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ABSTRACT

Photonic crystal waveguides and fibers are emerging waveguides that are formed
based on relatively large-scale periodic dielectric materials, also known as the photonic
band-gap materials. Modeling and simulation of such waveguide structures will help to
gain understanding for the modal and transmission characteristics and their dependence
on the key design and operation parameters. In this dissertation, the multilayer slab and
circular photonic crystal waveguides are investigated theoretically with emphasis on their
modal characteristics and transmission properties relevant to broad-band telecomm-
unication systems and networks. Key performance parameters (e.g., the modal field, the
modal effective index, the group-velocity dispersion, the confinement loss, the mode
effective area, as well as the confinement factor, etc.) are simulated and analyzed by
using both analytical and numerical methods.

For the sake of completeness, a comprehensive review of the different
mathematical methods for simulation and analysis of optical waveguides in general and
photonic crystal waveguides in particular is presented. The theoretical frameworks for
rigorous methods such as the finite difference method and the plane wave expansion
method and for approximate methods such as the effective index method and the
envelope approximate method are discussed, and their merits and shortcomings in
modeling and analysis of photonic crystal waveguides and fibers are examined in great
detail.

The one-dimensional (ID) slab photonic crystal waveguides (PCWs) are the
simplest to model and analyze, yet can offer deep insight into the salient features of
photonic crystal waveguides and fibers. A somewhat exhaustive study for the modal
properties of 1D PCWs is carried out with the help of the rigorous transfer matrix
method. Four different guiding regimes due to the total internal reflection (TIR) and the
photonic band-gap (PBG) are recognized, and their unique features are revealed and
discussed. Further, scope of validity and level of accuracy for two insightful approximate

methods (i.e., the effective index method and the envelope approximation method) are
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examined in detail by comparison with the exact solutions. Furthermore, new results
about the effects of the number of unit cells (i.e., layer-pairs), the layer size-to-pitch ratio,
and the core thickness on the modal properties are obtained and discussed.

The two-dimensional (2D) photonic crystal waveguides such as the air-hole-filled
photonic crystal fibers (PCFs) find more practical applications and also much more
difficult to model and analyze. In this context, the modal analyses with different
theoretical frameworks such as the scalar, semi-vector, and full-vector formulations are
presented and discussed with the help of the finite difference method. It is demonstrated
that the vector nature of the guided modes of the PCFs needs to be considered in
analyzing the modal characteristics such as the dispersion. Based on the band structure of
2D photonic crystals, modal characteristics of the PBG-PCFs and TIR-PCFs are obtained
and their physical behaviors are easy to explain. Also one new parameter is proposed to
judge the single-mode operation of the PCFs, and the bending loss of the PCFs is
calculated by the numerical method for the first time. Furthermore, the effects of finite
number of air holes and size of interstitial holes on modal properties of the PCFs are
investigated. Some scaling transformations of modal properties related to the design
parameters of the waveguide structures are derived.

Based on the rigorous analysis model and scaling transformations for the modal
properties, a general procedure for design and optimization of the PCFs with desired
modal properties is proposed. In comparison with the conventional design method, the
new design procedure is more efficient and can be readily automated for the purpose of
design optimization. Several applications of the design procedure (e.g., the design
optimization for the dispersion shifted fibers, the dispersion flattened fibers, and the

dispersion compensation fibers) are demonstrated.
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Chapter 1

Introduction

Photonic crystal waveguides (PCWs), also referred to in literature as the photonic Bragg
waveguides (PBWs) in the one-dimensional (1D) form or the photonic crystal fibers
(PCFs) in the two-dimensional (2D) form, constitute a new class of optical waveguide
structures formed by introducing certain lattice defects (e.g., dots, lines, or wells) over the
photonic crystals (PCs) within the transverse cross-section of the waveguides. Due to the
band-gap effect of the PCs, the modal properties of the PCWs may exhibit an array of
new features that are distinct from and not readily achievable by the conventional optical
waveguides. Because the modal characteristics of the PCWs are essential knowledge for
design and analysis of practical optical waveguides, it is very important to understand the
operation principles and the unique features of the PCWs. Built on the knowledge
obtained from the PCWs, we may further explore potential applications of the guided-
wave photonic and opto-electronic devices that are based on the photonic crystal concept -

in integrated optics and fiber optics.

1.1 Optical Waveguides

Since the low-loss glass fibers developed successfully in the early 1970°s [1], optical
waveguides have attracted much attention for a wide range of applications such as fiber-
optic communications, sensors, optical signal processing and computing, etc. For
practical purposes, an optical waveguide may be defined as a longitudinal invariant
structure, in which light is confined in a guiding region surrounded by the cladding
region and propagates along the longitudinal direction. In general, there are two basic
guiding mechanisms for an optical waveguide [2]-[4]: the total internal reflection (TIR)
and the anti-resonant reflection (ARR), both of which have been used for realizing the

low-loss optical transmission through a waveguide structure.
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Conventional optical waveguides (WGs) are composed of a guiding core and a
cladding region, in which the refractive index of the core is higher than that of the
cladding. The optic field is confined in the core owing to the TIR effect at the core-
cladding interface. Currently, the photonic integrated circuits (PICs) and the single-mode
fibers, which belong to the conventional optical waveguides, are widely used in
integrated optics and fiber optics. On the other hand, if the waveguide structures are
properly. designed and engineered, the optic field can also be well guided by a core with
the lower index via the ARR effect. In general, albeit optical waveguides due to the ARR
effect (e.g., the anti-resonant reflecting optical waveguides, or ARROWSs) are leaky, the
leakage loss can be kept in a very low level. This, in turn, leads to achieve the highly
efficient optical transmission through the optical waveguides. Actually, the ARR effect is
a special case of the photonic band-gap effect, which is one of main topics in this thesis,
and can be easily understood through the band structure of the corresponding optical

waveguide structures.

1.2 Photonic Crystals

Since the pioneering works by E. Yablnovitch [5] and S. John [6], the photonic crystals
(PCs, also called the photonic band-gap materials, or PBGs) have received considerable
interest and inspired much theoretical and experimental works around the world [7]-[12].
In general, the PCs are artificial composite structures whose refractive indices vary
periodically along one or more directions. Such a structure resembles the electronic solid-
state crystal in which the band structure offers a wide range of the wave characteristics. It
is indeed the similarity between the photonic and electronic crystals [13] that captures the
imagination of people who desire to explore the plethora of potentials the former may
offer. They represent a new class of optical materials that are capable of uniquely
controlling or manipulating the electromagnetic radiation within certain frequency bands.
Generally, the PCs are characterized by the photonic band structure according to their

dielectric periodicity. Figure 1.1 shows simple examples of one-dimensional (1D), two-
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dimensional (2D) and three-dimensional (3D) PCs [7]. The different colors represent
materials with different refractive indices.

Due to the multiple Bragg scattering, analogous to the electronic band structure in
semiconductor, the PCs possess a variety of unique features [7] such as the band-gaps (or
stop-bands) for the electromagnetic (EM) waves over a certain range of frequencies, the
localization of the EM fields near defects, the wave tunnelling, and the scaling
transformation of the physical dimension, the refractive index, and the operation
frequency. For instance, a 3D PC with the diamond lattice of air spheres has a complete
photonic band-gap (PBG) for the EM waves from any directions [7]. It is worth
mentioning that 1D PCs (traditionally called the periodic multilayer or thin film
structures), which are created by simply stacking planar layers with the proper refractive
index and thickness, have been known since the 19th century and are widely used in
many areas such as omni-reflection mirrors, DFB lasers, DBR lasers, and interference

filters [14], [15].

Figure 1.1 Simple examples of 1D, 2D, and 3D photonic crystals

In search for new technologies to tap into the tremendous optical bandwidth
available in optical fibers, new optical physical transmission structures and devices are
needed to achieve some desirable performances (e.g., compact bend, completely lossless,
and controllable dispersion) that current transmission media and devices cannot support.
In comparison with the conventional media and devices as shown in Figure 1.2, the PC-
based media and devices add more degrees of freedom in controlling the light guiding.

They have many potential applications as basic building blocks in the current optical
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communication systems that contain a large number of individual elements such as laser
diodes, modulators, multiplexers/demultiplexers, filters, amplifiers, switches and
detectors. Among the various building blocks in integrated optics and fiber optics, as
shown in Figure 1.2, PC-based waveguides (e.g., PCWs and PCFs) and devices are

expected to play an important role as a promising new enabling technology.

Material/Media Integrated optics Fiber optics
Conventional WGs Conventional PICs Conventional fibers
Photonic crystals PCWs PCFs

Figure 1.2 Simple applications of the PC-based devices

1.3 Photonic Crystal Waveguides and Fibers

Photonic crystal waveguides (PCWs) are a new class of the optical waveguides and have
many unique features that conventional optical waveguides may not possess or are
difficult to achieve. By introducing some lattice defects (e.g., dot, line, or well) in the
PCs with the proper sizes, localizations of fields (or modes) near defects are created and
corresponding photonic crystal devices [including photonic crystal waveguides (PCWs)
and photonic crystal cavities (PCCs)] are formed. The surface modes, which are created
by the half-infinite PCs, are the special case of the defect-induced modes of PC-based
devices. Figure 1.3 shows the simple classifications of the PC-based devices. The only
difference between waveguides and cavities is the propagation constant %, along the
propagation axis: k, = 0 for cavities and k; # 0 for waveguides.

Judging from the fact if the periodic axis is in the same direction with the

propagation direction or not, the PCWs and PCCs can be further divided into two groups:
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in-plane and off-plane propagation (or resonance), which have the corresponding field
localizations (e.g., 1D, 2D, or 3D) with respect to the dimension of photonic dielectric
lattices. In other words, defects in 1D, 2D, and 3D PCs can localize the fields along in
ID, 2D, and 3D dimensions, respectively. As can be seen from Figure 1.3, the so-called
photonic crystal fibers (PCFs) belong to the 2D PCWs with off-plane propagation, which
are formed in the 2D PCs with dot defects. And the familiar photonic crystal slab
waveguides belong to the 2D PCWs with in-plane propagation, which are formed in the
2D PCs with line defects. For the well-known Bragg gratings or the distributed feedback
(DFB) structures, they belong to the 1D photonic crystal cavities (PCCs). In this thesis,
we mainly focus on the PCWs with off-plane propagation, as underlined in Figure 1.3,
which consist of the simplest type of the PCs with the two-material (or a single material

with air) system.

Infinite 2D PCWs

. |2DPCWs
In - plane propagation Slab 2D PCWs
Waveguidesﬁ 3D PCWs
IDPCWs

2D PCWs
1D PCCs
In - plane resonanceq 2D PCCs

Cavitiess 3DPCCs
1D PCCs

2D PCCs

Off - plane propagation{

PC - based devicest -

Off - plane resonance{

\

Figure 1.3 Simple classifications of the PC-based devices

Further, according to the guiding mechanisms, the PCWs are divided into two
general categories, namely, the photonic band-gap PCWs (PBG-PCWs) and the total
internal reflection PCWs (TIR-PCWs). The PBG-PCWs are made by a reduced index
core (e.g., the air-hole defect) within the PCs. Because the effective index of the cladding
is always higher than that of the core, the guidance of light in the PBG-PCFs is due to the
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PBG effect of the periodic material, as no analogues in conventional index guiding. One
of interesting features, partly due to the absence of radiation modes, is the lossless
transmission in the sharp bends. Because light travels through air, the PBG-PCWs have
the potential to minimize the material absorption effect, the nonlinear effect, and the
material dispersion. In general, because the guiding region of the PBG-PCWs is within
the stop band of the PCs, it is essential to use the PCs with a larger band-gap to form the
PCWs. It is worth to note that, unlike some other PC applications that need the complete
band-gap, the partial band-gap is perhaps sufficient to realize the PBG guiding. On the
other hand, the TIR-PCWs are made by an increased index core (e.g., pure silica).
Because the effective refractive index in the surrounding region is lower than that of the
core, light is guided in the core region due to the TIR effect, as analogues in conventional
index guiding. Unlike the conventional optical waveguides with the fixed cladding index,
the effective cladding index of the TIR-PCWs is a strong function of wavelength and the
modes supported by the waveguides are essentially more dispersive. For this reason, the
TIR-PCWs have some promised properties (e.g., endlessly single mode operation, highly
controllable mode effective area, and highly tunable dispersion) that cannot be readily
achieved in the conventional optical fibers. Hence, the PCWs are a new class of the
optical waveguides that need to be further researched and developed systematically.
Although some photonic devices based on the 1D PCs have been used for several
decades, the photonic devices based on the 2D or 3D PCs for some applications (e.g., the
forbidden spontaneous emission) have been researched just over ten years. Because the
3D PCs are very complicated and difficult to fabricate with required precision (e.g., the
desired index and dimension), the corresponding 3D PC defects (or disorders) are
extremely hard to achieve in the visible or infrared regime. On the other hand, due to ease
of fabrication (e.g., advanced planar lithography and mature nanofabrication technology)
and compatibility with conventional optical waveguides, the 2D PCs and PCWs have
been intensively researched, especially for the silicon-based 2D PCWs with in-plane
propagation (i.e., PC slab waveguides) and the silica-based 2D PCWs with off-plane

propagation (i.e., PCFs). Owing to the unique ability to guide light around sharp corners
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(or split beams) and the unique features of the single-mode operation and tunable modal
properties (e.g., dispersion and mode effective area), the 2D PCWs show great potential
to provide extremely miniature planar circuits (e.g., splitters and couplers) and special
optical fibers (e.g., dispersion-shifted fibers). In general, the former can form a variety of
elements such as bent, branching, and crossing waveguides and the later can realize
various applications (e.g., supercontinuum generation, soliton transmission, and high
power transmission). Thanks to the recent advance in various fiber fabrication techniques
(e.g., capillary stacking for perform pulling), for example, the silica-based PCFs have
shown significant improvements (e.g., the reported losses are steadily dropping from 50
dB/km in 1999 to 0.37 dB/km in 2003 for TIR-PCFs [16] and from 1000 dB/km in 2001
to 13 dB/km in 2002 for PBG-PCFs [17] at the wavelength of 1.55 um) and are expected

to be used in the future optical communication systems.

1.4 Motivation of the Research

Modeling and simulation play important roles in design and engineering of complex
optical waveguide structures such as the photonic crystal waveguides (PCWs). By using
theoretical models, modal characteristics of the PCWs (e.g., the dispersion, the mode
field pattern, the field confinement loss, etc.) can be simulated under different design and
operation conditions. A comprehensive analysis will shed light on some of the salient
features of the waveguides and lead to new and improved designs for a wide range of
applications. Further, the design guideline and optimization procedure for given
applications can be developed based on the modeling and simulation techniques. For
these reasons, because of the new and unique properties as well as the huge potential
applications, a deep understanding of the modal characteristics of the PCWs through
comprehensive modeling and simulation is highly desirable.

The PCWs can be modeled and simulated by a number of methods based on scalar
and vector formulations, from simple and intuitive analytical approaches (e.g., the

effective index method) to time-intensive rigorous numerical approaches (e.g., the finite
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element method). Despite the seemingly plethora of methods for the modal analysis, the
level of accuracy and scope of validity for the scalar and the vector formulations with
respect to calculation of the mode dispersion of the PCWs have not been studied in a
systematic fashion. Due to the high sensitivity of some modal properties (e.g., the
dispersion) on the accuracy of the modal analysis, there has been a significant
discrepancy among different published results as pointed out in Ref [18]. Further, the
significant contrast in mathematical complexity and computation intensity for the
numerical models based on the different formulations also calls for a systematic and
comprehensive investigation of the level of accuracy and the scope of validity for these
approaches. In this thesis, such a study is performed with the help of the rigorous and
versatile mode solvers such as the finite difference method (FDM) [20].

For the propagation applications of the PC-based waveguides, currently there are
intensive researches on the 2D PCWs with in-plane (e.g., the photonic crystal slab
waveguides) and off-plane propagation (e.g., the PCFs) for the practical purpose. For the
2D PCWs, due to the above-mentioned reasons, accurate and versatile numerical
methods, which provide little physical insight into the operation of the PCWs, are
employed. The analytical or approximate approaches, although they gain some physical
insight into PCW techniques, may not be accurate and only for some specific structures.
On the other hand, albeit the 1D PCWs have been researched for several decades and
some analytical approaches (e.g., the transfer matrix method) for the 1D PCWs are exact,
the 1D PCWs still are a research topic [19]. Also, to the best of our knowledge, the
comprehensive analysis on their guiding mechanisms and modal characteristics of the 1D
PCWs hasn’t been done yet. In this thesis, modal properties of the 1D PCWs are
completely investigated with considering some effects (e.g., limited number of the PC
pairs) through some rigorous and approximate methods (e.g., the transfer matrix method,
the effective index method, and the envelop approximation method), and the physical
insight of the 1D PCWs can be understood completely.

In order to utilize some of unique modal characteristics of the PCWs for the design

of novel photonic devices with desired modal properties, the conventional design
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procedure based on some numerical methods is employed. Generally it is a time-
consuming and most-likely trial-and-error manual procedure. In order to avoid this
shortcoming, a general and automatic procedure for design of the PCWs with desirable
properties is proposed. The design model is based on the combination of a rigorous
vector mode solver and a scaling transformation for the dispersion properties of the
PCWs. In comparison with the conventional design method, the new design procedure is

more efficient and can be readily automated for the purpose of design optimization.

1.5 Organization of the Thesis

Chapter 1, entitled Introduction, provides a general review of some problems and
concepts related to the photonic crystal waveguides (PCWs). Also the scope, focus and
objective of the thesis are stated.

Chapter 2, entitled Modeling Techniques for Photonic Crystal Waveguides and
Fibers, gives a general overview of the modeling and simulation techniques used in the
thesis for the modal characteristics of the PCWs, which are essential for understanding
the operating principle of the PCWs.

Chapter 3, entitled One-Dimensional Photonic Crystal Waveguides, shows the
basic optical properties of the 1D PCWs. Due to their simplicity, the deep physical
insight can be gained in a highly intuitive way for some of the salient features of the
PCWs. With the help of the band-gap structure of the 1D PCs, it is recognized that there
are four guiding regimes in the 1D PCWs that depend on the index of the core and the
modal characteristics for each regime behave differently from the point of view of
guiding mechanism. Furthermore, the modal characteristics analyzed by some
approximation methods are also presented.

Chapter 4, entitled Photonic Crystal Fibers, presents the modal characteristics of
the PCFs through the analytical and numerical modeling tools. It is demonstrated that the
vector nature of the guided modes on the PCFs must be considered in analyzing the

modal properties. We show that the simple and efficient semi-vector analysis is highly
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accurate for dispersion of the PCFs and can be utilized in place of the rigorous, yet more
complex and costly full-vector mode solvers. The effects on modal characteristics of the
PCFs with size of interstitial holes and a finite number of air holes are also investigated,
and the scaling transformations of modal properties are obtained.

Chapter 5, entitled Design of Dispersion Component Elements, proposes the
general procedure to design the dispersion component elements based on the PCFs. In
comparison with the conventional design method, the new design procedure is more
efficient and can be readily automated for the purpose of design optimization. Several
applications of the design procedure (e.g., the dispersion shifted fibers, the dispersion
flattened fibers, and the dispersion compensation fibers) are demonstrated and the typical
examples are given.

Chapter 6, entitled Conclusions and Suggestions for Further Research, summaries
the major contributions made in the thesis and lists suggestions for further research.

Appendix A, B, and C, entitled Performance Parameters of Optical Waveguides,
Optical Properties of Optical Waveguide Modes, and Optical Properties of PC Bloch
Modes give the definitions of performance parameters of optical waveguides and the
optical properties related to optical waveguide modes and the PC Bloch modes,

respectively.
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Chapter 2
Modeling Techniques for Photonic Crystal

Waveguides and Fibers

A general overview of the modeling and simulation techniques, which are the basic tools
used for the research work in this thesis, is made in this chapter. These modeling
techniques are for the solutions of the governing equations for the modal characteristics
of the photonic crystal waveguides (PCWs) under certain assumptions and implemented
by using different discretizations or base functions. Merits and shortcomings of these
methods are discussed in the context of analysis and design of the PCWs with some

desired modal properties.

2.1 Introduction

The photonic crystal waveguides (PCWs) can be simulated and analyzed by an array of
modeling techniques similar to those used for the modal analysis of the general optical
waveguides [21]-[23], especially for the numerical methods such as the finite difference
method (FDM) [24]-[26], the finite element method (FEM) [27]-[30], the beam
propagation method (BPM) [31]-[34], and the finite difference time domain method
(FDTD) [35]-[37]. By incorporating proper numerical boundary conditions such as the
perfectly matched layer (PML) boundary conditions [38], all these numerical methods
can be used to calculate the optical modes within a relative small spatial domain. These
methods are particularly attractive as they solve the governing equations exactly without
any approximations. Further, versatile discretization schemes used in these numerical
techniques make them applicable for waveguide structures of arbitrary index profiles
and/or geometric shapes. The shortcomings of the numerical methods are the demand for

heavy computation resources and the lack of intuitive physical insight. In this respect, the

11
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analytical and semi-analytical approaches that take into consideration the unique features
of the PCWs offer deep insight and often more efficient for a specific structure of the
PCWs. Some of these semi-analytical methods (i.e., the mode expansion methods) such
as sinusoidal expansion methods (e.g., plane wave method, PWM [39]-[42]), Hermite-
Gaussian expansion methods (e.g., localized function method, LFM [43]-[45]), and
cylindrical expansion methods (e.g., multipole expansion method, MEM [46]-[48]) can
be considered to be exact if a set of sufficiently large base functions in the solutions is
employed. Other analytical methods such as the effective index method (EIM) [49] and
the envelope approximate method (EAM) [50]-[52] rely on approximations that are only
valid under certain conditions. In some sense, they are simple, efficient, and can provide
some deep physical insight on the operation principle of the PCWs (e.g., single-mode
operation). In this chapter, we will describe these modeling techniques (i.e., FDM, PWE,
EIM, and EAM) in great detail, which are used to investigate modal properties of the

PCWs, calculate the band structure of the PCs, and verify the simulation results.

2.2 Theoretical Formulations

Without loss of generality, we start our modeling formulations for the PCWs with
following assumptions:
o Region we are interested in is the absence of sources (e.g., free charges or
currents).
(i)  Material we consider is linear and isotropic. The permittivity of material is
equal to nz(r)go, where n(r) is the refractive index of material and & is the
permittivity of free space.

(ili)  Material we use has a magnetic permeability g that closes to the permeability

Mo of free space.
(iv)  Electromagnetic fields are time-harmonic fields: H(r,7) = Re{H(r)e’*} and

E(r,f) = Re{E(r)e’®} , where wis the angular frequency.

12
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Under these assumptions, the Maxwell’s equations can be expressed in the

frequency domain as follows:
VX E(r) =—jauH(r)
VxH(r)= jon® (r)E(r)
V[ (HEr)]=0
V-H(r)=0 2.1

where E(r) and H(r) are electric and magnetic fields and  is a position vector to define

a particular location in space (x, y, z) at which the field is measured. It is note that the
vector sign “—” of the position vector 7 is dropped without ambiguity. By taking the
curl of the first (second) equation above and substituting into the second (first) equation,
we can eliminate one of electric (magnetic) fields to obtain the well-known full-vector

wave equations:

Vx[Vx E@)] - ()2 n2 (1) E(r) =0
C

1

nzr

Vx|

; Vx B~ ()2 A =0 2.2)
C

where ¢ is the speed of light in free space.

Figure 2.1 The generalized photonic crystal waveguide with off-plane propagation

13
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Further, we assume that the PCW structure (i.e., the PCW with off-plane
propagation) to be simulated consists of a cylindrical dielectric waveguide whose
refractive index is invariant along the propagation direction z as shown in Figure 2.1. In
general, the cross-section of the optical waveguide (i.e., the PCW) consists of the 1D or
2D PCs with some defects.

Due to the uniform nature of the waveguide along z, the solutions of the above
wave equations (or so-called the modal solutions) with the appropriate boundary

conditions take the following forms for the electric and magnetic (EM) fields:

E(r)=(E, +2E,)e />

H(ry=(H, +:H,)e /%> (2.3)
where k, is the propagation constant of the PCW modes along z and E,/H, and

E,/H_ are modal field patterns related to transverse and longitudinal EM fields,
respectively. By utilizing the operator V (i.e.,, Vi+2d/0z), after some algebraic
manipulations, the wave equation (2.2) can be written as the vector wave equations for
the transverse fields and longitudinal fields, respectively:

(V24 k2n? +V,(V, Inn*)}E, = k’E,

(V24 k%0 +(V, nn?)x(V, ) H, = k21, (2.4)

(V2 +k*n®YE, — jk(V, Inn® - E)=k’E,
(V241202 —(V,Inn®) - (VOYH, — jk(V,Inn? - H)=k*H, (2.5)

where V, (i.e., yd/dy+xd/dx) is the transverse gradient operator and & (i.e., @/c) is the
propagating constant in free space. It is worth to note, after solving one of two above
vector wave equations for E, (or H,), the another transverse field for H, (or E,) can be

obtained according to the duality of Maxwell’s equation. Also, from the divergence
equations of the Maxwell’s equation, the corresponding z-components (£, and H,) can be

calculated, and vice versa. Here we focus only on the transverse fields. By extending the

14
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transverse electric and magnetic fields into the x and y directions with some derivations,
the full-vectorial wave equations in terms of the transverse electric and magnetic fields of

the waveguides are expressed in simple matrix forms [20]:

P.V P}’y Ey ’ Ey .

