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ABSTRACT 

Calculating net joint forces and moments of force in the study of human 

movement requires accurate human body segment parameter (BSP) information. The 

purpose of this study was to investigate an approach for developing geometric models 

based on segment mass distribution (MD) information for BSP estimation. Study 1 

investigated the MD properties of the human thigh for four human populations using dual 

energy x-ray absorptiometry (DEXA). Thigh mass, centre of mass in the longitudinal 

(CMx) and mediolateral (CMy) directions, and moment ofinertia about the CM along an 

anteroposterior axis (IcMz) were determined using DEXA. Thigh MD properties of20 

subjects were used for model generation and the equations were validated on 80 subjects 

by comparing estimations with DEXA measurements. BSP estimations from 4 other 

models available in the literature were also examined. Study 2 followed the methodology 

of Study 1, using the forearm segment. Study 3 advanced on Studies 1 and 2 by adding a 

sagittal plane dimension to a lower leg model. Forty subjects underwent frontal and 

sagittal plane DEXA scans and models were validated using a split-half reliability 

method. The results of all three studies showed that mass and IcM estimates were not 

significantly better than the other models examined, however CM estimations were often 

improved. The models in Studies 1 and 2 may have been limited by the 2D nature of the 

methodology. The use of an elliptical model helped to account for the more posterior 

location of the CM in the lower leg, however insufficient statistical power may have 

prevented the detection of significant differences in mass and IcM estimates. The results 

of this study show promise for future modelling of human body segments. Modelling 
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according to MD properties allows the assumption of constant density while accounting 

for inertial changes along the segment length. 3D model validation, greater sample sizes, 

and "the analysis of the remaining segments of the human body may lead us closer to 

understanding the kinetics of human movement. 
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CHAPTER 1 

INTRODUCTION 

1 

Determining the kinetics of motion is a necessary step in understanding a human 

movement "These movement characteristics are typically estimated using either inverse 

dynamics or forward solutions methods. Calculating the net joint forces and moments of 

force of a movement through inverse dynamics methods requires the measurement of an 

external force in addition to joint kinematic profiles. Conversely, forward solutions 

techniques use estimated moments and forces to produce a simulation coincident with the 

true kinematics of the movement Each method, however, requires the input of body 

segment inertial parameters (BSPs), including segment masses, centre of mass locations 

and moments of inertia. 

The accurate determination of human body segment parameters (BSPs) has been a 

long standing challenge in biomechanics. Several methods for measuring or estimating 

these properties have been developed, however limitations in these procedures have led 

to continued efforts at obtaining reliable measures (Cheng et at, 2000; Pearsall and Reid, 

1994). Early studies used cadavers to measure body segment volumes, masses, centre of 

mass locations, and· moments of inertia directly from the segmented limbs of specimens 

(Braune and Fischer, 1889; Chandler et al., 1975; Clauser et al., 1969; Dempster, 1955; 

Harless, 1860). Cadaver studies provide a great opportunity to directly measure the BSPs 

of specimens, yet difficulty in obtaining subjects of varying age and gender, as well as 



J. DW"kin - PhD Thesis McMaster University - Kinesiology 2 

the cost and intricacy of the methods, preclude the analysis of large numbers of SUbjects. 

For example, Harless (1860) and Braune and Fischer (1889) examined only two and three 

male cadavers, respectively. Dempster used 8 male war veterans in his analysis, Clauser 

et al. (1969) examined 10, and Chandler et al. (1975) di$sected only 6 male specimens~ 

These small sample sizes make the extrapolation of results to larger populations difficult 

and data from the various studies cannot be pooled due to differences in segmentation 

patterns. Furthermore, cadaver studies offer additional limitations such as fluid and tissue 

losses during segmentation, differences between properties of living and deceased tissue, 

and a narrow population representation. For example, Harless (1860) used decapitated 

specimens, likely causing large losses of fluid and thus altering mass and centre of mass 

measUrements. Braune and Fischer (1889) froze their specimens to prevent fluid losses, 

however the resulting changes in volume may have altered segment inertial properties 

(Reid and Jensen, 1990). Dempster (1955) reported average segment density values in his 

results, but there has been some question as to how much difference exists between. 

cadaveric tissue properties and those of living tissue. Furthermore, many of these studies 

were comprised solely of male subjects, most of which were elderly and Caucasian 

(Pearsall and Reid, 1994). 

Researchers in the mid 20th century investigated experimental measurement 

techniques that would allow the direct determination ofBSPs in a non-invasive manner 

on living human subjects. These techniques included water immersion, reaction change, 

quick release, relaxed oscillation and compound pendulum methods to determine human 

BSPs (Drillis and Contini, 1966; McConville etal., 1980; Plagenhoefet al., 1983; Young 
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et al., 1983). Water immersion methods require the application of constant density values 

to estimate segment masses and centre of mass locations. These density terms are 

typically obtained from cadaveric data and there has been some debate as to whether 

significant differences exist from living tissue properties, particularly for trunk density 

values (Mungiole and Martin, 1990). Furthermore, quick release methods assume that 

passive tissue of adjacent segments and muscle activation have a negligible effect on 

moment of inertia estimates (Pearsall and Reid, 1994). These limitations have forced 

others to seek alternative methods of directly measuring BSPs using medical imaging 

technology . 

Improvements in the science of medical imaging, as well as increases in: 

equipment availability, have lead to greater use of these techniques for directly measuring 

BSPs on living human subjects. Fuller et al. (1999) and Elia et at. (2000) compared the 

performance of bioelectric impedance analysis with anthropometric methods in 

estimating muscle and adipose tissue mass and muscle volume, respectively. Bioelectric 

impedance analysis was found to predict these parameters better than anthropometric 

methods, however considerable individual variability was found with both methods. 

Zatsiorsky and Seluyanov (1983) used gamma-mass scanning to measure segment 

inertial properties on 100 young Caucasian males. The technology is based on the 

attenuation of an incident gamma-radiation beam as it passes through a sample of tissue. 

The attenuation of the beam provides information regarding the surface density of the 

mass in its path. Knowing the location of the mass element and the calculated surface 

density, mass distribution information can be obtained. Zatsiorsky and.Seluyanov (1983) 
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determined segment masses, centre of mass locations and moments of inertia about three 

axes for 16 body segments. The results were found to be accurate, however the 

technology is not widely available today. Furthermore, while segment inertial properties 

were determined about three principal axes, validation of centre of mass and moment of 

inertia calculations were possible in one plane only. The other two axes were estimated 

from surface density calculations using a constant density parallelepiped model for each 

scanned element. 

Computed tomography (CT) has also been used to measure BSPs directly on 

humans (Erdmann, 1997; Pearsall et al., 1996). Axial scanning of biological tissue 

produces CT data proportional to tissue density on a pixel-by-pixel basis. These tissue 

densities can then be applied to the digitized pixel volumes to determine segment mass 

distribution information. Huang (1983) used CT imaging to measure the BSPs of a 

porcine specimen and a young female child cadaver, while Erdmann (1997) used CT to 

determine the mass and centre of mass locations of human trunk sections on 15 male 

patients. Furthermore, Pearsall et al. (1996) used CT imaging to measure trunk segment 

mass, centre of mass locations and moments of inertia on two male and two female 

subjects. BSP measurement using CT imaging is considered very accurate and reliable, 

however, the method is limited by its tediousness and its cost. Furthermore, both gamma­

mass scanning and CT imaging require exposing subjects to radiation, albeit in small 

doses. 

Magnetic resonance imaging (MRI) has recently been explored as a method for 

measuring BSPs directly from humans. MRI is similar to CT imaging in that three-
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dimensional mass distribution information can be obtained from axial scans, but has the 

advantage of obtaining this information without exposing subjects to radiation. MRI was 

used by Martin et al. (1989) to measure the inertial properties of baboon cadaver 

segments by obtaining axial scans of the segments, digitizing images to obtain tissue 

areas and applying estimated tissue densities to determine slice mass distribution 

properties. Martin et al. (1989) were able to measure mass, centre of mass location and 

moment of inertia with errors of6.7, -2.4 and 4.4%, respectively. Mungiole and Martin 

(1990) later used MRI to measure the BSPs of 12 adult male athletes. Validation of these 

measurements were not possible, yet previous research (Martin et al. 1989) indicated that 

the results were very reliable. Similar to CT scanning, however, technology availability is 

limited, data acquisition is costly and data processing methods are time-consuming. This 

makes direct measurement of individual subjects using MRI impractical. 

Recently, dual energy x-ray absorptiometry (DEXA) has been used by Durkin et 

al. (2002) to determine the BSPs of human segments. This technology operates much in 

the same way as gamma-mass scanning. Two collimated beams of alternating intensity 

(70 Ke V 1140 Ke V) are emitted and passed through a sample of tissue. The attenuation of 

the high energy beam (140 KeV) is directly proportional to mass, therefore the inertial 

properties of the scanned material can be determined from the measured mass 

information and the known areal dimensions of the scanned elements in the chosen scan 

plane. Durkin et al. (2002) validated DEXA using a homogeneous geometric object as 

well as a human cadaveric leg specimen and were able to measure mass, centre of mass 

location and moment of inertia about the centre of mass with under 3.2% error. 
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Furthermore, the method was rapid and safe, and the technology is widely available in 

hosPitals. The ease with which the method can be applied, accompanied by low 

operational costs, make the method ideal for direct BSP measurement on individual 

subjects as well as for developing predictive equations from large databases of subjects. 

As with other imaging techniques, however, availability of the technology may be limited 

for some, Or scanning of individual subjects may simply not be a practical option. The 

need for predictive equations for estimating BSPs accurately on a variety of individuals 

of varying race, gender, age, and activity level therefore remains an important issue in 

biomechanics. 

The development of predictive equations for estimating BSPs on living humans 

has been the focus of biomechanical studies for decades. These predictive equations 

generally fall into two categories: regression equations and geometric models. Regression 

equations for BSP estimation have been generated from a variety of data measurement 

procedures such as cadaver studies (Barter, 1957; Chandler et al 1975; Clauser et at 

1969; Dempster, 1955; Hinrichs, 1985) and living subject studies (Drillis and Contini, 

1966; Plagenhoef, et al." 1983; Young et al. 1983), including those using medical 

imaging techniques (Durkin and Dowling, 2003; Erdmann, 1997; Zatsiorsky and 

Seluyanov, 1985; Zatsiorsky et al., 1990). These regression equations are limited by the 

deficiencies of the methods used to obtain the data, however, and are specific to the 

population from which they were generated For instance, the equations generated from 

cadaveric data are typically based on male specimens, most of which were over 50 years 

of age (pearsall and Reid, 1994) and some of which were in fairly emaciated states when 
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they passed. Dempster (1955) used elderly male war veterans whose ages ranged from 52 

to 83 years of age and whose body masses ranged from 49.7 to 72.5 kg. Additionally, 

only Chandler et al. (1975) provided equations estimating centre of mass locations and 

moments of inertia about all three segment axes (Cappozzo and Berme, 1990). Other 

studies limited their experiments to segment volume, mass and centre of mass locations 

and many assumed symmetry between frontal and sagittal plane properties for centre of 

mass and moment of inertia values. 

Regression equations generated from reliable data measurement methods such as 

gamma-mass and DEXA allow greater confidence in estimating human BSPs. The 

equations should not be applied to individuals outside the popUlation from which they 

were generated, however. For example, Durkin and Dowling (2003) investigated the 

BSPs of selected human body segments on four populations of different gender and age 

categories. Using DEXA, segment masses were measured and reported as a percentage of 

whole body mass and centre of mass locations and radii of gyration were determined and 

reported as a percentage of segment length. These BSP measurements were compared 

between the groups and significant differences were found, supporting the need for 

different sets of regression equations specific to age and gender. Furthermore, while the 

regression equations were able to account for differences between groups, they did not 

account for individual differences within groups. This population specificity of regression 

equations has led some to theorize that geometric models may provide more accurate 

estimates of human BSPs, accounting for differences in morphology, age, gender, and 

race (Durkin, 1998; Pavol et al., 2002; Zatsiorsky et aI., 1990). 
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Geometric models have been developed with varying levels of complexity to 

more accurately account for the differences in morphology between individuals. Hanavan 

(1964) developed a geometric model of the human body using a series of spheres, 

ellipsoids, circular cylinders and frusta. Segment masses were estimated using the 

regression equations of Barter (1957), however Barter (1957) developed his equations 

using cadaveric data from two different sources, each of which used different 

segmentation methods. Furthermore, Hanavan's (1964) model assumed constant density 

throughout each segment and the estimates were validated for whole body mass and 

inertia estimates only. Jensen (1978) later used photogrammetry to develop a detailed 

elliptical model of the human body that was meant to account for differences in 

morphology between mdividuals regardless of age, gender and race. The method 

assumed constant density, however, and was validated for segment volume only. Hatze 

(1980) also developed a geometric model of the human body that could be applied to 

individuals regardless of age, gender or morphology, and boasted a maximum error of 

5%. The mathematical model used detailed anthropometric information and made no 

assumptions of constant density, yet this procedure has been criticized due to the 242 

anthropometric measurements needed to obtain BSP estimates. 

Gamma-mass scanning has been used by Zatsiorsky et al. (1990) to develop 

models of human body segments based on geometric considerations. Body segments 

were modelled as cylinders and a constant "pseudodensity" factor was applied to account 

for differences between segment and model shape and density. The models require the 

input of limb circumferences and lengths and separate coefficients are provided for male 
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and female populations. The estimates are promoted as being more accurate than those 

obtained using multiple regression equations developed from the same data set and are 

advocated as accurate when used on children. The models have been validated solely on 

young adult males and females, however, and have been validated in the frontal plane 

only. Durkin (1998) later developed geometric models of selected body segments for 

individuals from four human populations and validated estimates in the frontal plane 

using DEXA. Each segment model consisted of a series of geometric solids chosen to 

more accurately represent the changes in segment shape along the length of the limb. The 

models performed poorly and it was concluded that assuming constant density while 

modelling according to segment shape resulted in large errors in BSP estimation. 

The use of predictive equations remains a preferred means for obtaining human 

BSP-data in biomechanical analyses of motion. Regression equations are population­

specific and may not account for differences between individuals of varying morphology. 

Furthermore, the assumption of constant density in geometric modelling and its effect on 

inertial estimates remains questionable. Theoretically, models based on geometric 

approximations may allow more accurate representation of individuals regardless of age, 

race, gender and morphology by using anthropometric measures such as limb lengths, 

circumferences and breadths. An alternative method for designing geometric models that 

circumvents the problems of a constant density assumption is therefore needed. The 

method of Hatze (1980) avoids this issue, however the large amo~t of input data 

required makes the model impractical. Wei and Jensen (1995) attempted to develop axial 

density profiles using regression equations, but they were unable to determine whether 
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inertial estimates were improved. Durkin and Dowling (2003) suggested developing 

geometric models according to the mass distribution properties of segments rather than 

segment shape. By modeling segments according to mass distrIbution, it is possible that 

errors in moment of inertia estimates will be reduced by more accurately accounting for 

changes in mass at the proximal and distal ends of the segment. Using medical imaging 

techniques, the mass distribution properties of segments may be determined allowing the 

development of geometric models based on the contours of these properties, while still 

assuming constant segment density. 

1.2 Objectives and Project Design 

The purpose of this study was to use DEXA to determine the mass distribution 

properties of selected human body segments for a variety of human populations and to 

develop geometric models accordingly for the purpose ofBSP estimation. The mass 

distribution properties of the segments were compared between populations for geometric 

similarity and a geometric model was developed according to the contours of these mass 

distribution characteristics. The models were then validated against DEXA measurements 

along with four other popular models available in the literature. 

Study 1 involved the analysis of the mass distribution properties of the human 

thigh segment in the frontal plane. One hundred individuals from four populations 

separated by age (19-30 Years /55+ Years) and gender (Male/Female) were scanned 

using DEXA and the thigh segments were digitally sectioned. A geometric model of the 

thigh was developed on 20 of the 100 subjects and validated on the remaining 80 
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subjects. Furthermore, estimates from four other popular models in the literature were 

calcUlated and compared to DEXA estimates to determine whether BSP estimates on the 

examined populations were improved. The models examined from the literature included 

the linear regression equations of Dempster (1955) (via Winter, 1990) based on elderly 

male cadaveric data, the simple geometric models ofHanavan (1964), and both the 

multiple regression equations and geometric models of Zatsiorsky et al. (1990) based on 

young adult male and female data obtained from gamma-mass scanning. 

Study 2 involved the analysis of the mass distribution properties of the human 

forearm and followed the methodology used in Study 1. BSP estimates were calculated 

and validated in the frontal plane and compared to calculations from four other popular 

models in the literature. 

Study 3 involved the analysis of the human lower leg in a similar manner as 

Studies 1 and 2, however this study involved the addition of a DEXA scan and model 

validation in the sagittal plane, enabling the development and validation of an elliptical 

model for BSP estimation. Twenty participants from four populations were used for 

model development and the equations were validated on another group of 20 subjects. 

The selection of body segments for analysis was determined based on the ease 

with which the segments could be measured using DEXA. The thigh, forearm and lower 

leg can be easily sectioned from the body in the frontal plane with minimal overlap with 

other segments. Furthermore, these segments may be more easily positioned to ensure 

consistent measurement axes in the frontal and sagittal planes. Additionally, these 

segments may present more simple mass distnbution properties than other areas such as 
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the trunk, and therefore serve as optimal limbs from which to test this modelling 

approach. 

1.3 Hypotheses 

12 

It was hypothesized that the fom populations examined would demonstrate 

geometric similarity in the mass distnbution properties of the thigh, forearm and leg 

segments, enabling the development of one model to predict BSPs for all groups. It was 

therefore expected that the null hypothesis CHo) would be accepted and the alternative 

hypothesis (Hj would be rejected. 

Ho: Males (19-30 Years) = Females (19-30 Years) 

Males (19-30 Years)= Males (55+ Years) 

Males (19-30 Years) = Females (55+ Years) 

Females (19-30 Years) = Males (55+ Years) 

Females (1.9-30 Years) = Females (55+ Years) 

Males (55+ Years) = Females (55+ Years) 

!fa: Males (19-30 Years) f:. Females (19-30 Years) 

Males (19-30 Years) f:. Males (55+ Years) 

Males (19-30 Years) f:. Females (55+ Years) 

Females (19-30 Years) f:. Males (55+ Years) 

Females (19-30 Years) f:. Females (55+ Years) 

Males (55+ Years) f:. Females (55+ Years) 
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It was further hypothesized that geometric models constructed according to the mass 

distribution properties of the segments would provide significantly less error in BSP 

estimates than the other four sources evaluated in the respective studies (He). It was 

therefore expected that the null hypothesis (Ho) would be rejected. 

flo: J1 = Dempster (1955) via Winter (1990) 

J1 = Hanavan (1964) 

J1 = Zatsiorsky et al. (1990) 

Ha: J1 < Dempster (1955) via Winter (1990) 

J1 < Hanavan (1964) 

J1 < Zatsiorsky et a. (1990) 

1.4 'Thesis Outline 

13 

This thesis will comprise three studies written in manuscript format followed by a 

"Conclusions and Suggestions for Future Research" chapter. Each manuscript is 

presented in a format suitable for submission to, and pUblication in, an academic journal 

Study I has been submitted and is currently under review in the Journal ofBiomechanical 

Engineering and is therefore presented in the required ASME format. The remaining two 

studies are presented in APA format (2001, 5th Ed.). Due to the independent presentation 

of each manuscript and the similar content of each study, considerable overlap of 

introductory material and methodology may be found amongst all chapters of the thesis. 
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CHAPTER 1 

USING MASS DISTRIBUTION INFORMATION TO MODEL THE HUMAN 
THIGH FOR BODY SEGMENT PARAMETER ESTIMA nON 

1.1 Introduction 

An accurate and efficient way of obtaining body segment inertial parameters 

(BSPs) is required to calculate reliable net joint forces an4 torques using inverse or 

forward dynamics methods. Many attempts to measure or estimate these BSPs have been 

made, yet limitations in the methods available have led to continued efforts in reducing 

BSP error [1,2]. Early studies used cadavers to measure hwnan BSPs directly, developing 

regression equations from the data for segment parameter estimation [3-7]. These studies 

have been criticized, however, for containing sman sample sizes limited to elderly 

Caucasian males. Furthennore, data from individual studies cannot be combined due to 

differences in segmentation patterns and the validity of using deceased tissue to represent 

that ofliving subjects is yet unknown [2]. Methods using living subjects such as 

stereophotogrammetry [8], water immersion, quick release [9], and oscillation techniques 

[10] have also been developed but have involved questionable assumptions. For instance, 

water immersion and stereophotogrammetry assume that segment densities are known 

and constant throughout. 

