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ABSTRACT 

Photonic crystal waveguides and fibers are emerging waveguides that are formed 

based on relatively large-scale periodic dielectric materials, also known as the photonic 

band-gap materials. Modeling and simulation of such waveguide structures will help to 

gain understanding for the modal and transmission characteristics and their dependence 

on the key design and operation parameters. In this dissertation, the multilayer slab and 

circular photonic crystal waveguides are investigated theoretically with emphasis on their 

modal characteristics and transmission properties relevant to broad-band telecomm­

unication systems and networks. Key performance parameters (e.g., the modal field, the 

modal effective index, the group-velocity dispersion, the confinement loss, the mode 

effective area, as well as the confinement factor, etc.) are simulated and analyzed by 

using both analytical and numerical methods. 

For the sake of completeness, a comprehensive review of the different 

mathematical methods for simulation and analysis of optical waveguides in general and 

photonic crystal waveguides in particular is presented. The theoretical frameworks for 

rigorous methods such as the finite difference method and the plane wave expansion 

method and for approximate methods such as the effective index method and the 

envelope approximate method are discussed, and their merits and shortcomings in 

modeling and analysis of photonic crystal waveguides and fibers are examined in great 

detail. 

The one-dimensional (ID) slab photonic crystal waveguides (PCWs) are the 

simplest to model and analyze, yet can offer deep insight into the salient features of 

photonic crystal waveguides and fibers. A somewhat exhaustive study for the modal 

properties of ID PCWs is carried out with the help of the rigorous transfer matrix 

method. Four different guiding regimes due to the total internal reflection (TIR) and the 

photonic band-gap (PBG) are recognized, and their unique features are revealed and 

discussed. Further, scope of validity and level of accuracy for two insightful approximate 

methods (i.e., the effective index method and the envelope approximation method) are 
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examined in detail by comparison with the exact solutions. Furthermore, new results 

about the effects of the number of unit cells (i.e., layer-pairs), the layer size-to-pitch ratio, 

and the core thickness on the modal properties are obtained and discussed. 

The two-dimensional (2D) photonic crystal waveguides such as the air-hole-filled 

photonic crystal fibers (PCFs) find more practical applications and also much more 

difficult to model and analyze. In this context, the modal analyses with different 

theoretic.al frameworks such as the scalar, semi-vector, and full-vector formulations are 

presented and discussed with the help of the finite difference method. It is demonstrated 

that the vector nature of the guided modes of the PCFs needs to be considered in 

analyzing the modal characteristics such as the dispersion. Based on the band structure of 

2D photonic crystals, modal characteristics of the PBG-PCFs and TIR-PCFs are obtained 

and their physical behaviors are easy to explain. Also one new parameter is proposed to 

judge the single-mode operation of the PCFs, and the bending loss of the PCFs is 

calculated by the numerical method for the first time. Furthermore, the effects of finite 

number of air holes and size of interstitial holes on modal properties of the PCFs are 

investigated. Some scaling transformations of modal properties related to the design 

parameters of the waveguide structures are derived. 

Based on the rigorous analysis model and scaling transformations for the modal 

properties, a general procedure for design and optimization of the PCFs with desired 

modal properties is proposed. In comparison with the conventional design method, the 

new design procedure is more efficient and can be readily automated for the purpose of 

design optimization. Several applications of the design procedure (e.g., the design 

optimization for the dispersion shifted fibers, the dispersion flattened fibers, and the 

dispersion compensation fibers) are demonstrated. 
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Chapter 1 

Introduction 

Photonic crystal waveguides (PCWs), also referred to in literature as the photonic Bragg 

waveguides (PBWs) in the one-dimensional (lD) form or the photonic crystal fibers 

(PCFs) in the two-dimensional (2D) form, constitute a new class of optical waveguide 

structures formed by introducing certain lattice defects (e.g., dots, lines, or wells) over the 

photonic crystals (PCs) within the transverse cross-section of the waveguides. Due to the 

band-gap effect of the PCs, the modal properties of the PCWs may exhibit an array of 

new features that are distinct from and not readily achievable by the conventional optical 

waveguides. Because the modal characteristics of the PCW s are essential knowledge for 

design and analysis of practical optical waveguides, it is very important to understand the 

operation principles and the unique features of the PCW s. Built on the knowledge 

obtained from the PCWs, we may further explore potential applications of the guided­

wave photonic and opto-electronic devices that are based on the photonic crystal concept · 

in integrated optics and fiber optics. 

1.1 Optical Waveguides 

Since the low-loss glass fibers developed successfully in the early 1970's [l], optical 

waveguides have attracted much attention for a wide range of applications such as fiber­

optic communications, sensors, optical signal processing and computing, etc. For 

practical purposes, an optical waveguide may be defined as a longitudinal invariant 

structure, in which light is confined in a guiding region surrounded by the cladding 

region and propagates along the longitudinal direction. In general, there are two basic 

guiding mechanisms for an optical waveguide [2]-[4]: the total internal reflection (TIR) 

and the anti-resonant reflection (ARR), both of which have been used for realizing the 

low-loss optical transmission through a waveguide structure. 
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Chapter 1. Introduction 

Conventional optical waveguides (WGs) are composed of a guiding core and a 

cladding region, in which the refractive index of the core is higher than that of the 

cladding. The optic field is confined in the core owing to the TIR effect at the core­

cladding interface. Currently, the photonic integrated circuits (PICs) and the single-mode 

fibers, which belong to the conventional optical waveguides, are widely used in 

integrated optics and fiber optics. On the other hand, if the waveguide structures are 

properly. designed and engineered, the optic field can also be well guided by a core with 

the lower index via the ARR effect. In general, albeit optical waveguides due to the ARR 

effect (e.g., the anti-resonant reflecting optical waveguides, or ARROWs) are leaky, the 

leakage loss can be kept in a very low level. This, in tum, leads to achieve the highly 

efficient optical transmission through the optical waveguides. Actually, the ARR effect is 

a special case of the photonic band-gap effect, which is one of main topics in this thesis, 

and can be easily understood through the band structure of the corresponding optical 

waveguide structures. 

1.2 Photonic Crystals 

Since the pioneering works by E. Yablnovitch [5] and S. John [6], the photonic crystals 

(PCs, also called the photonic band-gap materials, or PB Gs) have received considerable 

interest and inspired much theoretical and experimental works around the world [7]-[12]. 

In general, the PCs are artificial composite structures whose refractive indices vary 

periodically along one or more directions. Such a structure resembles the electronic solid­

state crystal in which the band structure offers a wide range of the wave characteristics. It 

is indeed the similarity between the photonic and electronic crystals [13] that captures the 

imagination of people who desire to explore the plethora of potentials the former may 

offer. They represent a new class of optical materials that are capable of uniquely 

controlling or manipulating the electromagnetic radiation within certain frequency bands. 

Generally, the PCs are characterized by the photonic band structure according to their 

dielectric periodicity. Figure 1.1 shows simple examples of one-dimensional (ID), two-
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dimensional (20) and three-dimensional (30) PCs [7]. The different colors represent 

materials with different refractive indices . .. 

Due to the multiple Bragg scattering, analogous to the electronic band structure in 

semiconductor, the PCs possess a variety of unique features [7] such as the band-gaps (or 

stop-bands) for the electromagnetic (EM) waves over a certain range of frequencies, the 

localization of the EM fields near defects, the wave tunnelling, and the scaling 

transformation of the physical dimension, the refractive index, and the operation 

frequency. For instance, a 30 PC with the diamond lattice of air spheres has a complete 

photonic band-gap (PBG) for the EM waves from any directions [7]. It is worth 

mentioning that ID PCs (traditionally called the periodic multilayer or thin film 

structures), which are created by simply stacking planar layers with the proper refractive 

index and thickness, have been known since the 19th century and are widely used in 

many areas such as omni-reflection mirrors, DFB lasers, DBR lasers, and interference 

filters (14], (15]. 

1-D :2-D 3-D 

Figure 1.1 Simple examples of lD, 2D, and 3D photonic crystals 

In search for new technologies to tap into the tremendous optical bandwidth 

available in optical fibers, new optical physical transmission structures and devices are 

needed to achieve some desirable performances (e.g., compact bend, completely lossless, 

and controllable dispersion) that current transmission media and devices cannot support. 

In comparison with the conventional media and devices as shown in Figure 1.2, the PC­

based media and devices add more degrees of freedom in controlling the light guiding. 

They have many potential applications as basic building blocks in the current optical 
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communication systems that contain a large number of individual elements such as laser 

diodes, modulators, multiplexers/demultiplexers, filters, amplifiers, switches and 

detectors. Among the various building blocks in integrated optics and fiber optics, as 

shown in Figure 1.2, PC-based waveguides (e.g., PCWs and PCFs) and devices are 

expected to play an important role as a promising new enabling technology. 

Material/Media Integrated optics Fiber optics 

Conventional WGs Conventional PICs Conventional fibers 

Photonic crystals PCWs PCFs 

Figure 1.2 Simple applications of the PC-based devices 

1.3 Photonic Crystal Waveguides and Fibers 

Photonic crystal waveguides (PCW s) are a new class of the optical waveguides and have 

many unique features that conventional optical waveguides may not possess or are 

difficult to achieve. By introducing some lattice defects (e.g., dot, line, or well) in the 

PCs with the proper sizes, localizations of fields (or modes) near defects are created and 

corresponding photonic crystal devices [including photonic crystal waveguides (PCWs) 

and photonic crystal cavities (PCCs)] are formed. The surface modes, which are created 

by the half-infinite PCs, are the special case of the defect-induced modes of PC-based 

devices. Figure 1.3 shows the simple classifications of the PC-based devices. The only 

difference between waveguides and cavities is the propagation constant kz along the 

propagation axis: kz = 0 for cavities and kz -::/= 0 for waveguides. 

Judging from the fact if the periodic axis is in the same direction with the 

propagation direction or not, the PCWs and PCCs can be further divided into two groups: 
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in-plane and off-plane propagation (or resonance), which have the corresponding field 

localizations (e.g., lD, 2D, or 3D) with respect to the dimension of photonic dielectric 

lattices. In other words, defects in ID, 2D, and 3D PCs can localize the fields along in 

ID, 2D, and 3D dimensions, respectively. As can be seen from Figure 1.3, the so-called 

photonic crystal fibers (PCFs) belong to the 2D PCWs with off-plane propagation, which 

are formed in the 2D PCs with dot defects. And the familiar photonic crystal slab 

waveguides belong to the 2D PCW s with in-plane propagation, which are formed in the 

2D PCs with line defects. For the well-known Bragg gratings or the distributed feedback 

(DFB) structures, they belong to the ID photonic crystal cavities (PCCs). In this thesis, 

we mainly focus on the PCWs with off-plane propagation, as underlined in Figure 1.3, 

which consist of the simplest type of the PCs with the two-material (or a single material 

with air) system. 

Waveguides 

PC - based devices 

{ {
Infinite 2D PCW s 

. 2DPCWs 
In-plane propagation Slab 2D PCWs 

3DPCWs 

{
lDPCWs 

Off - plane propagation 
-----"'-~------"'--=--- 2D PCW s 

{
lDPCCs 

In - plane resonance 2D PCCs 

Cavities 3DPCCs 

{
lDPCCs 

Off - plane resonance 
2DPCCs 

Figure 1.3 Simple classifications of the PC-based devices 

Further, according to the guiding mechanisms, the PCW s are divided into two 

general categories, namely, the photonic band-gap PCWs (PBG-PCWs) and the total 

internal reflection PCWs (TIR-PCWs). The PBG-PCWs are made by a reduced index 

core (e.g., the air-hole defect) within the PCs. Because the effective index of the cladding 

is always higher than that of the core, the guidance of light in the PBG-PCFs is due to the 
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PBG effect of the periodic material, as no analogues in conventional index guiding. One 

of interesting features, partly due to the absence of radiation modes, is the lossless 

transmission in the sharp bends. Because light travels through air, the PBG-PCWs have 

the potential to minimize the material absorption effect, the nonlinear effect, and the 

material dispersion. In general, because the guiding region of the PBG-PCWs is within 

the stop band of the PCs, it is essential to use the PCs with a larger band-gap to form the 

PCWs. It is worth to note that, unlike some other PC applications that need the complete 

band-gap, the partial band-gap is perhaps sufficient to realize the PBG guiding. On the 

other hand, the TIR-PCWs are made by an increased index core (e.g., pure silica). 

Because the effective refractive index in the surrounding region is lower than that of the 

core, light is guided in the core region due to the TIR effect, as analogues in conventional 

index guiding. Unlike the conventional optical waveguides with the fixed cladding index, 

the effective cladding index of the TIR-PCWs is a strong function of wavelength and the 

modes supported by the waveguides are essentially more dispersive. For this reason, the 

TIR-PCWs have some promised properties (e.g., endlessly single mode operation, highly 

controllable mode effective area, and highly tunable dispersion) that cannot be readily 

achieved in the conventional optical fibers. Hence, the PCWs are a new class of the 

optical waveguides that need to be further researched and developed systematically. 

Although some photonic devices based on the ID PCs have been used for several 

decades, the photonic devices based on the 2D or 3D PCs for some applications (e.g., the 

forbidden spontaneous emission) have been researched just over ten years. Because the 

3D PCs are very complicated and difficult to fabricate with required precision (e.g., the 

desired index and dimension), the corresponding 3D PC defects (or disorders) are 

extremely hard to achieve in the visible or infrared regime. On the other hand, due to ease 

of fabrication (e.g., advanced planar lithography and mature nanofabrication technology) 

and compatibility with conventional optical waveguides, the 2D PCs and PCW s have 

been intensively researched, especially for the silicon-based 2D PCW s with in-plane 

propagation (i.e., PC slab waveguides) and the silica-based 2D PCWs with off-plane 

propagation (i.e., PCFs). Owing to the unique ability to guide light around sharp comers 
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(or split beams) and the unique features of the single-mode operation and tunable modal 

properties (e.g., dispersion and mode effective area), the 20 PCWs show great potential 

to provide extremely miniature planar circuits (e.g., splitters and couplers) and special 

optical fibers (e.g., dispersion-shifted fibers). In general, the former can form a variety of 

elements such as bent, branching, and crossing waveguides and the later can realize 

various applications (e.g., supercontinuum generation, soliton transmission, and high 

power transmission). Thanks to the recent advance in various fiber fabrication techniques 

(e.g., capillary stacking for perform pulling), for example, the silica-based PCFs have 

shown significant improvements (e.g., the reported losses are steadily dropping from 50 

dB/km in 1999 to 0.37 dB/km in 2003 for TIR-PCFs [16] and from 1000 dB/km in 2001 

to 13 dB/km in 2002 for PBG-PCFs [17] at the wavelength of 1.55 µm) and are expected 

to be used in the future optical communication systems. 

1.4 Motivation of the Research 

Modeling and simulation play important roles in design and engineering of complex 

optical waveguide structures such as the photonic crystal waveguides (PCWs). By using 

theoretical models, modal characteristics of the PCWs (e.g., the dispersion, the mode 

field pattern, the field confinement loss, etc.) can be simulated under different design and 

operation conditions. A comprehensive analysis will shed light on some of the salient 

features of the waveguides and lead to new and improved designs for a wide range of 

applications. Further, the design guideline and optimization procedure for given 

applications can be developed based on the modeling and simulation techniques. For 

these reasons, because of the new and unique properties as well as the huge potential 

applications, a deep understanding of the modal characteristics of the PCW s through 

comprehensive modeling and simulation is highly desirable. 

The PCWs can be modeled and simulated by a number of methods based on scalar 

and vector formulations, from simple and intuitive analytical approaches (e.g., the 

effective index method) to time-intensive rigorous numerical approaches (e.g., the finite 

7 



Chapter l. Introduction 

element method). Despite the seemingly plethora of methods for the modal analysis, the 

level of accuracy and scope of validity for the scalar and the vector formulations with 

respect to calculation of the mode dispersion of the PCW s have not been studied in a 

systematic fashion. Due to the high sensitivity of some modal properties (e.g., the 

dispersion) on the accuracy of the modal analysis, there has been a significant 

discrepancy among different published results as pointed out in Ref [18]. Further, the 

significant contrast in mathematical complexity and computation intensity for the 

numerical models based on the different formulations also calls for a systematic and 

comprehensive investigation of the level of accuracy and the scope of validity for these 

approaches. In this thesis, such a study is performed with the help of the rigorous and 

versatile mode solvers such as the finite difference method (FDM) [20]. 

For the propagation applications of the PC-based waveguides, currently there are 

intensive researches on the 2D PCW s with in-plane (e.g., the photonic crystal slab 

waveguides) and off-plane propagation (e.g., the PCFs) for the practical purpose. For the 

2D PCW s, due to the above-mentioned reasons, accurate and versatile numerical 

methods, which provide little physical insight into the operation of the PCW s, are 

employed. The analytical or approximate approaches, although they gain some physical 

insight into PCW techniques, may not be accurate and only for some specific structures. 

On the other hand, albeit the ID PCWs have been researched for several decades and 

some analytical approaches (e.g., the transfer matrix method) for the ID PCWs are exact, 

the lD PCWs still are a research topic [19]. Also, to the best of our knowledge, the 

comprehensive analysis on their guiding mechanisms and modal characteristics of the lD 

PCWs hasn't been done yet. In this thesis, modal properties of the ID PCWs are 

completely investigated with considering some effects (e.g., limited number of the PC 

pairs) through some rigorous and approximate methods (e.g., the transfer matrix method, 

the effective index method, and the envelop approximation method), and the physical 

insight of the ID PCWs can be understood completely. 

In order to utilize some of unique modal characteristics of the PCWs for the design 

of novel photonic devices with desired modal properties, the conventional design 
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procedure based on some numerical methods is employed. Generally it 1s a time­

consuming and most-likely trial-and-error manual procedure. In order to avoid this 

shortcoming, a general and automatic procedure for design of the PCWs with desirable 

properties is proposed. The design model is based on the combination of a rigorous 

vector mode solver and a scaling transformation for the dispersion properties of the 

PCWs. In comparison with the conventional design method, the new design procedure is 

more efficient and can be readily automated for the purpose of design optimization. 

1.5 Organization of the Thesis 

Chapter 1, entitled Introduction, provides a general review of some problems and 

concepts related to the photonic crystal waveguides (PCWs). Also the scope, focus and 

objective of the thesis are stated. 

Chapter 2, entitled Modeling Techniques for Photonic Crystal Waveguides and 

Fibers, gives a general overview of the modeling and simulation techniques used in the 

thesis for the modal characteristics of the PCW s, which are essential for understanding 

the operating principle of the PCWs. 

Chapter 3, entitled One-Dimensional Photonic Crystal Waveguides, shows the 

basic optical properties of the lD PCWs. Due to their simplicity, the deep physical 

insight can be gained in a highly intuitive way for some of the salient features of the 

PCWs. With the help of the band-gap structure of the lD PCs, it is recognized that there 

are four guiding regimes in the l D PCW s that depend on the index of the core and the 

modal characteristics for each regime behave differently from the point of view of 

guiding mechanism. Furthermore, the modal characteristics analyzed by some 

approximation methods are also presented. 

Chapter 4, entitled Photonic Crystal Fibers, presents the modal characteristics of 

the PCFs through the analytical and numerical modeling tools. It is demonstrated that the 

vector nature of the guided modes on the PCFs must be considered in analyzing the 

modal properties. We show that the simple and efficient semi-vector analysis is highly 
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accurate for dispersion of the PCFs and can be utilized in place of the rigorous, yet more 

complex and costly full-vector mode solvers. The effects on modal characteristics of the 

PCFs with size of interstitial holes and a finite number of air holes are also investigated, 

and the scaling transformations of modal properties are obtained. 

Chapter 5, entitled Design of Dispersion Component Elements, proposes the 

general procedure to design the dispersion component elements based on the PCFs. In 

compari~on with the conventional design method, the new design procedure is more 

efficient and can be readily automated for the purpose of design optimization. Several 

applications of the design procedure (e.g., the dispersion shifted fibers, the dispersion 

flattened fibers, and the dispersion compensation fibers) are demonstrated and the typical 

examples are given. 

Chapter 6, entitled Conclusions and Suggestions for Further Research, summaries 

the major contributions made in the thesis and lists suggestions for further research. 

Appendix A, B, and C, entitled Performance Parameters of Optical Waveguides, 

Optical Properties of Optical Waveguide Modes, and Optical Properties of PC Bloch 

Modes give the definitions of performance parameters of optical waveguides and the 

optical properties related to optical waveguide modes and the PC Bloch modes, 

respectively. 
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Chapter 2 

Modeling Techniques for Photonic Crystal 

Waveguides and Fibers 

A general overview of the modeling and simulation techniques, which are the basic tools 

used for the research work in this thesis, is made in this chapter. These modeling 

techniques are for the solutions of the governing equations for the modal characteristics 

of the photonic crystal waveguides (PCW s) under certain assumptions and implemented 

by using different discretizations or base functions. Merits and shortcomings of these 

methods are discussed in the context of analysis and design of the PCW s with some 

desired modal properties. 

2.1 Introduction 

The photonic crystal waveguides (PCWs) can be simulated and analyzed by an array of 

modeling techniques similar to those used for the modal analysis of the general optical 

waveguides [21]-[23], especially for the numerical methods such as the finite difference 

method (FDM) [24]-[26], the finite element method (FEM) [27]-[30], the beam 

propagation method (BPM) [31]-[34], and the finite difference time domain method 

(FDTD) [35]-[37]. By incorporating proper numerical boundary conditions such as the 

perfectly matched layer (PML) boundary conditions [38], all these numerical methods 

can be used to calculate the optical modes within a relative small spatial domain. These 

methods are particularly attractive as they solve the governing equations exactly without 

any approximations. Further, versatile discretization schemes used in these numerical 

techniques make them applicable for waveguide structures of arbitrary index profiles 

and/or geometric shapes. The shortcomings of the numerical methods are the demand for 

heavy computation resources and the lack of intuitive physical insight. In this respect, the 
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analytical and semi-analytical approaches that take into consideration the unique features 

of the PCW s offer deep insight and often more efficient for a specific structure of the 

PCW s. Some of these semi-analytical methods (i.e., the mode expansion methods) such 

as sinusoidal expansion methods (e.g., plane wave method, PWM [39]-[42]), Hermite­

Gaussian expansion methods (e.g., localized function method, LFM [43]-[45]), and 

cylindrical expansion methods (e.g., multipole expansion method, MEM [46]-[48]) can 

be considered to be exact if a set of sufficiently large base functions in the solutions is 

employed. Other analytical methods such as the effective index method (EIM) [ 49] and 

the envelope approximate method (EAM) [50]-[52] rely on approximations that are only 

valid under certain conditions. In some sense, they are simple, efficient, and can provide 

some deep physical insight on the operation principle of the PCWs (e.g., single-mode 

operation). In this chapter, we will describe these modeling techniques (i.e., FDM, PWE, 

EIM, and EAM) in great detail, which are used to investigate modal properties of the 

PCW s, calculate the band structure of the PCs, and verify the simulation results. 

