi)
DIMENSION BJ(7S), NY(SU)
COMPLEX AN1(1) ANZ(i) yBN1(1),CJ(75)
COMPLEX M,MINV,AJ,HP H1 RANK, N, JN1, JNP, DELTA ,GAM T
COMPLEX Ci Cz, Ca C4 CS Cb b1,02,03, CINV
STIR(DEL TNOEN) (TNOEN/a 14/DEL)**(1 /THOEN)*THOEN/A 718
APPROXIMATE «ARGUMENT TO GIVE DELTA=DEL .
BETA=SIN(THET)
AL=ALFAXBETA |
IF(AL.GE.1.E-1037G0 T0O 10
NUM=0 .
GO 7O &6 - 8
10 AJ=M#*M-COS(THET)*%2
GAM=CSQRT(AJ)
AJ=ALFA*GAM
NUM=NMAX ' - ' .

- IF(NUM.LE.Z) GO TO 2 T

D0 1 I=2,NMAX _
TWOEN=FLOAT (2#1-2) , -

- NUM=1 : - '

, IF(AL.LE.STIR(1.E8,TWOEN)) GO TO 2 :

1" CONTINUE, :

2 CALL NEUMRCAL,NUM,NY,BJ,WY) ;
IF (NY.LT.NUM) NUM=NY
CALL BESSC(AJ,NUM,CJ)
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"

Pk

HANK=CMPLX (-BJ(2) ,WY (2}
JIN=-CJ(2)

MINV=1,/M o .
B1=BETA/ALFA

© C1=B1#GAM**4*MINYV

5

bhl

7

C2=RETA*RZAMINV*GAMS %4 . <
C3=B1#%2% (M %3-MINV*COS (THET ) %42
Ch=(BETA*GAM) %%3

C5=BETA%*4 % M*GAM**2

Cb=2.*COS(THET)/3:1415927/ALFA**2*(M-MINV)*GAM**Z

DO 5 N=0,NUM
I=N+1 A
EN=FLOAT (N)

H1=HANK

~ JN1=JN

HANK=CMPLX (BJ (1) ,—WY (1))
IN=CJCI) - .
HP=H1-HANK* (EN/AL) o
JINP=JN1-cBN*EN*CINV(AJ)

" BJL=REAL (RANK)
BJLP=REAL (HP)

= BJL{=REAL (H1)
D1=JN*JN .
D2=JIN*JINP
D3=JNP*JINP

DELTA=Di*(2.*EN*C1*HANK*HI—CE*Hi*Hi—C3*(EN*HANK)**2)

+C4*D2¥* (MHMINY ) ¥HANK #HP—D 3% C5 #HANK *HANK
DELTA=CINV(DELTA)
AN1 (I)=EN*D1%Ca&*DELTA

154

Di=Di*(EN*C1*(BJL*Hi+BJLi*H§NKJ—C2*H1fBJLi—CS*EN*EN*HANK*BJL)

—D3%CS*HANK*BJL :

. AN2(I)=(01+DZ*64*(M*HANK*BJLP+MINV*HP*BJL))*DEL%A
BN1(I)=(01+02*C4*GM1NV*HANK*BJLP+H*HP*BJL§)*DELTA

CONTINUE -
IF (NUM.EQ.NMAX) RETURN .
Ni=NUM+2 3 <
NZ=NMAX+1 ;

DO 7 I=N1,N2 R .
AN1(1)=CMPLX(0.,0.4 - . \ \H,,_J
ANZ(1)=CMPLX(D.,D.),

BN1 (1)=CMPLX (0. ,0.h '
RETURN | : :
END —— /

N

Y

************************************************************%&*****
- .t L -

. . ) ‘. ) oL !5\_.,_‘.'

' SYL (alternate).

B, .

) < . /\: .
Alternative versjon of SYL to calculate scatter@ng

L

-
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coefficients
for perfectly-conducting infinite cylinders. .

