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Abstract 

This thesis focuses on joint model order detection and estimation of the parameters of inter

est, with applications to narrowband and wideband array signal processing in both off-line 

and on-line contexts. A novel data model that is capable of handling both narrowband and 

wideband cases with the use of an interpolation function and signal samples is proposed. In 

the off-line mode, Markov Chain Monte Carlo methods are applied to obtain a numerical 

approximation of the joint posterior distribution of the parameters under the condition that 

they have stationary distribution functions. On the other hand, if the distribution func

tions are nonstationary, the on-line approach is used. That approach employs a sequential 

implementation of Monte Carlo methods, applied to probabilistic dynamic systems. 

Four inter-related problems were addressed in the course of this thesis. 

1. A new data structure based on interpolation functions and signal samples to approx

imate wideband signals was developed. This data model, after appropriate trans

formation, has similar features found in the conventional narrowband data model. 

Furthermore, as the novel data model is developed for the wideband scenario, it can 

also address the narrowband scenario without change of structure or parameters. This 

novel data model is the basis on which the MCMC and the SMC approaches solve the 

array signal processing problems developed in the subsequent chapters. 

2. The first algorithm presents an advanced approach using sequential MC methods to 

beamforming for narrowband signals in white noise with unknown variance. Tradi

tionally, beamforming techniques assume that the number of sources is given and the 
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signal of interest (or target) is stationary within an observation period. However, in 

reality these two assumptions are commonly violated. The former assumption can be 

dealt with by jointly estimating the number of sources, whereas the latter severely 

limits the usefulness of conventional beamforming techniques when the target is in

deed moving. In the case where the sources are moving, tracking the incident angles 

of the sources are required, and the accuracy of such tracking significantly affects the 

performance of signal separation and recovery, which is the objective of beamforming. 

The proposed method is capable of recursively estimating the time-varying number 

of sources as well as incident angles of the sources as new data arrive such that the 

signal amplitudes can be separated and restored in an on-line fashion. 

3. The second algorithm presents an application of MCMC methods for the joint detec

tion and estimation problem for the wideband scenario in white noise with unknown 

variance. In general, compared to the narrowband scenario, it is more difficult and 

cumbersome to solve this array signal processing problem in the wideband context. 

Conventional approaches tend to solve this problem in the frequency domain, and as 

such require a considerable amount of data to sustain accuracy, which imposes a large 

computational burden for these approaches. Furthermore, these approaches employ 

separate algorithms like AIC and MDL to estimate the number of sources. In contrast, 

the proposed method utilizes the reversible jump MCMC technique that simultane

ously detects the number of sources and estimates the parameter of interest within the 

same algorithm. The proposed method is applied to the novel data model mentioned 

earlier and solves the problem in the time domain, which significantly reduces the 

requirement for a large number of data samples. 

4. The final algorithm is an extension of the off-line approach to wideband array signal 

processing problem using sequential MC methods. Most conventional array signal 

processing approaches are developed under the assumption that the sources are sta

tionary in direction of arrival. If this assumption is invalid, the solutions from these 

approaches become suboptimal and their performance is significantly degraded. When 
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sources are nonstationary, tracking the motions of the sources is needed, but in wide

band scenarios the same problem becomes more difficult and cumbersome than in 

narrowband scenario because the methods for wideband scenarios usually require a 

considerable amount of data for processing. The proposed algorithm focuses on the 

sequential implementation of particle filters for probabilistic dynamic systems. This 

algorithm is applied to the modified novel data structure mentioned earlier in white 

noise with unknown variance for recursive estimation of the motions of the sources as 

new data arrive. A systematic statistical testing procedure is used to keep track of 

the number of sources. 
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One column of the steering matrix 
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Interpolation matrix 

One column of the interpolation matrix 

Carrier frequency in rad/ s 

Carrier frequency in Hz 
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N 

S 

Statistics 

N 

P[A] 
p(x) or p(x) 

X r-v p(x) 

p(xllL; (}"2) 

l(x) 

C(x) 

7r(x) 

q(.) 

r 

Acronyms 

BIS 

iid 

IS 

MC 

MCMC 

pdf 

Spacing (for a uniform linear array) 

Velocity of propagation 

Covariance matrix of the observations y 

Eigenvalue 

Eigenvector corresponding to the lth eigenvalue 

Noise subspace 

Signal subspace 

Number of samples (particles) 

Probability of the event A 

Probability density function (pdf) of x or x 

x is distributed or drawn from p( x) 

Density of x conditional on IL, 

with the knowledge of the parameter (}"2 

Likelihood function where x is the unknown parameter 

Log-likelihood function, log (l(x)) 

Posterior density of interest p(xly) 

Importance (or proposal) function 

Acceptance ratio 

Acceptance probability 

The weight of the (i)th particle at time t 

Bayesian Importance Sampling 

Independant and Identically Distributed 

Importance Sampling 

Monte Carlo 

Markov Chain Monte Carlo 

Probability Density Function 
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CRLB 

PCRB 

SNR 

DOA 

ISD 

Sequential Importance Sampling 

Cramer-Rao Lower Bound 

Posterior Cramer-Rao Bound 
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Chapter 1 

Introduction 

Statistical methods for signal processing have a wide range of different applications, such as, 

for example, radar, sonar, wireless communications, telephony, and geophysics. However, 

the objectives are often the same, namely, the extraction of parameters of interest from 

noisy observations. 

Array signal processing focuses on signals conveyed by propagating waves. An array of 

sensors located at distinct spatial locations is deployed to measure a propagating electro

magnetic, acosutic, or seismic wavefield. The goals of array signal processing are to combine 

sensors' outputs cleverly so as 

• to characterize the field by detecting the number of sources and locating these sources; 

• to track the instantaneous positions of the sources as they move in space; and 

• to enhance the quality of the target sources by spatial filtering the interfering sources 

and noises. 

Depending on the application, the processing might be "batch mode" or "off-line", where 

the data are collected before processing, or "sequential" or "online", when the algorithm 

proceeds as the observations are collected. There are many classical methods of either type, 

addressing each of the objectives. In this chapter, a review of the fundamentals of array 
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CHAPTER 1. INTRODUCTION 2 

signal processing and the traditional algorithms developed to achieve the aforementioned 

goals are given. 

1.1 Array signal processing 

Sensor arrays have been in use for several decades in many practical signal processing 

applications. An array is used to filter signals in a space-time field by exploiting their spatial 

and temporal characteristics. This filtering may be expressed in terms of a dependence upon 

angle or wavenumber. 

An array consists of a set of sensors that are located at different points in space with 

reference to a common reference point. These sensors listen to the incoming signals and 

provide a means of sampling these signals in space. Depending on the sensor characteristics 

and the propagation path, the source waveforms undergo deterministic and/or random 

modifications. The sensor outputs are composed of these signal components and additive 

contaminations such as measurement and thermal noise. The outputs are combined such 

that target signals from a set of angles are enhanced by a constructive combination and 

unwanted signals from other angles are rejected by destructive combination. 

Sensor array systems can be divided into two classes: active and passive. In active sens

ing situations, a known waveform of finite duration is generated, which in turn propagates 

through a medium and is reflected by some target back to the point of origin. The trans

mitted signal is usually modified both in amplitude and phase by the target characteristics, 

which by themselves might be changing with time and its position in space. These distur

bances give rise to a random return signal. In the passive context the signal received at the 

array is self-generated by the target, such as propeller or engine noise from submarines. 

Applications for sensor arrays (Johnson, 1982; Van Trees, 2002) include the following 

areas: 

1. Radar - Radar is the area in which antenna arrays were first used. Most radar 

systems are active, and the antenna array is used for both transmission and reception 

of signals. Radar technologies are used in military applications, including ballistic 
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missile detection and numerous airbone systems. On the other hand, non-military 

applications include air traffic control, depth-sounding, impulse radar, etc. 

2. Radio Astronomy - Unlike radar systems, radio astronomy systems are passive and 

are used to detect celestial objects and estimate their characteristics. These systems 

usually employ arrays with very long baselines, extending from hundreds of meters to 

nearly the diameter of the earth. 

3. Sonar - Sonar systems can be active or passive. The theory of active sonar systems 

has much in common with radar, but sonar systems deal with acoustic energy into the 

water while the radar systems deal with electromagnetic energy in the atmosphere. 

The main application in sonar systems is the detection and tracking of submarines, 

and in the fishing industry for detecting schools of fish. 

4. Seismology - There are two main areas of seismology in which array processing plays 

an important role. The first area is the detection and location of underground nuclear 

explosions. The other area is exploration seismology that is to construct an image of 

the subsurface in which the structure and physical properties are described. 

5. Tomography - Tomography is the cross-sectional imaging of objects from transmit

ted or reflected data. The object is illuminated from a number of different directions 

and data are collected at a receiving array. The cross-sectional image can then be 

reconstructed from the data. Medical diagnosis and treatment are examples of suc

cessful applications of tomography. 

6. Communications - Antenna arrays are used in many communication systems. Sev

eral satellite systems utlize phased arrays in either the earth terminal or space segment 

for applications like tracking and data relay. Wireless cellular systems also utilize 

various types of multiple access techniques such as Time Division Multiple Access 

(TDMA), Code Division Multiple Access (CDMA), and Global System for Mobile 

Communications (GSM). 
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Array processing deals with methods for processing the sensors' output data in the 

above applications in order to obtain insight into the structure of the waves traversing 

the array. The practical problems of interest in array signal processing are extracting the 

desired parameters such as the directions-of-arrival, power levels and crosscorrelations of 

the signals present in the scene from the available information including the measured data. 

Often one may also be specifically interested in the actual waveform corresponding to one 

of these sources, and in that case it is necessary to estimate the actual waveform associated 

with the desired signal while at the same time supress the other signals. 

At ti{nes, the desired signal structure might be only known partially, and the objective 

in that case is to detect its presence in the available noisy data. This situation is often 

encountered in sonar to detect the presence of the signature of a specific class of submarine. 

Though the signal structure is known, it may still contain unknown parameters such as 

angle-of-arrival or random phase. 

All these problems fall into one of two categories: detection or estimation of signals. In 

cases where the angle-of-arrival of the signals are time-varying, instantaneous estimation or 

tmcking will be deployed. 

In an array signal processing scenario, we have Nt vector observations y(n), each is 

of dimension M, for n = 1, ... , Nt from an array of M sensors, which is illuminated by 

ko plane waves incident onto the array from angles rPl,.'" rPko relative to the normal of 

the array. The objective is, given the observations, to estimate the parameter ko and the 

corresponding directions of arrival. In cases where the directions of arrival and/or the 

number of unknown sources are nonstatic and time-varying, the estimation and detection 

problems become a tracking problem where both parameters are recursively estimated, given 

the latest observation. 

1.1.1 Array geometries 

In the context of array signal processing, several assumptions are necessary to support the 

development of the algorithms. 
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• Plane waves - The sources are assumed far enough from the array so that the incident 

signals have planar wave fronts. 

• Narrowband - Under this assumption, propagation over the length of the array is a 

function of only the phase of the incident wave. In this case, the amplitude of the 

incident wave is stationary over the length of time required for a point on the wave 

to completely traverse the array. 

• Wideband - Under this assumption, signals occupy a significant frequency band, and 

hence the propagation delays cannot be represented by phase shifts as with narrow

band signals. Here, the waveform changes during the time it interacts with the array. 

• Calibration - The sensors are assumed calibrated, namely their radiation pattern is 

assumed known for all ¢ (Tranter et al., 1999). 

• Uncorrelated noise - The noise samples are assumed uncorrelated with the signals. 

• ko < M - The true number of sources impinging the array must be less than the 

number of elements composing the array. 

When an advancing plane wave passes through a non-dispersive medium (Johnson, 

1982), the signal output at any sensor element immersed in that medium can be repre

sented as a time-advanced/delayed version of the signal relative to a reference element. 

Figure 1.1 depicts an example of a uniform linear array of sensors, where the time delay 

between two successive sensors when a signal is transversing along the array is 

~. '" r= CS1n'f" 

where ~ denotes the interspacing distance between two successive sensors, and C represents 

the velocity of propagation. With the absence of noise, let yo(t) = a(t) denote the signal 

at the reference element (sensor 0), where a(t) is a plane wave impinging onto the array, 

and Yl(t) be the output at the second sensor from the reference point in absolute units. 

Therefore, Yl(t) can be related to Yo(t) as follows 

Yl(t) = Yo(t - r) = a(t - r). 
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• • 

o 1 2 M-2 M-1 

Figure 1.1: Definition of symbols for a linear antenna array scenario. 

For all M sensors, the output vector, y(t), also known as the observation, can be written 

as 

y(t) = [yo(t) , Yl(t), ... , YM_l(t)]T, 

= [a(t) , a(t - T), ... , a(t - (M - l)T)]T 

In the case where there are ko sources, the mth sensor output in response to ko signals 

from distinct angles of arrival, <Pk, k = 1, ... , ko, can be expressed as 

ko-l 

Ym(t) = L ak(t - mTk), 
k=O 

where ak(t) is the kth source, and Tk is the corresponding time delay between adjacent 

sensors, defined as 
d . A-. 

Tk = C Slll'f'k· 

1.1.2 Narrowband Situation 

If the signals under consideration are narrowband, that is, the carrier frequency is fairly 

large compared to the bandwidth of the signal, then the signal can be treated as quasi-static 

during time intervals of order T, and Ym(t) can be rewritten as (Johnson, 1982; Buckley and 
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Griffiths, 1988; Pillai, 1989) 

ko-l ( ) " () . m27rd sin ¢k 
= ~ ak t exp - J ). , 

k=O 

where Wo is the operating frequency and), is the associated carrier wavelength. As a result, 

the sensor output vector, y(t), can be then expressed as 

y(t) = S(¢)a(t), 

where ¢ E nko, and S(¢) E CMxko is known as the steering matrix, the kth column of 

which is defined as 

( ) [ ( .27rdSin¢k) ( . 27r(M -l)dSin¢k)]T 
S ¢k = 1,exp -J ). , ... ,exp -J ). (1.1) 

For narrowband signals, the time delay can be approximated by a pure phase delay of the 

reference signal, and this phase delay depends only on the spacing between the sensors in 

question, the angle of arrival of the plane wave, and the frequency of the propagating wave. 

The structure of the steering matrix varies with the geometry of the array. In particular, 

when the array elements are arranged in a straight line and are uniformly spaced, we assume 

~ ::; ~, where). is the wavelength. However, this structure is subject to an ambiguity 

problem, for it can resolve only one angular component, l leading to a cone of uncertainty and 

right/left ambiguities. To resolve this problem, a circular array can be used. Nevertheless, 

because of its simplicity, the uniform linear array is commonly used in the literature, and 

for this reason this thesis adopts this simple structure. 

With the consideration of observation noise, the snapshot vector at the nth sampling 

time n can then be expressed as 

y(n) = S(¢)a(n) + v(n) n = 1,2, ... ,Nt, (1.2) 

1 For example, in the case of a vertically erected linear array, azimuth angle cannot be resolved, and an 
ambiguity exists as to whether the wave is incident from the front or back of the array. 
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where yen) is the observation noise. We assume that the noise is a Gaussian2 random 

variable. Various methods have been developed according to this narrowband model to 

resolve the detection and estimation problems. 

1.1.3 Wideband Situation 

While the time delays of narrowband signals can be approximated by their respective 

phase delays, wideband signals require more signal processing prior to applying existing 

approaches to solve for detection and estimation problems. 

Using the time shifting property of the Fourier Transform, it is apparent that the mth 

sensor output can be rewritten as 

Ym(W) ~ FT [}; a,(n - mT')] , 
ko-I 

= L Ak(W) exp (-jmwTk)' 
k=O 

where FT[·] is the Fourier Transform operator, Ak(W) represents the Fourier Transform of 

ak(n}. Thus the snapshot vector in frequency domain can be written as 

yeW) = S(T,w)A(w), 

where S(T,W) E CMxko is known as the location matrix, the kth column of which is defined 

as 

(1.3) 

Structurally, (1.1) and (1.3) are identical, but S(Tk,W) for k = 0, ... ,ko - 1 is dependent 

on every w. The steering matrix and the location matrix are structurally similar, and 

hence those approaches that were developed for narrowband signals can be applied to the 

wideband signals in the frequency domain. That is, the received data in the presence of 

noise is defined as follows 

yew) = S(T,w)A(w) + v(w), (1.4) 

2The definitions of the density functions can be found in Appendix A. 
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where v(w) is the Fourier Thansform of the observation noise. As in the narrowband sce

nario, we assume the observation noise is a Gaussian random variable and uncorrelated with 

the signal sources. In Chapter 2 a novel data model, which is purely real and can handle 

both narrowband and wideband signal models, will be introduced. 

1.2 Traditional array processing 

In the field of array signal processing, there have been a variety of techniques to solve for 

detection and estimation problems for narrowband signals. However, for wideband signals 

it becomes cumbersome as a huge amount of data is required and more computational 

efforts are demanded to solve the same problems, even though in both cases the models 

are similar, where the only difference is in the domain where each model is defined. In this 

section, typical traditional techniques developed to solve for the detection and estimation 

problems for both narrowband and wideband case will be reviewed. 

1.2.1 Narrowband Situation 

For narrowband signals, assuming that the observation noise and the signals are uncorre

lated, traditional array processing methods for model selection and direction finding pur

poses often use the information contained in the covariance matrix of the data 

Ryy ~ E {y(n)yH (n)} , 

= E {(S(cjJ)a(n) + v(n»(S(cjJ)a(n) + v(n»)H} , 

= S(cjJ) Raa SH (cjJ) + :Ev , 

where yen) is defined in (1.2), Ran is the signal covariance matrix, defined as 

Raa ~ E {a(n)aH (n)} , 

and :Ev is the spatial covariance of the noise process, defined as 
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where we assume the noise is white and Gaussian. The rank of the matrix S(¢)RaaSH (¢) 

in (1.2.1) is the number of sources. In reality, the covariance matrix, R yy , is only available 

through the estimate, given as 

1 Nt 
~ "" H Ryy = - L y(n)y (n). 

Nt n=I 

(1.5) 

Using an eigen-decomposition on the sample covariance matrix, R yy , it is possible to 

decompose the space spanned by the eigenvectors of llyy into two disjoint subspaces: the sig

nal subspace, Ss, and the noise subspace,~. Given the covariance matrix is only estimated 

by a finite number of samples, these two subspaces are also estimates. Let the estimated 

eigenvectors of llyy by the set [eo, ... ,eM-I], and Es and EN be the approximate signal 

and noise subspaces, respectively, defined as follows 

where 

ES = [eo, ... ,eko-I], 

EN = [eko"'" eM-I], 

That is, these two sets of vectors are approximately orthogonal. It can be shown that the 

signal and noise subspaces can be respectively represented in terms of the eigenvectors as 

S = span[Es] = span[eo, ... ,eko-l], 

N = span[EN] = span[eko "'" eM-I]. 

1.2.1.1 Direction finding 

Subspace methods With the knowledge of the number of sources, the signal subspace 

and noise subspace can be estimated with the corresponding eigenvectors. There are three 

classical methods that can estimate the directions of arrival by exploiting a fundamemtal 

property between the two sets of eigenvectors Es and EN. These methods are the Pisarenko 

pseudo spectrum (Pisarenko, 1973), the multiple signal classification (MUSIC) algorithm 

(Schmidt, 1986), and the Root-MUSIC (Barab ell , 1983; Rao and Hari, 1989) method. 
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~H~ 

Given the fact that EsE N ~ 0 such that 

if the signal vector is in the signal DOA's subspace, the magnitude of the projection onto EN 
should be small. On the other hand, a projection onto Es will result in a large magnitude. 

As a result, the search for signal vectors is equivalent to searching for vectors that are most 

closely orthogonal to the noise subspace as follows 

where s(cjJ) is a column of the steering matrix and e is the set of the true directions of 

arrival. 

Based on this orthogonality property, the Pisarenko pseudo spectrum (Pisarenko, 1973) 

projects a steering vector onto a single noise eigenvector when estimating the DOAs. The 

Pisarenko pseudo spectrum for a particular noise eigenvector is defined as 

It is well known that unless the number of sources is correct, it is not possible to tell which 

peaks shown in the Pisarenko pseudo spectrum are attributed to the sources and which are 

spurious. 

Unlike the Pisarenko method, the MUSIC algorithm (Schmidt, 1986) involves a projec

tion of a steering vector onto the whole noise subspace. The MUSIC pseudo spectrum is 

defined as 
~ 1 
PMUSIC(cjJ) = ~ ~H . 

sH(cjJ)ENENS(¢) 

Unlike the Pisarenko method, even if the number of sources is over estimated, the MUSIC 

method will perform well. 

The Root-MUSIC algorithm (Barabell, 1983; Rao and Hari, 1989), developed specifically 

for uniform linear arrays (ULAs), is motivated by the fact that 
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where Wk is a signal frequency, and Wk = 2>.b. sin<Pk. Define the polynomials using the 

eigenvectors corresponding to the noise subspace, i.e., 
M-l 

ej(z) = Ju L ejmz-m, j = ko, ... ,M -1, 
m=O 

such that the signal zeros, Zk = ejwk , k = 0, ... , ko - 1, are roots of each of the above 

polynomials. Define another polynomial PRMUSlc(Z) as follows 
M-l 

PRMUSIC(Z) = L ej(z)ej(l/z*), 
j=ko 

M-l 

= IT (1 - zmz- 1)(1 - z~z), 
m=O 

= D(z)D*(l/z*), 

where D(z) = II~,:-~(1- zmz-1) can be obtained by a spectral fractorization (Lee, 1960) 

of PRMUSlc(Z) and has its roots inside or on the unit circle. The ko signal zeros are the 

roots of D(z) that are closest to the unit circle, i.e. Izl = 1, thereby recovering the signal 

angles <Pk, k = 0, ... , ko - 1. 

Maximum Likelihood methods When the a priori density of a parameter is not known, 

techniques must be developed that make no presumption about the relative possibilities of 

parameter values. In the event of DOA estimation, the maximum likelihood (ML) esitmator 

can be used that maximizes the likelihood function of the observation y(n), given other 

parameters. 

According to the observation model in (1.2) with the noise being a Gaussian random 

variable, we can define the likelihood function as follows 

l(¢; y(n)) ~ p(y(n)I¢) rv N(S(¢)a(n), C1;IM) , 

where N(m, E) refers to a normal distribution with mean m and covariance matrix E. 

Note that this is a function of the parameter ¢ and not of y(n). The value of the parameter 

that maximizes this function is called the maximum-likelihood estimate, defined by 

¢ML = arg max p(yl¢)· 
¢EiJ! 

(1.6) 
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The ML estimator in (1.6) can be interpreted as a search for a set of ¢ such that the 

sum of the Euclidean distances between the observations y(n) and the estimates y(nl¢) is 

minimized, i.e., 

Nt 

¢ML = arg min L lIy(n) - Y(nl¢)1I2. 
¢E~ n=l 

(1.7) 

The estimates y(nl¢) are obtained by the least-squares estimate of the amplitudes a(n) as 

follows 

y(nl¢) = S(¢)a(n), 

where, according to (1.2), the least-squares estimate a(n) is given by 

Defining a model dependent projector matrix by Ps(¢) as 

and its orthogonal complement as 

P~{¢) = 1 - Ps(¢), 

we can rewrite the estimate y(nl¢) as 

y(nl¢) = Ps(¢)y{n) , 

such that the ML estimator in (1.6) becomes 

. Nt 

¢ML = argmin L lIy(n) - y{n)1I2, 
IjJEiJ? n=l 

Nt 

= argmin L 1I{1 - Ps{¢))y(n) 11 2 , 
q,EiJ? n=l 

= argmintr(P~(¢)RvY), 
IjJEiJ? 

= argmaxtr(Ps(¢)Ryy), 
IjJEiJ? 

(1.8) 

(1.9) 

(1.10) 

(1.11) 
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where tr(·) is the trace operator, and Flyy is defined in (1.5). The same result can also be 

obtained in a Bayesian context (Reilly, 1981; Haykin, 2000; Wu and Wong, 1994; Viberg 

et al., 1991). 

Since the ML estimator does not take any prior knowledge of the parameters into ac

count, it is expected that the error characteristics of the resulting estimates could be worse 

than those that can use prior knowledge. Moreover, like many other optimization problems, 

the ML estimation problem is well known to be difficult, as the function to optimize shows 

many saddle points and local extrema. Any gradient based method would need a good 

initialization in order to succeed. 

1.2.1.2 Model selection 

In the case where the noise is spatially white in (1.2), the eigendecomposition of Ryy yields 

M eigenvalues, M - ko of which correspond to the noise variance O"~ and the remaining ko 

eigenvalues which are larger correspond to the signals, i.e. 

There exist a few techniques using information theoretic criteria to estimate the model order. 

They are the Akaike information criteria (Ale) (Akaike, 1974), the minimum description 

length criteria (MDL) (Rissanen, 1978; Wax et al., 1984), and the more recent D-MAP 

(Djuric, 1996). These approaches determine the best model order, given the data, by 

maximizing the log-likelihood function of the data over all possible model orders. Each 

method is composed of two terms - the log-likelihood function and the penalty function of 

the model order - and has the following general expression 

where 
~ (rr~k+1Ai)I/(M-k»)2(M-k)Nt 

f(yl<pML) = _1_ "M i ' 
M-k L..ti=k+l , 

4>ML is the ML estimate of the parameters for a specific model order, Ai are the estimated 

eigenvalues that are arranged in descending order, and g(k, M, Nt) is a penalty term, which 
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is a function of the model order, k, the number of sensor elements, M, and the number 

of snapshots, Nt. The model order is estimated by maximizing L(¢ML)' Note that the 

term in the brackets in the likelihood function f(yl¢ML) is the ratio of the geometric and 

arithmetic means of the M - k smallest eigenvalues of the estimated covariance matrix Ryy . 

If the model order chosen is correct, the geometric and arithmetic means are approximately 

equal, which also corresponds to the point where the function L(¢ML) is minimum. On 

the other hand, if the model order is too low, the arithmetic mean exceeds the geometric 

mean such that L(¢ML) decreases. However, if the model order is too high, the penalty 

term g(k, M, Nt) dominates and L(¢ML) increases. 

The AIC, MDL and D-MAP criteria for estimation of the number of sources can be 

written respectively as 

kAle = m1n { -log f(YI¢) + 2k(2M - k) } , 

~ { ~ k(2M - k) } 
kMDL=~n -logf(yjct»+ 2 log (Nt) , 

There are a few points worth noting about these approaches. Since the whole concept of 

these information theoretic criteria relies on the accuracy of the computation of the sample 

covariance matrix Hyy and the associated eigenvalues '\' i = 0, ... , M - 1, the number 

of snapshots plays a critical role in the entire detection process. In particular, when the 

SNR is low, more snapshots are required to sustain the necessary accuracy in model order 

detection. Furthermore, these approaches assume the noise is additive white Gaussian. It 

has been verified that their performance is very sensitive to this assumption. A performance 

analysis of these methods in non-white Gaussian noise, for varying degrees of color, is given 

in Chen (1991). Another alternative in array signal processing is the use of multiple arrays 

(Wong et al., 1992; Fuchs, 1992; Wu and Wong, 1994; Nagesha and Kay, 1996; Chen et al., 

1996). 

It is well known that the MDL criterion and the D-MAP yield more consistent estimates 

of the number of sources than the AIC criterion (Johnson, 1982; Zhao et al., 1987), when 
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the number of observations is large. The AIC criterion usually yields a slightly larger value 

for the number of signals regardless of how many observations are used and how high is the 

SNR. 

1.2.2 Wideband Situation 

For wideband signals, most of the traditional approaches developed to solve detection and 

estimation problems convert the data model from the time-domain as defined in (1.2) to 

the frequency domain as defined in (1.4). Such a conversion is motivated by two reasons: 

One is that the data model in the frequency domain is structurally similar to that in the 

time domain, and the other is that all the successful techniques originally developed for 

narrowband models can be reused in the set of frequency bins to solve the same problems 

in question, namely detection and estimation. 

In practice, a sufficiently long duration of sensor output is observed. Then, the sampled 

data are divided into groups of Nt snapshots, each containing J samples. In each snapshot, 

an FT algorithm is used to transform the data into the frequency domain. Thus, Nt sets of 

transformed data are available where each set contains J frequency samples of the spectrum 

of the observation vector. As a result, given a set of frequency samples, Wj,j = 0, ... , J - 1, 

the sample covariance matrix llyy(Wj) becomes 

(1.12) 

where Raa(wj) is the sample covariance matrix for the sources at the jth frequency bin. 

When J is sufficiently large, the bandwidth the spectrum of the signal occupied in every fre

quency bin becomes narrow, thereby approximately corresponding to that of a narrowband 

signal. 

1.2.2.1 Direction finding 

Focusing technique The Coherent Signal-subspace Method (CSM) (Valaee and Kabal, 

1995) is a focusing technique that transforms the signal subspaces spanned by the columns 
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of S( c/J, Wj) in all frequency bins j = 0, ... , J -1 and overlaps them in a predefined subspace, 

known as the focusing subspace (Valaee and Kabal, 1995). Given a predefined focusing 

frequency WF and hence the focusing location matrix S(c/J, WF), the objective of the focusing 

technique is to find the solutions T(wj) of the equations given by 

T(Wj)S(c/J,Wj) = S(c/J,WF), j = 0, ... , J-1. 

Using the focusing matrices T(wj), the snapshots at different frequency bins can be trans

formed into the focusing subspace, i.e., 

and then a set of sample covariance matrices at different frequency bins can be constructed 

as 
~ (j) J j~!./ ( ") (j)H 
Ryy = N, ~ Y J (n)y (n), 

t n=1+j 

j = 0, ... ,J-1. 

Eventually, a universal focused sample covariance matrix that can be used for detection and 

estimation can be obtained as follows 

where 

~(F) 1 ~ ~(j) 
Ryy = J~Ryy, 

j=o 

_ ( )~(F) H( ) (F) - S c/J,WF Raa S c/J,WF + RII , 

(1.13) 

Given that the sample covariance matrix in (1.13) approximately corresponds to that for 

narrowband signals, it is then possible to apply narrowband methods to the wideband 

problem. 

While the CSM algorithm improves the efficiency of the estimation by condensing the 

energy in the sub-bands into the focusing signal subspace, it suffers from a few problems 
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that degrade the overall performance. Firstly, the transformation involving the matrices 

T(wj) will change the orginal noise structure as well as the SNR levels at the output of the 

processor. In particular, if the observation noise is Gaussian and white, the transformed 

noise is no longer white. Secondly, it was pointed out that the method suffers from an 

asymptotic bias of the peaks in the spatial spectrum. This bias increases with the bandwidth 

of the sources and the deviation of the focusing points from the true DOAs. Nevertheless, it 

was shown (Hung and Kaveh, 1988) that if the matrices T(wj) are unitary transfomations, 

the focusing is lossless. 

The Two-sided Correlation 'Transformation (TCT), which is another focusing technique 

and uses a similar focusing concept as in the CSM, performs the focusing transformation 

on the covariance matrix of the sources instead of the location matrix. The transformation 

matrix at each frequency bin is unitary and minimizes the distance between the focusing 

subspace and the transformed signal subspace. The TCT and the CSM differ in two ar

eas. Firstly, the transformation of the subspaces using the TCT is performed through a 

two-sided transformation applied to the source covariance matrix, which can be shown to 

result in a smaller error. Secondly, given that many high resolution algorithms for DOA 

estimation are based on the eigen-decomposition of the covariance matrix, the TCT applies 

the transformation on the source covariance matrix instead of the location matrix. 

Similar to the CSM procedures, a predefined focusing covariance matrix is given, and the 

objective of the TCT is to find all solutions of the transformation matrices that minimize 

the distance between the focusing covariance matrix and source covariance matrices in all 

frequency bins, under the contraint that the transformation matrices are kept unitary. Let 

R~~) be the focusing covariance matrix, and U(Wj) for j = 0, ... , J - 1 be the focusing 

matrices. Then the TCT focusing matrices can be found by the following optimization 

for j = 0, ... , J -1. Once the set of focusing matrices is obtained, the transformed covariance 
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matrices at different frequency bins can be constructed as 

jNtlJ 

R~j = ~ L y(j)(n)y(j)H (n), j = 0, ... , J - 1, 
t n=l+j 

where 

Finally, a universal focused sample covariance matrix can be constructed as follows 

~(F) 1 ~ ~ 
Ryy = J ~Ryy(Wj). 

j=O 

19 

(1.14) 

The covariance matrix in (1.14) is approximately equal to that for narrowband signals, 

and hence can be applied to narrowband methods previously developed for detection and 

estimation problems when the signals are narrowband. 