2.2 Theoretical Formulations 

Without loss of generality, we start our modeling formulations for the PCWs with 

following assumptions: 

(i) Region we are interested in is the absence of sources (e.g., free charges or 

currents). 

(ii) Material we consider is linear and isotropic. The permittivity of material is 

equal to n2(r)c:o, where n(r) is the refractive index of material and £o is the 

permittivity of free space. 

(iii) Material we use has a magnetic permeability µthat closes to the permeability 

Ji-Ooffree space. 

(iv) Electromagnetic fields are time-harmonic fields: H(r,t) = Re{H(r)ejat} and 

E(r,t) = Re{E(r)ejat}, where mis the angular frequency. 
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Under these assumptions, the Maxwell's equations can be expressed in the 

frequency domain as follows: 

\7 x E(r) = - jmµfr(r) 

\7 x H(r) = }fa1 2 (r)E(r) 

\7 · [n2(r)E(r)] = 0 

V·fr(r)=O (2.l) 

where E(r) and fr(r) are electric and magnetic fields and r is a position vector to define 

a particular location in space (x, y, z) at which the field is measured. It is note that the 

vector sign "-7" of the position vector r is dropped without ambiguity. By taking the 

curl of the first (second) equation above and substituting into the second (first) equation, 

we can eliminate one of electric (magnetic) fields to obtain the well-known full-vector 

wave equations: 

Vx.['Vx E(r)]-(0 ) 2n2 (r)E(r) = 0 
c 

1 - (J)2-
\7x[-2-\7xH(r)]-(-) H(r) = 0 

n (r) c 
(2.2) 

where c is the speed of light in free space. 

Figure 2.1 The generalized photonic crystal waveguide with off-plane propagation 
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Further, we assume that the PCW structure (i.e., the PCW with off-plane 

propagation) to be simulated consists of a cylindrical dielectric waveguide whose 

refractive index is invariant along the propagation direction z as shown in Figure 2.1. In 

general, the cross-section of the optical waveguide (i.e., the PCW) consists of the 1 D or 

2D PCs with some defects. 

Due to the uniform nature of the waveguide along z, the solutions of the above 

wave equations (or so-called the modal solutions) with the appropriate boundary 

conditions take the following forms for the electric and magnetic (EM) fields: 

E(r)=(Et +zEz)e-jk,z 

H(r)=(H1 +zHz)e-jk,z (2.3) 

where kz is the propagation constant of the PCW modes along z and Et I Ht and 

Ez I Hz are modal field patterns related to transverse and longitudinal EM fields, 

respectively. By utilizing the operator V (i.e., Vt+ zo I oz), after some algebraic 

manipulations, the wave equation (2.2) can be written as the vector wave equations for 

the transverse fields and longitudinal fields, respectively: 

(2.4) 

{V; +k2n2 }Ez - jkz(V, lnn2 ·Et) =kIEz 

{V; +k2n2 -(V1 lnn2)· (V1)}Hz - jkz(Vt lnn2 • H1) = kIHz (2.5) 

where Vt (i.e., yol0y+ xolox) is the transverse gradient operator and k (i.e., ate) is the 

propagating constant in free space. It is worth to note, after solving one of two above 

vector wave equations for E1 (or H1 ), the another transverse field for Ht (or Et) can be 

obtained according to the duality of Maxwell's equation. Also, from the divergence 

equations of the Maxwell's equation, the corresponding z-components (Ez and Hz) can be 

calculated, and vice versa. Here we focus only on the transverse fields. By extending the 
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transverse electric and magnetic fields into the x and y directions with some derivations, 

the full-vectorial wave equations in terms of the transverse electric and magnetic fields of 

the waveguides are expressed in simple matrix forms [20]: 

(2.6) 

(2.7) 

where Et = xEX + yEy' Ht = xHX + yH y' and p and Qare the operators, which are defined 

as follows: 

(2.8) 

-n +--+n - ----Q H _ 2k2H "d 2Hx 2"iJ[1 "iJHx] 
xx x x ax2 ay n2 ay 

Q H =n2k 2H +--y +n2- ____ Y a2H a [ 1 aH J 
yy y y ay2 ax n2 ax 

Q H = a2Hx -n2i_[_l aHx] 
yx x axay ax n2 ay 

(2.9) 
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where all functions under the partial differential operators are continuous over the entire 

cross-section of the waveguide. It is worth to note that the full-vector wave equations are 

exact without any approximation and considers both the polarization dependence 

(i.e., Pxx :;t: P.w and Q°' :;t: Q.w) and the polarization coupling (i.e., Pry :;t: 0, Pyx :;t: 0 ,Qry :;t: 0, 

and Qyx :;t: 0), which are caused by the waveguide geometry. The full-vector modes have 

hybrid mode field patterns and are orthogonal with respect to the guided power along the 

propagation direction z (see Appendix B). 

If the polarization coupling is weak and becomes negligible as in many practical 

optical waveguides, the full-vector equations are reduced to two decoupled semi-vector 

wave equations for the electrical and magnetic fields: 

PxxEx =k'lEx 

PyyEy =k1Ey 

QxxHx =k;Hx 

(2.10) 

(2.11) 

where P xy = Pyx= Qxy = Qyx = 0 was assumed. From the above equations, the 

characteristics of the semi-vector modes (so-called the semi-vectorial approximation) are 

linearly polarized (i.e., the TE and TM modes), in which one of two components of the 

fields is zero. 

Furthermore, if the waveguide is weakly guiding, even the polarization dependence 

can be ignored. Under this circumstance, the two semi-vector equations ( k'{E :;t: k'[M) are 

reduced to a single well-known scalar Helmholtz wave equation ( k'{E = k'{M = kz ): 

(2.12) 

where p is the scalar operator (i.e., p xx = p yy = Qxx = Q,,,, = n2 k2 + a2 I ax2 + a2 I ()y2 ) and 

'1> is the scalar field (i.e., Ex, Ey, Ez, Hx, Hy, or lfz). From the above equations, the 

characteristics of the scalar modes are linearly polarized (i.e., the degenerated TE and TM 

modes with the same kz). 
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For ID PCWs, where the refractive index n(x) is the function of x and the y­

dependence in above equations will disappear (i.e., a I ()y = 0 ), the full-vector equations 

are simplified to two decoupled wave equations for the electrical and magnetic fields: 

(2.13) 

Q H =n2k 2H +n2 - ___ Y d [ l dH ] 
Y.Y Y Y dx n2 dx 

(2.14) 

where P xy = Pyx= Qxy = Q yx = 0 was used. These decoupled wave equations for the TE 

wave and the TM wave can be solved through the wave field EJ Hx and Exl Hy, 

respectively. It is noted that EJHx and Exllfy are governed by the same wave equation. 

Based on the above theoretical formulas, we can obtain the dispersion curves by 

solving the governing equations for the transverse electric or magnetic fields under the 

full-vector or semi-vector/scalar assumptions for the ID and 2D PCWs. 

2.3 Finite Difference Method 

Due to the simplicity and easy implementation, the FDM method is one of the most 

commonly used numerical methods for the boundary-value eigen-value problem. It is 

based on a semi-local approximation of the partial derivative through low-order Taylor 

series expansions. For example, the central difference approximation of the second 

derivative for the function F with the variable f can be derived easily: 
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where the non-uniform mesh sizes 8;_1, Ab and b..i+ / are used and n; is the refractive index 

at the mesh i as shown in Figure 2.2. The mesh distances are that h1 = (A;-1+A;)/2 and h2 = 

(A;+1+A;)/2. The refractive indices at the mesh nodes are that 

nf_112 =(nf_1Ai-l +nfAJl2h1 andnf+112 =(nf+18i+I +nfAJl2h2 . 

Ai-1 
1~ ~~~~~~~~~~.~~---~~--~~~~---.-

!_ Fi-1 I 
~-

I 

Fi+l Fi+i ,)----__.___---@ 
I I 

: hi : h2 : 
~--~~~~~~ ...: 
I 

Figure 2.2 The l D finite difference (FD) mesh 

As mentioned early, all functions under the partial derivatives in the full-vector 

eigen-value equations of (2.5) and (2.6) are continuous and they are directly discretized 

by using the central difference approximations without any extra treatment at the 

dielectric interface of the waveguide. For example, the finite difference expressions of 

wave equations of (2.5) and (2.7) (for electric fields) can be expressed as follows [20]: 

Ti+l,j Ei+l,j -Ti,j Ei,j + TH,j Ei-I,j . . Ei,j+l _ 2 Ei,j + Ei,j-1 
p E = x x x x x x + n~ .k2 E1,; + x x x 

xx x Ax2 l,j x Ll.y2 
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where 

( nl;1,j+l - lJE~+l,j+l -( nl;1,j-l - lJE~+I,j-l _ 

p E = 1 n;+l,j n;+l,j 

xy Y 
4Ax8Y (n~l,j+l - lJE~-l,j+l + (nJ~l,j-l IJE~-l,j-l 

ni-l,j ni-l,j 

[
nl;1,j+l 

p E = 1 ni,j+l 

IJE~+l,j+l -( nJ;1,j-l lJE~+l,j-1 _ 
ni,j+l 

:.r n;~1,j+1 
yx x 46.x8u ( 2 

ni,j-1 
IJE~-1,j+l + (nJ~1 •. j-l - lJE~-l,j-1 

n1,1-1 

"±1 . 2n~±l . . ·+1 2n~ ·±1 Tl ,1 = I ,1 Tl·l- = 1,1 
x 2 2 ' y 2 2 

ni±l,j + ni,j n;,j±l + n;,j 

2 2 2 2 
. 1 . 2n· · 2n· . . . 1 2n· . 2n- . 

Tl± ,1 = 1,1 + 1,J T1,1± = 1,1 + 1,1 

(2.15) 

x 2 2 2 2'Y 2 2 2 2 n1·+1,1- + n1.,1. n- 1 . + n· . n- ·+l + n- . n- . 1 + n- . I- ,1 1,1 1,1 1,1 1,1- 1,1 

where the uniform meshes 6x and 8y are used for the sake of simplicity. 

In order to facilitate numerical solution within a finite computation domain, proper 

numerical boundary conditions must be used. In this work, we utilizes the popular 

perfectly matched layer (PML) boundary conditions [38] at the edge of the computation 

window to reduce the computation effort without sacrifice for accuracy and the graded 

index averaging technique [25] to improve the numerical accuracy. By substituting the 

above finite difference expressions into the wave equation of (2.5), a system of the linear 

equations is obtained: 

(2.16) 

where k is the propagating constant in free space, Neff is the complex modal effective 

index, and M is a band matrix with the bandwidth ( 4Nx +6) and dimension 2NxxNy, in 

which Nx and Ny are the numbers of meshes in x and y directions. For the semi-vectorial 
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and scalar cases, due to the decoupled wave equations, the band matrix Mis simplified a 

matrix with the bandwidth (2Nx +I) and dimension Nxx.Ny. The effective indices and mode 

profiles can be obtained by using some eigen-value solvers such as the shifted inverse 

power method, the Lanczos method, and the Arnoldi method. Due to store all non-zero 

elements of the matrix, the FDM requires a larger computer memory. By taking the 

advantage of the geometric symmetry, only a half or a quarter of the PCW is need to be 

simulateµ. In comparison with the FEM method, the FDM method is free of spurious 

eigenvalues. It is worth to note that, by utilizing the variation theorem (see 3.3.3), the 

band structure of the PCs can be calculated by utilizing the periodic boundary conditions 

around the unit cell of the PCs. 

2.4 Plane Wave Expansion Method 

The modal expansion methods, such as the plane-wave expansion (PWE) method, 

employ a set of orthogonal functions (e.g., harmonic or Gauss-Hermite functions) to 

represent the unknown solution of the equations. Generally speaking, the dispersion 

curves and mode field patterns of the defect modes of the PCW s can be calculated by the 

so-called a supercell method as shown in Figure 2.3, which employs the periodic 

boundary condition. Theoretically, the coupling between the PCWs (or supercells) can be 

neglected when the width D (e.g., D = SA in Figure 2.3) of the supercell is sufficiently 

large. However, the computation time will increase accordingly. Practically, the width of 

the supercell is taken from SA to 32A. We present this theory very briefly to calculate the 

modal properties of the PCW s. 

For the sake of simplicity, the wave equation (2.2) of the magnetic field fi(r), 

which contain only two transverse fields en (n = l and 2), is considered and rewritten as 

1 - (JJ2 -
Vx[-2-VxH(r)]=-2 H(r) 

n (p) c 
(2.17) 

where n(p} is the refractive index of the media and f =xi+ Y.Y + zz = p + zz is the 

position vector. 
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Figure 2.3 The cross-section of a 2D PCW with off-plane propagation 

For the infinite supercell structure with periodic dielectric function 

( n(p) = n(p + R) ), the well-known Bloch-Floquet theorem ( u(r) = u(r + R)) can be 

applied, in which the fields of Bloch modes in periodic structures consist of plane waves: 

H(r) = enu(r)ejk·r = efkzz L un,Genej(k11+G)·p 
G,n 

(2.18) 

where k ( = k11 + kzz) is the wave vector of the plane waves, G is the reciprocal lattice 

vector in the x-y plane , un G (n =I and 2) is the Bloch function of the magnetic fields , 

along en, and en (n = 1 and 2) stands for two unit vectors, which are perpendicular to the 

propagation direction k + G . The relation between the reciprocal lattice vector 

G ( G = m1bi + m2b2 ) and the lattice vector R ( R = l1a1 + l2a2 ) can be easily obtained 
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through the orthogonality between their corresponding base vector components ii; 

and E1 (i, j = l and 2): 

(2.19) 

where oij is the Kronecker-5 function. On the other hand, due to the periodicity of the 

supercell, the index function can be expanded into the following Fourier series: 

1 _ -2( ) _" -2 JG·JJ ---n p -.c..,nG e 
n2 (p) G 

(2.20) 

where n(/ =Cfsn-2(p)e-JG-pdS)IS is the coefficient of the index function in the unit 

cell S. It is worth to note that, through a procedure for calculation of the Fourier 

transform n~ of n2 (r) and inversion numerically to obtain n(/ , rapid numerical 

convergence is achieved [12]. By substituting (2.18) and (2.20) into (2.17), after some 

algebraic manipulations, the equation (2.17) is reduced to a standard eigenvalue equation: 

(2.21) 

where the two orthogonal systems ( k + G,e1,e2 ) and (k +G',e'1,e'2 ) are used. It is worth 

to note that the first column of the matrix is related to the fields along e'1 and the second 

column of the matrix is related to the fields along e'2 • In general, the calculated mode is a 

hybrid mode because two polarizations of the modal fields are coupled with each other. 

For the N grid points of the G vector, the above equation is a set of 2N equations with 2N 

unknowns and can be written in matrix form: 

(2.22) 

where w is the angular frequency (eigenvalue) for the corresponding polarization, P 11, 

PJ2, P21 , and P22 are the N by N coefficient matrices, and V 1, V2 are the l by N matrices 

of the Bloch function (eigenvector). Here the elements of N by N coefficient matrices are 

defined as follows: 
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(2.23) 

where i, j = 1, 2, 3, ... , N. Thus, the calculation of the guided modes for the PCWs has 

been reduced to the solution of a standard eigen-value problem. 

Furthermore, for the 1 D PCW s, f is in the x-z plane, G is along x axis, and k + G 

are in the x-z plane with f + G =If+ GI (sina,0,-cosa), where a is an arbitrary angle 

taken in the x-z plane. According to the orthogonal property of (2.18), two unit vectors 

can be set to e1 = ( cosa,O, sin a) and e2 = y. The elements of N-by-N coefficient matrices 

can be simplified as follows: 

[Pi1 112] - - - - 2 [1 0 ] =I k + G; II k + Gj I n"G;-G1. 0 ( ) 
P21 P22 ij cos a; -aj 

(2.24) 

Therefore, the eigenvalue equation can also be reduced to two decoupled equations: 

[~I ;,,][~;]=(~)2[~;] (2.25) 

where the former is for the TE wave with U2 = 0 and the latter is for the TM wave with 

U1=0. It is worth to note that, by replacing the supercell of the PCW with the unit cell of 

the PC, the band structure of the PC can be easily calculated. 

2.5 Envelope Approximation Method 

Due to similarities between the electric band-gap and the PBG, many theories of the 

electric band-gap (e.g., effective mass method, k · p theory, and multiple-scales analysis, 

etc.) can be borrowed for the analysis of the PCWs. The idea behind these methods is 

based on the perturbation theory, and the process of these methods involves two basic 

steps: first evaluate the band structure of the PC to obtain the effective "mass", and then 

replace the PC with this effective "mass" to construct a conventional waveguide [ 50]­

[ 52]. This, in turn, leads to solve the conventional wave equations to obtain dispersion 

relations of the PCWs under the slowly varying envelope approximation. For the sake of 
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simplicity, we focus on the analysis of the heterostructure PCWs as shown in Figure 2.4, 

which are considered as small perturbations of the bulk PCs and their physical 

dimensions (e.g., 2W or 2R) are substantially larger than those of the PCs (e.g., the pitch 

A). By following Ref (50] and starting from the scalar wave equation (2.12), we present 

this theory very briefly. 
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I I 
I I 
I 
I 

n2 I ' n'2 • J. n2 n1 p l 
I 

d2 IA d2 

(a) ID PCW 

y 
000000 

PCl OdO 0 0 0 0 
o OCJ Q -0 o o o 

o o Q/'6p CJ""O o o 
000/0000\000 

I ~~\ 

I'-"~ A;::j I 

ood\DC uo/ooo 
o o O""D o//6 o o 
o o o "o--6" o o o 
0000000 
000000 

(b)2DPCW 

n2 

Figure 2.4 The cross-section of the ID (a) and 20 (b) heterostructure PCWs 
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Here the heterostructure PCW is considered as small perturbations of the bulk PCs 

with the index of n~(p)=n2 (p)(l+.i1(p)) as shown in Figure 2.4 (here "PCl" represent 

the bulk PC and "PC2" represent the perturbated PC, and p = x for the 1 D PCW). The 

wave equation for the electric field Ed(P) with frequencies ((Jct is expressed as follows 

2 

Vi Ed(p)-k; Ed(P) = m; n2(p)(l + .i1(p))EJ(P) 
c 

(2.26) 

where n(p) is the refractive index of the bulk PC and .i1(p) is a relative small perturbation 

of the PCW. Due to the orthogonality of electric field modes, the electric field Ed (p) can 

be expanding into the basis of the bulk PC modes: 

Ed(P) = 2: fkWn(k)Enk(p')dk (2.27) 
n 

where Enk(P) is the field pattern of bulk PC modes that meet the wave equation (2.12) 

without considering perturbations with its angular frequency ~ and Wn(k) is an unknown 

function defining the expansion of the modes in k space. Then the wave equation (2.26) 

can be expressed as 

(2.28) 
n n 

By taking the inner product between the above equation and £;,k.(P) and utilizing the 

orthogonality of the modes (see Appendix C), we have [50] 

(2.29) 

where the wave equation of the PC modes and the definition of the envelope function of 

the mode Fn(r) = fkWn(k)ejk-pdk were used. The equation (2.29) contains the inverse 

Fourier transform of the product Fn·(k).i1(p). By taking the Fourier transform of the 

projection of (2.29) along En'k' and dropping the primes, the equation describing the 

behavior of the envelope of the mode of the PCWs is obtained [50]: 
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(2.30) 

where o} n (-jV) is the operator obtained from w2 n (k) by replacing the wave vector 

components kx and ky by their derivatives -jd ldx and -jd /Jy. The equation (2.30) is 

generally called as the envelope equation. If we assume that it is independent for every 

band and Edn(P) = JkWn(k)Enk(p)dk donates as the waveguide mode having the 

frequency wdn associated with the band n, the operator w2 n (- jV) can be expanded in the 

vicinity of the wave vector k0 of light in the PC as [50] 

which suggests a solution of the envelope equation of the form Fnk (p) = ink (p )eikoP • 
0 0 

Therefore, the modes may be written due to the fact of Fnko (p) = ,k Wn ( k )eJkp dk and 

Wn(k) =ink (k-k0 ), and we have 
0 

E (p) = eikoP CJ,~ (k- k )u (r)ej(k-ko)P dk dnk0 Jk nk0 0 nk (2.32) 

where inko (k) denotes the inverse Fourier transform of fnko (p). Because the function 

ink (p) varies over the same length scale as 6.(p) , its Fourier components ink ( k - k0) 
0 0 

·take large values for kt::: k0 only. Assuming that Unk (p) = UnkO (p) over this range, we 

remove Unko(p) from the integral to obtain 

(2.33) 

The physical meaning behind the envelope functions FnkO is the fact that the fields of 

the PCW s are determined by the bulk PC modes with modulation of the envelope 

functions. By getting the envelope equation (2.30) of the mode of the PCW s, the 

envelope equation can be solved by employing the conventional waveguide theory. For 

example, for the l D and 2D perturbation function, we have 
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{
do if Ix I< W or R 

d(p)=d(x)= 0 iflxl>WorR (2.34) 

Therefore, the corresponding PCWs are simplified into a lD slab or coaxial waveguide as 

shown in Figure 2.5. 
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Figure 2.5 The equivalent cross-section of the ID (a) and 2D (b) heterostructure PCWs 
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By expanding the frequency up to the second order in the Taylor expansion (2.31 ), 

the envelope equation (2.30) becomes 

(2.35) 

where the wave vector ko corresponds to an extremum of the band structure in the 

transverse {k_;_ or kx) direction and mx and my are the effective "mass" describing the 

curvature of the band and defined by 

l a2m 2 
- n I and ---;--k2 ko 

mx u .x 
(2.36) 

The solution of (2.35) is easily solved by the optical fiber theory for 2D PCW or 

the slab waveguide theory for lD PCW and its corresponding modal properties (e.g., the 

single-mode condition) are easily obtained. As can been seen clearly, if mx is negative, 

guided modes can exist even though the average refractive index in the core is lower than 

that of the cladding (i.e., .6.0 < 0). In conclusion, the PC waveguiding is possible for the 

PCW where the curvature of the band in the transverse direction has the same sign as the 

dielectric contrast between the core and the cladding. 