N eNe]

SUBROUTINE SYL(ALPHA,THETA,M,NMAX,NUM,AN1,AN2,,BN1)
COMPLEX M,AN1(1),AN2(1),8N1(1)
COMPLEX HANK,HANKP, CINV , ,
DIMENSION BJ(50),Y(50)
DO 1 N=1,NMAX+1 .
AN1(N)=(0.,0.? . -
: ANZ(N)=(0.,0.) ' :
1 BN1(N)>=(0.,0.7
X=ALPHA*SIN(THETA)
XINV=1./X ,
CALL NEUMR(X,NMAX,NUM,BJ,Y) '
YTOP=1.E3B*AMINI (4 S,AES(X)/FLOAT(NUN)J !/}im;t of Y
BJ1=-BJ(2) < in YP cale.
. Yi==¥(2) - . .
. D0 2 N=1,NUM+1
" BJ2=BJ(N): .
Y2=Y (N)
ENX=FLOAT (N—1) %X INV
BJP=RJ1-ENX*BJZ . :
BN1(N)= CH?LX(BJA,U J*ClNV(CHPLX(BJz, ¥Y2))
- BJ1=BJZ B
' IF(ABS(Y2).GT.YTOP) GO TO 2 ' (to avoid overflow?
YP=Y1-ENX*Y2 E '
ANZ (N> =CMPLX (BJP,0.)%CINV(CMPLX (BJP,=YP)) .

Y

2 Y1=YZ2 , Ty
RETURN ‘ o
END
************#*****************************************************
: " Subroutine BESSC
Routine to generate integer-order Bessel functions of the
first kind far complex arguments.
' Usage: CAQb\BESSC(Z;NMAX,BJ)
J ' .
2 - complex var;able containing argument
NMAX - maximum order desired oot
BJ _ complex array of length at least NMAX+1 complex
variable swhich on output contains the NMAX+1 complex
values of the Bessel functions of order 0 through NMAX
The methnd is essentlally that of Abramnultz and Stegun, -
described in their "Handbook of Mathematical Functions®. It .Y
s uses a downward re€E§51nn ‘with arbitrary starting values. The
- -functions are normalised using a sum rule. .

/ﬁ\ononnnonoonnono-qno%
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o The routine has been.tested, but not exhaustivély. Error
is ‘largely due to roundoff, and is higher if the argument is
large and the order small, which means that the recursion has
been carried through many oscillations of the function. .-
Nevertheless, accuracy is generally & digits or better for
arguments up to 50, except near zeroes af the functions. It
is possible.that this does ot hold for all directions 1in the
complex plane. PN ¢

Use BESSR (below) to calculate Pessel functions af ceal
arguments. NEUMR is used to calculate simultanecusly Becssel
functioné of the first and second kinds, ior real argoments.
(Bessel functfons of the second kind are called Meuwnann
functions)y. : .

SUBROUTINE PESSC(Z,NMAX,BJ)
COMPLEX Z,ZINV,BJ(1),5UM,ZA,28,2C,CIiNV
IF(NMAX.LT.Q) STOP* BESSC: neqative orger’

ZAB=CABS (2}
. NMP=NMAX+1 '
IF(ZAR.GT.1.E-S) GO TO 2 ‘
EN=1. ' If mod(z){1E~S ,the functions
ZA=(1,,0.0) ' are approximated by the leading
B=.5%7 ¢+ term in the series expansion,
00 1 N=1,NMP . ! which¥is accurate within a factor
BJ(NI=Za —" ! of about Z*«x2Z. g
LA=7A%IB/EN . ' )
EN=EN+1. . ' )

RETURN

bownward recursion to get Bessel function®

E . hall
CALL STBESR(ZAB,NMAX,NST,NDRM) ! Returns NST and NORM
1F (NMaX.BE.NST) GO TO 4 .
DO 3 N=NST,NMP ! These functions are less than about
BJ(N)=10.,0.) ! 1E-40 in magnitude, and are set to
. NMP=NST~1" ‘ ' zero, " . - 2 (

.