Mathematical modelling and medical imaging techniques have been used to obtain 

more accurate BSPs. Hanavan [11] developed a geometric model of the human body, 

modelling segments as a series of cylinders, :frusta and ellipsoids, however a criticism of 

this model was that it was too simple to accurately depict the inertial properties ofhwnan 
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body segments. Furthermore, the model was evaluated for accuracy in whole body inertial 

parameter estimation but was not validated segmentally. Jensen [12] used a more detailed 

elliptical modelling approach with photogrammetry to explain variations in body 

morphology as well as to develop a method appropriate for use on children. The method 

explained changes in segment shape, however the model assumed constant segment 

densities, was validated for segment volume estimations only, and the software developed 

is not readily available for use. Hatze [13] later developed a more involved geometric 

model of the human body requiring the input of 242 anthropometric measurements which 

has resulted in its limited use. 

Medical imaging techniques such as MRI, CT imaging, dual energy x-ray 

absorptiometry (DEXA) and gamma-mass scanning have enabled the accurate 

meaSurement of human BSPs. Zatsiorsky and Seluyanov [14] used a gamma-mass 

scanner to measure the BSPs of 100 young males, however, the technique requires 

exposing subjects to radiation and the technology is not widely available. This led 

Zatsiorsky et al. [15] to develop multiple regression equations and geometric models for 

young male and female subjects. The equations developed have been a common BSP 

source in the literature, but their applicability to individuals outside a young Caucasian 

population has been questioned [2]. CT imaging [16,17] and MRI [18-20] have yielded 

accurate BSP measurements and provide promise for precise BSP measurement, yet both 

methods are quite costly and time consuming and CT imaging reqUires exposing subjects 

to a substantial amount of radiation [19]. The arduousness of these methods has also 

discouraged the accumulation of large databases of subjects for the development of 
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predictive models. 

Recently, Durkin et al. [1] used dual energy x-ray absorptiometry (DEXA) to 

measure human BSPs directly on living humans. The procedure is considered rapid, safe 

and accurate, measuring BSPs with under 3.2% error, however, similar to the gamma­

mass scanner, the machine is not widely accessible. This led Durkin and Dowling [21] to 

develop simple linear regression equations on 100 subjects for selected body segments in 

the frontal plane. Four groups of individuals (25 per group) separated by gender 

(male/female) and age (19-30 years /55+ years) were examined and separate regression 

equations were developed for each sample for mass, centre of mass location (CM) and 

moment of inertia about the CM (IcM)' Errors for these equations, as well as those from 

Dempster [6], Zatsiorsky et al. [15] and Hanavan [11] were determined and it was found 

that no single predictor performed best for a particular segment, population, or BSP. 

Furthermore, it was found that the linear regression equations could account for 

differences between groups but did not satisfactorily explain individual differences within 

groups. It was suggested that multiple regression equations be developed for each 

population, incorporating a number of anthropometric measurements such as limb lengths 

and circumferences. Alternatively, it was suggested that geometric models be developed 

which are more detailed than those developed in the past but which are still easy to use. 

There is still a need for a complete anthropometric model of the human body that 

is accurate yet simple to apply [2]. Multiple regression equations may provide this 

function, yet different equations need to be developed for each popUlation to accurately 

represent their differences. Geometric models may circumvent this requirement while also 
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accounting for individual differences within a group, yet many of the geometric models 

developed in the past have been too simple to depict the changes in density that occur 

along the length of the segment [22]. Durkin [23] developed geometric models for 

selected human body segments using composites of geometric shapes in an attempt to 

more accurately represent segment volume distribution. A comparison of model estimates 

with DEXA measurements revealed large errors and suggested that modelling segments 

according to volume distribution, while assuming constant density, results in poor 

estimates of human BSPs. Wei and Jensen [24] developed density profiles from axial CT 

scans to account for such changes but were unable to detennine whether the profiles 

produced more accurate estimates of inertia. One way of alleviating the need for density 

profiles in geometric models is to model segments according to their mass distribution 

properties rather than volume. By using DEXA to visualize the mass distribution contours 

of a segment, a geometric shape can be developed accordingly while still assuming 

constant density. With this modelling technique, it is possible that CM and ICM 

estimations could be more accurate than when using a model that mimics the volume 

distribution of a segment. Furthermore, if it is found that individuals in different 

populations are geometrically similar in their mass distribution properties for a given 

segment, it is possible that one model could be used for all individuals, reducing the need 

for separate equations according to gender, age, race and body type. 

Development of a complete anthropometric model of the human body in this 

manner will require separate detailed analyses of the mass distribution properties of each 

body segment along with construction and validation of appropriate models. The purpose 
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of this study is to begin development of this whole body anthropometric model with the 

thigh segment by: i) examining the mass distribution properties of the thigh segments of 

100 volunteers from four different populations using DEXA, ii) developing a geometric 

model of the thigh based on these mass distribution properties, iii) comparing the 

accuracy of this model with a selected group of models available in the literature. It is 

hypothesized that a geometric model of the thigh segment that is based on its mass 

distribution properties willyield more accurate BSP estimates than the other popUlar 

models examined Furthermore, it is believed that the mass distribution properties of the 

thigh segment will be similar between the four popUlations examined and that all four 

groups can be satisfactorily estimated using one common geometric model. 

2.2 Methods 

One hundred volunteers were recruited and categorized into four groups (25 per group) 

according to gender (male/female) and age (19-30 years old, 55+ years old). Average 

height and weight values for the 5th, 25th, 50th, 75th, and 95th percentiles of Canadian 

adults were obtained from Demirjian [25] for each gender and age category, resulting in 

the construction of 25 height/mass cells per group. Subjects were recruited using posters 

on the McMaster University campus and at the McMaster University Medical Centre. 

Participants included university students and faculty/staff as well as staff and visitors to 

the hospital. One individual was matched to each of the 25 height and mass categories, 

resulting in a subject database comprised of a variety of height and mass combinations 

within each group. Five subjects from each population were then randomly chosen to 
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represent a model development group while the remaining subjects were used for model 

validation (Tables 1 and 2). The heights and mass of each of these groups were similar 

and were normally distributed (Durkin, 1998). 

The participants were asked to change into a hospital gown while keeping 

undergarments on. Each individual underwent one whole body DEXA scan (QDR-

1000fW, Hologic Inc., Bedford, MA, USA) where they w:ere asked to lie supine on the 

DEXA table with palms facing the bed (forearms pronated). The DEXA scan was 

acquired, collecting mass data in units of 1.32 X 0.53 em, after which the participants 

were asked to stand upright while a series of anthropometric measurements were taken 

(Table 3). Informed consent was obtained from each volunteer in accordance with 

approval from the McMaster University Research Ethics Board. 

The DEXA scan files were processed using custom software (DXA Digitization 

Software, Durkin, 1998) as in Durkin et ale [1]. Density images of the scan data were 

created such that the skeleton could be clearly seen and bony landmarks could be used for 

digitization purposes (Fig. 1). An image based on mass was also created to ensure that all 

soft tissue not visible on the density image would be included in the digitized area (Fig. 

2). The mass data were then interpolated to 40X the original resolution, increasing the 

areal resolution of the mass elements to 0.132 x 0.132 cm. The interpolation was 

perfOrmed using a cubic spline algorithm set to follow the data with as little smoothing as 

possible (Fig. 3). 
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Table 1. Means (±SO) and ranges of age, whole body mass and height of model development 
EarticiEants in the four EOEulation grouEs. 

Age (years) Whole Body Mass (kg) Height(m) 

Group N n Mean (±SO) Range Mean (±SO) Range Mean (±SO) Range 

Males (19-30 Years) 5 10 22.6 (1.1) 21-24 75.7 (15.3) 59.0-97.7 1.73 (0.10) 1.55-1.80 

j 
o 
.~ 

Females (19-30 5 10 23.2 (4.0) 19-30 57.8 (10.2) 47.0-70.5 1.63 (0.11) 1.52-1.77 
Years) 

Males (55+ Years) 5 10 67.8 (7.2) 59-76 80.1 (19.7) 59.0-106.0 1.71 (0.06) 1.63-1.80 

~ Females (55+ Years) 5 10 69.2 (9.6) 59-82 62.7 (11.7) 50.9-77.0 1.60 (0.04) 1.55-1.63 

.b ' N = number of subjects, n = number of thigh segments used in analysis 

.~ 
'8 
::> 

i 
Table 2. Means (±SO) and ranges of age, whole body mass and height of model validation participants in the four population 
groups. 

Age (years) Whole,Body Mass (kg) Height (cm) 

Group N n Mean (±SO) Range Mean (±SO) Range Mean (±SO) Range 

Males (19-30 Years) 20 40 23.2(2.0) 19-27 71.5(9.3) 55.5-86.0 1.75(0.06) 1.63-1.85 

Females (19-30 20 40 21.7(2.6) 19-28 56.9(6.4) 47.7-70.5 1.64(0.07) 1.53-1.80 

00' Years) .... 
00 

~ 
~ N = number of subjects, n = number of thigh segments used in analysis 

Males (55+ Years) 20 30 68.1(7.4) 55-78 84.8(11.7) 67.3-107.7 1.75(0.06) 1.63-1.85 

Females (55+ Years) 20 38 66.2(7.5) 56-81 62.8(7.5) 51.0-86.4 1.60(0.05) 1.52-1.70 

I 
r:: 
~ 

~ 
.....; 
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Table 3. Description of the anthropometric measurements used to estimate BSPs with the 
dId . dl eve opec geometric mo e. 

Measurement Description 

Proximal Thigh Circumference (PC) Circumference about thigh inferior to superior 
ramus of pubis (proximal limit of medial thigh) 

Knee Circumference (KC) Circumference about knee at distal border of 
medial and lateral femoral condyles 

Inner Thigh Length (IL) Length between distal border of medial femoral 
condyle to pubic tubercle of pubic ramus 

Outer Thigh Length COL) Length between distal border of lateral femoral 
condyle to tubercle of iliac crest (about 5 em 
superior to anterior superior iliac spine) 

Figure 1. Density image of a young female volunteer produced from DEXA scan 
information to display bony landmarks. Dashed line represents an example of the 
digitization method for the thigh segment. 
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Figure 2. Mass image of a young female volunteer produced from DEXA scan 
information to display all soft tissue mass, ensuring that all relevant thigh mass is 
contained within the digitized area ( dashed line). Image is produced using raw data 
dimensions of 1.32 X 0.53 cm. 
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Figure 3. Example of interpolated data points fitting raw DEXA data with very little 
smoothing. Mass cross-section is through mid-thigh region. 
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The right and left thighs of each participant were segmepted by sectioning at the 

hip and knee. The thigh was sectioned at the hip by an oblique plane slicing in an 

anteroposterior direction just lateral to the anterior superior iliac spine and medial to the 

lateral border of the obturator foramen/medial border of the ramus of the ischium (see 

Fig. 1). The thigh was sectioned at the knee by a plane slicing anteroposteriorly between 
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the femoral condyles and tibial plateau. The proximal end point was selected as a point 

along the segmentation plane of the hip joint, midway through the neck of the femur. The 

distal end point was selected as a point along the segmentation plane of the knee, midway 

between the lateral edges of the femoral condyles. Other digitization points were selected 

to ensure all soft tissue not visible on the density image was enclosed within the digitized 

area by toggling between the density and mass images. 

The digitized information was then processed in several stages. First, the data 

array was rotated to ensure that the proximal and distal end points represented the 

longitudinal (x) axis of the segment. Second, thigh mass, centre of mass in the 

cephalocaudal direction (CMx), centre of mass in the mediolatera1 direction (CMy) and 

moment of inertia about the centre of mass (IcMz) were calculated as in Durkin, et a1. [1]. 

Third, a sum of the mass elements within the digitized area was c~ated at every 1 % 

segment length interval to create a mass distribution plot of the thigh segments 

normalized to 100% segment length and 100% segment mass. The mass distribution of 

the thigh was plotted so that the lateral and medial components of the thigh, identified by 

the proximal-distal axis, were plotted independently and the area between the two curves 

represented 100010 of the segment mass. The mass distribution plots of the right thighs 

were then inverted to match those of the left thighs and were treated as independent 

samples. 

Ensemble averages of the mass distribution plots of 5 subjects (10 segments) from 

each group were performed to yield the mean (±SD) thigh mass distribution for each 

population (Fig. 4). Geometric similarity was determined by examining the graphs 
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Figure 4. Ensemble averages of the mass distribution characteristics of the thigh segment for four population groups. The plots 
represent the amount of mass present every 1 % segment length from proximal to distal ends. Positive y-axis represents lateral 
thigh mass. Negative y-axis represents medial thigh mass. The area between the curves represents 100% of the segment mass. 
Inside curve represents the mean mass distribution~ outside curve represents + 1 SD. The negative standard deviation has been 
omitted. 
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visually and by correlating the mass distribution properties of the groups. Pearson product 

moment correlation coefficients were determined between each of the groups by 

correlating the percent of 100% segment mass values (y-axis in Fig. 4) at each 1 % of 

segment length. The ensemble averages were then used for the development of the 

geometric model to predict thigh BSPs. 

2.3 Results 

2.3.1 Geometric Model 

Visual examination of the mass distribution plots showed that there was a 

substantial amount of geometric similarity between the groups and the small standard 

deviations in each ensemble average showed that there was little variability within each 

sample. Furthennore, Pearson product moment correlation coefficients between the 

groups were high (Table 4), supporting the use of one model to predict BSPs for all 

individuals. 

Five different geometric models of increasing complexity were developed to 

represent the mass distribution properties of the thigh segment. Only one model with the 

lowest error will be presented in this paper. The other models were variations of the one 

presented here with more simple representations of the proximal segment. One of the 

models was also adapted to account for gender differences. The geometric model 

developed was a composite consisting of three geometric shapes joined end to end. The 

proximal segment was adapted from a right circular cylinder cut on an oblique plane that 

followed three slopes, the middle segment was that of a decreasing right circular frustum 
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Table 4. Correlation data comparing mass distribution characteristics between groups 
including linear regression equations and Pearson Product Moment Correlation 
coefficients. (a) represents correlations of lateral thigh mass data (positive y-values in 
Figure 4). (b) represents correlations of medial thigh mass data (negative y-values in 
Figure 4). YF = Females (19-30 Years), YM = Males (19-30 Years), OF = Females (55+ 
Years), OM = (Males 55+ Years). 

Groups Correlated 
Males (19-30) vs. Females (19-30) 
Females (19-30) vs. Females (55+) 
Females (55+) vs. Males (55+) 
Males (55+) vs. Males (19-30) 
Males (19-30) vs. Females (55+) 
Females (19-30) vs. Males (55+) 

Groups Corre ... ted 
Males (19-30) vs. Females (19-30) 
Females (19-30) vs. Females (55+) 
Females (55+) vs. Males (55+) 
Males (55+) vs. Males (19-30) 
Males (19-30) vs. Females (55+) 
Females (19-30) vs. Males (55+) 

Linear Regression Equation 
YF = - 0.007 + 1.033(YM) 
OF = 0.021 + 0.936(YF} 
OM = 0.009 + 0.935(OF) 
YM = - 0.009 + 1.032(OM) 
OF = 0.022 + 0.963(YM) 
OM = 0.024 + 0.891(YF) 

Linear Regression Equation 
YF = - 0.002 + 0.966(YM) 
OF = 0.008 + 0.961(YF) 
OM = 0.0002 + 1.053(OF) 
YM = 0.006 + 0.969(OM) 
OF = 0.005 + 0.930(YM) 
OM = 0.008 + 1.012(YF) 

(a) 

Pearson r 
0.999 
0.968 
0.990 
0.975 
0.963 
0.976 

(b 

Pearson r 
0.994 
0.996 
0.969 
0.986 
0.992 
0.966 

and the distal segment was that of a right circular cylinder (Fig. 5). The changing slope 

pattern of the proximal segment was chosen to better represent the shape of the mass 

distribution curve as identified in Figure 4. Previous models utilizing one slope created a 

convex curvature in the model mass distribution plot, resulting in an overestimation of 

thigh mass at the proximal end. Segment density was assumed to be constant throughout 

at 0.00105 kg m'3 [26] and the mass, CMx, CMy and IcMz of the model were determined 

using the geometric properties of the shapes selected. The length proportions of each 

model segment were determined by visually inspecting the mass distribution plots and 

selecting points along the segment length where the slope of the mass distribution curve 



J. Durkin - PhD Thesis McMaster University - Kinesiology 31 

1 

, 

~ k-- --~ 
3 : 

~ k- -- ----...... ~--r.....,r---------t--~e±:----7X 
2;, k----------· _1 

I 

.4L. 

ha * 
.65L 

Figure 5. Diagram of the geometric model used to represent the mass distribution 
characteristics of the thigh segment for four groups of humans. Points P and D represent 
the proximal and distal segment endpoints, respectively. 

appeared to change for all groups. 

Thevolume of the proximal segment (V)) was found by integrating units with a 

rectangular cross-section and thicknesses of dy from -rl to rl along the y-axis (Fig. 6). 

'1 n 

~ = $(zx)dy = ~)~ 
;=) 

(1) 

where rl is determined from the proximal thigh circumference (r]=PC/21t). dy = 0.001 cm, 

Vi = volume of each rectangular element, n = 2r11dy, z = width of base of rectangle 

and depends on the base of a circle with radius rl: 

2( 2 2)0.5 z= rl-y (2) 
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Figure 6. Diagram of the proximal segment of the geometric model illustrating the three 
slopes of the oblique plane and the elements used to integrate for segment volume. 

and x = height of rectangle and depends on the position of the rectangular slice along the 

y-axis and the slope of the oblique plane. There are three slopes and four conditions that 

determine the height of x: 

lfy< -2. x=( i ) (~ )&+r.) (3) 

lj-r] ~y<O, x=(!!LXy+rJ )+QJ 
2 3r] 2 

(4) (5) 

(6) (7) 

(8) (9) 

where hJ = O.4(SL) and SL = segment· length which is calculated as: 
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(10) 

and 110 = outer thigh length, hi = inner thigh length. The mass (M.) of the proximal 

segment was determined by: 

n n 

MI = L(mJ= L(V; p) (11) 
;=1 ;=1 

where mj = mass of the ith element, Vj = volume of the ith element, p = density of the 

solid. 

The location of the centre of mass was calculated from a point of origin on the 

base of the proximal segment (0) (See Figs. 4 and 5): 

eM",! ;=! (12) (13) 

where CMx], CMy] = centre of mass locations of the proximal segment along the x and y 

axes, respectively, Xi = centre of mass location of the ith element in the x-direction, Yi = 

centre of mass location of the ith element in the y-direction. 

The moment of inertia of the proximal segment was calculated about the z-axis at 

a point of origin located at the base of the segment (0). IOJ was calculated by first 

determining the moment of inertia of each rectangular unit about its own CM (lcMi) (Eq. 

14), using parallel axis theorem to calculate the lCMi about 0 for each element (1m) (Eq. 

15) and summing the elements to determine the moment of inertia of the proximal 

segment about point 0 (I()l) (Eq. 16). 
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(14) (15) 

n 

101 = Lloi (16) 
i=1 

where Ii = the distance between the'CM of the ith element and point O./i was determined 

using the Pythagorean Theorem with CMxi and CMyi: 

The second component of the geometric model was that of a decreasing right 

circular frustum. Volume (V 2) and mass (M2) were calculated with the formulae: 

(17) (18) 

where r2 = radius detennined from the knee circumference (r2 = KC/21t) and h2 = 

O.6S(SL). The CMx2, CMy2 and ICMz2 of the right circular frustum were determined as in 

Hanavan [11] and 102 was subsequently calculated using parallel axis theorem: 

2 
102 =ICMz2 +M2 CMx2 (19) 

The distal segment of the geometric model was that of a right circular cylinder. 

Volume (V3) and mass (M3) were calculated as: 

(20) (21) 

where h3 = O.lS(SL). 

CMy3 = 0 and lies on the x-axis and CMx3 from point 0 was determined as: 
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(22) 

1cM3 and 103 were calculated using the formulae: 

(23) (24) 

The mass of the entire composite (M) was calculated by summing the masses of 

the individual components: 

(25) 

The centre of mass locations from point 0 (CMxo, CMyO) were calculated and CMx was 

determined as a distance from the proximal end (P): 

(26) 

(21) CMy =CM yO =(CMY1 M1)1 M (28) 

The moment of inertia of the entire composite was calculated by first determining the 

moment of inertia about point 0 (10) (Eq.29) and then using parallel axis theorem to 

determine ICM (Eq.30 ): 

(29) (30) 
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2.3.2 Model Accuracy 

The accuracy of the model's BSP estimates were determined by comparison of the 

remaining 80 subjects to DEXA measurements by calculating the root mean squared error 

(RMSE) for each group. Mass and moment of inertia estimates were evaluated by 

calculating a % RMSE in units of% DEXA mass and % DEXA moment of inertia, 

respectively. Centre of mass estimates were evaluated by calculating the RMSE for each 

group in units of % segment length. 