2.6 Effective Index Method 

The idea of the effective index method (EIM) is to convert a complicated optical 

waveguide problem into a simplified optical waveguide probelm (e.g., a 20 waveguide 

into a equivalent 10 waveguide) through some approximations. Generally, the EIM 

method can be employed for two cases: the rectangular/radial optical waveguide with 

slow index variations in one direction and the optical periodic array waveguide (i.e., the 

PCW). The former is well known and is used widely in integrated optics (e.g., channel 

and ridge waveguides) [21]. The idea of the latter case is to first evaluate the band 

structure of the PC to obtain the effective index and then. replace the PC with this 

effective index to construct a simplified step-index waveguide [49]. Usually, the effective 
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index is calculated in terms of the lowest mode that could propagate in the PC (i.e., PC 1 

as shown in Figure 2.4), which is so-called the fundamental space-filling mode (SFM). In 

other words, the corresponding effective index neff is obtained by the first band of the 

band structure (or the band-gap map) of the PC: 

n - kZ,FSM 
elf - k (2.37) 

where kz,FSM is the propagating constant along z of the fundamental space-filling mode 

and k (i.e., oic) is the propagating constant in free space. 

As long as getting the effective index of the PC, like the EAM mentioned in the 

previous section as shown in Figure 2.5, the modal properties of the PCWs are easily 

obtained by employing the conventional optical waveguide theory (e.g., the optical fiber 

theory for 2D PCW or the slab waveguide theory for lD PCW). Due to different guiding 

mechanisms between the PBG-PCWs and conventional optical waveguides, unlike the 

EAM method, the EIM approach fails for the PCWs due to the PBG effect. Further, 

because the complex refractive index profiles within modes are neglected for the EIM 

method, it is very difficult to define the equivalent boundary between the core and 

cladding for the 20 PCWs (e.g., the equivalent radius of the PCFs that changes from N2 

to A [34] [49], where A is the pitch). Therefore, the EIM method can only approximate 

the optical properties of the PCWs (e.g., the single-mode operation and the estimation of 

the bending loss [53]) and cannot accurately predict more sensitive modal properties such 

as dispersion or birefringence. 
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2.7 Summary 

In this chapter, in order to completely understand the basic principle and investigate the 

modal characteristics of the PCWs, four typical modeling methods (i.e., the finite 

difference method, the plane wave method, the envelope approximation method, and the 

effective index method), which are used in the rest of the thesis as a basis for the 

modeling and design of the PCW s with desired modal properties, are described. 

Compared with formulations of modeling techniques used by other workers, the proposed 

modeling methods have the following advantages: 

• The plane wave method (PWE, or so called the supercell method with the plane 

wave expansion), which is summarized into simple matrix form by utilizing the 

symmetrical nature of general PCW s, is simple and powerful. And it was used as 

the reference results and also to calculate the band structure of the PCs. 

• The envelope approximation method, which is originally used for the PCW s with 

in-plane propagation, and the effective index method, which is originally used 

without any explanation, are simple and intuitive. Based on the band structure of 

the PCs, the physical insight of the PCW s is easily gained and some modal 

properties such as the single-mode operation are obtained in a very simple way. 

• The finite difference method, which is extended to utilize the perfect matching 

layer boundary conditions and the initial value extracted from the band structure 

of the PCs, is more accurate and versatile. It is a basis for the design of the PCW s 

with some desired modal properties. 
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Chapter 3 

One-Dimensional Photonic Crystal Waveguides 

In this chapter, we investigate the modal characteristics of the one-dimensional (ID) 

photonic crystal waveguides (PCWs) in great detail. By employing the transfer matrix 

method, we can put the design parameters related to the general multiplayer structure into 

a compact analytical expression, which serves as the basis for analysis of the band-gap 

structure of the general 1 D photonic crystals (PCs) and the modal characteristics of the 

general ID PCWs. The band structure of ID PCs and modal properties of ID PCWs, 

such as the effective index, the modal field profile, the dispersion, the confinement loss, 

and the confinement factor, are all calculated and simulated. With the help of the band­

gap map of the 1 D PCs, four guiding regimes for the 1 D PCW s are recognized, in 

accordance with the index of the guiding core. It is shown that the modal characteristics 

for each regime behave differently from the point of view of guiding mechanism. Finally, 

some complex lD PCWs (e.g., the heterostructure PCWs) are investigated and the 

relations between the lD PCWs and 2D PCFs are discussed. 

3.1 Introduction 

As a starting point, we investigate the modal characteristics of the ID PCWs. There are 

several reasons for studying such relatively simple structures. Firstly, the lD PCWs are 

readily realized in both planar and cylindrical configurations to practical optical 

waveguide structures. Secondly, the simple ID structure can be used to gain considerable 

understanding and insight into more complex 2D or even 3D structures. Thirdly, 

analytical methods can be used for the modeling and simulation of the ID PCW 

structures and therefore such a study can be carried out in a much more efficient fashion 

than those of 2D and 3D structures for which intensive computational methods have to be 

utilized. Finally, a careful and somewhat exhausting examination of the literature in the 

field seems to suggest that a complete analysis and detailed description of the ID PCWs 

are still lacking. 
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Generally, a 10 PC structure consists of a stack of multiplayer dielectric structures 

with different periods, and a ID PC waveguide is formed by placing defects in between 

the multi-layer stacks with the wave propagation along the propagation direction (i.e., kz -::f:. 

0). In order to understand the operation principle of the ID PCWs, it is instructive to 

investigate the band structure of the 1 D PCs, which gives intuitive and physical insight 

(e.g., the regions of different guiding mechanisms, the effective index of the cladding, 

and the curvature of the band structure). In practice, the number of periodic units is 

limited, therefore the effect of the number of periodic units on the modal characteristics 

should be carefully studied. 

For the ID dielectric structure as shown in Figure 3.1, the wave equations are 

decoupled to yield two sets of independent modal solutions, namely, the TE and the TM 

waves, that are expressed in terms of the transverse electric field component Ey and the 

transverse magnetic field component Hy, respectively. However, because all the related 

parameters (e.g., in lasers) are defined according to the electric fields, it is convenient and 

simple to use the electric fields E for the both polarizations. In this chapter, we use the £­

related parameters (i.e., the reflection coefficient r and transmission coefficient t) [15] 

unless otherwise mentioned. 
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Figure 3.1 The ID N-layered isotropic dielectric structure with two cladding layers. 
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3.2 The Multilayer Structure 

In order to introduce the transfer matrix method (TMM), we start from the transfer matrix 

related to a general N-layered dielectric structure with two cladding layers as shown in 

Figure 3.1. In Figure 3.1, the refractive indices n; (i = I, 2, ... , N), n0, and ns are related 

to the N-layered dielectric structure, cover, and substrate, respectively. In the N-layered 

dielectric structure, the ith layer (i = I, 2, ... , N) is located between x;.J and x; and its 

corresponding thickness d; is that (x; - x;.1 ). 

For the sake of simplicity, we assume that the electromagnetic (EM) wave is 

assumed to propagate in the xz plane. The electric field E,{x,z,t) in the ith layer, which 

satisfies Maxwell's equations, has the following form: 

E;(x,z,t) = E;(x)e+j(ax-k,z) (3.1) 

where kz is the z component of the wave vector and (J) is the angular frequency. In 

general, the electric field E;(x) in each layer consists of two kinds of traveling waves 

(forward and backward) and can be written as 

(3.2) 

where kix(i = 0, 1, 2, .. ., N, and S) is the x component of the wave vector in the ith layer, 

and a; and b; are forward and backward propagation coefficients in each layer as shown 

in Figure 3.1. From the wave equations, two components of the wave vector hold the 

following relation: 

(3.3) 

where k is the propagating constant in free space and ~ is the incident or transmitted 

angle in the ith layer (only the incident angle 8o is shown in Figure 3.1). By utilizing the 

continuous conditions of each tangential and longitudinal fields (the latter can be derived 

from the derivatives of the transverse fields with respect to x) at each interface x; (i = l, 2, 

.. ., N), the relations between propagation coefficients a; and b; (i = 0, 1, 2, ... , N, S), as 

shown in Figure 3.1, are obtained through transmission matrices D;, D;+t and the 

propagation matrix Pi [15], 
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(a;) = pn-:-1 D- (ai+I) 
b I I 1+1 b 

i i+l 

(3.4) 

where we assume that aN+J =as, bN+J = bs, and Po is an unity matrix. The transmission 

matrix D; and the propagation matrix Pi are defined by 

(3.5) 

(3.6) 

where the integer 8 is 0 for the TE wave and 1 for the TM wave. The normalized 

transverse constants q; are given by 

!
k 
; for the TE wave 

qi = kn~ 
- 1 for the TM wave 
kix 

(3.7) 

where q; for both polarizations is equal to n; at the normal incidence (i.e., kz = 0) and the 

determinant of the matrix D; for both polarizations is equal to -2k1/k. It is worth to note 

that, in order to be consistent with the definitions of the parameters for both polarizations, 

the k factor in the matrix D; is added (a somewhat different convention from those in 

other texts and published papers [54]). However, this choice will not affect the final 

results obtained. 

By cascading the above transmission matrices and propagation matrix, the transfer 

matrix Mbetween the propagation coefficients of two cladding layers is obtained: 

( ~) = JJ01 IJi/jW1DiP2lJi··.DNPND>/ D,( :: ) = ~ :: ) (3.8) 

where the transfer matrix Mis further defined by the unimodular matrix Q; (i.e., det(Q;) = 

IQ1l = 1, where det( ... ) or 1 ... 1 stands for the determinant of the matrix): 

(3.9) 
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N 
where the unimodular matrix m = IlQi for the N-layered structure and Q; = D;P;D;-1 are 

i=l 

the transfer matrix for the ith layer [ 15]: 

Q; = ( .co~(k;xd;) jsin(k;xd;)I q;J 
]q; sm(k;xd;) cos(k;xd;) 

(3.10) 

where the normalized transverse constant q; was given by (3.7). It is worth to note that, 

due to the different fields used, the normalized transverse constant q; for the TM wave is 

different from that used in some texts and published papers [54], [55]. By using the 

symmetry property of the transfer matrix Q;, it is shown that M11 = M12*, M22 = M11*, and 

det(.M) = ksxfkox· Through the transfer matrix, the reflection and transmission coefficients 

rand tare calculated if we assume the light is incident from the cover (nc) and bs= 0, 

-(boJ _ M21 _(mu +m12qs)-(m21 +m22qs)lqo (3.11) 
r - ao b =O - Mu - (mu+ m1zqs) + (m21 + mzzqs)I qo 

s 

(3.12) 

where the integer 8 is 0 for the TE wave and l for the TM wave. And their corresponding 

reflectance and transmittance of plane waves through a multiplayer dielectric structure 

can be obtained [ 15]: 

R=lrl2 and T = ksx It 12 

kox 
(3.13) 

where we note that R + T = 1. On the other hand, if we consider the light is incident from 

the substrate (ns), the reflection and transmission coefficients r' and t' can be calculated 

as follows: 

(3.14) 

(3.15) 
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where we note that t' = JM]t and the corresponding reflectance and transmittance R' and 

T' are given as follows: 

R' =I rf and (3.16) 

where we again note that T = T'. Through the above-mentioned formulae, the 

reflectance, transmittance, and some related parameters can all be obtained. 

For the guided modes of the ID multilayer waveguide, their dispersion curve can 

be solved with the help of the transfer matrix. Because their filed amplitudes vanish at 

infinity, the coefficients a0 and bs are set to zero in (3.8), 

(3.17) 

So the following dispersion relation is easily obtained from the transfer matrix of the ID 

multiplayer structure: 

(3.18) 

where (3.9) was used. If we use the positive transverse decay constants 

Yi = - jkix = ~ k; -(kni )2 in cover and substrate (i.e., i = 0 and S), and the equation (3.18) 

becomes the familiar dispersion relation for the ID multilayer waveguide. For example, 

the dispersion relation for the TE wave is shown as follows: 

(3.19) 

In general, how to find the complex solution of the dispersion curve of the ID 

multilayer waveguide is a highly chaHenging task and still attracts research attention. 

Here we introduce a simple and rigorous slab leaky model (or so-called the transverse 

resonance method, TRM [56]) to solve the guided or leaky modes of the ID multiplayer 

slab waveguide involving a core layer with the index nc and the thickness d as shown in 

Figure 3.2 (here we assume that the ith layer is the core layer of the waveguide, or nc = ni 

and d = di). By considering the boundary conditions (continuity of the tangential electric 

and magnetic fields) at the core-cladding interfaces, the dispersion curve of the modes 

can be obtained as follows [2]: 

36 



Chapter 3. One-Dimensional Photonic Crystal Waveguides 

(3.20) 

where n is the order of the guided modes, kcx is the transverse (x) component of the wave 

vector in the core, and r 1 and r2 are the reflection coefficients from either sides inside the 

core, which can be easily calculated by the transfer matrices (e.g., 3.11 and 3.14). The 

zeros of (3.20) are found by employing a general complex root-searching scheme such as 

the Muller scheme with a suitable initial value (e.g., got from the band structure for the 

PCs). 
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Figure 3.2 The ID N-layered waveguide structure by the transverse resonance method. 

3.3 Band Structure of lD Photonic Crystals 

After reviewing the transfer matrix method (TMM) of the lD multiplayer, we are ready 

to investigate the 1 D photonic crystal (PC) structure. We consider a general 1 D PC 

structure with finite thickness surrounding by the cover (nc) and the substrate (ns), in 

which each periodic period consists of P-layered dielectric materials, as shown in Figure 

3.3. This practical PC structure is made of N periods with pitch A (n = 1, 2, ... , N) and 

each period consists of Players with refractive index np and thickness dp (p = l, 2, ... , P). 

Ideally, when increasing the number N into infinite, this dielectric structure becomes 

semi-infinite or infinite. In this section, we discuss the ID infinite PC structure or simply 

the ID PC. For the practical case of the band-gap structure, the 10 finite PCs with defects 

(i.e., PCWs) will be discussed in the next section (see 3.4). 
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Figure 3.3 A schematic drawing of a ID periodic layered media and the propagation 
coefficients associated with the nth unit cell and its neighboring layers. 

By using the TMM method, the relation between forward and backward 

propagation coefficients of the unit cell (e.g., the nth period in as shown in Figure 3.3) 

can be express as follows: 

where Mis the matrix for the unit cell, 

-1 2 
M =Di ( IlQ;)-°t/l 

i=P 

(3.21) 

(3.22) 

where we note that Mi1 = M12 * and Mi2=M11 *. For example, the components of the unit 

cell's transfer matrix of the simplest PC (i.e., P = 2), which consists of two alternating 

layers of low refraction index n1 and high refraction index ni and the corresponding 

thickness d1 and di, are given, 

(3.23) 

where q = l for the TE wave and q = n2; (i = l and 2) for the TM wave. 
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According to the Bloch-Floquet theorem, the periodicity n(x) = n(x+ A) of the 

structure leads to the Bloch wave solutions EK(x,z) of the Maxwell's equations: 

(3.24) 

where EK(x)is the Bloch wave function [EK(x)=EK(x+A)] and K is the Bloch wave 

number. With the help of the TMM method and (3.24), the eigen-value equation between 

the Blo((h wave number and frequency can be obtained [15]: 

(3.25) 

After some simple algebraic manipulations, the dispersion relation between the Bloch 

wave number Kand frequency mean be obtained [15]: 

(3.26) 

where kz is the tangential component of the wave vector and mis the angular frequency. 

Also the corresponding eigenvector can be calculated [ 15]: 

(3.27) 

It is worth to note that, for the lossless PCs, a real Bloch wave number means the 

propagation state and an imaginary Bloch wave number means the evanescent state, 

which forms a band-gap for the PCs. The analytical forms for a typical period layered 

structure can be obtained from the transfer matrix of the unit cell of the structure (i.e., 

3.22) and its band structure can be solved analytically. For instance, the dispersion 

relation for the simplest PC (i.e., P = 2) can be obtained as follows: 

cos[K(p,m)A] = cos(k1xd1 +k2xd2)- (qi -q1)
2 sin(k1xd1)sin(k2xd2) (3.28) 

2q1q2 

where the normalized transverse constants q; (i = 1 and 2) was defined in (3.7). It is worth 

to note that, if (nrn1Yn1<<l, the approximate n-th order Bragg condition, which we will 
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employ frequently to interpret some features of the PCs (e.g., the closure of the band­

gap ), is obtained when we set 

k1xd1 + kzxd2 = nf[ (3.29) 

where n is the order of the band structure. 

3.3.1 On-Axis Propagation 

In general, one considers that light propagates or resonates entirely in the x-direction (or 

on-axis propagation, e.g., Bragg grating and DFB lasers). Because on-axis propagation 

(i.e., kz = 0) is a special case of off-axis propagation, here we calculate the band structure 

(or so-called band-gap map) with on-axis propagation of some typical two-material PCs 

to show some interesting properties of lD PCs. Figure 3.4 shows the photonic band 

structure with on-axis propagation of ID PCs with silica-air layers of width 0.5A. As can 

be seen, there are some band-gaps along the frequency axis where the Bloch wave 

number K is imaginary. Usually, these gaps are called the photonic band-gaps (PBGs). 

The physical insight of the PBGs can be understood by considering the electric field 

modes for the different order (or band) states at the middle (K = 0) and edge (K = 7tlA) 

of the Brillouin zone, in which the low-frequency mode concentrates its energy in the 

high index region and the high-frequency mode concentrates its energy in the low index 

region, respectively [ l 9]. Further, it is found that the bandwidth of the band-gaps is 

different from each other and depends on the index ratio and the size-to-pitch ratio. 

Usually, when the index ratio increases, the band-gaps widen considerably [7]. Figure 

3.5(a) and Figure 3.5(b) show the photonic band-gap as a function of the index ratio n2/n1 

and the size-to-pitch ratio d2/A, respectively. It can be seen from figures that the first gap 

has following properties for the ID PCs with on-axis propagation (kz= 0) [7]: 

l. The band-gap always opens up when n2/n1 * L 

2. The larger the index ratio n2/n1, the wider the relative gap !ioi (QJ. 

3. The largest relative gap !ioi [QJ is reached at the quarter-wave stack (n2/n1 = d1/d2). 
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However, unlike summarized in Ref [7], the above conclusions for the first band­

gap do not hold for the high-order band-gaps. It is observed in Figure 3.5 that the band­

gaps for the high-order bands oscillate when the index ratio n2/n1 or the size-to-pitch ratio 

d2/A changes, and the number of band-gap nulls or peaks increases with the band order. 

This can be understood theoretically by the Bragg condition k2xd2 + k1xd1 = mr(i.e., 3.29), 

where n is the order of the band-gap and the band-gap closes m times when meeting the 

condition of k2A2 = m!C(O < m < n). 
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Figure 3.4 The photonic band structure (w-K) with on-axis propagation (kz= 0) with 
silica-air layers of n1 = 1.0, m = l .45 and d1 = d2 = 0.5A. 
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Figure 3.5 The photonic band-gap with on-axis propagation as a function of the index 
ratio n2/n1 of width 0.5A (a) and the size-to-pitch ratio d2/A with silica-air layers (b). 
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3.3.2 Off-Axis Propagation 

In order to understand the operation principle of the PCWs, the band structure with off­

axis propagation should be considered. Since there is no index variation along the z 

direction, there are no complete band-gaps with off-axis propagation. However, when we 

consider the PCs as a semi-finite structure and the wave propagation along the z direction 

inside the defects, the complete band-gap with off-axis propagation is not important. So, 

the partial band-gap with off-axis propagation is enough. Figure 3.6 shows the photonic 

band structure with off-axis propagation of ID PCs with silica-silicon layers (n1 = 1.4 

and n2 = 3.4) of width 0.5A. As expected, several well-known features of the PBGs with 

off-axis propagation of ID PCs are observed as follows [7]: 

1. The band-gaps shift toward the higher frequency when kz increases. 

2. The band-gaps for TE and TM behave differently. The bandwidth of all TE gaps 

increases when kz increases. However, when kz increases, all TM gaps shrink to 

zero at the Brewster line (m = c k/n1/fk with fk = tan"1(n2/n1) ), and then open up. 

3. The first band for both polarizations has different dispersion slopes when kz 

decreases to zero and the slope of the TM gap is larger than that of the TE gap. 

4. The bands shrink to zero when kz increases. 

These properties can be understood as follows. In order to meet the Bragg 

condition (i.e., 3.29) for the transverse constants k;x(i = 1 and 2) and kix = ~(kn;)2 -k'I, 

the band-gap must shift toward the higher frequency when kz increases. As we know, the 

TM wave propagates without any reflection, from n1 (or n1) to n1 (or n1) at the Brewster 

angle fk. This, in turn, leads to all propagation states and all band-gaps should close at 

the Brewster angle 88 • Due to the more energy concentrated in the high (or low) index 

region for the TE wave than that of the TM wave at long wavelengths, in general, the 

band-gaps of the TE wave are larger than those of the TM wave. 
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Figure 3.6 The photonic band structure of the TE(a) and TM(b) waves with off-axis 
propagation for ID PCs with layers of width 0.5A and layers between n2= 3.4 and n1=1.4. 
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When the wavelength further increases, for the first band of l D PCs, light actually 

propagates an effective homogeneous dielectric media for both polarizations with an 

average index (n12 = n1d1/A+n2di/A) [7]. Ifwe redraw Figure 3.6(a) into our familiar V-b 

diagram for the single symmetrical slab waveguide [here V = kd2 (ni - nf)112 and 

b=((kzlk)2 -nf)l(ni-nf)] as shown in Figure 3.7, the short-wavelength asymptotic 

behavior of lD PCs can be understood easily as follows. As can be seen from Figure 3.7, 

when the normalized frequency V increases (or the wavelength decreases), all band-gaps 

open up to the limitations and are the same with the corresponding V-b curves of the slab 

guided modes, which mean that the coupling between the period dielectric structures is 

neglectable and the PC structure acts like the slab waveguide. As can be seen from the 

band-gap structure of the PCs, this "threshold" wavelength point depends on the index 

ratio n2/n1 and the size-to-pitch ratio d2/A of ID PCs. In other words, the larger the index 

ratio njn1 and the size-to-pitch ratio d2/A, the longer the "threshold" wavelength point. 
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Figure 3.7 The photonic band structure (V-b) of the TE waves with off-axis propagation 
for ID PCs with layers of width 0.5A and layers alternate between n2 = 3.4 and n1 = L4. 
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As we know from the slab waveguide theory, the normalized effective index b for 

both polarizations tends to unity at short wavelengths. It leads to that all band-gaps of 1 D 

PCs meet the n2 line when wavelength decreases. It is worth to note that, because the 

difference between the TE and TM wave is well known for the slab waveguide, the 

vector nature of the guided and unguided modes of 1 D PCs and their related structures 

(e.g., PCWs) must be considered. 