If the ol;lservation noise is Gaussian and white, then a preprocessing step can be taken to 

reduce the noise components in the covariance matricies. This step requires a low-resolution 

beamformer to estimate the number of sources and the DOA's of the sources. With the 

knowledge of the estimated number of sources, performing an eigen-decomposition on the 

covariance matrices Hyy(Wj) at the jth frequency bin yields an estimate of the noise power 

as follows 

where >:m(~(Wj)) for m = 0, ... ,M - 1 are the estimated eigenvalues of the of Hyy{Wj) 

that are arranged in descending order. Therefore, the source covariance matrices can be 

rewritten as 

j=0, ... ,J-1, 

where 

As a result, the noise-free, focused sample covariance matrix can be simplified as 
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where 

Finally, the desired, focused covariance matrix will be applied to appropriate algorithms for 

detection and estimation. The TCT method has a smaller subspace fitting error than the 

CSM, and has unbiased estimates of the DOAs, regardless of the bandwidth of the signals. 

Both the CSM and the TCT techniques transform the wideband signals into a common 

subspace, where the transformed signals approximately become narrowband. Since these 

methods operate in the frequency domain, and the accuracy of the focusing relies on the size 

of the frequency bins, they require a relatively larger amount of data than other competing 

methods. Furthermore, it is assumed that an appropriately selected focusing matrix or 

focusing frequency WF will be given in each method, but such a selection could be arbitrary. 

When an inappropriate focusing matrix is selected, the overall detection and estimation 

performance is significantly degraded. In particular, when the SNR levels are low, the 

model order detection by AIC or MDL becomes inconsistent, which adversely affects the 

eventual performance of DOA estimation. 

Asymptotic Maximum-Likelihood Methods The asymptotic maximum-likelihood 

(AML) methods (Boehme, 1986, 1989; Van Trees, 2002) are an extension of the ML es

timators. In particular, when the signals in the estimation problem are wideband and J is 

sufficiently large and there is no frequency correlation in the sources, the set of frequency 

spectra Y (Wj) for all j can be considered independent so that the AML methods can perform 

DOA estimation jointly in J frequency bins. 

Denote the AML estimate of the DOAs by;P AML' Using the definitions in Section 1.2.2, 
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we define Pj as the projection matrix for W = Wj onto the range of S(¢AML,Wj), given by 

(1.15) 

and Cyy(Wj) as the sample covariance matrix for the observations at Wj, given by 

1 Nt 
- ~ H . Cyy(Wj) = Nt L....J Y(Wj)Y (Wj), 1 = 0, ... , J - 1. 

n=l 

(1.16) 

Accordingly, the orthogonal complement of P j is given by 

(1.17) 

Depending on the knowledge of the observation noise variance u; at Wj, there are three cases 

by which the total likelihood function Cl(¢AMd,l = 1,2,3, can be defined (Van Trees, 

2002), provided the number of sources ko is available. In each case, the AML estimate 

¢ AM L can be obtained by 

J-l 

¢ AML = arg max 2: CzC¢ AML), 1 = 1,2,3. 
"'E~ j=O 

(1.18) 

1. When 'f}j £. u;(Wj), j = 0, ... , J - 1, is known, the total likelihood function Cl(¢ML) 

is defined by 

(1.19) 

2. When 'f}j £. u;(Wj), j = 0, ... , J - 1, is unknown, then an estimate of 'f}j is computed 

as follows 

_ tr[pfcYY(Wj)] 

'f}j = M - ko (1.20) 

such that the total likelihood function Cd¢ AML) is given by 

&'(4) AML) = -'P(4) AM L) - (M - k.) ~ log { Ir [i>t C",,(Wj)]} , (1.21) 
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where 

(1.22) 

3. When rlj ~ a;(wj) = a}, j = 0, ... , J - 1, and a; is unknown, then an estimate of "Ij 

is computed as follows 

(1.23) 

such that the total likelihood function £'3(4) AML) is given by 

(1.24) 

Parameter estimation by maximum likelihood in the frequency domain is a possibility, 

but the global search in the parameter space of interest is computationally complex and 

generally not used in practice. In particular, to sustain a high accuracy in the estimation, 

the number of frequency bins J and the number of snapshots Nt need to be large, adding 

more computational burden to the algorithm. Furthermore, the knowledge of the model and 

the initial estimates play a critical role in the performance of the method. The estimates 

can be unreliable if the model mismatches or the initial estimates are not precise enough. 

More detailed discussion of the AML estimator for wideband signals can be found in (Doron 

and Weiss, 1992; Doron et al., 1993). 

1.3 The Bayesian approach 

In the context of parameter estimation, the more information about the parameters that is 

available and can be used, the better the estimation performance. The maximum-likelihood 

methods described earlier do not take any prior knowledge of the parameters into account, 

so the error characteristics of the resulting estimates is expected to be worse than those 

that can use it. To address this problem, Bayesian methods, an alternative approach to the 
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estimation problem that ultilizes the prior distributions of the parameters, can be adopted. 

The Bayesian approach to statistics provides a theoretical and practical framework with 

which to view many statistical problems. Bayesian methods have become increasingly pop

ular because they provide solutions to many previously intractable problems. The Bayesian 

framework gives analysts the ability to use prior knowledge, and the option of marginalizing 

with respect to the parameters of interest, for evaluation of confidence regions, etc. 

In spite of their inherent benefits, the Bayesian methods originally were not widely 

adopted and implemented in practice. First, the models and the resulting posterior distri

butions so formed can be highly non-linear and complex such that analytic optimization 

or integration is prohibitive. To solve any optimization or integration problems, numerical 

methods must be employed. Second, as numerical approximation of these optimizations or 

integrations can be adopted, the associated computational complexity of these methods is 

usually high. In particular, in the days when the computer power was low and expensive, 

the numerical approach of Bayesian methods were seldom adopted. Third, relying on the 

use of the Bayes' theorem, the Bayesian methods always lead to controversial debates on 

the issue of inclusion and selection of the prior distributions of the parameters. 

Since afIorable computer power has been available over the last decade, the Bayesian 

approach to statistical problems has become increasingly popular. This has been brought 

about by the adoption and development of Markov chain Monte Carlo (MCMC) methods. 

Proposed in the early fifties and originated in the statistical physics literature, the MCMC 

methods were first ignored due to their intense computational requirements. However, with 

the ever growing power of personal computers, they have just recently matured into very 

powerful algorithms, providing a potential solution to difficult problems, when no other 

solution would exist. 

MCMC is essentially Monte Carlo numerical integration using Markov chains. The 

MCMC process consists of drawing samples according to an arbitrary probability density 

function, by running a cleverly constructed Markov chain for a long time. These samples are 

then used to construct a histogram to approximate the desired probability density function 

as well as to numerically evaluate statistical inference on parameters. In cases where the 
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parameters of interest are stationary, MCMC methods have demonstrated their profound 

effect in parameter estimation problems. When the stationarity assumption is not valid, 

i.e., where the parameters evolve over time, the objective of the estimation problem is to 

recursively estimate the probability density functions associated with a dynamic system 

as new data become available. As ordinary MCMC methods cannot handle this so-called 

trocking problem, sequential Monte Carlo methods otherwise known as particle filters, which 

rely on a recursive update equation for a set of weights to approximate the time-varying 

posterior distribution functions of the parameters, are adopted. 

In summary, MCMC and sequential MC methods are capable of solving problems that 

are intractable using conventional methods. These problems include 

• Optimization. The objective is to locate the extrema of the function. A complicated 

optimization procedure is replaced by a simple location searching approach. 

• Integration. Marginalizing parameters would require complicated non-linear and very 

often prohibitive analytical integrations. Numerical marginalization of a parameter is 

simplified to summing bins of the histogram. 

• Simulation. In some applications, the objective is simply to draw samples from an 

arbitrary density function, which is only possible in general when this function is 

either standard or integrable. MCMC methods have proved powerful in this context. 

In Chapter 2, we will provide a detailed description of the MCMC and the sequential 

MC approaches and some popular sampling procedures. 

1.3.1 Bayes' theorem 

In the Bayesian approach, one starts with the prior distribution function of the parameter 

from which one can obtain its posterior distribution function using Bayes' formula. Denote 

the parameter of interest by x and the corresponding prior distribution function by p(x). 

Likewise, we define y as an observation variable and p(y) as the corresponding prior dis

tribution function. The prior distribution functions contain any information regarding the 
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variables. Then the joint probability density function p(y, x) is given by 

p(y, x) = p(Ylx)p(x) = p(xIY)p(y), (1.25) 

where p(Ylx) is the likelihood function and p(xly) is the posterior distribution function of 

x. 

Bayes' formula is defined as the conditional distribution of the parameter x, given the 

observation y, which is the posterior distribution function of x, as follows 

( I ) - p(ylx)p(x) _ p(ylx)p(x) 
p x y - p(y) - c ' (1.26) 

where c = p(y) is the normalization constant, which is independent of x. Depending on 

whether the probability density function is continuous or discrete, the normalization con

stant can be evaluated as follows 

c = {f p(YI¢)p(x)d¢ 

I:p(YI¢)p(x) 

continuous, 

discrete. 

In an estimation problem, we are only interested in the location of the extrema in the 

probability density function but not their actual values, so the value of c can be ignored. 

In addition, in many practical cases it is not possible to evaluate c analytically. Therefore, 

it is sufficient to express the posterior distribution p(xjy) 

p(xjy) ex: p(yjx)p(x). (1.27) 

The value of the parameter that maximizes the posterior distribution p(xjy) is referred to 

as the Maximum A Posteriori estimate (MAP), that is, 

XMAP = argmaxp(xjy) = argmaxp(yjx)p(x). 
xEX xEX 

(1.28) 

Note that the ML estimator is a special case of the Bayesian MAP estimator with com

plete prior ignorance. Moreover, other statistical inferences, including the mean, confidence 

interval, mode, etc, can now be obtained from the posterior distribution, which was not pos

sible in the maximum-likelihood framework. Furthermore, the Bayesian approach admits 

elimination of nuisance parameters by marginalization. 
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1.3.2 Prior distributions 

When observations from previous experiments are available, the posterior distribution of 

the parameters for these experiments could be used as a prior distribution for the current 

experiment. For example, some physical characteristics of the system might preclude some 

values of the parameters. 

The notion of prior distributions has been a point of debate for decades between rigorous 

statisticians adhering to the classical philosophy, where the maximum-likelihood estimates 

are obtained with more or less well defined risk functions (e.g. mean-square or uniform), 

and the Bayesian analysts, that use prior distributions to include prior knowledge. 

This debate seems to be fading away, now that the impact of the prior distributions 

on the end results is better understood. Also, when prior distributions are used, more 

inference can be obtained from the posterior distribution than from the maximum-likelihood 

estimate alone. For example, evaluation of confidence intervals of the MAP estimate, and 

margi:r;talization of the posterior distribution for a parameter of interest are only possible in 
-7 

the ~ayesian context. 

1.3.2.1 Proper and improper priors 

As critics often argue for statistical inference, including MAP estimation, confidence inter

vals, etc., to exist, the prior distributions p(x) must be proper, i.e., summable or integrable 

to unity. Even though improper priors might be useful in certain applications, MCMC 

methods are more sensitive and require a proper prior distribution. 

1.3.2.2 Non-informative prior 

A noninformative prior is a function which is used in place of a subjective prior distribution 

when little or no prior information is available. The term "noninformative" is used to 

connote a lack of subjective belief used in formulating such a prior. However, one can think 

of a noninformative prior as simply being a function that is formally used in place of a 

subjective prior distribution, for the purpose of accomplishing some goal. In this case, such 
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a prior distribution must be non-discriminating with respect to the likelihood function, to 

"let the data talk" (Box and Tiao, 1973). 

1.3.2.3 Jeffrey's prior 

Unlike other rules based on the principle of insufficient reason that the priors are variant 

to transformation, Jeffrey's prior (Jeffreys, 1961) is a method of generating noninformative 

priors which are invariant to transformations of the parameter vector. This method con

siders the prior distribution for a set of parameters to be proportional to the square root 

of the determinant of the Fisher information matrix (Box and Tiao, 1973). This approach 

proposes a prior distribution that is data translated, and is given as 

p(x) ex: 1..1(xW/2 , 

where 

'7(x) = -E [&2!ogp(Ylxl] 
" Ylo: {Jx2 • 

This is the general form of the non-informative prior distribution. 

1.3.3 Ockham's razor 

Ockham's Razor is the principle proposed by William of Ockham in the fourteenth century 

- "Pluralitas non est ponenda sine neccesitate," which translates as "entities should not be 

multiplied unnecessarily." That is, a simpler model is always selected, as a compromise of 

complexity and data fit, when the model order is to be jointly estimated along with other 

parameters. 

In the Bayesian framework, this principle favours models of lower dimensions and models 

of higher complexity are penalized because of the influence of the prior distribution on the 

model. Similar to the behaviour of an information theoretic criterion (such as AIC or MDL), 

the effect of Ockham's razor penalizes higher-order models by reducing the weight of the 

prior distributions more quickly as model order increases. 

This is the supporting principle explaining the convergence of the MCMC methods 

toward the correct model order, as we discuss in latter chapters. 



CHAPTER 1. INTRODUCTION 28 

1.4 Traditional tracking 

The methods discussed earlier were developed with the assumption that the parameters of 

interest are static within the observation period. In cases when the static assumption is 

violated, the parameters evolve over time according to a dynamic system, and conventional 

offline methods are no longer suitable to provide a recursive estimation of these parameters. 

Therefore, online approaches that can recursively estimate the time-varying parameters, 

given the latest observation, are of interest. 

In the field of array signal processing, online tracking algorithms intend to achieve two 

goals: tracking the motion and locating the incident sources. In this context, the motions 

and location of the sources can be governed by a dynamic system, described by a state-space 

model, given as follows 

x(n + 1) = F(n,x(n)) + v(n), (1.29) 

where x(n) E eko is the state vector and v(n) E eko is the process noise, defined as zero 

mean white-noise processes whose covariance matrices is :Ev . The term F(n, x(n)), which 

is a time-variant state transistion function relating the state of system from time n to n + 1, 

can be a linear or nonlinear function. The observation equation is given as follows 

y(n) = C(n,x(n)) + w(n), (1.30) 

where y(n) E eM is an observation vector and w(n) E eM, is the observation noise, defined 

as a zero-mean process whose covariance matrix is :Ew . The term C(n,x(n)) is a time

varying measurement function that can be linear or nonlinear. 

In the field of array signal processing, there have been a variety of techniques to solve 

this recursive estimation problem. In particular, when the state transition function and the 

measurement function are both linear with the assumption that both process and obser

vation noises are independent and white Gaussian, the Kalman filter provides the optimal 

solution to the estimation problem. If such linearity condition is violated, other suboptimal 

approaches will be adopted. 
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1.4.1 Kalman filtering approach 

Kalman Filter When the state-transition function and the measurement function are 

both linear, the Kalman filter (KF) can be applied to the tracking problem, where the state 

and the observation equations can be rewritten as follows 

x(n + 1) = F(n + 1, n)x(n) + v(n), 

yen) = C(n)x(n) + wen), 

where F(n + 1, n) and C(n) are the known state-transition and measurement matrices, 

respectively. For a linear system in Gaussian and white noise, the KF is the optimal 

minimum mean-squared error (MMSE) state estimator and its implementation is well suited 

for a digital computer. 

A key property of the KF is that it leads to minimization of the trace of the filtered 

state error correlation matrix K (n), defined as 

K(n) = E[(x(n) - x(nIYn))(x(n) - x(nIYn))H], 

where x(nIYn) is the predicted estimate of the state vector. This, in turn, means that the 

KF is the linear minimum variance estimator of the state vector x(n). 

When the number of sources ko, F(n + I,n), C(n), Ev and Ew are given, the KF can 

provide estimates on x(n) recursively, for M> ko, as follows 
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Kalman Filter 

• Input vector process 

Observations: Yn = [Y(l), y(2), ... , y(n)] 

• Description of parameters 

x(n + llYn) - Predicted estimate of the state vector at time n + 1, given Yn 

x(nIYn) - Filtered estimate of the state vector at time n, given Yn 

G (n) - Kalman gain at time n 

a(n) - Innovations vector at time n 

K(n + 1, n) - Correlation matrix of the error in x(n + llYn) 

K(n) - Correlation matrix of the error in x(nIYn) 

• Initialization 

1. The initial predicted state estimate can be initialized as x(lIYo) = E[x(l)]. 

30 

2. The correlation matrix can be initialized as K(l, 0) = E[(x(l) - E[x(l)])(x(l)

E[x(l)])H]. 

In case when E[x(l)] = 0, we have 

x(lIYo) = 0, K(l,O) = E[x{l)xH (1)]. 

• Computation: For t = 1,2,3, ... 

G(n) = F(n + 1, n)K(n, n - l)CH (n) [C(n)K(n, n - l)CH (n) + :Ew]-l 

a(n) = yen) - C(n)x(n) 

x(n + llYn) = F(n + 1, n)x(nIYn-1) + G(n)a(n) 

K(n) = K(n, n - 1) - F(n, n + l)G(n)C(n)K(n, n - 1) 

K(n + 1, n) = F(n + 1, n)K(n)FH (n + 1, n) + :Ev 

-------------------------------------------------------------

The KF has computational complexity of O(M3) (Li et al., 2001). 
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Extended Kalman Filter The KF approach is optimum in the linear model case. In 

the nonlinear case, a linearization procedure on the nonlinear system is taken to extend the 

use of Kalman filtering. The resulting suboptimal filter is known as the extended Kalman 

filter (EKF). 

The linearization can be done by a first-order Taylor approximation on the nonlinear 

functionals F(n, x(n)) and C(n, x(n)) around x(nIYn) and x(nIYn), respectively, as follows 

where 

F(n, x(n)) ~ F(n, x(nIYn)) + F(n + 1, n) [x(n) - x(nIYn)] , 

C(n, x(n)) ~ C(n, x(nIYn-l)) + C(n) [x(n) - x(nIYn-l)] , 

aF(n,x) 
F(n+1,n)= ax Ix=x(nIYn) , 

C(n) = aC(n, x) , ~ 
ax X=X(nIYn-l)· 

As a result, two sets of transformed linear equations can be expressed as follows 

x(n + 1) = F(n + 1, n)x(n) + v(n) + r(n), 

y(n) = C(n)x(n) + w(n), 

where the quantities r(n) and y(n) are given as follows, respectively, 

r(n) = F(n, x(nIYn)) - F(n + 1, n)x(nIYn), 

y(n) = y(n) - [C(n,x{nIYn_l)) - C(n)x(nIYn-l)J. 

One can realize that after the nonlinear system has been linearized, the KF approach can 

be applied to the transformed equations as if the problem were linear. 

At every iteration, the linearized matrices F(n + 1, n) and C(n) are computed. Given 

this information and the noise covariance matrices Ev and E w , the EKF algorithm is 

summarized as follows 
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Extended Kalman Filter 

• Input vector process 

Observations: Yn = [y(l), y(2), ... , y(n)] 

• Initialization 

1. The initial predicted state estimate can be initialized as x(lIYo) = E[a:(l)]. 

2. The correlation matrix can be initialized as K(l, 0) = E[(a:(l) - E[a:(l)])(a:(l)

E[a:(l)])H]. 

In case when E[a:(l)] = 0, we have 

x(lIYo) = 0, 

K(l,O) = E[a:(l)a:H (1)]. 

• Computation: For t = 1,2,3, ... 

G(n) = K(n, n - l)CH (n) [C(n)K(n,n -l)CH (n) + :Ew ]-l 

o:(n) = y(n) - C(n,x(nIYn_1)) 

x(nIYn) = x(nIYn-l) + G(n)o:(n) 

x(n + llYn) = F(n, x(nIYn-1)) 

K(n) = [1 - G(n)C(n)] K(n, n - 1) 

K(n+ 1,n) = F(n+ 1,n)K(n)FH(n+ 1,n) +:Ev 

----------------------------------~---------------------------. 

Unlike the KF approach, the EKF approach is suboptimal, because of the nonlinearity 

of the system and the linearization step taken in the transformation. The linearization pro

cedure in the state equations and/or the observation equation has the potential to introduce 

unmodeled errors that violate some basic assumptions in the KF approach. It is also found 
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that the EKF also has a tendency to diverge during the course of estimation. Indeed, there 

is no guarantee that a higher order linearization can compensate for errors introduced in 

the estimation process. 

In the context of DOA tracking, the state and the observation equations become 

¢(n + 1) = F(n + 1, ¢(n)) + v(n), 

y(n) = S(¢(n))a(n) + w(n), 

where S(cjJ(n)) is the steering matrix defined as before, with the exception that the nonstatic 

¢(n) replaces the static ¢. The state-transition function F(n + 1, ¢(n)) determines the 

motion of the sources, and once that is given the state ¢(n) can be tracked using the EKF 

approach described earlier as new observations y(n) arrive. 

1.4.2 Linear polynomial approximation beamformer 

The linear polynomial approximation (LPA) beamformer (Katkovnik and Gershman, 2002, 

2000) is a two dimensional optimization method that tracks the motions of the sources, 

modelled by a first-order approximation, so that beamformer can track their desired look 

direction. Using the first-order Taylor series expansion, the evolution of the DOAs can be 

expressed as 

where ¢'(n) is the velocity of the DOAs and Ts is the sampling interval. If the length of the 

observation window L is sufficiently long, the approximation in cjJ(n + kTs) can be replaced 

by the equals sign. Denote the parameter vector by 0 = [cjJ( n), cjJ' (n)]. The objective of the 

LPA beamformer is to estimate 0 using the weighted least squares approach. 

Consider the single source case. The estimation of Ok for k E [0, ko - 1] is identical to 

the simple model fit, defined as follows 
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where wh(iTs ) is the window function, ak(n) is the amplitude of the kth signal, and s((h) 

is the steering vector for the kth signal. Since this objective function is a linear function, it 

is straight forward to extend this optimization problem from a single source to a multiple 

sources by a direct superposition of all ko sources. 

The LP A beamformer approach is a two-dimensional search over the axes of the pa

rameter vector (h. One axis corresponds to the angular domain that one will search in the 

conventional beamformer, and the other one corresponds to the angular velocity domain 

where the velocity is being tracked. Therefore, one can realize that to sustain high accuracy 

in the estimation of (h, the number of points in these two domains must be large, which 

adds to the computational burden of the algorithm. Furthermore, this method is sensitive 

to the model selection, i.e., the first-order approximation in ¢(n+iTs ), as well as the length 

of the window, where the parameters are assumed static within this window. As a result, 

there is a trade-off between a quick response to the moving sources and accuracy in the 

estimation. 

1. 5 Scope of the thesis 

This thesis focuses on new approaches to various classical problems in array signal process

ing, using modern numerical Bayesian methods. We show how the Markov Chain Monte 

Carlo (MCMC) and the Sequential Monte Carlo (SMC) methods present new outlooks and 

offer many advantages to problems in the field. Most conventional array signal processing 

approaches require the knowledge of model order to estimate other parameters. As such. 

knowledge either is assumed known or has been previously obtained separately. In reality 

model order is amongst the parameters of interest and should therefore be estimated jointly. 

Very few methods tackle this joint problem of detection of the model order and estimation 

of the parameters, particularly in wideband scenario when the techniques require a huge 

amount of data and demand substantial processing efforts. 

In this thesis, we present a novel data model to represent wideband signals that bears 

a similar data structure to the conventional narrowband data model, after appropriate 
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transformation. The MCMC and the SMC methods are then applied to this model to 

solve the joint detection and estimation problem in the array signal processing context. In 

addition, using SMC techniques, we also present an advanced approach to beamforming for 

narrowband signals. 

Four problems were addressed in the course of this thesis: 

1. A new data structure based on interpolation functions and signal samples to approx

imate wideband signals was developed. This data model, after appropriate trans

formation, has similar features found in the conventional narrowband data model. 

Fuithermore, as the novel data model is developed for the wideband scenario, it can 

also address the narrowband scenario without change of structure or parameters. This 

novel data model is the basis on which the MCMC and the SMC approaches solve the 

array signal processing problems that are developed in the subsequent chapters. 

2. The first algorithm presents an advanced approach using sequential MC methods to 

beamforming for narrowband signals in white noise with unknown variance. Tradi

tionally, beamforming techniques assume that the number of sources is given and the 

signal of interest or target is static within an observation period. However, in reality 

these two assumptions are commonly violated. The former assumption can be dealt 

with by jointly estimating the number of sources, whereas the latter severely limits the 

usefulness of conventional beamforming techniques when the target is indeed moving. 

In the case when the sources are moving, tracking the incident angles of the sources 

is required, and the accuracy of such tracking significantly affects the performance of 

signal separation and recovery, which is the objective of beamforming. The proposed 

method is capable of recursively estimating the time-varying number of sources as well 

as incident angles of the sources as new data arrive such that the signal amplitudes 

can be separated and restored in an on-line fashion. 

3. The second algorithm presents an application of MCMC methods for the joint detec

tion and estimation problem for the wideband scenario in white noise with unknown 

variance. Compared to the narrowband scenario, it is more difficult and cumbersome 
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to solve this array signal processing problem in the wideband context, because more 

data and computational efforts are required. Conventional approaches tend to solve 

this problem in the frequency domain, and as such require a considerable amount 

of data to sustain accuracy, which imposes a huge computational burden for these 

approaches. Furthermore, these approaches employ separate algorithms like AIC and 

MDL to estimate the number of sources. In contrast, the proposed method utilizes the 

reversible jump MCMC technique that simultaneously detects the number of sources 

and estimates the parameter of interest within the same algorithm. The proposed 

method is applied to the novel data model mentioned earlier and solves the problem 

in the time domain. This approach significantly reduces the requirement for the large 

quantity of data. 

4. The final algorithm is an extension of the off-line method of point 3 above to online 

wideband array signal processing, using sequential MC or particle filtering methods. 

Most conventional array signal processing approaches are developed under the as

sumption that the sources are static. If this assumption is invalid, the solutions from 

these approches become suboptimal and are significantly degraded. When the sources 

are nonstatic, tracking the motions of the sources is needed, but in wideband scenario 

this problem becomes more difficult than in narrowband scenario. This algorithm is 

applied to the modified novel data structure mentioned earlier in white noise with 

unknown variance for recursive estimation of the motions of the sources as new data 

arrive. A rational statistical testing procedure is used to keep track of the number of 

sources. 

Even though these numerical Bayesian approaches suffer from some practical difficulties 

and are very computationally intense, they have the following merits: 

• Flexibility - Once the samples are available, the integration and optimization objec

tives are very easily achieved. 

• Convergence - In optimization, the probability of convergence to the global optimum 
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is high. 

• Adaptive - For the sequential MC algorithm, there is no requirement of quasi-stationarity. 

• Performance - They inherit the properties of Bayesian methods, which generally 

satisfy the Cramer-Rao lower bound with equality for static scenario and the posterior 

Cramer-Rao bound for dynamic scenario. 
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1. 6 Outline of thesis 

The thesis is divided into six main chapters. 

• Chapter 1 is intended as an introduction of the knowledge required to understand the 

subsequent chapters and to help put the work in perspective. 

• Chapter 2 introduces the fundamental theory supporting Markov Chain Monte Carlo 

methods and the sampling theory supporting particle filters. 

• Chapter 3 presents a novel data model that can accomodate both narrowband and 

wideband signals. The signals are estimated by an interpolation function and their 

past signal samples. Since this model has a structure similar to the traditional model 

for narrowband signals, existing methods, like the Markov chain Monte Carlo methods 

and the sequential Monte Carlo methods, can then be applied to this model to solve 

the joint detection and estimation problems in the batch and on-line modes. The data 

model for static signals will first be derived, and a slight modification of this model 

to address nonstatic signals follows. 

• Chapter 4 presents an application of the sequential Monte Carlo methods as an ad

vanced beamforming method that can recursively estimate the nonstatic DOAs of an 

unknown number of narrowband signals and restore their respective amplitudes. This 

algorithm could be applied in a cellular communication scenario that utilizes smart 

antenna technology, where users can come in and out of the cell, to track the number 

of users and their angular locations. 

• Chapter 5 presents a novel method to jointly detect an unknown number of wideband 

signals and estimate their inter-sensor delays (ISDs), which leads to DOA estimates 

of the sources. This method, which uses the novel data model presented in Chapter 3, 

is based on the Markov chain Monte Carlo method. Computer simulations show that 

the method can consistently estimate the ISDs within the 95% confidence interval and 

satisfy the Cramer-Rao lower bound. When compared with other competing methods 
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which are frequency-domain based, the proposed method requires substantially fewer 

observations. 

• Chapter 6 presents sequential MC methods for recursively estimating the ISDs of 

an unknown number of wideband sources. This method extends the approach in 

Chapter 5 from static to nonstatic sources and applies sequential MC methods to the 

modified novel data model for sequential estimation of the time-varying ISDs as new 

data arrive. Statistical testing procedures are employed to estimate the number of 

sources. In addition, a posterior Cramer-Rao bound for discrete processes is utilized 

to demonstrate the consistency of the approach in sequential estimation. 

• Finally, the conclusion and future work sections and appendices complete this thesis. 



Chapter 2 

Review of Monte Carlo Methods 

In this chapter, we review the Monte Carlo methods, including the basic theories of Markov 

Chain Monte Carlo and different sampling procedures, like Metropolis-Hastings algorithm, 

Gibbs sampler, and Importance Sampling. Furthermore, techniques for sequential Monte 

Carlo methods for online tracking are described. 

2.1 Introduction 

Markov chain Monte Carlo (MCMC) methodology provides enormous scope for realistic 

statistical modelling. MCMC is essentially Monte Carlo numerical integration using Markov 

chains. With the Bayesian approach, it is common to integrate the posterior distribution 

over undesired model parameters, to make inference about other desired model parameters 

or to make predictions, given the data. Often, it is also necessary to evaluate expectations, 

a process which also requires integration. AB most realistic data models lead to multi

variate and highly non-linear posterior distributions that are not analytically workable, 

numerical methods present attractive alternatives. Monte Carlo integration draws samples 

from the required distribution by running a cleverly constructed Markov chain, and then 

forms sample averages to approximate expectations. 

40 
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2.1.1 Computation of expectations 

Monte Carlo sampling methods can be used generate a numerical approximation in the form 

of a histogram corresponding to an arbitrary distribution of interest. This allows for easy 

numerical integration, marginalization, and computation of other statistical inferences. 

To illustrate the use of this approach, consider a function f (x) of x. The expected value 

of the function over a probability distribution function p( x) is defined as 

If = Ep(x) (J(x)) = J p(x)f(x)dx. (2.1) 

This expectation may be difficult or impossible to evaluate analytically. However, assuming 

that a large number N» 1 of samples {x(i); i = 1,2, ... , N} distributed according to p(x) 

are available, the Monte Carlo numerical approximation of the distribution p( x) is given by 

1 N 
PN(dx) = N LOX(i)(dx), 

i=l 

(2.2) 

where dx is a small, finite region surrounding an x of interest and 8X (i) is an indicator 

function defined as 

{
I if x(i) E dx , , 

8X (i)(dx) = 
0, otherwise. 

As a result, we can approximate the expected value of f(x) as follows 

N 

If ~ If,N = J pN(x)f(x)dx = ~ L f(x(i)). 
i=l 

(2.3) 

(2.4) 

If the samples x(i) are statistically independent, according to the strong law of large numbers 

(SLLN) with N --t +00, the estimates If,N converges to If, i.e., 

(2.5) 

where such convergence allows the existence of central limit theorems for 1 f,N in the fol

lowing form 

(2.6) 
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where (J"2 < 00 and ~ denotes convergence in distribution. 

The advantage of the Monte Carlo sampling method is now clear. One can easily 

and efficiently estimate If and other statistical inferences based on the set of samples 

{ x(i); i = 1, 2, ... , N}. In particular, if p( x) = 7r( x), which is the posterior distribution 

function of interest, parameter estimates can be determined by numerical evaluation of the 

expectation of the posterior distribution, a process which is easily implemented. Maximum 

a posteriori (MAP) estimates are generated by finding the maximum of the histogram. This 

is implemented by finding the largest element of an array, a process which is much easier 

than a multi-dimensional search, required by conventional Bayesian methods. With Monte 

Carlo sampling techniques, it is also straightforward to generate estimates of variances, or 

estimates of the confidence regions corresponding to parameter estimates. 

Generally, it is not possible to draw samples directly from any arbitrary probability 

density function. In some cases, for standard distributions such as Gaussian, or uniform, 

many techniques exist to perform this task. Many other methods exist for drawing samples 

from standard distributions (Ripley, 1987). However, in practical cases of interest, these 

methods are found to be unsuitable for arbitrary nonstandard distributions. 

The challenge is to generate iid samples, from any arbitrary multi-variate non-standard 

probability density function. We now present a variety of methods for accomplishing this 

task. 

2.1.2 Direct sampling 

In the event that the constant of proportionality is known, or can at least be evaluated ap

proximately, one classic algorithm is the Accept-Reject procedure. This algorithm assumes 

that 

7r(x) ~ Mq(x) M < 00 "Ix E X, 

where q(x) is some candidate distribution on the space X that is easy to sample from, and 

M is the "blanket" factor. The procedure is described below (Andrieu et al., 1998). 
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Accept-Reject Algorithm 

1. Sample x rv q(x) and u rv UfO,!]. 

2. if u < ;;~f~) then accept x, otherwise return to step 1. 