Estimation errors from four other popular sources in the literature were also 

determined by estimating the BSPs using the respective equations and calculating the 

RMSEs from the DEXA measurements (Tables 5-8). The four sources selected included 

Dempster [6] (via Winter [26]), Hanavan [11] and two models by Zatsiorsky et al. [15] 

including a set of multiple regression equations and a set of predictive equations based on 

geometric considerations. These models were selected as they were thought to represent a 

sample of the more popular sources in the literature. Unfortunately, some thigh segments 

in the elderly groups had to be excluded due to the presence of metallic implants that 

were not reported prior to scanning (See Table 2), therefore the results are based on 

unequal sample sizes. 

One-way repeated measures analyses of variance (ANOV As) were performed to 

determine if significant differences existed between the model errors for each BSP within 

each group. Tukey HSD post hoc analyses were then performed to determine where these 
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Table 5. Percent root mean squared errors (RMSE) ofBSP estimations from five 
anthropometric models as compared to DEXA measurements for Males (19-30 years old). 
Models evaluated include the present geometric model (D), Dempster (1955) (via Winter, 
1990)(W), Hanavan (1964) (H) and two models from Zatsiorsky et al. (1990) including a 
multiple regression model (ZR) and a geometric model (ZG). RMSE values are in units of 
% DEXA measurements for mass and IcM. RMSI? values are in units of % segment length 
for eM estimations. 

D W H ZR ZG F p 
Mass 18.3 28.3 19.9 8.7 9.9 7f.l <0.001 

CMx 3.2 6.1 5.4 9.1 12.7 . 171.3 <0.001 

CMy 1.3 2.5 2.5 2.5 2.5 98.8 <0.001 

ICM 14.7 17.5 22.5 17.2 21.1 3.3 <0.02 

Table 6. Percent RMSEs ofBSP estimations from five anthropometric models as 
compared to DEXA measurements for Females (19-30 years old). Models evaluated 
include the present geometric model (D), Dempster (1955) (via Winter, 1990)(W), 
Hanavan (1964) (H) and two models from Zatsiorsky et al. (1990) including a multiple 
regression model (ZR) and a geometric model (ZG). RMSE values are in units of % 
DEXA measurements for mass mid lcM. RMSE values are in units of% segment length 
for eM estimations. 

D W H ZR ZG F p 
Mass l3.4 32.4 20.7 9.0 20.0 103.6 <0.001 

CMx 4.4 7.9 6.7 10.3 14.4 321.1 <0.001 

CM, 1.4 2.5 2.5 2.5 2.5 58.8 <0.001 

ICM 12.3 24.4 26.4 13.1 31.4 11.1 <0.001 
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Table 7. Percent RMSEs ofBSP estimations from five anthropometric models as 
compared to DEXA measurements for Males (55+ years old). Models evaluated include 
the present geometric model (D), Dempster (1955) (via Winter, 1990)(W), Hanavan 
(1964) (H) and two models from Zatsiorsky et al. (1990) including a multiple regression 
model (ZR) and a geometric model (ZG). RMSE values are in units of % DEXA 
measurements for mass and ICM. RMSE values are in units of% segment length for CM 
estimations. 

D W H ZR ZG F p 
Mass 24.8 23.5 17.1 13.5 12.4 17.0 <0.001 

CM;x 9.5 7.7 8.6 13.0 14.2 9.0 <0.001 

CM, 1.4 2.1 2.1 2.1 2.1 8.40 <0.001 

[CM 25.5 22.5 27.8 14.3 22.1 7.30 <0.001 

Table 8. Percent RMSEs ofBSP estimations from five anthropometric models as 
compared to DEXA measurements for Females (55+ years old). Models evaluated include 
the present geometric model (D), Dempster (1955) (via Winter, 1990)(W), Hanavan 
(1964) (H) and two models from Zatsiorsky et al. (1990) including a multiple regression 
model (ZR) and a geometric model (ZG). RMSE values are in units of% DEXA 
me~urements for mass and ICM. RMSE values are in ~ts of% segment length for CM 
estimations. 

D W H ZR ZG F P 
Mass 16.1 30.4 20.4 17.8 17.8 19.0 <0.001 

CM;x 7.1 9.3 9.2 11.1 15.7 nO.3 <0.001 

CM, 2.5 3.4 3.4 3.4 3.4 4.69 <0.002 

[CM 20.5 28.7 30.3 19.9 26.7 5.81 <0.001 

differences lay. The ANOV As showed significant differences between the models for 

each BSP within each group (Tables 5-8). The regression equations of Zatsiorsky et al. 

[15] provided the lowest errors in thigh mass estimation for all groups except for older 

females where the present model was lower. Tukey HSD post hoc analyses showed the 

regression equations of Zatsiorsky et aI. [15] to be significantly lower in mass estimation 

error than the present model for both male groups but not for the female groups. 
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Furthermore, the model developed in this study was the best predictor of thigh CM 

overall. It was found to produce significantly less error than all other models for CMx 

except for Males (55+) where Dempster [6] produced the lowest errors. In this group, the 

present model, Dempster [6] and Hanavan [11] were not significantly different from each 

other. The newly developed thigh model was also found to predict CMy with significantly 

less error than all other models for all.groups. It also provided lower ICM error for the 

younger groups, although the errors were not significantly different from the regression 

equations ofZatsiorsky et al. [15]. For the younger males, Hanavan [11] produced IcM. 

errors that were significantly higher than all other models. Zatsiorsky et al. [15] provided 

the lowest errors in ICM estimation for the older groups when the regression equations 

were used, however differences were significant from the present model only in the older 

male group. Overall, the regression equations of Zatsiorsky et al. [15] and the present 

model produced the lowest errors in BSP estimation, however, where the present model 

did not provide the most accurate estimations, it closely approximated the errors of the 

model that was superior. The models that performed the worst for mass and IcM, on 

average, were Dempster [6] and Hanavan [11]. respectively. 

2.4 Discussion 

The results showed that the geometric model developed in this study performed best for 

CM estimations and provided the lowest ICM estimation errors for the younger groups, 

although the lcM errors were not significantly different from the regression equations of 

Zatisorsky et al. [15]. The results of the post hoc analyses found that no one set of 
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predictors performed best in all cases for a particular group or asp and that, often, the 

present model and the regression equations of Zatsiorsky et al. [15] showed no significant 

difference in prediction error. Correlating the mass and ICM estimations of the present 

model with the DEXA measurements showed that the model underestimated mass for all 

groups (Fig, 7a and Table 9) and that there was variability in ICM values within the groups 

that the model could not account for (Fig, 7b and Table 10). Furthermore, overlaying the 

mean mass and ICM distribution properties of the thigh as determined from DEXA with 

the mean mass and ICM distribution properties predicted by the model for the four groups 

revealed that mass (Fig. 8a), as well as lcM (Fig. 8b), was underestimated by the model at 

the proximal end of the thigh. One or more anthropometric parameters other than 

proximal thigh circumference may provide a more accurate representation of the mass at 

the proximal end and should be considered in future models. Conversely, mass and ICM 

were predicted well at the distal end, indicating that knee circumference is a good 

predictor of dis~ thigh mass and ICM in the frontal plane. 

The segmentation procedures selected in this study were designed to follow 

identifiable bony landmarks and the segment digitization methods were assumed to be 

repeatable. While this is a limitation of the study, all data processing was performed by 

one individual, minimizing inter-digitizer error. The digitization landmarks selected were 

easily identifiable and it is assumed that the segmentation repeatability was high. The 

selected segmentation procedure also occasionally resulted in the exclusion of some 

proximal thigh mass medially and the addition of mass laterally in subjects with steeper 

iliac crest-to-~schial tuberosity slopes. This may have caused an increase in the DEXA 
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Figure 7. Scatterplots of mo4el estimations vs. DEXA measurements of ( a) mass and (b) 
IeM for the Female (19-30 years) group. Solid line represents the unity line between the 
model predictions and DEXA measurements. 

Table 9. Linear regression equations and coefficients of variation (~) resulting from 
correlating geometric model mass estimations with DEXA mass measurements. 

Group 

Males (19-30 Y~) 
Females (19-30 Years) 
Males (55+ Years) 
Females (55+ Years) 

x = Model mass (kg) 

Regression 
Equation 
1.382x - 1.101 
1.219x + 0.332 
2.302x - 6.998 
1.279x-0.716 

0.877 
0.893 
0.927 
0.784 
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Figure S. Ensemble averages of the (a) mass distribution properties and (b) IcM 
distribution properties estimated by the developed model and measured by DEXA. Mean 
model estimates are displayed as a percent ofDEXA mass to show where the model 
failed to estimate the desired parameter. The curves represent the mean ensemble 
averages from the male (19-30 years) group. 

Table 10. Linear regression equations and coefficients of variation (r) resruting from 
correlating geometric modellcM estimations with DEXA 1cM measurements. 

Group Regression Equation r2 
Males (l9-30 Years) 1.l73x-2.99 0.775 
Females (19-30 Years) 0.954x + 139.09 0.810 
Males (55+ Years) 1.945x + 780.43 0.618 
Females (55+ Years) 1.196x + 52.68 0.625 

x' = ModellcM (kg·m2) . 
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lcM measurements since mass from the proximal thigh would have been lost medially and 

then gained laterally at a distance further away from the CM. For these subjects, it is 

possible that the present model did not underestimate mass and 1cM quite as much at the 

proximal end as was indicated by the results. 

An additional limitation of the segmentation patterns selected is that the methods 

differed slightly from those of Zatsiorsky et al. [15] and Dempster [6]. Zatsiorsky et al. 

[15] segmented the hip joint at an angle of 37° from the midline of the pelvis while this 

study sectioned the hip according to individual pelvic angles, which on average were 

approximately 20.5°. This difference should have resulted in an underestimation of mass 

and 1cM by the Zatsiorsky et al. [15] models when compared to DEXA measurements, 

however both these models overestimated thigh mass for all groups, the regression 

equations overestimated thigh IcM for both male groups, and the geometric models 

overestimated 1cM for all groups except older males. It is therefore likely that errors from 

these models would have been larger if the segmentation methods were identical. 

Furthermore, Dempster [6] segmented his specimens in a flexed position, which was not 

possible with the DEXA method because subjects must be scanned in an extended 

position. Dempster [6] also made his cuts by slicing along the inguinal fold down to the 

bone, removing mass from the thigh in the gluteal region, a method which is not possible 

using DEXA where segmentation lines are limited to a plane perpendicular to that of the 

scan. The lack of tissue in the gluteal region should therefore have resulted in an 
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underestimation of thigh mass using the Dempster [6] equations when compared to the 

DEXA measurements, a trend that is positively displayed in the results. 

The volunteers in this study were chosen to represent a wide variety of height and 

weight categories. As a result, some of the participants in the upper weight percentiles 

possessed large amounts of abdominal fat that layover portions of the proximal thigh. 

Since this tissue could not be separated from the thigh in the digital image, some excess 

abdominal tissue may have been included in the digitization area and thus increased the 

mass and moment of inertia of the thigh segment at the proximal end. This problem was 

encountered for a few subjects in the older populations, possibly introducing error into 

the DEXA measurements. 

The DEXA method requires that subjects be scanned while lying supine, a 

limitation that is common to many of the imaging techniques used to date including 

gamma-mass scanning, MRI and CT imaging. Since the subjects were lying down. some 

redistribution of tissues likely occurred which may have changed the inertial properties 

of the segments slightly. It has been assumed that this redistribution does not 

significantly change the body segment parameters measured and that although the 

anthropometric parameters were taken while the subjects were standing. these parameters 

would be similar if taken while lying supine. Since this limitation is inherent in the 

method, some amount of error in the results should be attributed to these differences. 

The right and left thigh segments of each subject were treated as independent 

samples in the development and validation of the geometric model. Since these samples 

are not truly independent. the variability in the mass distribution characteristics of the 
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188 segments examined is less than would be if we examined one segment each from 

188 subjects. However, individuals do display asymmetric charnct:eristics and therefore. 

the variability is likely greater than would be obtained by including one segment from 94 

subjects. It is believed that the variability in mass distribution characteristics included in 

this study is large enough to encompass the differences in morpbology that exist in the 

general population for these age and gender groups. 

DEXA is an imaging tool that is limited to providing mass distribution 

information in the frontal plane, therefore BSP measurements and model validations in 

this study were performed in one plane only. This is an issue that must be addressed in 

future research, however this study provides valuable insight into the benefits of using 

mass distribution properties to model human body segments for BSP estimation. The 

results have shown that humans are geometrically similar in the mass distribution 

properties of the thigh, indicating that one model can be applied to many adult 

populations. Furthermore, the results give an indication of the performance of other 

models in estimating thigh BSPs for different populations. Using DEXA to determine the 

mass distribution properties of segments provides advantages over other imaging 

techniques because it is significantly less onerous than MRI and CT imaging and requires 

less radiation than CT. allowing the development of large databases of subjects from 

which to develop mooeJs. The determination of mass distribution properties using DEXA 

.in three dimensions win allow modification and validation of the present model in three 

dimensions and will enable the development of more accurate geometric models for the 

remaining segments ofthe human body. 
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Future research will involve the development and modification of geometric 

models in three dimensions in hopes of producing a whole body anthropometric model 

that accurately predicts human BSPs. However, the level of error that is acceptable for 

use in human motion analyses remains uriknown. Pearsall and Costigan [27] evaluated the 

effect ofBSP error on human gait analysis using a Monte Carlo method and found that 

errors of up to 40% significantly affected kinetic calculations, particularly during swing 

phase, although the effects were less than 1 % body weight. Open chain movements or 

actions with high accelerations were presumed to be more sensitive to these errors, 

however. Furthermore, Cheng et a1. [18] used MRI to directly measure BSPs from their 

subjects because the available models were thought to negatively affect lumbar moment 

calculations in lifting activities. The effect ofBSP error on kinetic calculations likely 

depends on the movement being analyzed and should be considered in each movement 

problem. Furthermore, errors introduced by other parameters such as in marker 

digitization errors further obscures the true results. The reduction ofBSP error therefore 

remains a valid and worthwhile endeavor. While BSP errors of the thigh segment may not 

have been significantly reduced in this study in comparison with some other models 

available, accurate knowledge of these errors is now available on a variety of human 

popUlations. Furthermore, a new method of developing geometric models is now 

available, possibly allowing further reduction ofBSP error and validation ofBSP 

estimates. 
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CHAPTER 3 

GEOMETRIC SOLID MODELLING OF THE HUMAN FOREARM FOR BODY 
SEGMENT PARAMETER ESTIMATION 

3.1 Introduction 

Net joint forces and moments of force are calculated using inverse or forward 

dynamics methods to solve a number of kinetic problems. These may include identifying 

loading conditions of the lumbar spine in lifting activities, determining the efficacy of an 

exercise regimen in a rehabilitative protocol, or improving performance in a sport 

movement. Body segment inertial parameters (BSPs) are required to determine these net 

forces and moments of force and errors in their measurement may greatly affect kinetic 

estimates (Cheng et aI., 2000). Early studies relied on cadavers for determining body 

segment masses, centre of mass locations and moments of inertia, carefully sectioning 

specimens and directly measuring these parameters on the segmented limbs (Braune and 

Fisher, 1889; Chandler et al., 1975; Clauser et al., 1969; Dempster, 1955). The limited 

availability of cadaveric specimens and the onerous task of sectioning and measuring the 

segments resulted in small sample sizes typically consisting of elderly Caucasian males. 

Furthermore, individual studies demonstrate different segmentation patterns, preventing 

the pooling of data. 

Non-invasive measurement techniques have also been developed to directly 

measure BSPs from living subjects. Human body segments have been measured for 

volume using water immersion and the values converted to mass estimates using constant 

density values (Drillis and Contini, 1966; Plagenhoef, et al.,1983). These methods have 
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also been used to measure centre of mass locatio~ however the assumption of constant 

density and the difficulties in measuring more proximal segments has resulted in limited 

use of this technique (pearsall and Reid, 1994). Moments of inertia of distal body 

segments, such as the forearm and lower leg, have been measured using compound 

pendulum, quick release and oscillation techniques (Drillis and Contini, 1966; Peyton, 

1986). These procedures assume that skeletal muscle involvement is negligible, however 

and therefore have not been considered reliable. Measuring asps directly on living 

humans has therefore proven difficult until recently with the development and increased 

availability of medical imaging technology. 

Medical imaging tools such as gamma mass scanning, magnetic resonance 

imaging (MRI), computed tomography (CT) and dual energy x-ray absorptiometry 

(DEXA) have been used to determine BSPs accurately on living subjects. Zatsiorsky and 

Seluyanov (1983) used gamma-mass scanning to measure BSPs on young adult males. 

and females. T.he results were considered reliable, however the machine is not available 

today, making the technique ,obsolete. Martin et al. (1989) used baboon cadaver segments 

to validate MID as a BSP measurement tool. The method was accurate and safe but was 

very costly and laborious. This tediousness has precluded the analysis of many subjects 

and has discouraged·its frequent use for direct BSP measurement. CT imaging has been 

used in a similar manner as MRI (Huang, 1983; Pearsall et al, 1996), yet the methods are 

bound by the same limitations, in addition to high radiation doses. Recently, DEXA has 

emerged as a method for determining BSPs from living subjects and offers the same level 

of accuracy as MRI and CT imaging. While the technology uses radiation to obtain mass 
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distribution information, the dosage is considered minimal and the method is rapid and 

simple. DEXA may not be readily available to most researchers, however, a limitation 

that diminishes its practicality. 
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Mathematical models such as regression equations and geometric models have 

been developed to provide a fast, accurate and convenient way of estimating BSPs for a 

group of SUbjects. Linear regression equations were developed using data from Dempster 

(1955) to predict segment masses from whole body mass and centre of mass locations 

and radii of gyration from segment length (Winter, 1990). These equations represent an 

expedient way of estimating BSPs, however they are based on elderly male cadaveric 

data that have not been validated on living SUbjects. Regression equations have also been 

developed from the cadaveric data of Chandler et al. (1975) and Clauser et al. (1969) and 

from the living subject experimental studies ofDrillis and Contini (1966), Young et al. 

(1983) and Plagenhoef, et al. (1983). The integrity of these estimates are bound by the 

assumptions in the methods used to obtain the data and therefore remain less preferred 

sources in the literature. Zatsiorsky et al. (1990) later developed multiple regression 

equations using .data from gamma-mass scanning, generating separate equations for 

young males and females. These models are considered reliable but are limited to a 

young Caucasian population. Furthermore, Durkin and Dowling (2003) developed linear 

regression equations for selected body segments on four human populations using DEXA 

and compared the accuracy of these estimates to other popular methods. The linear 

regression equations did not improve on estimates compared to other sources in the 

literature and it was found that no one BSP source performed best for a given segment, 
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BSP, or population group. Additionally, the regression equations adequately represented 

differences between the groups but did not account for individual variability within each 

population. 

Geometric models of varying complexity have also been developed (Durkin, 

1998; Hanavan, 1964; Hatze, 1980; Jensen, 1978; Zatsiorsky et al., 1990) to provide 

reasonable estimates of human BSPs. Hanavan (1964) used a series of ellipsoids, right 

circular cylinders and frusta to represent the body segments of young adult males. The 

models assumed constant density throughout the segments, however, and were validated 

for whole body mass and inertial properties only. Jensen (1978) used photogrammetry to 

develop elliptical models of human body segments in an effort to account for differences 

across age, gender, morphology, and race, although the models were validated for 

segment volume only and assumed constant density throughout. Hatze (1980) later 

developed a more detailed geometric model of the human body that has been considered 

reliable, but is largely avoided due'to the required 242 anthropometric parameters needed. 

Models based on geometric considerations were developed by Zatsiorsky et a1. (1990) for 

young male and female adults. The models were right circular cylinders scaled using, 

mathematical constant to account for differences in shape and density between the model 

and the segment in question. Results were validated against gamma-mass scanning data 

and it was found that the geometric models performed better than the multiple regression 

equations developed in the same study. Recently, however, Durkin (1998) developed 

geometric models of selected body segments, each consisting of a composite of several 

geometric solids meant to accurately'represent the changes in segment shape along the 
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length of the segment. The models were compared to DEXA measurements and were 

found to perfonn poorly, likely due to the assumption of constant density while 

modelling according to segment volume. 