3.3.3 Space-Filling Modes 

In the previous section, the band structure of ID PCs is analyzed by using the Bloch­

Floquet theorem. It is shown that there are always the band-gaps for ID PCs in which the 

EM waves cannot propagate in the direction along the periodic multilayer (i.e., x). In 

other words, the Bloch wave number K is imaginary in the band-gaps and real off the 

band-gaps. In this section, we consider the band structure of 1 D PCs by using the 

variation theorem [7]. According to the variation theorem, there are always two ways to 

allocate the EM energy, which is located at the edge of the Brillouin zone (i.e., KAl2fl= 

0 or 1/2). The first set of modes (SFMI) with low frequency (or high effective index), in 

which the first mode is called the fundamental space-filling mode, concentrates their 

energy in high index regions with perfect magnetic wall boundary condition (PMC) at the 

center of high index regions. On the other hand, the second set of modes (SFM2) with 

higher frequency (or low effective index) concentrates their energy in low index regions 

with perfect electric wall boundary condition (PEC) at the center of low index regions. 

Here we use the simplest (two-layer) PC structure as shown in Figure 3.8 to demonstrate 

this concept. 

Generally speaking, by the symmetry of the unit cell of the PC, only half of the unit 

cell should be considered. In order to utilize the transfer matrix of the unit cell, here we 

consider a unit cell as shown in Figure 3.8, which is a previous unit cell (as shown in 

Figure 3.3) with d1/2-shifted toward -x direction. The corresponding transfer matrix M' 

can be easily calculated from the matrix M (i.e., 3 .23) for the unit cell of the PC: 
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I (M'i1 M'12J -I 
M = M'21 M'22 = ll,d112MPi,d112 (3.30) 

where 

M 0 =M =ejk1A[cos(k d )+j_(q1k2x + q2klx)sin(k d )] 
11 11 2x 2 2 ,t: k ,t: k 2x 2 

':>2 Ix ':>I 2x 

M' =M ejk1A =(-l)uj_(q1k2x _ q2k1x)sin(k d) 
12 12 2 q2ktx q1k2x 2x 2 

(3.31) 

where q = 1 and O" = 0 for the TE wave, and q = n2; (i = 1 and 2) and a= 1 for the TM 

wave. We note that M'21 = M'12* and M'22 = M'll*· According to the definition of the 

SFM modes, two sets of modes are determined by the variation theorem with two 

boundary conditions: PMC (a 'n-1 = b 'n-J, a 'n=b 'n) and PEC (a 'n-1 = -b 'n-1, a 'n = -b 'n) with 

respect to the transfer matrix M'. After some simple algebraic manipulations, the modal 

index can be calculated: 

or 

2sin(kixd1)cos(k2xd2 ) + (~1k2x + ~2k1x )cos(k1xd1)sin(k2xd2) 
i:.2k1x i:.1k2x 

= +{- lf (q1k2x - ~2klx )sin(k2xd2) 
q2klx q1k2x 

(3.32) 

(3.33) 

where "-/+" stands for the modes that concentrate their energy in the high/low index 

regions. Figure 3.9 shows that the calculated band structure of TE and TM SFM modes 

with off-axis propagation for ID air-silica PCs with layers of the silica width 0.8A, in 

which the solid lines stand for the SFMl modes and the dash lines for the SFM2 modes. 

As expected, the SFM modes coincide with the curves of band edges. Therefore, as 

shown in the previous simulation results (e.g., Figure 3.5, Figure 3.6 and Figure 3.7), the 

even number of the bands, which are represented by solid lines, is related to the SFMl 

modes of ID PCs and the odd number of the bands, which are represented by dash lines, 

is related to the SFM2 modes of 1 D PCs. 
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Figure 3.8 A schematic drawing of a 10 periodic two-layer isotropic media and the 
plane-wave amplitudes associated with the nth unit cell and its neighboring layers. 
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Figure 3.9 The spacing filling modes (kz-(J)) of the TE (a) and TM (b) waves with off-axis 
propagation for 10 air-silica PCs with layers of the silica width 0.8A and layers alternate 
between n2 = 1.45 and n1 = 1.0. 

3.4 Photonic Crystal Waveguides 

After understanding the main features of 1 D PCs, now we can examine the 1 D photonic 

crystal waveguides (PCW s) in which the transactional symmetry of 1 D PCs is broken by 

a core or defects. As a result, it creates an allowed state (a guided mode) in the band-gap, 

thereby permitting a so-called localized mode around the core of 10 PCWs. General 

speaking, type of guiding mechanisms (i.e., PBG or TIR) depends on the properties of the 

core (i.e., the index and width of the core). By using the transverse resonance method 

(TRM), the modal properties of ID PCWs can be calculated. Once the effective index Neff 

and mode profile E(x) are obtained, other modal properties (see Appendix A) can be 

readily obtained. In order to make the l D PCW s close to the practical case, the high index 

(n2 in Figure 3.10) of the cladding is assumed, and hence 10 PCWs considered here are 
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essentially leaky in nature. Figure 3.10 shows the schematic view of a general l D PCW 

consisting of a core layer n, with the thickness d surrounding by N pairs of the PCs. In 

general, each pair of the structure may contain an arbitrary number of layers. For the sake 

of simplicity, we assume that each pair only has two alternative low and high index layers 

of index n1 and thickness d1, and index n 2 and thickness d2, respectively. Also we assume 

that the range of nc is from nL (e.g., 1.0) to nH (e.g., 2.2 or oo ). The pitch A of each pair is 

equal to. d1+d2. It is worth to note that, as shown in Figure 3.1 O(b ), the core layer is 

neighboring with the low index layer (i.e., n1) for the TIR-PCWs. 

3.4.1 Band-gap Map and Fou.r Guiding Regions 

I I I I lpdex I I 
I I I I I I I 
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, Index 
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(b) ID TIR-PCWs 
Figure 3.10 The schematic view of a general lD PCW consisting of a core layer nc with 
the thickness d surrounding by N pairs of two alternative layers n1 and n2 with the high 
index thickness d2 and the pitch A: (a) ID PBG-PCWs and (b) ID TIR-PCWs. 

As mentioned before, the band structure (or band-gap map) of the PCs is very important 

to help us to judge the simulation results of lD PCWs [7]. In order to compare the 
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simulation results with the published results [19], typical design parameters for the 10 

PCWs are given as follows: d2 = 0.6092A = 3.437 µm, A= 5.642 µm, d = 3.391A = 

19.131 µm, N = 2, 4, 8, 16, and 32, n1 = 1.4, and n2 = 1.8, which are obtained by 

comparing the ID PCW with a practical 20 PBG fiber studied and measured by Bise et 

a/.[57]. By comparing the difference of band-gap maps between the TE and TM modes, 

calculated from (3.28), for ID PCs with different n1/ n2 and d2/A values (i.e., Figure 3.4-

Figure 3 .. 7, Figure 3.9), we find that the band-gap maps for both the TE and TM modes 

have almost similar shapes except that all band-gaps are closed at the Brewster radiation 

line (m=ckz/n1/sin(tan-1(n2 /n1))=ckz/l.105) for TM modes. Hence, here we only 

consider the TE modes unless otherwise mentioned. 

Figure 3.11 shows the band-gap maps of TE modes of the ID PCs with the n1 = 

1.4, n2 = 1.8, and d2 = 0.6092A. In Figure 3.11, four different radiation lines are also 

shown: the solid line for the air line (i.e., nL = 1.0), the dashed line for the low index line 

(i.e., n1 = 1.4), the dotted line for the high index line (i.e., n2 = 1.8), and the dash-dotted 

line for the higher index line (i.e., nH = 2.2). By comparing the difference of the band-gap 

maps for different niln2 and di/A values, four typical guiding regions are clearly 

identified, and defined as follows. Region I is the radiation area between 0 and ni, and 

region II is the radiation area between n1and n12, in which n12 is defined as its 

corresponding radiation line that is tangential with the first band of ID PCs, or n12 = 

n1d1/A+nid:/A. The difference between them is that the band-gaps in region I close and 

then open up frequently and the band-gaps in region II never close and arrange along the 

radiation line regularly. The former, due to small value of kz, has a chance to meet the 

condition of the gap closure (kixd2 = mJr, where m is the number of the gaps closure) 

under the Bragg condition kixd2 + k1:xd1 = n!t (0 < m < n, where n is the order of the gap). 

The higher the order of the band-gaps, the larger the closure times of the band-gaps. 

Especially, for the TM wave, all band-gaps are closed at the Brewster radiation line. On 

the other hand, the later, due to the large value of kz and small value of kx, has no chance 

to meet the condition of the gap closure and all gaps are open. Region III is the radiation 

area between n12 and n2, and region IV is the radiation area between n2 and oo, The 
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difference between them is that the radiation line in region HI crosses all bands and the 

radiation line in region IV crosses none of bands because the all bands have the 

asymptotic (short-wavelength) behavior when they close to the n2 radiation line. 

When a core layer with index nc and thickness d is inserted into a finite l D PC, the 

10 PCW is formed as shown in Figure 3.10. With the assistance of the band-gap map of 

10 PCs, when the index of the core is changed (it is equivalent to the thickness change of 

the core), four different guiding regimes are clearly recognized, which correspond to the 

four regions as shown in Figure 3.11. As shown later, regimes I and II belong to the long­

wavelength and the short-wavelength regimes, respectively, and light for both regimes is 

guided due to the PBG effect. In regime III, light is guided due to the PBG effect in the 

short-wavelength and the TIR effect in the long-wavelength. In regime IV, light is guided 

due to the TIR effect. Due to the nature of different guiding regimes, the modal 

characteristics in each regime behave differently, as clearly shown in the next section. 
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Figure 3.11 The band-gap map of TE waves of lD PCs with the n1 = 1.4, n2 = 1.8, and d1 
= 0.6092A, in which four different radiation lines are shown: solid line for ni (i.e., 1.0), 
dashed line for ni, dotted line for n1, and dash-dotted line for nH (i.e., 2.2). Also four 
guiding regions are indicated, which belong to (1, n1), [n1, nn], (n12. n2), and [n2. oo]. 

3.4.2 TIR and PBG Guiding 

For lD PCWs defined in the previous section with N= 32, the effective indices and mode 

profiles (see Appendix A) can be calculated by the transverse resonance method (TRM) 

for different core indices nc = 1.0, 1.4, 1.7, and 2.2, which belong to four guiding regimes 

mentioned in the previous section. For the sake of simplicity, here only guided modes of 

lD PCWs in the second band-gap (i.e., the PBG band-gap between band 4 and band 5) 

and the semi-infinite band-gap are considered. 

Figure 3.12 and Figure 3.13 show the effective indices neff and the corresponding 

mode profiles E(x) for ID PCWs with the core width of d= 19.131 µm. In Figure 3.13, 

the operating wavelengths and corresponding confinement factors in the core are 
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presented in Table 3. l. From Figure 3.12 and Figure 3.13, for the PBG guided modes in 

the same band-gap, it is observed that the operating wavelengths move from long 

wavelength to short wavelength and the number of guided modes increases when the 

index nc of the waveguide core increases. Consequently, the modal index closes to the 

radiation line of the core (so the dispersion of the mode decreases) and the mode energy 

is confined mostly within the low index core and the first high index layer on either side 

(so the confinement factor of the mode increases). This phenomenon resembles the case 

when the operating wavelength of the mode increases for the fixed radiation line (e.g., nc 

= n1) [7]. On the other hand, for the TIR guided modes in the semi-infinite band-gap, the 

similar effect is observed except the dispersion of modes. It is demonstrated that the 

dispersion of the mode increases when the index of the waveguide core increases. This is 

understood as the width of the semi-infinite band-gap (between the radiation lines of the 

core and the band l) increases when the index of the waveguide core increases. Also, it is 

interesting to note that, for the same number of the layer pairs, the confinement loss of 

ID PCWs decreases when the index of the waveguide core increases. Also, at short 

wavelengths, the fundamental mode of the PCW s with a core index of nc < n1 experiences 

cut-off. We will show this result in detail later (see 3.4.3). 
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Figure 3.12 The TE effective indices ne.ffas a function of wavelength of the guided modes 
for the core index nc = LO (a), 1.4 (b), 1.7 (c,d), 1.8 (e), and 2.2 (f) of ID PCWs in the 
second band-gap (a, b, and c) and semi-infinite band-gap (d, e, and f). The fixed design 
parameters for ID PCWs are as follows: d1 = 0.6092 A = 3.437 µm, A = 5.642 µm, d = 

3.391A=19.131µm,N=32, n1=1.4, and n1= 1.8. 
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Figure 3.13 The electric field Ey of the guided modes for the core index nc = 1.0 (a), 1.4 
(b), 1.7 (c, d), 1.8 (e), and 2.2 (f) of ID PCWs in the second band-gap (a, b, and c) and 
semi-infinite band-gap (d, e, and f). The fixed design parameters for ID PCWs are the 
same as in Figure 3.12. 

Table 3.1 Wavelengths and confinement factors of the modal profiles shown in Figure 3.12. 

Field # of Guiding Wavelengths, µm Confinement factors 
Profiles modes mechanism 
Figl3a 4 PBG 7.40,7.40,8.30,8.90 0.981,0.918,0. 798,0.660 
Figl3b 6 PBG 5.07,5.07,5.07, 0.991,0.970,0.935, 

6.5,7.3,9.0 0.774,0.678,0.408 
Figl3c 9 PBG 2.5,2.5,3.0,3.0,3.0, 0.991,0.973,0.937,0.844,0.856, 

3.0,3.0,3.0,3.5,3.5 0.856,0.841.0. 791,0.6882 
Fig13d 1 TIR 10.0 0.916 
Figl3e 4 TIR 10.0, l 0.0, l 0.0, l 0.0 0.993,0.961,0.946.0.935 
Figl3f 6 TIR l 0.0, 10.0, l 0.0, l 0.0, 0.998,0.993,0.982,0.965, 

10.0, 4.5 0.932,0.726 

3.4.3 Effects of the Number of Layer Pairs on Modal Properties 

Using the proposed analytical model, it is very convenient to predict the number of layer 

pairs needed to avoid possible modal leakage, which is one of important design 

considerations, for any desired wavelengths. Here the previous mentioned ID PCW s are 

used to investigate the effects on modal properties for different number of layer pairs (N). 
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When the number of layer pairs (N) decreases from a large number (e.g., 64) to 

unity, it is observed that the effect of the number of layer pairs on the effective index, the 

modal profiles, and dispersion is negligible at the short wavelength region and more 

pronounced at the long wavelength region. As expected, it can be understood by the 

nature of the band structure with off-axis propagation [7]. At the short wavelength region 

(i.e., the high-order band-gap and larger kz region), light is trapped in the high index 

region dµe to the TIR effect as an isolated optical waveguide. So the modal properties of 

ID PCWs are mainly determined by an optical waveguide consisting of the low/high 

index core and the first high/low index layers on either side. When the operating 

wavelength increases, the modal fields spread more into the cladding, and the 

accumulated contribution to modal properties is much more pronounced. Overall, the 

effect of the number of layer pairs on the confinement loss is more significant. It is worth 

to note, in some sense, that the ARROW waveguide is a special kind of ID PCWs with N 

= 1. Figure 3.I4 shows the confinement loss Le of the fundamental mode for the core 

index nc = 1.0, I .4, 1.6, and 1. 7. In general, the effect of the number of layer pairs on the 

confinement loss in the PBG-PCWs is more pronounced than that in the PCF-PCWs 

because of different guiding regimes. 
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Figure 3.14 The confinement loss Le of the fundamental guided modes for the core index 
ne = 1.0 (a), 1.4 (b), 1.6 (c), and 1.7 (d) of ID PCWs in the second band-gap (a, b, and c) 
and semi-infinite band-gap (d). The fixed design parameters for lD PCWs are the same 
as in Figure 3.12 except the number oflayer pairs. 

3.4.4 Scaling Transformation with the Core Thickness 

As we know, one of most important features of the PCs is the scaling transformation with 

the pitch A (see Appendix C). In some sense, in order to assist the design process of 

waveguides, the scaling transformation of modal properties with the ratio d2/ A can also 

be approximately obtained [58), [59]. With the similar thought, in order to design the 

waveguides with specific modal properties such as the single-mode operation and group 

velocity dispersion, the scaling transformation of the basic modal properties with the 

thickness d of the core should be understood. Like the scaling transformation of the basic 

modal properties with the ratio d:/A, the relation of the basic modal properties with the 

thickness d of the core is no longer linear with the scaling parameter P (i.e., dld0). For 

this reason, we have to calculate modal properties numerically and extract a nonlinear 

relationship. For example, for the waveguide dispersion Dg, Figure 3.15 shows the 

simulation results of the fundamental guided modes for the core index he = 1.0, 1.4, 1.8, 
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and 2.2 of lD PCWs in the second band-gap and semi-infinite band-gap, respectively. 

As expected, when the thickness d of the core decreases, the effective index decreases 

and the modal profile spreads more into the cladding so that the dependence of the 

effective index on the wavelength is more pronounced. This, in tum, increases the 

dispersion of the PCW s. As seen from figure, however, the dispersion curves for the 

different guiding mechanisms (e.g., PBG with (a) and (b) and TIR with (c) and (d)) 

behave differently. This can be understood as follows. For the PBG-PCWs, according to 

(3.20), in order to meet the Bragg phase condition of the mode, kcxd should keep constant 

and kcx is inversely proportional with the thickness d of the core. So, with the help of 

(3.3), the effective index neff decreases and the modal profile spreads more into the 

cladding according to the variation theorem. After some algebraic manipulations, we can 

obtain that Dg ex. lief, which is also consistent with the dispersion relation of the metallic 

plate (see 3.5.2). For the TIR-PCWs, the scaling transformation of the waveguide 

dispersion of the PCWs with respect to the core thickness d can be obtained from the slab 

waveguide theory with the help of the EIM method, and we have that Dgcx:. lid. 
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Figure 3.15 The waveguide dispersion Dg of the fundamental guided modes for the core 
index nc = 1.0 (a), 1.4 (b), l.8(c), and 2.2 (d) of ID PCWs in the second band-gap (a and 
b) and semi-infinite band-gap (c and d). The fixed design parameters for ID PCWs are 
the same as in Figure 3. I2 except the thickness of the core layer. 

3.4.5 Envelope Approximation Analysis 

Now we start to investigate the modal characteristics and physical meaning of ID PCW s 

by way ofexamples through the EAM and EIM methods. The PCW under study is a ID 

heretostructure PCW as shown in Figure 3.16. The thickness d2 ofthe high index layer n2 

is OAA and the core width of the waveguide is that 2W =IA(/= l, 2, 3, 4, ... ). 

Firstly, we need to understand the optical properties of the PC structure used as the 

cladding material, which consists of two alternative layers with index n2 = 3.1623 and n1 

= 1.0 (air). As we know, in order to confine the light in the PCWs, the positive large 

curvature is appreciated for the TIR-based PCWs and the negative large curvature for the 

PBG-based PCWs. Figure 3.17 shows the band curvature with relation of the propagation 

constant for the ID PCs with two alternative layers with index n2 = 3.1623 and n1 = LO 

(air) at di A= 0.5. As can be seen, bands with the odd number have the positive curvature 

61 

50 



Chapter 3. One-Dimensional Photonic Crystal Waveguides 

(or effective "mass") and bands with the even number have the negative curvature, and 

low-order bands have larger curvature than high-order bands. As expected, the curvature 

with larger propagation constants, which is located in short wavelengths, is larger than 

that with less propagation constants, which is located in long wavelengths. Figure 3.18 

shows the band curvature of band 1 and 2 with relation of propagation constant for the 

ID PCs with two alternative layers with index n2 = 3.1623 and n1 = 1.0 (air). As can be 

seen, larger band-gaps have larger curvature. Also from the simulation results, it is shown 

that, for the first and second bands, the largest curvature is around the quarter wavelength 

thickness d2/A = 0.24. 
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I I 
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n2 n1 n2 p'1 n'2 n'2 n'1: n2 n1 n2 
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Figure 3.16 The schematic view of a ID heretostructure PCW consisting of two 
alternative layers n1 and n2 with the high index thickness d2 and the pitch A with core 
layer of N pairs of two same lattice layers n '1 and n '2. 

Secondly, we consider the case in which the average index in the core is higher 

than in the cladding with two alternative layers with index n2 = 3.1623 and n1 = LO (air) 

at d2/A = 0.24. We choose a contrast .&0 :: 0.1, which means that the core has with two 

alternative layers with index n '2 = 3.3166 and n '1 = 1.0488 at di/A= 0.24. As we know 

from the band structure, guided modes exist where the curvature is positive. This occurs 

at kx = 0 for the odd number of bands or at kx = Jli A for the even number of bands in the 

band structure with on-axis propagation. On the other hand, this occurs for the odd 

number of bands in the band structure with off-axis propagation. For the sake of 

simplicity, we just focus on the first band. 
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Figure 3.19 shows the dispersion relation for kz sweeping from zero to the 2nl A 

point by two methods for the PCW with 2 W = 5 A. The field patterns of the modes at kz = 

rrJA is shown in Figure 3.20. The simulated results are good agreement with those 

computed numerically by the PWE method at an arbitrary position along the z axis (not 

shown in figure). As can be seen from figure, the simulated result by the EIM method is 

in good agreement with that by the EAM method at long wavelengths and the effective 

index of modes by the EIM method is larger than that by the EAM method at the short 

wavelengths, which are also explained by the field patterns as shown in Figure 3.20. 
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Figure 3.19 Dispersion relation of the waveguide and band structure of the core and 
cladding materials of the first band at kx= 0. 
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Figure 3.20 Even modes of the first band calculated by EAM and EIM for kz= 1CIA for the 
average refractive index higher in the core than in the cladding (kx = 0). 

Finally, we consider the case in which the average index in the core is lower than 

that in the cladding. As mentioned earlier, the PBG wave guiding is possible even when 

the average index in the core is lower than that in the cladding. We interchange the roles 

of the core and the cladding in the example above: the cladding material is now made of 

rods of n1 = 3.3166 in a background of n2 = 1.0488, while the core is made of rods having 

n'1 = 3.1623 lying in air (n'2 = 1.0). In this case, the contrast is L\0·= -0.091. Guided 

modes are allowed where the curvature of the bands is negative, which occurs at kx = nl A 

in the case of the first two bands. As seen in the previous analysis, this transverse 

component of the wave vector introduces a modulation to the envelope function in the 

transverse direction, so that the actual slowly varying envelope of the mode is the 

function f nAO· This modulation explains why the envelope function and the actual field 

have opposite parities. The dispersion relation and shapes of the modes are displayed in 

Figure 3.21 and Figure 3.22, respectively. 
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3.5 Discussions 

After understanding some basic concepts such as space-filling modes, vector nature, and 

modal properties, here we discuss some issues such as the effect of the ratio d2/ A on 

modal properties, the single-mode condition, and relation with PCFs (i.e., 2D PCWs). 