" Set starting values. o

ZINV=2,*CINV(Z) . »
EN=FLOAT (NST) . w
ZA=(1.E-28,1.E-29) ) Starting values for the recursion

i
B=¢0.,0.» ! are chosen as small as possible
SuUM=ZR ! while avoiding -underflow when the -
' functions jare normalised.
egin the recursien A -
DO 5 N=NST,2,-2 . , : AN
. ol ;&
L . 2
N\ v -
» AN \

Y
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- 1F (N.LE.NORM) SUM=SUM+2A ' Increment SUM upless Za
¢ o : is small ,
00 S I=0,1
; LC=EN*ZINV*ZA-7B ! This is the recusieon equation
: IF(N-1.LE.NMP) BJ(N-11=ZC ! Store the function if the
IB=1hA ! order 1s less than NMAX+1
- IA=1C - ‘
/’-ﬁ;> 5 EN=EN-1,
o SUM=CINV (SUM+SUM{ZA) . ! The normalisation tactor
o . DO & N=1,NMP ; A
- & BJCN)I=BJ Ny *SUM ' Normalise the functions
RETURN e . :
| END t -
L ) : .
o C ~-********1&*********************** *****************_*******t****i
¢ ( .
c Subroutine BESSR ) B
C
C Routine tb generate 1nteger-order Bessel functiong for real
. - C arguments. ) -
C X - Argument of function
C NMAX - Highest order desired ‘
C 8J - Array of dimension at least NMAX+1 which containc Pessel
C functions on outpmt, starting at order O in EJfli.‘
C
- C . a ‘ The method is the same as used in BESSQ/above. '
\ -rﬁsl -

SUBROUTINE BESSR(X, NMAX  E.J)
" ) : OIMENSION BJ(1) ] S .
IF (NMAX.LT, 0 STOP’ BESSR: NEGATIVE ORDER’
NMP=NMAX+1" e .
\ IF(ABS(X) GT.1.E-5) GO TO 2 - T
BJ(ll-i. -
EN=1."
XEN=,5%X
ot HAF=XEN
o g DO 1 I=Z,NMP ) .
i . BI(I)=XEN |
; EN=EN+1.,
. 1 - XEN=XEN¥HAF/EN . ’ :
AN RETURN o S »
C. ) r ) : . ) )
C Getlgessel funct;ons by downward recursion

. " 2 CALL STBESR(ABS(X).AMAX,NST, NORM> L
. IF (NMAX .LE.NST) GO T0.4

¢ DO 3 N=NST,NMP '
3 BJ(N)=O. . -
NMP=NST~1 :



1
1 1
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—t

4 XINV=Z./X
EN=FLOAT tNST)
BJIN=1,E-36 )

_BJP=0. " o
SUM=0.
DO 5 N=NST,Z,-z .
IF (N.LE.NORM) SUM=SUM+BJN
DO § I=0,1
TEM=EN*X INV+2 J1PPE.JP . .
IF(N-1.LE.NMP} BJ(N-1)=TEM -
BJIP=EIN

) BIN=TEM

g W]

~
A

»

3

s
M,
L
-

>,-

C)Ei;rh D00 0N0OOO0aRE o

tn

EN=EN-1. . o
SUMI=1_/ (SUM+SUM+BIN) A

Normalise .

DO 6 N=1,NMP .
6 BJ(NI=RJiN)*5UM]
- RETURN

END
»

b ey

NEUMR 4 L

real arguments.
Usage: CALL NEUMRC(X, NMAX JNY,BJ, Y)

set to zero.

output. ’
(!.
SUBROUT INE NEUMR (X, NMAX ,NY , B, V.
DIMENSION'BJ(1),Y(1) N - b
\\JthNHAX .LT.0) STOP" NEUMR: NEGATIVE ORDER’

F(X.LE.DO.) STOP’ NEUQE: NEGATIVE OR ZERO ARGUMENT*

MPSNMAX+
XINV=3,/X
IF(X.GT.1.E-5) GO TO 2
BJ(1)=1.