Durkin and Dowling (2003) found that linear regression equations developed in 

their study were superior to the geometric models ofHanavan (1964) and Zatsiorsky et 
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al. (1990) in estimating BSPs, yet the regression equations still produced a significant 

amount of error. Two possible directions were suggested for improving the accuracy of 

predictive equations. The first was to develop multiple regression equations using a series 

of anthropometric parameters including limb circumferences and breadths. Individual sets 

of equations would be needed to represent differences according to age, race, gender and 

morphology, as population BSP variations have been clearly identified by Jensen (1989, 

1994) and Durkin and Dowling (2003). The second option was to develop geometric 

models based on the mass distribution properties of segments rather than volume. This' 

method would require a detailed analysis of the mass distribution properties of the human 

body on a segment by segment basis, followed by the development and validation of an 

appropriate geometric model. Geometric models constructed in this manner may have an 

advantage over multiple regression equations by encompassing the characteristics of a 

variety of populations as wen as accounting for individual differences within groups. The 

purpose of this study is therefore to explore the mass distribution properties of one 

segment, the human foreann, for four human populations, to develop a geometric model 

accordingly, and to validate BSP estimates using DEXA. Model estimates from four 

other popular sources in the literature will also be evaluated by comparing against DEXA 
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measurements. It is hypothesized that there.will be a high degree of geometric similarity 

in the mass distribution properties of the forearms between the four groups studied and 

that a geometric model baSed on these properties will estimate forearm BSPs with greater 

accuracy than the other models examined. 

3.2 Methods 

One hundred volunteers were recruited and matched to one of four groups 

separated by gender (male/female) and age (19-30 years old, 55+ years old). Average 

height and mass statistics for the 5th, 25th, 50th, 75th and 95th percentiles of the Canadian 

population were obtained from Demitjian (1980) and 25 cells of unique height/mass 

combinations were constructed for each gender/age category. Subjects were recruited 

using posters on the McMaster University campus and within McMaster University 

Medical Centre .. Participants included McMaster students and faculty as well as staff and 

visitors to the McMaster hospital. One volunteer from each group was selected to fill 

each cell, developing a subject database that represented a wide variety of height and 

mass combinations. Five participants from each group were randomly chosen to represent 

a model development group and the remaining 80 subjects were allotted to a model 

validation group (Tables 1 and 2). The mean heights and masses of both groups were 

normally distributed. 

Each participant, clothed in a hospital gown and undergarments, was asked to lie 

supine on the DEXA scan table with forearms pronated, palms facing the table. A 

pronated forearm position was chosen due to width restrictions of the DEXA scan table. 
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Table 1: Descriptive statistics of model development group including mean ± standard deviation (SO) and range of participant 
alles, heillhts and masses. 

Mass (kg) 
GrOUD INn Mean (SD) Ram!e 
Males (19-30 Years) 5 10 67.7 (10.7) 59.0-86.0 
Females (19-30 Years) 5 10 56.6 (5.1) 50.0-63.6 
Males (55+ Years) 5 10 83.2 (15.3) 70.0-106.0 
Females (55+ Years) 5 10 57.8 (5.5) 51.0-65.5 
N = number of participants, n = number of forearm segments examined 

Table 2. Descriptive statistics of model validation group including mean ± standard deviation (SO) and range of participant 
es, heillhts and masses. 

Height (em) Mass (kg) 
GrOUD INn Mean (SD) Ranee Mean (SD Mean (SD) Ranee 
Males (19-30 Years) 20 31 21.7 (1.7) 19.0-25.0 175.4 (7.4) 72.6 (11.2) 55.5-97.7 
Females (19-30 Years) 20 38 21.7 (3.2) 19.0-30.0 163.3 (7.7) 56.5 (7.3) 47.0-70.5 
Males (55+ Years) .20 30 68.3 (6.9) 55.0-78.0 174.5 (6.3) 80.4 (11.8)· 59.0-107.7 
Females (55+ Years) 20 26 68.0 (7.8) 56.0-83.0 158.9 (4.2) 61.200.0) 50.9-86.4 
N = number of participants, n = number of forearm segments examined 



J. Durkin - PhD Thesis McMaster University - Kinesiology 57 

The subjects chosen for the study represented a large range of body sizes and the 

pronated position offered greater accommodation of hip width without touching the torso 

while still remaining within the scan field of view. One whole body DEXA scan was 

performed followed by a series of anthropometric measurements taken with a flexible 

tape measure accurate to ±O.05 cm (Table 3). All procedures were performed in 

compliance with approval from the McMaster University. Research Ethics Board. 

The DEXA scan files were processed as in Durkin et al. (2002). Digital images of 

the scan information were created including a density image (Fig. 1) to display the 

skeletal system and allow identification of bony landmarks, and a mass image (Fig. 2) to 

highlight the position of soft tissue. One whole body DEXA scan produces a data array of 

146 x 112 mass elements, 1.32 cm x 0.53 cm in dimension. The spatial resolution of the 

mass data was increased by applying a cubic spline algorithm, interpolating the data to 40 

times its original resolution. The spline was set to follow the data with as little smoothing 

as possible (Fig. 3) and resulted in a decrease in mass element size to 0.132 cm x 0.132 

cm. 

T bl 3 De a e·. f thro ed' d 1 scnption 0 an )pometric measurements us m geometncmo e s 
Anthropometric Measurement Description 
Elbow Circumference Circumference over olecranon process and over 

anterior crease of elbow with elbow in full 
extension and forearm supinated 

Maximum Forearm Circumference Largest circumference about forearm with elbow 
in full extension and forearm supinated 

Forearm Length Distance between lateral epicondyle 
and tip of distal radial styloid with elbow in full 
extension and forearm supinated 
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Figure 1. Partial display of density image created to make bony landmarks visible for 
forearm segmentation. Dashed line represents an example of forearm segmentation 
method. 

Figure 2. Partial display of mass image used to ensure all soft tissue is enclosed within 
segmentation area (dashed line). 

58 

The left and right forearms of each subject were segmented using custom software 

(DXA Digitization Software, Durkin, 1998) whereby the density image was used to 

section the segment following easily identifiable bony landmarks. The forearm was 

segmented at the elbow by a plane running in the anteroposterior direction, slicing 

through the lateral and medial epicondyles. The forearm was sectioned at the wrist by an 

anteroposterior plane slicing just distal to the distal radial and ulnar styloids. The 

proximal joint centre was selected as a point midway along the segmentation plane 
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Figure 3. Example of interpolated data closely following raw data points with little 
smoothing effects. Cross-section is through right mid-forearm of a young female subject. 

between the lateral and medial epioondyles and the distal joint centre was chosen as a 

point midway along the segmentation plane between the distal ulnar and radial styloids. 

Other segmentation points encircling the forearm were selected to ensure that all soft 

tissue was enclosed within the digitized area by toggling between the density and mass 

Images. 

BSP information was calculated from the segmented mass area as in Durkin et al. 

(2002) including forearm mass, centre of mass in the longitudinal direction (CMx), centre 

of mass location in the mediolateral direction (CMy) and moment of inertia about the 

centre of mass (IcMz). The segmented mass array was then rotated to ensure that a line 

connecting the proximal and distal endpoints represented the horizontal axis. 
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Mass distribution information of the forearm was obtained by normalizing each 

data array to 100% segment length and 100% segment mass. Mass elements within each 

1 % segment length intervai were summed and divided by the total forearm mass. 

Furthermore, separate distribution curves were created for mass lateral and medial to the 

proximal-to-distal segment line. The result was a mass distribution plot for the forearm 

segment normalized to 100% segment length with the area between the lateral and medial 

distribution curves equaling 100% segment mass. The mass distribution plots of the right 

forearms were then inverted to match the left segment plots and were treated as 

independent samples. 

An ensemble average of the forearm mass distribution plots was created for each 

of the four populations from the model development group to yield the mean (±SD) mass 

distribution for each group (Fig. 4). The graphs were then examined visually for 

geometric similarity and were examined statistically by correlating the percent of 100% 

segment mass values between the groups (y-axis of Fig. 4) and calculating the Pearson 

Product Moment Correlation Coefficients. Correlations were performed separately for 

mass lateral and medial to the proximal-to-distal segment line. These mass distribution 

plots were then used for model development. 

Model BSP estimation errors were determined by calculating the BSP estimations 

using the geometric equations developed and comparing to DEXA measurements by 

calculating the root mean squared error (RMSE) for each group and each BSP. 

Estimation errors from four other popular models in the literature were also determined 

using the methods in the corresponding papers. Forearm BSPs were determined using the 
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regression equations of Dempster (1955) (via Winter, 1990) (D), the geometric models of 

Hanavan (1964) (H) and both the multiple regression equations (ZR) and geometric 

models (ZG) ofZatsiorsky et al. (1990). These estimates were determined and compared 

to DEXA measurements by calculating the RMSE's. One way repeated measure 

Analyses of Variance (ANOV A) were performed for each group and each BSP to 

determine whether significant differences existed between model estimate errors. Squared 

error values used in the RMSE calculations were compared in the ANOV As followed by 

Tukey HSD post hoc analyses to determine where these differences lay. 

3.3 Results 

3.3.1 Geometric Similarity 

Visual inspection of the mass distribution plots indicated geometric similarity 

between groups. The high Pearson Product Moment correlations (Tables 4, 5) confirmed 

this observation, supporting the development of one geometric model to predict BSPs for 

all four groups. Within group variability in forearm mass distribution was examined by 

summing the standard deviation values along the segment length of the mean mass 

distribution plots. Standard deviations amounted to 38% of forearm mass for the younger 

male group, 39% for the younger female group, 34.8% for the older female group and 

22.8% for the older male group. Individual variability in forearm mass distribution thus 

seemed to decrease with age and was higher in females than in males. 
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Figure 4. Ensemble average of mass distribution plots as determined from DEXA. Positive and negative y-axis values 
represent lateral and medial forearm mass distribution~ respectively. The inner lines represent mean mass distribution and the 
outer lines represent positive standard deviations. The area between the mean curves represents 100% forearm mass. 
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Table 4. Linear regression equations and Pearson Product Moment Correlations 
comparing mean lateral forearm mass distribution information as obtained by DEXA for 
model development groups. OM = Males (55+ Years), OF = Females (55+ Years), YM = 
Males (19-30 Years), YF = Females (55+ Years). 

Groups Correlated Linear Regression Equation 
OMvs. OF OF = 0.0604+ 1.0170(OM) 
OM vs. YM YM = 0.0214 + 0.8528(OM) 
OM vs. YF YF = 0.0190 + 0.8750(OM) 
OF vs. YM YM = -0.0216 + 0.8228(OF) 
OF vs. YF YF = -0.0146 + 0.8219(OF) 
YM vs. YF YF = 0.0081 + 0.9959(YM) 

Pearson I' 
0.895 
0.906 
0.927 
0.992 
0.989 
0.993 

Table 5. Linear regression equations and Pearson Product Moment Correlations 
comparing mean medial forearm mass distribution information as obtained by DEXA for 
model development groups. OM = Males (55+ Years), OF = Females (55+ Years), YM = 
Males (19-30 Years), YF = Females (55+ Years). 

Groups Correlated Linear Regression Equation 
OM vs. OF OF = 0.0203 + 0.6880(OM) 
OM vs. YM YM = 0.0485 + 0.9644(OM) 
OM vs. YF YF = 0.0301 + 1.0052(OM) 
OF vs. YM YM = 0.0144 + 1.4275(OF) 
OF vs. YF YF = 0.0298 + 1.3236(OF) 
YM vs. YF YF = 0.0216 + 0.9118(YM) 

3.3.2 Model Development 

Pearson r 
0.850 
0.829 
0.914 
0.994 
0.974 
0.964 

Three geometric models were developed in an attempt to accurately estimate . 

forearm segment inertial properties. Each model consisted of a composite of 4 geometric 

shapes. The proximal segment was represented by a right circular cylinder, the second 

and third segments were decreasing right circular frusta and the distal segment was an 

increasing right circular frustum (Fig. 5). 
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Figure 5. Schematic of 4-segment geometric model of the human forearm. The individual 
segments are scaled to percentages of forearm mass (M) and proportions of forearm 
length (L) running from proximal (P) to distal (D) ends. 

Model 1 consisted of a 4-segment model requiring the input of three 

anthropometric parameters (Table 3). Radius rl was determined by calculating the mean 

of the elbow and maximum forearm radii. These radii were determined from their 

corresponding circumferences (radius = circumference /2n). Length proportions for each 

model segment were determined by visually inspecting the mass distribution plots (Fig. 

4) and selecting breakpoints that were common between all four groups. Mass 

proportions for each model segment were determined by summing the percent of 100% 

forearm mass values from the mass distribution plots (y-axis values, Fig. 4) within the 

length proportion boundaries for each group. An average of the group values was then 
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calculated for each model section to detennine the appropriate segment mass proportions. 

The density (p) of the entire model was set at 0.0013 kg cm-3 (Winter, 1990). 

Given the model section mass proportions, measured elbow and maximum 

forearm circumferences and segment lengths, the remaining radii were determined 

mathematically. First, the volume of the proximal segment (V 1) was determined using the 

formula for the volume of a cylinder: 

(1) 

where hI = 0.26L. Since density is constant and the mass of the proximal segment (MI) is 

equal to 0.36M, VI = 0.36V and the remaining radii can be calculated as follows: 

v=~ 
0.36 

(2) 

(3) 

where h2 = 0.26L. Balancing the equation to solve for r2 results in a quadratic equation: 

r2 =( -b2 +~ b2 2 -402C2 )1202 
(4) 

where: 

°2=1rh2 /3 (5) 

b2=02 r, (6) 

c 2 = (0 2 r/ )-V 2 (7) 
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V3 and V4 are calculated as: 

(S) 

(9) 

where h3 = 0.37L and ~ = O.11L. r3 and r4 were calculated as was r2: 

73 =( -b3 +~ b3 2 -4a3c3 )t2a3 (10) r4=( -b4+~b/-4a4c4 )l2a4 (14) 

a3=(7r~)/3 (11) a4 =(7rh4 )/3 (15) 

b3=a372 (12) b4=a473 (16) 

c3=(a37; }-V3 (13) c4=(a4732 }-V4 (17) 

Mass estimations for Model 1 were detennined by multiplying the calculated 

volumes of the four segments by p and summing the four values: 

(IS) (20) 

(19) (21) 

(22) 

The centre of mass locations for each model section were calculated according to 

the geometric properties of the segment shape. The centre of mass of the first segment 

(eMI) was calculated as O.Sh} which was equal to the centre of mass from the proximal 
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end (CMpI)' The centre ofmass of the right circular frusta were calculated as in Hanavan 

(1964) and were converted to locations from the proximal end by: 

CMp2=CM2+~ (23) 

CM P3 =CM3 +~ +h,. (24) 

CM P4 =CM 4 +~ +h,. +~ (25) 

The centre of mass of the entire composite from the proximal end (CMp) was then 

calculated as: 

CMp= [(CMpIMl)+(CMnM2)+(CMp3M3)+(CMp4M4)l!M (26) 

The moment of inertia of the first segment about its own centre of mass (ICMl) 

was calculated as: 

1 (2 2) 
ICM1=-M1\ht +3r1 

12 
(27) 

and was converted to a moment of inertia about the proximal end (IPl)uSing parallel axis 

theorem: 

(28) 

The moments of inertia of the remaining segments about their own centres of mass (IcM2' 

IcM3,· and ICM4) were calculated using equations for the ICM of a right circular frusta as 

described in Hanavan (1964) and were converted to moments of inertia about the 

proximal end using parallel axis theorem as in Eq. 28. The moment of inertia of the entire 
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composite about the proximal end (Ip) was then calculated by summing the individual 

inertial calculations: 

Ip=Ipl+I P2+Ip3+Ip4 

The moment of inertia of the entire composite about its centre of mass (ICM) was 

calculated using parallel axis theorem: 

(29) 

(30) 

BSP estimation errors for Model 1 were determined by applying the equations to 

the subjects in the model validation group and calculating the root mean squared errors 

(RMSE) between the model estimations and the benchmark DEXA measurements. Mass 

and fCM estimation errors were reported as a %RMSE in units of%DEXA mass or ICM 

whereas CMx and CMy estimation errors were reported as a RMSE in units of% segment 

length. CM errors were reported as RMSEs because calculating %RMSE with the 

mediolateral symmetry assumption of the models would result in 100% error when 

compared to the non-zero DEXA values. It was thought that reporting CM error terms in 

units of % segment length would more clearly highlight the magnitude of model errors. 

Mass and ICM distribution plots were created for the model estimations and 

ensemble averages were performed for each group. To identify where the model failed to 

estimate forearm mass and ICM, the distribution plots were represented as a % of DEXA 

forearm mass or !eM and overlaid with the DEXA distribution plots. The RMSE values 

showed rather high errors and the diStribution plots revealed an overestimation of forearm 
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mass at the proximal end, indicating that the mean of the elbow and maximum forearm 

radii were poor predictors of proximal forearm mass. 

Model 2 was constructed in a similar manner to Model 1 but used elbow radius 

alone as a measure of rl. Model 2 was applied to the model validation group and the 

results were evaluated in a similar manner to Modell. The results showed that elbow 

circumference was still a poor estimator of proximal forearm mass as an overestimation 

was obvious in Figure 6. 

Model 3 was developed in a similar manner to Models 1 and 2 with rl represented 

as a scaled version of elbow radius (rs). A slice 1 % segment length in width was extracted 

from the mass distribution plots of each individual within the model development group. 

The 20th segment length slice was chosen from the proximal forearm, the volume of 

which was set to represent a circular cylinder and a value for rs was determined by: 

rv;:­
rs=V~ (31) 

where V 20 = volume of a cylinder within the 20th percent segment length column of the 

mass distribution plot and L = measured segment length. 

v. = (%o/100%mass)(totaIDEXAmass) 
20 100 . P 

(32) 

The measured elbow radii (rl) were then correlated with the scaled radii (rs) for the 20 

model development subjects using linear regression analysis with a y-intercept forced to 

zero (Fig. 7). 
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Model 3 was then applied to the model validation group as was Models 1 and 2 

with rl = 0.938 x elbow radius. BSP estimation errors were calculated for Model 3 by 

determining the RMSE's for each group and the mean model mass and ICM distribution 

plots were overlaid with the DEXA data to determine where the model failed (Fig. 6). 

(a) 
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Figure 6. Mean distribution plots of Model 1, Model 2 and Model 3 and DEXA forearm 
mass for Females (55+ Years). Distribution plots of Model 1, Model 2 and Model 3 are 
normalized to 100% DEXA forearm mass. Models 1 and 2 are nearly identical in shape 
and therefore overlie each other on the plot. 
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Figure 7. Linear correlation of measured elbow radius (rl) vs. scaled elbow radius (rs) for 
aU subjects in model development group. 

3.3.3 Model Accuracy 

The mass distribution plots showed an overestimation of mass at the proximal end 

with all models. Models 1 and 2 were almost identical in their tracings and obviously 

overestimated mass at the pr~ximal end. Model 3 improved on these estimates for all 

groups but still resulted in an overestimation of mass at the elbow. Models 1 and 2 

underestimated mass at the distal end for all groups but less so for the older groups. 

Model 3 resulted in a greater underestimation of mass at the distal end than Models 1 and 

2 for all groups. 

Examining the IeM distribution plots showed an overestimation at the proximal 

end by Models 1 and 2 with a smaller overestimation by Model 3. At the distal end, 

Models 1 and 2 resulted in slightly underestimated inertia with further underestimation 
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using Model 3 for the older groups. The YOlmger groups showed a slight overestimation 

of inertia at the distal end for models 1 and 2 whereas Model 3 closely approached 

DEXA measurements in this region. 

Linear correlations comparing Ml, M2 and M3 estimations with DEXA 

measurements for mass and IcM show that Models 1 and 2 overestimated foreann mass 

for all groups and that Model 3 improved on these estima~es (Fig. 8, Table 6). Models 1 

and 2 resulted in both over and underestimations in lcM, however, and the application of 

Model 3 resulted in overall underestimations OfICM (Fig. 9, Table 7). A greater difference 

in ICM error was seen from Ml and M2 to M3 in the male subjects, whereas the female 

groups showed a lesser decrease in accuracy. 

Modell (Ml) and Model 2 (M2) provided poor estimations of foreann mass in 

comparison with the other models (Table 8). On average, mass estimations for all models 

were more accurate for the male groups than the female groups. Comparisons of average 

model estimates with DEXA measurements revealed that D, ZR and ZG overestimated 

mass compared to DEXA measurements for the female groups and underestimated 

massfoF the male groups. H overestimated mass for all populations arid aU seven models 

resulted in greater mass estimation error for the female groups than the male groups. 

Repeated measures ANOV As showed that significant differences existed between the 

error terms for the models in aU groups. Model 3 (M3), D, ZR and ZG appeared to 

provide the most accurate estimations and the Tukey HSD post hoc analyses showed that 

Model 3 was not significantly better or worse than D, ZR or ZG for all groups. H was 
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Table 6. Linear regression equations and coefficients of variation of comparisons between model estimates and OEXA forearm 
mass measurements. 

