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ABSTRACT

h
A fir~t prin.ciples method of calculating combined

radiative and coonductive heat flow in fibrous insulation is

presented. Using the measured complex refractive index for

the bulk material, the scattering and absorpt~on cross-sections

are calculated for an isolated cylinder from expressions

ana~ogous to those of Mie theory for spheres. An average

over fibre angl~s gives ,the cross-sections for the insulation

mate~. Results for extinction and absorption c~mpare weli

with direct measurements .on polye$ter insulation materials.

The scattering is found to be highly anisotropic. A properly-

weighted average over scattering angles, combined with the

calculated absorption cross-section, gives the parameters

needed for a diffusion model of radiative heat transport.
\

The equations describing comb~ned radiative and con-

ductive heat flow are 'solved by an approximate method, and

the results are compared with measurements of thermal resis-

tance on several samples of commercial polyester-fibre insula-

tion. The excellent agreement, with no adjustable ~arameters

in the theory,' indicates that the diffusion model adeq,uately

describes radiative heat transport in such materials. The

method is used to predict the effect of possible alte~ations......
to the fibres.
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CHAPTER 1

INTRODUCTION

" Heat is transferred through fibre insulation materials

by conduction through the fibres and surrounding air, by con-

vective motion of the air, and by infrared radiation propaga

ting. from fibre to fibre. Radiation has- long been recognized.,

~s an important mechanism of aeat transfer i~ low-density

glass-fibre insulation (Verschoor and Greebler, 1952; Larkin

,and Churchill 1959; Bankvall ,

mal radiation in polyester and

1973). ,Until
. d

other textNle

recently, ther-

fibre insulation
~

materials was ignored, and the heat transfer was assumed to
"y

result jrom conductio~ and convection. Differences in perfor-
,,',

mance among various materials were ascribed to varying amounts

of convection.
.

While investigating the performance of sleeping bag

insulation materials for the Canadian Army, Dr. Brian Farn-

worth of the Defence Research ,Establishment, Ottawa was able
~ .. "

to show that convection in these materials is completely ab,-

~ent, and the.dverall thermal conductivity could be explained

by a combination of conduction through the air and fibres

and thermal" radiation (Farnworth, 198 3r, Farnworth et al.

1979). They usee a 2-flux moqel with a single absorption

~arameter fitted to the thermal measurements. At McMaster

we investigated whether we co~ld determine this parameter

1

\

'.
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from purely ~ptical measurements on the insulation materials.
,

In the course of this we were obliged to cons~der in more

detail the behaviour of thermal radiation in polyester sleep-

ing-bag insulation and in fibrous insulation in general.

We first discovered that in these materials the seat
o

tering cross-sections were at least'as l~rge ~s the absorption,
•

and the pure-absorption model had to be ab~oned. Similarly

a simple model based on isotropic scattering which used mea--
sured extinction (absorption plus total ,scattering) cross

sections.gave thermal conductivities much lower than those

observed experimentally. The problem was that the scattering'

was strongly peaked in the forward direction, and the aniso-

tropy in the scattering had to be included in the model. This

was possibIe because of the very simple geometrical structure

of the material. The fibres were of uniform diameter, were

~ reasonably well separated from each other, and were fairly

random in orientation. We were able to caiculate all the

optical parameters in detail as functions of scattering angle

and radiation frequency, and predict accurate+y the heat flow,

which had not previously been done for any commercial fibrous ~

insulation.
i-

The problem of radiative transfer is in general diffi-

cuI t, inVOI~ng an in tegrodifferential equation.' (the equation

of trans'fer) with three or more variables"- the radiation (

frequency, one or two' .angular variables, and at least one
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3

space variable. In the case of heat transfer in insulation

materials used at ordinary temperatures, it is possible to
" .

simplify the problem considerably, because the radiation is
" .,.

everywhere close to thermodynamic equilibrium. Chandrasekhar

(1960) and "Pomraning (1973) bot,h describe numerical procedu::es

which can provide arbitrary accuracy in the general problem,·,
as well as simpler procedures for approximate solutions.

Viskanta (1965) has published accurate numerical solutions
. I
"~for heat flow in grey (f~equencY-independentoptical proper-

ties) ~+b1ng, scattering, and conducting media for various

Jvalues of the parameters. Yuen and Tien (1980) and Yuen and

Wong (1980) have investigated methods of solving the heat-

transfer PFo~lem and obtaining accurate temperature profiles

. in the case of linear-anisotropic sC9ttering. Modest and

Azad (1980) have also published accurate numerical results

for theoretical materials, and found that simplified models

could be reasonably successful." These results are discussed

further in Chapter 2.

In the case of heat transfer in reasonably thick

insulation mate~ials at ordinary temperatures it is possible

to obtain sufficient accuracy with a simplified model. Chap

I
ter 2 describes a diffusion model which includes the scatter-,

/

.~ng ani~o~l0PY in

moves th~gular

a natural way. Essentially the model re

variable "from the problem by assuming that

the intensity of the radiation varies smoothly with direction,

.,
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and may be represented by the zeroth and first~degree

Legendre polynomials in cos e. For this reason it is

ca~led the .P-l model by Pomraning (1973). No assumptions

ab9ut the form of the scattering function are required; the

scattering in the poLyester materials we investigated varies

strorygly and unpredictably with angle. Explicit expressions

for the optical parameters in terms of the differential scat-

tering and absorption cross-sections are derived in Chapter

2 for an isotropic material (eg. randomly-oriented fibres);

these have been given elsewhere. We also derive such ex-

pressions in the case of an axially-symmetric material (eg .

•
fibres random~y-oriented in the plane of the batt) and show

that the model and its method of solution are not essential-

ly changed, although' the calcu~ion of the optical parame-

\ ters is somewhat more complicated. The relation between this

diffusion model and the commonly-used two-flux model rs also

described here. A modified form of the two-flux model which

is occasionally used (eg. Berquam and Seban, 1971) is shown

to be exactly equivalent to the diffusion model used here.

The frequency variable is also removed from the prob-

lem by averaging over frequency with appropriate thermal

'weight functions, to give an approximate description in terms
\.

of frequency-independent "grey" optical parameters. We are

left with a.pair of coupled nonlinear di'fferential eq'u'ations

for the total radiative flux and en~rgy density, and the
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temperature T(x). A third equation is added by requiring

that the total heat flux, the sum of the radiative and

conductive contributions, be constant. Grey Larnbertian

boundaries are added to give a complete description of the

problem. It is solved by an approximate method which

linearised the differential equations, rather than by an

exact numerical quadrature. This method leads to a better

intuitive understanding of the relation between the heat

flow and the optical parameters of the material and the

boundary walls. Terms due to conduction, radiation, boun-

dary surfaces, and the interaction between radiative and

conductive heat transport can be related qualitatively to

typical length scales of the insulation slab.

A ca~ful investigation of the approximations at the

end of Chapter 2 indicate that the solution ought to be ac-

curate if the optical parameters can be determined with

sufficient precision.

Several methods have been used to obtain the optical

parameters of fibrous materials. The simplest is simply to

fit one or more parameters of a single radiative-transfer

model to the thermal measurements. Then the dependence of

thermal resistance on temperature, density, thickness, etc.

may be tested against the model. Battacharyya (1980) fits. ,
a backscattering parameter to a two-flux model which assumes

, '
zero absorption an~ finds good agreemen~with the measure-

ments of Hollingsworth (1980) on glass-fibre materials.
JJ
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