0. QJ[HJ kz(Hx]
= k2 @.7)
[ny ny Hy HJ’

where E, = XE_+ JE 3 H,=%H_+ pH , and P and Q are the operators, which are defined

=

as follows:

d| 129 0’E
P.E =n'KE +—| —WE,)|+—*
xxHx n x ax{nz ax (n x):l ayz

2
PE, =n’k’E +i{ L i(any)}+ J £

Yo oy|n oy ox’
alta,,. ] 9F
PE =2| -2 (RE )|-—=~
o x| ay(" y)_ dyx
a1 9 |1 9
P E —_ 2E —_ X 28
w5 =Y _nzax(" ")_ Ay @8

2 dy dy
, 0*H a1 1 0H
nyHyZi’izk Hy+ ayzy";‘nz—at}glr;l—z* axy}
Q - 2Hy_ Zi[g aHy
Y Yyox Byénz ox
?2H., 9| 10H,]
H = X - X 2.9
Ol oxdy 5 ax[nz ayJ @9
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where all functions under the partial differential operators are continuous over the entire
cross-section of the waveguide. It is worth to note that the full-vector wave equations are
exact without any approximation and considers both the polarization dependence

(ie, P, # P, and O #0Q ) and the polarization coupling (i.e., P, #0,P #0,0 #0,

>4 yx

and O, #0), which are caused by the waveguide geometry. The full-vector modes have

hybrid mode field patterns and are orthogonal with respect to the guided power along the
propagation direction z (see Appendix B).

If the polarization coupling is weak and becomes negligible as in many practical
optical waveguides, the full-vector equations are reduced to two decoupled semi-vector

wave equations for the electrical and magnetic fields:

PLE, =k E,

P,E,=klE, (2.10)
OuHy =k;H,

0,H,=kH, 2.11)

where P, = P,= O, = O, = 0 was assumed. From the above equations, the

characteristics of the semi-vector modes (so-called the semi-vectorial approximation) are
linearly polarized (i.e., the TE and TM modes), in which one of two components of the
fields is zero.

Furthermore, if the waveguide is weakly guiding, even the polarization dependence

can be ignored. Under this circumstance, the two semi-vector equations (kZTE #* kZTM ) are
reduced to a single well-known scalar Helmholtz wave equation (kZT E= kZT M =k, )

PO =10 (2.12)
where P is the scalar operator (i.e., P = Ppy= Q5= Oy = Wk + 3% /ox? +32 /ayz) and

@ is the scalar field (i.e., E., E,, E., H,, H,, or H.). From the above equations, the
characteristics of the scalar modes are linearly polarized (i.e., the degenerated TE and TM

modes with the same £,).
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For ID PCWs, where the refractive index n(x) is the function of x and the y-

dependence in above equations will disappear (i.e., d/dy =0), the full-vector equations

are simplified to two decoupled wave equations for the electrical and magnetic fields:

d| 1 d
P.E = n2k2Ex +E{?Zx-(;72Ex )}

2

P, E, =n*k’E A (2.13)
ey ¥y dx2 :
d’H,
O H =n’k’H_ + -
d| 1 dH
0,H, :nzszymza;L—z dxy} (2.14)

where P, = P, = 0,,= O, = 0 was used. These decoupled wave equations for the TE

wave and the TM wave can be solved through the wave field E,/H; and EJ/H,

respectively. It is noted that E,/H, and E,/H, are governed by the same wave equation.
Based on the above theoretical formulas, we can obtain the dispersion curves by

solving the governing equations for the transverse electric or magnetic fields under the

full-vector or semi-vector/scalar assumptions for the 1D and 2D PCWs.

2.3 Finite Difference Method

Due to the simplicity and easy implementation, the FDM method is one of the most
commonly used numerical methods for the boundary-value eigen-value problem. It is
based on a semi-local approximation of the partial derivative through low-order Taylor
series expansions. For example, the central difference approximation of the second

derivative for the function F with the variable f'can be derived easily:
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2 Fl+] ) F!—l
J f: 2 L +0(Ah)
of* hmth| h mooh h

2 . 2 . 2 2 ~ 2
3 a a(n Fy__2 [ gt M Fl(h noL N }, F"l—n’;‘]+O(Ax,~2)
2

2 = 2 x 2 ) 2
o n* of b+ hy OV PRYD: Pivz Ay Mi1/2

where the non-uniform mesh sizes A,;, A, and A;,; are used and #»; is the refractive index
at the mesh 7 as shown in Figure 2.2. The mesh distances are that #; = (A.;+A;)/2 and h, =

(AirjtA)2.  The  refractive indices at the mesh nodes are that

2 2 2 2 2 2
HiZyy =LA 07 A 20 and gy g = (B A L + 07 A;) 2k, .

Aia A Ain
i€ > P P
Fi-l : Fi+1
O -0
: hy h; :
¢ >

Figure 2.2 The 1D finite difference (FD) mesh

As mentioned early, all functions under the partial derivatives in the full-vector
eigen-value equations of (2.5) and (2.6) are continuous and they are directly discretized
by using the central difference approximations without any extra treatment at the
dielectric interface of the waveguide. For example, the finite difference expressions of

wave equations of (2.5) and (2.7) (for electric fields) can be expressed as follows [20]:

i+l j i+l L,J i J i—1,j pi-LJj i,j+1 i,j i,j—1
TN RN g i PY R ER _2pb 4 B

2 12 i,
P E = +nf kEY + 22
xx™x sz 1,] x Ayz
G+ iy j4 _ pi,f iy j el j=1 i, -1 i+Lj _ A i o il
_Ty Ey Ty Ey +Ty Ey 2,2 Ey 2Ey +Ey
Pnyy = 5 + u jk Ey + 5
Ay ’ Ax
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2
”i+l,j+i_1 Fithi _ Pirlj-1 _q |pitli-1 _
2 ¥ 2 y
i 7it1, 5 i,
ny Ey - 4AxAy 2 2
Pit, j+1 _1 g ”i~l,j—1_1 gLl
2 ¥y 2 v
it it A
, i}
’7:'+x,j+1_1 EitLjH ”i+1,j—1_1 it _
2 x 2 x
1 i, j+1 B+l
Pubiy = ; (2.15)
Y i1, j+1 1 |pihi ”i~l,j—1_1 Ei-Li-l
2 x 2 x
B i 7 i
where
2 2
TitL 2niyy it 2n; 4
S R s )
Pir,j 1,5 B je1 T 1
2 2 2 2
i+1,j 2m; 5 2n; i, 2n; 2m;
L= 73 Ly = T3 2
Pivyj th; Pyt Pt 0 M

where the uniform meshes Ax and Ay are used for the sake of simplicity.

In order to facilitate numerical solution within a finite computation domain, proper
numerical boundary conditions must be used. In this work, we utilizes the popular
perfectly matched layer (PML) boundary conditions [38] at the edge of the computation
window to reduce the computation effort without sacrifice for accuracy and the graded
index averaging technique [25] to improve the numerical accuracy. By substituting the
above finite difference expressions into the wave equation of (2.5), a system of the linear

equations is obtained:
E E
[ H
o
[Ey TLE

where & is the propagating constant in free space, Ny is the complex modal effective

(2.16)

index, and M is a band matrix with the bandwidth (4N,+6) and dimension 2N,xN,, in

which N, and N, are the numbers of meshes in x and y directions. For the semi-vectorial
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and scalar cases, due to the decoupled wave equations, the band matrix A is simplified a
matrix with the bandwidth (2N,+1) and dimension N,xN,. The effective indices and mode
profiles can be obtained by using some eigen-value solvers such as the shifted inverse
power method, the Lanczos method, and the Arnoldi method. Due to store all non-zero
elements of the matrix, the FDM requires a larger computer memory. By taking the
advantage of the geometric symmetry, only a half or a quarter of the PCW is need to be
simulated. In comparison with the FEM method, the FDM method is free of spurious
eigenvalues. It is worth to note that, by utilizing the variation theorem (see 3.3.3), the
band structure of the PCs can be calculated by utilizing the periodic boundary conditions

around the unit cell of the PCs.

2.4 Plane Wave Expansion Method

The modal expansion methods, such as the plane-wave expansion (PWE) method,
employ a set of orthogonal functions (e.g., harmonic or Gauss-Hermite functions) to
represent the unknown solution of the equations. Generally speaking, the dispersion
curves and mode field patterns of the defect modes of the PCWs can be calculated by the
so-called a supercell method as shown in Figure 2.3, which employs the periodic
boundary condition. Theoretically, the coupling between the PCWs (or supercells) can be
neglected when the width D (e.g., D = 5A in Figure 2.3) of the supercell is sufficiently
large. However, the computation time will increase accordingly. Practically, the width of
the supercell is taken from 5A to 32A. We present this theory very briefly to calculate the
modal properties of the PCWs.

For the sake of simplicity, the wave equation (2.2) of the magnetic field H(r),

which contain only two transverse fields ¢, (7 =1 and 2), is considered and rewritten as

2
L vxaen=% i Q.17)

02

Vx|

2
n(p)
where n(p) is the refractive index of the media and7 =xx+yp+2zZ2=p+2Z is the

position vector.
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Figure 2.3 The cross-section of a 2D PCW with off-plane propagation

For the infinite supercell structure with periodic dielectric function

(n(p)=n(p+R)), the well-known Bloch-Floquet theorem (u(r)=u(r+ R)) can be

applied, in which the fields of Bloch modes in periodic structures consist of plane waves:

A =eu(r)e/t = e 3 u, ;6,6/ % OrP (2.18)
G,n

where k (=k;, +k,2) is the wave vector of the plane waves, G is the reciprocal lattice
vector in the x-y plane , u, ;(n =1 and 2) is the Bloch function of the magnetic fields
along e¢,, and ¢, (n =1 and 2) stands for two unit vectors, which are perpendicular to the

propagation direction k+G. The relation between the reciprocal lattice vector

G (G = myb, + myb,) and the lattice vector R(R=10a +1a,) can be easily obtained
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through the orthogonality between their corresponding base vector components &
andEj (7, j=1and 2):

a-b; =27 (2.19)
where Jj; is the Kronecker-6 function. On the other hand, due to the periodicity of the

supercell, the index function can be expanded into the following Fourier series:

R (220

where ng? =( n"z(p)e“jé'ﬁ dS)/ S is the coefficient of the index function in the unit
G Ay

cell S. It is worth to note that, through a procedure for calculation of the Fourier

transform né of nz(r) and inversion numerically to obtain n(’;z, rapid numerical

convergence is achieved [12]. By substituting (2.18) and (2.20) into (2.17), after some

algebraic manipulations, the equation (2.17) is reduced to a standard eigenvalue equation:

5 A A 2
- = = = 5 | e-e —&-e || w (U
SIk+GIE+Glng| 22 2N =5 @.21)
G —e-ey e-ey \ge) " \UG
where the two orthogonal systems ( k + G,é,,é,) and (k +G",é',é',) are used. It is worth
to note that the first column of the matrix is related to the fields along é';and the second
column of the matrix is related to the fields along ¢', . In general, the calculated mode is a

hybrid mode because two polarizations of the modal fields are coupled with each other.
For the N grid points of the G vector, the above equation is a set of 2N equations with 2N

unknowns and can be written in matrix form:

Lt PIZHUI]: QzI:Ul} 999
[le Py |LU, (C) U, (2:22)

where @ is the angular frequency (eigenvalue) for the corresponding polarization, P,
Py, Py, and Py, are the N by N coefficient matrices, and U,, U, are the 1 by N matrices
of the Bloch function (eigenvector). Here the elements of N by N coefficient matrices are

defined as follows:
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€€y €y 'eEjJ

P, P .
[“ ’2} =|k+G,||k+Gj;n5f_G[ - (2.23)
;

o Py —Git€y  futéy

where i, j = 1, 2, 3,..., N. Thus, the calculation of the guided modes for the PCWs has
been reduced to the solution of a standard eigen-value problem.

Furthermore, for the 1D PCWs, & is in the x-z plane,@ is along x axis, and k+G
are in the x-z plane with k +G =k + G| (sina,0,—cosax), where o is an arbitrary angle
taken in.the x-z plane. According to the orthogonal property of (2.18), two unit vectors
can be set to ¢, = (cosa,0,sin)and ¢, = . The elements of N-by-N coefficient matrices

can be simplified as follows:

[P“ Fa =Sk+G | k+G,ng'g : 0 (2.24)

Therefore, the eigenvalue equation can also be reduced to two decoupled equations:

Ay 01U |_ oo U
A B 2

where the former is for the TE wave with U, = 0 and the latter is for the TM wave with
U, =0. It is worth to note that, by replacing the supercell of the PCW with the unit cell of
the PC, the band structure of the PC can be easily calculated.

2.5 Envelope Approximation Method

Due to similarities between the electric band-gap and the PBG, many theories of the

electric band-gap (e.g., effective mass method, & - p theory, and multiple-scales analysis,

etc.) can be borrowed for the analysis of the PCWs. The idea behind these methods is
based on the perturbation theory, and the process of these methods involves two basic
steps: first evaluate the band structure of the PC to obtain the effective “mass”, and then
replace the PC with this effective “mass” to construct a conventional waveguide [50]-
[52]. This, in turn, leads to solve the conventional wave equations to obtain dispersion

relations of the PCWs under the slowly varying envelope approximation. For the sake of
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simplicity, we focus on the analysis of the heterostructure PCWs as shown in Figure 2.4,
which are considered as small perturbations of the bulk PCs and their physical
dimensions (e.g., 2W or 2R) are substantially larger than those of the PCs (e.g., the pitch
A). By following Ref [50] and starting from the scalar wave equation (2.12), we present

this theory very briefly.
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Figure 2.4 The cross-section of the 1D (a)
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Here the heterostructure PCW is considered as small perturbations of the bulk PCs
with the index of nfi (p)= n’ (p)1+ A(p)) as shown in Figure 2.4 (here “PC1” represent

the bulk PC and “PC2” represent the perturbated PC, and p = x for the 1D PCW). The

wave equation for the electric field E,(p) with frequencies ay is expressed as follows

2
—~ —~ @O —
ViEP) =K Ea(p) =2 (p)1+ AN E4 () (2.26)
where n(p) is the refractive index of the bulk PC and A(p) is a relative small perturbation

of the PCW. Due to the orthogonality of electric field modes, the electric field £,(p) can

be expanding into the basis of the bulk PC modes:

Ey(p)=Z [ W (W) Epi (p)dk (2:27)

where E,,(p)is the field pattern of bulk PC modes that meet the wave equation (2.12)

without considering perturbations with its angular frequency @, and W,(k) is an unknown
function defining the expansion of the modes in & space. Then the wave equation (2.26)

can be expressed as

S (0w, ()n* (P)E . (p)dk = X [ W, (k)@ 13 (p) E i (p)dk (2.28)

By taking the inner product between the above equation and E:.k-(p) and utilizing the

orthogonality of the modes (see Appendix C), we have [50]
(RO w (k) = Loy F(P)0s” L+ A(pY)e ™ Pdlp (2.29)

where the wave equation of the PC modes and the definition of the envelope function of
the mode F,(r)= |, Wn(k)ejk Pdk were used. The equation (2.29) contains the inverse
Fourier transform of the product F,.(k)A(p). By taking the Fourier transform of the

projection of (2.29) along E, and dropping the primes, the equation describing the
behavior of the envelope of the mode of the PCWs is obtained [50]:
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[, ()0 n(R)e™ dk = 0% (= V) F,(p) = F(p)w,” (1 + A(p)) (2.30)

where @?,(— jV)is the operator obtained from @?,(k)by replacing the wave vector

components k, and k, by their derivatives -jd /ok and -jd /dy. The equation (2.30) is

generally called as the envelope equation. If we assume that it is independent for every

band and Ed,,(p)zjkWn(k)Enk(p)dk donates as the waveguide mode having the

frequency @, associated with the band r, the operator @’n(- jV) can be expanded in the

vicinity of the wave vector kg of light in the PC as [50]

32, (9 Pw?, (9 ?
(- V)=w k) + ¥ | ( —k ) y S on ( —k j +...(2.31)
Uy ok PUaE ) ey 2ok LR T

which suggests a solution of the envelope equation of the form £, (p) = fu, (p)ejk°p .
Therefore, the modes may be written due to the fact of Fo, (p)= jkWn(k)ejkp dk and

W, (k)= fnko (k — k), and we have
E gy () =77 [, fop (k= ko) (r)e? F4P i 2.32)

where fN;zko (k) denotes the inverse Fourier transform of Sk, (P) . Because the function

Juk, (p) varies over the same length scale as A(p), its Fourier components 7nk0 (k—ky)

-take large values for & = %, only. Assuming that u, () = uuo (p) over this range, we

remove uno(p) from the integral to obtain
Eui, (P) = g (PP, (0) = Epe (0) foe, (P) (2.33)

The physical meaning behind the envelope functions F,, is the fact that the fields of
the PCWs are determined by the bulk PC modes with modulation of the envelope
functions. By getting the envelope equation (2.30) of the mode of the PCWs, the
envelope equation can be solved by employing the conventional waveguide theory. For

example, for the 1D and 2D perturbation function, we have
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Agif [x|<WorR

. (2.34)
0 if|x|>WorR

A(p)=Alx) = {

Therefore, the corresponding PCWs are simplified into a 1D slab or coaxial waveguide as

shown in Figure 2.5.
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Figure 2.5 The equivalent cross-section of the 1D (a) and 2D (b) heterostructure PCW's
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By expanding the frequency up to the second order in the Taylor expansion (2.31),

the envelope equation (2.30) becomes

L, (P) 1, (P)
2m,  dx? 2m, dy2

[0 (ko) — @ 1+ A(P) fr, (P (2.35)

where the wave vector ky corresponds to an extremum of the band structure in the
transverse (k, or k) direction and m, and m, are the effective “mass” describing the

curvature of the band and defined by

2.2 2 2
1_9 O | and 1.9 @), (2.36)
my  ok; my, ok,

The solution of (2.35) is easily solved by the optical fiber theory for 2D PCW or
the slab waveguide theory for 1D PCW and its corresponding modal properties (e.g., the
single-mode condition) are easily obtained. As can been seen clearly, if m, is negative,
guided modes can exist even though the average refractive index in the core is lower than

that of the cladding (i.e., Ay<0). In conclusion, the PC waveguiding is possible for the

PCW where the curvature of the band in the transverse direction has the same sign as the

dielectric contrast between the core and the cladding.

2.6 Effective Index Method

The idea of the effective index method (EIM) is to convert a complicated optical
waveguide problem into a simplified optical waveguide probelm (e.g., a 2D waveguide
into a equivalent 1D waveguide) through some approximations. Generally, the EIM
method can be employed for two cases: the rectangular/radial optical waveguide with
slow index variations in one direction and the optical periodic array waveguide (i.e., the
PCW). The former is well known and is used widely in integrated optics (e.g., channel
and ridge waveguides) [21]. The idea of the latter case is to first evaluate the band
structure of the PC to obtain the effective index and then replace the PC with this

effective index to construct a simplified step-index waveguide [49]. Usually, the effective
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index is calculated in terms of the lowest mode that could propagate in the PC (i.e., PCl
as shown in Figure 2.4), which is so-called the fundamental space-filling mode (SFM). In
other words, the corresponding effective index .y is obtained by the first band of the

band structure (or the band-gap map) of the PC:

k,
Ny = “”I‘;SM (2.37)

where k; i is the propagating constant along z of the fundamental space-filling mode

and k (i.e., a/'c) is the propagating constant in free space.

As long as getting the effective index of the PC, like the EAM mentioned in the
previous section as shown in Figure 2.5, the modal properties of the PCWs are easily
obtained by employing the conventional optical waveguide theory (e.g., the optical fiber
theory for 2D PCW or the slab waveguide theory for 1D PCW). Due to different guiding
mechanisms between the PBG-PCWs and conventional optical waveguides, unlike the
EAM method, the EIM approach fails for the PCWs due to the PBG effect. Further,
because the complex refractive index profiles within modes are neglected for the EIM
method, it is very difficult to define the equivalent boundary between the core and
cladding for the 2D PCWs (e.g., the equivalent radius of the PCFs that changes from A/2
to A [34] [49], where A is the pitch). Therefore, the EIM method can only approximate
the optical properties of the PCWs (e.g., the single-mode operation and the estimation of
the bending loss [53]) and cannot accurately predict more sensitive modal properties such

as dispersion or birefringence.
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2.7

Summary

In this chapter, in order to completely understand the basic principle and investigate the

modal characteristics of the PCWs, four typical modeling methods (i.e., the finite

difference method, the plane wave method, the envelope approximation method, and the

effective index method), which are used in the rest of the thesis as a basis for the

modeling and design of the PCWs with desired modal properties, are described.

Compared with formulations of modeling techniques used by other workers, the proposed

modeling methods have the following advantages:

The plane wave method (PWE, or so called the supercell method with the plane
wave expansion), which is summarized into simple matrix form by utilizing the
symmetrical nature of general PCWs, is simple and powerful. And it was used as
the reference results and also to calculate the band structure of the PCs.

The envelope approximation method, which is originally used for the PCWs with
in-plane propagation, and the effective index method, which is originally used
without any explanation, are simple and intuitive. Based on the band structure of
the PCs, the physical insight of the PCWs is easily gained and some modal
properties such as the single-mode operation are obtained in a very simple way.
The finite difference method, which is extended to utilize the perfect matching
layer boundary conditions and the initial value extracted from the band structure
of the PCs, is more accurate and versatile. It is a basis for the design of the PCWs

with some desired modal properties.
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One-Dimensional Photonic Crystal Waveguides

In this chapter, we investigate the modal characteristics of the one-dimensional (1D)
photonic crystal waveguides (PCWs) in great detail. By employing the transfer matrix
method, we can put the design parameters related to the general multiplayer structure into
a compdct analytical expression, which serves as the basis for analysis of the band-gap
structure of the general 1D photonic crystals (PCs) and the modal characteristics of the
general 1D PCWs. The band structure of ID PCs and modal properties of 1D PCWs,
such as the effective index, the modal field profile, the dispersion, the confinement loss,
and the confinement factor, are all calculated and simulated. With the help of the band-
gap map of the 1D PCs, four guiding regimes for the ID PCWs are recognized, in
accordance with the index of the guiding core. It is shown that the modal characteristics
for each regime behave differently from the point of view of guiding mechanism. Finally,
some complex 1D PCWs (e.g., the heterostructure PCWs) are investigated and the
relations between the 1D PCWs and 2D PCFs are discussed.

3.1 Introduction

As a starting point, we investigate the modal characteristics of the 1D PCWs. There are
several reasons for studying such relatively simple structures. Firstly, the 1D PCWs are
readily realized in both planar and cylindrical configurations to practical optical
waveguide structures. Secondly, the simple 1D structure can be used to gain considerable
understanding and insight into more complex 2D or even 3D structures. Thirdly,
analytical methods can be used for the modeling and simulation of the 1D PCW
structures and therefore such a study can be carried out in 2 much more efficient fashion
than those of 2D and 3D structures for which intensive computational methods have to be
utilized. Finally, a careful and somewhat exhausting examination of the literature in the
field seems to suggest that a complete analysis and detailed description of the 1D PCWs

are still lacking.
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Generally, a 1D PC structure consists of a stack of multiplayer dielectric structures
with different periods, and a 1D PC waveguide is formed by placing defects in between
the multi-layer stacks with the wave propagation along the propagation direction (i.e., k. #
0). In order to understand the operation principle of the 1D PCWs, it is instructive to
investigate the band structure of the 1D PCs, which gives intuitive and physical insight
(e.g., the regions of different guiding mechanisms, the effective index of the cladding,
and the curvature of the band structure). In practice, the number of periodic units is
limited, therefore the effect of the number of periodic units on the modal characteristics
should be carefully studied.

For the 1D dielectric structure as shown in Figure 3.1, the wave equations are
decoupled to yield two sets of independent modal solutions, namely, the TE and the TM
waves, that are expressed in terms of the transverse electric field component £, and the
transverse magnetic field component H,, respectively. However, because all the related
parameters (e.g., in lasers) are defined according to the electric fields, it is convenient and
simple to use the electric fields £ for the both polarizations. In this chapter, we use the £—
related parameters (i.e., the reflection coefficient » and transmission coefficient ) [15]

unless otherwise mentioned.

Y \
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Figure 3.1 The 1D N-layered isotropic dielectric structure with two cladding layers.
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3.2 The Multilayer Structure

In order to introduce the transfer matrix method (TMM), we start from the transfer matrix
related to a general N-layered dielectric structure with two cladding layers as shown in
Figure 3.1. In Figure 3.1, the refractive indices #; (i =1, 2, ..., N), ny, and n; are related
to the N-layered dielectric structure, cover, and substrate, respectively. In the N-layered
dielectric structure, the ith layer (i = 1, 2, ..., N) is located between x,.; and x; and its
correspohding thickness d, is that (x; - x;.;).