Model 1 Model 2 Model 3 
Group Linear Regression ? Linear Regression rl Linear-Regression ? 

Equation Equation Equation 
Males (19-30 Years) y=0.841x+0.051 0.80 y=0.766x+0.197 0.69 y=0.871x+0.198 0.68 
Females (19-30 Years) y=0.961x-O.l12 0.64 y=0.990x-0.124 0.68 y=1.125x-O.l24 0.68 
Males (55+ Years) y=0.879x-0.035 0.75 y=0.887x-0.045 0.70 y=1.009x-0.437 0.70 
Females (55+ Years) y=0.852x-0.058 0.89 y=0.888x-0.089 0.86 y=0.948x-0.032 0.76 
y = OEXA mass (kg), x = model mass (kg) 

Table 7. Linear regression equations and coefficients of variation of comparisons between model estimates and OEXA forearm 
ICM measurements. 

Modell Model 2 Model 3 
Group Linear Regression rz Linear Regression rz Linear Regression----~ 

. Equation Equation Equation 
Males (19-30 Years) y=0.849x+13.220 0.77 y=O.813x+17.620 0.72 y=0.94Ox+16.760 0.71 
Females (19-30 Years) y=0.985x-1.369 0.67 y=1.016x+0.852 0.70 y=1.158x+0.847 0.70 
Males (55+ Years) y=0.938x+0.568 0.77 y=0.979x-0.730 0.76 y=1.046x+1.806 0.66 
Females (55+ Years) y=1.028x+2.171 0.71 y=1.032x+1.643 0.74 y=1.175x+2.060 0.71 
y = OEXA ICM (kg m2), x = model ICM (kg m2) 
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Table 8. % RMSE values and ANOV A results of model mass estimates compared with DEXA mass 
measurements. RMSE values are in units of % DEXA forearm mass. 
Group Ml M2 M3 D H ZR ZG F P 
Males (19-30 Years) 16.7 14.8 9.2 11.3 8.7 10.0 5.4 8.8 < 0.001 
Female (19-30 Years) 27.6 25.5 15.8 23.0 34.0 21.1 17.3 14.0 < 0.001 
Males (55+ Years) 19.7 19.9 9.1 9.3 15.3 9.2 7.1 19.8 < 0.001 
Female (55+ Years) 27.7 27.2 16.4 21.8 35.9 15.6 14.8 17.6 < 0.001 
Ml = Modell, M2 = Model 2, M3 = Model 3, D = Dempster (1955) via Winter (1990), 
H = Hanavan (1964), ZR == Multiple regression equations from Zatsiorsky et al. (1990), 
ZG = Geometric equations from Zatsiorsky et al. (1990). 

Table 9. RMSE values and ANOVA results of model CMx estimates compared with DEXA CMx 

measurements. RMSE values are in units of % forearm segment length. 
Group Ml M2 M3 D H ZR ZG F P 
Males (19-30 Years)· 1.6 1.6 1.6 2.0 1.3 4.9 8.8 235.3 < 0.001 
Female (19-30 Years) 2.6 2.6 2.6 1.5 1.6 1.9 7.9 209.4 < 0.001 

. Males (55+ Years) l.6 1.6 1.6 1.8 1.5 5.6 8.6 160.4 < 0.001 
Female (55+ Years) 1.9 l.9 1.9 2.1 2.0 2.0 8.7 187.6 < 0.001 
Ml ::::; Modell, M2::::; Model 2, M3 ::::; Model 3, D = Dempster (1955) via Winter (1990), 
H = Hanavan (1964), ZR = Multiple regression equations from Zatsiorsky et al. (1990), 
ZG = Geometric equations from Zatsiorsky et al. (1990). 
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Table 10. RMSE values and ANOV A results of model CMy estimates compared with DEXA CMy 
measurements. RMSE.values are in units of% forearm length. 
Group Ml M2 M3 D H ZR ZG 
Males (19-30 Years) 1.4 1.4 1.4 1.4 1.4 1.4 1.4 
Female (19-30 Years) 2.9 2.9 2.9 2.9 2.9 2.9 2.9 
Males (55+ Years) 2.2 2.2 2.2 2.2 2.2 2.2 2.2 
Female (55+ Years) 2.6 2.6 2.6 2.6 2.6 2.6 2.6 
M1 = Modell, M2 = Model 2, M3 = Model 3, D = Dempster (1955) via Winter (1990), 
H = Hanavan (1964), ZR = Multiple regression equations from Zatsiorsky et al. (1990), 
ZG = Geometric equations from Zatsiorsky et al. (1990). 

Table 11. % RMSE values and ANOV A results of model reM estimates compared with DEXA reM 
measurements. RMSE values are in units of % DEXA forearm reM. 
Group Ml M2 M3 D H ZR ZG F P 
Males (19-30 Years) 10.8 13.4 20.7 10.6 11.2 18.8 14.1 12.5 < 0.001 
Female (19-30 Years) 14.7 14.0 18.6 32.4 31.1 17.3 15.2 15.6 .< 0.001 
Males (55+ Years) 12.5 12.8 19.2 14.5 15.7 18.7 16.9 2.9 < 0.01 
Female (55+ Years) 17.9 17.5 18.7 43.3 43.6 23.8 20.7 7.6 < 0.001 
M1 = Modell, M2 = Model 2, M3 = Model 3, D = Dempster (1955) via Wint~r (1990), 
H = Hanavan (1964), ZR = Multiple regression equations from Zatsiorsky et al. (19~0), 
ZG = Geometric equatio~s from Zatsiorsky et al. (1990). 



J. Durkin - PhD Thesis McMaster University - Kinesiology 77 

significantly worse than all other models for all groups except younger males and D had 

significantly less error than MI and M2 for both male groups. 

Longitudinal centre of mass calculations showed that D, II, ZR and ZG all 

overestimated CMx compared with DEXA measurements for aU groups (Table 9). 

Conversely, MI, M2 and M3 predicted CMx location at 40% segment length, resulting in 

a slight underestimation compared with DEXA measurem~nts. Repeated measures 

ANOV As revealed significant differences between model error terms for all groups. CMx 

estimates by MI, M2 and M3 were identical and therefore were not significantly different 

from each other. Tukey post hoc analyses showed that only ZG had significantly more 

error than the other models for the female groups whereas ZR and ZG had significantly 

more error than the other models for the male groups. In the latter case, ZR also had 

significantly less error than ZG. 

Each of the seven models examined assumed mediolateral symmetry, therefore all 

CMy estimations were identical (Table 10). This symmetry resulted an underestimation of 

the slightly lateral CMy location determined through the DEXA measurements. ANOV As 

were not performed to identifY differences between the groups for this BSP. 

ICM calculations showed that D overestimated ICM for the female groups and 

underestimated ICM for the male groups (Table 11). Furthermore, ZR and ZG were found 

to underestimate ICM for all groups while H overestimated ICM for all groups. Repeated 

measures ANOV As revealed statistically significant differences between models for all 

groups. On average, ICM estimation errors from M3 were greater than those from Ml and 

M2, however the results were statistically significant for the male groups only. D and H 
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produced the greatest errors for the female groups and the only significant difference 

found in the older male group was between Ml and M3. The younger males were 

predicted equally well by Ml, M2, D, Hand ZG whereas M3 and ZR provided poor IcM 

estimations for this group. 

3.4 Discussion 

Three geometric models were developed to represent the mass distribution 

properties of the forearm for four human populations as determined from DEXA and 

each model was an adaptation of the previous one in an attempt to reduce errors in BSP 

estimation. The models were validated by applying geometric formulas to 80 subjects 

from four populations and comparing the results to benchmark DEXA measurements. 

Four ·other popular models currently available in the literature were also examined by 

applying the respective equations to the model validation groups and comparing 

estimations with DEXA measurements. On average, Ml, M2, M3, ZR and ZG provided 

the lowest errors in BSP estimation, the results of which, depending on the group and 

BSP, were not significantly different from each other. Furthermore, the adjustments made 

for Model 3 significantly improved mass estimations at the expense of IeM accuracy due 

to greater underestimations at the distal end. 

The participants in this study were selected to represent a wide range of height 

and mass combinations, therefore each group demonstrated large variations in body 

morphology. Furthermore, racial origin was not controlled, resulting in a collection of 

individuals with diverse backgrounds including Caucasian, African-, Asian-. Indo- and 
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Native-Canadians. These large morphological and racial differences may partially 

account for the variability in forearm mass distributions seen within the groups. 

Furthermore, standard deviations were found to decrease with age, possibly due to 

specific age-related characteristics. The participants selected for this study were not 

controlled by activity level, therefore some subjects may have demonstrated significantly 

more muscle mass than less active subjects. These differences may have been greater in 

the younger groups, partially contributing to the larger standard deviations in the younger 

samples. The mass distribution standard deviations were also found to be lowest in the 

older male group. A possible reason for this could be the greater similarity in height and 

mass profiles of individuals within this group compared to the other samples. Fitting 

volunteers into the lower height/mass cells for the older male group proved to be 

difficult, therefore slightly more homogeneous height and mass characteristics are 

represented in this sample. This resulted in distributions that were skewed slightly 

towards the higher end and may have correspondingly decreased the mass distribution 

variability for this group. 

The right and left forearms of each subject in this study were treated as 

independent samples. These limbs are not truly independent, however, resulting in mass 

distribution variability that is less than what would be found with a research protocol 

using one limb from twice as many subjects. Due bilateral asymmetry, it is likely that the 

variability represented in this study is greater than what would be found by incorporating 

only one limb from each participant in the analysis. It is believed that the amount of mass 
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distribution variability provided by the samples is sufficient to represent the 

characteristics of the representative populations at large. 

80 

Models 1,2 and 3 estimated BSPs with errors similar to those of the other models 

examined in this study. While these models may not have dramatically improved BSP 

estimates, the results show that geometrically representing mass distribution improves 

BSP estimations over models that mimic segment volume. Furthermore, the results show 

that one model has the potential to account for differences both within and between 

groups. One reason the models in this study did not improve on current estimates could 

be due to the transverse symmetry of the chosen shapes. Limb circumferences were used 

to determine joint radii and segment mass distribution properties were estimated using 

circular geometric solids. Greater accuracy may be obtained with the use of limb breadths 

and the development of elliptical models to more accurately account for differences 

between the frontal and sagittal planes. Such transverse differences may explain why the 

female subjects displayed greater error in mass and ICM estimations than the male 

subjects, possibly a result of differences in adipose content. 

Development of an elliptical forearm model may improve BSP estimates, 

however validation of geometric models in other planes using DEXA is an issue that 

must be addressed in the future. DEXA is a two-dimensional imaging technique that 

currently limits the validation of models to the frontal plane. Since the forearm is a distal 

segment, it is possible to perform two scans, one in the frontal plane and another in the 

sagittal plane. Arrangement of the forearm to ensure a perfectly orthogonal view while 

maintaining wrist and elbow transverse positions (pronation-supination) would be 
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extremely difficult since this situation would require the subject to lie in a non-supine 

manner which may be difficult to standardize and maintain. The two-dimensional nature 

of this study is a limitation that must be overcome in the future, however the results of 

this study remain beneficial by demonstrating geometric similarity between different 

populations. The results further demonstrate the potential of geometric models for 

providing accurate BSP estimations by representing segmental mass distribution 

properties. 

The results of the models developed in this study closely approximated those of 

Zatsiorsky et al. (1990). While Zatsiorsky et al. (1990) used rather simple cylindrical 

models, a constant was applied to the models to account for differences between model 

shape and density compared to those of the forearm. These models performed as well as 

M3 for mass and as well as Ml and M2 for IcM• ZR and ZG produced the largest errors in 

CMx position, however, particularly ZG, which resulted in differences of approximately 

8% of segment length. For a forearm length of26 cm, this would result in an 

overestimation of CMx by 2 cm. 

The results from Dempster (1955) showed rather large errors for mass and ICM for 

the female subjects when compared to DEXA measurements. These errors may be 

partially attributed to a slight disparity in segmentation methods. Dempster (1955) 

sectioned limbs while frozen in a flexed position of 70° that appeared to be in neutral 

rotation about the longitudinal axis. Conversely, this study required that the subjects lie 

supine with forearms pronated, palms facing the table. This position resulted in a partially 

flexed elbow angle that varied slightly from subject to subject but was less than 70°. 
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Elbow flexion differences may have altered mass and IcM properties at the proximal end 

and the pronated position of our study may have resulted in ICM differences at the distal 

end. BSP estimates between Ml, M2, M3 and Dempster (1955) were not significantly 

different for the male subjects, however, suggesting that the effects of these segmentation 

differences were minimal. particularly given the similarity in estimation errors for the 

older male group. Further. the smaller errors for the male ,groups may be attributed to the 

comparable gender characteristics of the samples. 

The assumption of constant density in estimating human BSPs has been a 

necessary but concerning component of human BSP modelling. Wei and Jensen (1995) 

developed segment density profiles from axial CT images to account for said changes 

along the length of segments but were unable to confirm whether improved estimates of 

inertia would result. The models developed in this study demonstrate the improved 

predictive abilities of geometric solids representing the mass distribution properties of the 

segments over those approximating segment volume. These models account for the 

changes in density along the length of the segment without having to apply density 

profiles, thus alleviating concern for the constant density assumption: 

There is a current concern and need for improved BSP measurement or estimation 

methods in the biomechanics community (Martin et aI., 1989, Cheng et al. 2000). Pearsall 

and Costigan (1999) investigated the influence ofBSP estimation errors on gait analysis 

results, however, and found that variations in error of up to 40% had merely a 1 % body 

weight influence during stance phase. The implications were deemed to be higher during 

swing phase, however, and during open chain movements or movements involving high 
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accelerations. Since the foreann is often studied under the two latter conditions (Le. 

throwing), the reduction of these errors seems imperative. A question therefore remains 

as to what influence BSP errors have on kinetic results. Andrews and Mish (l996) 

identify two characteristics that make identifying the impact ofBSP propagation error on 

motion analysis difficult. The first problem is that there is no identification of the amount 

of error in estimating a given BSP for an individual subject. This study provides specific 

error values on the human foreann for a range of human populations and therefore 

partially addresses this issue. The second problem is the dependence of the error on joint 

resultants during the activity of interest. This issue is one that is unique to each 

movement problem and therefore needs to be considered on an individual basis. 

This study demonstrates an attempt to accurately model the mass distribution 

properties of the foreann on four human populations using a combination of geometric 

solids. The results reveal geometric similarity between the four groups studied and 

provide precise validation of model errors by comparing estimations to DEXA-derived 

measurements. Furthermore, four other popular models in the literature were evaluated, 

enabling the analysis of these equations on individuals of varying race, gender, 

morphology and age. The models developed in this study did not significantly improve 

on estimates from other models, but the method provides a base from which to direct 

future improvements. Development of an elliptical model using limb breadths and 

circumferences may significantly improve BSP estimates, as may' accounting for the 

slight lateral position of the centre of mass. These adaptations, coupled with a validation 



J. Durkin - PhD Thesis McMaster University - Kinesiology 

in three dimensions could significantly reduce the effects ofBSP propagation error in 

human movement studies. 
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CHAPTER 4 

BODY SEGMENT PARAMETER ESTIMA nON OF THE HUMAN LEG USING 
AN ELLIPTICAL MODEL 

4.1 Introduction 

Determining kinetic measmes of motion requires accurate knowledge of 

kinematic movement profiles and body segment inertial parameter (BSP) information. 

Attempts to obtain reliable human BSP information have been made as early as the late 

19th century, yet due to methodological limitations, these efforts continue today. Early 

studies used cadaveric specimens whereby limb segments were sectioned and a variety of 

parameters were determined including volume and mass measurements (Braune and 

Fischer, 1889; Clarys and Marfell-Jones, 1986; Harless, 1860) as well as centre of mass 

locations and moments of inertia (Chandler et al., 1975; Clauser, et al., 1969; Dempster, 

1955) .. Regression equations were developed from this cadaveric data to enable BSP 

estimation for living humans, however, the sample sizes were often small and results 

from various studies cannot be pooled due to differences in segmentation methods 

(Pearsall and Reid, 1994). Furthermore, the sample populations were typically elderly 

Caucasian males and thus may not be representative of the segmental inertial properties 

of other human populations. 

Measmement methods using living human subjects have enabled the collection of 

data on large numbers of individuals. Segment volume and mass estimates have been 

made using water immersion, centre of mass locations have been determined using water 

immersion and reaction change methods and moments of inertia have been approximated 
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using quick release and oscillation techniques (DriUis and Contini, 1966; Plagenhoef, et 

al., 1983; Young et al. 1983). These methods have involved questionable assumptions, 

however, which have resulted in their limited use, including the respective regression 

equations that were developed from the various studies. 

The use of medical imaging techniques to measure BSPs directly on living 

subjects has emerged in the last few decades and has become more popular with 

improvements in technology and increases in accessibility. Zatsiorsky and Seluyanov 

(1983) first used gamma-mass scanning to measure BSPs on 100 young adult males with 

accurate results. Later, Martin et al. (1989) determined BSPs on baboon cadaver 

segments with MRI, Huang (1983) used CT imaging to measure BSPs on a porcine 

specimen and on a young female child cadaver, and Pearsall et al. (1996) investigated the 

inertial properties of the human trunk using CT imaging. MRI and CT imaging have both 

provided reliable BSP measurements, however the popularity of these techniques has 

been limited due to the onerous methods involved, high costs, and in the case of CT 

imaging, high radiation doses. Furthermore, gamma-mass scanners have limited 

availability today, although a similar technology has recently been employed by Durkin 

et al. (2002) to measure BSPs directly on humans. Dual energy x-ray absorptiometry 

(DEXA) is a tool used clinically to measure bone density and body composition and is 

currently widely available in hospitals. The method is safe and easy to use, and Durkin et 

al. (2002) found errors of less than 3.2% in BSP measurements. Access to the technology 

may not be possible for all researchers and scanning individual subjects may not be a 
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practical option, however. These limitations support the need for alternate reliable 

methods of estimating human BSPs. 
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Predictive equations have been developed to alleviate the need for direct BSP 

measurement on individual subjects. Regression equations have been generated from 

cadaver data (Dempster,1955 (via Winter, 1990); Chandler et al., 1975; Clauser et al., 

1969) and from living subject data (Drillis and Contini, 1966; Plagenhoef, 1983; Young 

et al., 1983) including studies using medical imaging techniques (Durkin and Dowling, 

2003a; Zatsiorsky et al., 1990). Regression equations allow the rapid estimation of human 

BSPs using specific parameters such as whole body weight and height, and may include a 

number of anthropometric parameters such as limb circumferences and breadths. These 

regression equations are limited by the methods from which they were derived, however, 

and are also limited to the population from which they were developed. Furthennore, 

Durkin and Dowling (2003a) found that while simple linear and multiple regression 

equations could account for differences between human populations, they could not 

adequately explain individual differences within groups. 

Mathematical models have been developed as an alternative to regression 

equations in an attempt to accurately estimate human BSPs. Hanavan (1964) created a 

geometric model of the human body based on a series of ellipsoids, right circular 

cylinders and frusta. The model was developed to represent the segmental inertial 

properties of the young adult male, but was validated for whole body inertial properties 

only. Hatze (1980) later produced a detailed geometric model of the human body. 

however the method has been largely avoided due to the required 242 anthropometric 
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parameters. Jensen (1978) designed an elliptical modelling method using 

photogrammetry to account for differences in morphology, gender, age, race and activity. 

level. The method also enables the estimation of BSPs for children and for women during 

pregnancy, yet, the model assumes constant density throughout, was validated for 

segment volume only, and the software is not currently available for use. Models based 

on geometric considera~ions were developed by Zatsiorsky et al. (1990) and were 

validated against gamma-mass scanning data. The models were constructed as right 

circular cylinders and a constant was applied to account for differences in shape and 

density between the segment and the model. Similar to their regression equations, 

however, the models have been validated on young Caucasian males and females only. 

Durkin (1998) later created geometric models for selected body segments and validated 

results for four human populations against DEXA data. Each model consisted of a series 

of geometric solids combined to form a composite that would more accurately represent 

the changes in segment shape along the length of the segment. The results yielded high 

errors, however, and it was c~ncluded that assuming constant density while modelling 

according to segment volume resulted in large over-estimations in segment mass and 

moments of inertia. 

There is currently a need for an accurate method of estimating human BSPs that 

accounts for differences in morphology, age, gender and race. Cheng et al. (2000) 

recently used MID to directly measure the BSPs of Chinese males, since the use of other 

resources were thought to cause large errors in lumbar spine moment estimates. Medical 

imaging techniques provide accurate results, however the methods can be onerous and 
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costly, or access to the technology may simply not be practical. Regression equations 

provide an expedient way of estimating BSPs, yet they may not accurately account for 

differences between individuals within a group where there is a wide range of 

morphology types. Furthermore, current geometric models are either too laborious (Le. 