3.5.1 Effect of the Layer Size-to-Pitch Ratio 

By using the definition of the normalized propagation constant b and the normalized 

frequency Vin 3.3.2, the normalized propagation constants of first eight bands of TE 

modes of ID PCs with the function of Vfor ID PCWs with the ratio d2/A = 0.8 (dash-dot 

lines), 0.6209 (dot lines), 0.3 (dash lies), and 0.0 (solid lines) are shown in Figure 3.23. 

AU other design parameters for 1 D PCW s are fixed and the same as those in Figure 3 .12. 

As can be seen from the figure, the effect of different ratio d2/ A on modal properties of 

ID PCWs is similar with the one of wavelengths. For the small d2/A ratio PCW (e.g., :::; 

0.3), light is well confined within the core by the first and second cladding layers and 

small number of the layer pairs is enough to confine light due to a very wide band-gap. 

On the other hand, for the large d2/A ratio PCW (e.g.,;;:::: 0.9), light is weakly confined and 

field penetrates into a large area of air holes and large number of the layer pairs is needed 

to confine light due to a very narrow band-gap. 

3.5.2 Comparison with lD Metallic Pa:rallel-Plate Waveguide 

In general, the modal fields and the transverse constants of the metal parallel plates with 

the index nc are easily obtained as follows 

{
asin(kx(x+d/2)) for the TE wave 

E(x)= 
acos(kx(x+d/2)) for the TM wave 

k = { (n + l)TC Id for the TE wave 

x mTC Id for the TM wave 

(3.34) 

(3.35) 

where dis the thickness of the waveguide, and integers n, m = 0, l, 2, 3, ... (TEM wave 

for m = 0). The effective indices of the metal parallel plates are obtained by using 
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k'1: = k(n1 - n;ff) and their corresponding dispersions can be calculated. For example, the 

waveguide dispersion of the fundamental mode (i.e., n = 0 and m = I) can been 

analytically calculated in the unit of ps/nm/km 

D =A (nc /2d) 2 

g c V(n1-c212d)2 

where c is the speed of light and A is the operating wavelength. 
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Figure 3.23 The normalized frequency b of first eight bands of TE waves of ID PCs with 
the function of normalized propagation constant V for 1 D PCW s with the ratio d2/ A = 0.8 
(dash-dot lines), 0.6209 (dot lines), 0.3(dash lies), and 0.0 (solid lines). AH other fixed 
design parameters for ID PCWs are the same as in Figure 3.12. 

Figure 3.24 shows the TE effective indices ne.trofthe fundamental guided mode as a 

function of wavelength for the different core thickness d of the equal-thickness metal 

waveguides. For comparison, the TE effective indices ne.ff (Figure 3J2b) of the 

fundamental guided mode of lD PCWs in the second band-gap are also plotted. As can 
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be seen, when the thickness d is large enough (e.g., > 2A), the effective index difference 

between the lD PBG-PCWs and metallic wavguides is very small except near the band­

gap edge. When the thickness d decreases, the effective index difference becomes large. 

However, when we compare the dispersion, the dispersion difference between them is 

still large even the thickness d increases to 1 OA. In general, the differences between the 

ID PBG-PCWs and metallic wavguides are summarized as follows: 

1. Metallic wavguides only have mode cut-off of kz = 0, and PBG-PCWs also have 

the band edge cut-off. 

2. Metallic wavguides only have the positive (anomalous) dispersion, and PBG­

PCW s also have the negative (normal) dispersion with the positive dispersion 

slope. 

3. In general, PBG-PCWs have larger dispersion than metallic wavguides. 

4. PBG-PCWs have similar dispersions with metallic wavguides only when the 

index ratio n:ln1 and the core thickness dare large enough. 

3.5.3 Mode Cut-Off and Single-Mode Operation 

Like conventional step index slab waveguides, the TIR-PCWs guide light due to the TIR 

effect. For the guided modes, their effective indices neffmeet the following relation 

(3.37) 

Where nc is the refractive index of the core of waveguides and nFsMJ is the cladding 

effective index of the PCWs (i.e., the fundamental space-filling mode of the PCs). The 

normalized effective frequency Veffi less than K for the single-mode operation as the slab 

waveguide, is defined 

2K I 2 2 
Veff = Jd V nc - nFSMl (3.38) 

Where d is the core thickness and A, is the operating wavelength. 

For the PBG-PCWs, it is found that modal properties for both ID PBG-PCWs and 

metallic waveguides are similar so that the single-mode condition of metallic waveguides 
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can be utilized for ID PBG-PCWs. From (3.38), the single-mode operation can be 

calculated as Ac< ncd. More precise cut-off condition and single-mode operation can be 

obtained by employing the more accurate methods as mentioned in previous chapter. The 

possible cut-off conditions of the guided modes of lD PCWs are shown in Table 3.2. 
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Figure 3.24 The TE effective indices ne.ffof the fundamental guided mode as a function of 
wavelength for the different core thickness d of 1 D PCW s in the second band-gap and the 
equal-thickness metal waveguides. The fixed design parameters for ID PCWs are as 
follows: d2 = 0.6092A = 3.437 µm, A= 5.642 µm, N = 32, nc = 1.4, n1 = 1.4, and n1 = I .8. 

Table 3.2 Possible cut-off of the guided modes of ID PCWs 

Guiding Guiding Cut-off (short Cut-off (long Cut-off 
Regime mechanism wavelength edge) wavelength edge) (kz= 0) 

l PBG Yes Yes Yes 
2 PBG Yes Yes No 
3 PBG Yes Yes No 
3 TIR Yes No No 
4 TIR No No No 
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3.5.4 Relation with PCFs 

As we know, due to variety of propagation directions, the band-gap of 2D PCs is much 

narrower than that of l D PCs. However, there are still many common features between 

the PCFs (i.e., 2D PCWs) and ID PCWs as long as the 2D PCs have a reasonable band 

structure. For example, instead of forming the PCFs by changing the core index, we can 

also form the PCFs by changing the size do of the defect hole. The relation between l D 

PCWs and the PCFs is shown in Table 3.3, where d and do are diameters of the air-hole 

and defect-hole of the PCFs, and D (note we use D to replace d to avoid the symbol 

confusion) and d2 are the thickness of the core and high index layer of ID PCWs, 

respectively. 

Table 3.3 Relation between ID PCWs and 2D PCFs. 

Guiding region ID PCWs, D > d2 2D PCFs 
Regime I nc= l NIA 
Regime 2 ncE fl, nnl do>d 
Regime 3 nc E (n12,n2) doE (0, d) 
Regime 4 nc=n2 do=O 

3.6 Summary 

In this chapter, by employing some analysis methods (i.e., the transfer matrix method, the 

transverse resonant method, the effective index method, and envelope approximation 

method), the modal characteristics (e.g., the effective index, the dispersion, the 

confinement loss, and the model field profiles) of the guided modes of ID PCWs are 

comprehensively investigated. 

Firstly, in order to gain some insight of ID PCs, a generalized transfer matrix 

method is used to calculate the band structure. The band structure of lD PCs with on-axis 

and off-axis propagation is investigated in some detail. Through the complete analysis of 

the band structure, some salient features (e.g., the closure of the band-gap) of lD PCs are 

recognized and understood through the Bragg condition. By employing the variation 
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theorem, the band structure of ID PCs is easily understood with the concept of the space­

filling modes. It is this theorem that provides another way to calculate the band structure 

through some numerical algorithms without any approximations. 

Secondly, in order to calculate the modal properties of ID PCWs, a rigorous 

modeling method (i.e., the transverse resonant method) with combination of the transfer 

matrix method is proposed. With the help of the band structure of ID PCs, four guiding 

regimes in l D PCW s are identified for the different indices of the core of 1 D PCW s. The 

modal characteristics for each regime behave differently from the guiding mechanism 

point of view. Some effects (e.g., the number of layer pairs) on modal properties are 

investigated and scaling transformations of modal properties related to the design 

parameters of the waveguide structures are derived. Through some approximation 

methods (e. g., the EIM and EAM methods), the physical insight (e.g., the effective 

cladding/core index) of ID PCWs can be easily understood. 

Finally, some basic issues, such as effects of the layer size-to-pitch ratio and core 

thickness, cut-off condition and single-mode operation, comparison with ID metallic 

waveguide, and relation with the PCFs, are discussed. 
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Photonic Crystal Fibers 

In this chapter, with the help of the band structure of the 2D PCs, the modal 

characteristics of the photonic crystal fibers (PCFs, or 2D PCWs) with low and high 

index defects (i.e., the PBG-PCFs and TIR-PCFs) are thoroughly analyzed and evaluated. 

The simulation results are validated by comparison with published simulated and 

measured results. The vector nature of the PCFs is examined through a systematic 

comparison among the full-vector, semi-vector, and scalar models. The dependences of 

the important design parameters such as the size of interstitial holes and the number of 

air-hole rings on modal characteristics of the PCFs are investigated. The scaling 

transformations of the modal properties with respect to the key design and operation 

parameters of the PCFs are obtained. 

4.1 Introduction 

There has been intensive research recently into photonic crystal fibers (PCFs) [63]-[65], 

also known as the holley fibers (HFs) or the microstructured fibers (MOFs), in which a 

waveguide structure is formed by a two-dimensional periodic structure made from an 

array of air holes with some defects. One of the important features of the PCW s is the 

ability to localize the modal field around the defects. Based on the knowledge we have 

acquired from the analysis of 1 D PCW s, we will focus on the analysis of modal 

properties of some typical 2D PCWs (i.e., the PCFs with 20 triangular lattice structrure). 

According to light guided mechanisms, the PCFs are:fdivided into two general 

categories, namely, the photonic band-gap (PBG) and total internal reflection (TIR) 

PCFs. The PBG-PCFs are made by a low-index core (e.g., the air defect) within the 2D 

PC and the guidance of light is due to the stop-band (or band-gap) of the PBG effect, as 

the effective index of the cladding is always higher than that of the core. The TIR-PCFs 

are made by a high-index core (e.g., the pure silica defect) and light is guided in the core 
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due to the lower effective refractive index in the surrounding cladding. A number of 

methods based on scalar and vector formulations have been developed to analyze the 

modal characteristics of the PCFs. Despite the seemingly plethora of methods for modal 

analysis, the level of accuracy and scope of validity for the scalar and the vector 

formulations with respect to the calculation of the mode properties (e.g., dispersion) of 

the PCFs have not been studied in a systematic fashion. In this chapter, firstly, based on 

the band.structure of2D PCs, the modal characteristics of both PBG-PCFs and TIR-PCFs 

are systematically analyzed and evaluated. Secondly, the vector nature of the PCFs is 

evaluated through the vector, semi-vector and scalar models. Thirdly, some basic effects 

on modal characteristics of the PCFs (e.g., size of interstitial holes and number of air-hole 

rings), which are very helpful for design and optimization of the practical PCFs, are 

investigated. Finally, the scaling transformations of the modal properties are discussed. 

4.2 2D Photonic Crystals and Photonic Band-Gap 

As we know from the previous chapters, the 20 photonic crystals (PCs) are homogeneous 

in the z direction. There are several typical lattice structures of 20 PCs such as the square 

and the hexagonal lattice structures (e.g., triangular [7], honeycomb [66], and Kagome 

[67]). For the sake of simplicity, we only consider the triangular lattice structure as 

shown in Figure 4.l(a). 

Figure 4.1 The unit cell and its irreducible Brillouin zone (shaded area) of a 20 PC with 
triangular lattice of air columns (n1) with the sized drilled in a dielectric substrate (n2). 
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We first discuss the band structure of the 20 PC with in-plane propagation. As 

discussed before, the mirror symmetry allows us to classify the modes by separating them 

into two polarizations: the TE wave and the TM wave. For the triangular lattice, the unit 

cell and its irreducible Brillouin zone (shaded area) are shown in Figure 4.1, with typical 

physical dimensions (i.e., d = 0.96A) and indices (i.e., n1 = 1.0 and n2 = 3.6056). Figure 

4.2 shows their corresponding band structures for both polarizations. As can be seen from 

the figure, the band structures for the TE and TM waves are different. Further, unlike the 

square lattice in which there is no band-gap for the TE wave, the triangular array has a 

complete band-gap for both polarizations. However, when the index ratio n2/n1 decreases 

(e.g., the silica-air PCFs ), unlike its counterpart in the 1 D PCs, this complete band-gap 

disappears. 
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Figure 4.2 The photonic band structure of a 2D PC with a triangular array of air columns 
(n1 = 1.0) with the size d = 0.96A drilled in a dielectric substrate (n2 = 3.6056) for both 
polarizations: TE (a) and TM (b). 

As we know, albeit no band-gap for the low index-ratio PCs with in-plane 

propagation, the band-gap with off-plane propagation opens up for a large enough kz. 

This, in tum, leads to a fact that the small index-contrast PCFs can guide light due to the 

PBG effect. Once there is a band-gap in the PCs, it is possible to propagate in the PCFs 

by utilizing the PBG effect. Figure 4.3 and Figure 4.4 show the band structure of a 2D PC 

with a silica-air triangular array of air columns with the sized= 0.7044A [60] and 0.9A 

[61] drilled in a silica substrate, respectively. It is note that our simulation results agree 

well with some published results such as the finite element method (FEM) [60], [61]. On 

the other hand, for the triangular array with dielectric columns (i.e., n1 > n2), the similar 

results are also obtained. Figure 4.5 shows the photonic band structure of a 2D PC with a 

silica-polymer triangular array of polymer columns with the size d = 0.6A and 0.9A 

drilled in a silica substrate, respectively. 
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Figure 4.3 The photonic band structure of a 2D PC with a silica-air triangular array of air 
holes with the size d = 0. 7044A drilled in a silica substrate (n2 = 1.45). 
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Figure 4.4 The photonic band structure of a 20 PC with a silica-air triangular array of air 
holes with the sized = 0.9A drilled in a silica substrate (n2 = 1.45). 
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Figure 4.5 The photonic band structure of a 2D PC with a silica-polymer triangular array 
of polymer columns (n1 = 1.8) with d = 0.6A and 0.9A drilled in a silica substrate (n2 = 
1.4). 

Through further simulations, it is found that there are the similarity and difference 

between the off-plane propagation of 10 PCs and that of2D PCs. The difference is at the 

area above the low index line where the band-gaps close when kz decreases for 2D PCs 

and the gap never close completely (albeit closes at some discrete frequency points) for 

ID PCs. The similarity is at the area below the low index line where the band-gaps open 

up for both 10 and 20 PCs when kz decreases. This leads to the short-wavelength 

asymptotic behavior of the modes and only a few areas around defects affect the optical 

properties of the PCFs. It is also observed that, when the size-to-pitch ratio di A increases 

for air columns or decreases for dielectric columns, the first band-gap goes up to cross the 

air line (or the low index line), which is an essential condition for the wave propagation 

of the PCFs in air (or the low index core), and the bandwidth of the band-gap along the 

air line (or the low index line) also increases. Although there is no complete band-gap for 
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20 PCs with off-plane propagation, fortunately, it is not important for the PCFs. 

Accordingly, in order to confine light in the core, it is very important to have a band-gap 

above the index line of core. It is worth to note that the region between the band 1 (or 

semi-infinite gap) and the index line of the core allows the TIR guiding and all others 

belong to the PBG guiding. Therefore, it is very helpful to investigate the band structure 

with the functions of the PC dimensions and wavelengths. Here we discuss the band 

structure of the 2D triangular PCs in some detail. Figure 4.6 shows the band structure of a 

20 PC with function of the normalized propagation constant for different di A values with 

a triangular array of polymer columns (n1 = 1.8) drilled in a silica substrate (n2 = 1.4). 

-CJ 

~ -
~ c 
CD 
::;, 
er 
! -"C 

-~ 
'i e 
0 
z 

18 

15 

12 

9 

6 

3 

0 

band 1 

··············n line 
1 

------11 line 2 

0 2 4 6 8 10 12 14 16 18 20 22 24 

Normalized propagation constant (k~) 

Figure 4.6 The photonic band structure of a 20 PC with function of the normalized 
propagation constant for different d/A values with a triangular array of polymer columns 
(n1 = 1.8) drilled in a silica substrate (n2 = 1.4). 
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Because the complete band-gap, which is generally measured by the gap-midgap 

ratio, is not important for the PCFs, here we define a new measure parameter along the 

low index line to measure the relative bandwidth to confine light in the PCFs. This new 

gap-midgap ratio can be defined by 

tlm 2(mn - (J)L) 
-=-~-~ (4.1) 

where ~and at are the cross points between the gap and the low index line. Figure 4.7 

shows this new gap-mid gap ratio with function of di A of a 20 PC with a triangular array 

of polymer columns (n1 =1.8) drilled in a silica substrate (n2 = 1.4). 
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Figure 4.7 The new gap-midgap ratio with function of d/A of a 20 PC with a triangular 
array of polymer columns (n1 = 1.8) drilled in a silica substrate (n2 = 1.4). 
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4.3 PCFs with Low Index Defect 

As mentioned before, the PBG-PCFs (or simply PBGFs) are made by a low-index core 

(e.g., air) and thus light is guided in the core region due to the PBG effect. Due to the 

guide of light through air, the PBGFs have the potential applications for the low-loss, 

linear, high-power delivery, and controllable dispersion transmission. Like the 

counterpart in lD form (i.e., ID PBG-PCWs), the guided modes exist in the 

corresponding band-gaps and are cut-off when the frequency of the mode is larger or less 

than the cut-off frequency (i.e., off the band-gap). In addition, practical PBGFs have only 

limited number of air-hole rings, and hence all modes are essentially leaky modes. As the 

PBGFs guide light at the long wavelength, their transmission loss mainly depends on the 

confinement loss of the fiber and the confinement loss, which is very sensitive to the 

number of air-hole rings. 
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Figure 4.8 The cross section of a BPGF consisting of a regular triangular air-hole array 
consisting of the air (n1 = 1.0) and silica (n2 = 1.45) with four physical parameters: the 
number N of air-hole rings, air core diameter d, air-hole size d2, and the pitch A. 
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Due to the mode cut-off of the fundamental modes in the BPGFs, in which the air 

core consists of one unit cell [62], we assume that the core of the BPGFs covers the area 

around seven unit cells as shown in Figure 4.8 with four physical parameters: the number 

N (e.g., 4) of air-hole rings, air core diameter d (e.g., 2A + d2), air-hole size d2, and the 

pitch A. For the sake of simplicity, here we assume that the PBGF consists of an air core 

is surrounded by a uniform PC cladding with circular air holes. By employing the PML 

boundary conditions, numerical solution methods can be readily applied. 

4.3.1 Validation: Comparison with FEM Simulation 

Because of the high index-contrast of the PBGFs with respect to the single-mode fiber, it 

is necessary to validate our model with the published results (e.g., the effective index and 

the confinement loss). For this purpose, we use the commonly used large air-hole silica 

PBGFs with A= 2.0 µm and d2/A = 0.9 [61]. Figure 4.9 presents the dispersion curve of 

the guided mode of the PBGFs in the first gap as a function of normalized propagation 

constant kzA. As can be seen from Figure 4.9, the discrepancies between simulation 

results by the three methods are indistinguishable. Because the plane wave expansion 

(PWE) method cannot handle the PBGF with the limited number of air-hole rings, we 

calculated the confinement loss of the PBGFs through the finite difference method 

(FDM). Figure 4.10 shows the confinement loss of the PBGFs as a function of the 

number N of air-hole rings. As can be seen from Figure 4.10, the simulation results by the 

FDM method are in excellent agreement with those by the vector finite element method 

(FEM) [61]. It is also shown that the confinement loss in air-guiding PBGFs is very 

sensitive to the number of air-hole rings. Unlike the TIR-PCFs, larger number of air-hole 

rings is needed to preserve the similar confinement loss (e.g., N = 20 for the confinement 

loss of 0.0 l dB/km). Through the scaling transformation of the confinement loss with 

respect to the pitch A (see Appendix C), the effect of the pitch on the confinement loss is 

easily obtained. For the similar wavelength of 1.55 µm, with the help of the band 

structure of 20 PCs (e.g., Figure 4.3 and Figure 4.5), the guiding regimes for the PBG­

PCFs and TIR-PCFs are easily recognized: the PBG-PCFs operate at the long wavelength 
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region and the TIR-PCFs operate at the short wavelength region. Because of different 

guiding regimes, the PBG-PCFs and TIR-PCFs behave differently. Due to the short 

wavelength region, it is possible for the TIR-PCFs to drastically reduce the confinement 

loss at a fixed wavelength by increasing the pitch. On the other hand, due to the long 

wavelength region, the increase of the pitch of the PBG-PCFs with preserving the ratio 

does not significantly reduce the confinement loss at a fixed wavelength. 
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Figure 4.9 The modal dispersion (ml\/c) of the guided mode of PBGFs with A= 2.0 µm 
and d:IA = 0.9 in the first gap as a function of normalized propagation constant kzA. 

4.3.2 Mode Cut-off and Single-Mode Operation 

As we know from the lD PBG-PCWs, the fundamental modes of the PBGFs could be 

cut-off for the small size of the low index core. The number of the modes depends on the 

band structure of the PC cladding (e.g., the curvature of the band) and the parameters of 

the core (e.g., the core size and core index). In other words, with the help of the band 

structure of the PCs, the number of the guided modes in each band-gap can be easily 

calculated by some numerical methods. Like their counterpart in ID form (i.e., ID PBG-
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PCFs), there are three kinds of cut-off, which were summarized in table 3.2. The single­

mode condition can be easily evaluated through some analytic methods mentioned in the 

previous chapter. Here we give an analytical formula for the calculation of number of the 

guided modes with analogy to the conventional fiber [62]: 

2 2 2 
(kz H -kz L)d N= , , 

16 
(4.2) 

where kz,H and kz,L are the upper and lower edges of the PC at the fixed wavelength. 
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Figure 4.10 The confinement loss of PBGFs in the first gap with NA,= 1.5, A= 2.0 µm 
and di/A= 0.9 as a function of the number N of air-hole rings. 

4.3.3 Modal Characteristics 

After verifying the simulation methods and understanding the single mode operation, we 

are ready to investigate the modal properties (see Appendix A) of the PBGFs. For 

instance, Figure 4.11 presents a typical dispersion curve of the guided mode of PBGFs in 

the first gap as a function of normalized propagation constant kzA. Through further 
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analysis, it is found that there are the similarity and difference between l D PBG-PCWs 

and 2D PBGFs, which were summarized in 3.5.4. 
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Figure 4.1 l The modal dispersion (mt\/c) of the guided mode of PBGFs with A= 2.3 µm 
and d2/A = 0.9 in the first gap as a function of normalized propagation constant kzA. 