III 

The set of returned x is then distributed according to 71'( x). This procedure suffers from 

one major drawback: the "blanketing" factor M needs to be estimated, which is not always 

possible. Also, the probability of accepting a proposed x is less than or equal to it, making 

the algorithm inefficient in practice. 

2.1.3 Importance sampling 

In general, we may not be able to sample variates directly from the distribution of interest 

because of the difficulties involved in generating random samples with a given distribution. 

Moreover, in some scenarios, the normalizing constant of the distribution of interest is 

unknown or cannot be estimated. Then an importance sampling approach (Rubin, 1988) 

can be adopted. 

Denote an importance function by q(x), which must have the same support as 71'{x) 

and must be easy to draw a large number N ~ 1 of statistically independent samples. 

The histogram of these samples approximates the distribution q(x). The Bayesian impor

tance sampling approach is then used to generate a numerical approximation to the desired 

distribution 71'(x) by a set of "importance weights" w(x(i») given by 

(i) 71'(x(i») 
w(x ) ex q(X(i»)' i = 1, .'" N. (2.7) 

In the event that the desired distribution 71'{x) is completely known, the weights would 

already be normalized. 
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The Monte Carlo approximations defined in (2.2) and (2.4) can be redefined as 

N (i) . 
1r (dx) = L:i=l W(X )Jx <') (dx) 

N L:~l W(X(i») , 
N 

= I: W(X(i»)JX<i) (dx), 
i=l 

where w(x(i») is the normalized importance weight, given by 

w(x(i») = w(X(i») . 
L:f=1 w(x(j») 

It therefore follows that 
N 

i"N = ~I: w(x(i»)f(x(i»). 
i=l 

44 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

In most applications, however, it is impossible to evaluate the total probability of 7r(x), 

which remains known up to a constant and thus the normalization of the weights is required, 

as shown in (2.10). In effect, this algorithm converts samples from the distribution q(x) to 

the desired distribution 7r( x). 

Using the approximation in (2.9) for 7r(x) with a finite number of samples, the estimate 

from (2.11) is biased. However, the expectation i"N of any function f(x) over 1rN(X) 

asymptotically converges to I, as N - +00, i.e., 

(2.12) 

While the importance sampling algorithm is easy to implement and in theory almost 

any importance sampler can be used, the convergence for the estimate of the integral can 

be inefficient. The rate of convergence is highly dependent on how closely the importance 

function q(x) resembles the distribution function 7r{x) of interest, whereas the rate does 

not improve considerably with an increased number of function evaluations. 

2.2 Markov Chain Monte Carlo Methods 

Another strategy to obtain the samples is to observe the states of a Markov chain whose 

limiting distribution is our distribution 7r( x) of interest. Each state of the chain represents a 
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bin of the histogram. These algorithms have nice properties, such as guaranteed convergence 

and insensitivity to the initial values, which, in some circumstances, might outweigh the 

computational burden, that can be significant in some cases. 

The supporting theory is summarized in the following sections. The reader is referred 

to Ruanaidh and Fitzgerald (1996) for a good introductory presentation and to Gilks et al. 

(1998), Robert and Casella (1999), and Gamerman (1997) for a more complete treatment. 

2.2.1 Background on Markov chains 

A Markev chain is a discrete time stochastic process described in terms of states. Denote 

the set of possible state values that the process Xi can take by A = {So, S1, ... , Sq}. When 

Xi = Sk, the Markov chain is said to be in state k. 

For a first-order Markov process, the probability of the next state Xi+1, given all previous 

values of the process, depends only on the present state Xi, i.e., 

(2.13) 

where P[·I·] denotes a conditional probability. Let the one-step transition probability from 

another state be Pk lj [Xi+1], given as 

(2.14) 

Assuming that the transition probabilities are stationary over time, it is possible to represent 

the complete set of these probabilities by a transition matrix as follows 

(2.15) 

Pql1 Pql2 • .. Pqlq 

such that we can write a general expression for the probability of Xi being in state Sk from 

state Sj after n iterations as follows 

(2.16) 
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If the kernel satisfies certain conditions, the Markov chain will converge toward a limiting 

distribution 1r, which is independent of the initial state x no ' as follows 

(2.17) 

At that point, the states of the resulting chain are all distributed according to the limiting 

distribution 

T1r = 1r. (2.18) 

However, how long it takes the chain to reach the equilibrium state depends on a number 

of factors and, in particular, the number of states that must be discarded at the initial 

stage, a transient period known as the "burn-in" of the Markov chain. Thus, if the limiting 

distribution 1r of a Markov chain is the posterior distribution of interest, the states of the 

chain become the samples from the distribution. 

2.2.2 Properties of Markov chains 

Although not all Markov chains have a limiting distribution, many algorithms exist to set 

up Markov chains that will converge to the desired density function. For these algorithms 

to perform as intended, some conditions must be satisfied: invariance, reversibility, irre

ductibility, aperiodicity, and recurrence. 

• Invariance - The invariance property means that all states in a Markov chain have 

reached a limiting distribution and are distributed according to the distribution of 

(2.18). 

• Reversibility - The reversibility means that the probability of a transition of a Markov 

chain from one state to another is equal to the probability of a transition in the reverse 

direction. Reversibility is a sufficient condition for the states of the chain to be in 

their limiting distribution. 

• Irreductibility - The irreductibility condition means that from all starting points the 

Markov chain can reach any non-empty set with positive probability, in some finite 

number of iterations. 
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• Aperiodicity - The aperiodicity means that a Markov chain has kernels that do not 

induce a periodic behaviour in the states. 

• Recurrence - The recurrence means that from all starting points all states can be 

reached infinitely often. 

All MCMC algorithms have been designed to satisfy these constraints. Next we will 

present three of them: the Metropolis-Hastings (M-H) algorithm, the Gibbs sampler, and 

the M-H one-at-a-time algorithm. 

2.2.3 Metropolis-Hastings algorithm 

The Metropolis-Hastings (M-H) algorithm (Hastings, 1970) is a very flexible method to 

provide a random sequence of a sample from a given density. Denote a candidate function 

by qU to sample from ?r(')' This candidate function is similar to the importance function 

previously described, and is chosen to be easy to sample from. One major advantage of this 

algorithm is that the knowledge of the normalizing constant of the posterior distribution 

is not required. The posterior distribution is only present in ratios, where this unknown 

normalizing constant will cancel out, assuming it remains constant. 

Assuming that the chain is in state x, we can obtain a candidate x* for the next state 

by sampling q(.), which in the general case is conditional on x. This candidate will be 

accepted with probability a defined as 

a(x*,x) = min{r(x*,x), I}, 

with the acceptance ratio r defined as 

(* ) ?r(x*)q(xjx*) 
r x ,x = ?r(x)q(x*jx) . 

(2.19) 

(2.20) 

If the candidate is accepted, the chain takes the new state x*; otherwise the chain remains 

at the current state x. 
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Metropolis-Hasting Algorithm 

1. Initialization x(o) at iteration 0 

2. Iteration i, i 2 1, 

• Sample a candidate x* '" q(XIX(i-l)). 

• Evaluate the acceptance probability 

* (i-I) _ 7r(x*)q(x(i-l) Ix*) 
r(x ,x ) - 7r(x(i))q(x*lx(i-I)) . 

a(x*, x(i-I)) = min{r(x*, x(i-I)), I} 

• Sample u rv UrO,I] 

• if u:S a(x*,x(i-l)) 

then the chain takes the state x(i) = x*, otherwise it remains at x(i) = x(i-I) . 

----------------------------------------------------------~. 

In order to get a well-mixed chain, the candidate function q(-) should allow the chain to 

explore the entire probability space, but with substantial probability of being accepted. To 

satisfy the irreductibility and the aperiodicity properties, the M-H algorithm requires that 

q(.) be continuous and strictly positive on the support of 7r(x). It can be shown that the 

acceptance probability defined in (2.19) with (2.20) guarantees the reversibility requirement. 

2.2.4 Gibbs sampler 

Being a special case of the M-H algorithm, the Gibbs sampler (Geman and Geman, 1984) 

allows one to break down the problem of drawing samples from a multivariate density into 

one of drawing successive samples from densities of smaller dimensionality. 

Given a random vector x of length K, the Gibbs sampler samples each parameter, one 

at the time, according to the full conditional distributions when all the other parameters are 
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fixed. Let q(Xk!X-k), k = 1, ... , K denote the full conditional density of the kth component 

of the vector x, where 

(2.21) 

Instead of sampling from a complex K dimensional distribution, the problem is reduced to 

sampling K times from one dimensional conditional distributions. As soon as a variate is 

drawn, it is inserted into the full conditional probability density function, and it remains 

there until the next iteration. For this algorithm to be a viable option, all the full conditional 

posterioJ; distributions must be available in their analytical form. 

Gibbs Sampling Algorithm 

1. Initialization x(O) at iteration 0 

2. Iteration i, i ~ 1, 

• Sample xii) ""' q(xl!x~i) 

• Sample x~i) '" q(x2Ix~~) 

• 

----------------------------------------------------------------

The rate of convergence of the Gibbs sampler is governed by the posterior correlations 

between the different parameters and the dimensionality of the parameter space. One way 

to improve the rate of convergence is to jointly sample highly correlated variables by creating 

partitions. Also, it might be beneficial to randomly vary the order of the components. 

2.2.5 Metropolis-Hastings One-at-a-time algorithm 

In the case where x is of high dimension, it becomes very difficult to select a good candidate 

function that would lead to a reasonable acceptance rate and allow the chain to mix. To 
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address this problem, the Metropolis-Hasting one-at-the-time algorithm (Andrieu et al., 

1998), in a similar fashion to the Gibbs sampler, samples each component (or partition), 

conditionally on the other components, using a set of candidate functions. Obviously, this 

algorithm includes the Gibbs sampler as a special case for which the candidate functions 

are the full conditional distributions and the candidates are always accepted. 

In the M-H one-at-the-time algorithm, only one element xk for k = 1,2, ... , K at a time 

will be sampled from q(.), and this candidate vector x*, defined as 

will be accepted as the next state with a probability as in (2.19). 

Metropolis-Hasting One-at-the-time Algorithm 

1. Initialization x(O) at iteration 0 

2. Iteration i, i ~ 1 

3. Set X(i) = X(i-l), and for k = 1, ... , K 

• Sample a candidate xk "" q(xlx(i»). 

S t th d 'd * - [ (i) (i) * (i) (i)JT • e e can 1 ate as x - Xl ""'Xk_I'Xk'Xk+I""'XK 

• Evaluate the acceptance probability 

• Sample u "" U[O,I] 

• ifu:::; a(x*,x(i») 

* (i) _ 7r(x*)q(x(i) Ix*) 
r(x ,x ) - 7r(x(i»)q(x*lx(i»)' 

a(x*, x(i») = min{r(x*, X(i»), I} 

then the chain takes the state x(i) = x*, otherwise it remains at x(i) . 

(2.22) 

-------------------------------------------------------------
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2.2.6 Reversible jump MCMC 

This section describes how to build MCMC algorithms for model order detection. The 

main difficulty for the Markov chain in this case is to be able to jump from one subspace 

to another while preserving the correct invariant distribution. Green (1995) developed 

a general framework, known as the reversible jump MCMC, which allows the sampling 

process to jump between subspaces of different dimensions while preserving the reversibililty 

condition. As other sampling techniques described earlier in this chapter assume the model 

order dimension is given or fixed, one could obviously detect the appropriate model order by 

sampling the subspace corresponding to a range of model orders independently. However, 

this approach is very inefficient and computationally intensive, since the same effort is 

allocated to all model orders, even though some models will have a low posterior probability. 

On the other hand, the reversibile jump MCMC allows for the joint detection of the model 

order and the sampling of the parameters from its posterior distribution. The samples 

concentrate on models with high posterior probability. 

Denote the model order by the discrete variable k, which is considered as one of the 

parameters of interest, and the whole parameter space by U~:ox k x tPk, where tPk is the 

space of the parameters of the model of order k, and kmax is the maximum allowable model 

order in question. The entire parameter space will be visited by moves designed to preserve 

the reversibility condition. Similar to the M-H algorithm, at each iteration the reversibile 

jump MCMC algorithm proposes a candidate from a set of candidate functions that are 

designed to explore the different subspaces and to change the model order. 

Denote a candidate distribution by q(.), and a candidate by x* of size k*. Like the 

M-H algorithm, at each iteration a candidate x* is obtained by sampling q(.) and will be 

accepted with probability a defined as 

a«x*,k*), (x, k» = min{r«x*, k*), (x, k», I}, (2.23) 

with the acceptance ratio r defined as 

« * k*) ( k» 7r(x*, k*)q(x, k) « * *) ( » 
r x, ,x, = 7r(x,k)q(x*,k*) x J x,k , x,k , (2.24) 
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where J((x*, k*), (x, k)) is the Jacobian of the transformation required to reconcile the 

total probability between spaces of different dimensions so that the reversibility condition 

is satisfied. As descibed in Godsill (1998), J((x*, k*), (x, k)) is given by 

J((x*, k*), (x, k)) = 1 ~:* I· (2.25) 

If the candidate (x*, k*) is accepted, the chain takes the new state; otherwise the chain 

remains at the current state. 

In addition to the requirement of the acceptance probability in (2.23) with (2.24), the 

candidate functions must be appropriately selected in order to satisfy the reversibility condi

tion. The most widely used candidate functions are the birth/death complementary moves 

(Audrieu and Doucet, 1999; Andrieu, 1997; Troughton and Godsill, 1997, 1998). When the 

death move is selected, the algorithm proposes a candidate in the model of lower dimen

sion, as opposed to the birth move for which the algorithm proposes a candidate of higher 

dimension. 

The probabilities for choosing each move are denoted Uk, bk and dk, respectively, such 

that Uk + bk + dk = 1 for all k. In accordance with Andrieu and Doucet (1999), we choose 

. {P(k+1) } 
bk=cmm p(k) ,1 , . {P(k) } 

dk+l = cmm p(k + 1)' 1 , (2.26) 

where p(.) is the prior distribution of the kth model, and c is a tuning parameter which 

determines the ratio of update moves to jump moves. We choose c = 0.5 so that the 

probability of a jump is between 0.5 and 1 at each iteration (Green, 1995) . Note that in the 

case of the birth/death moves, the Jacobian of the transformation in (2.24) is unity (Godsill, 

2001). The overall description of the reversible jump MCMC algorithm is determined by 

the choice of moves at each iteration. This description is summarized as follows. 
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Reversible Jump MCMC 

1. Initialization: set q-(O) = (x(O), k(O)) 

2. Iteration i, 

• Sample u rv U[O,1] 

• if (u < bk(i») then execute a "birth move" (Section 2.2.6.2), 

- else if (u < bk(i) + dk(i») then execute a "death move" (Section 2.2.6.2), 

- else, execute an update move (Section 2.2.6.1). 

3. if- i + 1,goto step 2 

• 

2.2.6.1 Update move 

When the update move is selected, a candidate of the same dimension is proposed. Here, 

we assume that the current state of the algorithm is in {q-k, k}. When the update move is 

selected, the algorithm samples only on the space of q-k for a fixed k. Let x* of size k be 

a candidate drawn from the proposal distribution function q(·I·). The acceptance ratio for 

an update move is defined using (2.20) as 

7r( x*)q( x Ix*) 
rupdate = 7r(x)q(x*/x) . 

The candidate x* is then accepted as the current state with probability 

aupdate (x, x*) = min {I, rupdate} . 

(2.27) 

(2.28) 
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2.2.6.2 Birth and death moves 

In the birth move, we assume the current state is in (cI> k, {k }) and we wish to determine 

whether the next state is in (cI>k+1' {k + I}). The subscript k now indicates the size of 

the parameter space. This involves the addition of a element Xc, selected from a candidate 

distribution, to the existing vector parameter to create 

(2.29) 

The proposal distribution q(xk+1' k + 1ixk, k) for the birth move is therefore 

(2.30) 

where p(k + 1) is the prior distribution function of the model order k + 1 and p(xc) is the 

candidate distribution of an individual parameter Xi. The candidate state (xk+V k + 1) is 

then accepted with probability Q:birth = min{rbirth, I} with rbirth defined by (2.24). 

The following block describes the algorithm for the birth move. Suppose that the current 

state of the Markov chain is {k} X cI>k, then 

Birth Move 

• Propose a new element Xc and a candidate, 

• Evaluate Q:birth = min{rbirth((X*,k*), (x, k)), I} with (2.23). 

• Sample u rv U[O,lj. 

• if (u :S Q:birth) then the state of the Markov Chain becomes (x~:;), k + 1), else it 

remains at (xii), k). 

----------------------------------------------------------------
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In order to maintain the invariant distribution of the reversible jump MCMC algorithm 

with respect to model order, the Markov chain must be reversible with respect to moves 

across subspaces of different model orders. That is, the probability of moving from model 

order k to k + 1 must be equal to that of moving from k + 1 to k. Therefore we propose 

a death move in which a source in the current state (Xk+l> k + 1) is randomly selected to 

be removed such that the next state beGomes (Xk, k) at the next iteration. A sufficient 

condition for reversibility with respect to model order (Green, 1995) is that the acceptance 

ratio for the death move be defined as 

1 
rdeath = --, 

rbirth 
(2.31) 

and the new candidate of dimension k is accepted with probability as described in (2.24) 

adeath = min {I, r death} . (2.32) 

In the death move, we assume the current state is in (~k+l' {k + I}) and we wish to 

determine whether the state is in (~k, {k}) at the next iteration. This involves the removal 

of an element of the parameter vector, which is chosen randomly amongst the (k + 1) 

existing elements. The proposal distribution q(x'k, klxk+l, k + 1) for the death move is 

therefore chosen as 

* (k + 1) 1 q(xk' klxk+b k + 1) = p(k) 7 1 ex p(k) (k + 1)· (2.33) 

The candidate state (x'k, k) is then accepted with probability adeath. 

The following block describes the algorithm for the death move. Suppose that the 

current state of the Markov chain is {k + I} x ~k+b then 
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Death Move 

• Select randomly the jth element to form the candidate, 

(i+1) _ (i) (i) 
X k - [X1:(j_l)' X(j+1):(k+1)l 

• Evaluate D!death = min {r death (( X* , k*), (X, k», I} with eq. (2.23). 

• Sample u rv U[O,l]. 

• if (u ~ D!death) then the state of the Markov Chain becomes (x~+1), k), else it remains 
(") 

at (xk
t+1' k + 1). 

----------------------------------------------------------------

2.3 Sequential Monte Carlo methods 

The algorithms presented so far are all off-line methods and they are suitable for situations 

where the parameters of interest are assumed static throughout the entire observation period 

and batch processing is used. However, in many practical problems, the parameters of 

interest as well as their distribution functions are indeed time-varying. Thus one is more 

interested in online methods, also known as sequential processing, which allow recursive 

estimation of the varying parameters and distItibution functions in time, as new data arrive. 

AB a matter of fact, many problems in applied statistics, statistical signal processing, 

time series analysis, and econometrics can be posed as a dynamic system where the pa

rameter of interest x evolves in time. The sequence of evolving posterior density functions 

7r{xn) is known as a probabilistic dynamic system. This dynamic system usually adopts 

a state-space model in which a transition equation describes the prior distribution of a 

hidden Markov process {xn} and an observation equation describes the likelihood of the 

observations {Yn}. 
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Under the Bayesian framework, it is possible to obtain all relevant information about 

the state {Xl:n} given the observations {Yl:n}, where the notation (·h,n indicates all the 

elements from time 1 to time n, from the posterior distribution 7r(Xl,X2, ... ,xn ), given by 

(2.34) 

In particular, one is interested in recursively estimating the marginal distribution 7r(xn), 

given by 

(2.35) 

such that statistical inferences like the posterior mode or mean of the state Xn can be eval

uated. However, in only a few exceptional cases where linear Gaussian state-space models 

are involved, it is difficult, if not impossible, to analytically evaluate these distributions. 

Therefore, a numerical approach using sequential Monte Carlo methods, also known as Par

ticle Filters, is adopted to recursively estimate the time-varying distribution functions by 

a set of samples (particles) distributed according to the 7r(xn), given the past information 

and the latest observation. 

Such a recursive filter is composed of two stages: prediction and update. The prediction 

stage uses the state-space model to predict the state posterior distribution function 7r(xn) 

from one measurement time to the next. Due to unknown disturbances like state noise, 

the prediction generally translates, deforms, and spreads the state posterior distribution 

function. The update operation uses the latest measurement to modify the predicted state 

posterior distribution function using Bayes theorem, which is the mechanism for updating 

knowledge about the target state in light of the extra information from new data. 

2.3.1 Particle filtering 

Denote a set of N particles or samples from time 1 to time t by xi~~, i = 1, ... , N, distributed 

according to the joint distribution p(xl:nIYl:n)' Our goal is to update the numerical his

togram of the particles to give p(xl:n+1IYl:n+1)' given the knowledge of p(xl:nIYl:n) and 
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the new observation Yn+1' without the expense of resampling all the particles from time 1 

to n + 1. 

The joint posterior distribution of all parameters x from time 1 to n + 1 can be written 

using Bayes' theorem as 

(2.36) 

where the term P(Yl:n+llxl:n+1) is referred to as the total likelihood function up to time 

n + 1, and the other terms P(Xl:n+1) and P(Yl:n+l) are the prior distribution functions of 

the state Xl:n+l and the observations Yl:n+1' respectively. It can be shown (Doucet, 1998), 

using the Markov properties of the model and iid assumptions on the noise variables, that 

(2.36) can be written in the recursive, time-update form as (see Appendix B) 

(2.37) 

Even though the form in (2.37) enables a recursive update of the posterior distribution 

function 7I'(Xl:n+l) up to time n + 1, given the past information from p(xl:nIYl:n) and the 

latest information from the remaining terms on the right side of (2.37), it is not very useful 

in practice for two reasons. Firstly, it is generally not possible to generate samples directly 

from the posterior distribution. Secondly, the normalizing constant in the denominator of 

(2.37), i.e., P(Yn+1IYl:n), and the desired marginal distributions require the evaluation of 

complex, multi-dimensional integrals, which are generally difficult or impossible to evaluate 

analytically. Thus the Bayesian importance sampling procedure is adopted in order to avoid 

these two problems as well as to generate samples and hence importance weights to update 

the posterior distribution function. 

Similar procedures as in the importance sampling procedure described earlier in this 

chapter can be followed. Denote an appropriately selected importance function by q(xl:nIYl:n), 

and the importance weights by wi~~, defined as 

(i) 7I'(xn) . _ 
Wn ex: ( I )' Z -l, ... ,N, 

q Xn Yn 
(2.38) 
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where 

N 

'" W(i) = 1 L....- n , 
i=l 

such that the posterior distribution 7r(Xl:n) can be approximated as follows 
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(2.39) 

(2.40) 

In order to implement the sequential Monte Carlo procedure, the importance function q(·I·) 

should be chosen so as to satisfy two conditions (Doucet, 1998). Firstly, the importance 

function must satisfy the following recursivity condition (Doucet, 1998) (see Appendix B) 

(2.41) 

Secondly, the importance function in addition to satisfying (2.41) must be chosen such that 

the variance of the resulting weights is minimized. It can be shown (Doucet et al., 2000) 

that such an optimal importance function is given by 

(2.42) 

As a result, by substituting (2.37) and (2.41) into (2.38), the recursive update equation for 

the importance weight at time n + 1 can be given as 

(2.43) 

where w(i)(n) is a set of normalized importance weights, defined as 

(i) 
-(i)( ) _ w (n) w n - N . Ej =l w{j)(n) 

(2.44) 

2.3.2 Degeneracy Problem 

A common problem with particle filtering is the degeneracy phenomenon, in which all but a 

very few particles have negligible weights after a few iterations. It has been shown (Andrieu, 

1998) that the degeneracy problem cannot be avoided, since the variance of the importance 



CHAPTER 2. REVIEW OF MONTE CARLO METHODS 60 

weights can only increase over time. As a result, a large computational effort is devoted 

to updating particles whose contribution to the approximation of the target distribution 

function is almost zero. A suitable measure of degeneracy of the algorithm is the effective 

sample size Neff ~ N introduced in Bergman (1999) and Liu and Chen (1999) and defined 

as 

N 
Neff = 2 

1 + (1 *(i) 
Wn 

(2.45) 

where (12 *(i) is the variance of the "true weight" w*(i)(n) (Arulampalam et al., 2002), defined 
Wn 

as 
(i) 

*(i)( ) _ 7r(Xn !Yl:n) 
W n - (i) (i) . 

q(Xn !Xn_1, Yn) 
(2.46) 

Since the exact value of Neff may not be easily obtained, an estimate of Neff is given by 

A 1 
N. ff - --;-;-----

e - L~1(w(i)(n))2' 
(2.47) 

where w(i)(n) is the normalized importance weight. When Neff is small, it indicates severe 

degeneracy. Although brute force can be used to reduce the undesirable effect of degeneracy 

by using a very large N, it is often impractical. In addition to the selection of an optimal 

importance function that minimizes the variance of the weights generated, a procedure to 

resample the particles is adopted to reduce the effect. 

2.3.2.1 Resampling 

Because of the degeneracy problem, any estimate based on these very few significant parti

cles would show a large variance. Therefore, in addition to the use of the optimal importance 

function in (2.42), it is necessary to introduce other procedures to improve the recursion of 

(2.43). 

Resampling is an idea to eliDiinate the trajectories of the weights which have weak nor

malized importance weights and to multiply trajectories with strong importance weights. 

The most popular resampling scheme is Sampling Importance Resampling (SIR) that re

samples the particles according to their respective importance weights. The SIR procedure 
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is to generate a new set of particles {X~(j)}, j = 1, ... , N by res amp ling N times from an 

approximate posterior distribution function -n-N(Xn), given by 

N 

-n-N(Xn) ~ L wei) (n)c5(xn - x~»), (2.48) 
i=l 

such that Pr(x~(j) = x~») = W(i) (n). After the particles x~),i = 1, ... ,N, have been 

resampled, they become iid samples, and the respective weights become 

-(i)( ) _ 1 . _ 1 N w n - N' 'l- , ... , . (2.49) 

One can use this resampling scheme whenever a significant degeneracy is observed, i.e., when 

Neff falls below some threshold Nthreshold. It can be shown (Ripley, 1987; Doucet, 1998) that 

the resampling can be done very efficiently with order O(N) operations. Unfortunately, the 

trajectories with high importance weights are statisically selected many times, limiting the 

true statistical diversity amongst the particles. This is the classical problem of depletion 

of samples, with the result that the cloud of particles may eventually collapse to a single 

particle. 

A more efficient approach, proposed by Andrieu and Doucet (Andrieu et al., 1999; 

Doucet et al., 2000; MacEachern et al., 1999; Gilks and Berzuini, 1998) uses an MCMC step 

on each particle. At time n, the particles are marginally distributed as p(xl:nIYl:n). An 

MCMC engine with a kernel of invariant distribution p(xl:nIYl:n) can be used to generate a 

new set of particles that will also be distributed according to this posterior distribution. This 

approach provides a valid way to re-introduce diversity amongst the particles. In addition, 

the reversible jump MCMC process can be included such that parameter spaces of varying 

dimension can be explored to jointly perform model order detection and estimation of the 

other parameters. The following schema describes the sequential importance sampling 

procedure applied at each time step n = 1,2, ... for tracking changing parameters. 
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Generic Sequential Importance Sampling for Tracking an Unknown Number of 

Parameters 

Initialize weights Wei) (0) = ;t~~g?? for i = 1, ... , N. 

1. The Importance Sampling Step 

• For i = 1, ... ,N, generate the particles from the importance function 

(2.50) 

• For i = 1, ... , N, evaluate the importance weights w(i)(n) from (2.43) 

(i) _ (i) p(y(n)lx(i)(n), k(i) (n))p(x(i) (n)jx(i) (n - 1), k(i) (n)) 
w (n) - w (n - 1) x q(X(i) (n) Ix(i) (n -1), y(n), k(i) (n)) 

(2.51) 

• For i = 1, ... , N, normalize the weights 

(2.52) 

2. The Sampling Importance Resampling of the Particles 

• Sample a vector of index 1, with pdf described by the weights 

P(l(j) = i) = w(i)(n) 

• Resample the particles with the index vector 

(i) (l(i» 
x o:t = xO:t 

• Re-assign all the weights to wei) (n) = "k. 

3. Proceed with the Reversible Jump MCMC Step to introduce diversity in the particles 

and to facilitate detection of model order. 

--------------------------------------------------------------



Chapter 3 

Novel Wideband Data Model 

This chapter presents a novel model to represent wideband signals received from an array 

of sensors, using an interpolation function and past signal samples. This model offers a 

few advantages: 1) all the data are real, which reduces the computational load required for 

complex data, 2) the model can accomodate both narrowband and wideband signals without 

changes in structure or parameters, and 3) wideband signals represented by the model have 

a similiar structure compared to those of narrowband signals. This chapter describes in 

detail the derivation of this data model, which is the key component in the development of 

the two new algorithms for wideband array signal processing in the subsequent chapters. 

3.1 Introduction 

Most algorithms developed to solve problems for wideband signals usually transform the 

received signals from the time domain to the frequency domain using the Fourier Transform 

as a pre-processing step. The motivation of this transformation is that the transformed 

model in the frequency domain is structurally similar to that for narrowband signals in 

the time domain, as shown in Section 1.2. In addition, if the sources are uncorrelated in 

frequency as well as uncorrelated with each other, their frequency spectra in a large set of 

discretized frequency bins can be considered independent and narrowband. As a result, the 

algorithms described in Chapter 1 for the narrowband case can be reused in the transformed 
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model for the wideband case. 

Given that the time delay parameters are seldom scalar multiples of the sampling rate, 

resolving signals from different delays is very difficult, unless the sampling rate is increased 

significantly, so that the error between the inter-sensor delay and the closest sampling 

instant is reduced sufficiently. In other words, if one develops an algorithm in an attempt 

to resolve wideband signals in the time domain, overs amp ling may be required and more 

sophisticated hardware is also required. Thus these burdens are further reasons why most 

algorithms for wideband signal processing operate in the frequency domain. 

The novel data model to be introduced, however, is developed in the time domain, in 

which delayed versions of wideband signals are expressed in terms of their respective past 

samples and an appropriately selected interpolation function. The interpolation function 

models the received signal by returning a set of weights, which are a function of the desired 

directions of arrival (DOAs), for combining past samples of the received signal. By fitting 

this interpolation-based model to the received data, the source DOAs can be estimated. In 

Chapter 5, we first use the novel data model with the assumption that the DOAs and the 

number of sources are static throughout the entire observation period, followed in Chapter 

6 by an extension of the model to the case when both the DOAs and the number of sources 

are time-varying. 

3.2 Development of the data model for a single source 

A uniform linear array with M elements is assumed. l For the time being, assume further 

that 1) we are operating in a noiseless environment, 2) only a single source s(t) is incident 

onto the array, where the source s(t) may be a wideband signal, whose spectrum is band 

limited to 

If I E [i,r] , r = i + f),.f, (3.1) 

1 For ease of presentation, we consider the uniform linear array case. However, the method can be extended 
to arbitrary linear geometries. 
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S(t}~ 0 

~ ~ s(t} 

~ s(t-<) 

-. -. -. -. -. -. -. ~ . ~ j 
~ s(t-m<) 

~ s (t-(M-l}-r:) 
M-l 
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Figure 3.1: A signal s(t) impinging onto the array when the incident angle ¢ is less than 
1r/2. 

where fl and r are the lower and upper frequencies, and I::1f is the bandwidth of the signal, 

and 3) the signal s(t) impinges onto the array at an angle ¢ with respect to the axis of the 

array, as illustrated in Figure 3.1. Note that the angle ¢ is assumed constant throughout 

the entire observation period. Denote the inter-sensor delay (ISD) by T, given by (Johnson, 

1982) 

A 1::1 • A. 
T= CS1n,!" (3.2) 

where 1::1 is the interspacing of the sensors and C is the speed of propagation. Assuming 

that 
1 C 

1::1 ~ 2'xmin = 2fmax ' 

where fmax is the maximum frequency component in the signal, we can write 

Comparing (3.4) to (3.2), we have 

1::1 1 
-<-C - 2fmax' 

I I 1 1 A 

T ~ 2fmax = 2fu = Tmax· 

(3.3) 

(3.4) 

(3.5) 
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Figure 3.2: Impulse response of an ideal reconstructor. 

Therefore, we have r E [-Tmax, Tmaxl. 