For the sake of simplicity, we assume that the electromagnetic (EM) wave is
assumed to propagate in the xz plane. The electric field Ei(x,z,¢) in the ith layer, which

satisfies Maxwell’s equations, has the following form:

Ey(x,2,1) = E(x)e™ /@) 3.1
where £, is the z component of the wave vector and w is the angular frequency. In

general, the electric field E{x) in each layer consists of two kinds of traveling waves

(forward and backward) and can be written as

Ej(x) = aje” a5 4 ot Ha i) (3.2)
where k;, (i=0, 1,2, ..., N, and §) is the x component of the wave vector in the ith layer,
and @; and b, are forward and backward propagation coefficients in each layer as shown
in Figure 3.1. From the wave equations, two components of the wave vector hold the

following relation:

k, =+/(kn)* —k? = kn,cos6, with k, = kn;siné, (3.3)
where k is the propagating constant in free space and § is the incident or transmitted
angle in the ith layer (only the incident angle 6 is shown in Figure 3.1). By utilizing the
continuous conditions of each tangential and longitudinal fields (the latter can be derived
from the derivatives of the transverse fields with respect to x) at each interface x; (i = 1, 2,
..., N), the relations between propagation coefficients ¢; and 5, (i =0, 1, 2, ..., N, §), as
shown in Figure 3.1, are obtained through transmission matrices D;, D;;; and the

propagation matrix P; [15],

33



Chapter 3. One-Dimensional Photonic Crystal Waveguides

4a; -1 iy
=PD™D, 34
{blj i~ i+1 [bjﬂ] ( )

where we assume that ay.; = as, by+; = bs, and Py is an unity matrix. The transmission

matrix D; and the propagation matrix P;are defined by

3
k. i 1
A 55
kni ) \q; —4q;

+ jk d,
P - [e 0 ) J (3.6)

O e—jklx i

where the integer & is 0 for the TE wave and 1 for the TM wave. The normalized

transverse constants g; are given by

k—}i" for the TE wave

q; = T 3.7
k—’ for the TM wave

ix
where ¢; for both polarizations is equal to #; at the normal incidence (i.e., k&, = 0) and the
determinant of the matrix D; for both polarizations is equal to —2k;/k. It is worth to note
that, in order to be consistent with the definitions of the parameters for both polarizations,
the k factor in the matrix D; is added (a somewhat different convention from those in
other texts and published papers [54]). However, this choice will not affect the final
results obtained.

By cascading the above transmission matrices and propagation matrix, the transfer

matrix M between the propagation coefficients of two cladding layers is obtained:

i -1 -1 —1n|% as )
by by by
where the transfer matrix M is further defined by the unimodular matrix g, (i.e., det(Q;) =
|Oi] = 1, where det(...) or |...| stands for the determinant of the matrix):
= M M Dy'mDg = Do—‘(ﬁg.)DS (3.9)
My My =
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N
where the unimodular matrix m = [[Q; for the N-layered structure and O, = D,P.D; " are
i=1

the transfer matrix for the ith layer [15]:

(3.10)

i

_( cos(k,d;)  jsin(k,d.)/ q,)
Jjg;sin(k,d))  cos(k,d,)

where the normalized transverse constant ¢; was given by (3.7). It is worth to note that,
due to the different fields used, the normalized transverse constant ¢, for the TM wave is
different from that used in some texts and published papers [54], [55]. By using the
symmetry property of the transfer matrix Q, it is shown that A% = M>*, My, = My 1*, and
det(M) = ku/ko.. Through the transfer matrix, the reflection and transmission coefficients

r and ¢ are calculated if we assume the light is incident from the cover () and bs= 0,

r:(_b_()_) _ My _ (g + mpg,) = (may + mypq)/ g G.11)
a )y g M (mytmpgs)+(myy +mygs)/ gq

A 2ngko, /noks,)’ G.12)

a
t=| = =
("0 ]bﬁo My (myy +magg) + (myy +myqs) go

where the integer ¢ is 0 for the TE wave and 1 for the TM wave. And their corresponding
reflectance and transmittance of plane waves through a multiplayer dielectric structure
can be obtained [15]:
R=|r? and :r=ki|t|2 (3.13)
kOx
where we note that R + 7= 1. On the other hand, if we consider the light is incident from

the substrate (n;), the reflection and transmission coefficients »’ and ¢’ can be calculated

as follows:
| A _ My (myy —mpg) + () —mypg)/ gy
pe - - (3.14)
By )y—o  Mu Gmy+mypgg)t(my+mpgs)/q
= (&J = ' M! = 2(ksx /kOX)(nskOx /noksx)5 (3.15)
By ), —o Mn Umy+mypgg)+(my +mygs)/ g
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where we note that ¢ = |M]¢ and the corresponding reflectance and transmittance R’ and
T’ are given as follows:
R=|rP and =22 o (3.16)
sx

where we again note that 7 = 7°. Through the above-mentioned formulae, the
reflectance, transmittance, and some related parameters can all be obtained.

For the guided modes of the 1D multilayer waveguide, their dispersion curve can
be solved with the help of the transfer matrix. Because their filed amplitudes vanish at

infinity, the coefficients ay and b; are set to zero in (3.8),

) o 2 a1
by) \ My Mpy)\O0

So the following dispersion relation is easily obtained from the transfer matrix of the 1D
multiplayer structure:

My =0 or (my; +myq)q) +my +myg, =0 (3.18)

where (3.9) was used. If we use the positive transverse decay constants

¥, =—jk; =+ kz2 — (kn,-)2 in cover and substrate (i.e., i = 0 and §), and the equation (3.18)

becomes the familiar dispersion relation for the 1D multilayer waveguide. For example,

the dispersion relation for the TE wave is shown as follows:

(Kmay ~myy¥o¥s) + k(my 7 +myy) = 0 (3.19)

In general, how to find the complex solution of the dispersion curve of the 1D
multilayer waveguide is a highly challenging task and still attracts research attention.
Here we introduce a simple and rigorous slab leaky model (or so-called the transverse
resonance method, TRM [56]) to solve the guided or leaky modes of the 1D multiplayer
slab waveguide involving a core layer with the index »n. and the thickness d as shown in
Figure 3.2 (here we assume that the ith layer is the core layer of the waveguide, or n. = n;
and d = d;). By considering the boundary conditions (continuity of the tangential electric
and magnetic fields) at the core-cladding interfaces, the dispersion curve of the modes

can be obtained as follows [2]:
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nppet/ T ked) (3.20)
where # is the order of the guided modes, £, is the transverse (x) component of the wave

vector in the core, and r; and 7, are the reflection coefficients from either sides inside the
core, which can be easily calculated by the transfer matrices (e.g., 3.11 and 3.14). The
zeros of (3.20) are found by employing a general complex root-searching scheme such as
the Muller scheme with a suitable initial value (e.g., got from the band structure for the
PCs).
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Figure 3.2 The 1D N-layered waveguide structure by the transverse resonance method.

3.3 Band Structure of 1D Photonic Crystals

After reviewing the transfer matrix method (TMM) of the 1D multiplayer, we are ready
to investigate the 1D photonic crystal (PC) structure. We consider a general 1D PC
structure with finite thickness surrounding by the cover (n.) and the substrate (xy), in
which each periodic period consists of P-layered dielectric materials, as shown in Figure
3.3. This practical PC structure is made of N periods with pitch A (n =1, 2, ..., N) and
each period consists of P layers with refractive index n, and thickness d, (p=1, 2, ..., P).
Ideally, when increasing the number N into infinite, this dielectric structure becomes
semi-infinite or infinite. In this section, we discuss the 1D infinite PC structure or simply
the 1D PC. For the practical case of the band-gap structure, the 1D finite PCs with defects

(i.e., PCWs) will be discussed in the next section (see 3.4).
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Figure 3.3 A schematic drawing of a 1D periodic layered media and the propagation
coefficients associated with the #th unit cell and its neighboring layers.

By using the TMM method, the relation between forward and backward
propagation coefficients of the unit cell (e.g., the nth period in as shown in Figure 3.3)

can be express as follows:

' M, M
b ) \ My My b by
where M is the matrix for the unit cell,
2
M =D (T1Q)DR (3.22)
1=
where we note that M, = M),* and M,,= M;,;* For example, the components of the unit
cell’s transfer matrix of the simplest PC (i.e., P = 2}, which consists of two alternating

layers of low refraction index »; and high refraction index »; and the corresponding

thickness d; and o5, are given,

My, = e 1 [cos(ky,dy) + i(__‘flkzx + oohix ysin(ky,d;)]
2 Gk, ik

. Ehy Sk
M — ]k}xd] ___1 m l 51 2x _ 2%1x k d
12 =¢€ (-1 > (_—fzkl_x —_Ekzx)sm( 2x%)

where & =1 for the TE wave and & = »% (i = 1 and 2) for the TM wave.

(3.23)
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According to the Bloch-Floquet theorem, the periodicity n(x)=n(x+A) of the

structure leads to the Bloch wave solutions Ey (x,z) of the Maxwell’s equations:

Ey(x,z) = Ex(x)exp[—j(k, z+ Kx)] (3.24)
where Ey (x)is the Bloch wave function [ E;(x) = Ex(x+ A)] and KX is the Bloch wave

number. With the help of the TMM method and (3.24), the eigen-value equation between

the Bloch wave number and frequency can be obtained [15]:

My, Mzz)(aljz +jKA[aI] 395
(le Mxy \ b ) by 529

After some simple algebraic manipulations, the dispersion relation between the Bloch

wave number K and frequency wcan be obtained [15]:

/A (3.26)

ik =cos™ 2 M2)

where £; is the tangential component of the wave vector and @ is the angular frequency.

Also the corresponding eigenvector can be calculated [15]:

a | _ My, 3.27)
b) (- My | e

It is worth to note that, for the lossless PCs, a real Bloch wave number means the
propagation state and an imaginary Bloch wave number means the evanescent state,
which forms a band-gap for the PCs. The analytical forms for a typical period layered
structure can be obtained from the transfer matrix of the unit cell of the structure (i.c.,
3.22) and its band structure can be solved analytically. For instance, the dispersion

relation for the simplest PC (i.e., P = 2) can be obtained as follows:

N2
cos[K(B,w)A] = cos(ky,d) + ky,d5)— @%%@Fsin(khdi) sin(k, . d,) (3.28)
h9>

where the normalized transverse constants ¢; (i = 1 and 2) was defined in (3.7). It is worth

to note that, if (ny-n;)/n;<<I, the approximate »n-th order Bragg condition, which we will
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employ frequently to interpret some features of the PCs (e.g., the closure of the band-

gap), is obtained when we set

klxdl + kzxdz =nnw (329)

where 7 is the order of the band structure.

3.3.1 On-Axis Propagation

In general, one considers that light propagates or resonates entirely in the x-direction (or
on-axis propagation, e.g., Bragg grating and DFB lasers). Because on-axis propagation
(i.e., k.= 0) is a special case of off-axis propagation, here we calculate the band structure
(or so-called band-gap map) with on-axis propagation of some typical two-material PCs
to show some interesting properties of 1D PCs. Figure 3.4 shows the photonic band
structure with on-axis propagation of 1D PCs with silica-air layers of width 0.5A. As can
be seen, there are some band-gaps along the frequency axis where the Bloch wave
number K is imaginary. Usually, these gaps are called the photonic band-gaps (PBGs).
The physical insight of the PBGs can be understood by considering the electric field
modes for the different order (or band) states at the middle (KX = 0) and edge (K = z/A)
of the Brillouin zone, in which the low-frequency mode concentrates its energy in the
high index region and the high-frequency mode concentrates its energy in the low index
region, respectively [19]. Further, it is found that the bandwidth of the band-gaps is
different from each other and depends on the index ratio and the size-to-pitch ratio.
Usually, when the index ratio increases, the band-gaps widen considerably [7]. Figure
3.5(a) and Figure 3.5(b) show the photonic band-gap as a function of the index ratio n,/n;
and the size-to-pitch ratio do/A, respectively. It can be seen from figures that the first gap
has following properties for the 1D PCs with on-axis propagation (k,= 0) [7]:

I. The band-gap always opens up when ny/n; # 1.

2. The larger the index ratio ny/n;, the wider the relative gap Aa/ ay.

3. The largest relative gap Aay ayis reached at the quarter-wave stack (n/n; = d)/d>).
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However, unlike summarized in Ref [7], the above conclusions for the first band-
gap do not hold for the high-order band-gaps. It is observed in Figure 3.5 that the band-
gaps for the high-order bands oscillate when the index ratio n,/n; or the size-to-pitch ratio
da/A changes, and the number of band-gap nulls or peaks increases with the band order.
This can be understood theoretically by the Bragg condition kad> + kjd; = nz(i.e., 3.29),

where n is the order of the band-gap and the band-gap closes m times when meeting the

condition of kzdy = mmw (0 <m < n).

0.5

Figure 3.4 The photonic band structure (@ K) with on-axis propagation (k.= Q) with
silica-air layers of n;= 1.0, n,= 1.45and d; =d, =0.5A.

Normalized frequency {(®A/2xcC)
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Figure 3.5 The photonic band-gap with on-axis propagation as a function of the index
ratio ny/n; of width 0.5A (a) and the size-to-pitch ratio d>/A with silica-air layers (b).
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3.3.2 Off-Axis Propagation

In order to understand the operation principle of the PCWs, the band structure with off-
axis propagation should be considered. Since there is no index variation along the z
direction, there are no complete band-gaps with off-axis propagation. However, when we
consider the PCs as a semi-finite structure and the wave propagation along the z direction
inside the defects, the complete band-gap with off-axis propagation is not important. So,
the partfal band-gap with off-axis propagation is enough. Figure 3.6 shows the photonic
band structure with off-axis propagation of 1D PCs with silica-silicon layers (n; = 1.4
and »ny = 3.4) of width 0.5A. As expected, several well-known features of the PBGs with
off-axis propagation of 1D PCs are observed as follows [7]:

I. The band-gaps shift toward the higher frequency when £. increases.

2. The band-gaps for TE and TM behave differently. The bandwidth of all TE gaps
increases when £; increases. However, when £, increases, all TM gaps shrink to
zero at the Brewster line (w = ¢ k/n;/63 with 6 = tan'l(ng/n 1)), and then open up.

3. The first band for both polarizations has different dispersion slopes when &;
decreases to zero and the slope of the TM gap is larger than that of the TE gap.

4. The bands shrink to zero when &, increases.

These properties can be understood as follows. In order to meet the Bragg

condition (i.e., 3.29) for the transverse constants &, (f = | and 2) and £;, = \/(kn,-)z —kzz ,

the band-gap must shift toward the higher frequency when £, increases. As we know, the
TM wave propagates without any reflection from n; (or n;) to »n; (or ny) at the Brewster
angle . This, in turn, leads to all propagation states and all band-gaps should close at
the Brewster angle 6. Due to the more energy concentrated in the high (or low) index
region for the TE wave than that of the TM wave at long wavelengths, in general, the

band-gaps of the TE wave are larger than those of the TM wave.
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Figure 3.6 The photonic band structure of the TE(a) and TM(b) waves with off-axis
propagation for 1D PCs with layers of width 0.5A and layers between n,= 3.4 and n;=1.4.
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When the wavelength further increases, for the first band of 1D PCs, light actually
propagates an effective homogeneous dielectric media for both polarizations with an

average index (n;> = n;d)/A+nydy/\) [7]. If we redraw Figure 3.6(a) into our familiar V-b

diagram for the single symmetrical slab waveguide [here V =#d, (n22 - n12 )2 and
b=((k,/ k) —nlz)/(n% —n12 )] as shown in Figure 3.7, the short-wavelength asymptotic
behavior of 1D PCs can be understood easily as follows. As can be seen from Figure 3.7,
when the normalized frequency V increases (or the wavelength decreases), all band-gaps
open up to the limitations and are the same with the corresponding -5 curves of the slab
guided modes, which mean that the coupling between the period dielectric structures is
neglectable and the PC structure acts like the slab waveguide. As can be seen from the
band-gap structure of the PCs, this “threshold” wavelength point depends on the index
ratio ny/n; and the size-to-pitch ratio d»/A of 1D PCs. In other words, the larger the index

ratio ny/n; and the size-to-pitch ratio do/A, the longer the “threshold” wavelength point.
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Figure 3.7 The photonic band structure (V-b) of the TE waves with off-axis propagation
for 1D PCs with layers of width 0.5A and layers alternate between n, = 3.4 and n; = 1.4.
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As we know from the slab waveguide theory, the normalized effective index b for
both polarizations tends to unity at short wavelengths. It leads to that all band-gaps of 1D
PCs meet the n, line when wavelength decreases. It is worth to note that, because the
difference between the TE and TM wave is well known for the slab waveguide, the
vector nature of the guided and unguided modes of 1D PCs and their related structures

(e.g., PCWSs) must be considered.

3.3.3 Space-Filling Modes

In the previous section, the band structure of 1D PCs is analyzed by using the Bloch-
Floquet theorem. It is shown that there are always the band-gaps for 1D PCs in which the
EM waves cannot propagate in the direction along the periodic multilayer (i.e., x). In
other words, the Bloch wave number K is imaginary in the band-gaps and real off the
band-gaps. In this section, we consider the band structure of 1D PCs by using the
variation theorem [7]. According to the variation theorem, there are always two ways to
allocate the EM energy, which is located at the edge of the Brillouin zone (i.e., KA 2z =
0 or 1/2). The first set of modes (SFM1) with low frequency (or high effective index), in
which the first mode is called the fundamental space-filling mode, concentrates their
energy in high index regions with perfect magnetic wall boundary condition (PMC) at the
center of high index regions. On the other hand, the second set of modes (SFM2) with
higher frequency (or low effective index) concentrates their energy in low index regions
with perfect electric wall boundary condition (PEC) at the center of low index regions.
Here we use the simplest (two-layer) PC structure as shown in Figure 3.8 to demonstrate
this concept.

Generally speaking, by the symmetry of the unit cell of the PC, only half of the unit
cell should be considered. In order to utilize the transfer matrix of the unit cell, here we
consider a unit cell as shown in Figure 3.8, which is a previous unit cell (as shown in
Figure 3.3) with d,/2-shifted toward —x direction. The corresponding transfer matrix A

can be easily calculated from the matrix M (i.e., 3.23) for the unit cell of the PC:
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My M
M':( 1 12

=P . MpP 3.30
My, M'zz} Lai/ 2 q1/2 (3.30)

where

My, = M, = e’ [cos(ky dy) + i(‘f‘ki + Qk#) sin(kyd))]
2 §2k1x 1k2x

Co_ ' J Sikax Sk
My = Mp,e/fst = (1) L2122 _ 2270 y6in(k, d,)
! 2 Gk Gikoy

where £=1 and o = 0 for the TE wave, and £=r% (i =1 and 2) and o= 1 for the TM
wave. We note that M’y = M’ 5* and M’ = M’ *. According to the definition of the

(3.31)

SFM modes, two sets of modes are determined by the variation theorem with two
boundary conditions: PMC (a’y.; = b .1, @'n=b"y) and PEC (@) = -b .y, @’y = -b ) With
respect to the transfer matrix M. After some simple algebraic manipulations, the modal

index can be calculated:
(M — My,) = F2M e’ (3.32)
or

2sin(k,,dy)cos(ky,dy) + (QkA + gz—kl"—)cos(klxdl ysin(k,,d,)
Sk Gikax

— k Sk,
=F(-1)° §_1_21__Ll£ kr.d
(-1) (fzklx 1k2x)sm( 2x2)

where “-/+” stands for the modes that concentrate their energy in the high/low index

(3.33)

regions. Figure 3.9 shows that the calculated band structure of TE and TM SFM modes
with off-axis propagation for 1D air-silica PCs with layers of the silica width 0.8A, in
which the solid lines stand for the SFM1 modes and the dash lines for the SFM2 modes.
As expected, the SFM modes coincide with the curves of band edges. Therefore, as
shown in the previous simulation results (e.g., Figure 3.5, Figure 3.6 and Figure 3.7), the
even number of the bands, which are represented by solid lines, is related to the SFM1
modes of 1D PCs and the odd number of the bands, which are represented by dash lines,
is related to the SFM2 modes of 1D PCs.
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Figure 3.8 A schematic drawing of a 1D periodic two-layer isotropic media and the
plane-wave amplitudes associated with the nth unit cell and its neighboring layers.
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Figure 3.9 The spacing filling modes (k.-@) of the TE (a) and TM (b) waves with off-axis
propagation for 1D air-silica PCs with layers of the silica width 0.8A and layers alternate
between n; = 1.45 and n; = 1.0.

3.4 Photonic Crystal Waveguides

After understanding the main features of 1D PCs, now we can examine the 1D photonic
crystal waveguides (PCWs) in which the transactional symmetry of 1D PCs is broken by
a core or defects. As a result, it creates an allowed state (a guided mode) in the band-gap,
thereby permitting a so-called localized mode around the core of 1D PCWs. General
speaking, type of guiding mechanisms (i.e., PBG or TIR) depends on the properties of the
core (i.e., the index and width of the core). By using the transverse resonance method
(TRM), the modal properties of 1D PCWs can be calculated. Once the effective index Ny
and mode profile E(x) are obtained, other modal properties (see Appendix A) can be
readily obtained. In order to make the 1D PCWs close to the practical case, the high index

(n2 in Figure 3.10) of the cladding is assumed, and hence 1D PCWs considered here are
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essentially leaky in nature. Figure 3.10 shows the schematic view of a general 1D PCW
consisting of a core layer n. with the thickness d surrounding by N pairs of the PCs. In
general, each pair of the structure may contain an arbitrary number of layers. For the sake
of simplicity, we assume that each pair only has two alternative low and high index layers
of index »; and thickness d}, and index n, and thickness d, respectively. Also we assume
that the range of n. is from #; (e.g., 1.0) to ny(e.g., 2.2 or =o). The pitch A of each pair is
equal to. dj+d,. It is worth to note that, as shown in Figure 3.10(b), the core layer is

neighboring with the low index layer (i.e., n;) for the TIR-PCWs.

3.4.1 Band-gap Map and Four Guiding Regions
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Figure 3.10 The schematic view of a general 1D PCW consisting of a core layer n. with
the thickness d surrounding by N pairs of two alternative layers n; and #, with the high
index thickness 4> and the pitch A: (a) 1D PBG-PCWs and (b) 1D TIR-PCWs.
As mentioned before, the band structure (or band-gap map) of the PCs is very important

to help us to judge the simulation results of 1D PCWs [7]. In order to compare the
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simulation results with the published results {19], typical design parameters for the 1D
PCWs are given as follows: d» = 0.6092A = 3.437 um, A = 5.642 um, d = 3.391A =
19.131 um, N = 2, 4, 8, 16, and 32, n; = 1.4, and n, = 1.8, which are obtained by
comparing the 1D PCW with a practical 2D PBG fiber studied and measured by Bise et
al.[57]. By comparing the difference of band-gap maps between the TE and TM modes,
calculated from (3.28), for 1D PCs with different n,/ n, and d,/A values (i.e., Figure 3.4-
Figure 3.7, Figure 3.9), we find that the band-gap maps for both the TE and TM modes

have almost similar shapes except that all band-gaps are closed at the Brewster radiation

line (@=ck,/m/sin(tan™"(ny/m))=ck,/1.105) for TM modes. Hence, here we only
consider the TE modes unless otherwise mentioned.

Figure 3.11 shows the band-gap maps of TE modes of the 1D PCs with the n; =
1.4, n, = 1.8, and d> = 0.6092A. In Figure 3.11, four different radiation lines are also
shown: the solid line for the air line (i.e., n, = 1.0), the dashed line for the low index line
(i.e., n; = 1.4), the dotted line for the high index line (i.e., n, = 1.8), and the dash-dotted
line for the higher index line (i.e., ny = 2.2). By comparing the difference of the band-gap
maps for different »n;/n; and dy/A values, four typical guiding regions are clearly
identified, and defined as follows. Region I is the radiation area between 0 and »;, and
region Il is the radiation area between mjand nj,, in which #;, is defined as its
corresponding radiation line that is tangential with the first band of ID PCs, or n;; =
nid)/A+nydy/A. The difference between them is that the band-gaps in region I close and
then open up frequently and the band-gaps in region II never close and arrange along the
radiation line regularly. The former, due to small value of £k, has a chance to meet the
condition of the gap closure (kxd; = mz, where m is the number of the gaps closure)
under the Bragg condition ks + kixd; = nw (0 <m < n, where # is the order of the gap).
The higher the order of the band-gaps, the larger the closure times of the band-gaps.
Especially, for the TM wave, all band-gaps are closed at the Brewster radiation line. On
the other hand, the later, due to the large value of &, and small value of %, has no chance
to meet the condition of the gap closure and all gaps are open. Region Il is the radiation

area between n;, and n,, and region IV is the radiation area between n, and oo. The
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difference between them is that the radiation line in region III crosses all bands and the
radiation line in region IV crosses none of bands because the all bands have the
asymptotic {short-wavelength) behavior when they close to the »; radiation line.

When a core layer with index n.and thickness d is inserted into a finite 1D PC, the
1D PCW is formed as shown in Figure 3.10. With the assistance of the band-gap map of
1D PCs, when the index of the core is changed (it is equivalent to the thickness change of
the core), four different guiding regimes are clearly recognized, which correspond to the
four regions as shown in Figure 3.11. As shown later, regimes I and II belong to the long-
wavelength and the short-wavelength regimes, respectively, and light for both regimes is
guided due to the PBG effect. In regime IIl, light is guided due to the PBG effect in the
short-wavelength and the TIR effect in the long-wavelength. In regime IV, light is guided
due to the TIR effect. Due to the nature of different guiding regimes, the modal

characteristics in each regime behave differently, as clearly shown in the next section.
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Figure 3.11 The band-gap map of TE waves of 1D PCs with the n; = 1.4, n, = 1.8, and d,
= (0.6092A, in which four different radiation lines are shown: solid line for n; (i.e., 1.0),
dashed line for n;, dotted line for n,, and dash-dotted line for »y (i.c., 2.2). Also four
guiding regions are indicated, which belong to (1, n;), [n;, 1,21, (n12 1y), and [n;, o).