EN=1.

***************i************************?***f******************

X = argument -
NMAX - maximum order desired -
NY - hlghest order calculated,rmay be less than NMAX to

avoid Ilqatlng point overflow. Remainder of arrays .

tpJ - output and work array of length at least ‘NMAX+1 real
variables. On gutput it contains the NMAX+1 values of
. Bessel functions. (of the first kind? of order 0 to NMAX
Y - array of length NMAX+1 which contains the Neumann
functions (Pessel fungtions of the second kind) &n.

"d
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Routlne to geﬁerate Eessel functions and.Neumann functions for

*J

=3
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XEN=.5%X . - ' o
HAF=XEN : - . )
NY=1

DO 1 N=2,NMP ' ‘ . .
IF(XEN.NE.D.) NY=N | : -

BJ(N)=XEN _
EN=EN+1. S : : -
XEN=XEN*HAF /EN ' . - y
CONT INUE

S0=R.J (3
S1=1.5¥8J(4) -
ASUM=1. : .
BIN=BJ( 1)

BIP=BJ ) : . _
GO TO & - ' - - )

Get Bessel func¥ions by recursion ) "y

CALL STBESRTYX,NMAX ,NST,NORM) - : oo
BJN=1.E-3& ’ ¢ :

EJP=0. . . : :

SumM=0. = K - ‘ : ~
50=0.

s1=0. e T @

IF(NMARLLE. NST) GO TO 4

: _ A S \ . *
DO 3 N=NST,NMP : e : :
BJIN)=0, . . UYL .
* Y(NI=0. - T and
NMP=NST-1 _ ' . .
- ' - S
T DO & N=NST,Z,-Z
IF(N.GT.NORM? GO TO 5 -
PIF (MOD(N,4).EQ.0) SGN=—1. ! For n=4,8,12,... .
IF (MOD (N, 4) .NE.O) SGN=1. ' For n=2,6,10, ... - -
SUM=SUM+BJN * o ‘ :
SO=SO+BJN*SGN*Z . /FLOAT (N) -
51=51$EJP*SGN*FL0AT(4*N+4>/FLOAT(N*Nu &

' 00 & I=0,1 o e o
Tem=FLBAT (N~ IJ*XINV*BJN -BJP ) . (*i)*
IF(N-I.LE.NMP) BJ(N-1)=TEM" )

BIP=BJIN
_BJIN=TEM
5

SUME=1./ (2. *SUM+BIN) 4 ‘
DO 7 N=1,NMP o - - 7

BJ (N> =B (N) ¥SUHL y: . #// N

[t]
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‘T .
IF(BJ(N) .NE.D.) NY=N ‘ . . -
CONTINUE ~ -
* Get the zero- and first-order Neumann functions to start

the recursxon. - s

TEM=ALOG(X)—.115931517 , .
Y(13=.6366197726%SUMI* (TEM*RIN+Z . #50) -t
Y(21=.6366197724%SUMI*((TEM-1.)*BJP-BIN/X+51) .
c : ' .
< Get the remaining Neumann funetions by recursion '
c’ " : _ .
© IF(NY.LT.3) GO TO 10 o
DO 9 N=3,NY
g Y (NI=FLOAT (N-2) #XINV*Y (N~1)-Y (N-2)
C ’ {
10 IF(NY.GE.NMP) GO TO 1% "
DO 11 N=NY+1 NNP
11 Y{N)=0.
1z NY=NY~1 . . . .
RETURN . o . -
END ‘ ) . ) te
******#***f****i**********+*****************************f***** | ’ R
STBESR. ot ‘ i _ : .
. Routlne to'get the starting value of N for BESSR, designed to.