Given that the wideband signal set) is bandlimited, it can be sampled to yield a set of 

discrete samples, {s(lTs), I = -00, ... ,oo}, where Ts is the sampling period. With the use of 

an ideal reconstructor, the signal can be reconstructed in terms of these samples as follows 

00 

set) = L s(lTs)'IjJ(t - ITs), (3.6) 
l=-oo 

where 'IjJ(t) is the sine function, given by 

(3.7) 

Figure 3.2 shows an example of an ideal reconstructor. Let r be a delay parameter, defined 

as in (3.2), and s(t-r) be the delayed version of the signal set), which can also be expressed 

in terms of the discrete samples as 

00 

set - r) = L s(ITs)'IjJ(t - r -lTs) (3.8) 
l=-oo 

The shifted versions of 'IjJ(t - r) have the identical shape of 'IjJ(t) with the peak at t = r, 

as depicted in Figure 3.3. When a snapshot of set - r) at t = nTs is considered, we can 
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-8 -6 -4 -2 2 10 

Figure 3.3: Impulse response of an ideal reconstructor with different time shifts. 

rewrite s (t - r) as follows 

00 

s(t - r)lt=nT. = L s(ITs)'1f;(t - r -ITs)lt=nT., 
l=-oo 

(3.9) 
00 

s(nTs - r) = L s(ITs)'1f;«n -l)Ts - r). 
1=-00 

By substituting I with n - I in (3.9), and replacing the infinite sum with a finite sum 

over 2L + 1 samples, we have 

£ 

s(n - r) ~ L '1f;1{r)s(n -I), (3.10) 
l=-£ 

where we have adopted the convention that Ts is normalized to unity. In the above, 

'1f;l(r) ~ '1f;(ITs - r) == '1f;(I- r). (3.11) 

The interpolation process in (3.10) is non-causal. This implies that the processing must 

undergo a delay of L samples. In some cases, this delay is undesirable. We can eliminate 

this delay at the expense of some additional error in the interpolation process, by replacing 
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t=O.2T. 

0.8 
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t 
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~ 
lJ 
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-0.8 
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Sample index 

Figure 3.4: A comparison between the interpolation performance between a half-sinc func
tion and a full-sinc function for an AR process when T = 0.2Ts. 

(3.10) with 

{
Etc} 'ljJl(T)s(n -l), 

s(n - T) ~ 
E7=-L+l 'ljJz(T)s(n + l), 

ifT ~ 0 
(3.12) 

ifT < 0 

The additional error introduced by (3.12) in most cases is small. This follows because the 

interpolation weights, i.e., 'ljJZ(T), excluded from (3.12) are outside the main lobe of 'ljJl(T) 

and are therefore small, especially when T is small or close to Ts. These excluded weights 

are made smaller by the application of a window function, which is imposed as follows 

hz(T) = 'IjJ(1- T) x w(l- T), 1 = 0, ... , L - 1, (3.13) 

where, for example, w(l) is the Hamming window, defined as follows 

w(l) = 0.54 + 0.46 cos (L ~ 1)' 0 ~ 1 ~ L - 1. (3.14) 

For ease of notation, we replace the approximation in (3.12) with an equality in the sequel. 

Figures 3.4 - 3.7 depict a comparison between an AR process interpolated by (3.10) and 

(3.12) for different values of T. For easy comparison, the waveforms interpolated by the 
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Figure 3.5: A comparison between the interpolation performance between a half-sine func
tion and a full-sine function for an AR process when T = O.5Ts . 

t=O.8T. 

O.8,--r---,---,---,--,----,-;:=;:;::::;:;:::x:;:::::;:::;;r=.;:::::;=;;, 
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-0.6 

-0.6'----'---'----'--"'--'----'----'--'----'---'---' 
o 10 15 20 25 30 35 40 45 50 

Sample Index 

Figure 3.6: A comparison between the interpolation performance between a half-sine func
tion and a full-sine function for an AR process when T = O.8Ts . 
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Figure 3.7: A comparison between the interpolation performance between a half-sine func
tion and a full-sine function for an AR process when r = Ts. 

half-sine approach, i.e., (3.12), are shifted by the respective r's to align with the original 

waveforms and the waveforms interpolated by the full-sine approach, i.e., (3.10). When r 

is close to 0 or Ts , the waveforms interpolated by the two approaches are indistinguishable, 

as shown in Figures 3.4 and 3.7. When r is near 0.5Ts , the performance of the half-sine 

approach begins to degrade, but the waveforms so constructed by the approach are very 

close to the full-sine approach. The mean-squared errors between the waveforms constructed 

by these approaches for different values of r is listed in Table 3.1. Therefore, the half

sine approach is adopted in the development of the wideband data model throughout this 

thesis due to the simplicity and advantage of zero-delay processing. However, in some 

exceptional circumstances, especially when r approaches 0.5TI!' it may be necessary to 

delay the interpolation function several samples, and thus introduce processing delay, in 

order to maintain a sufficient level of accuracy. 

Accordingly, the wideband signal s(t), delayed by r, at t = n using its L discrete samples 

can be written as 
L-1 

s(n - r) = L hl(r)s(n -l), (3.15) 
1=0 
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TITs MSE 
0 5.6 x 10 -8 

0.2 6.1 x 10 ·f 

0.5 3.1 x 10-4 

0.8 1.9 x lO-ti 

1 1.6 X 10-9 

Table 3.1: Mean-squared error between the half-sinc and the full-sinc approaches. 

which is the fundamental expression used to construct the data model in this chapter. 

Consider the case where ¢ is less than 7r 12 with respect to the axis of the array as shown 

in Figure 3.1. In the noise-free case, according to (3.15), we can approximate the snapshot 

at the mth sensor as follows 
£-1 

sen - mT) = L hl(mT)s(n -l), m = 0, ... ,M-1. (3.16) 
l=O 

Accordingly, we can now express the snapshot vector of the received signal sT(n) = [sen), s(n-

T), ... , sen - (M - l)T)V in (3.16) for m = 0,1, ... , M - 1 as follows 

sen) 

sen - T) 

sen - (M - l)T) 

ho(O) 

hO(T) 

ho((M -l)T) h1 ((M - l)T) 

which can be written as 

ST(n) = H(T)s(n), 

sen) 

sen - 1) 

sen - L + 1) 

(3.17) 

(3.18) 

where sT(n) is defined as the vector on the left-hand side of (3.17), and where sen) is known 

as the signal vector 

sen) = [s(n) , sen - 1), ... ,s(n - L + l)f , (3.19) 
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M-J 
~ 3 (t-(M-I)-<) 

~ -. -. -. -. -. -. -. ~ I 3 (t-m<) 

~ 3 (t-<) /03(t) 
s (t) 

Figure 3.8: A signal set) impinging onto the array when the incident angle </> is greater than 
7r/2. 

and H(r) E nMxL is an interpolation matrix for r and is defined in terms of L column 

vectors as 

(3.20) 

where hl(r) E nMx1 is the lth column of the interpolation matrix H(r), defined as 

hl(r) ~ [hl(O), hl(r), ... , hl«M - l)r)f . (3.21) 

Accordingly, we can rewrite the sensor output vector in the form 

L-1 

sr(n) = ho(r)s(n) + L hl(r)s(n -1). (3.22) 
1=1 

In other words, the sensor output can be expressed as a linear combination of a set of L 

vectors of {hl(r), 1= 0,1, "" L - 1} with the signals sen) as the associated coefficients. 

In cases where the incident angle </> of a signal set) is greater than 7r/2 with respect to 

the Oth sensor, as illustrated in Fig. 3.8, the (M -l)th sensor becomes the first sensor that 

receives set), while the Oth sensor will not receive the signal until (M - l)r seconds later. 



CHAPTER 3. NOVEL WIDEBAND DATA MODEL 73 

Following the above derivations for ¢ ~ 7r /2, we may express the snapshot at the pth sensor 

output in the following manner 

L-1 

s(n - pT) = L. hl(pT)s(n -l), 
1=0 

(3.23) 

where P = M - 1 - m. Extending the above for all P = M - 1, M - 2, ... ,0, we can write 

(3.24) 

where EM E R MxM is a exchange matrix defined as follows (Golub and Loan, 1993) 

o 0 1 

o 1 0 
EM= (3.25) 

1 0 0 0 

In other words, if the incident angle ¢ of a signal is greater than 7r /2 with respect to the Oth 

sensor, the expression of the sensor output vector is the same as that defined in (3.18) pre

multiplied by the exchange matrix EM that reverses the order of rows in the interpolation 

matrix H(r). Therefore, the general expression for a sensor output vector in response to 

an incoming signal set) at an angle ¢ is 

L-1 

sr(n) = H(r)s(n) = ho(r)s(n) + L. hl(r)s(n -l) 

where 

if ¢ ~ 7r/2 

if ¢ > 7r/2 

An analogous definition holds for the vector hl(r). 

1=1 

3.3 Development of the data model for multiple sources 

(3.26) 

(3.27) 

The model above can be easily extended to cases where there exist multiple sources K 2:: 1, 

where K is constant throughout the entire observation period. The incident angle and delay 



CHAPTER 3. NOVEL WIDEBAND DATA MODEL 

parameters now become vectors, i.e., ¢ and T, respectively. They are defined as 
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(3.28) 

(3.29) 

To extend the model described earlier to the K-dimensional case, we need to add a subscript 

k to T and s(t) such that the snapshot vector in (3.26) for the kth source becomes 

L-1 

sTk(n) = H(Tk)sk(n) = hO(Tk)sk(n) + L hl(Tk)sk{n -l), k = 0, ... , K - 1, (3.30) 
1=1 

where 

(3.31) 

Similarly, each wideband signal will have its own upper and lower frequencies, Ii: and IL, 
such that Tmax in the K-dimensional case, according to (3.5), is now defined as 

. {I} Tmax = mm -u. 
k=O, ... ,K -1 2A 

We define the index m as follows 

{
m, 

m-
M-1-m, 

if <Pk ~ 7r/2 

if <Pk > 7r/2 

(3.32) 

(3.33) 

such that the delayed version sk(n - mTk) of the signal vector sTk(n) may be expressed as 

L-1 

sk(n - mTk) = L hl(mTk)sk(n -l), k = 0, ... ,K - l. 
1=0 

The mth sensor output Yrh (n) in the presence of noise now becomes 

K-l 

Yrh{n) = L sk(n - mTk) + uwwrh(n), 
k=O 
K-1L-l 

= L L hz(mTk)sk(n -l) + uwwrh(n), m = 0, ... , M -1, 
k=O 1=0 

(3.34) 

(3.35) 

(3.36) 

where sk(n) is defined as in (3.19) for the kth source, wrh(n) is an iid Gaussian variable 

with zero mean and unit variance, and u! is the noise variance in the observation. 
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We now define a signal vector for K sources at time n as 

such that (3.36) for rh = 0, ... , M - 1 may be re-written in the form 

L-1 

y(n) = Ho(r)a(n) + L Hl(r)a(n -l) + O"ww(n) , 
1=1 

where Hl(r) E nMxK is defined as 
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(3.37) 

(3.38) 

(3.39) 

and w(n) E nM is a vector whose elements are wm(n). The signal vectors a(n - l) for 

1 =:;: 1, ... , L - 1 in (3.38) are estimated by a proposed algorithm in a manner to be described, 

and may therefore be considered known. In this vein, we define a vector z(n) as follows 

L-1 

z(n) ~ y(n) - L Hl(r)a(n -l), (3.40) 
1=1 

which can be interpreted as the error between the snapshot y(n) and its approximation, 

based on the past, estimated values of the signals from a(n - 1) to a(n - L + 1) and the 

associated columns in the interpolation matrix H(r). Accordingly, we can rewrite (3.38) 

as follows 

z(n) = Ho(r)a(n) + O"ww(n) , (3.41) 

which represents the desired form of the model. 

3.4 Features of the data model 

There are several interesting features regarding the model in (3.41). It is similar to the fa

miliar narrowband model (Johnson, 1982), except that the data is modified and the steering 

matrix takes the form of an interpolation matrix. The similarities and differences between 

the traditional narrowband model and the novel model are described as follows: 
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• Snapshots - For narrowband signals, the snapshot yen) corresponds to the sensor 

outputs in the array. For wideband signals, the modified snapshot zen) represents 

the estimation error between the sensor output y(n) and its approximation using a 

linear combination of L - 1 past samples, where the weights are the columns in the 

interpolation matrix. 

• Arguments - For narrowband signals, the argument is ¢, where each element, ¢k, is 

bounded between -7f/2 and 7f /2. For wideband signals, the argument is T, where 

each element, Tk, is bounded between -Tmax and Tmax· 

• Process matrices - For narrowband signals, the process matrix is the steering matrix 

S(¢) whose elements are complex-valued. For wideband signals, the process matrix, 

HO(T), is made of the Oth columns of the individual interpolation matrices of the 

sources, where all elements are purely real. 

• The m, kth elements in the process matrices - For narrowband signals, if the inter

sensor distance is taken to be half-wavelength, the m, kth element in S( ¢) is governed 

by an exponential function as exp{ _j~1r 4>k}. For wideband signals, the m, kth ele

ment in HO(T) can be expressed by sinC(mTk) x W(mTk), where w(·) is the smoothing 

window. 

As can be seen, there is a close tie between the traditional narrowband model and the novel 

model for wideband signals, and this allows the reuse of existing algorithms specifically 

developed for narrowband signals, like MCMC and particle filters for joint detection and 

estimation, and tracking problems, respectively, to the wideband case. Table 3.2 summarizes 

the comparison between these two models. 

Further, the model in (3.41) can also accomodate either narrowband or wideband 

sources, without change of structure or parameters. Also, all quantities in (3.41), including 

the data, are pure real, unlike previous models in (Valaee and Kabal, 1992, 1995; Wang 

and Kaveh, 1985; Hung and Kaveh, 1988) which require complex quantities. This latter 

point leads to significant savings in hardware, since quadrature mixing to IF frequencies is 
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Description I Narrowband 

Snapshots yen) = S(¢)a(n) + O"vv(n) 
Arguments ¢k E [-I' Il 

Process matrices S(¢) E CMxK 

The m, kth elements of exp { ~7[ ¢k } 
the process matrices 

Wideband 

zen) = HO(T)a(n) + O"vv(n) 
Tk E [-Tmax , Tmaxl 

HO(T) E nMxK 

sinc(mTk) x W(mTk) 
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Table 3.2: Comparison between the data models for narrowband and wideband signals. 

no longer required, and computational requirements are reduced. 

3.5 Development of the data model when the parameters of 

interest are time-varying 

The data model derived earlier assumes that the ISD vector T and the model order K 

are both constant in the entire observation period. As this model is developed for static 

sources, modifications to the model are needed in order to address the situation when the 

static assumption is no longer valid, i.e., when the sources are moving and the number of 

sources is time-varying. 

To address the case when the parameters of interest become time-varying, we modify the 

data model developed for static scenario by introducing the time variable t to the respective 

parameters. Assume there are k(t) wideband signals, Sk(t), for k = 0, ... , k(t) -1, impinging 

at distinct angles ¢k(t) onto a uniform linear array of M identical sensors. Further, we 

assume that these angles do not change significantly over L samples, where L is the number 

of taps defined earlier. These sources are bandlimited as in (3.1). The corresponding inter

sensor delay Tk (t) becomes 

(3.42) 

where Tk(t) E [-Tmax, Tmaxl, and 

Tmax = mIn -. . {I} 
k=O, ... ,k(t)-l 2fJ: 

(3.43) 



CHAPTER 3. NOVEL WIDEBAND DATA MODEL 78 

Following the development of the observation vectors for the static scenario, we can define 

the observation vector y(t)lt=n E R Mx1 in response to the k(t)lt=n wideband signals as 

follows 

L-1 

yen) = L HI(r(n))a(n -l) + O'ww(n) , (3.44) 
1=0 

where r(n) E R k(n)x1, a(n) E R k(n)x1 and iI/(r(n)) E RMxk(t) are defined similarly in 

(3.29), (3.37) and (3.39), respectively, and wen) E R Mx1 is an iid Gaussian variable defined 

as 

wen) '" N (O,I M) , (3.45) 

and O'! is the observation noise variance. Finally, we define a vector zen) as follows 

L-1 

zen) ~ yen) - L Hl(r(n))a(n -l), (3.46) 
1=1 

which can be interpreted as the error between the observation yen) and its approximation, 

based on the past, estimated values of the signals from a( n - 1) to a( n - L + 1) and the 

associated columns in the interpolation matrix HI(r(n)) for l = 1, ... , L - 1. Accordingly, 

we can rewrite (3.44) as follows 

zen) = Ho(r(n))a(n) + O'ww(n), (3.47) 

which represents the desired form of the model. This model for nonstatic sources also shares 

the same features as decribed in Section 3.4 with the exception that both ISDs and model 

order are time-varying in (3.47). Furthermore, this model is fit to address the problem of 

online tracking for time-varying ISDs r(n) and model order ken) using the sequential Monte 

Carlo algorithm or particle filters. 



Chapter 4 

Advanced Beamforming for 

Narrowband Signals 

In this chapter, we present a new alternative to beamforming for extraction of multiple 

waveforms of desired sources in the presence of interfering signals. Waveform extraction is 

useful for communications in hostile environments and to aid in classification of targets in 

radar applications. 

Conventional approaches to this problem use a sequence of disjoint procedures for wave

form extraction. These include model order detection, direction of arrival (DOA) estimation, 

DOA tracking, and then finally beamforming. In contrast, the proposed approach combines 

all these processes jointly. A distinct advantage of the proposed method is the fact that it 

is effective in highly nonstatic environments, where classical beamforming approaches fail. 

Unlike modern competing methods, like the LPA-beamformer (Gershman, 1999; Katkovnik 

and Gershman, '2000), the proposed method is not model sensitive, and does not assume 

smooth DOA motion within an observation window. 

The proposed method is based on sequential Monte Carlo (otherwise known as particle 

filtering) techniques for estimation and tracking of the required DOAs. Once the DOA 

estimates are available, the desired source waveforms can be extracted using a maximum 

a posteriori (MAP) procedure. Model order detection is obtained using a reversible jump 

79 
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Markov chain Monte Carlo (RJMCMC) resampling algorithm. Simulation results, which 

compare performance to the extended Kalman filter and the LPA beamformer, are pre

sented. 

4.1 Introduction 

The problem of recovering waveforms from multiple sources is of considerable interest in 

electronic systems. This problem has application in communications in hostile environ

ments, or in radar where the waveforms from the multiple targets are to be used to aid in 

target classification. Standard approaches to this problem rely on arrays of sensors; first, 

the number of sources or targets is detected (this is otherwise known as order detection), 

then the corresponding directions-of-arrival (DOAs) are estimated, and then tracked. Once 

smoothed or filtered DOA estimates are available, the desired waveforms can then be recov

ered using beamforming techniques. In this chapter we concentrate specifically on the more 

difficult case where the sources are highly mobile or not static in angle. In the following 

portion of this section, we briefly discuss the shortcomings of the order detection, the DOA 

estimation, the tracking, and the beamforming components as they relate to the waveform 

extraction problem. 

As we see later, for signal recovery to perform well, the DOAs must be properly estimated 

and tracked. Current DOA estimation techniques (Multiple Signal Classification (MUSIC) 

(Schmidt, 1986), Maximum Likelihood (ML) (Reilly and Haykin, 1982), Weighted Subspace 

Fitting (WSF), (Viberg and Ottersen, 1991) etc) do not perform well in the case where the 

DOAs are not static since these methods depend on covariance matrices averaged over 

several past observations. Thus, the environment must be homogeneous and static over 

the observation window, and performance degrades when these conditions are violated. An 

analogous situation holds with respect to conventional order detection methods (e.g., the 

AIC and MDL criteria (Wax and Kailath, 1985)). 

Conventionally, in DOA tracking applications, the DOA estimation phase precedes the 

tracking process as a completely disjoint operation. That is, signal processing precedes 
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state estimation. In particular, tracking using DOA-only measurements, which has been 

considered extensively in the literature (see Kurien and Washburn (1985); Jauffret and Bar

Shalom (1990); Pattipati et al. (1992); Rao et al. (1994)), is a challenging problem because 

of nonlinearity and observability problems. 

In the case where the DOAs are not static, DOA estimation and tracking can be ap

proached using state-space models. The aim is to estimate the state process using the 

observations that update the posterior distribution of interest as new observations arrive. 

Classical methods to obtain approximations to the desired distributions include analyti

cal approximations, such as the extended Kalman filter (Anderson and Moore, 1979), the 

Gaussian sum filter (Aspach and Sorenson, 1972), and deterministic numerical integration 

techniques (Bucy and Senne, 1971). The extended Kalman filter (EKF) and Gaussian sum 

filter are computationally cheap, but fail or diverge in some difficult scenarios. In particular, 

if the nonlinearities in the state and measurement equations are significant, then the EKF's 

performance is degraded (Bar-Shalom et al., 2001). 

Beamforming (Johnson, 1982; Johnson and Dudgeon, 1993), a form of spatial filtering, 

is regarded as the ability of an array to capture signals incident from a particular direction. 

The objective of beamforming is to estimate a desired signal waveform arriving from a 

known direction, in the presence of noise and interfering signals, or to separate desired 

signals incident from different spatial locations or directions. The extracted signals can then 

be used as signatures or features for classification among different objects or targets in radar 

and sonar applications. Beamforming has also proven very successful in communications in 

hostile environments. 

Typical beamforming approaches were developed assuming one desired source and con

sidering other incident sources as interference. To protect the desired source and to suppress 

the others, precise knowledge of the desired source DOA must be available. Methods like 

the Minimum Variance Distortionless Response (MVDR) and the Generalized Sidelobe Can

celler (GSC), (Johnson, 1982) etc., are just a few examples that require these assumptions 

to be valid for reasonable performance. Thus these algorithms could only find application in 

the case where the signal sources or targets are static and where their positions are perfectly 



CHAPTER 4. ADVANCED BEAMFORMING FOR NARROWBAND SIGNALS 82 

known throughout the entire engagement. Unfortunately, in practical systems and scenar

ios these assumptions are easily violated: the target source may move from observation to 

observation and the assumed DOAs may be different from the actual ones, and the number 

of sources may not be known, resulting in degraded performance in signal extraction. As 

a result, in applications where the sources are mobile, traditional beamforming techniques 

might not be very precise and better techniques are needed. 

Recently, beamforming methods have been developed to handle sources that are not 

static (Gershman, 1999; Katkovnik and Gershman, 2000; Wigren and Eriksson, 1995). 

These methods propose the use of a polynomial model to estimate DOA motion within 

a short observation period (window) so that beamforming is possible in the environments 

where the DOAs are slowly changing. With these methods, the angular velocities of the 

DOA motion is taken into account, and optimization techniques are then used to search 

for the optimal DOAs of the sources. Once the estimates are available, traditional beam

forming algorithms could then be used to extract signals of interest. While these methods 

take target motion into account, they still do not address the critical model order selection 

problem; also, the performance relies heavily on the smoothness of target motion within the 

observation period. The PASTd approach (Yang, 1995) has also been proposed as a means 

of dealing with targets that are not static. This method estimates a noise subspace over a 

sliding window from the observed data. Then, from this subspace, the number of sources 

can be determined and the DOAs tracked. Thus, assumptions about static sources and the 

knowledge of the number of sources are relaxed with this approach. However, the PASTd 

method assumes that the subspace is constant within the window, which means the DOAs 

must be almost static. Thus the method fails to track and extract the sources if they move 

substantially within the window. 

The performance of standard beamforming algorithms is sensitive to error in the DOA 

estimate of the target, and deteriorates very significantly if the estimated DOA is different 

from the true one. Robustness to DOA uncertainty (Gershman, 1999) has been introduced 

such that the main lobe width is traded off with the degradation caused by the deviation 

of the estimated and true DOAs. 
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In this chapter, we present a novel alternative method to beamforming for online re

covery of an unknown number of desired source waveforms in the presence of interference, 

that is effective in conditions where the DOAs are not static. The proposed method per

forms the DOA estimation/tracking, and the order detection components of the waveform 

extraction problem jointly in one seamless operation, rather than disjointly as before. The 

proposed method uses sequential Monte Carlo (MC) methods in conjunction with Markov 

Chain Monte Carlo (MCMC) methods (Andrieu et al., 1999, 1998). The sequential MC 

methods (Doucet et al., 2001; Andrieu et al., 1999; Gordon et al., 1993; Doucet, 1998) are 

suitable for estimating the state process using the observations and hence recursively updat

ing the posterior distribution of interest as new observations arrive. Model order detection 

is achieved using the reversible jump MCMC procedure (Green, 1995). Simulation results 

show that the proposed particle filtering approach for waveform recovery does not suffer 

from the drawbacks associated with the more standard approaches, as discussed above, at 

addressing this problem. 

The proposed procedure is first to determine the number of incident signals, and then 

jointly estimate their respective DOAs using sequential Monte Carlo methods. We then use 

the estimated DOAs to extract the desired source amplitudes using a maximum a posteriori 

(MAP) procedure. The desired sources can be distinguished from interferences using a 

priori knowledge of the desired source waveforms. 

4.2 The State-Space Model 

The transmission medium is assumed to be isotropic and nondispersive so that the radiation 

propagates along straight lines, and the sources are assumed narrowband and in the far-field 

of the array. In other words, the radiation impinging on the array is in the form of a sum 

of plane waves. 

We denote the number of narrowband plane waves impinging on an M -element array 

from distinct directions at time n as ken), which is unknown and time-varying, such that 

ken) < M for all n. The signals are assumed to have the same known centre frequency and, 
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hence, the effect of a time delay on the received waveforms is simply a phase shift. Denoting 

the DOA vector by </>(n) E [0, 27r]k(n), we define the steering matrix by S(</>(n)) E eMxk(n) 

as follows 

S(</>(n)) = [s(¢l(n)), s(¢2(n)), ... , s(¢k(n))], (4.1) 

where k = 1,2, ... , k(n). Each column of S(</>(n)) is the steering vector corresponding to a 

particular source, defined as follows 

(4.2) 

where 

(4.3) 

The quantity ¢k(n) is the angle of the kth source incident onto the array at time n, dm 

for m = 1,2, ... , M is the position of the mth sensor, and >. is the wavelength. Denote 

a complex vector of observations y(n) E eM that represents the data received by a linear 

array of sensors at the nth snapshot, and a complex vector of amplitudes of the sources at 

the nth instant by a(n) E ek(n). We adopt a first order state-space Markov model in the 

proposed sequential sampling approach. It is assumed that the states [</>(n), a(n)] evolve 

according to the following equations 

</>(n) = </>(n - 1) + O"ww(n), 

a(n) N(O,82o;, [SH(</>(n))S(</>(n))r1). 

The observation equation is defined as 

yen) = S(</>(n»a(n) + O"vv(n), 

(4.4) 

(4.5) 

(4.6) 

where the noise variables v(n) E eM and wen) E nk(n) are Gaussian variables with zero 

mean and unit variance uncorrelated with the signal and each other, the noise variances O"~ 

and 0"; are assumed unknown and constant (for a static system), and the hyperparameter 

82 is set to an a priori estimate of the SNR (Andrieu and Doucet, 1999). 
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We define the following parameter vector (hn 

(4.7) 

where the notation Onl:n2 denotes all values of the argument from time n1 to n2. Using 

Bayes' theorem, we have the following expression for the joint posterior distribution 7r(lh:n) 

from time 1 to n, involving the likelihood l(Yl:nI01:n) and the prior distribution p(Ol:n) 

(4.8) 

The above can be expanded to give 

(4.9) 

Assuming the observations, given the states are iid, the conditional update likelihoods of 

the states are also iid, and the distribution of the initial states is uniform, we can express 

the following individual distributions, using the Markov properties of the model, as follows 

n 

l(Y1:nl<P1:n, a1:n, k1:n, a;, a!) = II N(S(<Pl)al, a!I M), (4.10) 
1=1 

n 

p(<P1:nlk1:n,a;) = IIN(<P1-1,a;Ikl)' (4.11) 
1=1 
n 

p(a1:nl<p1:n,k1:n,a!) = IIN(O,o2a! [SH(<PI)S(<pI)r\ (4.12) 
1=1 

The prior distribution for the model order k is assigned a discrete uniform distribution equal 

to A = l/kmax , k = 0, ... , kmax , where kmax is the maximum allowable model order, equal 

to M - 1. The prior distributions of the noise variances are both assumed to follow the 

inverse Gamma distribution, which is the conjugate distribution for the Normal distribution 

as follows 

where aQ, aI, 10, II are hyperparameters. 

'" XG(aQ '0) 
2 ' 2 ' 

(4.13) 

(4.14) 
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Substituting (4.10) - (4.14) into (4.9) and rearranging, it can be shown (Andrieu and 

Doucet, 1999; Larocque et at., 2002) that the posterior distribution 7r«(h:n) can be repre

sented as follows 

where 

and 

:Ea~ = SH (¢I)S(¢I)(l + 1/82 ), 

mal = :EaISH (¢I)YI, 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

From (4.15), it is seen that (4.17) is a maximum a posteriori (MAP) estimate of the am

plitudes aI, which implies that the amplitudes need not be included in the particle filter 

but can be estimated at each iteration after the sampling of the other parameters. Finally, 

integrating out al analytically from (4.15) yields 

(4.19) 

where the prior on the model order has been absorbed into the constant of proportionality. 

The above yields a much simpler posterior distribution in terms of the remaining parameters. 
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As a result, we can write the parameter vector 01:n as follows 

(4.20) 

It is also possible to obtain the MAP estimators of the variance parameters as follows: 

2 
O"v,MAP 

2 
O"w,MAP 

¥ + ~ Z:::?=1 (¢l- ¢1_1)H (¢l - ¢1-1) 

~ + ~ Z:::?=1 k(l) + 1 

')'1 + Z:::?=l y[i P~(¢I)YI 
1I1+Mn+1 

(4.21) 

(4.22) 

Thus, the proposed approach is to use the posterior distribution of (4.19) to estimate the 

DOAs ¢( n), and the model order k( n), as discussed later. Once these estimates are available, 

the objective of this work can be achieved, which is to estimate the desired signal amplitudes. 

This is done using (4.11). 

4.3 Sequential Me 

This section describes the sequential importance sampling procedure, which is used to 

recursively estimate the DOAs. In this section, the background treatment on the sampling 

procedure is necessarily brief, and the reader is referred to Chapter 2 and other references 

(Andrieu et al., 1999, 1998; Gordon et al., 1993; Doucet, 1998) therein for a more complete 

coverage of this topic. 

As described in Chapter 2, instead of drawing samples directly from the target posterior 

distribution function 7I"(x), we will draw samples from an importance function q(x) that 

satisfies the recursivity condition as in (2.41) and minimizes the variance of the weights 

generated by (2.42) for the implementation of sequential Me procedure. According to 

(2.42), such an optimal importance function is given by 

() _ ( (i) I (i) ) 
qoptimai' - q On On-I' Yn . (4.23) 

To obtain this distribution, given the state-space model of ¢(n) in (4.4) and the observation 

equation y(n) in (4.6), we can develop a suboptimal approximation by means of a first

order Taylor expansion of the observation equation y(n) around ¢(n - 1). It is shown 
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in Appendix D.1 that an optimal importance function with the form as in (4.23) can be 

expressed as follows 

q( ,I..(i)I,I..(i-1) Y ) rv N(m(i) ~(i») 'f'n 'f'n-1' n n' n , (4.24) 

where, for each particle, 

~;;:1 = 0";;21kn + 'V:n (O";} 1M) 'V cPn' (4.25) 

m(n) = ~n (0";;2hn4>n_1 + 'V:n (O";;/IM) [Yn - S(4)n-1)an-1 + 'V4>n4>n-d) , (4.26) 

and 'V cPn' is the gradient vector defined as 

Denoting the importance weight w(i)(n) by 

w(i)(n) = 1T(a1:n) , 
q( a1:n IYl:n) 

(4.27) 

(4.28) 

using the Markov properties of the model, the form of (4.23), and the iid assumptions on 

the noise variables, we have (Doucet, 1998) 

( ) -(i) ( _ 1) P(Ynl4>~), ~), a~), O"!(i) )p( 4>~) 14>~~1' k~) , O";(i») 
Wi (n) = w n x (") (") , (4.29) 

q(4)'; 14>:-l,Yn) 

where w(i)(n - 1) is the normalized importance weights, defined as 

w(i)(n _ 1) = w(i)(n - 1) . 
2:!1 w(i)(n - 1) 

(4.30) 

As discussed in Chapter 2, the recursion of (4.29) degenerates quickly after a few itera

tions in such a way only a few particles are significant and lead to large estimate variance. 

Sampling Importance Resampling (SIR) procedure is used to resample the particles accord

ing to the significance of their respective importance weights and then the reversible jump 

MCMC procedure is adopted to reintroduce statistical diversity to the resampled particles 

as well as to facilitate the model order detection. 

We summarize the sequential MC procedure in the following table 
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Sequential Importance Sampling Algorithm 

Initialization 

For time n = 1, 

• sample N particles ¢(i), i = 1, ... ,N from q(-I·). 

(i) 

• initialize the weights W(i), i = 1, ... , N to 1r(!(i». 
q(o/ ) 

• normalize the weights to w(i}(n) = Lf:~i~~l(n). 

Then for n = 2,3, ... 

1. Sequential Importance Sampling Step 

(a) Sample N particles of 4>~) for i = 1,2, ... , N from the importance function as 

follows 

(b) Evaluate the importance weights for N particles as follows 

( IA-(i) k(i) (i) 2(i») (A-(i)IA-(i) k(i) 2(i») 
(i)( ) _ -(i)( _ 1) P Yn o/n , n ,an, o-w P O/n o/n-1' n ,o-v w n -w n X (") (") , 

q(¢; 14>:-1' Yn) 

and hence the normalized importance weights as follows 

(i) 
w(i)(n) = W (n) 

Ej':l W(j) ( n ) 

2. Sampling Importance Resampling Step 

Multiply/supress the particles 4>(i)(n) respectively with high/low importance weights 

w(i)(n) to obtain N random samples approximately distributed according to 7r(4)i~~). 