3.4.2 TIR and PBG Guiding

For 1D PCWs defined in the previous section with N = 32, the effective indices and mode
profiles (see Appendix A) can be calculated by the transverse resonance method (TRM)
for different core indices n, = 1.0, 1.4, 1.7, and 2.2, which belong to four guiding regimes
mentioned in the previous section. For the sake of simplicity, here only guided modes of
1D PCWs in the second band-gap (i.e., the PBG band-gap between band 4 and band 5)
and the semi-infinite band-gap are considered.

Figure 3.12 and Figure 3.13 show the effective indices n.5 and the corresponding
mode profiles £(x) for ID PCWs with the core width of 4= 19.131 um. In Figure 3.13,

the operating wavelengths and corresponding confinement factors in the core are
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presented in Table 3.1. From Figure 3.12 and Figure 3.13, for the PBG guided modes in
the same band-gap, it is observed that the operating wavelengths move from long
wavelength to short wavelength and the number of guided modes increases when the
index #n. of the waveguide core increases. Consequently, the modal index closes to the
radiation line of the core (so the dispersion of the mode decreases) and the mode energy
is confined mostly within the low index core and the first high index layer on either side
(so the confinement factor of the mode increases). This phenomenon resembles the case
when the operating wavelength of the mode increases for the fixed radiation line (e.g., 7.
= ny) [7]. On the other hand, for the TIR guided modes in the semi-infinite band-gap, the
similar effect is observed except the dispersion of modes. It is demonstrated that the
dispersion of the mode increases when the index of the waveguide core increases. This is
understood as the width of the semi-infinite band-gap (between the radiation lines of the
core and the band 1) increases when the index of the waveguide core increases. Also, it is
interesting to note that, for the same number of the layer pairs, the confinement loss of
ID PCWs decreases when the index of the waveguide core increases. Also, at short
wavelengths, the fundamental mode of the PCW's with a core index of n. < n; experiences

cut-off. We will show this result in detail later (see 3.4.3).
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Figure 3.12 The TE effective indices 7,4 as a function of wavelength of the guided modes
for the core index . = 1.0 (a), 1.4 (b), 1.7 (c,d), 1.8 (¢), and 2.2 (f) of 1D PCWs in the
second band-gap (a, b, and ¢) and semi-infinite band-gap (d, ¢, and f). The fixed design
parameters for 1D PCWs are as follows: d> = 0.6092 A =3.437 um, A =5.642 pm, d =
3391 4=19.131pym, N=32,n,=14,and n,=1.8.
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Figure 3.13 The electric field E, of the guided modes for the core index n. = 1.0 (a), 1.4
(b), 1.7 (c, d), 1.8 (e), and 2.2 (f) of 1D PCWs in the second band-gap (a, b, and ¢) and
semi-infinite band-gap (d, e, and f). The fixed design parameters for 1D PCWs are the
same as in Figure 3.12.

Table 3.1 Wavelengths and confinement factors of the modal profiles shown in Figure 3.12.

Field | # of Guiding Wavelengths, um Confinement factors
Profiles | modes | mechanism

Figl3a 4 PBG 7.40,7.40,8.30,8.90 0.981,0.918,0.798,0.660
Figl3b 6 PBG 5.07,5.07,5.07, 0.991,0.970,0.935,

6.5,7.3,9.0 0.774,0.678,0.408
Figl3c 9 PBG 2.5,2.5,3.0,3.0,3.0, | 0.991,0.973,0.937,0.844,0.856,
3.0,3.0,3.0,3.5,3.5 0.856,0.841.0.791,0.6882

Figl3d 1 TIR 10.0 0.916

Figl3e 4 TIR 10.0,10.0,10.0,10.0 0.993,0.961,0.946.0.935
Fig13f 6 TIR 10.0,10.0,10.0,10.0, 0.998,0.993,0.982,0.965,

10.0, 4.5 0.932,0.726

3.4.3 Effects of the Number of Layer Pairs on Modal Properties

Using the proposed analytical model, it is very convenient to predict the number of layer

pairs needed to avoid possible modal leakage, which is one of important design

considerations, for any desired wavelengths. Here the previous mentioned 1D PCWs are

used to investigate the effects on modal properties for different number of layer pairs (N).
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When the number of layer pairs (V) decreases from a large number (e.g., 64) to
unity, it is observed that the effect of the number of layer pairs on the effective index, the
modal profiles, and dispersion is negligible at the short wavelength region and more
pronounced at the long wavelength region. As expected, it can be understood by the
nature of the band structure with off-axis propagation [7]. At the short wavelength region
(i.e., the high-order band-gap and larger k. region), light is trapped in the high index
region due to the TIR effect as an isolated optical waveguide. So the modal properties of
ID PCWs are mainly determined by an optical waveguide consisting of the low/high
index core and the first high/low index layers on either side. When the operating
wavelength increases, the modal fields spread more into the cladding, and the
accumulated contribution to modal properties is much more pronounced. Overall, the
effect of the number of layer pairs on the confinement loss is more significant. It is worth
to note, in some sense, that the ARROW waveguide is a special kind of 1D PCWs with N
= 1. Figure 3.14 shows the confinement loss L. of the fundamental mode for the core
index n, = 1.0, 1.4, 1.6, and 1.7. In general, the effect of the number of layer pairs on the

confinement loss in the PBG-PCWs is more pronounced than that in the PCF-PCWs

because of different guiding regimes.

Confinement loss L (dB/m)
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Figure 3.14 The confinement loss L. of the fundamental guided modes for the core index
n.= 1.0 (a), 1.4 (b), 1.6 (c), and 1.7 (d) of 1D PCWs in the second band-gap (a, b, and ¢)
and semi-infinite band-gap (d). The fixed design parameters for 1D PCWs are the same
as in Figure 3.12 except the number of layer pairs.

3.4.4 Scaling Transformation with the Core Thickness

As we know, one of most important features of the PCs is the scaling transformation with
the pitch A (see Appendix C). In some sense, in order to assist the design process of
waveguides, the scaling transformation of modal properties with the ratio d»/A can also
be approximately obtained [58], [59]. With the similar thought, in order to design the
waveguides with specific modal properties such as the single-mode operation and group
velocity dispersion, the scaling transformation of the basic modal properties with the
thickness d of the core should be understood. Like the scaling transformation of the basic
modal properties with the ratio d/A, the relation of the basic modal properties with the
thickness d of the core is no longer linear with the scaling parameter P (i.e., d/dp). For
this reason, we have to calculate modal properties numerically and extract a nonlinear
relationship. For example, for the waveguide dispersion D,, Figure 3.15 shows the

simulation results of the fundamental guided modes for the core index i1, = 1.0, 1.4, 1.8,
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and 2.2 of 1D PCWs in the second band-gap and semi-infinite band-gap, respectively.
As expected, when the thickness d of the core decreases, the effective index decreases
and the modal profile spreads more into the cladding so that the dependence of the
effective index on the wavelength is more pronounced. This, in turn, increases the
dispersion of the PCWs. As seen from figure, however, the dispersion curves for the
different guiding mechanisms (e.g., PBG with (a) and (b) and TIR with (c) and (d))
behave differently. This can be understood as follows. For the PBG-PCWs, according to

(3.20), in order to meet the Bragg phase condition of the mode, k_.d should keep constant

and k., is inversely proportional with the thickness d of the core. So, with the help of
(3.3), the effective index nqy decreases and the modal profile spreads more into the
cladding according to the variation theorem. After some algebraic manipulations, we can
obtain that D, o< 1/d%, which is also consistent with the dispersion relation of the metallic
plate (see 3.5.2). For the TIR-PCWs, the scaling transformation of the waveguide
dispersion of the PCWs with respect to the core thickness d can be obtained from the slab
waveguide theory with the help of the EIM method, and we have that Dgo< 1/d.

Wavelength A {um)
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Waveguide diepersion D, (ps/inml/km)

Figure 3.15 The waveguide dispersion Dg of the fundamental guided modes for the core
index n. = 1.0 (a), 1.4 (b), 1.8(c), and 2.2 (d) of 1D PCWs in the second band-gap (a and
b) and semi-infinite band-gap (c and d). The fixed design parameters for 1D PCWs are
the same as in Figure 3.12 except the thickness of the core layer.

3.4.5 Envelope Approximation Analysis

Now we start to investigate the modal characteristics and physical meaning of 1D PCWs
by way of examples through the EAM and EIM methods. The PCW under study is a 1D
heretostructure PCW as shown in Figure 3.16. The thickness > of the high index layer n,
is 0.4A and the core width of the waveguide isthat 2W =/A (I=1,2,3,4, ...).

Firstly, we need to understand the optical properties of the PC structure used as the
cladding material, which consists of two alternative layers with index 7, = 3.1623 and #,
= 1.0 (air). As we know, in order to confine the light in the PCWs, the positive large
curvature is appreciated for the TIR-based PCWs and the negative large curvature for the
PBG-based PCWs. Figure 3.17 shows the band curvature with relation of the propagation
constant for the 1D PCs with two alternative layers with index ny; = 3.1623 and n; = 1.0

(air) at do/A = 0.5. As can be seen, bands with the odd number have the positive curvature
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(or effective “mass”) and bands with the even number have the negative curvature, and
low-order bands have larger curvature than high-order bands. As expected, the curvature
with larger propagation constants, which is located in short wavelengths, is larger than
that with less propagation constants, which is located in long wavelengths. Figure 3.18
shows the band curvature of band I and 2 with relation of propagation constant for the
1D PCs with two alternative layers with index », = 3.1623 and n; = 1.0 (air). As can be
seen, larger band-gaps have larger curvature. Also from the simulation results, it is shown
that, for the first and second bands, the largest curvature is around the quarter wavelength

thickness d»/A = 0.24.
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Figure 3.16 The schematic view of a 1D heretostructure PCW consisting of two
alternative layers »n; and n, with the high index thickness d, and the pitch A with core
layer of N pairs of two same lattice layers n’; and »'.
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Secondly, we consider the case in which the average index in the core is higher
than in the cladding with two alternative layers with index n, = 3.1623 and », = 1.0 (air)

at dy/A = 0.24. We choose a contrast Ay= 0.1, which means that the core has with two

altemative'layers with index n’,=3.3166 and n’; = 1.0488 at dyA = 0.24. As we know
from the band structure, guided modes exist where the curvature is positive. This occurs
at &, = 0 for the odd number of bands or at &, = /A for the even number of bands in the
band structure with on-axis propagation. On the other hand, this occurs for the odd
number of bands in the band structure with off-axis propagation. For the sake of

simplicity, we just focus on the first band.
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Figure 3.17 Band curvature with relation of propagation constant for the 1D PCs with
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Figure 3.18 Band curvature of band 1 and 2 with relation of propagation constant for the
1D PCs with two alternative layers with index n,=3.1623 and »;= 1.0 (air).
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Figure 3.19 shows the dispersion relation for k. sweeping from zero to the 27/A
point by two methods for the PCW with 2IW = 5A. The field patterns of the modes at &, =
/A is shown in Figure 3.20. The simulated results are good agreement with those
computed numerically by the PWE method at an arbitrary position along the z axis (not
shown in figure). As can be seen from figure, the simulated result by the EIM method is
in good agreement with that by the EAM method at long wavelengths and the effective
index of modes by the EIM method is larger than that by the EAM method at the short

wavelengths, which are also explained by the field patterns as shown in Figure 3.20.
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Figure 3.19 Dispersion relation of the waveguide and band structure of the core and
cladding materials of the first band at k.= 0.
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Figure 3.20 Even modes of the first band calculated by EAM and EIM for ;= n/A for the
average refractive index higher in the core than in the cladding (k.= 0).

Finally, we consider the case in which the average index in the core is lower than
that in the cladding. As mentioned earlier, the PBG wave guiding is possible even when
the average index in the core is lower than that in the cladding. We interchange the roles
of the core and the cladding in the example above: the cladding material is now made of
rods of n; = 3.3166 in a background of n,= 1.0488, while the core is made of rods having

n’; = 3.1623 lying in air (n’; = 1.0). In this case, the contrast is Ay= —-0.091. Guided

modes are allowed where the curvature of the bands is negative, which occurs at k,= 7A
in the case of the first two bands. As seen in the previous analysis, this transverse
component of the wave vector introduces a modulation to the envelope function in the
transverse direction, so that the actual slowly varying envelope of the mode is the
function f0. This modulation explains why the envelope function and the actual field
have opposite parities. The dispersion relation and shapes of the modes are displayed in

Figure 3.21 and Figure 3.22, respectively.
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Figure 3.21 Dispersion relation of the waveguide and band structure of the core and
cladding materials of the first band at &, (k) = n/A.
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Figure 3.22 Even modes of the first band calculated by EAM for 4. = n/A for the average
refractive index higher in the core than in the cladding at &, = T/A.
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3.5 Discussions

After understanding some basic concepts such as space-filling modes, vector nature, and
modal properties, here we discuss some issues such as the effect of the ratio d»/A on

modal properties, the single-mode condition, and relation with PCFs (i.e., 2D PCWs).

3.5.1 Effect of the Layer Size-to-Pitch Ratio

By using the definition of the normalized propagation constant b and the normalized
frequency ¥V in 3.3.2, the normalized propagation constants of first eight bands of TE
modes of 1D PCs with the function of V for 1D PCWs with the ratio d2/A = 0.8 (dash-dot
lines), 0.6209 (dot lines), 0.3 (dash lies), and 0.0 (solid lines) are shown in Figure 3.23.
All other design parameters for 1D PCWs are fixed and the same as those in Figure 3.12.
As can be seen from the figure, the effect of different ratio d»/A on modal properties of
1D PCWs is similar with the one of wavelengths. For the small d»/A ratio PCW (e.g., <
0.3), light is well confined within the core by the first and second cladding layers and
small number of the layer pairs is enough to confine light due to a very wide band-gap.
On the other hand, for the large d»/A ratio PCW (e.g., 2 0.9), light is weakly confined and
field penetrates into a large area of air holes and large number of the layer pairs is needed

to confine light due to a very narrow band-gap.

3.5.2 Comparison with 1D Metallic Parallel-Plate Waveguide

In general, the modal fields and the transverse constants of the metal parallel plates with

the index n, are easily obtained as follows

asin(k (x+d/2)) for the TE wave
E(x)= (3.34)
acos(k,(x+d/2)) for the TM wave
(m+1)x/d for the TE wave
k, = (3.35)
mrrld for the TM wave

where d is the thickness of the waveguide, and integers n, m = 0, 1, 2, 3, ...(TEM wave

for m = 0). The effective indices of the metal parallel plates are obtained by using
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kf = .i’c(nc2 - nezﬂ) and their corresponding dispersions can be calculated. For example, the

waveguide dispersion of the fundamental mode (i.e., » = 0 and m = 1) can been
analytically calculated in the unit of ps/nm/km
A (n/2d)

¢ 3(n? - (A/2d)*

where ¢ is the speed of light and A is the operating wavelength.

D, = (3.36)
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Figure 3.23 The normalized frequency b of first eight bands of TE waves of 1D PCs with
the function of normalized propagation constant ¥ for 1D PCWSs with the ratio d2/A = 0.8
(dash-dot lines), 0.6209 (dot lines), 0.3(dash lies), and 0.0 (solid lines). All other fixed
design parameters for 1D PCWs are the same as in Figure 3.12.

Figure 3.24 shows the TE effective indices n,y of the fundamental guided mode as a
function of wavelength for the different core thickness d of the equal-thickness metal
waveguides. For comparison, the TE effective indices n.y (Figure 3.12b) of the

fundamental guided mode of 1D PCWs in the second band-gap are also plotted. As can
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be seen, when the thickness d is large enough (e.g., > 2A), the effective index difference
between the 1D PBG-PCWs and metallic wavguides is very small except near the band-
gap edge. When the thickness d decreases, the effective index difference becomes large.
However, when we compare the dispersion, the dispersion difference between them is
still large even the thickness d increases to 10A. In general, the differences between the
1D PBG-PCWs and metallic wavguides are summarized as follows:
1. Metallic wavguides only have mode cut-off of £, = 0, and PBG-PCWs also have
the band edge cut-off.
2. Metallic wavguides only have the positive (anomalous) dispersion, and PBG-
PCWs also have the negative (normal) dispersion with the positive dispersion
slope. .
3. In general, PBG-PCWs have larger dispersion than metallic wavguides.
4. PBG-PCWs have similar dispersions with metallic wavguides only when the

index ratio n/n; and the core thickness d are large enough.

3.5.3 Mode Cut-Off and Single-Mode Operation

Like conventional step index slab waveguides, the TIR-PCWs guide light due to the TIR
effect. For the guided modes, their effective indices n.meet the following relation

e > g > Npgpp (3.37)
Where 7, is the refractive index of the core of waveguides and ngsiy; is the cladding
effective index of the PCWs (i.e., the fundamental space-filling mode of the PCs). The
normalized effective frequency V. less than 7 for the single-mode operation as the slab

waveguide, is defined

27
Ve = =47 ~nsw (3.38)

Where d is the core thickness and 4 is the operating wavelength.
For the PBG-PCWs, it is found that modal properties for both 1D PBG-PCWs and

metallic waveguides are similar so that the single-mode condition of metallic waveguides
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can be utilized for 1D PBG-PCWs. From (3.38), the single-mode operation can be

calculated as A ;<n.d. More precise cut-off condition and single-mode operation can be

obtained by employing the more accurate methods as mentioned in previous chapter. The

possible cut-off conditions of the guided modes of 1D PCWs are shown in Table 3.2.
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Figure 3.24 The TE effective indices .4 of the fundamental guided mode as a function of
wavelength for the different core thickness & of 1D PCWs in the second band-gap and the
equal-thickness metal waveguides. The fixed design parameters for 1D PCWs are as
follows: d, = 0.6092A =3.437 um, A=5.642 yum, N=32,n.=14,n,=1.4,and n, = 1.8.

Table 3.2 Possible cut-off of the guided modes of 1D PCWs

Guiding Guiding Cut-off (short Cut-off (long Cut-off
Regime mechanism wavelength edge) wavelength edge) (k,=0)
I PBG Yes Yes Yes
2 PBG Yes Yes No
3 PBG Yes Yes No
3 TIR Yes No No
4 TIR No No No
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3.5.4 Relation with PCFs

As we know, due to variety of propagation directions, the band-gap of 2D PCs is much
narrower than that of 1D PCs. However, there are still many common features between
the PCFs (i.e., 2D PCWs) and ID PCWs as long as the 2D PCs have a reasonable band
structure. For example, instead of forming the PCFs by changing the core index, we can
also form the PCFs by changing the size dj of the defect hole. The relation between 1D
PCWs and the PCFs is shown in Table 3.3, where 4 and d are diameters of the air-hole
and defect-hole of the PCFs, and D (note we use D to replace d to avoid the symbol
confusion) and d are the thickness of the core and high index layer of 1D PCWs,

respectively.

Table 3.3 Relation between 1D PCWs and 2D PCFs.

Guiding region 1D PCWs, D>d, 2D PCFs
Regime | n.=1 N/A
Regime 2 n.€ [1, n;3) dp>d
Regime 3 n.€ (nyo,ny) dpe (0,d)
Regime 4 ne= N dp=10
3.6 Summary

In this chapter, by employing some analysis methods (i.e., the transfer matrix method, the
transverse resonant method, the effective index method, and envelope approximation
method), the modal characteristics (e.g., the effective index, the dispersion, the
confinement loss, and the model field profiles) of the guided modes of 1D PCWs are
comprehensively investigated.

Firstly, in order to gain some insight of 1D PCs, a generalized transfer matrix
method is used to calculate the band structure. The band structure of 1D PCs with on-axis
and off-axis propagation is investigated in some detail. Through the complete analysis of
the band structure, some salient features (e.g., the closure of the band-gap) of 1D PCs are

recognized and understood through the Bragg condition. By employing the variation
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theorem, the band structure of 1D PCs is easily understood with the concept of the space-
filling modes. It is this theorem that provides another way to calculate the band structure
through some numerical algorithms without any approximations.

Secondly, in order to calculate the modal properties of 1D PCWs, a rigorous
modeling method (i.e., the transverse resonant method) with combination of the transfer
matrix method is proposed. With the help of the band structure of 1D PCs, four guiding
regimes in 1D PCWs are identified for the different indices of the core of 1D PCWs. The
modal characteristics for each regime behave differently from the guiding mechanism
point of view. Some effects (e.g., the number of layer pairs) on modal properties are
investigated and scaling transformations of modal properties related to the design
parameters of the waveguide structures are derived. Through some approximation
methods (e. g., the EIM and EAM methods), the physical insight (e.g., the effective
cladding/core index) of 1D PCWs can be easily understood.

Finally, some basic issues, such as effects of the layer size-to-pitch ratio and core
thickness, cut-off condition and single-mode operation, comparison with 1D metallic

waveguide, and relation with the PCFs, are discussed.
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Photonic Crystal Fibers

In this chapter, with the help of the band structure of the 2D PCs, the modal
characteristics of the photonic crystal fibers (PCFs, or 2D PCWs) with low and high
index defects (i.e., the PBG-PCFs and TIR-PCFs) are thoroughly analyzed and evaluated.
The simulation results are validated by comparison with published simulated and
measured results. The vector nature of the PCFs is examined through a systematic
comparison among the full-vector, semi-vector, and scalar models. The dependences of
the important design parameters such as the size of interstitial holes and the number of
air-hole rings on modal characteristics of the PCFs are investigated. The scaling
transformations of the modal properties with respect to the key design and operation

parameters of the PCFs are obtained.

4.1 Introduction

There has been intensive research recently into photonic crystal fibers (PCFs) [63]-[65],
also known as the holley fibers (HFs) or the microstructured fibers (MOFs), in which a
waveguide structure is formed by a two-dimensional periodic structure made from an
array of air holes with some defects. One of the important features of the PCWs is the
ability to localize the modal field around the defects. Based on the knowledge we have
acquired from the analysis of 1D PCWs, we will focus on the analysis of modal
properties of some typical 2D PCWs (i.e., the PCFs with 2D triangular lattice structrure).
According to light guided mechanisms, the PCFs are divided into two general
categories, namely, the photonic band-gap (PBG) and total internal reflection (TIR)
PCFs. The PBG-PCFs are made by a low-index core (e.g., the air defect) within the 2D
PC and the guidance of light is due to the stop-band (or band-gap) of the PBG effect, as
the effective index of the cladding is always higher than that of the core. The TIR-PCFs

are made by a high-index core (e.g., the pure silica defect) and light is guided in the core
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due to the lower effective refractive index in the surrounding cladding. A number of
methods based on scalar and vector formulations have been developed to analyze the
modal characteristics of the PCFs. Despite the seemingly plethora of methods for modal
analysis, the level of accuracy and scope of validity for the scalar and the vector
formulations with respect to the calculation of the mode properties (e.g., dispersion) of
the PCFs have not been studied in a systematic fashion. In this chapter, firstly, based on
the band structure of 2D PCs, the modal characteristics of both PBG-PCFs and TIR-PCFs
are systematically analyzed and evaluated. Secondly, the vector nature of the PCFs is
evaluated through the vector, semi-vector and scalar models. Thirdly, some basic effects
on modal characteristics of the PCFs (e.g., size of interstitial holes and number of air-hole
rings), which are very helpful for design and optimization of the practical PCFs, are

investigated. Finally, the scaling transformations of the modal properties are discussed.

4.2 2D Photonic Crystals and Photonic Band-Gap

As we know from the previous chapters, the 2D photonic crystals (PCs) are homogeneous
in the z direction. There are several typical lattice structures of 2D PCs such as the square
and the hexagonal lattice structures (e.g., triangular [7], honeycomb [66], and Kagome

[67]). For the sake of simplicity, we only consider the triangular lattice structure as

shown in Figure 4.1(a).

Figure 4.1 The unit cell and its irreducible Brillouin zone (shaded area) of a 2D PC with
triangular lattice of air columns (r;) with the size d drilled in a dielectric substrate (#;).
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We first discuss the band structure of the 2D PC with in-plane propagation. As
discussed before, the mirror symmetry allows us to classify the modes by separating them
into two polarizations: the TE wave and the TM wave. For the triangular lattice, the unit
cell and its irreducible Brillouin zone (shaded area) are shown in Figure 4.1, with typical
physical dimensions (i.e., d = 0.96A) and indices (i.€., n; = 1.0 and n, = 3.6056). Figure
4.2 shows their corresponding band structures for both polarizations. As can be seen from
the figure, the band structures for the TE and TM waves are different. Further, unlike the
square lattice in which there is no band-gap for the TE wave, the triangular array has a
complete band-gap for both polarizations. However, when the index ratio n,/n; decreases

(e.g., the silica-air PCFs), unlike its counterpart in the 1D PCs, this complete band-gap

disappears.
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Figure 4.2 The photonic band structure of a 2D PC with a triangular array of air columns
(n; = 1.0) with the size d = 0.96A drilled in a dielectric substrate (n> = 3.6056) for both
polarizations: TE (a) and TM (b).