avoid overflow in the recursion. Also generates the order NORM . L

to which the normalisation sums must be carried. 3 '
X = The mndulusmgr ébsuluté value of the argument - '

NMAX = The maximum order of Bessel function desired
NST = on output, starting order for the recursion '
NORM - = on output, maximum order for the normalisation sum _ , R
! NST is calculated to give at least 6 digits of accuracy xn -
the highest-order Bessel function calculated. If NMAX and X .
are 'such that J(NMAX) will be smaller than the smallest P
floating-point number (10%%-38 or so) NST may be less than ' X
NMAX, and the calling program must set the corresponding Y o
J- functions 'to zero.
NORM is set so that functions of higher order will ’ .
contrlbute less than 10%#-8 to the normal isation sum. .
" -

‘ The method uses asymptotic expansions of J for real 7o ;
arguments along with Stirling’s approximation of the )
factorial. ’ . '
. . - < |

OO0 00O0 00000000000 ‘

'SUBROUTINE STBESR(X,NMAX,NST,NORM)
-'-c ’ ) oo ’
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C ) . .
IF(X.GT:2.) GO TO 1 . : ) CE
NORM=b+INT (5. #X} ~ :
GO TO 2 )
1 NORM=15+INT(1.5%X) ! Empirical formula’
2 NORM=NORM+MOD(NORM,2) ! Ensure NORM i1s even
C

. .
(f EN=FLOAT (MAXD(NMAKX , 2 ) ‘it:

— TST=ALOG(X*1.3591409/EN)
TSTN=TST*EN
IF(TSTN.LT.~10.) GO TO

Y]

o

JCNMAX) is larger than 1E-5.

NST=NORM
- RETURN
3 IF(TSTN.LT.-100) GO TO 4

e Mol

Get NST by reqdiring JINST)/J(NMAX) to be less than 1E-5

NST=INT(12./7(1.-TST? ) +NMAX+1 I ' . -
NST=NST+MOD (NST, 2} R .
NST=MAXD (NST ,NORM3 _
RETURN ) ' . R -
J(NMAX) is smaller than 1E-44. Find (by Newton—Raphson) NST
" such that J(NST) is between 1E-44 and 1E-S6 or sa.

o NN Nl

4 DO S K=1,5 ‘ ; :
NST=NMAX+INT((100.+TSTNJ /{1.-TST)} ’ . _ :
EN=FLOAT (NST) . _ b
TST=ALOG (X#1,3591409/EN) ) - . . !
TSTN=TST#EN - . .

- IF (TSTNZBT.-120. .AND. TSTN.LT.=90.) GO TO..6
5 - CONTINUE
& NST NST+MOD CNST,2)
NORM=MING(NST, Nonm». :
RETURN ’ ‘ : ' .
END . . .

********************************************'***ﬁ*****************

CINV | ¥ -
Routine to get the inverse of a complex number while avoiding

. overflow from an intermediate calculation of the modulus-squared.
On exit, CINV contains the value 1/1. ’

***** WARNING:: CINV must be declared cumplex in a COMPLEX CINV *uaks
HHH statement in the calling program. SRR
. -t .

OO0 00

.
.o .
PR TCRIMPT SR TENPLENY SR SRR e
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, i _COMPLEX FUNCTION CINV(Z)
. *. X=REAL(1) . '
Y<AIMAG(Z) :
IF (ABS(X).LT.ABS(Y)) GO TO 1
R=Y/X
W=1 ./ (X+Y#R)
CINV=CMPUX (W, ~R#W) -
RETURN
1 ReX/Y _
M=1 7 (XxR+Y) e
CINV=CMPLX (R¥W,-W) - -
RETYRN
END .
. Q F 4
Y T,
-
.‘
]
o
‘ s
. ) ’

[aT

RV TETFTTRUSTR )

L