• Sample a vector of l distributed as: 

P(l(j) = i) = w(i)(n) 
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• Resample the particles with the index vector: 

A,(i) _ A,(l(i)) 
'f'l:k - 'f'l:k 

• Re-assign all the weights to w(i)(n) = it 

3. The Reversible Jump MCMC Step 

Follow the MCMC procedure to be described in Section 4.4 to introduce diversity of 

the particles and to facilitate detection of model order. 

--------------------------------------------------------------,. 

4.4 The Reversible Jump MCMC Diversity Step 

In this section, we present the use of the reversible jump MCMC (RJMCMC) method 

to recursively detect the time-varying model order k1:n . As described in Chapter 2, the 

RJMCMC process (Green, 1995) samples the model order k(n) from the joint posterior 

distribution, by jumping between subspaces of different dimensions, thus visiting all relevant 

model orders. The procedure is more computationally efficient, since the most likely model 

orders are visited most often, and hence correspondingly less effort is spent on model orders 

with lower probability. The RJMCMC algorithm inherently sets up a Markov chain that is 

capable of jumping between model orders, yet whose invariant distribution corresponds to 

the joint posterior 11"( </J, k) of interest. 

In the RJMCMC method, candidate samples are selected from a set of proposal dis

tributions, which are randomly accepted according to an acceptance ratio the ensures the 

reversibility, and therefore the invariance of the Markov chain with respect to the desired 

posterior distribution. The most widely used candidate functions are the birth/death com

plementary moves. When the death move is selected, the algorithm proposes a candidate in 

the model of lower dimension, as opposed to the birth move, which proposes a candidate of 

higher dimension. However, if neither move is selected, the update move will be executed. 
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The probabilities for choosing each move are denoted Uk, bk and db respectively, such that 

Uk + bk + dk = 1 for all k. In this case, we choose the probability of a jump to be between 

0.5 and 1 at each iteration (Green, 1995). 

It is clear that once the joint posterior distribution 7l'(a(n),k(n)) is available from the 

RJMCMC procedure, the model order k can be determined by marginalizing with respect 

to a(n), leaving only 7l'(k(n)). Then the estimate of model order ken) can be determined 

using, e.g., a MAP procedure. Note that unlike the ordinary MCMC methods, the proposed 

method does not require "burn-in" period in this application. According to Doucet et al. 

(2000), the particles before the MCMC step are already distributed according to the limiting 

distribution of the chain. In other words, only one MCMC step is needed for each particle 

at each time step. 

4.4.1 Update Move 

In this move, the model order is kept fixed, i.e., ken) = ken - 1), and the candidate </>* is 

generated according to the proposal distribution function q(</>(i) (n)!</>(i) (n - 1)) given by 

(4.31) 

Following the M-H sampling procedure described in Chapter 2, we compute the acceptance 

ratio of the candidate </>* by substituting (4.31) and (4.19) into (2.24) to give 

exp [-;kyH(n)p~(¢*)y(n)] 
rupdate = exp [-;kyH(n)P~(¢(i)(n))y(n)]' (4.32) 

The candidate </>* will then be accepted as the ith particle at time n with the following 

probability 

O!update = min {r update, I}. (4.33) 

After all N particles have been processed in the update move, a MAP estimate of the DOAs 

at time n, ;P(n) , can be obtained from the histogram obtained from the particles. Using 

(p( n), we can estimate the amplitudes a( n) according to (4.17) and the noise variances O'~ 

and 0'; according to (4.21) and (4.22), respectively. 
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The schema for the update move is summarized as follows. 

Update Move 

• Propose a candidate element </1* according to (4.31). 

• Evaluate (Xupdate according to (4.32) and (4.33). 

• Sample u rv U[O,I]. 

• if (u :::; (Xupdate) then 

- the state of the Markov Chain becomes (</1*, k); 

- the amplitude a( n) are estimated according to (4.17); and 

- the variances cr~i+l) and cr;(i+1) are updated according to (4.22) and (4.21), re

spectively. 

else it remains at (</1(i), k). 

------------------------------------------------------------~. 

4.4.2 Birth/Death moves 

The procedure for executing the birth/death moves is similar to that of the update move 

discussed above. However, the birth move proposes a candidate in a higher dimension 

model, whereas the death move proposes a candidate in a lower dimension model. In the 

birth move, we assume that the current state is (</1k, k) and we wish to determine whether 

the next state is (</1k+I' k + 1) at the next iteration. This involves the addition of a new 

source <Pc, which is proposed at random from the prior distribution for the directions of 

arrival such that 

(4.34) 
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Then, the acceptance ratio corresponding to (4.32) for the birth move is 

rbirth 

exp [-ukyH (n)p~(<pk+1)y(n)] 1 

= exp [-ukyH (n)p~(<pii)y(n)] x (1 + (2 )(k + 1)' 
(4.35) 

where the ¢k+l will be accepted with a probability 

D!birth = min { rbirth, I}. (4.36) 

The underlying Markov chain must be reversible with respect to moves across subspaces 

of different model order, so that the desired invariant distribution of the chain with respect 

to model order is preserved by the MCMC algorithm. That is, the probability of moving 

from model order k to k + 1 must be equal to that of moving from k + 1 to k. Thus, 

there must also be the death move in which a source in the current state (¢k+1' k + 1) 

is randomly selected to be removed such that the next state becomes (¢k,k) at the next 

iteration. In order to preserve reversibility, the acceptance ratio for the death move must 

be (Green, 1995) 

1 
rdeath = --, 

rbirth 

and a new candidate of dimension k is accepted with probability: 

D!death = min {r death, I}. 

(4.37) 

(4.38) 

The schemas for the birth and death moves are similar to those for the update move. 

Birth Move 

• Propose a new element <Pc and a candidate, 

,/,.(i+l) _ {,/,.(i) '" J 
'l'k+l - 'l'k ,'Pc' 

• Evaluate D!birth according to (4.35) and (4.36). 

• Sample u '" U[O,l]' 
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41 if (u ::; O!birth) then the state of the Markov Chain becomes (¢~:;), k + 1), else it 

remains at (¢ki ), k). 

Death Move 

41 Select randomly the jth element to form the candidate, 

(i+I) [",(i) ",(i) J 
¢k = 'l"I:(j-l)' 'I"(j+l):(k+l) . 

41 Evaluate Gdeath according to (4.37) and (4.38). 

41 Sample u rv U[O,l]. 

41 if (u ::; O!death) then the state of the Markov Chain becomes (¢ki+l), k), else it remains 
(") at (¢k~+l,k+1). 

• 

4.5 Simulation Results 

The proposed PF algorithm is now applied to three sets of simulation data, generated for 

k = 2 sources with the parameter values listed in Tables 4.1 and 4.6, respectively. A uniform 

linear array composed of M = 8 elements with a half-wavelength spacing of the elements 

is used in all the simulations. In each experiment, N = 300 particles are used. 

In the first experiment, the ability of the proposed method to simultaneously track and 

detect the number of sources as well as extract the source waveforms is demonstrated. The 

variance of the observation noise a!(n) is made nonstationary, with corresponding SNR 

values shown in Table 4.2. In this experiment, one of the sources vanishes suddenly. The 

proposed particle filtering (PF) method is compared with the extended Kalman Filter (EKF) 

(Bar-Shalom et al., 2001; Haykin, 2000), which linearizes the highly nonlinear observation 

model in (4.6). 
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Parameter a(O) 
Value [10,8J 

Table 4.1: Parameters of the state-space model for simulating the data for Experiment 1. 

In the second experiment, the PF method is compared with the LPA-beamformer (Ger

shman, 1999; Katkovnik and Gershman, 2000). The LPA-beamformer has the ability to 

adapt to a target direction, which changes throughout the observation interval. 

In the last experiment, a smoother track is used to compare the proposed method with 

the LPA-beamformer. This is a more favorable case for the latter method. In this case, the 

DOAs tracks correspond to two sinusoidal functions. 

4.5.1 Experiment 1: Joint DOA tracking and detection of unknown sources 

In the first experiment, the DOA tracks of the two sources correspond to autogressive (AR) 

processes whose coefficients represent a 10th-order low-pass Butterworth filter, with nor

malized cutoff frequency 0.1, variance O"~, and with AR coefficients which are specified in 

Table 4.3. These simulated tracks are representative of a difficult but realistic tracking 

scenario in real life. Likewise, the source waveforms are AR processes, generated from a 

lOth-order low-pass butterworth filter with normalized cutoff frequency 0.3, whose coef

ficients are also listed in Table 4.3. Figure 4.1 depicts the locations of the roots of the 

AR coefficients used for the generation of DOAs and signal amplitudes, respectively. The 

initial value 4>(0) is [-20°, 300 J and the initial SNR is about 18.56 dB for both sources. 300 

snapshots are generated. One of the sources vanishes at n = 200. In order to show the 

robustness of the PF method in a nonstationary noise environment, the observation noise is 

generated such that the variances are varying or nonstationary in different regions of time. 

The average SNRs in the different time regions are summarized in Table 4.2. 

In this experiment, the EKF simulation assumes the number of sources k = 2 is known 

and constant, but the PF method is capable of detecting the number of sources sequentially, 

and therefore does not require knowledge of k. Unlike the PF method, the EKF requires 
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Time range SNR (dB) 
1-100 18.56 

101-200 15.32 
201-300 19.78 

Table 4.2: The average SNRs in the different time ranges. 

AR coefficients for DOA generation 
1 

-7.9923 
28.9122 
-62.3154 
88.5877 
-86.7671 
59.2810 
-27.8903 
8.6457 
-1.5942 
0.1328 

AR coefficients for signal amplitude generation 
1 

-3.9877 
8.0944 

-10.4736 
9.4233 
-6.0842 
2.8353 
-0.9364 
0.2089 
-0.0283 
0.0018 

Table 4.3: The AR coefficients for the generation of the DOA and signal amplitude processes. 
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Figure 4.1: The roots of the AR processes. 

the exact AR process model, and the noise covariance matrices. 

The proposed algorithm randomly initializes the unknown parameters and assigns the 

model order k(O) to kmax = M - 1 = 7, where kmax is the maximum allowable model 

order. 

First, we consider the performance of the PF approach in detecting the model order. 

The instantaneous model order estimate versus time is shown in Figure 4.2. We see that 

the detection process takes about 10 snapshots to converge to the true model order k = 2, 

and that the vanishing source is properly detected at n = 200. 

Even though the objective of this work is to recover the amplitudes, the DOA estimation 

process is a critical step in determining the source waveforms. This is because the MAP 

amplitude estimate of (4.17) requires the 4>'s. Thus, we first consider a comparison of the 

DOA estimation performance of the PF method versus that of the EKF. As shown in Figure 

4.3, it is seen the PF method significantly outperforms the EKF in terms of accuracy in 

tracking the DOAs. In the region 0 < n < 20, the PF approach is recovering from a 

transient due to the tracks being initialized to the incorrect values. The relatively poor 
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performance of the EKF is due in part to the highly nonstatic behavior of the tracks. The 

performance of the PF method degrades over the interval 160 ~ n ~ 180 where the sources 

are very closely spaced, as shown in Figure 4.4, which is a zoomed version of Figure 4.3, 

for the region n = [151,209]. This behavior is expected since the matrix 8(4)) becomes 

poorly conditioned in this case. It is seen that after n = 200 when source 1 vanishes, the 

PF method detects the change in model order, and subsequently, produces accurate DOA 

estimates, as shown in Figures 4.3 and 4.4. However, since the EKF has no facility for 

model order detection, it assumes there are still k = 2 sources during this interval. As a 

result, because of this error in the model, the DOA estimates produced by the EKF are 

grossly in error. 

We now consider the performance of the source waveform recovery. The performances 

of both approaches are directly dependent on the accuracy of the DOA estimation. Figure 

4.5 shows amplitude waveforms recovered using three different methods. The first uses the 

PF approach to determine the DOAs at each time instant, and then uses (4.17) to generate 

the corresponding amplitudes. The second is similar, except it uses the EKF to generate 

the DOAs. In this case, the amplitudes are determined using (4.17) with 02 = O. The third 

method uses the EKF to estimate the DOAs, but then uses a conventional beamformer 

method (Johnson, 1982) to compute of a set of adaptive weights based on the estimated 

DOAs from the EKF procedure. The source waveforms a{n) are then recovered from the 

output of the beamformer. By assuming that the two sources are the targets to be protected, 

we can compute the weights, u(n), using a constrained optimization procedure as follows 

uopt(n) = arg min uH (n)R(n)u(n) 
U(n) 

s.t. C H (n)u(n) = c, 

where R{n) is a sample covariance matrix, recursively updated as 

R{n) = R{n - 1) + y{n)yH (n), 

(4.39) 

(4.40) 

C{n) is the constraint matrix, the columns of which are the steering vectors evaluated at 

the estimates lp{n), and c is a column of constraining values. In this particular simulation, 
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all constraining values are set to one, that is, all targets are kept intact at unity gain. The 

beamformer output den) is given as den) = U~t(n)y(n). The respective DOA estimates 

used by the PF and EKF approaches are shown in Figure 4.3. 

Given the relatively poor performance of the EKF with regard to DOA estimation, the 

signal extraction for both the EKF approaches is adversely affected, as shown in Figure 4.5. 

It is seen that the waveforms recovered using the DOA estimates from the particle filter are 

significantly improved over those given using the EKF. It is only in the region 160 < n < 180, 

where the DOAs are extremely close together, that the particle filter approach deteriorates. 

The improved behaviour of the PF method is in spite of the additional information (Le., 

the covariance matrices and the model order) that are required by the EKF method. Even 

though the EKF is simple and relatively easy to implement, the linearization used in the 

EKF in the measurement and/or state prediction can introduce a bias, and the covariance 

computation based on a series expansion is not always accurate (Bar-Shalom et at., 2001). 

In addition, unless accurate estimates of all other important parameters are given, the EKF 

will not perform as intended. Furthermore, a significant advantage of the proposed method 

is that it is capable of detecting the instantaneous number of sources, which is crucial in 

signal extraction, especially when the number of sources is time-varying. 

4.5.2 Experiment 2: Comparison with the LPA beamformer 

In the second experiment, the PF method is compared with the LPA-beamformer (Gersh

man, 1999; Katkovnik and Gershman, 2000). The DOA tracks and the two source waveforms 

are generated as in experiment 1, with initial values 4>(0) = [0°, -20°], and k(O) = kmax, 

and with the other parameters listed as before in Table 4.1. Here, the DOA tracks cross each 

other at about n = 140, and the model order remains fixed at k = 2 throughout the entire 

observation interval. In this experiment, the observation noise variance is constant through

out the observation interval. The signal amplitudes are extracted using (4.17) directly for 

the PF method. For the LPA method, the sources are extracted using the beamformer 

approach described by (4.39) and (4.40). 

Figure 4.6 shows the convergence of the model order estimate from its initial value of 
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Figure 4.2: Sequential estimates of model order for Experiment 1. 
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Figure 4.3: Comparison of DOA tracking performance for the PF and the EKF methods, 
for Experiment 1. 
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source 1 vanished at t = 200 __ • 
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Figure 4.4: A zoomed version of Figure 4.3, from sample n = 151 to n = 209, highlighting 
the region where the source disappears. 
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Figure 4.5: Comparison of the waveform extraction performance of the PF method and 
the LS and beamforming approaches based on the EKF, for Experiment 1. Top: recovered 
source waveform for source 0, Bottom: same for source 1. 
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kmax to the true value k = 2. As seen, it takes about 10 snapshots for the PF model order 

detection scheme to converge to the correct value. The performance for both the DOA and 

waveform estimation processes for the PF and the LPA methods are shown in Figures 4.7 

and 4.8, respectively. It is seen that the observations concerning the relative performance 

of the PF vs. EKF approaches in Experiment 1 also persist with respect to the comparison 

between the PF and LPA approaches. 

The LPA-beamformer technique was developed to relax the assumption that DOAs are 

constant within the entire observation period, as is required with conventional beamform

ers. It accommodates DOA variation within a sliding time window by modelling the DOA 

trajectory vs. time as a polynomial, whose coefficients must be estimated. Like the EKF, 

the LPA-beamformer assumes the number of sources is known and constant throughout the 

entire observation period. The length of the sliding window for the LPA-beamformer for 

this experiment is L = 15, and a first-order polynomial is used to track the changing DOAs 

within the window!. 

As shown in Figure 4.7, the estimated tracks produced by the LPA-beamformer are not 

close to the true tracks until they are well-separated and relatively smooth, as is the case for 

n ~ 150. The degraded performance of the LPA-beamformer relative to the PF approach 

can be explained by the fact that the DOA motion within the sliding window violates the 

assumption of smooth and linear behaviour. Since the performance of the LPA-beamformer 

is somewhat degraded with regard to DOA estimation, the signal extraction is also adversely 

affected, as shown in Figure 4.8. 

Tables 4.4 and 4.5 provide a quantitative measure of the performance of the various 

algorithms in terms of the MSE of the estimated DOAs and source waveforms. As expected, 

the MSE for the DOA and amplitude estimates in the periods n E [1,114] and n E [251,300} 

are smail, respectively, for the PF method. In contrast, the errors are comparatively larger 

for the LPA approaches. During n E [115,250} when the tracks are very close, the DOA 

estimation MSE on average is far better than that for amplitude estimation for the PF 

IThe first-order polynomial was chosen because it gave the best performance. Higher-order polynomi
als have the potential to track changing directions better, but their performance degrades because more 
coefficients must be estimated. 
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Figure 4.6: Sequential estimates of model order for Experiment 2, using the PF method. 
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Figure 4.7: Comparison of the DOA tracking performance for the PF method and the LPA 
approach for Experiment 2. 
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Figure 4.8: Comparison of the waveform extraction performance for the PF method and 
the LPA approach for Experiment 2. 

method, implying that amplitude estimation is very sensitive to DOA estimation, when the 

DOA tracks are close. Nevertheless, these errors are still far smaller for the PF method 

than those produced by the other approaches. 

We now investigate the effect of the number of particles N on the performance of the 

proposed PF method. Table 4.8 compares the MSE between the true and estimated DOAs 

for different values of N using the experimental configuration of Experiment 2. As can 

be seen, the algorithm does not improve significantly as N increases from 300 to 500, 

whereas the computational load is increased by approximately 60%. However, we notice 

that performance does deteriorate as N drops to 100 particles. In other words, one can 

tradeoff the performance of the algorithm and the complexity of the implementation by 

adjusting the number of particles N. The use of the optimal importance function in (4.31) 

is effective in reducing the required number of particles. 



CHAPTER 4. ADVANCED BEAMFORMING FOR NARROWBAND SIGNALS 105 

MSE (dB) n E [1,114] n E [115, 250] n E [251,300] 
PF -27.4, -30.3 -10.3, -18.2 -33.0, -40.5 

LPA-beamformer -20.0, -18.2 -8.2, -6.1 -24.9, -32.9 

Table 4.4: The MSE between the true and estimated DOAs over 50 independent trials for 
the PF method and the LPA-beamformer, for Experiment 2. 

MSE (dB) n E [1,114] n E [115, 250] n E [251,300] 
PF -17.3, -18.0 -5.6, -6.5 -24.3, -26.6 

LPA-beamformer 10.8, -11.6 8.5, 13.7 -17.9, -19.0 

Table 4.5: The MSE between the true and estimated amplitudes over 50 independent trials 
for the PF and beamforming approaches, for Experiment 2. 

4.5.3 Experiment 3: Comparison between the PF method and the LPA

beamformer 

In this experiment, the two DOA tracks are smooth sinusoidal functions, given by 

. (101l"n) 4>(n) = 4>(0) + lOsm 300 ' n = 1, ... ,300, 

where 4>(0) = (20, -20)0, are used to compare the tracking performance and hence the signal 

extraction of the proposed method with that of the LPA-beamformer. The amplitudes are 

generated using AR processes as in the previous experiments. The number of sources is 

assumed known and constant. The other parameters used in this simulation can be found 

in Table 4.6. 

Figures 4.9 and 4.10 show the comparison between the proposed method and the LPA

beamformer in terms of DOA tracking and signal extraction, respectively. According to 

these figures, these methods provide comparable performance in both respects, although 

Parameter M K SNR(dB) 4>(0) a(O) 
Value 8 2 15 [8,10] 

Table 4.6: Parameters of the state-space model for simulating the data for Experiment 3. 
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Figure 4.9: Comparison of the DOA tracking performance for the PF method and the 
LPA-beamformer. 
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Figure 4.10: Comparison of the waveform extraction process for the PF method and the 
LPA beamformer. 
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MSE (dB) MSE for DOA Estimation (dB) MSE for amplitude Estimation (dB) 
PF -24.2, -26.0 -16.6, -18.4 

LPA-beamformer -21.3, -24.3 -14.0, -17.6 

Table 4.7: The MSE for DOA estimation and signal extraction for the PF and the LPA
beamformer approaches, over 50 independent trials for Experiment 3. 

MSE (dB) n E [1,114] n E [115,250] n E [251,300] 
N = 500 -28.4, -31.8 -10.9, -19.1 -34.0, -43.4 
N = 300 -27.4, -30.3 -10.3, -18.2 -33.0, -40.5 
N = 100 -20.9, -25.0 -9.9, -14.6 -28.2, -34.9 

Table 4.8: The MSE between the true and estimated DOAs by PF for 50 independent trials 
for different number of particles N for Experiment 2. 

the PF method is slightly better. Table 4.7 summarizes the MSE of the DOA estimation 

and signal extraction for these methods over 50 independent trials. 

The LPA-beamformer, which relies on a first-order linear model to track slowly fluctuat

ing DOAs, suffers from model mismatch in highly nonstatic conditions. If the assumptions 

for the LPA-beamformer are violated, i.e., the tracks are not smooth and moderately non

static, the LPA-beamformer performs poorly with regard to DOA tracking, and hence in 

extracting signals. However, we have seen that the PF method is capable of DOA tracking 

and source extraction in highly nonstatic situations. On the other hand, if all conditions 

favor the LPA-beamformer, as in this experiment, then it is seen that both methods have 

comparable performance, and the LPA-beamformer is then preferred over the PF method 

because it is less computationally intensive. 

4.5.4 Discussion 

In addition to the reasons previously cited, the superior performance of the PF method is in 

part, through (4.29), due to the availability of an approximate instantaneous joint posterior 

distribution of all the relevant parameters at each time instant. This is in contrast to 
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previous methods which are based on accumulating statistics by time averaging. These 

previous techniques assume the underlying process is static over an adequate time interval. 

This leads to degradation in performance in situations where the static assumption is no 

longer valid. On the other hand, the PF method does not need to accumulate statistics 

by time averaging, since it has the entire posterior distribution available at each instant of 

time. 

A further advantage of the proposed PF method is that confidence regions of the pa

rameter estimates can be easily evaluated. This is a consequence of the fact that an ap

proximation to the posterior distribution is available at each time instant. An example 

of a posterior distribution of the DOA estimates, from which confidence regions can be 

obtained, corresponding arbitrarily to the 245th DOA sample in experiment 2 (see Figure 

4.7), is shown in Figure 4.11. 

Note that once the ¢'s have been estimated, the waveforms could also be obtained using 

a Kalman filter. The proposed MAP procedure and the Kalman filter should give almost 

equivalent performance, since the MAP method is optimum in a Bayesian sense, while the 

Kalman filter is optimum in a least-squares sense. 

It is easily shown that as N ---+ 00, where N is the number of particles, the global opti

mum of the desired posterior distribution coincides with the most heavy-weighted histogram 

bin corresponding to the particles. In practice, the global optimum is achieved within a 

histogram bin-width with finite N with high probability. Thus, the global optimum can be 

attained by a simple search, instead of a complicated global optimization over a multi-modal 

surface. 

We now briefly discuss the relative computational requirements of the EKF, the LPA

beamformer, and the PF algorithms. The EKF is O(M2) (Bar-Shalom et al., 2001), whereas 

the LPA-beamformer is O(LMQP) (Katkovnik and Gershman, 2002), where L is the num

ber of observations used in the sliding window, and Q and P respectively are the number 

of points in the angular and angular velocity domains. On the other hand, the computa

tional requirements for the particle filter are dominated by the evaluation of the posterior 

density (4.19) for each particle. This is approximately O(N[(K3 + MK2 + M2K)]) , which 
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is higher than that of the other two methods. However, the evaluation of the particles is 

easily parallelizable, and this figure includes the expense of order detection, which is not 

included in the cited costs of the other methods. FUrthermore, the relative computational 

expense of the method is offset by its advantages; namely, a joint detection capability and 

improved performance in nonstatic environments. 
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Figure 4.11: Contours of the approximate posterior distribution of the DOAs with true 
values at [-600 ,400 ]' corresponding to time n = 245 of Fig. 4.7. 

4.6 Conclusion 

In this chapter, we present an alternative to the classical beamforming approach. This ap

proach involves angle-only estimation and detection of the number of sources, for recovering 

and tracking multiple desired signals in nonstatic environments in the presence of interfer

ence. The proposed method implements sequential Markov Chain Monte Carlo (MCMC) 

estimation, also known as particle filtering. Unlike the traditional beamforming methods, 

the proposed method is able to track and recover source waveforms from highly nonstatic 
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sources. 

In contrast to other methods like EKF and the LPA-beamformer, the proposed method 

is more robust to nonlinearities in the data model and to nonstatic environment. Simulation 

results show that the proposed method has superior performance in terms of DOA tracking 

ability and signal recovery, relative to the other methods. 



Chapter 5 

Wideband Array Signal Processing 

I 

This chapter applies the novel data model presented in Chapter 3 to wideband array signal 

processing. The new interpolation model where the observations are linear functions of the 

source amplitudes, but nonlinear in the direction of arrival (DOA) parameters, is formed. 

The interpolation model also applies to the narrowband case. The proposed method lends 

itself well to a Bayesian approach for jointly estimating the model order and the DOAs 

through a reversible jump Markov chain Monte Carlo (MCMC) procedure. The source 

amplitudes are estimated through a maximum a posteriori (MAP) process. Advantages of 

the proposed method include joint detection of model order and estimation of the DOA 

parameters, the fact that reliable performance can be obtained using significantly fewer 

observations than previous wideband methods, and that only real arithmetic is required. 

The DOA estimation performance of the proposed method is compared with the theoretical 

Cramer-Rao lower bound (CRLB) for this problem. Simulation results demonstrate the 

effectiveness and robustness of the method. 

111 
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5.1 Introduction 

In Chapter 1, several wideband array processing methods, including the Coherent Signal

subspace Method (CSM) and the Two-sided Correlation Transformation (TCT) approaches, 

were discussed in some detail. The deficiencies of these methods were mentioned. We note 

that previously, separate models and analysis methods were required for the narrowband 

and wideband scenarios. In this chapter, the novel model structure presented in Chapter 

3, which applies equally well to both these cases, detects model order, estimates DOA, and 

recovers the source waveforms in a computationally efficient manner. Markov chain Monte 

Carlo (MCMC) (Andrieu and Doucet, 1999; Andrieu et al., 1998, 2001; Gilks et al., 1998) 

methods are well suited for extraction of the parameters of interest associated with this 

model. The approach proposed in this chapter is an extension of the method of Andrieu and 

Doucet (1999) to seamlessly perform joint detection of the number of sources and estimation 

of ISDs (DOAs), and recovery of the sources, for both narrowband and wideband models. 

The proposed approach offers the functionality of wide band beamforming Johnson (1982) 

and Veen and Buckley (1988), as well as wideband DOA estimation and detection. The pro

posed algorithm can be used in a beamforming context because it recovers the source signals 

which are mixed at the sensor outputs. The proposed method is somewhat more computa

tionally expensive than previous wideband methods (e.g., Valaee and Kabal (1995)) which 

estimate the DOAs only. However, in cases where the model order, the DOAs, and the 

source waveforms are all required, the proposed method shows a comparable computational 

expense relative to the other methods. 

There are several advantages offered by this approach in array signal processing. Firstly, 

by virtue of the reversible jump Metropolis-Hastings algorithm (Green, 1995), the proposed 

MCMC approach jointly detects the model order and estimates all parameters of inter

est for both wideband and narrowband scenarios. This procedure is more efficient and 

accurate than other common approaches that would perform each process independently. 

Secondly, unlike other approaches, like CSM and TCT, the proposed approach requires 

far fewer observations for processing, because the correlation matrix of the observations is 
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not explicitly required. Thirdly, the method benefits from requiring only real arithmetic, 

in contrast to previous methods which require complex arithmetic. This fact results in 

significant reductions in hardware complexity, since the need for quadrature mixing to IF 

frequencies is alleviated. Also, like other wideband methods, the sources can be partially 

or fully correlated. 

5.2 Data Model 

The data model we consider here has been described in Chapter 3. For the convenience of 

the further presentation, we briefly summarize the model here. Let y(n) E R M x1 be the 

data received by a uniform linear array of M sensors at the nth snapshot. The data vector 

is composed of K wideband signals impinging onto the array at K distinct incident angles. 

Let sk(n) be the kth source that is bandlimited according to (3.1) and transverses along the 

array with an inter-sensor delay Tit defined as in (3.2). Following the definitions in Chapter 

3, we can express the nth snapshot y(n) as follows 

L-1 

y(n) = L HI (r)a(n -l) + uww(n), n = 1, ... , Nt, (5.1) 
1=0 

where r E R Kx1 and a(n) E RKxl are defined in (3.29) and (3.37), respectively, Hl(r) E 

R MxK is defined in (3.39), w(n) is an iid zero-mean, unit-variance Gaussian random vari

able, defined as 

(5.2) 

u! is the observation noise variance, L is the number of taps used in the interpolation, and 

Nt is the number of snapshots. Defining z(n) E RMxl 

L-1 

z(n) = y(n) - L HI(r)a(n -l), n = 1, ... , Nt, (5.3) 
1=1 

as described in Chapter 3 yields the desired model 

z(n) = Ho{r)a(n) + uww(n), n = 1, ... j Nt. (5.4) 

The features of the desired model z(n) can be found in Section 3.4. 
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5.3 Development of The Marginal Posterior Distribution 

Here, it is assumed 1) that the noise vectors w(n) are iid, and 2) that all the parameters 

describing the received signal are stationary throughout the entire observation interval. 

Using (5.4), we may define a set of Nt snapshots as 

Z = [z(l), ... ,z(Nt )]. (5.5) 

Then, the total likelihood function of all data can be expressed as follows 

f(Zla(-),T,u:"k) ~ fi (21f:~)M exp L~ (z(n) - HO(T)a(n) r (z(n) - HO(T)a(n)) }, 

(5.6) 

where k represents an estimate of the true number of sources, K. The desired posterior 

distribution function can be expressed using Bayes' theorem in terms of the total likelihood 

function (5.6) and the prior distributions of the unknown parameters as 

7f(a(-) , r, u;, k[Z) ex p{Z[a(·), r, u;, k)p(a(·)[k, r, 82u;)p( r[k)p(u;)p(k), (5.7) 

where 82 is a hyperparameter closely related to the signal-to-noise ratio. (The choice of 

this parameter is discussed further in Section 5.4.4) The prior distribution for the source 

amplitude vector a is chosen as in Andrieu and Doucet (1999). For a single sample a(n), we 

take the prior distribution to be zero-mean Gaussian, with covariance matrix corresponding 

to the maximum entropy prior 

p{a[k, r, 8 uw ) = N 0,8 Uw Ho {r)Ho(r} . 2 2 (2 2 [- T - ] -1) (5.8) 

The joint prior in (5.7) of the source samples over Nt snapshots is then given as 

(5.9) 

where, for analytical convenience, we have assumed the sources to be temporally iid. The 

prior distribution of r is chosen to be uniform: 

(5.10) 
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The prior for the parameter 0"; is chosen as the inverse-Gamma distribution (Andrieu and 

Doucet, 1999), which is the conjugate prior corresponding to a Gaussian likelihood function. 

It is defined as 

2 (lIO 'YO) (2 )-~-1 {-'YO} p(O"w) = Ig 2' 2 = O"W 2 exp 20"~ . (5.11) 

Note that this distribution is noninformative when 'YO = lIO = 0.1 Finally, the prior distri

bution on k is chosen to be Poisson with parameter 2 

ok 
p(k) = ~! exp (-2), (5.12) 

where 3 is the expected number of sources. This choice of prior is not strictly noninforma

tive, but it contributes to a more efficient MCMC sampling routine. As a result, we can 

rewrite (5.7) as 

1r(a,r,0"!,k IZ) (X 

( 2 ~MNt/2 exp {·2-; t (z(n) - Ho(r)a(n))T (z(n) - Ho(r)a(n))} x 
21r0"w O"W n=l 

lH~ (r)Ho(r)I(Nt+L-l)/2 {-I Nt T - T . - } 
(21r820"~)(Nt+L-l)k/2 exp 2820"~ ~ a {n)Ho (r)Ho{r)a(n) x 

c ~ (2 )-!:ll-1 -'YO ( 
1 ) k ~k "{ } 

2Tmax x kf exp (-c) x O"W 2 exp 20"~ . 