Hatze, 1980) or are too simple in shape to account for changes in density along the 

segment length (Durkin, 1998; Hanavan, 1964). Durkin and Dowling (2003a) suggested 

that geometric models may accurately estimate BSP differences between individuals if 

constructed to represent changes in segment mass distribution rather than volume. By 

constructing a geometric model that mimics the mass distribution of a segment, it is 

possible that assuming constant density will not compromise the integrity of the model. 

Furthermore, it is possible that if individuals in different population groups show 

geometric similarity, one model may be sufficient to estimate BSPs accurately for 

individuals across gender, age, race and morphology. Segment mass distribution 

information may be easily obtained using DEXA, enabling the development and 

validation of such geometric models on a variety of human populations. The purposes of 

this study are therefore to i) examine the mass distribution properties of one human body 

segment, the leg, between four human populations, ii) determine if geometric similarity 

exists between these groups, iii) develop a geometric model based on these mass 

distribution properties, iv) calculate BSPs using the geometric properties of the model, v) 

validate the model by comparing to DEXA measurements, and vi) compare the accuracy 

of this model with four other popular models in the literature. It is hypothesized that one 

geometric model will be sufficient to accurately estimate the BSPs of the lower leg for all 
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four groups. Furthermore, it is hypothesized that this geometric model will provide more 

accurate estimates than the other models examined in this study. 

4.2 Methods 

Forty volunteers were recruited and categorized into one of four groups according 

to age (19-30 Years 01dl55+ Years Old) and gender (male/female). Each of the four 

populations was then randomly divided into two subgroups: a model development group 

and a model validation group (Tables 1 and 2). The mean age, height and mass values 

were compared between the model development and model validation groups within each 

population using t-tests to determine if significant differences existed. Participants were 

recruited from the McMaster University campus and McMaster University Medical 

Centre using posters. Volunteers included university students and faculty/staff as well as 

staff and visitors to the hospital. 

Each participant underwent two DEXA scans followed by a series of 

anthropometric measurements (Table 3). Participants were askedto change into shorts 

and one leg was randomly chosen for analysis. The first DEXA scan was performed with 

the subject lying supine and the second scan was performed with the lateral side of the 

leg positioned downward on the table. During both scans, the participant was positioned 

with knees extended and feet slightly dorsiflexed to simulate a standing position. For the 

sagittal plane scan, the leg was positioned perpendicular to that of the frontal plane scan. 

The anthropometric measurements were obtained while the participant was standing erect 

with feet pointed anteriorly. Circumference measurements were determined with a 
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Table 1. Descriptive statistics of model development group including mean ± standard deviation (SD) and range of group ages, 
whole body masses and whole body heights. 

Group 
Females (19-30 Years) 
Males (19-30 Years) 
Females (55+ Years) 
Males (55+ Years) 

N 
5 
5 
5 
5 

Age (Years) _ . ___ .. M~~s (kg). Height (cm) 
Mean (±SD) Range Jv1t!<ll1i.±§P) Rangl;;!. Mean (±SD) Range 

22.6(2.9) 20.0-27.0 58.0(5.1) 51.0-64.3 167.2(10.1) 152.0-176.5 
24.2(3.1) 19.0-27.0 76.2(15.8) 52.0-89.5 185.1(10.5) 167.0-194.3 
68.4(11.0) 55.0-82.0 65.0(10.7) 55.0-77.3 158.2(5.3) 149.0-162.0 
69.2(9.9) 59.0-80.0 98.2(33.9) 67S·149.0 172.5(6.3) 167.6-182.9 

Table 2. Descriptive statistics of model validation group including mean ± standard deviation (SO) and range of group ages, 
whole body masses and whole body heights. __________________ -:--___ _ 

A~_(Years) _____ Mass (kgl___ Height (cm) 
Group N Mean (±SD) Range Mean (±SD) Range Mean (±SD) Range 
Females (19-30 Years) 5 22.4(1.1) 21.0-24.0 61.6(8.1) 50.5-71.5 167.6(7.4) 160.0-180.0 
Males (19-30 Years) 5 25.0(3.3) 21.0-30.0 77.7(13.0) 62.0-92.2 179.2(7.4) 173.0-191.0 
Females (55+ Years) 5 69.0(4.8) 64.0-74.0 67.4(8.8) 52.0-73.0 160.1(6.1) 152.5-167.0 
Males (55+ Years) 5 65.8(9.0) 55.0-76.0 80.3(11.4) 64.0-91.0 171.7(8.0) 165.0-185.0 
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T bl 3 D a e . escnptlon 0 an opometnc measurements. f thr 
Anthropometric Parameter Description 
Lateral leg length (LL) Distance between lateral proximal end of tibial 

plateau to distal end of lateral malleolus 
Medial leg length (ML) Distance between medial proximal end of tibial 

plateau to distal end of medial malleolus 
Knee circumference (KC) Circumference about knee along joint line at 

tibial plateau 
Knee breadth (KB) Breadth of knee at level of knee circumference 
Maximum leg circumference (XC) Largest circumference about leg 
Maximum leg breadth (XB) Breadth taken at level of maximum leg 

circumference 
Ankle circumference (AC) SMallest circumference about distal end of leg, 

just proximal to lateral and medial malleoli 
Ankle breadth (AB) Breadth of ankle at level of ankle circumference 
Malleolar circumference (MC) Largest circumference about leg at level of 

lateral and medial malleoli 
Malleolar breadth (MB) Breadth of malleoli at level of malleolar 

circumference 

flexible tape measure accurate to ±O.05 cm and breadths were taken with an F-shaped 

adjustable anthropometer accurate to ±0.05 cm. All procedures were performed in 

compliance with guidelines approved by the McMaster University Research Ethics 

Board. 

All frontal and sagittal plane DEXA scan files were processed as in Durkin et al. 

(2002). Two images were developed from each scan to enable sectioning of the leg 

segment. A density image (Fig. 1) was created to display the skeletal system and allow 

segmentation of the leg using easily identifiable bony landmarks. A mass image (Fig. 2) 

was created to enable visualization of the soft tissue surrounding the segment. Following 

development of the scan images, a cubic spline was applied to the raw mass data to 

increase the areal resolution by 40 times. The original spatial resolution of mass data 
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within a whole body DEXA scan is 1.32 cm X 0.53 cm per scanned element, however, 

Durkin (1998) found that increasing the areal resolution of the raw data reduced errors in 

length and centre of mass estimation by as much as 15%. The interpolation procedure 

was set to apply as little smoothing as possible (Fig. 3) and resulted in a mass resolution 

of 0.132 cm X 0.132 cm per scanned element. 

Figure 1. Partial density image of a whole body DEXA scan displaying the skeletal 
structures of the lower limb of a Female (19-30 Years Old) subject in the frontal plane. 
Dashed line represents an example of lower leg segmentation method. 

Figure 2. Partial mass image of a whole body DEXA scan displaying the soft tissue of the 
lower limb of a Female (19-30 Years Old) subject in the sagittal plane. Dashed line 
represents an example of lower leg segmentation method. Data resolution is presented in 
raw format. 
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Figure 3. Example of interpolated data following raw data with little smoothing. Data 
represents an axial view of the quantity of mass within one slice of a frontal plane scan 
from a male subject (19-30 Years Old) in the mid-leg region. 

The frontal and sagittal plane DEXA scan files of all 40 subjects were digitized 

using custom software (DXA Digitization Software, Durkin, 1998) following specific 

segmentation guidelines. The density image (Fig. 1) was used to visualize the skeletal 

system, allowing segmentation of the leg according to clearly identifiable bony 

97 

landmarks. The leg scans were sectioned at the proximal end by a plane slicing between 

the tibial plateau and the base of the femoral condyles. The leg was sectioned at the distal 

end by a plane running just distal to the base of the lateral and medial malleoli. The 

proximal segment endpoint was selected as a location midway along the tibial plateau at 

the segmentation plane. The distal segment endpoint was selected as a location midway 

along the segmentation plane at the ankle. Other segmentation points were selected about 

the leg by toggling between the density and mass (Fig. 2) images to ensure all soft tissue 

was enclosed within the digitized area. 
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Leg BSPs were calculated from mass within the digitized scan area as in Durkin 

et al. (2002). Leg mass, length, and centre of mass in the longitudinal direction (CMx) 

were calculated from both the frontal and sagittal plane scans. The mean of the frontal 

and sagittal plane measurements were then used to represent DEXA leg mass, length and 

CMx values. T -tests were performed between the pairs of measurements to determine if 

significant differences existed. Centre of mass in the mediolateral direction (CMy) and 

moment of inertia about the centre of mass in the anteroposterior direction (IcMz) were 

calculated from the frontal plane scans and centre of mass in the anteroposterior direction 

(CMz) and moment of inertia about the centre of mass in the mediolateral direction (IcMy) 

were calculated from the sagittal plane scans. 

Mass distribution properties of the leg segments were determined by normalizing 

the segmented DEXA leg mass data to 100% segment length and 100% segment mass 

and plotting the results. Mass elements within columns of 1 % segment length in width 

were summed and each mass column was then divided by the total measured DEXA leg 

mass. The mass sums were performed separately for mass medial and lateral to the 

proximal-to-distal segment line for the frontal plane scans and were calculated separately 

for mass anterior and posterior to the proximal-to-distal segment line for the sagittal 

plane scans. The mass distribution properties of digitized right limbs were inverted to 

match those of the left limbs so that lateral leg mass was represented in the positive y­

axis and medial leg mass was displayed in the negative y-axis for the frontal plane scans. 

Similarly, mass anterior to the proximal-to-distal segment line was represented in the 
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positive y-axis and posterior leg mass was displayed in the negative y-axis for the sagittal 

plane scans (see Fig. 4). 

Twenty participants from the subject pool were selected to represent a model 

development group while the remaining volunteers were placed in a model validation 

group. Each of these two groups contained representatives from four human populations 

separated by age and ge~der, therefore each of the four subgroups was comprised of5 

subjects each. Ensemble averages of the individual ~s distribution plots were created 

for each popUlation within the model development group, where separate ensemble 

averages were created for frontal and sagittal plane scans (Figs. 4 and 5). These ensemble 

averages were then used to determine geometric similarity in leg mass distribution 

properties between the four groups and to develop a geometric model of the lower leg. 

Noise displayed in the frontal plane mass distribution plots was simply a sawtooth effect 

resulting from rotation of the mass array following segmentation. 

Geometric similarity between the four populations was determined visually by 

examining the mass distribution plots and statistically by performing linear correlations 

of the % of 100% leg mas~ values (y-axis values, Figs 4 and 5) between the individual 

populations in the model development group. Linear correlations were performed and 

Pearson Product Moment Correlations were calculated for both frontal and sagittal plane 

scans and were determined separately for mass lateral·and medial to, or anterior and 

posterior to, the proximal-to-distal segment line. 
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Figure 4. Ensemble averages of frontal plane leg mass distribution plots for four 
populations as determined using DEXA. (a) Females (19-30 Years Old), (b) Males (19-30 
Years Old), (c) Females (55+ Years Old), (d) Males (55+ Years Old). Inner lines 
represent mean mass distribution, outer lines represent positive standard deviation. 
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Figure 5. Ensemble averages of sagittal plane leg mass distribution plots for four 
populations as determined using DEXA. (a) Females (19-30 Years Old), (b) Males (19-30 
Years Old), (c) Females (55+ Years Old), (d) Males (55+ Years Old). Inner lines 
represent mean mass distribution, outer lines represent positive standard deviation. 

4.3 Results 

T -tests were performed to compare the differences between frontal and sagittal 

plane DEXA measurements for all 40 subjects. No significant differences were found 

between mass (t = -0.82, p=O.42), length (t=1.17, p=0.25) and CMx (t=-1.00, p=O.32). 

Furthermore, t-tests showed no significant differences in population age, mass and height 

values between the model development and model validation groups (Table 4). 
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Table 4. t-test results comparing age, mass and height characteristics between model 
development groups and model validation groups. 

Females (/9-30 Years) 
Males (/9-30 Year~l 
Females (55+ Years) 
Males (55+ Years) 

4.3.1 Geometric Similarity 

Age (yean) 
t-Value p 

0.14 0.89 
-3.93 0.70 
-0.11 0.91 
0.57 0.59 

Mass (kg) 
i-Value 
. -0.07 

1.02 
-0.54 
0.17 

p 
0.95 
0.34 
0.60 
0.87 

Heigbt(cm) 
i-Value p 

-0.85 0.42 
-0.16 0.88 
-0.40 0.70 
1.12 0.30 

Ensemble averages of the mass distribution plots were created to determine if 
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geometric similarity existed between the four population groups. Visual inspection of the 

mass distribution plots from the model development group indicated geometric similarity 

between populations for both frontal and sagittal plane views. The linear correlations 

supported this similarity, revealing high Pearson Product Moment correlations between 

all populations for both frontal and sagittal comparisons (Tables 5 and 6). The results 

therefore suggest that one geometric model may accurately represent the mass 

distribution properties of the lower leg for all four groups. 

4.3 2 Model Development 

Three geometric solids of varying complexity were constructed in an attempt to 

accurately depict the mass distribution properties of the lower leg. Model 1 consisted of 

three elliptical solids joined end to end (Fig. 6). The proximal segment was that of an 
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Table 5. Linear regression equations and Pearson Product Moment correlations comparing lateral and 
medial mass distribution properties between model development groups as determined from frontal 
plane DEXA scans. 

Lateral Leg Mass Distribution Medial Leg Mass Distribution 
Group Linear Regression Equation r Linear Regression Equation r 
YF vs. YM YM = -0.117 + 0.908(YF) 0.996 YM = -0.031 + 1.054(YF) 0.980 
YF vs. OF OF = 0.010 + 1.057(YF) 0.997 OF= 0.006 + 0.918(YF) 0.980 
YF vs. OM OM = 0.010 + 1.005(YF) 0.992 OM = -0.009 + 0.935(YF) 0.992 
YM vs. OF OF = 0.026 + 1.156(YM) 0.993 OF = 0.014 + 0.824(YM) 0.944 
YM VS. OM OM =0.026 + 1.098(YM) 0.989 OM = 0.005 + 0.852(YM) 0.972 
OF vs. OM OM = 0.001 + 0.950(OF) 0.996 OM = -0.023 + 0.991(OF) 0.985 
YF = Females (19-30 Years Old), YM = Males (19-30 Years Old), OF = Females (55+ Years Old), 
OM = Males (19-30 Years Old) . 

Table 6. Linear regression equations and Pearson Product Moment correlations comparing anterior and 
. posterior mass distribution properties between model development groups as determined from sagittal 
plane DEXA scans. 

Anterior Leg Mass Distribution Posterior Leg Mass Distribution 
Group Linear Regression Equation r Linear Regression Equation r 
YF vs.YM YM = -0.006 + 1.106(YF) 0.992 YM =-0.020 + 0.914(YF) 0.997 
YF VS. OF OF = -0.027 + 0.894(YF) 0.958 OF = -0.042 + 1.026(YF) 0.991 
YF vs. OM OM = -0.013 + 0.81O(YF) 0.948 OM = -0.054 + 1.015(YF) 0.990 
YM vs. OF OF = 0.216 + 0.805(YM) 0.962 OF = -0.019 + 1.124(YM) 0.995 
YM vs. OM OM = -0.127 + 0.748(YM) 0.975 OM = -0.031 + 1.1l4(YM) 0.995 
OF vs. OM OM = 0.017 + 0.881(OF) 0.992 OM = -0.l32 + 0.988(OF) 0.998 
YF = Females (19-30 Years Old), YM = Males (19-30 Years Old), OF = Females (55+ Years Old), 
OM = Males ( 19-30 Years Old). 
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, 
~x 

Z 

k O.27L * O.61L 

Figure 6. Diagram of 3-segment geometric model of the leg segment. Dimensions 
represent the frontal plane characteristics of Models I, 2 and 3. rr values represent radii 
along mediolateral axis, r values represent radii along anteroposterior axis, and L 
represents total segment length. In Model 3, r) = r2, rr) = rr2. P and D represent proximal 
and distal segment endpoints, respectively. Modell is symmetrical in the sagittal plane 
along the anteroposterior axis. 

elliptical frustum and was defined by the knee and maximum leg measurements. This 

frustum was either increasing-or decreasing depending on the difference between these 

two parameters. The middle segment ~as a decreasing elliptical frustum and was defined 

by the maximum leg and ankle measurements. The distal segment was an increasing 

elliptical frustum and was defined by the ankle and malleolar measurements. The length 

of the entire leg model was defined by the mean of the lateral and medial leg length 

measurements and the transverse dimensions of the model were dermed by the 

circumference and breadth measurements. The model was assumed to have a constant 

density of 0.00109 kg cm3 (Winter, 1990). 
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Model segment length was calculated as the mean between the lateral and medial 

anthropometric leg length measurements: 

L (LL+ML) 
2 (1) 

The radius of the ellipse in the mediolateral direction (rr) was determined by the 

acquired anthropometric breadth measurements divided by 2. The circumference 

measurements were then combined with the breadth measurements to determine the 

sagittal radii of the ellipse (r) by: 

KB 
rrl=-

2 

XB 
772=-

2 

AB 
7r=-

3 2 

MB 
77=-

4 2 

(2) 

(4) 

(6) 

(8) 

1j= (KC)' 2 2n _r1j2 (3) 

r2= ( XC)' 2 2n -7722 (5) 

,:,= ( AC)' 2 2n -rr3
2 (7) 

(9) 

The volume of Model 1 was determined by integrating the volume of elliptical 

plates along the length of the segment: 

100 100 

V;= JA.dx= In r 7rdx (10) 
1 1 
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where dx = 0.01 L. The magnitudes of r and rr were dependent on the location of the 

elliptical plate along the segment length (x). Within the proximal model segment, r and rr 

were determined by: 

(11) (12) 

rr=m rrJ x+rrJ, 1 5:x5:27 (13) (14) 

Within the middle segment, r and.rr were determined by: 

r=mr2 x+r2, 285:x5:88 (15) 
(r3 -r2) 

(16) mr2 = 
61 

rr=m rr2 x+rr2, 28 5:x5:88 (17) m"2 
(r3-r2) 

(IS) 
61 

Witliin .the distal segment, r and rr were determined by: 

r=mr3 x+r3, 89 5: x 5: 100 (19) mr3 
(r4 -r3) 

(20) 
12 

rr=m"3 x+rr3 , 895:x 5: 100 (21) m"3 
(r4 -r3 ) 

(22) 
12 

The mass of Model 1 was determined by integrating the masses of the individual 

elliptical plates (mx) which were defined by the product of the volumes of the 

corresponding slices and a constant density value (p): 
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100 100 

M = Jmx = JApdx 
I 

The centre of mass calculations for Model 1 were then determined as: 

CM :..::;x=:;.:,.I __ 

x M 

CM =0 y 

CM=O z 

The moments of inertia of Model 1 about the anteroposterior (IcMz) and 
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(23) 

(24) 

.(25) 

(26) 

mediolateral (IcMy) centres of mass were determined by first calculating the moments of 

inertia of the individual elliptical planes about their own centres of mass (IcMzi. ICMyi): 

(27) 

(28) 

The IcMi values of the individual elliptical plates were then converted to moments of 

inertia about the proximal segment endpoint (IPzi, IPyi) using parallel axis theorem: 

(29) 

(30) 
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The Ipi values were then summed to yield the total model moments of inertia about the 

proximal endpoint (Ipz, IPy) and then converted to moments of inertia about the centre of 

mass (IcMx, ICMy) using parallel axis theorem: 

100 

1pz=L1Pzi (31) 
1 

100 

1Py=L1Pyi (32) 
1 

Model BSPs were determined using the appropriate equations for the 20 

participants in the model validation group and were validated by comparing model 

estimates to DEXA measurements by calculating the root mean squared error (RMSE). 

(33) 

1CMy =1 Py =M eM; (34) 

Errors for mass, ICMz and ICMy were reported as a % RMSE in units of% DEXA values 

whereas CMz• CMy, and CMz were reported as RMSE values in units of % segment 

length. To visualize where Modell failed to accurately estimate leg BSPs, mass and IcM 

distribution plots were developed from the model data and were normalized to 100% 

DEXA values. Ensemble averages of the model mass and ICM distribution plots were 

created for each population and were overlaid with the previously developed DEXA 

distribution plots. The RMSE values showed rather high errors in BSP estimation, 

particularly in the ICM estimates (Tables 7-12). Furthermore, the mass distribution plots 
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revealed a posterior shift in CMz location not accounted for by Model 1, indicating a 

possible source of error in IcM estimation (Figs. 8 and 9). Model 2 was therefore 

developed to more accurately represent this characteristic. 