4.4 PCFs with the High Index Defect 

As mentioned before, the TIR-PCFs (or simply PCFs) are made by a high-index core 

(e.g., pure silica) and thus light is guided in the core region due to the TIR effect They 

are, however, different from the conventional single-mode fiber in several aspects. First 

of all, the index difference between the core and the effective cladding in the PCFs is a 

strong function of wavelength, and hence the modes supported by the fibers are 

essentially more dispersive. Secondly, practical PCFs have only limited number of air­

hole rings, and hence all modes are essentially leaky in nature. Finally, the large index 

contrast between silica and air gives rise to strong vector properties of the modal 

characteristics, so the vector feature of the PCFs must be considered. 
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Figure 4.12 The cross section of a PCF consisting of a regular triangular air-hole array 
with five rings of air holes with two physical parameters: air-hole size d and pitch A. 

Based on the above-mentioned reasons, we investigate the modal properties by the 

rigorous numerical methods (e.g., the FDM method). Figure 4.12 shows a typical PCF 

with five rings of air holes, in which only two physical parameters (i.e., the air-hole size 

d and the pitch A) are critical. For the sake of simplicity, we assume that the number of 

air-hole rings is larger enough (we will investigate this effect in 4.5.2) and the PCF 

consists of a pure silica core (i.e., defect) surrounded by a uniform PC cladding with 

circular air holes. By employing the PML boundary conditions, numerical solution 

methods such as the FDM method can be readily applied. 

4.4.1 Validation with Simulated and Measured Results 

The FDM method has been widely used and validated for many cases of optical 

waveguides with small index contrast [20]. Due to the high index contrast of the PCFs, it 

is necessary to validate the FDM model by way of examples. For this purpose, we 
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investigate the commonly used air-filled silica PCFs with the fixed pitch (A= 2.3 µm) for 

different air-hole sizes. Due to the high sensitivity on the accuracy of the modal 

calculation in the context of the PCF, a significant discrepancy of the dispersion and 

confinement loss between the different published results can be seen for the PCFs with 

the fixed pitch A = 2.3 µm [18] [43], [44], [63], [64]. Because it is very important to 

make sure that the accurate simulation method is used to calculate the crucial group 

velocity· dispersion and confinement loss of the PCFs, we validate the FDM method 

through those two modal properties with some published simulation and measurement 

results. Figure 4.13 presents the total dispersion of the PCFs as a function of wavelength 

for different hole sizes (i.e., d = 0.345, 0.621, 1.0, and 1.84 µm). It is apparent from 

Figure 4.13 that the simulation results by the full-vector FDM mode solver ford = 0.621 

and 1.0 µm are in excellent agreement with those by the vector finite element method 

(FEM) at the all range of wavelength (only available from 0.6 to 1.3 µm ford= 0.621 

µm) [63]. The dispersion value ford = 0.621 µm has been experimentally determined at 

a wavelength of 0.813 µm [70]. The simulated dispersion and its slope of -77.34 

ps/nmlkm and 0.468 ps/nm2/km as shown in Figure 4.13 are in excellent agreement with 

the measured dispersion and its slope of -77.7 ps/nm/km and 0.464 ps/nm2/km [70]. 

From Figure 4.13, it is also observed that the dispersion induced by the air holes 

increases as the air-hole size increases and the zero dispersion wavelength can be shifted 

to visible wavelength ranges by increasing as the hole size. Two design scenarios with 

practical significance are identified: the flat dispersion for a range from d = 0.621 to 1.0 

µm, and the anomalous dispersion at shorter wavelengths (e.g., less than LO µm) for 

large hole-size (e.g., d > 1.0 µm). We further assert that the zero-dispersion wavelength 

can be shifted into the visible wavelengths by simply reducing the core diameter D = 2A -

d (i.e., decreasing the pitch size A or increasing the air-hole size d). As we show later, if 

we only consider the geometrical dispersion Dg, in which the refractive index of the silica 

is set as a constant (e.g., 1.45), the scaling transformations of dispersion can be utilized 

and the design efforts of the PCFs can be simplified. 

87 



Chapter 4. Photonic Crystal Fibers 

150 

-E 100 ~ -E c - 50 UI 
Q. -C\ 
c 0 0 
'r! 
Q) 

-50 Q. 
UI a 

-100 -*-FEM [63] 
• Experiment [70] 

-150 
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Wavelength A. (µm) 

Figure 4.13 Dispersion Das a function of wavelength for PCFs with the fixed pitch (A= 
2.3 µm) for different hole sizes d = 0.345, 0.621, 1.0, and 1.84 µm. 

In addition to the dispersion, which is high sensitivity on the accuracy of the modal 

calculation (e.g., the second derivative of the real part of the .effective index, see · 

Appendix A), the confinement loss is another sensitive performance parameter (e.g., be 

proportional with the imaginary part of the effective index, see Appendix A). Therefore, 

it is necessary to verify the FDM method for the confinement loss. In the first example (a 

PCF with A= 4.0 µm, d = 2.26 µm, and N = 1), the effective index Neff is (l.440101-

jl.67x10-5), which is in good agreement with Neff (1.440136 - jl.708x10-5) by the 

multipole expansion method (MEM) [74]. In the second example, the commonly used 

air-filled silica PCFs with the fixed pitch (A = 2.3 µm) and air-hole size ( d = 1.15 µm) are 

used. Figure 4.14 presents the confinement loss of the PCFs as a function of wavelength 

for different number of air rings N (1, 2, 3, 4, and 5), respectively. It can be seen that the 

simulation results by the FDM method are in excellent agreement with those by the FEM 

(only available from 1.4 to 1.7 µm) [73] and the MEM (only available from 1.0 to 1.7 µm 
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for N= 3 and 1.55 µm for N = 1, 2, and 4) [75] at the all range of wavelength. It is worth 

to note that the simulation results by the MEM method are calculated with considering 

the material dispersion of silica [ 69] and it means that, unlike on the dispersion, the effect 

of the material dispersion of silica on the confinement loss of the PCFs is negligible. 
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Figure 4.14 Confinement loss Le as a function of wavelength for PCFs with A= 2.3 µm 
and d = 1.15 µm for different number of air-hole rings. 

4.4.2 Comparisons among Full-Vector, Semi-Vector, and Scalar Models 

By utilizing the FDM mode solvers based on the full-vector, semi-vector and scalar 

formulations, we investigate the modal characteristics of the PCFs with emphasis on the 

vector properties. So far, although there appeared to be paid attention to this feature of 

the PCFs, much less appreciation for the effect of vector properties of the modal fields in 
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the PCFs with different design parameters of the PCFs is considered. It is very important, 

at least from the design point of view, to assess the accuracy and the scope of validity for 

the scalar and the semi-vector approximations. In order to gain some physical insight into 

the vector feature of the PCFs, we investigate this effect through the modal properties of 

the commonly used air-filled silica PCFs with the fixed pitch (A= 2.3 µm) in some detail 

[72]. This effect on the modal properties to all other cases (e.g., with the fixed air-hole 

size-to-pitch ratio) can be easily obtained through their scaling transformations (see 

Appendix C). 

Figure 4.15 shows the effective index as a function of wavelength of the PCFs with 

different air-hole sizes of d = 0.46 (d/A = 0.2), 1.38 (0.6), and 2.3 µm (LO), respectively. 

It is observed that the difference between the scalar and the vector models is small at 

short wavelength, but becomes significant for long wavelengths. Further, this difference 

increases as the air-hole size d increases. This is understood as the modal fields spread 

more into the cladding and the accumulated contribution to the vector property is more 

pronounced for the small air-hole PCF. Also, it is interesting to note that the difference 

between the semi-vector and the full-vector analyses is small, which indicates that the 

semi-vector model is sufficient for accurate prediction of the modal characteristics of the 

PCFs. 
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Figure 4.15 Effective index neffas a function of wavelength for PCFs with the fixed pitch 
(A= 2.3 µm) for different air-hole sizes d = 0.46, 1.38, and 2.3 µm. 

In order to assess the accuracy and the scope of validity for the different models, 

the waveguide dispersion Dg of the PCFs is calculated and compared for different air­

hole sizes d as shown in Figure 4.16. For the case of d = 0.46 µm, the simulated results 

calculated by the scalar modal expansion method [44] is also shown in Figure 4.16. It can 

be seen from Figure 4.16 that the simulation results for the scalar modes obtained by the 

scalar FDM method and the scalar modal expansion method are indistinguishable over a 

wavelength range of 0.5-1.5 µm. On the other hand, the differences between the scalar 

and the vector models are significant and cannot be ignored. Similar to the situation with 

the modal effective index, the semi-vector solution is capable of producing reasonably 

accurate results for the modal dispersion. 
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Figure 4.16 Waveguide dispersion Dg as a function of wavelength for PCFs with the 
fixed pitch (A= 2.3 µm) for different air-hole sizes d = 0.46, 1.38, and 2.3 µm. 

In order to understand the vector nature of the PCFs, the Y-polarized modal electric 

field distribution along the Y-axis of a PCF with the air-hole size d = 0.46 µm for 

different wavelengths of 0.5, 1.0, 1.5, and 2.0 µm are shown in Figure 4.17. It can be 

seen that there is less energy in the air hole and the contribution of the vector terms is 

small at short wavelengths, which confirms the observations in Figure 4.15. The vector 

nature of the modal field profile is clearly demonstrated at long wavelengths, which leads 

to the lower effective index of the waveguide mode. Therefore, for the small air-hole 

PCFs, the accumulated vector contribution at long wavelengths cannot be neglected as 

modal fields spread more into the cladding. 
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Figure 4.17 Y-polarized Electric field of a PCF with A = 2.3 µm and d = 0.46 µm at 
different wavelength values along the Y-axis with the air-hole position (2.30, 2.76 µm), 
(6.29, 6.75 µm), (14.25, 14.71 µm), and (18.24, 18.70 µm). (a) The scalar model, and (b) 
The vector model. 
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After investigating the effect of the vector nature on the modal properties of the 

PCFs, we further investigate this effect for the practical PCFs with the limited number of 

air-hole rings. Because the effect of the number of air-hole rings of the PCFs on the 

modal properties will be investigated thoroughly later (see 4.5.2), here we evaluate this 

effect for a small air-hole PCF (e.g., d = 0.5 µm and A== 3.2 µm), where the vector nature 

of modal properties is more pronounced. 

Figure 4.18 and Figure 4.19 show the effect of different number of air-hole rings on 

modal electrical field profiles at short and long wavelengths, respectively. It can be seen 

from Figure 4. I 8 and Figure 4.19 that the effect of different number of air-hole rings on 

the modal profile is negligible at the short wavelength and shows some differences at the 

long wavelength. As expected, it can be seen from Figure 4.18 that modal field profiles 

for different number of air-hole rings between the scalar and vector models are similar at 

short wavelengths as modal fields tend to concentrate more in the core region with very 

small contribution of vector terms. However, at the long wavelength as shown in Figure 

4. I 9, the modal field profiles for different number of air-hole rings change dramatically 

between the scalar and vector models as the modal fields spread around air holes and the 

accumulated contribution of the vector terms is non-negligible. 

Figure 4.20 and Figure 4.21 show the modal effective index and the waveguide 

dispersion for different number of air-hole rings based on the scalar and vector models, 

respectively. It is observed that the overall modal index of the PCFs decreases as the 

number of rings decreases, which indicates that the model field penetrates more into the 

low-index air region. Again, the difference between the scalar and the vector models for 

the mode indices is negligible at short wavelengths, but much more pronounced at long 

wavelengths. 
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Figure 4. l 8 Y-polarized electric field distribution of a PCF with A == 2.3 µm and d = 0.5 
µm along the Y-axis for different number of air-hole rings at the short wavelength A,= 0.5 
µm with the possible air-hole position (2.28, 2.78 µm), (6.27, 6.77 µm), (14.23, 14.73 
µm), and (18.22, 18.72 µm). (a) The scalar model, and (b) The vector model. 
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Figure 4.19 Y-polarized electric field distribution of a PCF with A = 2.3 µm and d = 0.5 
µm along the Y-axis for different number of air-hole rings at the long wavelength A= 2.0 
µm with the possible air-hole position (2.28, 2.78 µm), (6.27, 6.77 µm), (14.23, 14.73 
µm), and (18.22, 18.72 µm). (a) The scalar model, and (b) The vector model. 
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In this section, it is demonstrated that the vector nature of the guided modes of the 

PCFs must be considered in analyzing the modal properties. Despite the weakly guiding 

modal characteristics due to the small index contrast between the core and the "effective" 

cladding, the vector property of the PCFs plays an important role in the accurate 

prediction of the mode properties, owing to the large index contrast between silica and 

air. Through the comparison, the level of accuracy and the scope of validity for the scalar 

and the. semi-vector approximations are assessed. We show that the semi-vector 

formulations, which are commonly used for planar optical waveguides, are highly 

accurate, whereas the scalar approximations are often not adequate in prediction of the 

modal characteristics of the PCFs. Further, the effect of the vector nature on modal 

characteristics for practical small air-hole PCFs with limited number of air-hole rings is 

investigated. 

4.4.3 Mode Cut-Off and Single-Mode Operation 

Like conventional step index fibers, the PCFs guide light due to the TIR effect. For the 

guided modes, by following the similar definition employed in ID PCWs, their effective 

indices neff should meet the following relation 

(4.3) 

where nc is the refractive index of the core of PCFs and nFsM1 is the cladding effective 

index of the PCFs (i.e., the fundamental space-filling mode of the PCs). On the other 

hand, the normalized effective frequency Veff, less than 2.405 for the single-mode 

operation as the step index fibers, is defined 

21l I 2 2 
Vefj = -y-aeff '\} nc - nFSMl (4.4) 

where aeff is the equivalent core radius (usually 0.58A, where A is the pitch of the PCF) 

and A, is the operating wavelength. Through the FDM vectorial analysis, the endlessly 

single-mode operation is found for the small air-hole size PCF (e.g., d < 1.0 µm) with the 

fixed patch A= 2.3 µm. Further, (4.4) has been confirmed by the effective index method 

for the PCFs with different air-hole sizes and pitches [ 49]. 
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It is natural to analyze the single-mode condition of the PCFs by applying an 

analogy to the standard step index fibers because the analytical formula of the fibers can 

be used for the PCFs. However, it is un-sufficient or al least un-efficient to judge the 

singe mode operation of the PCFs through the EIM method due to its limitations such as 

the calculation of the cladding effective index, or even the strikingly different properties. 

Here we propose a method to judge the singe-mode operation of the PCFs without the 

calculation of the cladding effective index nFSMI· 

As we know, the cladding effective index nFsMJ of the PCFs is wavelength­

dependent and so is the effective index of fundamental modes of the PCFs. Unlike step­

index fibers, we find that the wavelength dependence of both effective cladding and 

effective indices of the PCFs has a similar behavior, which means the equivalent core 

radius aeff is a function of wavelength. Now we define two new parameters: the 

normalized transverse phase constant (or NA-like) S and the dimensionless parameter 

(product of the transverse phase constant and pitch) U: 

(4.5) 

2n ~ 2 2 U=-An -n ff A. co e 
(4.6) 

where neff is the effective modal index of the PCFs. Figure 4.22 shows the wavelength 

and air-hole size dependence of normalized modal constant S of the PCFs with fixed 

pitch A= 2.3 µm for different air-hole sizes and different wavelengths, respectively. The 

linear dependence of S with d and A is observed for lager air-hole size PCFs (e.g., d > 0.8 

µm), which confirms that wavelength dependence of both neff and nFSMJ has a similar 

behavior because the normalized effective frequency Ve.ff is wavelength-independent for 

short wavelengths. It is this linear behavior that makes the parameter U be wavelength­

independent for short wavelengths like Ve.I!- Figure 4.23 shows the wavelength 

dependence of the parameter U with fixed pitch A = 2.3 µm for different air-hole sizes. It 

can be seen from Figure 4.23 that the PCFs operate in the single-mode state if U < 2.6. 

Therefore, we can easily judge the single-mode condition of the PCFs from the effective 

index of fundamental modes of the fiber. 
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4.4.4 Group Velocity Dispersion 

The group velocity dispersion (GVD) (or simply the dispersion) D of the PCFs is one of 

the important modal properties and can be directly calculated from the modal effective 

index neff of the fundamental mode over a range of wavelength (see Appendix A). In 

order to obtain the accurate dispersion, the values of the effective index are calculated 

with a small wavelength step (e.g., 0.02 µm), which is a real challenge for some 

numerical methods because there are more than hundred of wavelength points for each 

curve. Fortunately, by using the first order approximation, the total dispersion D is 

calculated as the sum of the geometrical dispersion (or waveguide dispersion) Dg and the 

material dispersion Dm (see 5.2). Here we only focus on the waveguide dispersion Dg. 
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In order to gain some physical insight of the PCFs, we investigate the dispersion Dg 

of commonly used silica PCFs with the whole range of the design parameters d and A. 

Figure 4.24 shows the calculated waveguide dispersion Dg as a function of wavelength 

for the PCFs with (a) different A values with fixed d/A = 0.435, and (b) different d/A 

values with fixed A = 2.3 µm. In Figure 4.24(a), the scaling transformation of the 

waveguide dispersion Dg with respect to the pitch A is clearly demonstrated (see 

Appendix C). This, in tum, verifies the accuracy of the numerical methods. In Figure 

4.24(b ), the scaling behavior of the dispersion Dg of large air-hole PCFs is different from 

that of small air-hole PCFs and the magnitude of Dg changes dramatically when d/A 

increases, in which Dg makes dominant contribution to the total dispersion of the PCFs. 

Although the scaling effect for the fixed d/A of the small air-hole PCFs (e.g., d/A < 0.4) 

was investigated in [58], here we extend the scaling effect to the large air-hole PCF (e.g., 

d/A ~ 0.4), in which the vector effect is more pronounced as demonstrated previously 

(see 4.4.2). 

4.4.5 Mode Effective Area and Beam Divergence 

After obtaining the modal profile, we are ready to calculate the mode effective area Aeffi 

mode spot size w, and beam divergence 0 of the fundamental modes (see Appendix A). 

Except obtaining directly from the far-field through the Fourier transfer of the modal 

profile, the beam divergence 0 can also be calculated from the mode spot size w, which 

can be obtained by the Gaussian approximation Aeff= 1rw2 of the modal profile: 

(4.7) 

Here we consider the commonly used PCF first studied in [ 49] with an air-hole size 

d = 0.345 µm and a pitch A= 2.3 µm. Figure 4.25 shows the mode effective area AeJ/A2, 

which is in good agreement with the plane wave expansion (PWE) method [71]. It can be 

seen from Figure 4.25 that, unlike almost constant in the conventional fiber, the mode 

effective area of the PCFs can been drastically changed by simply altering the design 
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parameters d or A of the PCFs, which can be easily done during fabrication by drawing 

the PCF fiber using different conditions (such as pulling speed and temperature). In 

general, the large mode effective area can be obtained by the choice of small di A and NA 

values through the weak TIR-guiding, in which a significant fraction of the fundamental 

mode's energy can be located in the cladding region (see 4.5.2). Therefore, we can easily 

design a PCF with a large mode effective area to support the high power without 

inducing the nonlinear process. On the other hand, we can design the small mode 

effective area to enhance the nonlinear effect in the PCFs. Further, we can also calculate 

the mode spot size w, and beam divergence (} by the above-mentioned equations. The 

calculated beam divergence (}for a PCF with d = 3.82 µm and A= 7.2 µmis shown in 

Figure 4.26, which is in good agreement with the experimental and simulation result [71]. 
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Figure 4.25 Mode effective area AeJIA2 with function of pith/wavelength NA, for a PCF 
with d = 0.345 µm and A= 2.3 µm without considering material dispersion. 
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4.4.6 Modal Polarization a:nd Modal Birefri:nge:nce 

As we know, the polarization insensibility is a very important requirement for most of 

optical waveguides. Due to a six-fold (or Jd3) rotational symmetry and lack of a concrete 

physical explanation of the degeneration of the fundamental modes of the PCFs, the 

numerical investigation of the existence of modal birefringence in the PCFs is needed. 

Here we investigate the modal birefringence of the PCFs by using the FDM 

method. For the sake of simplicity, we use the PCF with one ring of six holes shown in 

Figure 4.12, where the air-hole size d = 5.0 µm, the pitch A = 6.75 µm, and refractive 

index of silica nc = 1.45 [ 46] without considering the material dispersion. Figure 4.27 

shows the convergence behavior of modal birefringence of fundamental modes for 

different mesh sizes at the wavelength of 1.55 µm. In order to demonstrate the difference 

between the semi-vectorial and full-vectorial FDM method, the effective indices and 
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modal birefringence by the semi-vectorial FD method is also shown in Figure 4.27. The 

effective index of the fundamental mode is converged to 1.444765401 (only -0.00013% 

error with 1.444767275 by the multipole method [46]). Here an error of -0.001 % is 

found for the semi-vectorial FDM method. It can be found from Figure 4.27 that the less 

mesh size, the less the modal birefringence. Like other methods (e.g., Multipole method 

[46] and FEM method [63]), the degeneracy is in the order of 10-8• Therefore, the 

degeneri:icy of fundamental modes is verified through the FDM method. Although the 

modal birefringence of fundamental modes has been very often observed experimentally, 

we believe that this modal birefringence is caused by the rotational asymmetry of the 

PCFs for some manufactured reasons. 

On the other hand, we can understand the degeneracy of fundamental modes 

through the modal profile calculations. From the modal profile calculation, it is found 

that the linear polarization ratio (LPR, ratio between two electric major and minor 

components) is very high (> 30 dB). Therefore, each fundamental mode is a linearly 

polarized field. With considering the 1113 rotational symmetry of the PCF structure and 

the orthogonality of two fundamental modes, all six rotated fields are also linearly 

polarized and their effective indices are the same, which requires that two fundamental 

modes have the same effective indices although their modal profiles may not be the same. 

In conclusion, the PCFs with the 1113 rotational symmetry are not birefringent. 

4.4. 7 Confinement Loss and Bending Loss 

As mentioned before, the PCFs guide light by the TIR effect due to the lower 

cladding effective index. Practically, light can leak out into the silica cladding, especially 

for the weak-guided PCF fiber, because only certain number ofrings of the PCFs is used. 