(5.13) 

5.3.1 Simplification of the posterior distribution function 

We can simplify the estimation of the parameters in the posterior distribution function 

(5.13) by considering a and o"w to be nuisance parameters, and analytically integrating 

them out. The only quantities of interest at this stage are rand k. We recover the a later 

by other means. By following procedures similar to those in Andrieu and Doucet (1999) 

lStrictly speaking, this choice for 'Yo and Vo results in an improper prior distribution. Regardless, the 
resulting posterior distribution still has a well-defined maximum, which is used for MAP estimation of the 
parameters of interest. 
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and Andrieu et al. (1998), it can be shown that the desired posterior distribution function 

in (5.13) can be expressed as 

1T"(a, r,O";, klZ) ex 

{
Nt } 1 -1 T -.L 

( 2 )MNt/2 exp -2 2 L z (n)PHo(r)z(n) x 
21T"o"w O"W n=1 

- T - N /2 { Nt } IHo (r)Ho(r)1 t -1 T --1 
( 02 2 )Nt k/2 exp -2 L (a(n) - ma(n» ~Ho(r) (a(n) - ma(n) x 

21T" O"W 20"w n=1 

c ~ 2 -!'f-1 -'Yo ( ~ )k 1 "{ } 2Tmax x k! exp (-c) x (O"w) exp 20"~ . 

(5.14) 

where 

- -1 2 - T -
~Ho(r) = (1 + 8- )Ho (r)Ho(r), (5.15) 

(5.16) 

and 

- -T = ~Ho(r)Ho (r)z(n), 

= EH,(T)il; (T) (v(n) - ~ il'(T)a(n -I)) . (5.17) 

From (5.17) and (5.14) a maximum a posteriori estimate of the amplitudes, given the other 

parameters is readily available as 

(5.18) 

We can simplify (5.14) by analytically integrating out the nuisance parameters a(n) and 

0"; as follows 

1T"(r, klZ) ex roo tX> pea, r, 0";, klZ)da dO";. 
Jo J-co (5.19) 
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As a result, the desired posterior distribution can now be expressed as (Andrieu and Doucet, 

1999) 

1 (:=: )k exp (-:=:) ( (-1. A ))_(MN~+"Q) 
n(r, klZ) <X (1 + 82)Nt k/2 2Tmax k! /'0 + tr PHo(r)Rzz , (5.20) 

where tr (-) is the trace operator, and 

(5.21) 

and Rzz is the sample covariance matrix of zen) 

Nt 

A " T R zz = L...J z(n)z (n). (5.22) 
n=l 

The primary goal of this work is to estimate the delay parameters r and the model order k 

using the distribution of (5.20). Because there are no direct methods for estimating model 

order for this problem, and because of the intractable form of this distribution, MCMC 

methods (Andrieu and Doucet, 1999; Gilks et al., 1998; Ruanaidh and Fitzgerald, 1996), as 

described in Chapter 2, are well-suited for this task. 

The proposed MCMC methods require evaluation of the posterior distribution (5.20) for 

a proposed value of r and k. This involves evaluation of the quantity R zz , which in turn 

requires knowledge of the source amplitudes a(n). The amplitudes can in principle be deter

mined through a least-squares procedure using (5.4), or through (5.18). However, the use 

of (5.4) involves only the matrix ii 0 (r) (instead of all the matrices ii 0 (r), ... , if L-l ( r)). 

For typical interpolation functions, only a few elements of each of the columns of ii 0 (r) will 

be significantly different from zero, resulting in a portion of the observation vector being 

suppressed, with a corresponding loss of performance. Further, use of (5.18) also implicitly 

involves only the matrix ii 0 (r). This is because the term within the parentheses in (5.17) 

is equal to iio(r)a(n) + CTww(n). All other terms in (5.18) only involve iio(r). Thus, 

use of (5.18) also results in a degradation in performance. This undesired situation can be 

mitigated using the following suboptimal procedure for estimating the source amplitudes. 
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5.3.2 Signal Recovery 

According to the signal model, it is clear that the source sample a(n - L + 1) contributes 

to L successive snapshots yen - L + 1) to yen). Efficient estimation of the source sample 

a(n - L + 1) requires use of all these snapshots. From (5.1), we have 

L-1 
yen) = L Hz(r)a(n -l) + aww(n), n = 1, .. , Nt. 

l=O 

The natural log of the posterior in (5.13) can therefore be written as 

L(a,r,a!,kIZ) ex 

K - 2~~ ~ (Y(n) - ~ il'(T)a(n -I}f (u(n) - ~ il'(T)a(n -I}) 
8-2 Nt 

- 20'2 L aT(n)Hi (r)HI(r)a(n), 
w n=l 

(5.23) 

where K, is a constant independent of a(n). The desired estimate a(n - L + 1) is then 

obtained by maximizing (5.24) with respect to a(n - L + 1). The result is 

where 

- [-T -T -T]T 'H(r) = H L _ 1(r), ... ,Hdr),Ho (r) . (5.25) 

and 

(5.26) 

The quantity €p(n),p = 0, ... , L - 1 removes the contribution from samples other than 

a(n - L + 1) in the observation yen - p). It is defined as 

€p(n) = yen - p) - xp(n), 

= HL_1_p(r)a(n - L + 1) + aww(n), (5.27) 

where 
L-1 

Do '" -xp(n) = ~ Hl(r)a(n - p -l). (5.28) 
l-fp 
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The €p(n) are determined by evaluating the xp(n) in (5.28), where the unknown quantities 

a(n - p - I) for n - p - 1 > n - L + 1 in (5.28) are tentatively estimated sub optimally 

using (5.17) and (5.18). The estimation of a according to (5.24) results in significantly 

improved performance compared to the other more direct methods for the estimation of 

this parameter. 

The MCMC procedure described in the next section proposes a candidate sample (r*, k*) 

and requires evaluation of the posterior distribution given by (5.20) for that candidate. The 

following schema summarizes the process used for this evaluation. 

Evaluation of the Posterior Density 

1. Given a candidate sample (r*, k*) from the MCMC procedure, and a suitable inter

polation function such as a windowed sinc(·), compute Hl(r*),l = 0, ... ,L - 1 of 

order k*. 

2. For sample index n = L - 1, ... ,Nt 

• Follow the steps described in Section 5.3.2 to obtain o'(n - L + 1), in (5.24) . 

• Given the source amplitudes, evaluate zen - L + 1) according to (5.3). 

3. Given the zen), Rzz in (5.22) can be computed, and the posterior density ?r(r, klZ) 

in (5.20) can be evaluated. This quantity is then used by the MCMC procedure to 

determine whether the candidate (r*, k*) is accepted as a sample. 

• 
The computational requirements of the above algorithm are mitigated by the fact that 

the matrix (1 + 0-2)-1 [j£T (r)j£(r)] -1 j£T (r) in (5.24) is independent of n and therefore 

need only be computed once per MCMC iteration. 
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5.4 The reversible jump MCMC algorithm 

We now use the reversible jump MCMC algorithm (Green, 1995) to perform the Bayesian 

computation in jointly detecting the desired model order and extracting the other parame

ters of interest from the posterior distribution in (5.20). 

As described in Chapter 2, the reversibile jump MCMC algorithm allows the sampling 

process to jump between subspaces of different dimensions, which facilitates the detection 

of model order. In the reversible jump algorithm, candidate samples are chosen from a set 

of proposal distributions, which are randomly accepted according to an acceptance ratio 

that ensures reversibility, and therefore the invariance of the Markov chain with respect 

to the desired posterior distribution. Here, we choose our set of proposal distributions to 

correspond to the following set of moves 

1. the birth move, valid for k < M. Here, a new T is proposed at random on [-T max, T max]. 

2. the death move, valid for k > O. Here, a T is randomly chosen to be removed. 

3. the update move. Here, the order of the model is held fixed and the parameters 

describing the sources are updated. 

The probabilities for choosing each move are denoted by Uk, bk, and dk, respectively, such 

that Uk + bk + dk = 1 for all k. In accordance with (Andrieu and Doucet, 1999), we choose 

. {P(k+1) } 
bk=cmm p(k) ,1 , . {P(k) } 

dk+l = c mm p( k + 1) , 1 , (5.29) 

where p(.) is the prior distribution of the kth model according to (5.12), and c is a tuning 

parameter that determines the ratio of update moves to jump moves. We choose c = 0.5 

so that the probability of a jump is between 0.5 and 1 in each iteration (Green, 1995). A 

detailed description of the reversibile MCMC algorithm and the moves has already been 

given in Section 2.2.6. For convenience, we present the algorithm and the moves once again 

as follows 



CHAPTER 5. WIDEBAND ARRAY SIGNAL PROCESSING I 121 

Reversible Jump MCMC 

1. Initialization: set cp(i=O) = (T(i=O), k(i=O»), where i is the iteration index 

2. Iteration i 

• Sample u rv U[O,11, 

• if (u < bk(i») then execute a "birth move" (see Section 5.4.2), 

• else if (u < bk(i) + dk(i») then execute a "death move" (see Section 5.4.3), 

• else, execute an update move (see Section 5.4.1). 

3. i +- i + 1, goto step 2 

----------------------------------------------------------------

5.4.1 Update Move 

Here, we assume that the current state of the algorithm is in (Tk' k). When the update 

move is selected, the algorithm samples only on the space of CPk for a fixed k. A candidate 

T* is sampled from a proposal distribution function q( TIT*), defined as 

(5.30) 

andp(rlk) is the prior density for r given by (5.10). The acceptance function for an update 

move is defined according to (2.24) as 

7r( T*IZ*)q( TIT*) 
rupdate = 7r(TIZ)q(T*IT) . 

Accordingly, substituting (5.20) into (5.31) yields 

rupdate = 
7r(T*IZ*) 
7r(TIZ) , 

MN+vo 

(~O + tr (~~O(Tk)~:Z)) 2 

~O + tr (PHo(T'k)Rzz ) 

(5.31) 

(5.32) 

(5.33) 
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The candidate r* is then accepted as the current state r(i+l) = r*, with probability 

aupdate (r, r*) = min {I, Tupdate}' (5.34) 

The schema for the update move is summarized as follows. 

Update Move 

• Propose a candidate element r* according to (5.10). 

• Evaluate aupdate according to (5.33) and (5.34). 

• Sample u '" U[O,lj' 

• if (u ~ aupdate) then the state of the Markov Chain at iteration i + 1 becomes (r*, k), 

else it remains at (r(i),k). 

• 

5.4.2 Birth Move 

In the birth move, we assume the state of the algorithm is in (rk' k) at the present ith iter

ation, and we wish to determine whether the state is in (rk+b k + 1) at the next iteration. 

According to (2.24), the acceptance ratio of the birth move is therefore defined as 

(5.35) 

We propose a delay vector r* as 

(5.36) 

where r~) is the delay vector at the ith iteration, and 'Tc is a new time delay candidate 

selected uniformly on [-Tmax , Tmaxl. Note that the prior for model order k in (5.12) is 

independent of that for r in (5.10). In the birth move, only the one new source is a 
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random variable; the remaining sources are treated as constants. Accordingly, the proposal 

distribution q (Tk+1,k + 1ITk,k) from (5.35) is then 

q(Tk+l,k+1ITk,k) =p(k+1) x -T1 . 
2 max 

(5.37) 

In contrast, the distribution q(k, Tklk + 1, Tk+1) in (5.35) refers to the proposal distri

bution when one source of k + 1 is randomly removed. Note that the prior for model order 

k is independent of that for T. Thus, we have 

As a result, the ratio of proposal functions in (5.35) becomes 

q(Tk, kITk+l' k + 1) 2Tmax 
= 

q(Tk+1,k+1ITk,k) -A-' 

and the acceptance ratio rbirth becomes 

7r(Tk+l' k + 1IZ*) 2Tmax 
-...:..---=-=-:-=--:--.~..:.. x --

7r(Tk,kIZ) A' 
rbirth = 

= ( 
'Yo + tr (P~o(Tk)Rzz) ) MNt'o 1 1 

'Yo + tr (P~o(Tk+1)R:z) x (1 + 82)N/2 x k + l' 

The probability of accepting a birth move is therefore defined as 

abirth = min {I, rbirth} . 

The schema for the birth move is summarized as follows. 

Birth Move 

• Propose a new element Tc according to (5.10) and a candidate, 

.A,.(i+l) - [.A,.(i) A. 1 'f'k+l - 'f'k ' 'Yc • 

• Evaluate abirth according to (5.40) and (5.41). 

• Sample u rv U[O,lj' 

(5.38) 

(5.39) 

(5.40) 

(5.41) 
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• if (u ::;: D:birth) then the state of the Markov Chain at iteration i+ 1 becomes (T~~;) ,k+ 

1), else it remains at (T~i), k). 

-----------------------------------------------------------

5.4.3 Death Move 

In order to maintain the invariant distribution of the reversible jump MCMC algorithm 

with respect to model order, the Markov chain must be reversible with respect to moves 

across subspaces of different model orders. That is, the probability of moving from model 

order k to k + 1 must be equal to that of moving from k + 1 to k. Therefore we propose 

a death move in which a source in the current state (Tk+1' k + 1) is randomly selected to 

be removed such that the next state becomes (Tk' k) at the next iteration. A sufficient 

condition for reversibility with respect to model order (Green, 1995) is that the acceptance 

ratio for the death move be defined as 

1 
rdeath = --, 

rbirth 

and the new candidate of dimension k is accepted with probability 

D:death = min {I, r death} . 

The schema for the death move is summarized as follows. 

Death Move 

• Select randomly the jth element to form the candidate, 

• Evaluate D:death according to (5.42) and (5.43). 

• Sample u rv U[O,l)' 

(5.42) 

(5.43) 
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• if (u ~ O!death) then the state of the Markov Chain at iteration i+ 1 becomes (T~i+l), k), 

else it remains at (T~ill' k + 1). 

--------------------------------------------------------~----. 

5.4.4 Model Order Determination 

Even though 62 in (5.7) is an estimate of the SNR, in practice it is an unknown quantity. 

Therefore, in this section we discuss conditions that must be placed on this hyper-parameter 

to achieve consistent determination of the model order. According to the simplified posterior 

distribution in (5.20), we can obtain the marginal posterior distribution for model order k 

1f(kIZ) ex: r 1f(T, kIZ)dT. 
jiPk 

(5.44) 

Denoting the true model order and delay values by ko and TO respectively, we perform the 

following eigendecomposition, at T = TO 

(5.45) 

where Q(TO) is an orthonormal matrix which contains the M - k eigenvectors associated 

with the M - k smallest (noise) eigenvalues of the matrix Rzz , which are placed in the 

diagonal matrix, A(To) 

(5.46) 

For convenience, these eigenvalues Ai, i = 1,2, ... , M - k are arranged in ascending order. 

Assuming that Nt is large and that the SNR level is moderate, the posterior distribution 

function 1f(T,kIZ) concentrates around the true value TO. As a result, we can approximate 

the integral in (5.44) as follows 

1 (~) k (~) ( M -k ) -( ~) 
1f(kIZ) ~ (1 + 62)Ntk/2 2T:ax exp k~:::' 'Yo + t; Ai (5.47) 
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Let us define the event Ei as the declaration of a model order in error by i signals. 

Thus, the event Ei will occur if we declare k = ko + i or k = ko - i. We assume 

P(E1) > P(E2 ) > ... > P(EM-l), which implies that 7r(kIZ) is unimodal in k. Ac

cordingly, sufficient conditions which must be satisfied for consistent detection of the model 

order are 

li 7r(ko + liZ) 0 
m I ) -7, Nt--oo 7r(ko Z 

(5.48) 

li 7r(ko - liZ) 0 m -7 • 
Nt--oo 7r(koIZ) 

(5.49) 

From (5.20), we have 

( MNt+VO) 

7r(ko + liZ) '= 1 (+ ",",M-ko-l A.) - 2 = ~ x 'Yo L..-i=l t 

7r(koIZ) 2Tmax (ko + 1)(1 + 82)Nt /2 'Yo + Ef!lko Ai 
(5.50) 

and 

(MNt+VO) 

7r(ko - liZ) = 2T,:ax x ko(1 + 82)Nt/2 ('Yo + E;r:+1 Ai) - 2 (5.51) 
7r(koIZ) ~ 'Yo + E i =l ° Ai 

From (5.50), we can see that (5.48) is satisfied if 

Similarly, from (5.51) we can see that (5.49) is satisfied if 

1 + 82 < 'Yo + L..-i=l i ( 
",",M -ko+1 A ) M 

",",M-ko A 
'Yo + L..-i=l i 

(5.52) 

(5.53) 

Note that the argument on the right in (5.52) contains only noise eigenvalues and hence 

is very close to one, whereas that in (5.53) contains the smallest signal eigenvalue and the 

noise eigenvalues is significantly larger than one. Therefore, from (5.52) and (5.53) we have 

( 'Yo + Ef!lko Ai ) M < 1 + 82 < ('Yo + Ef!lko+1 Ai) M (5.54) 
",",M-ko-l A "M-ko A 

'Yo + L..-i=l i 'Yo + L..-i=l i 

Therefore, the specific range of the hyper-parameter 82 is dependent on the number of 

sensors, M, and the current SNR level. Note that if 82 is set too small, the expression in 
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(5.50) will not converge to zero. Thus, it is possible for the algorithm to overestimate the 

model order as 7r(ko + liZ) is comparable to 7r(koIZ). Likewise, if 82 is set too large, the 

expression in (5.51) will not converge to zero. As a result, the algorithm can underestimate 

the model order when 7r(ko - liZ) is comparable to 7r(koIZ). 

Referring to (5.54), the determination of the correct value of 82 requires the knowledge 

of the true model order ko. However, we can still obtain useful information from (5.54) 

by having an estimate of the SNR level. In the radar application, this is a reasonable 

assumption as we can obtain an estimate of the noise level by listening for the power level 

when it is assumed there is no signal present. Similarly, we can get an estimate of signal 

power by listening when the signal is transmitting. Thus, the right limit in (5.54) can be 

approximated if there is some knowledge of the SNR level. In practice, the left-hand term 

in (5.54) is close to unity. With this knowledge, we can obtain a reasonable estimate of the 

range within which 82 must fall. 

5.5 Simulation Results 

The proposed algorithm is now applied to two scenerios. One is wideband and the other 

narrowband. In each scenerio, snapshots are generated using (5.1) with the parameters 

described in Tables 5.1 to jointly detect and estimate the relevant parameters (T, k) and the 

source amplitudes sk{n). In these experiments, the model order k and the ISD parameters 

T are kept constant throughout the entire observation period. To set up the corresponding 

interpolation matrix for a set of T, a sine function is chosen such that the (m, l)th element 

of the interpolation matrix for the kth source is given by 

[H- ()] sin (7r Ie (1- mTk») W (l ) Tk = X - mTk , 
m,l 7r Ie (l - mTk) 

(5.55) 

where 1 = 0,1, ... , L - 1 and m = 0,1, ... , M - 1, Ie is the cutoff frequency and W(·) is a 

Hamming window function. In all experiments, the hyperparameters 10 and Vo are set to 

zero. 
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Parameter 
SNR (dB) 

M 
K 
L 

Nt 
(j2 

w 
d2 

Fs (Hz) 
o (deg) 
T (sec) 

Value 
14 
8 
2 
8 
50 

0.0169 
25.12 
1,000 

[-3.44,3.44J 
[-7.5,7.5J x 10-5 

Table 5.1: Common parameters for the Experiments 1 and 2. 

5.5.1 Experiment 1: Wideband Scenario 

128 

In this experiment, we generate K = 2 Gaussian processes for the sources that are zero 

mean with variance d2(j!, and bandlimited as follows 

f E [100,400J Hz, (5.56) 

where the bandwidth of the signals is 300 Hz. According to (3.3), the interspacing of two 

adjacent sensors, 6., can be determined as 

1 C 6. = 2Amin = 800' (5.57) 

The incident angles are -3.44 and 3.44 degrees, respectively, which are separated by an angle 

less than a standard half-beamwidth. A standard beamwidth is given as (Johnson, 1982) 

6.BW = sin-1 (':6.) = sin-1 (~) = 14.18°, (5.58) 

where 6. = >./2. Using the definition in (3.2), we can obtain the corresponding ISDs as 

follows 

T = ~ sinO = [-7.5,7.5J x 10-5 . (5.59) 

We can then generate Nt = 50 snapshots, according to the other parameters in Table 

5.1. Figure 5.1 exhibits the magnitude spectrum of the generated wideband signals. The 
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0.9 

0.8 

450 500 

Figure 5.1: The magnitude responses of the wideband signals that are bandlimited within 
100 and 400 Hz for Experiment 1. 

hyper-parameter 62 is assumed known and is chosen as follows 

62 = lOSNR/ lO = 1014/ 10 = 25.12, (5.60) 

which is within the bounds specified by (5.54). The proposal distribution q(T, k) used for 

these experiments is given by 

q(T, k) = p(k) . p(Tlk) (5.61) 

where p(Tjk) and p(k) are the prior distributions given respectively by (5.10) and (5.12). 

The proposed algorithm randomly initializes all unknown parameters, and randomly 

assigns the initial model order k uniformly in [1, kmax], where kmax = M - 1 = 7, is the 

maximum allowable model order. The number of MCMC iterations used in the algorithm 

is 10,000. Figure 5.2 shows the resulting histogram for the number of sources, from which 

the algorithm predicts the correct number of sources, k = 2, whereas Figure 5.3 displays 

the estimates of the number of sources for each iteration as the algorithm proceeds. The 

algorithm takes about 25 iterations to converge to the correct order. However, the algorithm 

takes about 2,000 iterations for a burn-in before the chain centres on the true LSD values. 
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Figure 5.2: Histogram of the number of sources after burn-in for Experiment 1. 

Figure 5.4 shows a comparison between the ISD estimates of the sources and the true 

values after the burn-in stage, versus iteration number. It is clear that the chain centers 

on the true ISD values. Figure 5.5 shows the marginal histograms of the ISDs from which 

the MAP estimates are obtained. As a result, the MAP delay estimates T from the above 

simulation are shown in Table 5.2, which also summarizes a comparison between the true 

and estimated values of the incident angles and the corresponding ISD parameters. Given 

the MAP estimate of the ISDs T, the algorithm can now restore the source signals, as 

shown in Figure 5.6. It is clear that the signal amplitudes are well separated and restored 

by MCMC. Table 5.3 lists the mean-squared error of the restored amplitudes. 

5.5.2 Experiment 2: Narrowband Scenario 

In this experiment, we apply the algorithm to a narrowband scenario, where we reduce the 

bandwidth of the signals from 300 Hz to only 50 Hz. As in the previous experiment, we 

generate two Gaussian processes that are zero mean with variance c52(T~ and bandlimited 
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Figure 5.3: Instantaneous estimate of p(kIY), for the first 200 iterations of the chain for "
Experiment 1. 

Parameter True Estimated Relative 
Difference (%) 

70 -7.510 .[) -7.9510 -[) 6.00 
71 7.510-5 7.2510-5 3.36 
()o -3.44 -3.65 6.00 
()1 3.44 3.32 3.37 

Table 5.2: Comparison between the true and estimated parameters for Experiment 1. 

Source 1 2 
MSE (dB) -16.19 -15.97 

Table 5.3: The MSE of the restored source amplitudes relative to the true signal amplitudes 
for Experiment 1. 
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Figure 5.4: Instantaneous estimate of the ISDs T for two sources: the solid lines are the 
estimates and the dashed lines are the true values for Experiment 1. 
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Figure 5.5: Histogram of the ISDs of the sources after bum-in for Experiment 1. The true 
values are ±7.5 x 10-5 seconds. 
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Sample Index 

Figure 5.6: A comparison between the true and the restored amplitudes using MCMC in one 
realization for Experiment 1: solid lines correspond the restored amplitudes using MCMC 
and dashed lines correspond the true amplitudes. 

as follows 

f E [350,400] Hz, (5.62) 

where the bandwidth of the signals is 50 Hz. Using the parameter values as given in Table 

5.1, we can then generate Nt = 50 snapshots. In other words, by using the same data model 

developed in section 5.2 and by tuning the bandwidth parameter f:l./k, one can model both 

narrowband and wideband scenarios. Figure 5.7 shows the magnitude responses of the 

generated narrowband signals. 

Figures 5.8 and 5.9 show the histogram and the trajectories of the estimation of the ISD 

parameters, respectively. As in the experiment for the wideband scenario, the algorithm 

runs for 10,000 iterations, and the chain centers very quickly around the true parameter 

values for the narrowband scenario as well. Table 5.4 summarizes a comparison between 

the true and estimated values of the incident angles and the corresponding ISD parameters. 

Furthermore, Figure 5.10 exhibits a comparison between the restored and the true ampli

tudes. Table 5.5 lists the mean-squared error of the restored amplitudes for the narrowband 



CHAPTER 5. WIDEBAND ARRAY SIGNAL PROCESSING I 134 

50 100 150 200 250 300 350 400 450 500 
Frequency (Hz) 

Figure 5.7: The magnitude responses of the narrowband signals that are bandlimited within 
350 and 400 Hz for Experiment 2. 

case. 

As seen in the simulations, the proposed method can perform joint detection, estimation 

and signal recovery for both narrowband and wideband scenarios. To date, there appears to 

be no previous method which accomplishes the same set of tasks. Therefore, performance 

comparisons with previous methods involves comparing the performance of only a subset 

of the capabilities of the proposed method with the respective criteria of previous methods. 

We present comparisions with the theoretical Cramer-Rao lower bound (CRLB) derived in 

Parameter True Estimated Relative 
Difference (%) 

TO· -7.510 -5 -6.9410 -5 7.47 
Tl 7.510-5 8.1310-5 8.40 
00 -3.44 -3.18 7.56 
(It 3.44 3.73 8.43 

Table 5.4: Comparison between the true and estimated parameters for Experiment 2. 
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Source 1 2 
MSE (dB) -17.31 -17.76 

Table 5.5: The MSE of the restored signals relative to the true signal amplitudes for Ex
periment 2. 
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Figure 5.8: Histogram of the ISDs of the sources after burn-in for Experiment 2. 

Parameter 
M 
K 
L 

Nt 
No. of MCMC iterations 

(72 
w 

Fs (Hz) 
T (seconds) 

Value 
8 
2 
8 

50 
2,000 

0,0169 
1,000 

[ -0.510-4 0,510-4] 

Table 5.6: Parameters for the performance evaluation for the proposed lllethod. 
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Figure 5.9: Instantaneous estimate of the ISDs T for two sources for Experiment 2: the 
solid lines are the estimates and the dashed lines are the true values. 
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Figure 5.10: A comparison between the true and the restored amplitudes using MCMC 
for one realization for Experiment 2: solid lines correspond the restored amplitudes using 
MCMC and dashed lines correspond the true amplitudes. 
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Appendix C for this problem, and goodness-of-fit and efficiency tests (Li et al., 2001). We 

also present a comparison of the proposed method and the method of Valaee and Kabal 

(1995). 

We now present the evaluation of the performance of the new method in terms of 

variances of the estimates of T as a function of SNR. This evaluation is obtained by applying 

the algorithm to 100 independent trials over a range of SNR, from -5dB to 18 dB. The 

remaining parameter values are given in Table 5.6. 

The variances of the estimated T are plotted in Figure 5.11 along with the respective 

theoretical CRLBs. As shown in Figure 5.11, for SNR levels lower than -2dB, the algorithm 

starts to break down (i.e., it departs rapidly from the CRLB). However, it is seen that the 

variances approach the CRLB closely, above this level. The reasons why the variances 

do not come closer to the theoretical CRLB are: 1) interpolation errors due to a non

ideal interpolation function being used and 2) the suboptimal procedure for estimating the 

source amplitudes. This procedure has an impact on the estimation accuracy of the DOA 

parameters. Further simulation results, as shown in Figure 5.12, demonstrate that the 

probability of an error in detection of the model order tends to diminish toward zero with 

increasing number of snapshots, Nt, with moderate SNR values. 

We also use the goodness-of-fit and efficiency tests (Li et al., 2001) to evaluate the 

proposed method. Denote the normalized estimation error squared (NEES) for T by 

where 

A -TR-l
ET = T T T, 

T ~ T-f-, 

The quantity ET is chi-squared distributed with K degrees of freedom, that is 

(5.63) 

(5.64) 

(5.65) 

(5.66) 
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Figure 5.11: Mean squared error of 7" versus the CRLB. 
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Figure 5.12: Probability of detection as a function of number of snapshots for different SNR 
values. 
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Figure 5.13: The ellipsoids of the NEES with 95% confidence interval on MCMC with 
different SNR's: the center of each ellipse corresponds the true value of T, and the asterisks 
represent the distribution of the estimates of T of the 100 independent trials for a particular 
SNR. 
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Given a confidence level, say 95%, a set of g-sigma ellipsoids for ET (Li et al., 2001) can 

be obtained with different SNR values. These ellipsoids can be used to evaluate how well 

the MCMC method is performing in estimating T. Figures 5.13 and 5.14 shows the impact 

of different SNR values on the estimation of T with a 95% confidence interval. It is clear 

that as SNR becomes large, the estimates concentrate more closely to the center of each 

ellipsoid, which corresponds to the true values of T. However, as SNR falls below OdB, it is 

found that the estimates distribute loosely around the center, as evident in Figures 5.13 and 

5.14. Accordingly, we can conclude that the proposed method would start to break down in 

estimating T when SNR is below OdB under the conditions used for this set of experiments. 

In addition, the proposed method was tested to determine whether it is an efficient 

estimator. Using the 95% confidence level, the two-sided probability region for the NEES 

(Li et al., 2001) for T is 

(5.67) 

Figure 5.15 shows the NEES for ET versus different SNR values. For SNR values above OdB, 

the normalized errors fall inside the regions, that is, the method is consistent. However, 

as the SNR falls below OdB, the errors are outside the bounds, indicating that the method 

starts with break down when the SNR is below OdB. These findings are indeed consistent 

with those in Figures 5.11, 5.13, and 5.14. 

Wideband array processing methods that rely on focusing in Valaee and Kabal (1995) 

and Wang and Kaveh (1985) require significantly more observations than the proposed 

method. Focusing methods require at least JM snapshots, where J is the number of 

frequency bins, so that full-rank covariance matrices can be formulated at each frequency, 

a requirement for DOA estimation. Since J is typically on the order of 32, a minimum 

of 256 snapshots would be required before DOA estimates could be produced using the 

example of this section. Typically 10 times this number would normally be used, so that 

stable covariance matrix estimates would be obtained, yielding stable DOA estimates. As 

seen in this section, DOA estimates that come close to the CRLB can be produced with 

less than 50 snapshots with the proposed method. 
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Figure 5.15: Normalized estimation error squared from different SNR values with its 95% 
probability region. 

We now compare the performance between the proposed method and the TCT approach 

in Valaee and Kabal (1995). Table 5.7 lists the common parameters used in the comparison. 

A total of 50 independent trials is run on each of these algorithms for different SNR values. 

The incident angles used are separated by a half-beamwidth, For the proposed method, 

5,000 MCMC iterations are run for each simulation, whereas for the TCT algorithm, 32 

frequency bins are used. Figure 5.16 depicts the variances of the ISD estimates obtained 

by these algorithms for different SNR values. According to Figure 5.16, the proposed 

method outperforms the TCT method throughout the range of SNR values shown. This 

can be explained by a few reasons. First, the TCT method requires sufficient data in each 

frequency bin so that a good estimate of the covariance matrix at that frequency can be 

determined. Therefore, when Nt is not large, the performance of the TCT method degrades. 

Second, at low SNR, the signal and noise subspace estimates, which are needed by the TCT 

method, degrade significantly at low SNR, giving rise to an early threshold. 

Moreover, according to Figure 5.17, at high SNR, the detection performance of the TCT 
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Parameter () (degrees) 
Value 8 2 320 [3.67,10.60] 

Table 5.7: Parameters for the performance comparison between the proposed method and 
the TCT. 
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Figure 5.16: Performance comparison between the proposed method and the TCT. 

using the MDL is comparable with that of the proposed algorithm, but at low values of SNR, 

the detection performance of MDL used by the TCT degrades significantly. On the other 

hand, the proposed method, using a completely different detection approach, outperforms 

the TCT method under these conditions. 

The MCMC method requires roughly 4 to 5 times more computations than the TCT 

method, for a typical parameter set used here. The number of flop counts per each iteration 

of the MCMC method is 

flopcountsMcMC ~ 2Nt M2 + 2M3 - 2Nt + LM x [2k2 + kL], (5.68) 
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Figure 5.17: Probability of detection obtained from the proposed method and the TCT as 
a function of SNR values. 

and that of the TCT in Valaee et al. (1999) is 

flop countsTcT :::::l Mft log2 M + 2Nt M 2 + [1; J + 9jM3. (5.69) 

This apparent disadvantage is mitigated by the fact that the MCMC algorithm provides 

estimation of the source waveforms, in conjunction with joint detection of model order and 

estimation of the DOA parameters. Substantially more computations would be required 

by the TCT method if the source amplitudes were also to be recovered. Further, the 

MCMC method is easily "parallelizable", thus offering the potential to considerably reduce 

computation times. 