As we know, albeit no band-gap for the low index-ratioc PCs with in-plane
propagation, the band-gap with off-plane propagation opens up for a large enough £;.
This, in turn, leads to a fact that the small index-contrast PCFs can guide light due to the
PBG effect. Once there is a band-gap in the PCs, it is possible to propagate in the PCFs
by utilizing the PBG effect. Figure 4.3 and Figure 4.4 show the band structure of a 2D PC
with a silica-air triangular array of air columns with the size d = 0.7044A [60] and 0.9A
[61] drilled in a silica substrate, respectively. It is note that our simulation results agree
well with some published results such as the finite element method (FEM) [60], [61]. On
the other hand, for the triangular array with dielectric columns (i.e., n; > ny), the similar
results are also obtained. Figure 4.5 shows the photonic band structure of a 2D PC with a
silica-polymer triangular array of polymer columns with the size d = 0.6A and 0.9A

drilled in a silica substrate, respectively.
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Figure 4.3 The photonic band structure of a 2D PC with a silica-air triangular array of air
holes with the size d = 0.7044A drilied in a silica substrate (n; = 1.45).
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Figure 4.4 The photonic band structure of a 2D PC with a silica-air triangular array of air
holes with the size d = 0.9A drilled in a silica substrate (n; = 1.45).
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Figure 4.5 The photonic band structure of a 2D PC with a silica-polymer triangular array
of polymer columns (n; = 1.8) with d = 0.6A and 0.9A drilled in a silica substrate (n, =
1.4).

Through further simulations, it is found that there are the similarity and difference
between the off-plane propagation of 1D PCs and that of 2D PCs. The difference is at the
area above the low index line where the band-gaps close when £, decreases for 2D PCs
and the gap never close completely (albeit closes at some discrete frequency points) for
ID PCs. The similarity is at the area below the low index line where the band-gaps open
up for both 1D and 2D PCs when £, decreases. This leads to the short-wavelength
asymptotic behavior of the modes and only a few areas around defects affect the optical
properties of the PCFs. It is also observed that, when the size-to-pitch ratio d/A increases
for air columns or decreases for dielectric columns, the first band-gap goes up to cross the
air line (or the low index line), which is an essential condition for the wave propagation
of the PCFs in air (or the low index core), and the bandwidth of the band-gap along the

air line (or the low index line) also increases. Although there is no complete band-gap for
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2D PCs with off-plane propagation, fortunately, it is not important for the PCFs.
Accordingly, in order to confine light in the core, it is very important to have a band-gap
above the index line of core. It is worth to note that the region between the band 1 (or
semi-infinite gap) and the index line of the core allows the TIR guiding and all others
belong to the PBG guiding. Therefore, it is very helpful to investigate the band structure
with the functions of the PC dimensions and wavelengths. Here we discuss the band
structure of the 2D triangular PCs in some detail. Figure 4.6 shows the band structure of a
2D PC with function of the normalized propagation constant for different d/A values with

a triangular array of polymer columns (n; = 1.8) drilled in a silica substrate (n, = 1.4).
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Figure 4.6 The photonic band structure of a 2D PC with function of the normalized
propagation constant for different d/A values with a triangular array of polymer columns
(n; = 1.8) drilled in a silica substrate (n, = 1.4).
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Because the complete band-gap, which is generally measured by the gap-midgap
ratio, is not important for the PCFs, here we define a new measure parameter along the
low index line to measure the relative bandwidth to confine light in the PCFs. This new
gap-midgap ratio can be defined by

Aw 2wy —wp)
Wy Wy +w;

(4.1)

where @y and @, are the cross points between the gap and the low index line. Figure 4.7
shows this new gap-midgap ratio with function of d/A of a 2D PC with a triangular array

of polymer columns (#; = 1.8) drilled in a silica substrate (n; = 1.4).
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Figure 4.7 The new gap-midgap ratio with function of d/A of a 2D PC with a triangular
array of polymer columns (n; = 1.8) drilled in a silica substrate (n, = 1.4).
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4.3 PCFs with Low Index Defect

As mentioned before, the PBG-PCFs (or simply PBGFs) are made by a low-index core
(e.g., air) and thus light is guided in the core region due to the PBG effect. Due to the
guide of light through air, the PBGFs have the potential applications for the low-loss,
linear, high-power delivery, and controllable dispersion transmission. Like the
counterpart in 1D form (i.e., 1D PBG-PCWs), the guided modes exist in the
corresponding band-gaps and are cut-off when the frequency of the mode is larger or less
than the cut-off frequency (i.e., off the band-gap). In addition, practical PBGFs have only
limited number of air-hole rings, and hence all modes are essentially leaky modes. As the
PBGFs guide light at the long wavelength, their transmission loss mainly depends on the
confinement loss of the fiber and the confinement loss, which is very sensitive to the

number of air-hole rings.
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Figure 4.8 The cross section of a BPGF consisting of a regular triangular air-hole array
consisting of the air (n; = 1.0) and silica (n; = 1.45) with four physical parameters: the
number N of air-hole rings, air core diameter d, air-hole size d>, and the pitch A.
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Due to the mode cut-off of the fundamental modes in the BPGFs, in which the air
core consists of one unit cell [62], we assume that the core of the BPGFs covers the area
around seven unit cells as shown in Figure 4.8 with four physical parameters: the number
N (e.g., 4) of air-hole rings, air core diameter d (e.g., 2A + d>), air-hole size d>, and the
pitch A. For the sake of simplicity, here we assume that the PBGF consists of an air core
is surrounded by a uniform PC cladding with circular air holes. By employing the PML

boundary conditions, numerical solution methods can be readily applied.

4.3.1 Validation: Comparison with FEM Simulation

Because of the high index-contrast of the PBGFs with respect to the single-mode fiber, it
is necessary to validate our model with the published results (e.g., the effective index and
the confinement loss). For this purpose, we use the commonly used large air-hole silica
PBGFs with A =2.0 pm and d/A = 0.9 [61]. Figure 4.9 presents the dispersion curve of
the guided mode of the PBGFs in the first gap as a function of normalized propagation
constant k,A. As can be seen from Figure 4.9, the discrepancies between simulation
results by the three methods are indistinguishable. Because the plane wave expansion
(PWE) method cannot handle the PBGF with the limited number of air-hole rings, we
calculated the confinement loss of the PBGFs through the finite difference method
(FDM). Figure 4.10 shows the confinement loss of the PBGFs as a function of the
number N of air-hole rings. As can be seen from Figure 4.10, the simulation results by the
FDM method are in excellent agreement with those by the vector finite element method
(FEM) [61]. It is also shown that the confinement loss in air-guiding PBGFs is very
sensitive to the number of air-hole rings. Unlike the TIR-PCFs, larger number of air-hole
rings is needed to preserve the similar confinement loss (e.g., N = 20 for the confinement
loss of 0.01 dB/km). Through the scaling transformation of the confinement loss with
respect to the pitch A (see Appendix C), the effect of the pitch on the confinement loss is
casily obtained. For the similar wavelength of 1.55 pum, with the help of the band
structure of 2D PCs (e.g., Figure 4.3 and Figure 4.5), the guiding regimes for the PBG-
PCFs and TIR-PCFs are easily recognized: the PBG-PCFs operate at the long wavelength
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region and the TIR-PCFs operate at the short wavelength region. Because of different
guiding regimes, the PBG-PCFs and TIR-PCFs behave differently. Due to the short
wavelength region, it is possible for the TIR-PCFs to drastically reduce the confinement
loss at a fixed wavelength by increasing the pitch. On the other hand, due to the long
wavelength region, the increase of the pitch of the PBG-PCFs with preserving the ratio

does not significantly reduce the confinement loss at a fixed wavelength.
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Figure 4.9 The modal dispersion (wA\/c) of the guided mode of PBGFs with A = 2.0 um
and dy/A = 0.9 in the first gap as a function of normalized propagation constant k,A.

4.3.2 Mode Cut-off and Single-Mode Operation

As we know from the 1D PBG-PCWs, the fundamental modes of the PBGFs could be
cut-off for the small size of the low index core. The number of the modes depends on the
band structure of the PC cladding (e.g., the curvature of the band) and the parameters of
the core (e.g., the core size and core index). In other words, with the help of the band
structure of the PCs, the number of the guided modes in each band-gap can be easily

calculated by some numerical methods. Like their counterpart in 1D form (i.e., 1D PBG-
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PCFs), there are three kinds of cut-off, which were summarized in table 3.2. The single-
mode condition can be easily evaluated through some analytic methods mentioned in the
previous chapter. Here we give an analytical formula for the calculation of number of the

guided modes with analogy to the conventional fiber [62]:

_ (kzz,H - kzz,[, )d*
16

where k. and k; ; are the upper and lower edges of the PC at the fixed wavelength.

N (4.2)
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Figure 4.10 The confinement loss of PBGFs in the first gap with A/A=1.5, A=2.0 um
and d/A = 0.9 as a function of the number N of air-hole rings.

4.3.3 Modal Characteristics

After verifying the simulation methods and understanding the single mode operation, we
are ready to investigate the modal properties (see Appendix A) of the PBGFs. For
instance, Figure 4.11 presents a typical dispersion curve of the guided mode of PBGFs in

the first gap as a function of normalized propagation constant k,A. Through further
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analysis, it is found that there are the similarity and difference between 1D PBG-PCWs
and 2D PBGFs, which were summarized in 3.5.4.
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Figure 4.11 The modal dispersion (wA/c) of the guided mode of PBGFs with A =2.3 um
and d»/A = 0.9 in the first gap as a function of normalized propagation constant k,A.

4.4 PCFs with the High Index Defect

As mentioned before, the TIR-PCFs (or simply PCFs) are made by a high-index core
(e.g., pure silica) and thus light is guided in the core region due to the TIR effect. They
are, however, different from the conventional single-mode fiber in several aspects. First
of all, the index difference between the core and the effective cladding in the PCFs is a
strong function of wavelength, and hence the modes supported by the fibers are
essentially more dispersive. Secondly, practical PCFs have only limited number of air-
hole rings, and hence all modes are essentially leaky in nature. Finally, the large index
contrast between silica and air gives rise to strong vector properties of the modal

characteristics, so the vector feature of the PCFs must be considered.
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Figure 4.12 The cross section of a PCF consisting of a regular triangular air-hole array
with five rings of air holes with two physical parameters: air-hole size d and pitch A.

Based on the above-mentioned reasons, we investigate the modal properties by the
rigorous numerical methods (e.g., the FDM method). Figure 4.12 shows a typical PCF
with five rings of air holes, in which only two physical parameters (i.e., the air-hole size
d and the pitch A) are critical. For the sake of simplicity, we assume that the number of
air-hole rings is larger enough (we will investigate this effect in 4.5.2) and the PCF
consists of a pure silica core (i.e., defect) surrounded by a uniform PC cladding with
circular air holes. By employing the PML boundary conditions, numerical solution

methods such as the FDM method can be readily applied.
4.4.1 Validation with Simulated and Measured Results

The FDM method has been widely used and validated for many cases of optical
waveguides with small index contrast [20]. Due to the high index contrast of the PCFs, it

is necessary to validate the FDM model by way of examples. For this purpose, we
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investigate the commonly used air-filled silica PCFs with the fixed pitch (A = 2.3 pm) for
different air-hole sizes. Due to the high sensitivity on the accuracy of the modal
calculation in the context of the PCF, a significant discrepancy of the dispersion and
confinement loss between the different published results can be seen for the PCFs with
the fixed pitch A = 2.3 pm [18] [43], [44], [63], [64]. Because it is very important to
make sure that the accurate simulation method is used to calculate the crucial group
velocity - dispersion and confinement loss of the PCFs, we validate the FDM method
through those two modal properties with some published simulation and measurement
results. Figure 4.13 presents the total dispersion of the PCFs as a function of wavelength
for different hole sizes (i.e., d = 0.345, 0.621, 1.0, and 1.84 um). It is apparent from
Figure 4.13 that the simulation results by the full-vector FDM mode solver for d = 0.621
and 1.0 um are in excellent agreement with those by the vector finite element method
(FEM) at the all range of wavelength (only available from 0.6 to 1.3 um for d = 0.621
um) [63]. The dispersion value for d = 0.621 pm has been experimentally determined at
a wavelength of 0.813 um [70]. The simulated dispersion and its slope of —77.34
ps/nm/km and 0.468 ps/nm*/km as shown in Figure 4.13 are in excellent agreement with
the measured dispersion and its slope of —77.7 ps/nm/km and 0.464 ps/nm*/km [70].
From Figure 4.13, it is also observed that the dispersion induced by the air holes
increases as the air-hole size increases and the zero dispersion wavelength can be shifted
to visible wavelength ranges by increasing as the hole size. Two design scenarios with
practical significance are identified: the flat dispersion for a range from d = 0.621 to 1.0
um, and the anomalous dispersion at shorter wavelengths (e.g., less than 1.0 um) for
large hole-size (e.g., d > 1.0 um). We further assert that the zero-dispersion wavelength
can be shifted into the visible wavelengths by simply reducing the core diameter D = 2A -
d (i.e., decreasing the pitch size A or increasing the air-hole size d). As we show later, if
we only consider the geometrical dispersion Dy, in which the refractive index of the silica
is set as a constant (e.g., 1.45), the scaling transformations of dispersion can be utilized

and the design efforts of the PCFs can be simplified.

87



Chapter 4. Photonic Crystal Fibers

150 1 T )

100

@
(=]

(=]
LLINL L L L (O L L L L O A L N B

Dispersion D (ps/nm/km)
3]
(=]

d=0.345 um —x— FEM [63]
@® Experiment [70]

-100

[ EE NI ETEV NI ST RN a1 § A

€77 AN NN NS U WA WA S T NV G YA WO NUN TUUN VU S T T SN0 YOO TONNY WY SNO S S H

-150
0.6 0.8 1.0 1.2 14 1.6 1.8 2.0

Wavelength 4 (um)

Figure 4.13 Dispersion D as a function of wavelength for PCFs with the fixed pitch (A =
2.3 um) for different hole sizes d = 0.345, 0.621, 1.0, and 1.84 um.

In addition to the dispersion, which is high sensitivity on the accuracy of the modal
calculation (e.g., the second derivative of the real part of the effective index, see -
Appendix A), the confinement loss is another sensitive performance parameter (e.g., be
proportional with the imaginary part of the effective index, see Appendix A). Therefore,
it is necessary to verify the FDM method for the confinement loss. In the first example (a
PCF with A = 4.0 um, d = 2.26 pum, and N = 1), the effective index Ny is (1.440101-
j1.67x107), which is in good agreement with N, (1.440136 - j1.708x10°) by the
multipole expansion method (MEM) [74]. In the second example, the commonly used
air-filled silica PCFs with the fixed pitch (A = 2.3 um) and air-hole size (¢ = 1.15 um) are
used. Figure 4.14 presents the confinement loss of the PCFs as a function of wavelength
for different number of air rings N (1, 2, 3, 4, and 5), respectively. It can be seen that the
simulation results by the FDM method are in excellent agreement with those by the FEM
(only available from 1.4 to 1.7 um) [73] and the MEM (only available from 1.0 to 1.7 um
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for N=3and 1.55 pm for N =1, 2, and 4) [75] at the all range of wavelength. It is worth
to note that the simulation results by the MEM method are calculated with considering
the material dispersion of silica [69] and it means that, unlike on the dispersion, the effect

of the material dispersion of silica on the confinement loss of the PCFs is negligible.
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Figure 4.14 Confinement loss L. as a function of wavelength for PCFs with A = 2.3 ym
and d = 1.15 um for different number of air-hole rings.

4.4.2 Comparisons among Full-Vector, Semi-Vector, and Scalar Models

By utilizing the FDM mode solvers based on the full-vector, semi-vector and scalar
formulations, we investigate the modal characteristics of the PCFs with emphasis on the
vector properties. So far, although there appeared to be paid attention to this feature of

the PCFs, much less appreciation for the effect of vector properties of the modal fields in

89



Chapter 4. Photonic Crystal Fibers

the PCFs with different design parameters of the PCFs is considered. It is very important,
at least from the design point of view, to assess the accuracy and the scope of validity for
the scalar and the semi-vector approximations. In order to gain some physical insight into
the vector feature of the PCFs, we investigate this effect through the modal properties of
the commonly used air-filled silica PCFs with the fixed pitch (A = 2.3 pm) in some detail
[72]. This effect on the modal properties to all other cases (e.g., with the fixed air-hole
size-to-pitch ratio) can be easily obtained through their scaling transformations (see
Appendix C).

Figure 4.15 shows the effective index as a function of wavelength of the PCFs with
different air-hole sizes of d = 0.46 (d/A = 0.2), 1.38 (0.6), and 2.3 um (1.0), respectively.
It is observed that the difference between the scalar and the vector models is small at
short wavelength, but becomes significant for long wavelengths. Further, this difference
increases as the air-hole size d increases. This is understood as the modal fields spread
more into the cladding and the accumulated contribution to the vector property is more
pronounced for the small air-hole PCF. Also, it is interesting to note that the difference
between the semi-vector and the full-vector analyses is small, which indicates that the
semi-vector model is sufficient for accurate prediction of the modal characteristics of the

PCFs.
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Figure 4.15 Effective index nyas a function of wavelength for PCFs with the fixed pitch
(A = 2.3 um) for different air-hole sizes d = 0.46, 1.38, and 2.3 um.

In order to assess the accuracy and the scope of validity for the different models,
the waveguide dispersion D, of the PCFs is calculated and compared for different air-
hole sizes d as shown in Figure 4.16. For the case of d = 0.46 pm, the simulated results
calculated by the scalar modal expansion method [44] is also shown in Figure 4.16. It can
be seen from Figure 4.16 that the simulation results for the scalar modes obtained by the
scalar FDM method and the scalar modal expansion method are indistinguishable over a
wavelength range of 0.5-1.5 um. On the other hand, the differences between the scalar
and the vector models are significant and cannot be ignored. Similar to the situation with
the modal effective index, the semi-vector solution is capable of producing reasonably

accurate results for the modal dispersion.
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Figure 4.16 Waveguide dispersion D, as a function of wavelength for PCFs with the
fixed pitch (A = 2.3 um) for different air-hole sizes d =0.46, 1.38, and 2.3 pm.

In order to understand the vector nature of the PCFs, the Y-polarized modal electric
field distribution along the Y-axis of a PCF with the air-hole size 4 = 0.46 um for
different wavelengths of 0.5, 1.0, 1.5, and 2.0 um are shown in Figure 4.17. It can be
seen that there is less energy in the air hole and the contribution of the vector terms is
small at short wavelengths, which confirms the observations in Figure 4.15. The vector
nature of the modal field profile is clearly demonstrated at long wavelengths, which leads
to the lower effective index of the waveguide mode. Therefore, for the small air-hole
PCFs, the accumulated vector contribution at long wavelengths cannot be neglected as

modal fields spread more into the cladding.
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Figure 4.17 Y-polarized Electric field of a PCF with A = 2.3 um and 4 = 0.46 um at
different wavelength values along the Y-axis with the air-hole position (2.30, 2.76 um),
(6.29, 6.75 pum), (14.25, 14.71 wm), and (18.24, 18.70 um). (a) The scalar model, and (b)
The vector model.
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After investigating the effect of the vector nature on the modal properties of the
PCFs, we further investigate this effect for the practical PCFs with the limited number of
air-hole rings. Because the effect of the number of air-hole rings of the PCFs on the
modal properties will be investigated thoroughly later (see 4.5.2), here we evaluate this
effect for a small air-hole PCF (e.g., d= 0.5 pm and A = 3.2 um), where the vector nature
of modal properties is more pronounced.

Figure 4.18 and Figure 4.19 show the effect of different number of air-hole rings on
modal electrical field profiles at short and long wavelengths, respectively. It can be seen
from Figure 4.18 and Figure 4.19 that the effect of different number of air-hole rings on
the modal profile is negligible at the short wavelength and shows some differences at the
long wavelength. As expected, it can be seen from Figure 4.18 that modal field profiles
for different number of air-hole rings between the scalar and vector models are similar at
short wavelengths as modal fields tend to concentrate more in the core region with very
small contribution of vector terms. However, at the long wavelength as shown in Figure
4.19, the modal field profiles for different number of air-hole rings change dramatically
between the scalar and vector models as the modal fields spread around air holes and the
accumulated contribution of the vector terms is non-negligible.

Figure 4.20 and Figure 4.21 show the modal effective index and the waveguide
dispersion for different number of air-hole rings based on the scalar and vector models,
respectively. It is observed that the overall modal index of the PCFs decreases as the
number of rings decreases, which indicates that the model field penetrates more into the
low-index air region. Again, the difference between the scalar and the vector models for
the mode indices is negligible at short wavelengths, but much more pronounced at long

wavelengths.
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Figure 4.18 Y-polarized electric field distribution of a PCF with A =2.3 um and 4= 0.5
um along the Y-axis for different number of air-hole rings at the short wavelength 4= 0.5
um with the possible air-hole position (2.28, 2.78 um), (6.27, 6.77 um), (14.23, 14.73
pm), and (18.22, 18.72 um). (a) The scalar model, and (b) The vector model.
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Figure 4.19 Y-polarized electric field distribution of a PCF with A=23 umand d=0.5
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In this section, it is demonstrated that the vector nature of the guided modes of the
PCFs must be considered in analyzing the modal properties. Despite the weakly guiding
modal characteristics due to the small index contrast between the core and the “effective”
cladding, the vector property of the PCFs plays an important role in the accurate
prediction of the mode properties, owing to the large index contrast between silica and
air. Through the comparison, the level of accuracy and the scope of validity for the scalar
and the. semi-vector approximations are assessed. We show that the semi-vector
formulations, which are commonly used for planar optical waveguides, are highly
accurate, whereas the scalar approximations are often not adequate in prediction of the
modal characteristics of the PCFs. Further, the effect of the vector nature on modal
characteristics for practical small air-hole PCFs with limited number of air-hole rings is

investigated.

4.4.3 Mode Cut-Off and Single-Mode Operation

Like conventional step index fibers, the PCFs guide light due to the TIR effect. For the
guided modes, by following the similar definition employed in 1D PCWs, their effective
indices #.¢ should meet the following relation

He > o > HES)] 4.3)
where n. is the refractive index of the core of PCFs and ngsuy is the cladding effective
index of the PCFs (i.e., the fundamental space-filling mode of the PCs). On the other
hand, the normalized effective frequency V. less than 2.405 for the single-mode

operation as the step index fibers, is defined

27r 2 2
Ver = 7 e VHe — BiEgMi 4.4

where a.q is the equivalent core radius (usually 0.58A, where A is the pitch of the PCF)
and A is the operating wavelength. Through the FDM vectorial analysis, the endlessly
single-mode operation is found for the small air-hole size PCF (e.g., d < 1.0 pum) with the
fixed patch A = 2.3 um. Further, (4.4) has been confirmed by the effective index method
for the PCFs with different air-hole sizes and pitches [49].
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It is natural to analyze the single-mode condition of the PCFs by applying an
analogy to the standard step index fibers because the analytical formula of the fibers can
be used for the PCFs. However, it is un-sufficient or al least un-efficient to judge the
singe mode operation of the PCFs through the EIM method due to its limitations such as
the calculation of the cladding effective index, or even the strikingly different properties.
Here we propose a method to judge the singe-mode operation of the PCFs without the
calculation of the cladding effective index ngsiy.

As we know, the cladding effective index ngsyy of the PCFs is wavelength-
dependent and so is the effective index of fundamental modes of the PCFs. Unlike step-
index fibers, we find that the wavelength dependence of both effective cladding and
effective indices of the PCFs has a similar behavior, which means the equivalent core
radius aqy is a function of wavelength. Now we define two new parameters: the
normalized transverse phase constant (or NA-like) S and the dimensionless parameter

(product of the transverse phase constant and pitch) U:

S =ng, —nggr (4.5)

2n
U === Ayfngo =gy (4.6)

where n.y is the effective modal index of the PCFs. Figure 4.22 shows the wavelength
and air-hole size dependence of normalized modal constant S of the PCFs with fixed
pitch A = 2.3 um for different air-hole sizes and different wavelengths, respectively. The
linear dependence of S with d and A is observed for lager air-hole size PCFs (e.g., d> 0.8
um), which confirms that wavelength dependence of both gy and ngsuy has a similar
behavior because the normalized effective frequency V,y is wavelength-independent for
short wavelengths. It is this linear behavior that makes the parameter U be wavelength-
independent for short wavelengths like Vo Figure 4.23 shows the wavelength
dependence of the parameter U with fixed pitch A = 2.3 um for different air-hole sizes. It
can be seen from Figure 4.23 that the PCFs operate in the single-mode state if U < 2.6.
Therefore, we can easily judge the single-mode condition of the PCFs from the effective

index of fundamental modes of the fiber.
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Figure 4.22 Transverse phase constant S of fundamental modes of PCFs with fixed pitch
A =2.3 pum. (a) As a function of wavelength A, and (b) As a function of the air-hole size
d.
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4.4.4 Group Velocity Dispersion

The group velocity dispersion (GVD) (or simply the dispersion) D of the PCFs is one of
the important modal properties and can be directly calculated from the modal effective
index ngy of the fundamental mode over a range of wavelength (see Appendix A). In
order to obtain the accurate dispersion, the values of the effective index are calculated
with a small wavelength step (e.g., 0.02 pum), which is a real challenge for some
numerical methods because there are more than hundred of wavelength points for each
curve. Fortunately, by using the first order approximation, the total dispersion D is
calculated as the sum of the geometrical dispersion (or waveguide dispersion) Dg and the

material dispersion D, (see 5.2). Here we only focus on the waveguide dispersion Ds.
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Figure 4.24 Waveguide dispersion D, as a function of wavelength for PCFs with (a)
different A values with fixed d/A = 0.435, (b) different d/A values with fixed A =2.3 um.
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In order to gain some physical insight of the PCFs, we investigate the dispersion D,
of commonly used silica PCFs with the whole range of the design parameters ¢ and A.
Figure 4.24 shows the calculated waveguide dispersion Dy as a function of wavelength
for the PCFs with (a) different A values with fixed /A = 0.435, and (b) different d/A
values with fixed A = 2.3 um. In Figure 4.24(a), the scaling transformation of the
waveguide dispersion D, with respect to the pitch A is clearly demonstrated (see
Appendix C). This, in turn, verifies the accuracy of the numerical methods. In Figure
4.24(b), the scaling behavior of the dispersion D, of large air-hole PCFs is different from
that of small air-hole PCFs and the magnitude of D, changes dramatically when d/A
increases, in which D, makes dominant contribution to the total dispersion of the PCFs.
Although the scaling effect for the fixed d/A of the small air-hole PCFs (e.g., /A < 0.4)
was investigated in [58], here we extend the scaling effect to the large air-hole PCF (e.g.,
d/’A 2 0.4), in which the vector effect is more pronounced as demonstrated previously

(see 4.4.2).