Although the confinement of light is improved by increasing the number of rings of air 

holes, it is necessary to know the suitable number of rings of air holes of the PCFs with 

given parameters (e.g., d, A and IL). On the other hand, the related bending loss increases 

when the mode effective area of the PCFs increases. Therefore, in order to design the 
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PCFs, their loss mechanism related to the confinement and bending should be 

understood. 
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Figure 4.28 shows the confinement loss Le with function of wavelength A. for 

commonly used PCFs with A= 2.3 µm for different number N (e.g., 1-5) of rings of air 

holes. As expected, the PCFs have the less confinement loss for large air-hole d/A at 

short wavelengths. In some sense, light is well confined within the core by the first ring 

of six air holes (e.g., d/A = 0.8 and NA.= 4). In other words, the outer rings of air holes 

of the PCFs do not appear to affect the fiber modal properties because similar effective 

indices are obtained when the number of rings of air holes changes. On the other hand, 

light is leaky within more than eight rings of air holes for small di A at long wavelengths 

(e.g., d/A = 0.1 and NA.= 1). We will discuss this effect in great detail later (see 4.5.2). 

From previous calculations of (4.4.5), it is found that large mode effective areas of 

the PCFs can be achieved by deceasing the air-hole size-to-pitch ratio d/A or the 

normalized frequency NA.. Due to the weak guiding, those fibers suffer a larger bending 

loss than that with small mode effective areas. Like the conventional fibers, the PCFs 

have a bend-loss edge at long wavelengths due to extremely weak guiding mode with 

very small of normalized frequency NA.. Furthermore, unlike conventional fibers, the 

PCFs also have a bend-loss edge at short wavelengths due to the less index contrast of 

fibers. Here we verify the bend-loss edge at short wavelengths for a PCF with air-hole 

size d = 0.345 µm and the pitch A = 2.3 µm. It is first time, as our knowledge, to verify 

the bend-loss edge through the numerical method [68]. Figure 4.29 presents the real 

component of electric field profiles of a PCF for the bending radius R = 25 and 4 mm, 

respectively. As expected, it is clearly shown that the electric field penetrates away from 

the fibers at a short bending radius. Figure 4.30 shows the short-wavelength bend-loss 

edge for different bending radii, which is in good agreement with the measured result 

[49]. 
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4.5 Numerical Study of Some Effects on Modal Characteristics 

4.5.1 Effect of Interstitial Holes 

The PCFs presented in previous sections is an ideal PCF geometry without considering 

interstitial holes. Actually interstitial holes exist in large air fraction PCFs due to the 

multiple capillary drawing processes [ 45]. Here we explore the influence of additionally 

interstitial holes on the modal properties of the PCF. For the sake of simplicity, we 

assume that the interstitial holes are circular with the hole sized; as shown in Figure 4.31. 

Figure 4.31 The cross section of PCFs with interstitial holes. 

As we know, the interstitial holes affect the modal properties by equivalently 

increasing the air-hole size-to-pitch ratio di A of the PCFs. When their size di is much less 

than the air-hole size d, the interstitial holes do not significantly influence the modal 
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properties of the PCFs [45]. When the interstitial hole size d; increases, the modal field 

decays inside them, and the modal effective index of the PCFs decreases. 

Here we take a large air-fraction PCF with the air-hole size d = 1.92 µm and the 

pitch A= 3.2 µm as an example [45]. Figure 4.32 presents the effect of interstitial holes 

on modal properties (i.e., the effective index and dispersion) for the interstitial hole size 

d; = 0, 0.068, 0.272, and 0.544 µm, respectively. From the simulation results, the modal 

properties change dramatically when d/A is large, especially for the crucial dispersion. 

The dispersion still keeps decreasing at long wavelengths and starts to increase at short 

wavelengths. It is also found that, when di A increases, the modal effective area of the 

PCFs decreases and the coupling loss with standard fibers increases, which are in good 

agreement with other numerical results [ 45]. However, for the vital calculation of 

dispersion, there is a large discrepancy between two methods. The calculated dispersions 

by the wave expansion method for d; = 0 and 0.272 µm are 30 and 8 ps/nm/km, 

respectively [45]. From Figure 4.32(b), the calculated dispersions by the FDM method 

are 66 and 57 ps/nm/km, respectively. The difference between those two methods is that 

the semi-analytical expansion method takes hardly care the vector feature of modes. It is 

worth to note that there are similar computation efforts for investigation of the effect of 

interstitial holes by the FDM method. However, it is crucial for the expansion method 

because it needs large enough number of expansion terms to ensure an accurate result. 

4.5.2 Effects of Number of Air-Hole Rings and Design Parameters 

By using the FDM method, it is possible to predict the number of rings of holes needed 

to avoid the mode leakage at any desired wavelengths, which is one of important 

considerations for design and optimization of practical PCFs. In this respect, we 

investigate the effects of number of air-hole rings on the basic modal properties such as 

the modal profile, effective index, dispersion, and confinement loss [59]. 
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Modal electric field distributions of the PCFs with the air-hole size d = 1.55 µm 

for different wavelengths (0.5 and 4.0 µm) and number of air-hole rings (l and 5) are 

shown in Figure 4.33. As expected, the mode confinement increases by increasing the 

number of air-hole rings. The mode is almost fully confined inside the innermost ring of 

air holes (N = I) at short wavelengths, which corresponds to large pitches of the PCFs at 

the wavelength of 1.55 µm. In order to show the effects of number of rings for different 

air-hole. PCFs, Figure 4.34 shows the effective index of the PCFs as a function of 

wavelength for different air-hole sizes d = 0.46 (di A= 0.2), 1.15 (0.5), and 1.84 µm (0.8), 

respectively. It is clearly observed that the difference among different number of air-hole 

rings is small at short wavelengths, but becomes significant at long wavelengths. Further, 

this difference decreases as the air-hole size d increases. It is also shown that the overall 

modal index of the PCFs decreases as the number ofrings decreases, which indicates that 

the model field penetrates more into the low-index air region. 
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Figure 4.33 Y-polarized Electric field of a PCF with A = 2.3 µm and d = 1.15 µm at 
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To further assess the effects of the different number of air-hole rings on other modal 

properties of the PCFs, the waveguide dispersion, the mode effective area, and the 

confinement factor in silica are calculated and compared for different air-hole sizes as 

shown in Figure 4.35, Figure 4.36, and Figure 4.37, respectively. Similar to the situation 

with the model effective index as shown in Figure 4.34, the difference among different 

number of air-hole rings is negligible at short wavelengths, but much more pronounced at 

long wavelengths. Also this difference decreases as the air-hole size d increases. As 

expected, waveguide dispersion and confinement factor decrease as the number of air­

hole rings increases because the overall modal index of PCFs increases and mode field 

penetrates less into the low-index air region as the number of air-hole rings increases. For 

the mode effective area, there are two folds: first it decreases and then increases as the 

number of air-hole rings increases. 
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Figure 4.34 Effective indices as a function of wavelength for the PCFs with different 
number of air-hole rings at A= 2.3 µm and di A = 0.2, 0.5, and 0.8, respectively. 
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Finally, the effect of the different number of air-hole rings on the confinement loss 

is calculated for different air-hole sizes d as shown in Figure 4.38. Similar to the situation 

with the other modal properties, the confinement loss is small and negligible at short 

wavelengths, but increases exponentially when wavelength increases. Also the 

confinement loss decreases as the air-hole size d increases. As expected, the confinement 

loss decrease as the number of rings increases because the overall modal index of the 

PCFs increases and mode field penetrates less into the low-index air region as the number 

of rings increases. 

In general, the effect of different number of air-hole rings on modal properties of 

the PCFs depends on the operation wavelength and the design parameters of the PCFs. At 

the short wavelengths, the effect is small and negligible mainly due to the isolated effect 

of the PCs, and at the long wavelengths, the effect is more pronounced mainly due to the 

band-gap effect of the PCs. On the other hand, for large di A PCFs (e.g., di A ;:::: 0. 7), this 

effect is equivalent to the short wavelength operation and small as the light is well 

confined within the core by the first and second air-hole rings. For small dlA PCFs (e.g., 

dlA s; 0.1), this effect is equivalent to the long wavelength operation and significant as 

light is weakly confined and the modal field penetrates into many rings of air holes, in 

which the outer rings of air holes of PCF affect dramatically the modal properties. 

4.S.3 Scaling Transformation 

As we know, there is no fundamental length scale for the EM wave due to the nature of 

the Maxwell's equations. Therefore, we can easily derive the scaling transformation of 

the modal properties such as the effective index and the modal field pattern with respect 

to the change of design parameters of the PCFs (e.g., the pitch A and index n(r)) for the 

fixed air-hole size-to-pitch ratio (see Appendix C). In order to evaluate the PCF with any 

pitches and air-hole sizes, it is useful to explore scaling approximations of modal 

characteristics of the PCFs with the fixed pitch A. By following the similar way, scaling 
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approximations of modal properties of the PCFs with the fixed pitch A can be 

approximately calculated [26], [58]: 

;. 
Dg(A,N) lfixed A""' A(N)Dg(B(N)) (4.8) 

1 2 
Aeff(A,N) lfixed A""' C(N) Aeff(D(N)) (4.9) 

1 2 
Lc(A,N) lfixed A""' E(N) LcCF(N)) (4.10) 

;. 
r(A,N) lfixedd!A""' r(G(N» ( 4.11) 

where N is the air-hole size ratio (i.e., dido with do = 1.15 µm). Unlike the scaling 

transformation for the fixed air-hole size-to-pitch ratio, the dependence of modal 

properties on the scaling parameter N for the fixed pitch A is no longer linear (e.g., for 

the waveguide dispersion Dg as evidenced in Figure 4.39). For this reason, we have to 

calculate modal properties numerically and extracted nonlinear relationships for 

corresponding coefficients based on the results of the numerical calculations. 

For instance, the waveguide dispersion Dg as a function of wavelength A for 

different PCFs with fixed A= 2.3 µmis shown in Figure 4.39. For small air-hole PCFs 

(e.g., d/A < 0.5), the approximate linear scaling [A(.N) = N and B(N) = N)] for Dg can be 

obtained, based on the fact that the negative slope of Dg curves remains approximately 

the same, as shown in Figure 4.39(b ), when the air-hole size is changed. From Figure 

4.39(a), the nonlinear scaling functions for the coefficients A(N) and B(N) in scaling 

transformations of Dg, with Ao = 2.3 µm and do = 1.0 µm, can be fitted into polynomial 

and cosine forms [58]: 

A(N) ::::a+ bN + cN2 + dN3 + eN4 
B(N) ::::N2[f + g cos(hN+i)]IA(N) 

(4.12) 

(4.13) 

where the fitting coefficients a = 0.1510, b "" -0.1391, c = 1.6458, d""' -0.8221, e ""' 

0.1648,f""' 0.94, g = 0.082, h ""'3.39, and i""' -4.5. By utilizing the coefficients A(N) and 
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B(N) in the scaling transformations of Dg, the modified coefficients A(N) and B(N) for 

different do values of the PCFs with the fixed Ao can be analytically obtained. 
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In addition to the dispersion properties, it is also desirable to consider other modal 

properties (e.g., the mode effective area Aeffi the single-mode condition, etc.) in the PCF­

based applications. For example, large mode effective areas Aeff can support extremely 

high power without exciting unwanted nonlinear effects, and small mode effective areas 

can be used to explore highly nonlinear effects in fibers. For the fixed d/A, we can obtain 

the families of the mode effective areas Aeff analytically as functions of the pitch ratio M 

(see Appendix C). For the fixed A of the small air-hole PCFs (e.g., d/A < 0.5), it is shown 

that, from the numerical results, the scaling coefficients C(N) and D(N) are approximately 

linear (e.g.,"" N) with respect to N. However, for the fixed A of large air-hole PCFs (e.g., 

di A > 0.5), the scaling coefficients C(N) and D(N) are well approximated by the 

following functions [26]: 

C(N)::::N 

D(N) ""1.0 + 0.61(N -1.0) + 0.85(N -1.0)2 

where Ao= 2.3 µm and do = 1.0 µm. 

(4.14) 

(4.15) 

Overall, for the scaling approximations of modal properties of the PCFs with the 

fixed pitch ratio A, the scaling coefficients A, B, C, D, E, F, and G can be linearly 

approximately (e.g.,"" N) when air-hole size-to-pitch ratio of the PCFs is small (e.g., d/A 

< 0.5) [26]. However, for large air-hole PCFs, the scaling coefficient A, B, C, D, E, F, 

and G are approximately obtained through the nonlinear function of N. By utilizing 

scaling transformations, modal properties of the PCFs with any values of the design 

parameters (e.g., d, A, and A.) are easily calculated. For example, with certain 

confinement loss requirement, the minimum number of air-hole rings as a function of 

pitch is approximately obtained. As we show later, those approximate scaling 

transformations of modal properties as a function of N can assist us in the design and 

optimization of the practical PCFs. It is worth noting that the sensitivity analysis of the 

modal properties with respect to d and A can be also easily obtained through their 

respective scaling transformations. 
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4.6 Summary 

In this chapter, modal characteristics of the photonic crystal fibers (PCFs) guided by the 

PBG and TIR effects are investigated by way of simulations using some analytical and 

numerical methods in great detail. Through the comprehensive analysis, some unique 

features related to the PCFs are obtained and the scaling transformations of modal 

properti~s related to the design parameters of the PCF structure are derived. 

Firstly, like the ID PCWs, the band-gap structure of the 2D PCs is calculated and 

their main properties of the 2D PCs are discussed. With the similar idea of the gap­

midgap ratio used for measuring the complete band-gap, a new measure parameter along 

the low index line is proposed for measuring the partial band-gap of the PCs, which is 

very useful for the analysis of the modal properties of the PCFs. 

Secondly, the modal characteristics, such as the effective index, the model field 

profile, the dispersion, the confinement loss and bend loss, the confinement factor, and 

the mode effective area and beam divergence, the model polarization and modal 

birefringence, etc., of the PCFs are investigated thoroughly. The numerical model is 

validated through the critical modal parameters of the PCFs by way of examples. With 

the help of the band-gap map of the 2D PCs, different guiding regimes for the PCFs are 

recognized and physical insight of the guided modes of the PBG-PCFs and TIR-PCFs can 

be understood easily. Further, the level of accuracy and the scope of validity for the 

scalar and the semi-vector approximations are assessed. It is demonstrated that the vector 

nature of the guided modes on the PCFs must be considered in analyzing the modal 

characteristics such as the effective indices and the dispersions. Furthermore, one new 

parameter is proposed to judge the single-mode operation of the PCFs, and the bending 

loss of the PCFs is calculated by the numerical method for the first time. 

Finally, for the practical PCF, some effects (e.g., number of air-hole rings and size 

of interstitial holes) on the modal characteristics are investigated. The scaling 

transformations of modal properties related to the design parameters of the PCFs are also 

derived. 
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Chapters 

Design of Dispersion Component Elements 

Due to the unique and controllable dispersion properties of the PCFs, it is very natural to 

employ the PCFs as the dispersion component elements. In this chapter, we propose a 

general design model for the PCFs with the dispersion-related applications and give some 

typical examples. 

5.1 Introduction 

Optical fibers as a superb transmission media for telecommunications still suffer from the 

chromatic dispersion. Except the polarization modal dispersion (PMD), which occurs 

because the two orthogonal polarization modes that comprise a wavelength travel at 

different speeds along a fiber, the chromatic dispersion refers to the pulse broadening due 

to the fact that different optical wavelengths travel at different speeds within a fiber. The 

effect of chromatic dispersion can be greatly reduced if special fibers (e.g., dispersion­

shifted fibers and dispersion-flattened fibers) are employed, which have more favorable· 

dispersion characteristics at the wavelength of optical communications. Further, in order 

to overcome the signal distortion caused by the chromatic dispersion in the conventional 

single-mode fibers, the dispersion compensating fibers (DCFs) are also needed to 

compensate the dispersion of the existing optical fibers. Therefore, there are huge 

applications for the dispersion component elements in optical communication systems. 

Conventional single-mode fibers (CSFs) based on weakly guiding structures of 

doped silica can be tailored to exhibit a variety of desirable modal characteristics in terms 

ofloss/gain, dispersion, and field confinement [76], [77]. Due to the small index variation 

over the transverse cross-section, however, modal characteristics of the CSFs cannot be 

changed drastically to fulfill requirements of certain demanding dispersion-related 

applications. Examples of such applications are the ultra-dispersion-shift (e.g., to the 
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green wavelength range), the ultra-broadband dispersion flattening, the broadband 

dispersion compensation, etc. This limitation may be circumvented by the use of the 

PCFs [64], [65] whose modal characteristics are strong functions of wavelength and 

whose transverse cross-section consists of a central high-index defect (or missing a hole) 

in a regular triangular (or hexagonal) array of air holes as shown in Figure 5.1. There are 

only two main design parameters, namely, the air-hole size d and the pitch A. The PCFs 

can be tailored to produce unique and useful modal characteristics such as single-mode 

operation at a wide wavelength range [49], highly tunable dispersion [78]-[80], and 

highly controllable mode effective areas for linear and nonlinear applications [81]. The 

utilization of some of these modal characteristics is the basis for the design of novel 

fibers with desired dispersion properties to be discussed in this chapter. 
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Figure 5.1 The cross section of a PCF with a regular triangular air-hole array 
defined by the air-hole size d and the pitch A. 
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Several dispersion applications for the PCFs are presented in [78]-[80], [82]. 

Ferrando et al. proposed to use the PCFs to obtain the flattened dispersion near 

wavelengths of 1.13 [78] and 0.8 µm [80]. Nearly zero ultra-flattened dispersion around 

the wavelength of l.55 µm was achieved [79] by a trial-and-error manual procedure. The 

idea to use the PCFs for the dispersion compensation was suggested in Ref [82], in which 

a simplified model consisting of a pure silica core surrounded by air was used for the 

proof-of-concept demonstration. In order to design practical dispersion-compensating 

fibers (DCFs), an improved model was presented in Ref [58]. For the dispersion-shifted 

applications, however, few reports have so far addressed the design issue in a systematic 

fashion, except for some experimental results (e.g., [83]). 

5.2 Design Considerations 

In order to model the PCFs with general index profiles, the full-vector wave equations 

based on transverse electric fields can be solved by using some rigorous methods 

mentioned in previous chapters (e.g., the FDM method [20], [68]). Once the modal 

effective indices and field patterns are obtained, the other related modal properties (e.g., 

dispersion D) can be readily obtained (see Appendix A). In order to design the PCFs with 

the required dispersion and utilize the scaling transformation for the dispersion of the 

PCFs, the total dispersion D is calculated as the sum of the geometrical (or waveguide) 

dispersion Dg and the material dispersion Dm in the first order approximation [58], [69]: 

(5.1) 

where r is the confinement factor in silica, which is close to unity for most practical 

PCFs as the modal power is confined almost aH in silica with high refractive index [8], 

[69]. In general, the waveguide dispersion Dg can be cakulated without considering the 

material dispersion (i.e., the refractive index of silica nsilica = 1.45) and the material 

dispersion Dm can be obtained directly from the three-term Sellmeier formula [69]. 

Because the waveguide dispersion Dg is strongly related to the design parameters of the 

PCFs, they can be optimized to achieve desired dispersion properties. 
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As far as the PCFs are concerned, the waveguide dispersion Dg can be calculated 

through the following scaling transformations (see Appendix C.3 and 4.5.3): 

(5.2) 

(5.3) 

where M is the pitch ratio (i.e., N Ao with Ao = 2.3 µm) and N is the air-hole size ratio 

(i.e., dido with do= 1.0 µm). For the fixed air-hole size-to-pitch ratio d/A, we can obtain 

the families of Dg analytically by changing the pitch ratio M, which can easily derived 

from the scaling transformation of the effective index neff(A.,M) 1.rixedd!A = neff(A.I M) (see 

Appendix C.3). For the fixed pitch A, the dependence of Dg on the scaling parameter N is 

no longer linear. For this reason, we have to calculate Dg numerically and extract a 

nonlinear relationship for coefficients A(N) and B(N) in (5.3) based on the results of the 

numerical calculations with some approximations [58]. For small air-hole PCFs (e.g., d!A 

< 0.5), the approximate linear scaling [i.e., A(N) = N and B(N) = N)] for Dg can be 

obtained, based on the fact that the negative slope of Dg curves remains approximately 

the same when the air-hole size is changed. By utilizing the coefficients A(N) and B(N) in 

(5.3), the modified coefficients A(N) and B(N) for different do values of the PCFs with 

respect to the fixed Ao can be analytically obtained. As we show later, this approximate 

scaling of Dg as a function of N can assist us in the design of the PCFs. 

In addition to the dispersion properties, it is also desirable to consider other modal 

properties (e.g., the mode effective area Aeff [69], the single-mode condition, etc.) in the 

dispersion-related applications of the PCFs. For example, large mode effective areas can 

support extremely high power without exciting unwanted nonlinear effects, and small 

mode effective areas can be used to explore highly nonlinear effects in the PCFs. Further, 

albeit there is theoretically no cut-off for the fundamental modes, light in practice is not 

really guided by the PCFs when the normalized wavelength (i.e., Al A) is large. By 

utilizing the scaling transformation of Aeffi the cut-off wavelengths of the fundamental 
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and the second-order modes are easily calculated by setting Aeff.I and Aeff.2, the mode 

effective areas of the fundamental and the second-order modes, to some certain values. 

Figure 5 .2 shows such curves of AeJJ 1 and Aeff.2 with a relation between Al A and di A. The 

operation wavelength range of the single-mode operation for the practical PCFs is also 

shown (dot-dash line) [49]. It is seen from the figure, three operation regions (single­

mode, multi-mode, and cut-off) of the PCFs are easily recognized through the simple 

scaling transformation of the mode effective area of the PCFs. It is worth noting that the 

sensitivity analysis of the modal properties with respect to d and A can be easily obtained 

through the scaling transformations of the modal properties. 
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Figure 5.2 Three operation regions (single-mode, multi-mode, and cut-oft) of the PCFs as 
a function of Al A and di A. The cut-off wavelengths of fundamental modes and second­
order modes are calculated from their mode effective area, in which AeJJI and AeJJ2 are 
mode effective areas of fundamental modes and second-order modes, respectively. 
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5.3 General Design Procedure 

ln order to design the PCFs with desired dispersion properties, we should develop a 

general procedure so that the design optimization for practical dispersion-related 

applications of the PCFs can be performed in a systematic and efficient manner. The idea 

of this procedure is first proposed in Ref [58] for the design of practical DCFs. Here we 

extend this procedure to general dispersion-related applications such as the dispersion­

shifted fibers (DSFs), the dispersion flattened fibers (DFFs), and the ultra-flattened 

dispersion (UDFs) [26]. As a matter of fact, the only difference among these different 

applications for dispersion component elements is the choice of the target functions and 

the constraints for the design optimization. 