Model 2 was constructed as an adapted form of Model 1 such that the entire 

model was translated posteriorly I % segment length. This translation value was 

determined by calculating the mean shift in % of 100% segment mass values for the 

entire segment length and representing this value as a % of the mean segment length from 

all four ensemble averaged groups. Further, the proximal segment was skewed. 

posteriorly at an angle of 90 «1) (Figs 6 and 7). This value was determined by calculating 

the slope between the median mass values for the ftrst and 27th segment length intervals. 

The middle and distal segments were constructed to reverse the skew (9) while still 

maintaining the 1 % posterior translation. Leg mass, CMx, and CMy were therefore 

calculated as in Modell, however, CMz was calculated as: 

100 

I[mx (xtana-O.OlL)] 
CM = --=-1 ______ _ 

z· 

CMz 

M 

~]mx(x tanO-O.OlL)] 

M 

0= tan-I(27tana) 
. 73 

1 ~x ~ 27 

28 ~x~lOO 

(35) 

(36) 

(37) 

Moments of inertia for the individual elliptical plates were calculated as in Model 

1 for IcMzb Ipzi, and IcMyi. however, IPyi was calculated as: 
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(38) 

(39) 

Model BSPs were computed and compared to DEXA values by calculating the 

respective group RMSE's. Model mass and IcM distribution plots were also created and 

overlaid with the DEXA plots. The error values and distribution plots revealed little 

improvement over Modell, and a slight increase in ICM errors was apparent (Tables 7-

12). Furthermore, the mass distribution plots indicated that the posterior skew of9° may 

have been too large, possibly contributing to the increase in IcM errors (Figs. 8 and 9). 

Due to these results, an alternative modelling approach was taken with Model 3. 

Model 3 also consisted of 3 geometric solids connected end to end where the 

proximal segment was designed as an elliptical cylinder, the ~iddle segment was 

constructed as a decreasing elliptical frustum, and the distal segment was developed as an 

increasing elliptical frustum. The model segment length proportions were identical to 

Models 1 and 2, as was the calculation of total model length, however only the mean of 

the knee and maximum leg measurements were used to determine .all radii of the model. 

The volume of the proximal segment was determined by integrating the volumes of 

elliptical plates as follows: 

27 27 

r; = JA.dx = In rl rrl dx (40) 
I ] 

where dx = O.OlL and 
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KB+XB 7j = r2 = 
2 

2(~J2_7j2 
2·ft 

(KC+XC) 
C) 

2 

where KC = knee circumference and XC = maximum leg circumference. 

III 

(41) 

(42) 

(43) 

Each model segment was assigned a fixed proportion of total model mass that was 

determined by summing the % of 100% segment mass values within each segment length 

proportion boundary from the ensemble averages of the DEXA mass distribution plots. 

The mean mass proportion was calculated from the four population values within the 

model development group for each model segment, resulting in mean segment 

proPortions of 42%, 51 %, and 7% total model mass for the proximal, middle and distal 

segments, respectively. 

To calculate the remaining radii, the total model volume was first determined 

from the cylinder volume and its set proportions of total model volume: 

(44) 

(45) 
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where hI = 0.27L. The middle segment was then modelled as an elliptical frustum, the 

volume of which was determined from the volume of a right circular frustum (V CircFrust) 

and the area of an elliptical plate (AElliptPlate): 

(46) 

AElliplPlaJe =7r r rr (41) 

where IT represents the mediolateral axis and r represents the anteroposterior axis. The 

volume of an elliptical frustum was therefore calculated as: 

(48) 

V 2 was set at 0.51 V and IT3 was determined by setting r3 as a function of IT3. An r:IT ratio 

was quantified by dividing the frontal plane ankle and malleolar radii by the respective 

sagittal plane radii for each individual within the model development group and 

calculating the mean ratio. The resulting proportion was r3 = O. 75IT3,allowing the 

determination ofr3: 

(49) 

where h2 = 0.61L. Balancing Eq. 48 resulted in a quadratic solution: 

(SO) 
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where: 

(51) 

(52) 

(53) 

Similarly, r4 and rr4 were determined by: 

(54) 

where h3 = O.12L, r4 = O.75rr4 and: 

(-b4+~b/-4a4C4 ) (55) 
"4 2a4 

where: 

O.75~ 
(56) a4 1t 

3 

b4 =( i 1t )~o.75r3rr3 (57) 

c 4=( i 1t }r3rr3}-Oo07V (58) 
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Once r3, rr3, r4 and rr4 were detennined, the volumes of the corresponding segments were 

calculated (Eqs. 10-22) and the individual slice volumes were summed and multiplied by 

constant density to determine the segment mass (Eq. 23). 

CMx and CMy of the solid were determined by integrating elliptical plates as was 

done for Models 1 and 2 (Eqs. 24 and 25). Similar to Model 2, however, CMz was 

skewed posteriorly with ~ translation of 1 % segment length, although a posterior skew of 

3° (ex.) was used to reduce errors in IcM. The resulting CMz and IPyi calculations were 

calculated as in Eqs. 35-39. IcMxb IcMyi, IPxi, Ipz, IPy, IcMz, and IcMy were calculated as in 

Modell (Eqs. 27, 29, 31-34). 

0.271.. 

* 
0.61L 

Figure 7. Diagram of 3-segment geometric model of the lower leg segment. Model 
dimensions repreSent the sagittal plane characteristics of Models 2 and 3. rr values 
represent radii along mediolateral axis, r values represent radii along anteroposterior axis, 
and L represents total segment length. In: Model 3, rl = r2, rrl = rr2. P and D represent 
proximal and distal segment endpoints, respectively. Model is translated posteriorly 1 % 
segment length and is skewed by ex. degrees. Model 2: ex. = 9°. Model 3: ex. = 3°, 
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BSP estimates from Model 3 were then calculated for the participants in the 

model validation group and RMSEs were computed by comparing Model estimates to 

benchmark DEXA data (Tables 7-12). Furthermore, model mass and ICM distribution 

plots were created and overlaid with DEXA distribution plots as was done for Models 1 

and 2 (Figs. 8 and 9). 

BSP estimates from four literature sources were also assessed by applying the 

individual equations to the model validation group and comparing against DEXA 

measurements. The sources chosen included the regression equations of Dempster (1955) 

(via Winter, 1990) (D), the geometric models of Hanavan (1964) (H),the multiple 

regression equations of Zatsiorsky et al. (1990) (ZR) and the geometric models of 

Zatsiorsky et al. (1990) (ZG). These models were chosen for analysis because they were 

thought to represent popular sources in the literature and because they characterized 

different modelling techniques based on various populations and validation protocols. 

BSPs were calculated for each individual within the model validation group following the 

guidelines for the individual sources and the RMSEs were calculated between BSP 

estimates and DEXA measurements to determine the accuracy of each model (Tables 7-

12). Furthermore, repeated measures analyses of variance (ANOVAs) were performed for 

each BSP and each population group to determine if significant differences existed 

between the error terms of the seven different models evaluated. Tukey HSD post hoc 

analyses were subsequently applied to determine where these differences lay. 
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Figure 8. Ensemble averages of model mass distribution plots compared to DEXA mass distribution plots for 
Males (19-30 Years Old). Model mass plots are normalized to 100% DEXA mass. Ml = Modell, M2 = Model 2, 
M3 = Model 3. The mass distribution plots from Ml and M2 in the frontal plane were nearly identical and are 
therefore superpositioned. 
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Table 7. % RMSE values of model mass estimates compared with DEXA mass measurements. Values 
are reported in units of% DEMmass. _______________________________ _ 
Group Ml M2 M3 D H ZR ZG F 
Females (19-30 Years) 9.99 10.06 11.50 8.85 17.86 9.32 34.51 7.58 
Males (l9-30 Years) 9.96 9.96 11.00 7.31 10.16 6.58 26.69 1.51 
Females (55+ Years) 12.63 12.63 14.08 19.70 15.29 18.99 35.43 4.64 

_~ales (55+ Years) 9.48 11.23 9.62 11.90 8.34 9.29 9.72 0.19 
Ml = Model 1, M2 = Model 2, M3 = Model 3, D = Dempster (1955) (via Winter, 1990), 
H = Hanavan (1964), ZR = Regression equations from Zatsiorsky et al. (1990), 
ZG = geometric models from Zatsiorsky et a1. (1990). 

P 
<0.001 
>0.05 
<0.01 
>0.05 

Table 8. RMSE values of model CMx estimates compared with DEXA CMx measurements. Values 
are reported in units of % segment length. 
Group Ml M2 M3 D H ZR ZG F 
Females (19-30 Years) 0.51 0.52 1.29 3.08 3.14 1.06 9.59 35.06 
Males (19-30 Years) 0.56 056 1.20 2.61 0.90 4.91 9.12 34.04 
Females (55+ Years) 0.61 0.61 0.74 2.87 1.14 1.83 9.51 153.33 
Males (55+ Years) 0.71 0.71 0.85 3.01 1.09 3.65 9.63 42.54 
Ml = Modell, M2 = Model 2, M3 = Model 3, D = Dempster (1955) (via Winter, 1990), 
H == Hanavan (1964), ZR = Regression equations from Zatsiorsky et a1. (1990), 
ZG = geometric models from Zatsiorsky et al. (1990). 

Q 
<0.001 
<0.001 
<0.001 
<0.001 
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Table 9. RMSE values of model CMy estimates compared with DEXA CMy measurements . 
Values are reported in units of % segment length. 
Group M1 M2 M3 D H ZR ZG 
Females (19-30 Years) 0.45 0.45 0.45 0.45 0.45 0.45 0.45 
Males (19-30 Years) 2.63 2.63 2.63 2.63 2.63 2.63 2.63 
Females (55+ Years) 1.17 1.17 1.17 1.17 1.17 1.17 1.17 
Males (55+ Years) 2.38 2.38 2.38 2.38 2.38 2.38 2.38 
Ml = Modell, M2 = Model 2, M3 = Model 3, D = Dempster (1955) (via Winter, 1990), 
H = Hanavan (1964), ZR ;:;::: Regression equations from Zatsiorsky et al. (1990), 
ZG = geometric models from Zatsiorsky et al. (1990). 

Table 10. RMSE values of model CMz estimates compared with DEXA CMz measurements. Values are 
reported in units of %s~grtl~rlJJ~l!Sth. 
Group Ml M2 M3 D H ZR ZG F P 
Females (19-30 Years) 4.17 1.89 2.53 4.17 4.17 4.17 4.17 18.86 <0.001 
Males (19-30 Years) 5.80 3.92 4.43 5.80 5.80 5.80 5.80 0.09 >0.05 
Females (55+ Years) 4.15 1.92 2.52 4.154.15 4.15 4.15 17.71 <0.001 
Males (55+ Years) 4.95 4.38 4.41 4.95 4.95 4.95 4.95 0.29 >0.05 
Ml == Modell, M2 = Model 2, M3 = Model 3, D = Dempster (1955) (via Winter, 1990), . 
H = Hanavan (1964), ZR = Regression equations from Zatsiorsky et al. (1990), 
ZG = geometric models from Zatsiorsky et al. (1990). 
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Table 11. %RMSE values of model IcMz estimates compared with DEXA IcMz measurements. Values are 
reported in units of% DEXA IcMz. 
Group Ml M2 M3 D H ZR ZG F P 
Females (19-30 Years) 18.24 18.35 20.40 40.96 12.40 17.13 63.44 18.29 <0.001 
Males (19-30 Years) 19.48 19.64 23.07 41.33 17.81 14.32 31.11 2.90 <0.01 
Females (55+ Years) 29.53 29.75 31.09 57.79 30.50 28.98 75.96 5.13 <0.01 
Males (55+ Years) 21.86 28.93 23.58 48.69 24.43 17.48 35.56 5.19 <0.01 
MI = Modell, M2 = Model 2, M3 = Model 3, D = Dempster (1955) (via Winter, 1990), 
H = Hanavan (1964), ZR = Regression equations from Zatsiorsky et al. (1990), 
ZG = geometric models from Zatsiorsky et aI. (1990). 

Table 12. %RMSE values of model ICMyestimates compared with DEXA ICMy measurements. Values are 
reported in units of% DEXA IcMy. 
Group . Ml M2 M3 D H ZR ZG F· p 
Females (19-30 Years) 29.70 31.58 33.16 25.36 23.61 20.00 80.53 8.35 <0.001 
Males (19-30 Years) 24.97 25.26 28.91 47.38 22.92 13.36 37.02 4.98 <0.01 
Females (55+ Years) 29.08 29.49 28.85 56.34 28.68 31.43 76.64 .7.24 <0.001 
Males (55+ Years) 18.28 24.51 20.09 45.48 21.50 20.44 37.00 6.06 <0.001 
Ml = Modell, M2 = Model 2, M3 = Model 3, D = Dempster (1955) (via Winter, 1990), 
H = Hanavan (1964), ZR = Regression equations from Zatsiorsky et al. (1990), 
ZG = geometric models from Zatsiorsky et al. (1990). 
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4.3.3 Model Accuracy 

The results showed that Ml, M2 and M3 overestimated mass for all groups (Figs. 10-12, 

Tables 13-15) and tluit errors were greatest in mass estimation for the older female group. On 

average, the knee and maximum leg measurements caused an overestimation of mass at the 

proximal end of the leg, particularly for the older male and female subjects (Fig. 8). Furthermore, 

overestimations in leg mass within the ankle and malleolar regions of Models 1 and 2 were 

evident, while using knee and maximum leg measurements to estimate the remaining radii for 

Model 3 resulted in lesser overestimations at the ankle. 

Comparison of mass estimates from all models through repeated measures ANOV As 

revealed that significant differences existed for the female groups where Tukey HSD post hoc 

analyses showed that ZG had significantly greater error than the other models. No significant 

differences were found between mass estimates for all models for the male groups. 

Examination of CMx estimates revealed rather low errors for all three developed models, 

however errors were increased with M3. Repeated measures ANOV As showed significant 

differences and Tukey HSD post hoc analyses revealed that ZG had significantly more error than 

the other models for all groups. Furthermore, ZR had significantly more error in CMx estimation 

. . 
than MI and M2 for the younger male group. ANOV As were not performed to compare CMy . 

estimates since all models assumed mediolateral symmetry and therefore produced the same 

amount of error. This error was generated due to a slightly lateral position of CMy as measured 

byDEXA .. 
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Figure 10. Scatterplots comparing model leg mass estimates with DEXA leg mass measurements for Females (55+ 
Years Old). Solid line represents linear regression line predicting DEXA mass from model mass, dashed line represents 
unity line where DEXA mass equals model mass. 
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Table 13. Linear regression equations and coefficients of variation comparing model leg mass estimates and DEXA leg 
mass estimates (kg) 

Modell Model 2 Model 3 
Group Regression Equation r Regression Equation r Regression Equation r 
Females{19-30 Years) D = 0.67M + 0.75 0.87 D = 2.67M + 0.74 0.87 D = 0.45M + 1.43 0.75 
Males (19-30 Years) D = 0.70M + 0.82 0.91 D = 0.70M + 0.82 0.91 D=0.61M+ 1.20 0.87 
Females (55+ Years) D = 0.89M + 0.12 0.93 D = 0.84M + 0.26 0.85 D = 0.91M"+ 0.05 0.87 
Males (55+ Years) D - 0.80M + 0.34 0.95 D = 0.80M + 0.34 0.13 D = O.72M + 0.59 0.95 

Table 14. Linear regression equations and coefficients of variation comparing model leg IcMz estimates and DEXA leg 
IcMz estim.- L -- fL ____ 2 

----- ,-~tiiiii1' ---- -

Modell Model 2 Model 3 
Group Regression Equation r Regression Equation r" Regression Equation r 
Females (19-30 Years) D = 0.68M + 64.81 0.94 D = 0.68M + 64.90 0.94 D = 0.58M + 100.50 0.92 
Males (19-30 Years) D = 0.61M + 137.80 0.78 D - 0.61M + 140.90 0.78 D = 0.50M + 200.20 0.64 
Females (55+ Years) D = 0.62M + 73.39 0.82 D = 0.61M + 74.66 0.83 D = 0.55M + 97.61 0.85 
Males (55+ Years) D - 0.75M + 43.73 0.84 D = 0.59M + 118.20 0.62 D = 0.74M + 50.21 0.78 

Table 15. Linear regression equations and coefficients of variation comparing model leg ICMy estimates and DEXA leg 
ICMy estim.- L - - /L - ____ 2 , 

Modell Model 2 Model 3 
Group Regression Equation r Regression Equation r Regression Equation r 
Females (19-30 Years) D = 0.66M + 44.98 0.90 D = 0.67M + 38.10 0.88 D = 0.53M + 91.31 0.79 
Males (19-30 Years) D = 0.65M + 104.60 0.69 D = 0.64M + 107.60 0.68 D = 0.51M + 179.50 0.52 
Females (55+ Years) D = 0.76M + 12.52 0.89 D = 0.75M + 14.24 0.89 D = 0.69M+ 37.18 0.89 
Males (55+ Years) D = 0.87M - 6.86 0.94 D=0.7IM+63.31 0.77 D = 0.8SM - 1.83 0.89 
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CMz measurements revealed a slightly posterior location of centre of mass that 

amounted to an average of 3.76% segment length. Models 1,2 and 3 all underestimated 

this position by 3.76%, 1.19% and 1.97%, respectively. Repeated measures ANOVAs 

showed significant differences for the female groups but not for the male groups. Tukey 

HSD post hoc analyses revealed that M2 and M3 produced significantly less error than all 

other models. Models 2 and 3 were not significantly different from each other, however. 

IcMz calculations resulted in over-estimations. by M 1, M2 and M3. Little 

difference was found between estimates from Ml and M2, however increases in error 

were found with M3. Repeated measures ANOV As showed significant differences 

between models in all groups. Tukey HSD post hoc analyses showed ZG to have 

significantly more error than other models for the female groups, however H had 

significantly less error than D for the younger female group and ZG was not significantly 

different from D for the older female group. The ANOV A from the younger male group 

showed ZR to have significantly less error than D whereas the older male group showed 

significantly more error from D over all other models except ZG. 

ICMy calculations revealed over-estimations by M 1, M2 and M3 with an increase 

in error from M3. Repeated measures ANOVAs showed significant differences between 

models for all groups and Tukey HSD post hoc analyses revealed significantly greater 

errors by ZG than all other models except D for the female groups. The male groups 

showed significantly greater errors from D compared with all other models except ZG. 
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4.4 Discussion 

The purpose of this study was to use DEXA as a means of designing and 

validating a geometric model of the human leg for the estimation of segment inertial 

properties. The geometric models were constructed based on frontal and sagittal plane leg 

mass distribution properties determined for four human populations. The results showed a 

high degree of geometric similarity between the groups, supporting the use of one model 

to estimate BSPs for all four populations. Three geometric models of varying complexity 

were developed and validated using a split-half reliability method, in addition to the 

analysis of four other popular sources in the literature. Comparison of all seven 

estimators by means of repeated measures Analyses of Variance showed few significant 

differences between· the models developed in this study and the other sources examined 

from the literature. 

The results show that knee and maximum leg circumferences and breadths caused 

overestimations in leg mass and IcM and therefore indicate that these measurements are 

poor estimators of proximal leg mass. However, this is in direct opposition to the results 

of Durkin and Dowling (2003b). who showed in study modelling the mass distribution 

properties of the human thigh, that knee circumference was a good estimator of thigh . 

mass at the distal end. Durkin and Dowling (2003b) used knee circumference as a distal 

measurement and used a circular model to estimate BSPs. indicating that a circular model 

may be more app1'Opriate for estimating leg BSPs. Two additional reasons for the 

disparity between proximal leg mass distribution and knee measurements could include 

physical differences between the participants in the two studies and the small sample 
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sizes used. The fonner is an unlikely explanation since both experiments examined four 

populations from identical gender and age groups and included a variety of racial 

backgrounds and morphological characteristics. The latter explanation is a possibility 

since only five subjects in each group were included for model validation. Durkin and 

Dowling (2003b) used 100 volunteers to develop and validate their thigh models and 

while only 20 subjects were used to generate the model, the equations were validated on 

80 participants, possibly reducing the variability in BSP estimations. Future model 

development and validation should therefore involve increasing sample sizes to improve 

the validity ofBSP estimation errors and may include scaling the knee and maximum leg 

measurements to more accurately represent the quantity of mass at the proximal end. 