4.4.5 Mode Effective Area and Beam Divergence

After obtaining the modal profile, we are ready to calculate the mode effective area A.p;
mode spot size w, and beam divergence @ of the fundamental modes (see Appendix A).
Except obtaining directly from the far-field through the Fourier transfer of the modal
profile, the beam divergence & can also be calculated from the mode spot size w, which

can be obtained by the Gaussian approximation A= 7w’ of the modal profile:
6= tan‘i(i) (4.7)
Tw

Here we consider the commonly used PCF first studied in [49] with an air-hole size
d = 0.345 pum and a pitch A = 2.3 um. Figure 4.25 shows the mode effective area Aeﬁ/Az,
which is in good agreement with the plane wave expansion (PWE) method [71]. It can be
seen from Figure 4.25 that, unlike almost constant in the conventional fiber, the mode

effective area of the PCFs can been drastically changed by simply altering the design
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parameters d or A of the PCFs, which can be easily done during fabrication by drawing
the PCF fiber using different conditions (such as pulling speed and temperature). In
general, the large mode effective area can be obtained by the choice of small /A and A/A
values through the weak TIR-guiding, in which a significant fraction of the fundamental
mode’s energy can be located in the cladding region (see 4.5.2). Therefore, we can easily
design a PCF with a large mode effective area to support the high power without
inducing the nonlinear process. On the other hand, we can design the small mode
effective area to enhance the nonlinear effect in the PCFs. Further, we can also calculate
the mode spot size w, and beam divergence 8 by the above-mentioned equations. The
calculated beam divergence @ for a PCF with d = 3.82 um and A = 7.2 um is shown in

Figure 4.26, which is in good agreement with the experimental and simulation result [71].
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Figure 4.26 Beam divergence with function of pith/wavelength A/A for a PCF with A =
7.2 pm and d = 3.82 pm.

4.4.6 Modal Polarization and Modal Birefringence

As we know, the polarization insensibility is a very important requirement for most of
optical waveguides. Due to a six-fold (or 773) rotational symmetry and lack of a concrete
physical explanation of the degeneration of the fundamental modes of the PCFs, the
numerical investigation of the existence of modal birefringence in the PCFs is needed.
Here we investigate the modal birefringence of the PCFs by using the FDM
method. For the sake of simplicity, we use the PCF with one ring of six holes shown in
Figure 4.12, where the air-hole size d = 5.0 um, the pitch A = 6.75 um, and refractive
index of silica n, = 1.45 [46] without considering the material dispersion. Figure 4.27
shows the convergence behavior of modal birefringence of fundamental modes for
different mesh sizes at the wavelength of 1.55 um. In order to demonstrate the difference

between the semi-vectorial and full-vectorial FDM method, the effective indices and
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modal birefringence by the semi-vectorial FD method is also shown in Figure 4.27. The
effective index of the fundamental mode is converged to 1.444765401 (only —0.00013%
error with 1.444767275 by the multipole method [46]). Here an error of —0.001% is
found for the semi-vectorial FDM method. It can be found from Figure 4.27 that the less
mesh size, the less the modal birefringence. Like other methods (e.g., Multipole method
[46] and FEM method [63]), the degeneracy is in the order of 107 Therefore, the
degeneracy of fundamental modes is verified through the FDM method. Although the
modal birefringence of fundamental modes has been very often observed experimentally,
we believe that this modal birefringence is caused by the rotational asymmetry of the
PCFs for some manufactured reasons.

On the other hand, we can understand the degeneracy of fundamental modes
through the modal profile calculations. From the modal profile calculation, it is found
that the linear polarization ratio (LPR, ratio between two electric major and minor
components) is very high (> 30 dB). Therefore, each fundamental mode is a linearly
polarized field. With considering the 773 rotational symmetry of the PCF structure and
the orthogonality of two fundamental modes, all six rotated fields are also linearly
polarized and their effective indices are the same, which requires that two fundamental
modes have the same effective indices although their modal profiles may not be the same.

In conclusion, the PCFs with the #73 rotational symmetry are not birefringent.

4.4.7 Confinement Loss and Bending Loss

As mentioned before, the PCFs guide light by the TIR effect due to the lower
cladding effective index. Practically, light can leak out into the silica cladding, especially
for the weak-guided PCF fiber, because only certain number of rings of the PCFs is used.
Although the confinement of light is improved by increasing the number of rings of air
holes, it is necessary to know the suitable number of rings of air holes of the PCFs with
given parameters (e.g., d, A and A). On the other hand, the related bending loss increases

when the mode effective area of the PCFs increases. Therefore, in order to design the
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PCFs, their loss mechanism related to the confinement and bending should be

understood.
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Figure 4.28 shows the confinement loss L. with function of wavelength 4 for
commonly used PCFs with A = 2.3 um for different number N (e.g., 1-5) of rings of air
holes. As expected, the PCFs have the less confinement loss for large air-hole d/A at
short wavelengths. In some sense, light is well confined within the core by the first ring
of six air holes (e.g., @A = 0.8 and A/A = 4). In other words, the outer rings of air holes
of the PCFs do not appear to affect the fiber modal properties because similar effective
indices are obtained when the number of rings of air holes changes. On the other hand,
light is leaky within more than eight rings of air holes for small d/A at long wavelengths
(e.g., d/A=0.1 and A/A=1). We will discuss this effect in great detail later (see 4.5.2).

From previous calculations of (4.4.5), it is found that large mode effective areas of
the PCFs can be achieved by deceasing the air-hole size-to-pitch ratio d/A or the
normalized frequency A/A. Due to the weak guiding, those fibers suffer a larger bending
loss than that with small mode effective areas. Like the conventional fibers, the PCFs
have a bend-loss edge at long wavelengths due to extremely weak guiding mode with
very small of normalized frequency A/A. Furthermore, unlike conventional fibers, the
PCFs also have a bend-loss edge at short wavelengths due to the less index contrast of
fibers. Here we verify the bend-loss edge at short wavelengths for a PCF with air-hole
size d = 0.345 pum and the pitch A = 2.3 um. It is first time, as our knowledge, to verify
the bend-loss edge through the numerical method [68]. Figure 4.29 presents the real
component of electric field profiles of a PCF for the bending radius R = 25 and 4 mm,
respectively. As expected, it is clearly shown that the electric field penetrates away from
the fibers at a short bending radius. Figure 4.30 shows the short-wavelength bend-loss
edge for different bending radii, which is in good agreement with the measured result

[49].
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4.5 Numerical Study of Some Effects on Modal Characteristics

4.5.1 Effect of Interstitial Holes

The PCFs presented in previous sections is an ideal PCF geometry without considering
interstitial holes. Actually interstitial holes exist in large air fraction PCFs due to the
multiple capillary drawing processes [45]. Here we explore the influence of additionally
interstitial holes on the modal properties of the PCF. For the sake of simplicity, we

assume that the interstitial holes are circular with the hole size d; as shown in Figure 4.31.
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Figure 4.31 The cross section of PCFs with interstitial holes.
As we know, the interstitial holes affect the modal properties by equivalently

increasing the air-hole size-to-pitch ratio d/A of the PCFs. When their size d; is much less

than the air-hole size d, the interstitial holes do not significantly influence the modal
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properties of the PCFs {45]. When the interstitial hole size 4, increases, the modal field
decays inside them, and the modal effective index of the PCFs decreases.

Here we take a large air-fraction PCF with the air-hole size d = 1.92 um and the
pitch A = 3.2 pm as an example [45]. Figure 4.32 presents the effect of interstitial holes
on modal properties (i.e., the effective index and dispersion) for the interstitial hole size
d; =0, 0.068, 0.272, and 0.544 um, respectively. From the simulation results, the modal
properties change dramatically when d/A is large, especially for the crucial dispersion.
The dispersion still keeps decreasing at long wavelengths and starts to increase at short
wavelengths. It is also found that, when d/A increases, the modal effective area of the
PCFs decreases and the coupling loss with standard fibers increases, which are in good
agreement with other numerical results [45]. However, for the vital calculation of
dispersion, there is a large discrepancy between two methods. The calculated dispersions
by the wave expansion method for d; = 0 and 0.272 pum are 30 and 8 ps/nm/km,
respectively [45]. From Figure 4.32(b), the calculated dispersions by the FDM method
are 66 and 57 ps/nm/km, respectively. The difference between those two methods is that
the semi-analytical expansion method takes hardly care the vector feature of modes. It is
worth to note that there are similar computation efforts for investigation of the effect of
interstitial holes by the FDM method. However, it is crucial for the expansion method

because it needs large enough number of expansion terms to ensure an accurate result.

4.5.2 Effects of Number of Air-Hole Rings and Design Parameters

By using the FDM method, it is possible to predict the number of rings of holes needed
to avoid the mode leakage at any desired wavelengths, which is one of important
considerations for design and optimization of practical PCFs. In this respect, we
investigate the effects of number of air-hole rings on the basic modal properties such as

the modal profile, effective index, dispersion, and confinement loss [59].
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Modal electric field distributions of the PCFs with the air-hole size d = 1.55 ym
for different wavelengths (0.5 and 4.0 um) and number of air-hole rings (1 and 5) are
shown in Figure 4.33. As expected, the mode confinement increases by increasing the
number of air-hole rings. The mode is almost fully confined inside the innermost ring of
air holes (N = 1) at short wavelengths, which corresponds to large pitches of the PCFs at
the wavelength of 1.55 um. In order to show the effects of number of rings for different
air-hole. PCFs, Figure 4.34 shows the effective index of the PCFs as a function of
wavelength for different air-hole sizes d = 0.46 (d/A=0.2), 1.15 (0.5), and 1.84 pum (0.8),
respectively. It is clearly observed that the difference among different number of air-hole
rings is small at short wavelengths, but becomes significant at long wavelengths. Further,
this difference decreases as the air-hole size d increases. It is also shown that the overall
modal index of the PCFs decreases as the number of rings decreases, which indicates that

the model field penetrates more into the low-index air region.
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Figure 4.33 Y-polarized Electric field of a PCF with A = 2.3 um and 4 = 1.15 ym at
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To further assess the effects of the different number of air-hole rings on other modal
properties of the PCFs, the waveguide dispersion, the mode effective area, and the
confinement factor in silica are calculated and compared for different air-hole sizes as
shown in Figure 4.35, Figure 4.36, and Figure 4.37, respectively. Similar to the situation
with the model effective index as shown in Figure 4.34, the difference among different
number of air-hole rings is negligible at short wavelengths, but much more pronounced at
long wavelengths. Also this difference decreases as the air-hole size d increases. As
expected, waveguide dispersion and confinement factor decrease as the number of air-
hole rings increases because the overall modal index of PCFs increases and mode field
penetrates less into the low-index air region as the number of air-hole rings increases. For
the mode effective area, there are two folds: first it decreases and then increases as the

number of air-hole rings increases.
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Figure 4.34 Effective indices as a function of wavelength for the PCFs with different
number of air-hole rings at A = 2.3 um and d/A = 0.2, 0.5, and 0.8, respectively.
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Figure 4.35 Waveguide dispersion as a function of wavelength for the PCFs with
different number of air-hole rings at A = 2.3 pym and d/A = 0.2, 0.5, and 0.8, respectively.
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Finally, the effect of the different number of air-hole rings on the confinement loss
is calculated for different air-hole sizes d as shown in Figure 4.38. Similar to the situation
with the other modal properties, the confinement loss is small and negligible at short
wavelengths, but increases exponentially when wavelength increases. Also the
confinement loss decreases as the air-hole size d increases. As expected, the confinement
loss decrease as the number of rings increases because the overall modal index of the
PCFs increases and mode field penetrates less into the low-index air region as the number
of rings increases.

In general, the effect of different number of air-hole rings on modal properties of
the PCFs depends on the operation wavelength and the design parameters of the PCFs. At
the short wavelengths, the effect is small and negligible mainly due to the isolated effect
of the PCs, and at the long wavelengths, the effect is more pronounced mainly due to the
band-gap effect of the PCs. On the other hand, for large d/A PCFs (e.g., d/A 2 0.7), this
effect is equivalent to the short wavelength operation and small as the light is well
confined within the core by the first and second air-hole rings. For small &/A PCFs (e.g.,
d’A < 0.1), this effect is equivalent to the long wavelength operation and significant as
light is weakly confined and the modal field penetrates into many rings of air holes, in

which the outer rings of air holes of PCF affect dramatically the modal properties.

4.5.3 Scaling Transformation

As we know, there is no fundamental length scale for the EM wave due to the nature of
the Maxwell’s equations. Therefore, we can easily derive the scaling transformation of
the modal properties such as the effective index and the modal field pattern with respect
to the change of design parameters of the PCFs (e.g., the pitch A and index n(r)) for the
fixed air-hole size-to-pitch ratio (see Appendix C). In order to evaluate the PCF with any
pitches and air-hole sizes, it is useful to explore scaling approximations of modal

characteristics of the PCFs with the fixed pitch A. By following the similar way, scaling
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approximations of modal properties of the PCFs with the fixed pitch A can be

approximately calculated [26], [58]:

Dy(A W) = ANID ) “3)
Ay V) a5~ C(‘N) Ag ) “9)
LN et = s B ) @.10)
MM peaan=T () @1

where N is the air-hole size ratio (i.e., d/dy with dy = 1.15 wm). Unlike the scaling
transformation for the fixed air-hole size-to-pitch ratio, the dependence of modal
properties on the scaling parameter N for the fixed pitch A is no longer linear (e.g., for
the waveguide dispersion D, as evidenced in Figure 4.39). For this reason, we have to
calculate modal properties numerically and extracted nonlinear relationships for
corresponding coefficients based on the results of the numerical calculations.

For instance, the waveguide dispersion D, as a function of wavelength A for
different PCFs with fixed A = 2.3 um is shown in Figure 4.39. For small air-hole PCFs
(e.g., d/A < 0.5), the approximate linear scaling [A(N) = N and B(N) = N)] for D, can be
obtained, based on the fact that the negative slope of D, curves remains approximately
the same, as shown in Figure 4.39(b), when the air-hole size is changed. From Figure
4.39(a), the nonlinear scaling functions for the coefficients A(NV) and B(N) in scaling
transformations of D,, with Ap = 2.3 um and d; = 1.0 um, can be fitted into polynomial

and cosine forms [58]:

AN) =a + bN + cN° + dN° + eN* (4.12)
B(N) =N’[f + g cos(hN+)/A(N) (4.13)

where the fitting coefficients a = 0.1510, b = -0.13%1, ¢ = 1.6458, d = -0.8221, e =
0.1648, /'~ 0.94, g = 0.082, h =3.39, and i = -4.5. By utilizing the coefficients 4A(N) and
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B(N) in the scaling transformations of D,, the modified coefficients A(V) and B(V) for

different dj values of the PCFs with the fixed Ay can be analytically obtained.
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Figure 4.39 Geometrical dispersion D, as a function of wavelength A for different PCFs
with fixed A = 2.3 um. (a) General case, and (b) Small air-hole case.
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In addition to the dispersion properties, it is also desirable to consider other modal
properties (e.g., the mode effective area A,y the single-mode condition, etc.) in the PCF-
based applications. For example, large mode effective areas A,y can support extremely
high power without exciting unwanted nonlinear effects, and small mode effective areas
can be used to explore highly nonlinear effects in fibers. For the fixed d/A, we can obtain
the families of the mode effective areas A,y analytically as functions of the pitch ratio M
(see Appendix C). For the fixed A of the small air-hole PCFs (e.g., &/A <0.5), it is shown
that, from the numerical results, the scaling coefficients C(N) and D(V) are approximately
linear (e.g., = N) with respect to N. However, for the fixed A of large air-hole PCFs (e.g.,
d/A > 0.5), the scaling coefficients C(N) and D(N) are well approximated by the

following functions [26]:
C(Ny=N 4.14)
D(N) = 1.()+0.6E(N—1.0)+0.85(N—1.0)2 (4.15)

where Ag=2.3 pum and dp = 1.0 um.

Overall, for the scaling approximations of modal properties of the PCFs with the
fixed pitch ratio A, the scaling coefficients 4, B, C, D, E, F, and G can be linearly
approximately (e.g., = N) when air-hole size-to-pitch ratio of the PCFs is small (e.g., /A
< 0.5) [26]. However, for large air-hole PCFs, the scaling coefficient 4, B, C, D, E, F,
and G are approximately obtained through the nonlinear function of N. By utilizing
scaling transformations, modal properties of the PCFs with any values of the design
parameters (e.g., d, A, and A) are easily calculated. For example, with certain
confinement loss requirement, the minimum number of air-hole rings as a function of
pitch is approximately obtained. As we show later, those approximate scaling
transformations of modal properties as a function of N can assist us in the design and
optimization of the practical PCFs. It is worth noting that the sensitivity analysis of the
modal properties with respect to d and A can be also easily obtained through their

respective scaling transformations.
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4.6 Summary

In this chapter, modal characteristics of the photonic crystal fibers (PCFs) guided by the
PBG and TIR effects are investigated by way of simulations using some analytical and
numerical methods in great detail. Through the comprehensive analysis, some unique
features related to the PCFs are obtained and the scaling transformations of modal
properties related to the design parameters of the PCF structure are derived.

Firstly, like the 1D PCWs, the band-gap structure of the 2D PCs is calculated and
their main properties of the 2D PCs are discussed. With the similar idea of the gap-
midgap ratio used for measuring the complete band-gap, a new measure parameter along
the low index line is proposed for measuring the partial band-gap of the PCs, which is
very useful for the analysis of the modal properties of the PCFs.

Secondly, the modal characteristics, such as the effective index, the model field
profile, the dispersion, the confinement loss and bend loss, the confinement factor, and
the mode effective area and beam divergence, the model polarization and modal
birefringence, etc., of the PCFs are investigated thoroughly. The numerical model is
validated through the critical modal parameters of the PCFs by way of examples. With
the help of the band-gap map of the 2D PCs, different guiding regimes for the PCFs are
recognized and physical insight of the guided modes of the PBG-PCFs and TIR-PCFs can
be understood easily. Further, the level of accuracy and the scope of validity for the
scalar and the semi-vector approximations are assessed. It is demonstrated that the vector
nature of the guided modes on the PCFs must be considered in analyzing the modal
characteristics such as the effective indices and the dispersions. Furthermore, one new
parameter is proposed to judge the single-mode operation of the PCFs, and the bending
loss of the PCFs is calculated by the numerical method for the first time.

Finally, for the practical PCF, some effects (e.g., number of air-hole rings and size
of interstitial holes) on the modal characteristics are investigated. The scaling
transformations of modal properties related to the design parameters of the PCFs are also

derived.
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Design of Dispersion Component Elements

Due to the unique and controllable dispersion properties of the PCFs, it is very natural to
employ the PCFs as the dispersion component elements. In this chapter, we propose a
general design model for the PCFs with the dispersion-related applications and give some

typical examples.

5.1 Introduction

Optical fibers as a superb transmission media for telecommunications still suffer from the
chromatic dispersion. Except the polarization modal dispersion (PMD), which occurs
because the two orthogonal polarization modes that comprise a wavelength travel at
different speeds along a fiber, the chromatic dispersion refers to the pulse broadening due
to the fact that different optical wavelengths travel at different speeds within a fiber. The
effect of chromatic dispersion can be greatly reduced if special fibers (e.g., dispersion-
shifted fibers and dispersion-flattened fibers) are employed, which have more favorable
dispersion characteristics at the wavelength of optical communications. Further, in order
to overcome the signal distortion caused by the chromatic dispersion in the conventional
single-mode fibers, the dispersion compensating fibers (DCFs) are also needed to
compensate the dispersion of the existing optical fibers. Therefore, there are huge
applications for the dispersion component elements in optical communication systems.
Conventional single-mode fibers (CSFs) based on weakly guiding structures of
doped silica can be tailored to exhibit a variety of desirable modal characteristics in terms
of loss/gain, dispersion, and field confinement [76], [77]. Due to the small index variation
over the transverse cross-section, however, modal characteristics of the CSFs cannot be
changed drastically to fulfill requirements of certain demanding dispersion-related

applications. Examples of such applications are the uitra-dispersion-shift (e.g., to the
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green wavelength range), the ultra-broadband dispersion flattening, the broadband
dispersion compensation, etc. This limitation may be circumvented by the use of the
PCFs [64], [65] whose modal characteristics are strong functions of wavelength and
whose transverse cross-section consists of a central high-index defect (or missing a hole)
in a regular triangular (or hexagonal) array of air holes as shown in Figure 5.1. There are
only two main design parameters, namely, the air-hole size d and the pitch A. The PCFs
can be tailored to produce unique and useful modal characteristics such as single-mode
operation at a wide wavelength range [49], highly tunable dispersion [78]-[80], and
highly controllable mode effective areas for linear and nonlinear applications [81]. The
utilization of some of these modal characteristics is the basis for the design of novel

fibers with desired dispersion properties to be discussed in this chapter.
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Figure 5.1 The cross section of a PCF with a regular triangular air-hole array
defined by the air-hole size d and the pitch A.
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Several dispersion applications for the PCFs are presented in [78]-[80], [82].
Ferrando et al. proposed to use the PCFs to obtain the flattened dispersion near
wavelengths of 1.13 [78] and 0.8 um [80]. Nearly zero ultra-flattened dispersion around
the wavelength of 1.55 pum was achieved [79] by a trial-and-error manual procedure. The
idea to use the PCFs for the dispersion compensation was suggested in Ref [82], in which
a simplified model consisting of a pure silica core surrounded by air was used for the
proof-of-concept demonstration. In order to design practical dispersion-compensating
fibers (DCFs), an improved model was presented in Ref [58]. For the dispersion-shifted
applications, however, few reports have so far addressed the design issue in a systematic

fashion, except for some experimental results (e.g., [83]).

5.2 Design Considerations

In order to model the PCFs with general index profiles, the full-vector wave equations
based on transverse electric fields can be solved by using some rigorous methods
mentioned in previous chapters (e.g., the FDM method [20], [68]). Once the modal
effective indices and field patterns are obtained, the other related modal properties (e.g.,
dispersion D) can be readily obtained (see Appendix A). In order to design the PCFs with
the required dispersion and utilize the scaling transformation for the dispersion of the
PCFs, the total dispersion D is calculated as the sum of the geometrical (or waveguide)

dispersion D, and the material dispersion D,, in the first order approximation [58], [69]:

D(4) = Dy(A) + T(A)D,,(A) (5.1)

where I" is the confinement factor in silica, which is close to unity for most practical
PCFs as the modal power is confined almost all in silica with high refractive index [8],
[69]. In general, the waveguide dispersion D; can be calculated without considering the
material dispersion (i.e., the refractive index of silica ngu, = 1.45) and the material
dispersion D,, can be obtained directly from the three-term Sellmeier formula [69].
Because the waveguide dispersion D, is strongly related to the design parameters of the

PCFs, they can be optimized to achieve desired dispersion properties.
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As far as the PCFs are concerned, the waveguide dispersion Dy can be calculated

through the following scaling transformations (see Appendix C.3 and 4.5.3):

D, (A,M) |V,,-XL.MA=f;4-Dg(~$) (5.2)
D,(A.N) |,ﬁxedAzA<N>Dg<E%v~)) (5.3)

where M is the pitch ratio (i.e., A/Ap with Ay = 2.3 um) and N is the air-hole size ratio
(i.e., d/dp with dp = 1.0 um). For the fixed air-hole size-to-pitch ratio d/A, we can obtain
the families of D, analytically by changing the pitch ratio M, which can easily derived

from the scaling transformation of the effective index n,, (4, M) |, 92= 715 (A/ M) (see

Appendix C.3). For the fixed pitch A, the dependence of D, on the scaling parameter N is
no longer linear. For this reason, we have to calculate D, numerically and extract a
nonlinear relationship for coefficients 4(V) and B(N) in (5.3) based on the results of the
numerical calculations with some approximations [58]. For small air-hole PCFs (e.g., /A
< 0.5), the approximate linear scaling [i.e., A(N) = N and B(N) = N)] for Dy can be
obtained, based on the fact that the negative slope of D, curves remains approximately
the same when the air-hole size is changed. By utilizing the coefficients 4(N) and B(N) in
(5.3), the modified coefficients 4(N) and B(N) for different dy values of the PCFs with
respect to the fixed Ay can be analytically obtained. As we show later, this approximate
scaling of Dy as a function of N can assist us in the design of the PCFs.