The source estimation procedure described in section 5.4 is recursive. Under adverse 

conditions, the source estimates generated according to this procedure may occasionally 

become unstable, with very large error. As an example, when the SNR is 2dB, such a 

phenomenon appears with an approximate probability of 5%. However, when the SNR is 

-2dB, the probability grows to 22%. This problem may be alleviated by re-initializing the 

source amplitudes at periodic intervals throughout the observation interval. 
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5.6 Conclusion 

A novel structure for wideband array signal processing is proposed. It has been demon

strated the method applies equally well to the narrowband case. A Bayesian approach, 

where a posterior density function that has the nuisance parameters integrated out is for

mulated, is used. The desired model order and DOA estimation parameters are determined 

through a reversible jump MCMC procedure. The source amplitudes are given using a MAP 

estimate. Simulation results support the effectiveness of the method, and demonstrate re

liable detection of the number of sources and estimation of their times of arrival in a white 

noise environment with a single linear array. As a result, the source signals are reliably 

restored. It has been demonstrated that the method requires only real arithmetic, and 

that significantly fewer observations are needed relative to what is required for focussing 

methods. 



Chapter 6 

Wide band Array Signal Processing 

II 

This chapter proposes a novel online tracking and detection algorithm for wideband array 

signal processing. Based on the wideband data model in Chapter 2, this method extends 

the sequential Monte Carlo methods (otherwise known as particle filtering) techniques for 

recursive state estimation. This proposed method finds application in various areas of 

telecommunications, including radar, sonar, and other wireless communication problems, 

where locating moving targets and extracting the waveforms for classification are needed. 

Conventional approaches to this problem assume the availability of angle-bearing infor

mation that is used to track the kinematics, like the locations, velocities, and accelaration, 

of the targets. In practice, the angle-bearing information must first be estimated; this is 

much more difficult process in the wideband case than in the narrowband. 

The proposed method can recusively estimate the direction-of-arrival (DOA) information 

corresponding to the sources, which will be used as the input to another process to track 

the kinematics of the targets. The proposed method first detects the number of unknown 

wideband sources using a statistical testing procedure, followed by the sequential estimation 

of the DOAs of these identified sources and the waveform extraction of these sources using 

a particle filter. Computer simulations demonstrate the ability of the proposed method 

146 
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in detecting the time-varying nunber of sources in different scenarios as time progresses. 

The results also show that the DOA trajectories of the identified sources are tracked well 

and their signal waveforms are also well restored. Finally, the posterior Cramer-Rao bound 

(PCRB) Tichavsky et al. (1998) is also presented to demonstrate that the estimates by the 

proposed method lie consistently within the bound. 

6.1 Introduction 

A new approach for wideband array signal processing proposed in Chapter 5 in Ng et al. 

(200280) adopts a novel data model in the time-domain, and incorporates the Markov 

chain Monte Carlo methods for parameter estimation. Previous array signal processing 

approaches assume that the parameters of interest are static within an observation window 

such that batch or offline processing must be used. Unfortunately, this static assumption 

is often violated in practice, leading to suboptimal results. Since the problem of moving 

source localization is critical to several important applications in array signal processing, 

online approaches that can recursively estimate the parameters of interest are needed. 

In this chapter, we propose a new integrated procedure for joint recursive online detec

tion of model order, estimation and tracking of DOAs, and recovery of the source waveforms 

for the wide band scenario. Previous approaches for array signal processing in the wideband 

case have addressed only one, or possibly only a few of these problems. Specifically, there 

exist many previous algorithms for DOA tracking, e.g., Gershman (1999); Katkovnik and 

Gershman (2000); Wigren and Eriksson (1995); Larocque et al. (2002), but these only apply 

to the narrowband scenario. The wideband tracking problem using arrays of sensors has 

not received much attention to date. 

The array processing problem for the wideband scenario is of considerable interest in 

many communication systems, like radar, sonar, and the wireless 9Il-problem, etc. In radar 

applications Haykin (1985), the instantaneous detection and location of targets of interest 

can be used in improving the accuracy of navigation aids and/or surveillance systems. In 

addition, the waveforms extracted from the multiple targets can be used to aid in target 
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classification. Further, wideband target tracking followed by waveform recovery of sources 

is an essential component of wideband communications for classification with highly ma

neuvering platforms in hostile mobile environments. In sonar applications, the important 

goals are the detection and tracking of submarines Van 'frees (2002). For applications in 

the wireless 9Il-problem, the need to locate wireless callers has recently gained attention. 

As a matter of fact, it is now a requirement for Commercial Mobile Radio Service providers 

in the US to provide ubiquitous location coverage for all wireless 911 callers within 125 

meters 1mS by October 2001 (Swales et al., 1999; Reed et al., 1988). 

The proposed method uses the sequential Monte Carlo (SMC) methods in conjunction 

with the Markov Chain Monte Carlo (MCMC) methods Gilks et al. (1998); Andrieu et al. 

(1999). Simulation results show that the proposed particle filtering approach can track the 

DOAs of the moving sources and recover the source waveforms. In this chapter, we also 

present posterior Cramer-Rao bound (PCRB) Tichavsky et al. (1998) to demonstrate that 

the estimates made by the proposed method are consistently close to the bound. 

6.2 The State-Space model 

In a manner similar to Chapter 4, we assume the states [T(t), aft)] at t = n evolve according 

to 

T(n) = T(n - 1) + lTvv(n), 

a(n) "'N(o,lT~Ik(n»)' 

and the transformed observation model z(n) is given in (3.47) as follows 

zen) = HO(T(n))a(n) + lTww(n). 

The noise vector v(n) E nk(n) is an iid Gaussian variable, defined as 

(6.1) 

(6.2) 

(6.3) 

(6.4) 
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where 0"; is the state noise variance. The dimension k(n) of the model is described by the 

following stochastic relationship at time n, 

k(n) = k(n - 1) + Ek(n), 

where Ek(n) E [-1,0,1] are discrete iid random variables such that 

{
o, 

P(Ek(n) = -1) = 
h/2, 

k=O 

otherwise, 

{
1 - h/2, k = 0, kmax 

P(Ek(n) = 0) = 

1 - h, otherwise, 

{
O' 

P(Ek(n) = 1) = 

h/2, otherwise, 

k = kmax 

(6.5) 

(6.6) 

where h is the probability of a change in model order when k i= 0, kmax' and kmax is the 

maximum allowable number of sources. In (6.6), it is tacitly assumed that the model order 

changes by no more than one in each sample period. 

In the proposed system of equations, the noise variances ~ and O"~ are assumed unknown 

and constant over time. The unknown vectors of amplitudes a( n) are assumed iid between 

snapshots. 

We define the vector of all parameters () describing the received signal model as 

(6.7) 

where the notation (. h:n indicates all the elements from time 1 to time n. 

The following procedure for developing the desired posterior distribution is similar to 

that presented in Chapters 4 and 5. The joint posterior distribution of all the parameters 

is 7r (lhn) ~ P (()l:nlzl:n), which can then be expanded using appropriately selected prior 

distributions of the parameters, according to Bayes' theorem as 

7r (()l:n) r:xP (zl:nITl:n' al:n, k1:n, 0";, O"~) P (rl:nlkl:n, 0";) x 

P (al:nITl:n, k1:n, O"!) p(kl:n)P(O"!)p(O";) , 
(6.8) 
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where p(zl:nl·) is the likelihood term, and the remaining distributions constitute the joint 

prior distribution for the parameters fJ. The individual terms in (6.8) are given as 

n 

P (zl:nITl:n' al:n, k1:n, (T!) = II N (if oCT j )aj, (T!I M ) , 

j=l 

n 

P(Tl:nlkl:n,(T~) = IIN(Tj_l,(T~Ikj)' 
j=l 

n n 

p(kl:n) = IIp(kjlkj-d = II Ek(j). 
j=l j=l 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

The distribution of (6.9) follows from (3.47) and the Gaussian assumption on the noise. 

The prior distribution of (6.10) follows (6.1) from and the normality assumption on v(n). 

The prior distribution defined in (6.11) is the maximum entropy prior with the parameter 

82 set to an estimate of the SNR. The prior distribution on the variances (T; and (T~ are 

both assumed to follow the inverse Gamma distribution, defined as follows (Orton and 

Fitzgerald, 2002) 

The inverse Gamma distribution is noninformative for v, 'Y = 0., 

(6.13) 

(6.14) 

The parameters of interest are primarily the ISDs Tl:n and the model order ki :n. The 

amplitudes al:n along with the noise variances (T; and (T~ can be estimated separately (as 

discussed later), and hence may be considered nuisance parameters. 

By substituting the prior distributions into (6.8) and integrating out the amplitude 
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parameters in a manner similar to that in Chapter 4, the resulting posterior distribution is 

7r(Tl:n,kl:n,O"~,O";)=rr M/21 k/ exp{2-;zJP~(Tj)Zj}X 
j=l (27r0"~) (1 + 62 ) j 2 O"W 

(6.15) 

where 

(6.16) 

(6.17) 

and 

(6.18) 

A maximum a posteriori estimate of the amplitudes, knowing the other parameters is 

readily available as 

(6.19) 

Thus the amplitude parameters need not be included in the particle filter. Instead, they 

can be estimated at each iteration, after sampling the other parameters. 

The MAP estimators of the variances can be readily obtained by comparing (6.15) with 

a product of Inverted Gamma distributions. Using the fact that the mode of the Inverted 

Gamma distribution is ih, it follows that 

2 ~ + ~ L:j=l (Tj - Tj-ll (Tj - Tj-1) 
O"vMAP (n) = ~ + ! L:"-' k· + 1 ' 

2 2 3=1 J 

(6.20) 

2( ) _ 1f + L:j=l zJ P~ (Tj) Zj 
O"wMAP n - T+Mn+1 . (6.21) 
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We choose however to keep these parameters in the expression of the posteriori distribu

tion in (6.15). Since the nuisance parameters can be estimated, we now define a new vector 

o of parameters to sample with the particle filter, as 

(6.22) 

Note that the probabilities in the term I1j=lP(kj !kj - 1) == p(Ek(j)) in (6.15) are inde

pendent of T and only weakly dependent on k. Hence, this term does not significantly affect 

the estimation of 0 and is therefore ignored in subsequent analysis. Thus, our estimation 

problem is now independent of the parameters h and Ek(j) in (6.6). 

6.3 Sequential Me 

Details about the sequential Monte Carlo (SMC) procedure has been given in Section 2.3. 

For convenience, we briefly describe the SMC procedure in this section. 

Since it may be difficult or impossible to draw samples directly from the desired dis

tribution 7I"(on), an importance function q(on) that is "easy-to-sample" is used instead to 

generate N ~ 1 samples. The distribution q(on) must include the support of 7I"(on). The 

so-generated samples, also known as particles, are used to compute a set of time-varying im

portance weights w(o~»), i = 1, ... , N, that can numerically estimate the target distribution 

71"( on), i.e., 

(6.23) 

where (dOn) is a small, finite region surrounding an On of interest and t5w{O~» is an indicator 

function defined as 

(6.24) 

For notational convenience, we adopt w{i)(n) = w(o~»), i = 1, ... , N, from this point on

wards. Denote a set of N normalized importance weights by w{i)(n), i = 1, ... , N, defined 
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as follows 

-(i) w{i)(n) 
W (n) = '\'JIl 0)()' 

L...,J=l W n 
(6.25) 

The objective of the SMC procedure is to update the unnormalized weights w{i)(n) of 

the approximate posterior distribution in (6.25) recursively and sequentially, based on the 

arrival of new observations. According to (2.43), this set of weights can be recursively 

updated by the following expression 

C) C) C) 
W {i)(n) = -(i)( _ 1) p(znlo:; )p(o:; 10::-1 ) 

w n x (i) (i) , 
q( O:n 10:1:n-1' Zl:n) 

i= 1, ... ,N, (6.26) 

where the terms in the numerator are the likelihood function and the prior distribution 

function defined in (6.9) and (6.10), respectively, whereas the term in the numerator refers 

to the importance function. 

To approximate an optimal importance function (Doucet et al., 2000; Doucet, 1998; 

Gordon et al., 1993) that minimizes the overall variance of the weights, that includes the 

support of the target distribution 7r(O:n), and allows the recursivity defined in (6.26), one 

can select it to be proportional to the distribution functions (Orton and Fitzgerald, 2002) 

in the numerator in (6.26), that is 

q(o:{i) Io:{i) z) '" p(z Io:(i))p(o:{i) Io:{i) ) 
n n-1' n n n n n-1' (6.27) 

To determine such an optimal importance function, we let C( T n) be the logarithm of the 

optimal importance function, i.e., 

(6.28) 

We use a second-order Taylor expansion on C (Tn) about the sensibly chosen point T n -1 to 

give 

(6.29) 
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where 'VLx(Tn) E nkx1 and 'V2Lx(Tn) E nkxk are the gradient vectors and the Hessian 

matrix of Lx (T n), respectively, defined as follows 

(6.30) 

(6.31) 

Analytical expressions for (6.30) and (6.31) can be found in the Appendix D. Using (6.29), 

it can be shown (Orton and Fitzgerald, 2002) that the importance sampling function for 

Tn can be expressed as a Gaussian distribution with the following form 

q(T(i) IT(i) z) rv N (m (i) :E(i») 
n n-1' n n' n , 

where 

(i) _ (2 () 2 ( ))-1 :En - - \7 L z Tn + \7 Lr Tn , 

(6.32) 

(6.33) 

(6.34) 

As described in Section 2.3, the recursion in (6.26) quickly degenerates, so that after 

a few time steps, only a handful of particles have weights significantly different from zero. 

The Sampling Importance Resampling (SIR), which resamples the particles according to 

their respective importance weights, is first used to cope with the degeneracy, followed 

by an MCMC step to re-introduce the statisical diversity amongst the resampled particles 

(Andrieu et al., 1998, 1999; Larocque et al., 2002). 

In summary, the proposed SMC approach is basically a combination of a sequential 

Bayesian importance sampling, the sm procedure, and an MCMC step. Note that the 

only parameter in a which is subjected to the sampling procedure is the ISD vector T. 

The model order ken) is determined using a statistical testing procedure to be described in 

Section 6.4. The desired amplitudes (which give the source waveforms), are estimated from 

(6.17), and the variances are estimated according to (6.20) and (6.21). We summarize these 

steps in the following table. 



CHAPTER 6. WIDEBAND ARRAY SIGNAL PROCESSING II 155 

Sequential Importance Sampling Algorithm 

Initialization 

For time n = 1, 

• sample N particles r(i), i = 1, ... , N from q('I')' 

. . . liz th . ht (i)' - 1 N t 7r(r(i» • lllltIa e e welg s w ,'/, - , ... , 0 q(r(i»' 

• no~malize the weights to w(i)(n) = 2:i:~i~~~(n)' 

Then for n = 2,3, ... 

1. Sequential Importance Sampling Step 

(a) Sample N particles of r~) for i = 1,2, ... , N from the approximately optimal 

importance function given by (6.32) as follows 

(i) (i) (i) r n f'V q(r n Ir1:n- 1 , Zl:n) 

(b) Evaluate the importance weights for N particles as follows: 

(i) (i) (i) 
(i)( ) _ -(i)( -1) p(znlrn )p(rn Ir n-l) 

W n - w n x (i) (i) , 
q(rn Ir1:n_1,Zl:n) 

and hence the normalized importance weights as follows: 

(i) 
-(i)( ) _ w (n) 

w n - N 
Lj=l w{j)(n) 

2. Sampling Importance Resampling Step 

Multiply/Supress the particles r(i)(n) respectively with high/low importance weights 

w(i)(n) to obtain N random samples approximately distributed according to 7!'(rl~~). 

• Sample a vector of l distributed as: 

P(l(j) = i) = w(i)(n) 
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• Resample the particles with the index vector: 

• Re-assign all the weights to w{i)(n) = it 

3. MCMC Step Here we discuss resampling the particles using an MCMC procedure with 

fixed model order k = ken). 

As mentioned in Section 2.3, we choose the Metropolis-Hastings (M-H) algorithm 

(Gilks et al., 1998; Ruanaidh and Fitzgerald, 1996; Hastings, 1970) for the sampling 

procedure. Given that the current state is in (Tk(n), ken)), the algorithm samples a 

candidate Tk according to the proposal distribution q (TkITk(n)) which is given from 

(6.1) as 

The candidate is accepted with probability 

O:update (Tk(n), Tk) = min {I, rupdate} , 

where rupdate is given by (Hastings, 1970) 

11" (Tklz*) q (Tk(n)ITk) 
rupdate = 11" (Tk(n)lzt) q (TkITk(n)) . 

Accordingly, substituting (6.15) into (6.37) yields 

exp {_~ztTP~(T*)Z;} 
= 

exp { - 2.!:a zT P~( Tt)Zt} . 
rupdate 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

If the candidate Tk is accepted, then the current state becomes T1i)(n) = Tk' Other-

wise, it remains at the current state, that is, T1i )(n) = T1i )(n). 

------------------------------~---------------------------------. 



CHAPTER 6. WIDEBAND ARRAY SIGNAL PROCESSING II 157 

Note that the MCMC process normally requires a "burn-in" period for the chain to 

reach equilibrium. However in this case, this is not required, since the particles are al

ready distributed according to the desired posterior distribution, which is the invariant 

distribution of the chain, before application of the MCMC procedure. 

6.4 Model Order Detection 

In this section, we present a rational technique that consists of two stages for determining 

which model is most consistent with a given set of data. It is necessary that the number 

of sources be accurately determined before the particle filters can accurately estimate the 

DOA tracks. The proposed method assumes the observation noise variance a! is known. If 

the value of a! is not known beforehand, it could be estimated for a hypothesized value of 

k by (6.21). 

To facilitate the model order detection, we work on the data model that is expressed as 

a linear combination of individual sources, as follows 

where 

Denote y -ko (n) as follows 

k(n)-l 

y(n) = L H(Tk(n»sk(n) + w(n), 
k=O 

= y(n) + w(n), 

k(n)-l 

y(n) = L H(Tk(n»sk(n). 
k=O 

k(n)-l 

y-ko(n) = L H(Tk(n»Sk(n) , 
k=fko 

(6.39) 

(6.40) 

(6.41) 

(6.42) 

which amounts to an estimate of the observation y(n) by excluding the contribution of the 

koth source. 

In the model order detection, two hypotheses are considered at each time n. They 

are 'Hb and 'Hd, which represent the birth of a new source and the death of an existing 
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source, respectively. In the hypothesis 1ib, a new source in addition to the existing sources 

is proposed such that ken) ~ ken) + 1, whereas in the hypothesis 1id, one of sources from 

the existing sources is proposed for removal such that ken) ~ ken) - 1. Deciding which 

hypothesis is taken amounts to testing whether the current model order fits the observation. 

Next, we present these procedures and the associated statistical testing proceduces in detail. 

6.4.1 Death of an existing source 

In this step, the existing ken) sources are sequentially removed, and the normalized squared 

residuals, ck(n), for k = 0, ... , ken) - 1, are each evaluated as follows 

(6.43) 

where ey(n) is the residual, defined as 

ey(n) = yen) - Y_k(n). (6.44) 

Under the hypothesis that the kth source is zero, the quantity ck(n) is x2-squared dis

tributed with M - ken) + 1 degrees offreedom, that is 

(6.45) 

Thus, it is possible to test whether a particular source contributes significantly to the 

observation yen) at time n. The normalized error ck(n) is compared to a threshold Cd > 0 

to test whether the current model order ken) fits the data, that is 

(6.46) 

Here, the probability of the normalized error ck(n) exceeding a threshold Cd > 0 is ad. 

If ck(n) is larger than Cd, it is likely that the model order ken) - 1 with the removal of 

the kth source is too low. In other words, the kth source should not be removed from the 

set of existing sources. On the other hand, if ck(n) is smaller than Cd, it implies that the 

contribution of the kth source to the observation is probably insignificant and the removal 

of this source should be considered. However, in order to further justify the decision to 
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remove the kth source, an additional statistical test is imposed. Since the signal amplitude 

is estimated according to (6.17), which is essentially a least-square solution, if a source exists 

and contributes to the observation y(n) at time n, its corresponding amplitude sk(n), as 

well as the normalized signal power a;k (n), defined as 

(6.47) 

should be persistently significant. On the other hand, if the source has indeed suddenly 

or slowly vanished, both the restored amplitude and the normalized signal power a;k (n) 

will become insignificant. To test the significance of a;k (n), which amounts to testing the 

presence of the source, an F-test (Snedecor and Cochran, 1980) can be used. 

An F-test, used to test if the estimated variances from two populations are equal, is 

given as follows 

(6.48) 

where a~ and a~ are the estimates from the two populations. The more the ratio F deviates 

from 1, the stronger the evidence for unequal population variances. Given a significance 

level aI, the hypothesis that the two variances are equal is rejected if 

F > F(al/2,{31 -l,{h, -1), (6.49) 

where F (a 1/2, {31 - 1, (32 - 1) is known as the critical value of the F distribution (Snedecor 

and Cochran, 1980), where {31 and (32 are the degrees of freedom in the numerator and 

denominator in (6.47). The quantity al represents the significance level of the test. There

fore, to test whether a;k (n) is significant when compared with the noise variance, an F-test 

on a;k (n) is applied. 

6.4.2 Birth of a new source 

In this step, we test whether the current model order is too low to fit the observation y(n) 

at time n. Given the current model order k(n), we first compute the normalized residual 
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as follows 

(6.50) 

where the residual even) is given by 

even) = yen) - yen), (6.51) 

where yen) is given by (6.41). Under the hypothesis that the number of signals is correct, 

the quantity fen) is also x2-squared distributed with M - ken) degrees of freedom, that is 

fen) '" X~-k(n)+1· (6.52) 

To test whether the current model fits the current observation, the normalized error f( n) is 

compared with a threshold Cb > 0, that is 

(6.53) 

The probability of the normalized error fen) exceeding a threshold Cb > 0 is abo If fen) < Cb, 

it is likely that the current model is appropriate for the current observation, and there is 

no need to introduce a new source to the existing tracks. However, if fen) > Cb, the current 

model order is likely too low to fit the observation, leading to larger estimation error. In 

this case, the current model order will be incremented by one to ken) = ken) + 1, and a new 

source will be generated according to importance sampling procedure described earlier. 

Model Order Detection Using Hypothesis Testing 

In summary, for n = 1,2, ... , the MAP values of T(n) and a(n) obtained from the 

proposed Particle Filter method are used to detect the instantaneous model order, according 

to the following hypothesis testing procedure 

1. 1td - Death of an existing source 
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(a) evaluate ck(n) in (6.43) for k = 0, ... ,k(n)-l, and compare it with the threshold 

Cd 

• if ck(n) < Cd, the model order appears to fit the observation 

• else, evaluate a;k(n) as in (6.47) and test it using a F-test 

- if the F-test fails, the model order remains intact. Proceed with testing 

1ib· 

- else, remove the source k. 

2. 1ib - Birth of a new source 

(a) evaluate t(n) as in (6.50), and compare it with the threshold Cb 

• if t(n) < Cb, the model order appears to fit the observation 

• else, the current model order is probably too low, 

- increment the model order by 1, 

- re-run the sequential importance sampling steps for the new model order 

to estimate T(n) and a(n), 

- once completed, by-pass the test for 1id and 1ib for the current time step. 

_______________________________________________________________ 1. 

6.5 Simulation Results 

In the following simulations, a uniform linear array composed of M = 8 elements with a 

half-wavelength spacing of the elements at the highest frequency component is used in the 

simulations. The wideband signals in these experiments are bandlimited to the normalized 

frequency values as follows 

f E [0.1,0.4] , 

thus the normalized bandwidth of the signals is 0.3. The simulation environment is defined 

using the parameters listed in Table 6.1. 
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Parameter SNR (dB) M K L N Fs (Hz) 
Value 14 8 2 8 1,000 1 

Table 6.1: Parameters for the experiment. 

In these simulations, we demonstrate the capability of the proposed algorithm in jointly 

tracking the inter-sensor delays (ISDs) r(n) of the sources!, detecting the model order k(n), 

and recovering the source waveforms a(n), for the wideband scenario. The ISDs of the 

K = 2 sources are generated as autogressive (AR) processes whose coefficients represent a 

lOth-order low-pass Butterworth filter, with normalized cutoff frequency 0.1. The variance 

of the process is u;. The associated AR coefficients are specified in Table 4.3. Likewise, 

the source waveforms are also generated as AR processes, corresponding to a 10th-order 

low-pass butterworth filter with normalized cutoff frequency 0.3 and variance &2u~. The 

associated waveform AR coefficients are also listed in Table 4.3. 

To demonstrate the algorithm's capability to detect the time-varying model order, the 

ISD trajectories r n are constructed so that one of the sources suddenly vanishes or appears. 

The evolution of the model order k( n) is first tracked by the proposed statistical testing 

procedure. Then the ISDs with the latest model order are tracked using the particle filter 

procedure. The source waveforms are then extracted using (6.17) and (6.19). Two different 

scenarios are presented in demonstrating the ability of the algorithm in handling the model 

order detection in different situations. 

6.5.1 Scenario 1: A source suddenly appears 

In this scenario, one source suddenly appears during the course of the ISD tracking. Fig

ure 6.1 shows the trajectories of the ISDs of the two sources. Before the algorithm starts, 

the parameters are appropriately initialized as described earlier in the SMC procedure 

with k(O) = 1. As the algorithm starts for n ~ 1, only one source is found, which is 

70(0) = -0.9Ts· According to Figures 6.1 and 6.2, both the ISD (the lower trajectory in 

lOnce the ISDs of the sources are available, the directions-of-arrival (DOAs) of the sources 4>(n) are 
determined through (3.42). 
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Figure 6.1: The tracking of ISDs T(t)lt=n for scenario 1. 
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Figure 6.1) and the signal amplitude of this source 8o{n) are well estimated by the algo

rithm in the time region n E [1, 37]. When n > 37, a new source 81 (n) appears and the 

corresponding ISD is approximately 0.2Ts. Based on the statistical testing procedure, the 

algorithm does not detect the presence of the new source until n > 45, as shown in Figure 

6.3. After the new source has been found, it takes approximately 15 additional time steps 

for the algorithm to stabilize as shown in Figure 6.1 before the new source is well tracked. 

Note that in the course of the process, the noise variances 0'; and O'~ can also be sequentially 

estimated using the MAP procedure in (6.20) and (6.21), respectively. 

The mean-squared errors for the ISD estimation and the waveform recovery process of 

the sources are shown in Table 6.2, corresponding to 50 independent trials of the same 

simulation scenario. As one would expect, the errors from tracking and recovering the 

waveform of only one source are much smaller than in the case of multiple sources, especially 

when the SNR is about 14dB. Moreover, given the MAP procedure stated in (6.17), the 

performance of waveform recovery is heavily dependent on that of the ISD tracking, as 

evident from Table 6.2. 
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Figure 6.2: The signal recovery of a(t)lt=n for scenario 1. 
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Figure 6.3: The tracking of the model order k(t)lt=n for scenario 1. 
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Time period MSE (dB) ISD MSE( dB) Amplitude 
nE [1,37] -27.4, - -32.6, -

n E [38,44] -26.3, - -28.1, -
n E [45,100] -33.0, -32.5 -16.5, -18.8 

Table 6.2: The MSE between the true and estimated ISDs over 50 independent trials for 
the proposed method for the scenario 1. 

6.5.2 Scenario 2: A source suddenly vanishes 

In this scenario, one source suddenly vanishes during the ISD tracking of all sources. The 

initial ISD values of the sources are r(O) = [0.05, -0.65] x Ts. As the algorithm starts when 

n ~ 1, these two sources are detected, and their ISD trajectories and waveform recovery are 

shown in Figures 6.4 and 6.5, respectively. According to these figures, in the time period 

n E [1,20J, the algorithm tracks the ISDs and recovers their waveforms very well. At time 

n> 20, one of the sources, sl(n), the upper trajectory in Figure 6.6, suddenly disappears. 

It takes about 11 time steps for the algorithm to respond to this change and reduce the 

model order by 1. During the time period n E [21,32J, the ISD estimates and hence the 

restored waveform for the vanished source are essentially noise processes, whose variances 

are about u; and u!, respectively. In the time period n E [33,100]' the algorithm tracks 

the ISD of the remaining source and recovers the waveform very well, as evident in Figures 

6.4 and 6.5. 

We also run 50 independent trials for the same setup to evaluate the mean-squared 

errors for the ISD estimation and the waveform recovery process for the sources. Table 6.3 

shows the results. Similar to the findings in the last scenario, the MSEs for both the ISD 

estimation and waveform recovery are larger when the algorithm tracks two sources than 

that when it tracks one only source. 
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Figure 6.4: The tracking of ISDs r(t)lt=n for scenario 2. 

-1.50'---1J..0--2J..0--3J..0--40.1---50.1---60-'---7""'0--80-'---80-'---1..1oo 

Sampie index 

lL===~=~~~~i~~e='==~I~_~ __ ~_~ __ ,-_~ __ ~_~ 
0.6r 

0.4 

-0.4 

-0.6 

,.: 
"'sample deley 

and Ihe amplitude 
restored Is lnalgnlficant 

-O.80'---1J..0--2..L0--30..L---40-'---50-'---60-'----L70--...J.80---'80--..J1oo 

Sampie Index 

Figure 6.5: The signal recovery of a(t)lt=n for scenario 2. 
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Figure 6.6: The tracking of the model order k(t)lt=n for scenario 2. 

Time period MSE (dB) ISD MSE(dB) Amplitude 
n E [1,37] -29.4, -33.0 -22.6, -23.7 

n E [38,44] -33.1, - -20.6, -
n E [45,100] -34.7, - -25.7, -

167 

Table 6.3: The MSE between the true and estimated ISDs over 50 independent trials for 
the proposed method for the scenario 2. 
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6.6 Performance Evaluation 

Since there appears to be no previous method which offers the same functionality as the 

proposed approach, it is difficult to compare performance with previous approaches. There

fore, to investigate the performance of the proposed algorithm, we resort to simulations to 

compare proximity of the results to lower bounds corresponding to optimum performance. 

Since the problem in question is nonstationary, we resort to the posterior Cramer-Rao bound 

(PCRB) (Tichavsky et at., 1998), derived for discrete-time nonlinear dynamical systems. 

The development of the recursive update equation for the variances of the parameters can 

be found in Appendix E. 

We now present the comparison between the performance of the proposed method in 

terms of the estimated variances of r(n) as a function of SNR and the PCRB. In this 

simulation, we use the parameter values listed in Table 6.1, except for SNR. We arbitrarily 

select a particular time sample at n = 20 for the evaluation of the variances of r{n). The 

algorithm is run for 100 independent trials over a range of SNR, from -5dB to 20 dB. Each 

trial uses 50 observations and the number of sources is assumed known. Figure 6.7 shows 

the comparision between the estimated variances and the PCRB. As shown in Fig. 6.7, 

for SNR levels lower than -2dB, the algorithm starts to break down (Le., departs rapidly 

from the PCRB). However, it is seen that the variances approach the PCRB closely, above 

this level. The reasons why the variances do not come closer to the theoretical PCRB 

are: 1) interpolation errors due to a non-ideal interpolation function being used and 2) 

the procedure for estimating the source amplitudes. The errors introduced in the signal 

recovery have an impact on the estimation accuracy of the ISD parameters, since the source 

amplitudes a(n) affect the transformed data z(n), as evident from (3.47). The quantities 

z{n) are then used in estimating the r(n) through the posterior distribution (6.15). 

We also include a few more figures to compare the performance of the algorithm with 

the PCRB for n E [1,50] for different SNR levels, as shown in Figs. 6.8, 6.9, and 6.10. The 

trajectories of the PCRB and the estimated variances of the error in the estimated r(n) 

are obtained by running 1,000 trials. We see that as SNR levels decrease, the gap between 
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Figure 6.7: The performance of the algorithm as a function of SNR for the sample at n = 20. 

the estimated variances and the PCRB widens, which is consistent with the findings in Fig. 

6.7. 

We also investigate the detection performance of the algorithm as a function of SNR 

level. Fig. 6.11 clearly reveals that the higher the SNR level, the higher is the probability of 

correct detection of the number of sources. In addition, given an SNR level, the performance 

is dependent on the number of particles used in the particle filter. The larger the number of 

particles, the better is the performance in model order detection. In other words, in order 

to have a consistent tracking peformance that heavily relies on the consistent model order 

detection, one needs to use a large number of particles in the algorithm. 