Few significant differences between the seven models examined were found using 

the repeated measures ANOV As and these trends persisted across population groups for 

all BSPs despite obvious differences in RMSE values between models. For instance, ZR 

and H produced errors two and six times greater, respectively, than MI and M2 for CMx 

estimates of females aged 19 to 30 years, yet the only significant· difference found was 

between ZG and the other models. Similarly, D produced errors that were almost twice 

those ofMI, M2 and M3 for both female groups in IcMz estimation, yet only ZG was 

found to be SIgnificantly greater in error than all other models. The limited differences 

found in the ANOV As may be due to the small sample sizes used, since only four groups 

of five subjects each were included in the BSP means for comparison. It is possible that 

there was insufficient statistical power with the number of subjects included in the model 
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validation groups, thus decreasing the ability to detect true differences between the 

models. 

127 

The geometric models developed in this study were constructed to represent the 

mass distribution properties of the leg as determined by frontal and sagittal plane DEXA 

scans. A current limitation ofDEXA, however, is that mass information is provided in 

one plane only, yielding four BSP parameters per scan (i.e. mass, CMx, CMy, IcMz for a 

frontal plane scan). Due to the distal position of the lower leg, dual scanning was 

possible, providing six of seven possible BSP parameters in a three-dimensional set. This 

repeat scanning procedure likely caused differences in tissue redistribution between the 

two scans, however. A disparity in information between frontal and sagittal plane scans 

may have occurred due to changes in soft tissue displacement from one scan to the other 

as well as from differences in knee and ankle joint positions between the two scans. 

Furthermore, inexact positioning of the leg in perpendicular scan planes may have 

intr.oduced errors into DEXA BSP measurements, however it was assumed that the 

effects of these three error sources were minimal. It is likely that the most influential 

source of error between the frontal and sagittal plane scans was that 01 soft tissue. 

displacement, however comparisons of BSP measurements common between the two 

scans (Le. mass, length and CMx) using t-tests showed that these differences were not 

statistically significant. 

Repeated measures ANOV As showed that ZG produced significantly more error 

than the other models for all BSPs and almost all of the groups examined. Some possible 

explanations for this greater error could be the simple geometric shape chosen, however 
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gender-specific constants were applied to the model to account for differences between 

segment and model shape and density. Durkin (1998) found that modelling segments 

according to volume resulted in large errors in BSP estimation. This fmding would 

suggest that Hanavan's (1964) frusta model would similarly cause large errors, however 

the results did not support this assumption. The greater errors in ZG estimates could be 

attributed to morphological differences "between the subjects in this study and those of 

ZG. Zatsiorsky et al. (1990) recruited athletic young Caucasian participants for their 

models whereas this study included individuals of varying morphology as well as age and 

race. The ZR equations were generated from the same sample pool as ZG, however, and 

since the ZR errors were similar to and sometimes lower than Ml, M2 and M3 for mass 

and inertia estimates, morphological and age-related differences are an unlikely 

explanation for the high ZG errors. Failure of ZG to adequately estimate leg BSPs may 

therefore be primarily due to the simple geometric shape chosen and the inability of the 

constant to acc:ourit for changes in shape and density along the length of the segment. 

Repeated measures ANDV As often found D not to be significantly different from 

the other models examined in this study. BSP differences between D and DEXA 

measurements may be partially explained by a dissimilarity in segmentation methods as 

Dempster (1955) sectioned his specimens while frozen in a flexed position while 

participants in this study were sectioned in a mainly extended position. Furthermore, 

segmentation ofDEXA scan images were limited to one plane only. Examination of 

RMSE values comparing D estimates to DEXA measurements showed higher errors for 

the elderly populations than for the younger ones, yet the specimens used by Dempster 
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(1955) were elderly male war veterans. The D equations may have more accurately 

represented the leg mass distribution properties of the younger groups due to a greater 

similarity in morphology compared with the older groups, as the specimens used by 

Dempster (1955) had lower average body masses than the elderly groups examined here 

(59.8 kg). 

There is currently ,a need for a complete anthropometric model of the human body 

to accurately estimate the BSPs of human segments for individuals of varying 

morphology, age, gender and race. The geometric models generated for the leg did not 

greatly improve on estimates over the other models evaluated, however this study 

improves on past methods by identifying a reliable approach to modelling the human leg 

for BSP estimation. This modelling technique could potentially provide more accurate 

BSP estimates with increases in the number of subjects involved and with adaptations to 

the models developed such as scaling of anthropometric measurements. Such 

improvements in model generation and validation will help reduce BSP error, however 

how much error is acceptable in kinetic calculations remains unknown. Pearsall and 

Costigan (1999) used a Monte Carlo method to determine the effect ofBSP error on gait 

analysis results and found that BSP variations of 40% caused errors in kinetic 

measurements of only 1 % body mass. The effects on kinetic calculations were thought to 

be greater in open chain movements or in movements involving high accelerations, 

however. Furthermore, Andrews and Mish (1996) investigated the sensitivity of joint 

resultants to BSP error and found that small percentages of BSP error can quite 

substantially affect joint kinetic calculations. For instance, knee moment calculations 
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showed a 12% propagation error when 5% BSP error was considered. The study 

concluded that the effects ofBSP propagation error were both subject and motion 

specific, indicating that an acceptable level of error is unique to each problem 

investigated. Due to the increased sensitivity of open chain and high acceleration 

movements, continued efforts on building a robust anthropometric model that is accurate 

and easy to apply remains a worthwhile endeavour. Further development of geometric 

models based on the mass distribution properties of body segments will provide a reliable 

source of BSP information and will ultimately lead us to a greater understanding of 

human movement. 



J. Durkin - PhD Thesis McMaster University - Kinesiology 131 

4.5 References 

Andrews, J .0. and Mish, S.P. (1996). Methods for investigating the sensitivity of joint 
resultants to body segment parameter variations. Journal of Biomechanics, 29(5), 651-
654. 

Braune, W. and Fischer, O. (1889). The centre of gravity of the human body as related to 
the German infantryman. AT! 138452. Leipzig: National Technical Information Service. 

Chandler, R.F., Clauser, J.T., McConville, H.M., Reynolds, H.M. and Young,J.W. 
(1975). Investigation of inertial properties of the human body. AMRL-TR-74-137. Ohio: 
Aerospace Medical Research Laboratory. Wright-Patterson Air Force Base. 

Cheng,C-K., Chen,H-H., Chen,C-S., Lee,C-L. and Chen,C-Y. (2000). Segment inertial 
properties of Chinese adults determined from magnetic resonance imaging. Clinical 
Biomechanics, 15(8),559-566. 

Clarys, J.P. and Mariell-Jones, M.J. (1986). Anatomical segmentation of humans and the 
prediction of segmental masses from intra-segmental anthropometry. Human Biology, 
58(5), 771-782. 

Clauser, C.E., McConville, J.T. and Young, J.W. (1969). Weight, volume, and center of 
mass of segments of the human body. AMRL-TR-69-70. Ohio: Aerospace Medical 
Research Laboratory. Wright Patterson Air Force Base. . . 

Dempster, W.T. (1955). Space requirements of the seated operator. W ADC-TR-55-159. 
Ohio: Wright Air Development Center, Wright Patterson Air Force Base. 

Drillis, R. and Contini, R. (1966). Body segment parameters. TR-1166-03. New York, 
NY: New York University School of Engineering Science. 

Durkin, J.L. (1998). The prediction of body segment parameters using geometric 
modelling and dual photon absorptiometry. Masters Thesis. Hamilton, ON: McMaster 
University. 

Durkin, J.L., Dowling, J.J. and Andrews, D.A. (2002). The measurement of body 
segment inertial parameters using dual energy x-ray absorptiometry. Journal of 
Biomechanics, 35(12), 1575:1580 

Durkin, J.L. and Dowling, J.J. (2003a). Analysis of body segment parameter differences 
between four human populations and the estimation errors of four popular mathematical 
models. Journal ofBiomechanical Engineering, 125(4),515-522. 



J. Durkin - PhD Thesis McMaster University - Kinesiology 132 

Durkin, J.L. and Dowling, J.1. (2003b). Using Mass Distribution Information to Model 
the Human Thigh for Body Segment Parameter Estimation. Journal of Biomechanical 
Engineering. In Review. 

Hanavan, E.P. (1964). A mathematical model of the human body. AMRL-TR-64-102. 
Ohio: Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base. 

Harless, H. (1860). Die statischen Momente der menschlichen Gliedmassen. Abhandl 
Mathematische-Physikalischen Classe Konigl Bayerischen Akad WissenschaJt, 8, 69-96, 
257- 294. 

Hatze, H. (1980). A mathematical model for the computational determination of 
parameter values of anthropomorphic segments. Journal of Biomechanics, 13(10),833-
843. 

Huang, H.K. (1983). Evaluation of cross-sectional geometry and mass density 
distributions of humans and laboratory animals using computerized tomography. Journal 
of Biomechanics, 16(10),821:832. 

Jensen, R.K. (1978). Estimation of the biomechanical properties of three body types 
using a photogrammetric method. Journal of Biomechanics, 11(8-9),349-358. 

Martin,P.E., Mungiole,M., Marzke,M.W. and Longhill,J.M. (1989). The use of magnetic 
resonance imaging for measuring segment inertial properties. Journal of Biomechanics, 
22(4),367-376. 

Pearsall, D.1. and Costigan, P.A. (1999). The effect of segment parameter error on gait 
analysis results. Gait and Posture, 9(3), 173: 183. 

Pearsall, D.J. and Reid, 1.0. (1994). The study of human body segment parameters in 
biomechanics. Sports Medicine, 18(2), 126: 140. 

Pearsall, D.J., Reid, J.G. and Livingston, L.A. (1996). Segmental inertial parameters of 
the human trunk as determined from computed tomography. Annals of Biomedical 
Engineering, 24(2), 198-210. 

Plagenhoef, S., Evans, F .G. and Abdelnour, T. (1983). Anatomical data for analyzing 
human motion. Research Quarterly for Exercise and Sport, 52(4), 169-178. 

Winter, D.A. (1990). Biomechanics and motor control of human movement. (2nd Ed.) 
New York: John Wiley and Sons, Inc., pp. 51-64. 



J. Durkin - PhD Thesis McMaster University - Kinesiology 133 

Young. J.W., Chandler, R.F. and Snow, C.C. (1983). Anthropometric and mass 
distribution characteristics of the adultfemale. FAA-AM-83-16. Oklahoma: FAA Civil 
Aeromedical Institute. 

Zatsiorsky. V. and Seluyanov, V. (1983). The mass and inertia characteristics of the main 
segments of the human body. IN Matsui,H.; Kobayashi,K. (Eds.). Biomechanics V-IIIB. 
Champaign, IL: Human Kinetics Publishers Inc., pp. 1152: 1159. 

Zatsiorsky, V., Seluyanov, V. and Chugunova, L.G. (1990). Methods of determining 
mass-inertial characteristics of human body segments. IN Chemyi,G.G.; Regirer,S.A. 
(Eds.). Contemporary Problems of Biomechanics, (Ch. 11). Boston, MA: eRC Press, pp. 
272-291. 



J. Durkin - PhD Thesis McMaster University - Kinesiology 134 

CHAPTER 5 -

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

5.1 Conclusions 

The purpose of this study was to examine a geometric modelling approach for 

estimating the body segment parameters (BSPs) of human limbs. This approach was based on 

representing the mass distribution properties of segments with series of geometric solids to 

more accurately account for changes in density along the length of the segment as well as to 

encompass the morphological differences between individuals. Three body segments were 

chosen for analysis including the thigh, forearm and leg. Their mass distribution properties 

were examined for four human populations separated by age (19-30 Years OId/55+ Years 

Old) and gender (Male/Female) using dual energy x-ray absorptiometry (DEXA). DEXA was 

used to -determine the mass distribution properties of the body segments in the frontal plane 

and to measure the mass, centre of mass in the longitudinal (CMx) and mediolateral (CMy) 

directions, and the moment of inertia about the centre of mass along an anteroposterior axis 

(IcMz). Analysis of the leg was extended to the sagittal plane and included measurements of 

centre of mass in the anteroposterior direction (CMz) and moment of inertia about the centre 

of mass along a mediolateral axis (IcMy). Geometric models of varying complexity were 

designed for each segment based on the mass distribution properties of a random sample 

from the four population groups (model development group). The thigh and forearm models 

consisted of3 and 4 geometric solids, respectively, connected end to end. Each segment was 

circular in nature in the transverse plane. The leg models were constructed with three 

geometric segments joined end to end and were elliptical in the transverse plane. Segment 
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BSPs were estimated for the remaining subjects (model validation group) using the models 

and the results were compared to DEXA measurements to determine the model errors. Four­

other popular models available in the literature were also examined by estimating the BSPs 

for the model validation group and comparing to DEXA measurements. These four sources 

included the linear regression equations of Dempster (1955) (via Winter, 1990), the 

geometric models of Hanavan (1964), and both the multiple regression equations and 

geometric models of Zatsiorsky et al. (1990). The following conclusions can be drawn from 

the results: 

1. Thigh mass and IcMz estimates from the geometric model tested did not 

significantly improve on the other methods examined, however CMx and CMy 

estimates were significantly better than the other models. The results showed an 

overall underestimation of mass by the geometric model and regional 

underestimations of mass and IcMz at the proximal end of $e thigh. Furthermore, the 

multiple regression equations of Zatsiorsky et al. (1990) provided the most accurate 

estimates of mass and ICMz, however repeated measures analyses of variance 

(ANOVAs) showed that the regression equation estimates were not significantly 

different than those from the developed geometric model. 

2. On average, little improvement in foreann BSP estimations was made with the 

developed geometric models. Forearm mass and IcMz estimates were overestimated 

by all three geometric models, particularly at the proximal end. Furthermore, Model 3 

improved on mass estimates over Models 1 and 2, but at the expense of IcMz 
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estimates. The geometric models of Zatsiorsky et al. (1990) were found to produce 

significantly more error in mass estimations and on occasion, the regression equations 

produced equally high errors. Greater errors were also found in the female groups 

compared with the males. 

3. Little improvement in leg BSP estimation was achieved with the developed 

models, however insufficient statistical power may have underestimated the 

presence of statistical differences. Leg mass and IcM estimates were overestimated 

by all three developed models, particularly at the proximal end of the segment. 

Generally, errors from Model 3 were greater than those from Models 1 and 2 for IcM 

estimations. Models 2 and 3 improved estimates of CM over other models. The 

geometric models of Zatsiorsky et al. (1990) provided the greatest errors in mass, 

CM, and IcM estimates and were significantly worse than all other models examined. 

4. Using mass distribution properties as a guide for geometric model development 

provides promise for more accurate BSP estimations. The research conducted in 

this study represents a novel method for generating geometric models for the 

estimation of human BSPs. Representing the mass distribution properties of body 

segments allows more accurate representation of segmental inertial properties in 

comparison with methods using volume distribution. Furthermore, the results of this 

study indicate geometric similarity among individuals of varying morphology, 

allowing the representation of segmental inertial properties with a single model. This 

characteristic of the thigh, forearm and leg segments, and potentially other segments 
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of the body, alleviates the need for individual sets of predictive equations according . 

to gender, race, age or morphology. While the models developed in this study did not 

substantially improve over estimates from the other equations examined, the results 

show that they were among the most accurate for each segment, population and BSP. 

With greater sample sizes and validation of models in three dimensions, 

improvements can be made to enable more accurate estimates of human BSPs. 

5.2 Suggestions for Future Research . 

The main hypothesis of this study was that developing geometric models based on the . 

mass distribution properties of segments would significantly improve BSP estimates over 

other models examined. The results of this study supported this hypothesis where CMx and 

CMz estimates were concerned, however mass and IcM estimates were not significantly 

improved over the other models examined in this study. One possible reason for this finding 

is the limitation of DEXA to providing mass distribution information in one plane only. 

Studies 1 and 2 were limited to the frontal plane, therefore circular models were generated 

and were validated in this plane only. The possibility that this transverse symmetry was 

limiting the performance of the segment models was considered for the third study, where the 

lower leg was scanned twice to obtain information in two planes. This allowed the 

development and validation of an elliptical model in the frontal and sagittal planes. Still, 

however, error levels were not markedly reduced, although the two dimensional nature of 

DEXA may have resulted in tissue redistribution as well as segmentation differences due to 

dual scanning, introducing error into the geometric model and its BSP estimates. A 

recommendation for future research is therefore to use other forms of medical imaging 
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technology, possibly in addition to DEXA, to enable the assessment of the mass distribution 

properties of limbs in three dimensions. 

Another possible reason for the limited performance of the models, particularly in 

Study 3, could be the small sample sizes used to validate the models. It is possible that 

insufficient statistical power resulted in greater error variability of BSP estimations of the 

models developed and therefore reduced the possibility of detecting statistical differences 

between all models examined. Future research should therefore include a power analysis to 

determine adequate sample sizes for model generation and validation. 

This study presented a novel approach for designing geometric models for BSP 

estimation. Only three body segments were examined, however, and three-dimensional 

validation was not achieved. To improve kinetic estimates, a complete model of the human 

body that accurately estimates human BSPs for all body segments in three dimensions is 

needed. Future research should therefore focus on developing models of the remaining 

segments of the human body as well as improving those generated in this study. The quest 

for more accurate anthropometric information is ongoing and requires careful analysis of the 

methods currently available. Consideration of the level of precision needed in BSP estimates 

should be used with the generation of new models until satisfactory performance is achieved 

for a given research question. 
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6.1.2 Scatterplots of thigh model IcM estimates vs. DEXA ICM measurements . 
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6.1.3 Scatterplots of forearm Modell mass estimates vs. DEXA mass estimates. 
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6.1.4 Scatterplots of forearm Model 2 mass estimates VS. DEXA mass estimates. 
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6.1.5 Scatterplots of forearm Model 3 mass estimates vs. DEXA mass estimates. 
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6.1.6 Scatterplots of forearm Modell ICM estimates VS. DEXA IcM estimates. 
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6.1.7 Scatterplots of forearm Model 2 ICM estimates vs. DEXA ICM estimates. 
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6.1.8 Scatterplots of forearm Model 3 IcM estimates vs. DEXA ICM estimates. 
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6.1.9 Scatterplots ofleg Modell mass estimates vs. DEXA mass estimates. 
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6.1.10 Scatterplots of leg Model 2 mass estimates vs. DEXA mass estimates. 
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6.1.11 Scatterplots of leg Model 3 mass estimates vs. DEXA mass estimates. 
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6.1.12 Scatterplots of leg Model 1 IcMz estimates vs. DEXA IcMz estimates . 
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6.1.13 Scatterplots of leg Model 2 IcMz estimates vs. DEXA IcMz estimates. 
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6.1.14 Scatterplots of leg Model 3 IcMz estimates vs. DEXA IcMz estimates. 
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6.1.15 Scatterplots of l,eg Model 1 IcMy estimates vs. DEXA ICMy estimates. 
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6.1.16 Scatterplots of leg Model 2 IcMy estimates vs. DEXA ICMy estimates. 
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6.1.17 Scatterplots of leg Model 3 IcMy estimates vs. DEXA IcMy estimates. 
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6.2 Mass distribution plots of thigh model vs. DEXA 
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6.2.2 icM distribution plots of thigh model vs. DEXA 
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6.2.3 Mass distribution plots of foreann models vs. DEXA 
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6.2.4 IeM distribution plots of foreann models vs. DEXA 
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6.2.5 Mass distribution plots of frontal plane leg models vs. DEXA 

Females (19-30 Years Old) (a) 
1 

II'J 

~ -DEXA 

~ /1 
JiI;1 -M1 

= ::.!e. a 
0 
=> e 
~ .... e 
::.!e. --- M3 
0 

-1 0/0 Segment Length 

Females (55+ Years Old) (c) 

1 
-DEXA II'J 

= ~ 

~ -M1 
JiI;1 

= 0 ::.!e. ··········M2 0 25 0 125 => => 
~ .... --- M3 e 
::.!e. " CD ,; 

,; 

-1 - '% "Segment Length 

Males (19-30 Years Old) (b) 

'" -DEXA '" ~ • 
~ 

~ I ""-- 4 -M1 
IiJ;l 
Q 

~ 0 I -,; i i i 1ro i .......... M2 
25 50 15... 125 

<::0 -... 
Q ./ ../'" --- M3 

"#. 
-1 J 0/0 Segment Length 

Males (55+ Years Old) (d) 

II'J .. LA . -DEXA II'J • ~ 
~ ~ ~.JIOd -M1 
JiI;1 

= ::.!e. 01 ~ 
I I 

~110 I .......... M2 0 25 50 125 <::I 
=> 
~ .... 

.---~~~ ---M3 e 
::.!e. CD 

-1 J % Segment Length 



6.2.6 Mass distribution plots of sagittal plane leg models vs. DEXA 
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6.2.7 IcMz distribution plots of frontal plane leg models vs. DEXA 
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6.2.8 IcMy distribution plots of sagittal plane leg models vs. DEXA 
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