In addition to the dispersion properties, it is also desirable to consider other modal
properties (e.g., the mode effective area A,y [69], the single-mode condition, etc.) in the
dispersion-related applications of the PCFs. For example, large mode effective areas can
support extremely high power without exciting unwanted nonlinear effects, and small
mode effective areas can be used to explore highly nonlinear effects in the PCFs. Further,
albeit there is theoretically no cut-off for the fundamental modes, light in practice is not
really guided by the PCFs when the normalized wavelength (i.e., A/A) is large. By

utilizing the scaling transformation of A.p the cut-off wavelengths of the fundamental
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and the second-order modes are easily calculated by setting A.p; and A.p», the mode
effective areas of the fundamental and the second-order modes, to some certain values.
Figure 5.2 shows such curves of 4.5, and A.4, with a relation between A/A and d/A. The
operation wavelength range of the single-mode operation for the practical PCFs is also
shown (dot-dash line) [49]. It is seen from the figure, three operation regions (single-
mode, multi-mode, and cut-off) of the PCFs are easily recognized through the simple
scaling transformation of the mode effective area of the PCFs. It is worth noting that the
sensitivity analysis of the modal properties with respect to d and A can be easily obtained

through the scaling transformations of the modal properties.
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Figure 5.2 Three operation regions (single-mode, multi-mode, and cut-off) of the PCFs as
a function of A/A and d/A. The cut-off wavelengths of fundamental modes and second-
order modes are calculated from their mode effective area, in which Ay and 4.2 are
mode effective areas of fundamental modes and second-order modes, respectively.
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5.3 General Design Procedure

In order to design the PCFs with desired dispersion properties, we should develop a
general procedure so that the design optimization for practical dispersion-related
applications of the PCFs can be performed in a systematic and efficient manner. The idea
of this procedure is first proposed in Ref [58] for the design of practical DCFs. Here we
extend this procedure to general dispersion-related applications such as the dispersion-
shifted fibers (DSFs), the dispersion flattened fibers (DFFs), and the ultra-flattened
dispersion (UDFs) [26]. As a matter of fact, the only difference among these different
applications for dispersion component elements is the choice of the target functions and
the constraints for the design optimization.

By following the design procedure proposed in Ref [26], [58], a general design
procedure for dispersion-related applications of the PCFs is presented as follows:

Step 1: Target function with proper constraints: Given a set of desirable dispersion

values at some specific wavelengths (e.g., 4g= 0.8 um), define a target function in
the form of O, = f(A4,,D,,AD,) with constraints (e.g., Ay and the single-mode
operation).

Step 2: Preliminary optimization based on scaling transformations: With varying of the

air-hole size d and the pitch A, optimize the PCFs by minimizing the target
function through scaling transformations of (5.2) and (5.3) (starting from Ay = 2.3
um) and first order dispersion approximation of (5.1) without considering I (i.e.,
= 1.0).

Step 3: Model refinement for the dispersion D,: With the optimized PCF (d*¥ and A?)

obtained by Step 2, calculate D, of the PCF with ngica = nsinca(Ao) through the
rigorous vector solvers at a few selected wavelengths and repeat Step 2 (starting
from Ag= A? and dop= d(z)) with consideration of T. This step can update the
scaling transformations of D, in (5.3) and may avoid simulation errors caused by

(5.2) and (5.3) due to the setting of the solvers and the value of #c,.
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Step 4: Model refinement for the dispersion D: With the optimized PCF (% and AY)

obtained by Step 3, calculate D of the PCF through the rigorous vector solvers at
the required wavelength range and repeat Step 2 (starting from dp = & and Ag=
APy with considering I'. This step can avoid simulation errors caused by first
order dispersion approximation in (5.1).

Step S: Verification of the final design: With the optimized PCF (d? and A(4)) obtained

by Step 4, calculate D of the PCF through the rigorous vector solvers with high
accuracy setting at the required wavelength range to check if the optimized PCF
design meets the required dispersion properties. If so, calculate other the modal
parameters and end the design. If not, change the target function and repeat Steps

2-5.
In general, the final PCF structure can be obtained after two or three refinements by
the rigorous vector solvers, provided that the target function is set properly. The entire
design procedure is highly computation-efficient due to the use of the scaling

transformations of the modal properties of the PCFs.

5.4 Design Applications

In order to further illustrate the design procedure, the basic requirements and the detailed
target functions for several typical applications as dispersion component elements are
given in this section. Figure 5.3 shows a typical dispersion curve of a PCF as a function
of wavelength with the dispersion wavelengths Ap;, Apy, and Ap; for the required

dispersion Dr (i.e., D(Ap;) = Dp,i =1, 2, and 3). Two wavelengths Ag;, As, for zero third-

order dispersion and one wavelength Ay for zero fourth-order dispersion are also marked.
As demonstrated in the next section (e.g., Dr = 0 in Figure 5.6), the dispersion curve
shown in Figure 5.3 is reasonable for the PCFs with d/A > 0.2. This is fortunately the

case for most of the dispersion applications using the PCFs.
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Figure 5.3 Total dispersion D of the PCFs as a function of wavelength with some possible
dispersion wavelengths Ap;, Aps, Ap;, two wavelengths Ag;, As; of zero third-order
dispersion, and one wavelength Ag of zero fourth-order dispersion.

5.4.1 Dispersion-Shifted Fibers

The basic requirement of the dispersion-shifted fibers (DSFs) is that a desired total
dispersion Dr at a wavelength point Ay is prescribed such that

D(A4,)=D, (5.4
where Ay is the operation wavelength for the desired total dispersion Dr (e.g., Ay is the
zero dispersion wavelength if Dy = 0). Therefore, the target function Oy is to let one of
the dispersion wavelengths (Ap;, Ap,, and Ap;3) equal to the required wavelength point Ay,

O, = A4 —A4,1,i =1,2,and 3 (5.5)
where |...| stands for the absolute value. In general, the first dispersion wavelength (4Ap,)

should be selected because it has large parameter yields (less sensitive to the change of
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design parameters). Unlike the CSFs, the PCFs have a wide dispersion range, and there
exist many possibilities to obtain the same desired dispersion. Therefore, some other
constraints, such as the single-mode operation and the mode effective area, need to be
imposed. For example, for the application of the supercontinuum generation, the small

mode effective area is required to enhance the nonlinear effects of the PCFs.

5.4.2 Dispersion-Flattened Fibers

According to the definition of the dispersion flattened fibers (DFFs), at least one
wavelength point of zero third-order dispersion are required in the operating range of
wavelength. From the typical dispersion curve shown in Figure 5.3, there are two
possible dispersion-flattened regions around Ag; and As,, respectively. We focus on the
first dispersion-flattened region only, and the object function for the second dispersion-
flattened region may be defined in a similar way. For the first dispersion-flattened region
as shown in Figure 5.4, there are two wavelengths Ap;, Ap; of dispersion D and one
wavelength Ags; of zero third-order dispersion. The basic requirement for the dispersion

flattening is that a wide range of wavelength with dispersion D and its variation £ ADg

at the center wavelength point Agare given as follows:

D(Ag) < D, +AD,. with Ag =4y (5.6)
where Ag; is the first wavelength of zero third-order dispersion. Therefore, after
considering the symmetry of the dispersion curve, the target function Or is to let Ag; with
the desired dispersion (Dp + ADpg) equal to Ay,

O, = A, — A, | +wx| D{A,)— (D, + AD,)| (5.7
where w is a weight function to balance between the wavelength and the dispersion. The
operating bandwidth A4 with the required dispersion Dr £ ADg is equal to (A-4;) as

shown in Figure 5.4. In general, the DFF with reasonable Dr and Ay can be obtained

because the PCFs have very wide dispersion ranges with proper design parameters.
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Figure 5.4 First dispersion-flattened region of the PCFs used for DFFs.

Furthermore, the PCFs with the ultra-flattened dispersion (UDFs), in which there is
at least one wavelength point of zero fourth-order dispersion in the operating range of
wavelength, can also be designed. From the typical dispersion curve in Figure 5.3, there
is one possible ultra-flattened dispersion region around one wavelength Ag of zero fourth-
order dispersion as shown in Figure 5.5. In this ultra-flattened dispersion region, there are
two wavelengths Ag; and Ag; of zero third-order dispersion. The basic requirement for
ultra-flattened dispersion is that a wide range of wavelength with dispersion D and its

variation + ADy at the center wavelength point Ay are given as
DAy} <D, +AD,.,D(A;,)=2 D, —AD,., with A = 4y (5.8)

where Ar is the wavelength of zero fourth-order dispersion. Therefore, after considering
the symmetry of the dispersion curve, the target function Oy is to let Arequal to Ay and

As; and Agy have the desired dispersion (Dr + ADp) and (Dp -ADp), respectively,
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0’1‘ :| ﬂo _/11-' | +wX|| D(;Lm) - (Dls + ADI“) |+ l D(ﬂ‘xz) - (D,, - AD/:) ‘] (5.9)
where w is a weight function to balance between the wavelength and the dispersion. The
operating bandwidth A4 with the required dispersion Dr £ ADr is equal to (A>-4;) as

shown in Figure 5.5.
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Figure 5.5 The ultra-flattened dispersion region of the PCFs used for UDFs

5.4.3 Dispersion Compensation Fibers

One of the widely used methods for the dispersion compensation is to use the dispersion
compensation fibers (DCFs), which possess a negative dispersion to counteract the
positive dispersion of the existing conventional single-mode fibers (CSFs). Numerous
kinds of the DCFs have been designed. In general, optical communication links can be
composed of a combination of the CSFs and the DCFs to achieve a small net chromatic

dispersion for the entire link.
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In order to compensate the dispersion of the CSFs with anomalous dispersion and
positive dispersion slope, the desired DCFs should have large normal dispersion and
negative dispersion slope. From the typical dispersion curve in Figure 5.3, there is one
possible dispersion compensation region between As; and As» with a negative dispersion
slope. The basic requirement for the DCFs is that large negative dispersion and dispersion
slope to compensate the dispersion of the CSFs over a wide range of wavelength are
achieved. Or equivalently, the same parameter K [58] as the CSFs to be compensated at

the center wavelength point Ay should be obtained as given by

KA) =K o (5.10)
where Kcsp is defined as the dispersion divided by the dispersion slope of the CSFs.
Therefore, the target function Or is to let the parameter K of the DCFs equal to that of the

CSFs at Ay,
O, = K(ﬂo)_K(‘SH (5.11)

From the previous calculations [58], we know that there is an optimum region to
realize the DCF. Therefore, we can consider some additional requirements such as
maintaining possible large negative dispersion, ensuring single-mode operation, or
keeping certain mode effective area, etc. It is worth noting that only a simple and
intuitive form of target functions is described here. In practice, more complicated forms
of the target functions are also possible and can be obtained based on the specific
dispersion requirements. We will discuss the individual applications for design of

dispersion component elements in great detail.
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0.74 and 0.84 um, respectively.
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After defining the target functions for each of the specific applications and
obtaining the scaling transformations for the dispersion Dg, which are described in 5.2,
we are now ready to design the PCFs with desired dispersion through a highly automated
process. For the sake of simplicity, we assume the required dispersion value Dy is set to
zero (i.e., Dy = 0). Through the scaling transformations of D,, the relation between the
wavelength Ap of zero dispersion and the design parameters of the PCFs can be easily
obtained and utilized as the starting point of the design optimization. Figure 5.6(a) shows
the wavelength Ap of zero dispersion with dependence of A and d/A of the PCFs. The
three regions for each d/A curve represent Ap;, Apy, and Ap;, and the two turning points
(down and up triangular shapes) for each d/A curve represent the wavelengths Ag;, As; of
zero third-order dispersion, respectively. From Figure 5.6(a), it is clearly shown that the
possible solutions for different dispersion applications such as the DSFs, the DFFs, and
the UDFs. For example, for the UDFs, only one possible solution can be obtained when
As; and Asy are close to each other. The design procedure for those applications is

described as follows.

3.5 Dispersion-Shifted Fibers

One of the current applications for the DSFs is to increase the light intensities for
generating supercontinuum spectrum from 0.5 to 1.3 um. In this application, the single-
mode operation is not important. However, the minimum mode effective area is
desirable. From Figure 5.6(a), some interesting characteristics for the DSFs can be
observed, such as the possible minimum Ap is around 0.5 pm, which is in good
agreement with experimental results [83]. Also it is found that the coverage of Ap over
the full wavelength range from 0.5 to 5.0 um is achievable and the possible Ap can be
realized by many combinations of design parameters of the PCFs. Further, the relation
between the design parameters (A and d/A) for different first-order zero dispersion
wavelength values, as shown in Figure 5.6(b), can be obtained through the scaling

transformations of (5.2) and (5.3). The experimental results (diamond shapes) of the two
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DSFs [12] for Ap; = 0.74 and 0.84 um are also shown in Figure 5.6(b). It is found that A
depends linearly on d/A for certain value of Ap; (the opposite effect for Ap;) and the
minimum Ay can be obtained at the possible minimum of the pitch because A depends
linearly on square of d/A of (C.20) and (4.9) for certain value of A In order to
demonstrate the design of the DSFs using the proposed approach, the pitch A is
respectively set to 1.0, 1.58, and 1.85 um for the corresponding zero dispersion
wavelengths Ap = 0.66, 0.74, and 0.84 um [12]. The optimum results for those three
applications (DSF1, DSF2, and DSF3) can be easily obtained as shown in Table 5.1. It is
observed that there is a discrepancy between the simulation and the experimental results,
especially for the small-pitch PCFs, mainly due to errors (about £ 10 % on the absolute

values) of electron micrograph analysis and deviations from circular holes [85], [86].

Table 5.1 Three typical applications of DSFs with required dispersion Dr= 0.

Type | Wavelength | Afterstep 1 | Afterstep2 | Afterstep 3 Mode | MEA Ref [12]
Ao (UM) | A(um), d/A | A@um), d/A | Aum), d/A | status | (um?*) | A(um), d/A
DSF1 0.66 1.00,0.744 | 1.00,0.747 | 1.00,0.754 | multi | 0.92 | 1.00, 0.620
DSF2 | 0.74 1.58,0.824 | 1.58,0.837 | 1.58,0.832 | multi | 1.84 | 1.58,0.785
DSF3 0.84 1.85,0.646 | 1.85,0.653 | 1.85,0.652 | multi | 3.77 | 1.85,0.595

5.6 Dispersion-Flattened Fibers

In this section, the designs of the DFFs with Dr = 0 and ADr = 1 ps/nm/km are
demonstrated. In order to compare the design with available PCF structures [78]-[80], the
operating wavelength Ay is set to 0.8, 1.13, and 1.55 um, respectively. The optimum
results for these three applications (DFFI, DFF2, and UDF) can be easily obtained as
shown in Table 5.2. In Table 5.2, the single-mode condition and the mode effective area
for each dispersion application are also given. Figure 5.7 shows the total dispersion, in
which the dot and dash lines represent the dispersion of the PCFs followed by Step 1,
Step 2, and Step 3, respectively. It is clearly seen from Figure 5.7 that the errors caused in

the scaling approximation of (5.3) and in the first order approximation of (5.1) are
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eliminated by the proposed general design process approach. From Table 5.2, it is found

that the operating bandwidths of the newly designed fiber are aimost the same as those in

[78]-[80] with slight difference of the PCF structures due to the different models used for

the silica material.

Table 5.2 Three applications of DFFs with required dispersion Dy = 0 and dispersion
variation ADr = 1ps/nm/km.

Type | Wavelength | Afterstep 1 | Afterstep 2 After step 3 Mode | MEA | Bandwidth
A (Um) | A (um), /A | A(um),d/A | A (um), /A | status | (um?) | AA(nm)

DFF1 0.80 0.905, 0.585 ] 0.904, 0.583 | 0.904,0.581 | multi 1.41 58
DFE2 1.13 1.73,0.357 | 1.731,0.361 | 1.732, 0.3652 | single | 7.74 145
UDF 1.55 2.40,0.250 | 2.40,0.253 2.39,0.256 | single | 31.6 550
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Figure 5.7 The total dispersion in which the dot, dash, and solid lines represent
dispersions of the PCFs followed by Step 1, Step 2, and Step 3, respectively. (a) 4o = 0.8
um, and (b) 4p=1.13 pm.

5.7 Dispersion Compensation Fibers

The idea to use the PCFs for the dispersion compensation was first proposed in Ref [82],
in which a simplified model consisting of a silica core in air was used for the proof of
concept. In order to optimize the dispersion, it is necessary to systematically investigate
dispersion properties of the PCFs with the combination of the PCF parameters by a
rigorous vector solver [26]. It is, therefore, of practical interest to improve the existing
design so as to explore the potential of the PCFs for broadband dispersion compensation.
Here we assume that a fiber link consists of a CSF of length L; with dispersion
DAy and a DCF of length L, with dispersion Di(A), the effective compensated

dispersion D(A) on the fiber link in series can be written as
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DML, + D, (ML,

5.12
L+ L, ©.12)

D(A) =

which only considers the effect of dispersion. In order to compensate the accumulated

dispersion of the CSF at A = 4y by the DCF, the following condition has to be satisfied:

poti_ Do) (5.13)
L2 Dl(j’(])

where R is the fiber dispersion (or length) ratio and Ay is the center of the operating
wavelength range. Furthermore, the accumulated dispersion of the CSF should be
compensated over a wavelength range. For the sake of simplicity, we assume that both
fibers have slowly varying dispersion slopes S;(4) and Sx(4) [58]. In order to compensate
the accumulated dispersion over a range of wavelength (e.g., DJ4) = 0 with 4 # Ay), we

have

—L_ Silh) (5.14)

L S(h)

where (5.13) was used. By combining (5.13) with (5.14), a new parameter K is

introduced to judge the dispersion compensation satisfaction over a range of wavelength,

K= Dl(’%) — Dz(ﬂo) (5.15)
Si( %) Sy(dy)

From (5.15), it is apparent that once the parameter K of the DCF, with the

maximum of R or some other constraints, reaches the required one of the CSF, the design
of the DCF is accomplished. Based on the above requirement, a design procedure for the
broadband DCF is similar with the general design procedure described in the previous
section.

The desired DCF should have a normal dispersion and negative dispersion slope.
From the first order approximation (5.1) of D(A) and scaling transformations (5.2) and
(5.3) of Dg(A) with Ap = 2.3 pm, the PCF with required dispersion properties can be
analytically obtained. Figure 5.8(a) shows the parameter K for the CSF and PCF as a
function of pitch A with different d/A values. It is seen from Figure 5.8(a) that the

possible pitch range of the PCF is from 0.7 to 1.4 pm, which corresponds the parameter K
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from 1000 nm to 0. Here we assume that the CSF is made of silica with a step-index core
of diameter 9.0 im and numerical aperture 0.1 [82] and its K is a constant value over the
DWDM wavelength range [58]. The intersection points (diamond shapes) between the
PCF and the CSF, which have the same K, are the possible pitch of the PCF. It can be
seen from Figure 5.8(a) that the pitch of the PCF decreases or converges into one value
(around A = 0.9 um) when d/A increases from 0.6 to 1.0. By considering the practical
PCF with a rough silica bridge of 0.12 um [82], we assume that the narrowest width of
the bridge to be 0.1 pum (i.e., A - d = 0.1 pum) as shown in Figure 5.8(b). It can be seen
from Figure 5.8(b) that the possible PCF with A =0.928 um and &?/AP =0.892 is
obtained with D(A) of 432 ps/nm/km at the wavelength of 1.55 pm. Further, through the
calculation of D(A), the final PCF with A® = 0.932 wm and d/A% = 0.893 is confirmed
with 474.4 ps/nm/km at the wavelength of 1.55 pm, which is summarized in Table 5.3.
Figure 5.9 shows the effective dispersion of the fiber link at the wavelength of 1.55 um
and D(A) of the PCF (solid line) and CSF (dot line), in which the dot line represents the
product of dispersion of the CSF and dispersion ratio R, respectively. It is seen from
Figure 5.9 that the optimum PCF can compensate CSF within + 0.05 ps/nm/km over 236-
nm wavelength range. The corresponding dispersion at 1.55 um is of about —474.4
ps/nm/km, which means it can compensate the dispersion of over 28 times of length of
the CSF. From the judgment of the core parameter U (e.g., U < 2.6) [72], the PCF with
d/A = 0.9 and A < 1.1 um is of single-mode operation. It is worth mentioning that the
designed PCF with small core has small mode effective area (1.6 um®) and large coupling
loss with the standard fiber. Fortunately, the taper PCF structure can be used for mode

converter with only 0.3 dB coupling loss with the CSF [84].

Table 5.3 The DCF application with required K coefficient of the CSF at the wavelength
of 1.55 um is 301.8 nm within an effective dispersion variation (+ 0.05 ps/nm/km).

Type | Wavelength | Afterstep 1 | Afterstep?2 After step 3 Mode | MEA | Bandwidth
Ao (um) | Aum), /A | A(um), /A | A(um), /A | status | (um?) | AA(nm)

DCF 1.55 0.928,0.892 | 0.930,0.891 | 0.932,0.893 ! single | 1.60 236

143



Chapter 5. Design of Dispersion Component Elements

400 [ -
300}
E i ]
£ |
X ! ]
g 2000 ]
®
£
& I
g 100- =
—e— CSF (301.8) '\ b
0- ,..(J..Jl..‘.1..,.l...'u‘\lx,.,l..\..
07 08 09 10 11 12 13 14
Pitch 4 {(um)
1.0 :

N A-d=0.1pum
3 -
2 08 J
& L ® A=0.928pum
S | d/iA=0.892 ||
2 _ ]
(]
o 06 -
= i K = 301.8 nm
< b

.

04 i s ] 5 : 5 ] . L A 5 i . s
0.8 1.0 1.2 1.4
Pitch 4 (um}

Figure 5.8 (a) The parameter X as a function of pitch for the PCFs with d/A = 0.6 (broken
line), 0.8 (dashed line), 0.9 (dot line), 1.0 (solid line) and CSF (diamond line), in which K
of CSF is 301.8 nm over all wavelength range, and (b) the possible PCF structure (circle
point) with A = 0.928 um and d/A = 0.892 that meets two design requirements: K =
301.8 nmand A-d = 0.1 pm.
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5.8 New Dispersion Design for DCFs

In this section, a new PCF structure that allows first two rings of the air holes to have
different radii is proposed and analyzed for the purpose of broadband dispersion
compensation. The new structure of the PCF to some extent resembles the index profile
of the W-shape conventional fiber (or simply W-fiber) in which an additional cladding
layer with the depressed refractive index is placed near the core [2]. By properly
optimizing the index, width and position of the cladding layer, the W-fiber can exhibit
enhanced dispersion characteristics for various applications. In other words, by increasing
the air-hole size of the first air-hole ring and decreasing the air-hole size of the second
air-hole ring, a similar index distribution with the W-fiber PCF can be realized in the
PCF. For the sake of simplicity and the limitation of fabrication, we assume that the
radius of the first air-hole ring is unchanged and the same with the air-hole size d of the
PCF.

The transverse cross-section of the modified PCF is shown in Figure 5. 10. Like the
conventional PCF, the air holes are arranged in a hexagonal (or triangular) array with the
air-hole size d and the pitch A. In order to optimize the index distribution in the cladding
area, an extra design parameter, the air-hole size d; of the second ring of air holes, is
introduced. Due to the large dispersion requirement, the PCF used for the DCF have large
air-hole size-to-pitch ratio (e.g., /A = 0.9 [58]). Therefore, we restrict our discussion to
the regime of d >d,. In order to utilize the scaling transformation of modal properties of
the PCF [58], a typical PCF with d = 0.81 pm and A = 0.9 um is used as the starting point
of design and optimization of the DCFs.

Because of the additional degree of freedom provided by this new structure, a large
K coefficient (dispersion divided by the dispersion slope) can be realized without too
much reduction in the mode effective area of the PCF. Furthermore, by employing the
design model and methodology in the previous sections, a general design optimization
procedure can be developed for the PCFs to realize various desirable dispersion

applications, especially for broadband dispersion compensation.
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Figure 5. 10 The cross section of a PCF with a regular triangular air-hole array.

X

Figure 5.11 shows the effective index n.y and the geometrical dispersion D, as a
function of wavelength for the fixed pitch A = 0.9 um and air-hole size d = 0.81 um. It is
noted from Figure 5.11(a) that, when the size d; of air holes of the second ring of PCF
decreases, the “turning point” of the effective index n.,y moves toward the short
wavelength and the slope of the effective index at the turning point becomes more
dramatic. Accordingly, as shown in Figure 5.11(b) when the size d, decreases, the point
of the minimum geometrical dispersion D, moves toward the short wavelength and the
slope of the geometrical dispersion D, increases.

We also calculated the geometrical dispersion D, with the minimum dispersion at
the wavelength of 2.0 um through the scaling transformation mentioned in 5.2. The
results are shown in Figure 5.12 in which the corresponding pitches are 1.09, 1.29, 1.50,
and 1.87 um for d; =d, 0.75d, 0.64, 0.5d, and 0.44, respectively.