6.7 Conclusion 

A new approach to wide band array signal processing is proposed that is based on an interpo

lation process to approximate wideband signals. A Bayesian approach is used for estimation 

of the parameters of interest, where a marginalized posterior density function is formulated. 
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Figure 6.9: A comparison between the estimate variances of T(t)lt=n and the PCRB for 
SNR = 0 dB. 
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Figure 6.10: A comparison between the estimate variances of r(t)lt=n and the PCRB for 
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Figure 6.11: The probability of detection of the number of unknown sources versus SNR 
levels for different numbers of particles. 
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The time-varying ISDs are tracked by particle filters, for which a novel second-order impor

tance sampling function is proposed. The model order is determined by a hypothesis testing 

procedure. The source amplitudes are estimated using a MAP estimate. Simulation results 

support the effectiveness of the method, and demonstrate reliable detection of the number 

of sources and estimation of their ISDs in white noise environments with a single linear 

array. As a result, the source signals are reliably restored. Furthermore, a theoretical lower 

bound on error variances (the posterior Cramer-Rao bound, PCRB) is developed to evalu

ate the performance of the proposed algorithm. It has been shown that the performance of 

the prop.osed method is comparable to that of the PCRB. 



Chapter 7 

Conclusions and Suggestions for 

Future Work 

This thesis presented new approaches to various classical problems in array signal processing, 

using modern numerical Bayesian methods. We showed how the Markov Chain Monte Carlo 

(MCMC) and the Sequential Importance Sampling (SIS) methods present new outlooks 

and offer many advantages to problems in the field. In particular, we developed a new 

data structure that uses an interpolation function and the signal samples to approximate 

wideband signals. The transformed data from this data model allows the wideband signal 

processing to be performed in the time-domain with a fewer number of observations. 

This thesis focused on joint detection and estimation problems in array signal processing 

context in an additive white noise scenario. When the parameters of interest are static 

throughout the observation, an off-line MCMC approach is employed, whereas an on-line 

approach using sequential MC methods is employed in the event that parameters of interest 

are time-varying. No existing methods have tackled this joint problem of detection of the 

model order and estimation of the parameters, particularly in wideband scenario, due to 

the difficult nature of the problem. 

Four problems were addressed in the course of this thesis. 

1. A novel data model that uses an interpolation function and the signal samples to 
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approximate both narrowband and wideband signals without change of structure or 

parameters was developed. The transformed observations from this model share anal

ogous features as the narrowband data model. Also, all quantities in the model, in

cluding the data, are purely real, unlike other existing models which require complex 

quantities. This latter point leads to significant savings in hardware, since quadrature 

mixing to IF frequencies is no longer required, and computational requirements are 

reduced. 

This data model is the basis on which the off-line and on-line algorithms for joint 

detection and estimation for wideband signals using MCMC and sequential MC tech

niques were developed, respectively. 

2. The first algorithm of this thesis focused on the implementation of sequential MC 

methods for advanced beamforming for narrowband signals. Unlike conventional 

beamforming techniques that assume knowledge of the number of sources, and the 

sources to be static, the proposed algorithm is able to use sequential MC techniques 

to simultaneously track the time-varying number of sources and the motions of the 

incident angles of the sources. Based on the instantaneous estimates of the incident 

angles, the algorithm separates and restores the signal amplitudes. 

3. The second algorithm of this thesis focused on solving a more difficult and cumber

some array signal processing problem for wideband signals. Unlike other conventional 

approaches that solve the problem in the frequency domain and require a huge number 

of observations to sustain the computational accuracy, the proposed algorithm applies 

the reversible jump MCMC method on the novel data model developed in this thesis 

in the time domain. 

The method uses a single array of sensors and analytically integrates out the sig

nal amplitudes and the unknown noise variances to leave a marginalized posterior 

distribution that is only a function of the parameters of interest. 
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The performance of the method was successfully compared with the theoretical Cramer

Rao bound and other statistical tests. 

4. The final algorithm was an extension of the first and the second approaches in jointly 

detecting the number of wide band sources and tracking their motions. The proposed 

method first applied rational statistical testing to determine the number of unknown 

sources, and then applied the sequential MC technique on the modified novel data 

model for tracking the time-varying parameter. 

The performance of the method was successfully compared with the posterior Cramer

Rao bound. 

7.1 Contributions to the scientific literature 

The work presented in Chapters 3 to 6 has been published in various conferences and on a 

contributed chapter. In addition, four journal papers have been submitted for publication. 

• Journal Papers 

- Wideband Array Signal Processing Using Sequential MCMC Methods (Ng et al., 

2003e) 

- Sequential MCMC for Signal recovery of Multiple Nonstationary Targets Using 

an Array of Sensors (Ng et al., 2003a) 

- Wideband Array Signal Processing Using MeMC Methods (Ng et al., 2002a) 

- Particle filter for tracking an unknown number of sources (Larocque et al., 2002) 

IEEE 'Transactions on Signal Processing, December, 2002. 

• Conference Papers 

- A Bayesian Approach to Tracking Wideband Targets Using Sensor Arrays and 

Particle Filters. (Ng, Reilly and Kirubarajan) (Ng et al., 2003c) SSP 2003. 
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- Application of Particle Filters for Tracking Moving Receivers in Wireless Com

munication Systems (Ng, Reilly and Kirubarajan) (Ng et al., 2003b) SPAWC 

2003. 

- Wide band Array Signal Processing Using MCMC Methods. (Ng, Reilly, Kirubara

jan and Larocque) (Ng et al., 2003d) ICASSP 2003. 

- Wide band Array Signal Processing Using MCMC Methods. (Ng, Reilly, Kirubara

jan and Larocque) (Ng et al., 2002b) SAM 2002. 

- Sequential Monte Carlo for Spatial Signal Sepamtion and Restomtion. (Ng, 

Reilly and Larocque) (Ng et al., 2001b) 2001 Workshop on Maximum Entropy 

and Bayesian Methods in Science and Engineering. 

- On the Implementation of Particle Filters for DOA Tracking. (Ng et al., 2001a) 

Lecture at ICASSP 2001. 

• Contributed Chapters 

- Sequential MCMC for Spatial Signal Sepamtion and Restomtion From An Array 

of Sensors. (Ng et al., 2001b) 

7.2 Future Work 

In this thesis, the focus is to apply numerical Bayesian techniques to solve array signal 

processing problems in both static and nonstatic scenarios. There are a few areas that are 

worth being explored in the future. They are 

• Verification of the algorithms with the real arrays and real-life data 

• Improvment of the performance of the algorithms 
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7.3 Verification of the algorithms with the real arrays and 

real-life data 

Throughout the entire research, only simulated data were used in the development of the 

algorithms and all results were based on these simulated data. While the performance of 

these algorithms was consistent with the theoretical tests, including the Cramer-Rao lower 

bound and other statistical tests, real-life data should be collected and used to verify their 

practical performance. 

In addition, the array sensor elements in the entire research were assumed appropriately 

calibrated and identical. Robustness of the algorithms to these assumptions should be 

conducted as well. 

7.4 Improvment of the performance of the algorithms 

There are a few areas to improve the algorithms in this thesis. For the MCMC algorithm 

for wide band array signal processing, a half-sine function was used to enable zero-delay 

processing. According to Figure 5.11, there was some performance gap between the algo

rithm and the theoretical CRLE. One possible area that contributes to the gap is the use 

of non-ideal interpolation functions and the half-sinc approach as described in Chapters 3 

and 5. Modification of the algorithm that can address the buffering of the extra samples 

should be explored, and results can be compared. 

For the sequential approach, one of the bottlenecks in using the algorithm in practice is 

the number of particles used. It is an issue of trading-off between accuracy of tracking the 

time-varying posterior distribution function of the states and the time needed to respond to 

the state changes. Throughout the research, no efforts were spent on finding an intelligent 

important sampling procedure that may require much fewer number of particles in the 

process. Therefore, investigation in this area could help reduce this bottleneck. 



Appendix A 

Probability Density Functions 

Definitions of selected probability functions that appear in the thesis (Bernardo and Smith, 

1994). 

Name Symbol Functional Form c 

Real Normal N(xlm,~) cexp(-~(x - m)T~-l(x - m)) 127rEI-1/ 2 

Inverted Gamma IQ(xlo:, (3) cx-a - 1 exp(-.8/x)I[o,+oo) (x) & 
Poisson P(xl,X) C~~lIN(X) exp( -'x) 

Chi-squared x2 (xI1l) cxll / 2- 1 exp( -x/2)lI[o,+00) (x) 2-1'/2 
r(v/2) 

F F(xlo:, .8) :1:"'/2-1 I ( ) 
c (.B+ax)(",+i3)/2 (0,+00) x 

Table A.l: Definition of selected probability density functions 
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Recursivity of Particle Filters 

This appendix shows how to obtain the recursive form of the posterior equation (2.37) 

We start with the application of Bayes' theorem, 

Since the observation noise is assumed iid, the conditional terms are assumed independent 

and the total likelihood term can be expanded one step into 

( I ) p(Yt+llxt+l)P(Yl:tlxl:t)P(Xl:t+l) 
P Xl:t+l Yl:t+l = () . 

P Yl:t+l 

Applying once more Bayes' theorem on the diminished total likelihood term, we get, 

( I ) ( I ) ( I )P(Yl:t)P(Xl:t+l) 
P Xl:t+l Yl:t+l = P Xl:t Yl:t P Yt+l Xt+l ( ) ( ) . 

P Yl:t+l P Xl:t 

Expanding the total density function of x as (also for Y), 

and simplifying the common terms in the numerator and denominator, we obtain 
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Applying the first order Markovian property of the model, the previous equation simplifies 

to 

which is the desired recursive form. QED. 

When the proposal function satisfies the following recursivity condition 

the importance weights can be evaluated recursively. The importance weights are defined 

as 

iiJ(t + 1) = p(xl:t+1IYl:t+1). 
q(Xl:t+lIYl:t+1) 

Replacing the distributions by their corresponding definitions, we get 

Recognizing that 

iiJ(t + 1) = p(xl:tIYl:t)P(Yt+1lx t+l)p(xt+1lx t) . 
p(Yt+lIYt)q(Xl:tIYl:t)q(xt+1lx l:t, Yl:t+1) 

iiJ(t) = p(xl:tIYl:t) , 
q(xl:tIYl:t) 

we can obtain the recursive form of the unnormalized importance weights as, 

iiJ(t + 1) = w(tl(Yt+llx t+l)P(Xt+11 Xt) 
q(Xt+1IXl:t, Yl:t+1) 



Appendix C 

Derivation of The CRLB 

Let 0 be the parameter vector defined as follows: 

(C.1) 

where k = O, ... ,K -1 and n = 1, ... ,N. Given Y = {y(n),n = 1, ... ,N}, where yen) is 

defined as in (3.38), we define the likelihood function, leO), as: 

leO) = p(YIO), 

N 1 {-I ( L-l _ ) T (L-l ) } 
= 11 (27r(]"~)M/2 exp 2(]"~ yen) - t; Hl(r)a(n -l) yen) - t; Hl(r)a(n -l) , 

(C.2) 

(C.3) 

and a{n -l) E R Kx1 is 

a(n -l) £ [so(n -l), sl(n -l), ... , sK-l(n -l)f . (C.4) 

Defining u( n) as follows 

L-l 

u(n) £ yen) - L Hl(r)a(n -l) (C.5) 
l=O 
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and taking the natural logarithm of (C.2) yields 

,c(O) ~ In [l(O)] , 

1 N MN 
= - 20"2 L uT (n)u(n) - -2- ln (27r0";) . 

W n=l 

(C.6) 

To obtain the CRLB, we need the Fisher Information Matrix (Bar-Shalom et al., 2001), 

:J(O) E n(KN+K)x(KN+K), which is defined as 

E [~~~] E [ ac2(O) J 
aroaso(n) 

E [ ac2 (O) ] 
a'T{}aSK_l(n) 

E [ ac2 (O) ] E [ ac2(O) ] E [ ac2(O) ] 

:J(O) = - arK_lar arK_laSo{n) arK-laSK-l{n) (C.7) 
[ ac2(O) ] E [ ac2(O) J E [ aC2(O) ] 

, 
E aSo(n)ar aso (n)aso (n) aSo(n)aSK_l(n) 

E [ ac2(O) J 
aSK_l(n)ar 

E [ ac2{O) ] 
aSK -1 (n)aSo(n) 

E [ aC2t} ] 
aSK-len) SK_l(n) 

where E [~~:~~J E n 1xK, E [asS~;J~l(n)] E n 1xN, and E [a!~~~~)] E n 1xN are de-

fined, respectively, as 

E [ 8,C2(O) ] ~ [E [ 8,C2(O) ] E [ 8,C2(O)] E [ 8C2 (O) ]] 
8Tp8sk(n) 8Tp8sk(1) , Brp8Sk(2)'· .. , 8Tp8sk(N) . (C.lO) 

The derivations of the elememts in :J(O) will be presented below. 

C.l Derivation of a'caCe) 
Tk 

(C.11) 
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where 

where 

8 (£-1 ) a;:- yen) - .L iIl(r)a(n -l) , 
k 1=0 

£ 1 --t 8HI(r) a(n -l), 
1=0 8Tk 

so(n - l) 

£-1 
= -.L iI;(Tk)Sk(n -l), 

1=0 

iII (Tk) = [iI~(Tk),iI~(Tk)"" ,iI~_l(Tk)] , 

sk(n) = [sk(n), sk(n - 1), ... ,sk(n - L + 1)]T , 
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(C.12) 

(C.13) 

(C.14) 

(C.15) 

and 0 E nMx1 is a column vector of zeros. If sinc function is used as the interpolation 
- - I 

function in HI(Tk), the m,lth element in H (TA:) is defined as in (C.39). Accordingly, (c.n) 

becomes: 

(C.16) 
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where 

C.2 Derivation of ~£((f))) 
us", n 

aC( e) 
aSk(n) 

1 { 8 NT} = -2"2 a-() L u (n)u(n) , 
O'w Sk n n=l 

1 {~(8U(n))T ~ T (8U(n))} 
- 20'; ~ 8sk(n) u(n) + ~ u (n) 8sk(n) , 

where 

8u(n) 
8sk(n) 

8 (L-1 ) = aSk(n) yen) - t; iI[(r)a(n -I) , 

8 { L-1 } = - 8sk(n) iIo(r)a(n) + ~ iIl(r)a(n -l) , 

= - as:(n) {iIo(r)a(n)} , 

Substituting (C.19) into (C.18), we have: 

ac(e) 
aSk(n) 

so(n) 
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(C.17) 

(C.18) 

(C.19) 

(C.20) 
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C.3 D . t· f a2£(0) enva Ion 0 !:l !:l uTkuTp 

1. If k = p, we have 

fP£(O) IoN T 
OT2 

= 28 L Sk (n)gk(n), 
k (J"w Tk n=l 

N 
= ~ L T( ) (Ogk(n)) 

2 Sk no' 
(J"w n=l Tk 

= ~ t I: og~(n) ( -l) (C.21) 2 0 sk n , 
(J"w n=ll=O Tk 

where 

8~n) ~ (8~k) r u(n) + (k;(Tk) t 8~), 
= (iI;'(Tk))T u(n) - (iI;(Tk))T iI'(Tk)Sk(n), (C.22) 

where 

(C.23) 

- 1/ 

where the mth element in Hl (Tk) is defined as in (C.40) if sinc function is used. 

Accordingly, (C.21) becomes: 

N £-1 {T } 
= :~E~ (iI;'(Tk)) u(n)-(iI;(Tk))T iI' (Tk)Sk(n) sk(n-l), 

1 N £-1 _ 1/ T 

= (J"2 LL(HdTk)) u(n)sk(n-l)-
w n=ll=O 

N £-1 
1 "" ( _ , )T -, 

(J"2 ~ ~ Sk(n -l) HI (Tk) H (Tk)sk(n), 
w n=ll=O 

N 

(J"~ E {uT(n)iI" (Tk)sk(n) - sk(n) (i/ (Tk)) T iI' (Tk)Sk(n)} , 

= ~ {t, .. T (n)k" (Tk)s.(n) - Tr [11 (Tk, ",)R.,(n) J} , (C.24) 
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where 
N 

tr [1l(Tk,Tk)Rkk(n)] ~ LSk(n) (i/(Tk))T i/(Tk)Sk(n) , (0.25) 
n=l 

and 

1t'(Tk,Tk) = (i/(Tk))T i/(Tk), (0.26) 

N 

Rkk(n) = LSk{n)sf{n). (0.27) 
n=l 

2. If k i= p, we have 

(0.28) 

where 

og~(n) = (- I )T ou(n) 
£:I HZ{Tk) -£:1-' uTp uTp 

= _(il;(Tk))T il' (Tp)sp{n). (0.29) 

Substituting (0.29) into (0.28) yields: 

2 N L-1 
o C(O) = :; L L Sk{n -1) (il;{Tk)) T il' (Tp)Sp{n), 
OTkOTp w n=l l=O 

N 

= :21 L Sk(n) (iI' (Tk)) T il' (Tp)Sp(n) , 
w n=l 

= :l tr ['H' (Tk, Tp)Rkp{n)] , (C.30) 

where 

N 

tr ['H'(Tk,Tp)RkP{n)] ~ LSk{n) (i/{Tk))T il' (Tp)Sp(n) , (C.31) 
n=l 
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and 

(i/(Tk))T i/(Tp), (C.32) 

N 

L sp(n)sI(n). (C.33) 
n=l 

C.4 

1. Ifk=p 

(C.34) 

2. If k =1= p 

(C.35) 

C.5 

1. k =p 
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(C.36) 

2. k =1= p 

(C.37) 

Substituting equations (C.24), (C.30), (C.34), (C.35), (C.36), and (C.37), respectively, for 

k,p = 0,1, ... , K + KN - 1 into the matrix :1(8) in (C.7), and defining the inverse of the 

resulting matrix, we can obtain the Cramer-Rao Lower Bound of the estimates in 8. 

C.6 Derivatives of the interpolation function 

Given the sampling instant, Ta, and cutoff frequency, fe, the sinc function with L taps is 

defined as 

1 = 0,1, ... , L - 1, (C.38) 
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where tl = lTs and mTk is the time delay. The first derivative of hi (mTk) with respect to Tk 

is given as follows 

Accordingly, the second derivative of hi (mTk) with respect to Tk is given as follows 

/I /!; d , 
hi (mTk) = -d hi (mTk) , 

Tk 

(C.39) 

_ (2 - (7fJc)2(tl- mTk)2) m 2sin7ffc(tl- mTk) - 2m27rfc(tl- mTk)COs7rfc(tl- mTk) 
- 7r fc(tl - mTk)4 

(C.40) 



Appendix D 

The Optimal Importance Sampling 

Function 

D.l Derivation of the importance sampling function for nar

rowband scenario 

Given the observation vector yet) described in (4.6) in Chapter 4, we now present the devel

opment of the optimal importance function qoptimal(-) described in (4.23). The observation 

vector in (4.6) and the state update equation in (4.4) are reproduced here for convenience 

cjJ(t) = cjJ(t - 1) + O"ww(t), 

yet) = S(cjJ{t»a{t) + O"vv{t). 

(D.41) 

(D.42) 

To approximate the optimal importance function, a first-order approximation is used that 

is a local linearization or Taylor expansion of the observation vector yet) as follows 

yet) ~ S{cjJ{t - l»a{t - 1) + "<p{t) x (cjJ{t) - cjJ(t - 1») + O"ww(t), (D.43) 

where '\7 <p{t) is the gradient vector defined as 

" t = 8S(cjJ(t»a(t) I 
<p( ) ocjJ(t) (cjJ(t)=cjJ(t-l»)· 

a(t)=a(t-l) 
(D.44) 
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Solving the above for cfJ(t), from the assumptions on the model noise, yields the desired 

form of distribution function for cfJ(t)givencfJ(t - l)andy(t) that is linear and Gaussian as 

follows 

(D.45) 

where, for each particle, 

E-1(t) = a;;21k(t) + V:;(t) (a;;;21M) V4>(t), (D.46) 

m(t) = E(t) (a;;21k(t)cfJ(t - 1) + V:; (t) (a;;;21M) [y(t) - S(cfJ(t - l))a(t - 1) + \14>(t)cfJ(t - 1)]) . 

(D.47) 

The distribution function in (D.45) is a first-order optimal importance function in which 

only the gradient vector is used. 

D.1.1 Derivation of the Gradient Vectors 

Let V 4>(t) E CMxK be defined as a vector as follows 

\14>(t) = [V 4>0 (t), \14>1 (t), ... , \14>k(t)-1 (t)], 

where \14>k(t) E CMx1 is defined as 

\1 () = oS(cfJ(t))a(t) 
4>k t O¢k(t)' 

OS(¢k(t))ak(t) 
O¢k(t) 

= S'(¢k(t))ak(t), 

(D.48) 

(D.49) 
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D.2 Derivation of the importance sampling function for wide-

band scenario 

Given the observation vector z(n) described in (3.47) in Chapter 3, we now present the 

development of the optimal importance function qaptimal (.) described in (6.27). The ob

servation vector in (6.1) and the state update equation in (6.2) are reproduced here for 

convenience 

T(n) = T(n - 1) + 17vv(n) , 

z(n) = HO(T(n))a(n) + 17ww(n). 

(D.50) 

(D.51) 

We select the optimal importance function to be proportional to the terms the likelihood 

function and the prior function of T. Let.e( T n) be the logarithm of the optimal importance 

function, i.e., 

.e (Tn) ~ .eATn) + .er(Tn) , 

= logp (Zn!TI:n, ZI:n-l) + logp (Tn!TI:n-l, ZI:n). (D.52) 

We use a second-order Taylor expansion on.e (Tn) about the sensibly chosen point Tn-I to 

give 

( ) T) 1 T2 .e (Tn) ';:::j.e Tn-I +"\7 .e ( Tn X (Tn - Tn-I) + "2 ( Tn - Tn-I) 'V'.e (T n)( 7" n - Tn-I) , 

(D.53) 

where'V'.e( 7" n) E nkxl and "\72.e( T n) E nkxk are the gradient vectors and the Hessian 

matrix of .e( Tn), respectively, defined as follows 

(D.54) 

(D.55) 
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D.2.1 Derivation of the Gradient Vectors 

The derivation of the gradient vector in (D.54) will be described in detail in this section. 

The gradient vector 'V £(Tn) in (D.54) is composed of two components, given as follows 

(D.56) 

(D.57) 

We first present the derivation of 'V£z(Tn) and then that of'V£T(Tn). Some details of the 

derivation can be found in Appendix C with the replacement of T by Tn, 

where 

where en is given by 

en = Zn - HO(Tn)an, 

£-1 

= Yn - L H/(Tn)an_l, 
1=0 

where ~a~ is a function of the noise variance O"~, and for k = 0, ... , kn - 1 

(D.58) 

(D.59) 

(D.60) 
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- I 8 -
H (Tn k) = -;;--H(Tn k), 

, uTk,t ' 

= [iI~( Tn,k), iI~ (Tn,k), ... ,iI~_l (Tn,k)] , CD.61) 

and Sk(n) is the signal amplitude for the kth source, defined as 

(D.62) 

(D.63) 

where 

8 {-I T } = ~ -2 2 ('Tn - 'Tn-I) ('Tn - 'Tn-I) + Kq~ , 
uTn,k O"V 

-1 
= -2 (Tnk - Tn-lk), 0".' , 

v 
(D.64) 

where Kq2 is a function of the noise variance 0";. 
w 

As a result, the kth element of the gradient vector V C( 'Tn) can be expressed as 

(D.65) 

D.2.2 Derivation of the Hessian Matrices 

The derivation of the Hessian matrices in (D.55) will be described in detail in this section. 

The gradient vector 

(D.66) 

where the k,pth elements of V 2Cz('Tn) and V 2Cr ('Tn) are given by 

[V2 Cz { 'T n}} k = 8 8~ log (p(znla~»)), k, p = 0, ... , kn - 1 
,p Tn,k Tn,p 

(D.67) 

[\72Cr ('Tn)h = 8 8~ log (p('T~I'T~~l' Zn)) , k,p = 0, ... , kn - l. 
,p Tn,k Tn,p 

(D.68) 



APPENDIX D. THE OPTIMAL IMPORTANCE SAMPLING FUNCTION 195 

1. Ifk=l=p 

(D.69) 

2. If k = P 

[\72Cz(Tn)]k,k = ()~ log (p(znla~»)), 
Tn,k 

where 

1. Ifk=l=p 

() 
= -() \7Cz (Tn k), 

Tn,k ' 

= -(){) {~e;:il(Tn'k)Sk(n)}, 
Tn,k O"w 

= :~ {e;:iI'I(Tn'k)Sk(n)-S~(n)(iI'(Tn,p))T iI'(Tn,k)Sk(n)} , 

(D.70) 

(D.71) 
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=0. (D.72) 

2. If k = p 

(D.73) 

Therefore, the k,pth element of the Hessian matrix V 2C(Tn ) in (D.55) can be expressed 

as follows 

[V2C(Tn)]k,p = [V2Cz(Tn)h,p + [V2Cr(Tn)]k,p' 

{
-(1;;2Sf(n) (II' (Tn,k)) T iI' (Tn,k)sk(n), 

= 2 { T - /I T ( -, )T -, } (1;; €nH (Tn,k)sk(n) - Sp (n) H (Tn,p) H (Tn,k)sk(n) - (1;;-2, if k =1= p. 

if k = p, 

(D.74) 



Appendix E 

Derivation of The PCRB 

Let y be an observation vector, (J be an ko-dimensional parameter vector, iJ(y) be a function 

of y, which represents an estimate of (J, and p(y, (J) be the joint probability density of (y, (J). 

The PCRB on the estimation error on (J has the form 

P = E {[iJ(y) - (J][iJ(y) - (Jf} ~ .7-1, (E.75) 

where .7 is the ko x ko Fisher Information matrix with elements 

[ '7] E [ fJ2 logp(y, (J)] .. ko 
v i,j = - 80i80j ,~,J = 0, ... , -1, (E.76) 

provided that the derivatives and expectations in (E.75) and (E.76) exist. Let \1 (J be the 

operator of the first-order partial derivative as follows 

[ 8 8]T 
\7 (J = ~O' ... , 80 ' 

v 0 ko-l 

such that we can express .7 as 

.7 = -E [\7 (J \7~ logp(y, (J)] , 

= -E [\7 (J \7~ { logp(YI(J) + logp((J) }] , 

= .7D + .7P, 
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(E.77) 

(E.78) 

(E.79) 

(E.80) 
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where :r D, also recognized as the standard Fisher Information matrix (Li et al., 2001), 

represents the information obtained from the data, defined as 

(E.81) 

and :T p is the information obtained from the a prior information, defined as 

:T p = - E [\1 8 \1~ log p( 8)] . (E.82) 

E.1 Introduction to information submatrix 

Assume that the parameter vector can be partitioned as follows 

(E.83) 

where ka + kb = ko, and the information matrix :T can be partitioned into blocks as follows 

:T= [:Taa :Tab l' 
:Too :Tbb 

(E.84) 

where :Too = :T~. The inverses of the submatrices in :T in (E.84) are the corresponding 

covariance matrices with other parameters fixed. It can be shown that (Tichavsky et al., 

1998) that the covariance of estimation of 8b, Pb, is lower bounded by the righn-lower block 

of of :T-1 as follows 

E{ [Bb(Y) - 8b] [Bb(Y) - 8b]T}, 
2: [:T bb - :T ba:T;;J :T abrl, 

(E.85) 

(E.86) 

(E.87) 

provided that :T;;J exists. The matrix :T(8b) E nkbXkb, known as the information submatrix 

for parameter 8b, is given by 

(E.88) 
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E.2 Sequential update for the information submatrix 

Given that the state-space model as follows 

T(n) = T(n - 1) + O"vv(n), 
£-1 

y(n) L H[(T(n»a(n -l) + O"ww(n) , 
[=0 
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(E.89) 

(E.90) 

and that both v(n) and w(n) are iid Gaussian random variables with zero mean and unit 

variance, the total joint probability density function p(Yn, Tn), where Yn = Y1:n and 

Tn = Tl:n, can be given as follows 

n n 

p(Yn, Tn) = p(TO) II p(Yj ITj) IIp(TjITj-d, (E.91) 
j=l j=l 

where p(TO) is assumed known. According to (E.78), we can derive an nko x nko infor

mation matrix :J(Tn) from p(Yn, Tn). However, instead of computing the information 

matrix :J(T n), we are more interested in computing the ko x ko instantaneous information 

submatrix as in (E.88) for the parameter Tn. 

Let Tn be partitioned as [T;_l' T;Z:f. Following (E.83)-(E.84), we can express :J(T n) E 
nnkoxnko as 

-E[V"" ~._, logp(Yn, Tnl]] , 
-E ['V Tn \l Tn logp(Yn, Tn)] 

(E.92) 

provided that the derivatives and the expectations exist. As a result, according to (E.88), 

we obtain an expression of :J(Tn) E nkoxko as follows 

(E.93) 

In order to get a recursive update equation of :J(Tn+d, given :J(Tn) and Yn+l, we need 
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to first consider the joint probability function p(Yn+b T n+d as follows 

p(Yn+b T nH ) = P(YnHITnH , Yn)P(TnHITn, Yn)p(Yn, Tn), 

= P(YnHITn+l)P(Tn+lITn)P(Yn, Tn), 
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(E.94) 

where we use the fact that Tn is independent of Yn+l and that innovations of Tn are 

independent. 

Accordingly, the information matrix 3(TnH) with T n+l partitioned as [T~, T~H] T 

can be shown to be 

3(Tn+'1) = -E[V'Tn+lV'~n+lIOgP(Yn+bTnH)]' 

= -E[V'Tn+l V'~n+l {IOgP(Yn+lITnH) + logP(TnHITn) + logp(Yn, Tn)}], 

= [A;H Bn+l 1 ' 
BnH Cn+1 

(E.95) 

where the terms A nH, B nH , and C nH are given by 

(E.96) 

(E.97) 

(E.98) 

and the terms D;l E 'R,koXko, D;2 E 'R,koxko, D~l E 'R,koxko, and D~2 E 'R,koxko are defined 

as follows 

D;l =E [-V'Tn V'~n logp (Tn+lITn)] , 

D;2 =E [-V'Tn+l V'~n logp (Tn+lITn)] , 

D21 = [D12]T 
n n' 

D~2 =E [-V'Tn+lV'~n+llogP(TnHITn)] + 

E [-V'Tn+l V'~n+llogp (YnHITn+l)] . 

(E.99) 

(E.IOO) 

(E.IOl) 

(E.102) 
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Thus the information submatrix 3(Tn+1) can be given by the inverse of the righn-lower 

submatrix of 3-1(T n+1) as in (E.88) by 

3(Tn+1) = C n+1 - B;+1A~!1Bn+1' 

22 [ 21] [ An Bn ]-1 [ ° ] =Dn - O,Dn , 
B; C n + D~1 D~2 

= D22 _ D21 [Dll + C _ BT A-1B ]-1D12 n n n n n n n n' 

(E.103) 

= D;2 _ D;1 [D~1 + 3(Tn)]-1D~2, 

which is the desired recursive update equation of the information submatrix for T n+1. The 

initial information submatrix :r( TO) can be computed from the a priori probability function 

p(TO) as follows 

(E.104) 

E.3 

Given the state-space model in (E.90) and that both v(n) and w(n) are iid Gaussian 

random variables with zero mean and unit variance, the functions logP(Yn+1ITn+1) and 

logP(Tn+1ITn) are given as follows 

(E. 105) 

(E. 106) 

where Kuw and "'uv are a function of 0"; and 0";, respectively. Next we present the derivations 

of D~1, D~2, D;1, and D;2 in sequel, where some results are taken from Appendix D. 
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E.3.1 Derivation of D~l 

The term D;l is defined as 

whose i,jth element of D;l is defined as follows 

11 0 {-o I} [Dn kj = ~ -;--logp (Tn+l Tn) , 
UTt,j UTt,i 

i,j = 0, ... , ko - 1 

-1 0 { } = 2~ (Tn+l,i - Tt,i) , 
(Tv UTtJ 

{
o, 

- th, 
ifi=!=j 

ifi = j 

In other words, the matrix D;l is a diagonal matrix defined as 

1 

Dll=~ ° n (T~ 

° 
E.3.2 Derivation of D~2 

The i, jth element of D;2 is defined as follows 

° 
1 

° 
° 

° 1 

i,j = 0, ... ,ko -1 
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(E.107) 

(E. 108) 

(E.109) 

(E.ll0) 
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In other words, the matrix D;2 and D;l = [D;2f are a diagonal matrix defined as 

1 

D12 = D21 = -1 
0 

n n 2 
(J"v 

0 

0 

1 

o 
o 

o 1 

E.3.3 Derivation of D~2 

The i, jth element of D;2 is defined as follows 

where 
L-1 

€n+1 = Yn+l - L H1(Tn+dan-I+1, 
1=0 

-I a-
H (Tn+l,i) = a H(Tn+l,i)' 

Tn+l,i 

-II a-I 
H (Tn+l,i) = a H (Tn+l,i). 

Tn+1,i 

(E.lll) 

i,j = O, ... ,ko -1, 

(E.1l2) 

(E.1l3) 

(E.1l4) 

(E.1l5) 

(E.1l6) 
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