As we know, the conventional single-mode fibers (CSFs) have an anomalous
dispersion and positive dispersion slope at the operating wavelength near 1.55 pm. From

(5.4), the desired DCF should have a normal dispersion and negative dispersion slope
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with the same K of the CSF within a range from 30 to 400 nm around the same operation
wavelength. It also can be seen from Figure 5.12 that the portion of curves with a
negative slope are the corresponding periods because the dispersion slope of material
such as silica is relative small in the PCF at the wavelength range of 1.55 um. From
scaling transformations of the dispersion, the possible pitch range of the PCF is from 0.7
to 1.6 um. Two examples of the PCF structures compensated for dispersion of typical

commercial deployed transmission fibers at the wavelength of 1.55 pum are demonstrated

as follows.
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Figure 5.11 Modal parameters as a function of wavelength for the PCFs with fixed pitch
A = 0.9 um and air-hole size d = 0.81 um. (a) The effective index n.5 and (b) The
geometrical dispersion Dg(A).

The dispersion properties of two typical commercial deployed transmission fibers
at the wavelength of 1.55 um are taken from Ref [87], which are shown in Table 5.4.
Here we assume that the K coefficient of the CSF is a constant value over the DWDM

wavelength range. Figure 5.13 shows the K coefficient as a function of pitch for different

d/A values of the PCF and CSF. The intersection points between them, which have the
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same K coefficient, are the corresponding pitch of the PCF. The optimum PCF structure

and corresponding dispersion are shown in Figure 5.14 and Table 5.5, respectively.
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Figure 5.12 Geometrical dispersion D,(A4) as a function of wavelength for the PCFs with
fixed minimum dispersion at the wavelength of 2.0 pum through the scaling
transformation of Dg(A).

Table 5.4 Typical dispersion properties of some commercial deployed transmission fibers
at the wavelength of 1.55 um.

Type of CSF fiber Dispersion Dispersion slope K coefficient
(ps/nm/km) (ps/nmz/km) (nm)
Standard SMF 17.0 0.058 298
True wave-RS 4.5 0.045 100

Compared with the conventional PCFs, as evident from Table 5.5, the newly design
of the PCFs is shown to provide large normal dispersion (up to -811 ps/nm/km from -521
ps/nm/km) and large mode effective area (up to 2.2 pm’ from 1.5 um?) at a typical C
band wavelength range (up to 50 nm). With a dispersion of ~811 ps/nm/km and a mode
effective area of 2.2 umz (or =703 ps/nm/km and 4.0 pm®), a PCF could compensate the
dispersion of over 50 times (or 150 times) its length of the CSF within £0.05ps/nm/km.
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Figure 5.13 Coefficient X as a function of pitch for the PCFs with different d/A values.
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Figure 5.14 Total dispersion D(A) as a function of pitch for different PCFs with d/A =
0.9 at the wavelength of 1.55 pm.
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Table 5.5 Typical PCF structure compensated for dispersion of some commercial
deployed transmission fibers at the wavelength of 1.55 um.

Type of CSF fiber Original design New design
(d;=d)
Standard SMF A=0.922 pm A=1.1pum
(Square shape d=0.830 um d=0.99 umand d,=0.6 um
in Figure 5.14) D = -521 ps/nm/km D= -811 ps/nm/km
Agr=1.5 um’ Agp= 22 um’
True wave -RS A=1.1 um A=15um
(Circle shape d=0.99 um d=1.35 um and d;= 0.54 um
in Figure 5.14) D =-80 ps/nm/km D = -703 ps/nm/km
Aeff =22 umz Aeﬁ’ =40 “mZ

5.9 Summary

Based on the rigorous vector mode solvers and the scaling transformations of the modal
properties, a general design model of the PCFs for the dispersion-related applications is
proposed. By using the proper combination of the numerical mode solvers and the scaling
transformations, the design parameters of the PCFs can be optimized automatically to
realize the desired dispersion properties. Several typical examples for dispersion-related
applications are given in great detail. For certain dispersion-related applications, we show
that other modal properties such as the mode effective area and the single-mode operation
can also be accounted for as additional considerations in the overall design process. And
some typical examples for dispersion-related applications are given.

By following the general design model and methodology for designing the
broadband DCF based on the PCF structure, an optimized broadband dispersion design is
obtained through proper scaling of two design parameters of the PCF and refinement by
the rigorous numerical analysis. Two typical design examples for the DCF are
demonstrated. With a dispersion of —811 ps/nm/km and a mode effective area of 2.2 pm?
(or =703 ps/nm/km and 4.0 pm?), a conventional PCF (or the PCF with the different air-
hole size of the second air-hole ring) could compensate the dispersion of over 50 (or 150)

times its length of the CSF within £0.05ps/nm/km over a 150-nm wavelength range.
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Conclusions and Suggestions for Further Research

6.1 Conclusions

In this thesis, the modal characteristics of photonic crystal waveguides (PCWs) in both
one and two-dimensional configurations were investigated theoretically in a systematic
and comprehensive fashion by both approximate and rigorous methods. Depending on the
design parameters of the PCWs, there exist two different guiding mechanisms, i.e., the
total internal reflection (TIR) and the photonic band-gap (PBG). Firstly, through the
comprehensive analysis of modal properties and transmission characteristics of 1D
PCWs, the deep physical insight was gained and salient features were revealed. In
addition, we also presented and compared the scope of validity and degree of accuracy
for several approximate solution methods (e.g., the effective index method and the
envelope approximation method). Secondly, we studied in depth the modal characteristics
of 2D PCWs (i.e., PCFs) by using the versatile finite difference method and the
physically more revealing plane-wave expansion method. In this context, we for the first
time to our best knowledge carried out a comprehensive assessment of the scalar and the
semi-vector approximations by way of examples. It is shown clearly that the semi-vector
approximation is sufficient for accurate prediction of the modal properties of the typical
PCFs, whereas the scalar approximation may lead to significant errors. Finally, we
discussed the design optimization of the PCWs with respect to applications in broad-band
fiber-optic communications. A general scaling transformation of the modal properties
related to the design parameters of the PCFs are derived. Based on the high accuracy
analysis models and scaling transformations of modal properties, a powerful procedure of
design and optimization of the PCFs for desired modal properties is proposed and applied
to several practical examples. High-performance PCFs with such an optimization

procedure are designed and demonstrated.
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In the following, a summary of the major contributions made in this thesis is given:

1. Comprehensive Investigation of Modal characteristics of 1D PCWs

One of the major contributions of this thesis is the comprehensive investigation for the
modal characteristics of the 1D photonic crystal waveguides (PCWs). Despite their
structural simplicity, the 1D PCWs provide a revealing example for analyzing and
understanding the underlying guiding mechanisms and the modal characteristics of the
PCWs in general. By using the standard transfer matrix method, we performed a
systematic analysis of typical 1D PCWs. With the help of the band-gap map of the
corresponding photonic crystal structure, we have, for the first time, identified four
different guiding regions in which different transmission characteristics of the
waveguides are analyzed and discussed. The modal properties of the PCWs, such as the
effective index, the modal field, the group velocity dispersion, the mode effective area,
the beam divergence, the model polarization and modal birefringence, the confinement
loss, and the single-mode operation, are all examined in detail. Also, we employed two
approximate methods, namely, the envelope approximation method and the effective
index method. Their scope of validity and level of accuracy are assessed by comparison
with the exact solutions. Further, scaling transformations of the modal properties related
to the design parameters of the waveguide structure are derived. Finally, the similarity

and difference between the 1D PCWs and 2D PCWs are discussed.

2. Scope of Validity and Level of Accuracy for the Semi-Vector and

Scalar Formulations

It is well established that the scalar formulations is accurate enough for analysis of the
modal properties of the weakly-guided optical waveguides such as the conventional
single-mode fibers. For the PCWs, it was generally believed that the scalar approximation

could be used for small air-hole PCWs. A more in-depth examination of this issue by the
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systematic simulation for typical PCFs is carried out by using the rigorous finite
difference method, which helps to fill certain holes in knowledge of the vector properties
of the PCFs. Through the comparisons among the full-vector, the semi-vector, and the
scalar formulations, it is demonstrated clearly that the vector nature of the guided modes
on the PCFs needs to be considered in analyzing the modal characteristics such as the
effective indices, the dispersions, and the model field profiles. In this respect, the semi-
vector formulation can be used to obtain solutions of high accuracy with the same level
of computation effort as the scalar solutions. This conclusion is of considerable practical
significance, considering the simplification of the semi-vector formulation and the
reduction of the computation resources required in comparison with the full-vector

formulation and computation.

3. Study of Dependence of the Modal Characteristics of Practical PCWs

on New Design Parameters

Another important contribution of this thesis is to study and clarify the dependence of the
modal characteristics (e.g., the modal field, effective index, dispersion, confinement loss,
bending loss, mode effective area, and confinement factor) of the 1D and 2D PCWs on
certain key design parameters such as the number of air holes and size of interstitial
holes. Such effects are practically important, yet have not yet been examined and
reported in literature prior to this work. Furthermore, some scaling transformations of
modal properties related to the design parameters of the PCWs, which are very helpful in

design of practical optical waveguides, are given.

4. A General Procedure for Design Optimization of the PCFs

Efficient and reliable procedure that can be used to perform design optimization for the
PCFs is highly desirable for the application of such waveguides as a transmission
medium. Such a procedure for design of the PCFs with desirable dispersion properties is

developed and presented in this thesis. The design model is based on the combination of a
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rigorous vector mode solver and a scaling transformation for the dispersion properties of
the PCFs. In comparison with the conventional design method, the new design procedure
is more efficient and can be readily automated for the purpose of design optimization.
Several applications of the design procedure, e.g., the design optimization for the
dispersion shifted fibers, the dispersion flattened fibers, and the dispersion compensation

fibers, are demonstrated and discussed.

5. Designs of High-Performance Dispersion Compensation Fibers

As a good example for the application of the powerful design optimization methodology
described in the previous section, a PCF is designed and shown to exhibit large normal
dispersion up to -474.5 ps/nm/km, nearly five times of conventional dispersion
compensating fibers, and compensate conventional single-mode fibers within + 0.05
ps/nm/km over a 236-nm wavelength range. Further, through the change the size of the
second air-hole rings, a novel design of the PCFs for the dispersion compensation is
obtained. In comparison with the performance by the conventional PCFs, the newly
designed PCF is capable of providing large normal dispersion (up to -811 ps/nm/km from
-521 ps/nm/km) and large mode effective area (up to 2.2 p,m2 from 1.5 umz) at a typical
C band wavelength range (up to 50 nm), which represent the best overall performance

ever reported in literature.
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6.2 Suggestions for Further Research

Based on the modal properties of the PCWs, which are investigated thoroughly in this
thesis, future work and research should focus on the development of the new devices and
related solvers. In the following, suggestions for further research are given.

As we know, the research and development of the PC-based devices and
components, such as couplers and multiplexers, just begin. Many novel devices with
some unique features need to be discovered and assessed. Except the optical
communication, different application areas, such as optical signal processing, bio-optics,
and optical sensors, also call for the novel devices. Based on the unique features of the
PCWs, it is very natural extension of the current work. Further research can also be
devoted to the design and optimization of the PC-based devices with in-plane
propagation.

On the other hand, further research is needed to develop the new analytical and
semi-analytical solvers by utilizing the unique features of the PCs. By analogy with the
electronic band-gap material and the microwave/RF transmission theory, more mature
analytical and semi-analytical methods are desirable for design and optimization of the

PC-based devices and circuits.
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Appendix A

Performance Parameters of Optical Waveguides

The overall parameters of optical waveguides can be categorized into the design
parameters (e.g., physical dimensions, refractive indices, and environmental effects),
performance parameters (i.e., modal properties or transmission characteristics), and
mechanical parameters. Among them, modal properties are of utmost importance for
optical communication systems. By solving the eigen-value equations of the waveguide
modes through some approaches mentioned in Chapter 2, we can obtain two fundamental
modal properties: complex effective indices Ny (e.g., neg+ jn;) and modal field profiles
(e.g., E; and E,) of the corresponding modes. From them, other modal properties of

optical waveguides, which are frequently used in this thesis, can be derived.

A.1 Performance Parameters Related to Mode Effective Index

A.1.1 Confinement Loss

The confinement loss L., an attenuation caused by the waveguide geometry (i.e., without

considering the material absorption and waveguide imperfection), is given by
L.(A)=-20log, e =5.45751x107 x% , dB/m (A.1)

where k is the propagating constant in free space, A is the operating wavelength in pm,
and n; is the imaginary part of Ny It is worth to note that, if the waveguide is bended
with a radius R, the loss calculated by (A.1) includes the bending loss.

A.1.2 Group Index and Group Velocity

The group index #, is defined by

dk dne/f

d
ng(A) = 2= =y =7 ey (A2)
w

=g +®
dA o dw
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where 7n. is the real part of the complex effective index Ny £ is the propagation

constant, and @is the angular frequency. The group velocity v, is defined by

-1
dsz e 1 (A3)

dw n(A) 17,

v, (1) =[

where ¢ is the velocity of the light in a vacuum and 7, is the group delay.

A.1.3 Group-Velocity Dispersion and Dispersion Slope

The group-velocity dispersion D is defined as the change in pulse width per unit distance
of propagation and given by

2
d| 1 ) 4 ngy(4)
DA)y=—| ——+|=—2—F— pstkm/ A4

" ‘”(Vg(ﬁ)J ¢ a2 P (A4)

where A is the operating wavelength. The dispersion slope S is defined by

_ 4D
() =— (A.5)

A.1.4 Modal Birefringence and Beat Length

Modal birefringence B is defined as the difference in the effective index between the two

orthogonal polarizations, and given by
B(ﬂ’) =] Potr x (ﬂ’) ey (/1) ’ (A.6)
where n,y  and n,y ,, are the effective indices of two orthogonal polarizations,

respectively. The beat length Lp is defined as a period with the power exchange between

two polarizations, and defined by

2z A

Lo(A)= =
5 Ve, (D) —k, (D) B

(A.7)

where A is the operating wavelength.
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A.1.5 Propagation Constant and Phase

The propagation phase ¢ is calculated by

o) =y (WL=k(WL=21L (A8)
A vy,

where A is the operating wavelength, L is the length of the optical waveguide, £, is the

ropagation constant (k, = kn,, =27 n,. /1), and v, is the phase velocity (v, =w/k.).
propag z eff eff p y D z

A.1.6 Mode Cut-Off Conditions and Single-Mode Operation

The basic criteria to judge a mode cut-off is that the modal effective index n.yis less than
the index of the cladding, and given by
nef < n.y (A9)

where n is the refractive index of the cladding of the optical waveguide. The single-
mode operation of the optical waveguide is that only fundamental modes exist and all

high-order modes are cut-off.

A.2 Performance Parameters Related to Modal Field Pattern

A.2.1 Confinement Factor

The confinement factor in silica I is defined by

b Jhiteall Ex(59) P +1 By (x,) ")y
L Bl +1 Ey (x,) vy

where E; and £, are the modal electric field profiles along x and y, respectively.

(A.10)
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A.2.2 Far-Field Divergence Angle

Except obtaining directly from the far-field through the Fourier transfer of the modal
field profile, the beam divergence angle 8 can be calculated from the mode spot size wy,
which can be obtained through the Gaussian approximation 4.;= zwg of the modal field

profile by

0= tan(—) (A11)
7tW0

where A is the operating wavelength.

A.2.3 Mode Effective Area

The mode effective area 4.y is defined by

([0 EcCe, ») P+ E, (x, ) [P dxdy)?
[JUE (e, ) P+ E, (x, ) ) dxdy

where E; and E, are the modal electric field profiles along x and y, respectively.

Ay (A) = (A.12)

A.2.4 Mode Spot Size and Mode Field Diameter

The mode spot size wy, also called the mode effective radius, is defined by fitting the

field pattern into the Gaussian field pattern,

2 2

X7+

E (x,y)=Ey exp{— L4 ) (A.13)
w

where w takes the value wy to maximize the coupling coefficient
max,,_,, [[E,(x,y)E(x, y)xdy (A.14)

where E(x,y) is the modal field pattern. The mode field diameter (MFD) d is defined by
d=2w, (A.15)

where wy is the mode spot size.
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Optical Properties of Optical Waveguide Modes

B.1 Mode Classification

For the. 1D optical waveguides, the polarization of modes is defined in terms of
components of the EM fields. For the 2D optical waveguides, the modes are hybrid
modes and the polarization of modes is defined in terms of the dominant component of
electric fields with respect to the y direction (or dielectric interface of the waveguide) as
shown in Figure 2.1. The detailed polarizations and components involved in each

category of the optical waveguide are summarized in Table B.1.

Table B.1 Mode classification of optical waveguides

Polarization 1D, n(x) 2D semi-vector, n(x,y) 2D full-vector, n(x,y)
TE E, H, H, E,, H,, H. Dominant E,, H, (Quasi-
TE) H, E, E., H,
™ H, E, E, H, E, E, Dominant Ay, E, (Quasi-
™) E,, H,, E., H.

B.2 Modal Orthogonality

The mode orthonormal relation between normalized guided modes with respect to the

propagation direction +z are given as follows:
1 - ¥k A I . ¥ Uk = "~

where & is the Kronecker-& function, and €;and h; are the electric field and its associated

magnetic field of the ith mode. The modal orthogonality is the basis of the waveguide
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theory involving waveguide excitations, discontinuities, and perturbations. For 1D slab

waveguide, modal orthogonality of guided modes is given by

L
E;wy Qﬂyw 2“&%%% 8y (B.2)
for the TE wave
Yo b de= f hhdx—wof 2()egeydc=8;  (B3)
5 wCxilly, - 2 & W (X)eg ey .

for the TM wave.

B.3 Overlap Integral

The overlap integral between an arbitrary given field and a guided mode is a very useful

to calculate the guided power involving the waveguide excitation, discontinuity, and

perturbation. An arbitrary electric field £ and its associate magnetic field H can be

decomposed as a sum of all modes including radiation modes,
E=Y(q+b)e;  H=3(a-b)h (B.4)

where &and /; are the electric field and its associated magnetic field of the ith mode,

and g; and b, are the expansion coefficients of the forward wave (+z) and backward wave
(-z) for the ith mode. By applying the modal orthogonality, we calculate the overlap

integrals ¢; and 4; as follows:

a, == [(Exk +2 x 1) 2dvdy (B.5)

b :%I(Exﬁf —éi*xﬁ)-édxdy (B.6)

where the power guided in the ith mode should be that 2 (’a ’ —]bl } provided the

input mode power is the unity. Therefore, the modal orthogolity permits us to express the

power carried by the total field in terms of the expansion coefficients.
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Appendix C
Optical Properties of PC Bloch Modes

C.1 Mode Classification

Unlike these of optical waveguides, due to the periodic dielectric function
(n(F) = n(7 + R)), the modes of the PCs are Bloch modes ( u(¥) = u(7 + R) ), where R is
the lattice vector in the x-y plane. The modal field of the Bloch mode in the PCs consists

of plane waves:

—_ n .1;..‘ n o7 = F
Ey(r) =8, (e’ = 3 uy gé,e/ "7 (C.1)
G,n

where k is the wave vector of the plane waves (or Bloch wave number), G is the

reciprocal lattice vector, u, ; (n =1 and 2) is the coefficient of the magnetic fields along

~

e,, and ¢,stands for two unit vectors, which are perpendicular to the propagation

ne
direction k +G. According to the reciprocal lattice vector G and wave vector of the

plane waves k , the detailed polarizations and components involved in each category of

PC Bloch modes are summarized in Table C.1.

Table C.1 Mode classification of the PCs

Polarization | 1D, n(x) | 1D, off-plane | 2D, n(x,y) | 2D, off-plane 3D, nix,y,z)
TE E,H,H | E,H, H, E, E, H N/A N/A
™ H,E,E | H,E,E H, H, E, N/A N/A

Hybrid N/A N/A N/A E.E,E,H, | EE,E, H,,
H, H, H, H,
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C.2 Modal Orthogonality

According to the definition of the Hermitian operator © [7]: (F,0G)=(0F,G), where
(F,G)is the inner product of two vector fields F and G, the operator related to wave
equation @H (r) = (w/ c)2 H(r) of the magnetic field H(#) is the Hermitian operator [7],
and the orthogonality of the magnetic modal fields and normalized Bloch functions over

a unit cell of volume ¥} are expressed by
Lo H i () - Ho () = 8,8 (k= k') (C2)
Long®* i (1) sy (r)dr (Vg = 8, (C.3)
where J; is the Kronecker-& function and 8(k—£') is the Dirac 6 function. Because

the operator related to wave equation ZE(7) = (w/ 0)2 E(r) of the electric field E(7) isn’t

the Hermitian due to the density function »°(») [7], the orthogonality (C.2) of the
magnetic modal fields cannot directly be used for the electric modal fields. However, we
can derive it from (C.2) with the help of the Maxwell’s equations and the periodic

boundary conditions. After some simple derivations and dropping the constant term

(@, 4ty ! @,&y ), we have
Lon E* i () 02 (P E () = 8,8 (k ~ k') (C.4)

Lot *ie () 12 (P () | Vg = 8, (C.3)
where the Divergence (or Gauss) theorem was used. So the electric modal fields are
orthogonal with respect to the density function #°(7). In general, the wave equation
OFE(ry=(w/c) n*(r)E(r) with the Hermitian operator © is a generalized Hermitian

eigenvalue problem (GHEP) [88]. And the electric modal fields related to this wave

equation are orthogonal each other with respect to the density function #°().
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For the TE wave with off-plane propagation in the 1D PCs, the wave equation
related to £, and I, of (2.13) and (2.14) is rewritten as

dzEy 2 2 2

OF, =-——5"+k.E, =(w/c) n*(x)E, (C.6)
d2

OH, =- - adHy +k2H, =(w/cPn*(x)H, (C.7)

where © (=—d2/alx2 +k22) is the Hermitian operator. The orthogonality of electric and

magnetic modal fields and the normalized Bloch functions over a unit cell of length A are

expressed by

WEy *we IRP(DE, (x)dx = [y Hy ¥ e (D (), (x)dx = 8,,0(k = k') (C.8)

fott* e QO (Ot (X / A = [ v, ()1 (X)W (X)) A = 5, (C.9)

where E,(x) =u(x)exp(jkx)and H,(x)=v;(x)exp(jkx).
On the other hand, for the TM wave with off-plane propagation in the 1D PCs, the

wave equation related to E, and H, of (2.13) and (2.14) is rewritten as

_ d| 1 d

=E, = —E{—ZE( 2Ex)}+k22Ex =(w/c)*n’E, (C.10)
d|1dHd,| i} 2

@Hyz—a{;fﬁ—} > H,=(w/c]'H, (C.11)

where both © and Z are the Hermitian operators. The orthogonality of the electric and
magnetic modal fields and the normalized Bloch functions over a unit cell of length A are

expressed by

Iy Ex *ie (I () B () = [y H ¥ (D H, gy x=8,,60k—k)  (C.12)

IR (x)nz(x)unk (x)dx/A = jAv * ok OV (el A=, (C.13)
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where E, (x) = uy (x)exp(jkx) and H ,(x) = v, (x)exp(jkx). The orthogonality of electric

and magnetic modal fields and the normalized Bloch functions over a unit cell of area §

for the 2D PCs with off-plane propagation can be derived in a similar way.

C.3 Scaling Transformation

Due to the scaling nature of the Maxwell’s equations, there is no fundamental length
scale for the EM waves. Therefore, we can easily derive the scaling transformation of the
modal properties such as the effective index and the modal field pattern with respect to
the change of the pitch A and the refractive index n(r) of the PCs and their related
structures (e.g., PCWs and PCCs). For some given parameters, such as the pitch Ay, the

field position rg, and the frequency ay, the wave equation related to the magnetic field

H(r)of (2.2) is rewritten as

1

n2 ro

Vx| )Vxﬁ(ro)]—(f’ﬂ)zﬁ(ro) =0 (C.14)
¢

where V is a linear operator. Now we change the pitch ratio M (i.e., A/Ag or r/rg) as the

scale parameter of dimension of the PCs. So the index distribution of the PC is that n’(r)

= n(r/M). We change the variable ryof (C.14) by r = M ry. After some trivial derivations,

(C.14) becomes

i — _ &_ 25 _
V'><[n'2(r)V'xH(r/M)] (LA 1M)=0 (C.15)

where V' = V/M was used. As can be seen from (C.15), the new magnetic field pattern

can be obtained through H'(*) = H(r/ M) with the frequency @ = @,/ M . Similarly, the

electric field pattern has the same scaling rule: E'(r)= E(r/M). Therefore, the scaling

transformations of the field pattern and the effective index (7,45 = ck, /@) of the PC-

based modes are obtained through scaling the position » and the frequency @ (or

wavelength A) by the same factor M, and given by
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A
o (A M) | fixeq A= Pley (H)

E(r, A M) | prea in = E( )

A
M M

5 = F A
Hr, A, M) | g gn= H(——, =
( )Ifxedd/A (M M)

(C.16)

(C.17)

(C.18)

where d/A is the air-hole size-to-pitch ratio of the PCs, A is the operating wavelength, and

M is the pitch ratio (i.e., A/Ag with Ag = 2.3 um). Once the scaling transformations of the

field pattern and the effective index are given, the scaling transformations related to other

modal parameters defined in Appendix A such as the waveguide dispersion Dy, the mode

effective area A.p; the confinement loss Lc, and the confinement factor T, can be easily

obtained:

I y)

Dy (A, M) fixed ain= _AZDg (M)

A
Ay (A M) | prog in=M" 4ygr (—AZ)

| A
Lo(A M) fred ain= X/I—L” (H)

A
I“(Z,,M) Iﬁxed dA=T 1—‘(H)

where A is the operating wavelength and M is the pitch ratio.
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