By following the design procedure proposed in Ref [26], [58], a general design 

procedure for dispersion-related applications of the PCFs is presented as follows: 

Step 1: Target function with proper constraints: Given a set of desirable dispersion 

values at some specific wavelengths (e.g., A-o= 0.8 µm), define a target function in 

the form of Or =f(~,DF,WF)with constraints (e.g., Aeffand the single-mode 

operation). 

Step 2: Preliminary optimization based on scaling transformations: With varying of the 

air-hole size d and the pitch A, optimize the PCFs by minimizing the target 

function through scaling transformations of (5.2) and (5.3) (starting from Ao= 2.3 

µm) and first order dispersion approximation of (5.1) without considering r (i.e., 

""1.0). 

Step 3: Model refinement for the dispersion Dg~ With the optimized PCF (d2) and A(2l) 

obtained by Step 2, calculate Dg of the PCF with nsilica = nsilica(Ao) through the 

rigorous vector solvers at a few selected wavelengths and repeat Step 2 (starting 

from Ao = A C2l and do = J 2l) with consideration of r. This step can update the 

scaling transformations of Dg in (5.3) and may avoid simulation errors caused by 

(5.2) and (5.3) due to the setting of the solvers and the value of nsi!ica· 
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Step 4: Model refinement for the dispersion D: With the optimized PCF (d-3) and A <3)) 

obtained by Step 3, calculate D of the PCF through the rigorous vector solvers at 

the required wavelength range and repeat Step 2 (starting from do= J.3> and Ao= 

A <3)) with considering r. This step can avoid simulation errors caused by first 

order dispersion approximation in (5.1). 

Step 5: Verification of the final design: With the optimized PCF (d-4) and A(4)) obtained 

by Step 4, calculate D of the PCF through the rigorous vector solvers with high 

accuracy setting at the required wavelength range to check if the optimized PCF 

design meets the required dispersion properties. If so, calculate other the modal 

parameters and end the design. If not, change the target function and repeat Steps 

2-5. 

In general, the final PCF structure can be obtained after two or three refinements by 

the rigorous vector solvers, provided that the target function is set properly. The entire 

design procedure is highly computation-efficient due to the use of the scaling 

transformations of the modal properties of the PCFs. 

5.4 Design Applications 

In order to further illustrate the design procedure, the basic requirements and the detailed 

target functions for several typical applications as dispersion component elements are 

given in this section. Figure 5.3 shows a typical dispersion curve of a PCF as a function 

of wavelength with the dispersion wavelengths ADJ, Am, and ADJ for the required 

dispersion DF (i.e., D(A.Di) = DF,i = 1, 2, and 3). Two wavelengths As1, As2 for zero third-

order dispersion and one wavelength AF for zero fourth-order dispersion are also marked. 

As demonstrated in the next section (e.g., DF = 0 in Figure 5.6), the dispersion curve 

shown in Figure 5.3 is reasonable for the PCFs with d/A > 0.2. This is fortunately the 

case for most of the dispersion applications using the PCFs. 
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Figure 5.3 Total dispersion D of the PCFs as a function of wavelength with some possible 
dispersion wavelengths ADJ, Am, AD3, two wavelengths 181 , As2 of zero third-order 
dispersion, and one wavelength AF of zero fourth-order dispersion. 

5.4.1 Dispersion-Shifted Fibers 

The basic requirement of the dispersion-shifted fibers (DSFs) is that a desired total 

dispersion DF at a wavelength point Ao is prescribed such that 

(5.4) 

where Ao is the operation wavelength for the desired total dispersion DF (e.g., Ao is the 

zero dispersion wavelength if DF = 0). Therefore, the target function Or is to let one of 

the dispersion wavelengths (ADJ, AD2, and AD3) equal to the required wavelength point Ao, 

(5.5) 

where I· .. I stands for the absolute value. In general, the first dispersion wavelength (ADJ) 

should be selected because it has large parameter yields (less sensitive to the change of 
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design parameters). Unlike the CSFs, the PCFs have a wide dispersion range, and there 

exist many possibilities to obtain the same desired dispersion. Therefore, some other 

constraints, such as the single-mode operation and the mode effective area, need to be 

imposed. For example, for the application of the supercontinuum generation, the small 

mode effective area is required to enhance the nonlinear effects of the PCFs. 

5.4.2 Dispersion-Flattened Fibers 

According to the definition of the dispersion flattened fibers (DFFs), at least one 

wavelength point of zero third-order dispersion are required in the operating range of 

wavelength. From the typical dispersion curve shown in Figure 5.3, there are two 

possible dispersion-flattened regions around k 1 and As2, respectively. We focus on the 

first dispersion-flattened region only, and the object function for the second dispersion­

flattened region may be defined in a similar way. For the first dispersion-flattened region 

as shown in Figure 5.4, there are two wavelengths ADJ, AD2 of dispersion DF and one 

wavelength As1 of zero third-order dispersion. The basic requirement for the dispersion 

flattening is that a wide range of wavelength with dispersion DF and its variation ± !:illF 

at the center wavelength point ~are given as follows: 

(5.6) 

where k 1 is the first wavelength of zero third-order dispersion. Therefore, after 

considering the symmetry of the dispersion curve, the target function Or is to let A.81 with 

the desired dispersion (DF+ !:illF) equal to~' 

(5.7) 

where w is a weight function to balance between the wavelength and the dispersion. The 

operating bandwidth 8A. with the required dispersion DF ± !:illF is equal to (A.r.A.1) as 

shown in Figure 5.4. In general, the DFF with reasonable DF and ~ can be obtained 

because the PCFs have very wide dispersion ranges with proper design parameters. 
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Figure 5.4 First dispersion-flattened region of the PCFs used for DFFs. 

Furthermore, the PCFs with the ultra-flattened dispersion (UDFs), in which there is 

at least one wavelength point of zero fourth-order dispersion in the operating range of 

wavelength, can also be designed. From the typical dispersion curve in Figure 5.3, there 

is one possible ultra-flattened dispersion region around one wavelength A..Fof zero fourth­

order dispersion as shown in Figure 5.5. In this ultra-flattened dispersion region, there are 

two wavelengths As1 and A.s2 of zero third-order dispersion. The basic requirement for 

ultra-flattened dispersion is that a wide range of wavelength with dispersion DF and its 

variation ± h.DF at the center wavelength point k are given as 

where AF is the wavelength of zero fourth-order dispersion. Therefore, after considering 

the symmetry of the dispersion curve, the target function OT is to let AF equal to k and 

As1 and A.s2 have the desired dispersion (DF + WF) and (DF-WF), respectively, 
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where w is a weight function to balance between the wavelength and the dispersion. The 

operating bandwidth ~A with the required dispersion DF ± WF is equal to (Ai-A1) as 

shown in Figure 5.5. 
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Figure 5.5 The ultra-flattened dispersion region of the PCFs used for UDFs 

5.4.3 Dispersion Compensation Fibers 

One of the widely used methods for the dispersion compensation is to use the dispersion 

compensation fibers (DCFs), which possess a negative dispersion to counteract the 

positive dispersion of the existing conventional single-mode fibers (CSFs). Numerous 

kinds of the DCFs have been designed. In general, optical communication links can be 

composed of a combination of the CSFs and the DCFs to achieve a small net chromatic 

dispersion for the entire link. 
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In order to compensate the dispersion of the CSFs with anomalous dispersion and 

positive dispersion slope, the desired DCFs should have large normal dispersion and 

negative dispersion slope. From the typical dispersion curve in Figure 5.3, there is one 

possible dispersion compensation region between k 1 and As2 with a negative dispersion 

slope. The basic requirement for the DCFs is that large negative dispersion and dispersion 

slope to compensate the dispersion of the CSFs over a wide range of wavelength are 

achieved. Or equivalently, the same parameter K [58] as the CSFs to be compensated at 

the center wavelength point A.o should be obtained as given by 

(5.10) 

where KcsF is defined as the dispersion divided by the dispersion slope of the CSFs. 

Therefore, the target function Or is to let the parameter K of the DCFs equal to that of the 

CSFs at Ao, 

(5.11) 

From the previous calculations [58], we know that there is an optimum region to 

realize the DCF. Therefore, we can consider some additional requirements such as 

maintaining possible large negative dispersion, ensuring single-mode operation, or 

keeping certain mode effective area, etc. It is worth noting that only a simple and 

intuitive form of target functions is described here. In practice, more complicated forms 

of the target functions are also possible and can be obtained based on the specific 

dispersion requirements. We will discuss the individual applications for design of 

dispersion component elements in great detail. 
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dispersion wavelength values. Diamond shapes represent the experimental results [83] of 
two DSFs for ADJ= 0.74 and 0.84 µm, respectively. 
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After defining the target functions for each of the specific applications and 

obtaining the scaling transformations for the dispersion Dg, which are described in 5 .2, 

we are now ready to design the PCFs with desired dispersion through a highly automated 

process. For the sake of simplicity, we assume the required dispersion value DF is set to 

zero (i.e., DF = 0). Through the scaling transformations of Dg, the relation between the 

wavelength Av of zero dispersion and the design parameters of the PCFs can be easily 

obtained and utilized as the starting point of the design optimization. Figure 5.6(a) shows 

the wavelength Av of zero dispersion with dependence of A and d/A of the PCFs. The 

three regions for each d/A curve represent ADJ, AD2, and AD3, and the two turning points 

(down and up triangular shapes) for each d/A curve represent the wavelengths A81 , As2 of 

zero third-order dispersion, respectively. From Figure 5.6(a), it is clearly shown that the 

possible solutions for different dispersion applications such as the DSFs, the DFFs, and 

the UDFs. For example, for the UDFs, only one possible solution can be obtained when 

A,s1 and k 2 are close to each other. The design procedure for those applications is 

described as follows. 

5.5 Dispersion-Shifted Fibers 

One of the current applications for the DSFs is to increase the light intensities for 

generating supercontinuum spectrum from 0.5 to 1.3 µm. In this application, the single­

mode operation is not important. However, the minimum mode effective area is 

desirable. From Figure 5.6(a), some interesting characteristics for the DSFs can be 

observed, such as the possible minimum Av is around 0.5 µm, which is in good 

agreement with experimental results [83]. Also it is found that the coverage of An over 

the full wavelength range from 0.5 to 5.0 µm is achievable and the possible Av can be 

realized by many combinations of design parameters of the PCFs. Further, the relation 

between the design parameters (A and d!A) for different first-order zero dispersion 

wavelength values, as shown in Figure 5.6(b), can be obtained through the scaling 

transformations of (5.2) and (5.3). The experimental results (diamond shapes) of the two 
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DSFs [12] for Am= 0.74 and 0.84 µmare also shown in Figure 5.6(b). It is found that A 

depends linearly on d/A for certain value of Am (the opposite effect for Am) and the 

minimum AeJJ can be obtained at the possible minimum of the pitch because A depends 

linearly on square of d/A of (C.20) and (4.9) for certain value of Aeff In order to 

demonstrate the design of the DSFs using the proposed approach, the pitch A is 

respectively set to 1.0, 1.58, and 1.85 µm for the corresponding zero dispersion 

wavelengths A.v = 0.66, 0.74, and 0.84 µm [12]. The optimum results for those three 

applications (DSFl, DSF2, and DSF3) can be easily obtained as shown in Table 5.1. It is 

observed that there is a discrepancy between the simulation and the experimental results, 

especially for the small-pitch PCFs, mainly due to errors (about ± 10 % on the absolute 

values) of electron micrograph analysis and deviations from circular holes [85], [86]. 

Table 5.1 Three typical applications ofDSFs with required dispersion DF= 0. 

Type Wavelength After step 1 After step 2 After step 3 Mode MEA Ref [12] 

k(µm) A(µm),d/A A(µm),d/A A(µm),d!A status (µm2) A(µm),d/A 

DSFl 0.66 1.00, 0.744 1.00, 0.747 1.00, 0.754 multi 0.92 1.00, 0.620 

DSF2 0.74 1.58, 0.824 1.58, 0.837 1.58, 0.832 multi 1.84 1.58, 0.785 

DSF3 0.84 1.85, 0.646 1.85,0.653 l.85, 0.652 multi 3.77 1.85, 0.595 

5.6 Dispersion-Flattened Fibers 

In this section, the designs of the DFFs with DF = 0 and ll.DF = 1 ps/nm/km are 

demonstrated. In order to compare the design with available PCF structures [78]-[80], the 

operating wavelength A.o is set to 0.8, 1.13, and 1.55 µm, respe~tively. The optimum 

results for these three applications (DFFl, DFF2, and UDF) can be easily obtained as 

shown in Table 5.2. In Table 5.2, the single-mode condition and the mode effective area 

for each dispersion application are also given. Figure 5.7 shows the total dispersion, in 

which the dot and dash lines represent the dispersion of the PCFs followed by Step l, 

Step 2, and Step 3, respectively. It is clearly seen from Figure 5.7 that the errors caused in 

the scaling approximation of (5.3) and in the first order approximation of (5.1) are 
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eliminated by the proposed general design process approach. From Table 5.2, it is found 

that the operating bandwidths of the newly designed fiber are almost the same as those in 

[78]-[80] with slight difference of the PCF structures due to the different models used for 

the silica material. 

Table 5.2 Three applications of DFFs with required dispersion DF = 0 and dispersion 
variation Af)F = l ps/nm/km. 

Type Wavelength After step l After step 2 After step 3 Mode MEA Bandwidth 

Ao (µm) A (µm), d/A A(µm), dlA A(µm), d/A status (µm2) LiA (nm) 

DFFl 0.80 0.905, 0.585 0.904, 0.583 0.904,0.581 multi 1.41 58 

DFF2 1.13 1.73, 0.357 1.731, 0.361 l.732, 0.3652 single 7.74 145 

UDF 1.55 2.40, 0.250 2.40, 0.253 2.39, 0.256 single 31.6 550 
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Figure 5.7 The total dispersion in which the dot, dash, and solid lines represent 
dispersions of the PCFs followed by Step 1, Step 2, and Step 3, respectively. (a) A.a= 0.8 
µm, and (b) A.a= 1.13 µm. 

5. 7 Dispersion Compensation Fibers 

The idea to use the PCFs for the dispersion compensation was first proposed in Ref [82], 

in which a simplified model consisting of a silica core in air was used for the proof of 

concept In order to optimize the dispersion, it is necessary to systematically investigate 

dispersion properties of the PCFs with the combination of the PCF parameters by a 

rigorous vector solver [26]. It is, therefore, of practical interest to improve the existing 

design so as to explore the potential of the PCFs for broadband dispersion compensation. 

Here we assume that a fiber link consists of a CSF of length L 1 with dispersion 

D 1(A..) and a DCF of length L2 with dispersion D2(A), the effective compensated 

dispersion De(A) on the fiber link in series can be written as 
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D (A)= D1().)L1 + D2 () .. )L2 

• L1+L2 
(5.12) 

which only considers the effect of dispersion. In order to compensate the accumulated 

dispersion of the CSF at ll, = A.o by the DCF, the following condition has to be satisfied: 

R = !::i_ = - Di( Ao) 
L2 Di( Ao) 

(5.13) 

where R is the fiber dispersion (or length) ratio and A.o is the center of the operating 

wavelength range. Furthermore, the accumulated dispersion of the CSF should be 

compensated over a wavelength range. For the sake of simplicity, we assume that both 

fibers have slowly varying dispersion slopes S1(A) and S2(A) [58]. In order to compensate 

the accumulated dispersion over a range of wavelength (e.g., De( A) = 0 with A -:t Ao), we 

have 

(5.14) 

where (5.13) was used. By combining (5.13) with (5.14), a new parameter K is 

introduced to judge the dispersion compensation satisfaction over a range of wavelength, 

K = Di( Ao) = Di( Ao) 
Si( Ao) Si( Ao) 

(5.15) 

From (5.15), it is apparent that once the parameter K of the DCF, with the 

maximum of R or some other constraints, reaches the required one of the CSF, the design 

of the DCF is accomplished. Based on the above requirement, a design procedure for the 

broadband DCF is similar with the general design procedure described in the previous 

section. 

The desired DCF should have a normal dispersion and negative dispersion slope. 

From the first order approximation (5.1) of D(A) and scaling transformations (5.2) and 

(5.3) of Dg(...A-) with Ao= 2.3 µm, the PCF with required dispersion properties can be 

analytically obtained. Figure 5.8(a) shows the parameter K for the CSF and PCF as a 

function of pitch A with different d/A values. It is seen from Figure 5.8(a) that the 

possible pitch range of the PCF is from 0.7 to 1.4 µm, which corresponds the parameter K 

142 



Chapter 5. Design of Dispersion Component Elements 

from 1000 nm to 0. Here we assume that the CSF is made of silica with a step-index core 

of diameter 9.0 µm and numerical aperture O.l [82] and its K is a constant value over the 

DWDM wavelength range [58]. The intersection points (diamond shapes) between the 

PCF and the CSF, which have the same K, are the possible pitch of the PCF. It can be 

seen from Figure 5.8(a) that the pitch of the PCF decreases or converges into one value 

(around A= 0.9 µm) when d/A increases from 0.6 to 1.0. By considering the practical 

PCF with a rough silica bridge of 0.12 µm [82], we assume that the narrowest width of 

the bridge to be 0.1 µm (i.e., A - d = 0.1 µm) as shown in Figure 5.8(b). It can be seen 

from Figure 5.8(b) that the possible PCF with A(2) = 0.928 µm and J2)/A(2) = 0.892 is 

obtained with D(A) of -432 ps/nm/km at the wavelength of 1.55 µm. Further, through the 

calculation of D(A), the final PCF with A(4) = 0.932 µm and J4)/A(4)= 0.893 is confirmed 

with -474.4 ps/nm/km at the wavelength of 1.55 µm, which is summarized in Table 5.3. 

Figure 5.9 shows the effective dispersion of the fiber link at the wavelength of 1.55 µm 

and D(}.,) of the PCF (solid line) and CSF (dot line), in which the dot line represents the 

product of dispersion of the CSF and dispersion ratio R, respectively. It is seen from 

Figure 5.9 that the optimum PCF can compensate CSF within± 0.05 ps/nm/km over 236-

nm wavelength range. The corresponding dispersion at 1.55 µm is of about -474.4 

ps/nm/km, which means it can compensate the dispersion of over 28 times of length of 

the CSF. From the judgment of the core parameter U (e.g., U < 2.6) [72], the PCF with 

d/A ""'0.9 and A< 1.1 µm is of single-mode operation. It is worth mentioning that the 

designed PCF with small core has small mode effective area (1.6 µm2) and large coupling 

loss with the standard fiber. Fortunately, the taper PCF structure can be used for mode 

converter with only 0.3 dB coupling loss with the CSF [84]. 

Table 5.3 The DCF application with required K coefficient of the CSF at the wavelength 
of 1.55 µmis 301.8 nm within an effective dispersion variation(± 0.05 ps/nm/km). 

Type Wavelength After step 1 After step 2 After step 3 Mode MEA Bandwidth 
~(µm) A(µm),W'A A(µm),W'A A(µm),W'A status (µm2) AA(nm) 

DCF 1.55 0.928,0.892 0.930,0.891 0.932,0.893 single 1.60 236 
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5.8 New Dispersion Design for DCFs 

In this section, a new PCF structure that allows first two rings of the air holes to have 

different radii is proposed and analyzed for the purpose of broadband dispersion 

compensation. The new structure of the PCF to some extent resembles the index profile 

of the W-shape conventional fiber (or simply W-fiber) in which an additional cladding 

layer with the depressed refractive index is placed near the core [2]. By properly 

optimizing the index, width and position of the cladding layer, the W-fiber can exhibit 

enhanced dispersion characteristics for various applications. In other words, by increasing 

the air-hole size of the first air-hole ring and decreasing the air-hole size of the second 

air-hole ring, a similar index distribution with the W-fiber PCF can be realized in the 

PCF. For the sake of simplicity and the limitation of fabrication, we assume that the 

radius of the first air-hole ring is unchanged and the same with the air-hole size d of the 

PCF. 

The transverse cross-section of the modified PCF is shown in Figure 5. 10. Like the 

conventional PCF, the air holes are arranged in a hexagonal (or triangular) array with the 

air-hole size d and the pitch A. In order to optimize the index distribution in the cladding 

area, an extra design parameter, the air-hole size d1 of the second ring of air holes, is 

introduced. Due to the large dispersion requirement, the PCF used for the DCF have large 

air-hole size-to-pitch ratio (e.g., d/A = 0.9 [58]). Therefore, we restrict our discussion to 

the regime of d cd1• In order to utilize the scaling transformation of modal properties of 

the PCF [58], a typical PCF with d= 0.81 µm and A= 0.9 µmis used as the starting point 

of design and optimization of the DCFs. 

Because of the additional degree of freedom provided by this new structure, a large 

K coefficient (dispersion divided by the dispersion slope) can be realized without too 

much reduction in the mode effective area of the PCF. Furthermore, by employing the 

design model and methodology in the previous sections, a general design optimization 

procedure can be developed for the PCFs to realize various desirable dispersion 

applications, especially for broadband dispersion compensation. 
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Figure 5. 10 The cross section of a PCF with a regular triangular air-hole array. 

Figure 5.11 shows the effective index neff and the geometrical dispersion Dg as a 

function of wavelength for the fixed pitch A= 0.9 µm and air-hole sized = 0.81 µm. It is 

noted from Figure 5.1 l(a) that, when the size d1 of air holes of the second ring of PCF 

decreases, the "turning point" of the effective index neff moves toward the short 

wavelength and the slope of the effective index at the turning point becomes more 

dramatic. Accordingly, as shown in Figure 5.1 l(b) when the size d1 decreases, the point 

of the minimum geometrical dispersion Dg moves toward the short wavelength and the 

slope of the geometrical dispersion Dg increases. 

We also calculated the geometrical dispersion Dg with the minimum dispersion at 

the wavelength of 2.0 µm through the scaling transformation mentioned in 5.2. The 

results are shown in Figure 5.12 in which the corresponding pitches are 1.09, 1.29, 1.50, 

and 1.87 µm for d1 = d, 0.75d, 0.6d, 0.5d, and 0.4d, respectively. 

As we know, the conventional single-mode fibers (CSFs) have an anomalous 

dispersion and positive dispersion slope at the operating wavelength near 1.55 µm. From 

(5.4), the desired DCF should have a normal dispersion and negative dispersion slope 
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with the same K of the CSF within a range from 30 to 400 nm around the same operation 

wavelength. It also can be seen from Figure 5 .12 that the portion of curves with a 

negative slope are the corresponding periods because the dispersion slope of material 

such as silica is relative small in the PCF at the wavelength range of 1.55 µm. From 

scaling transformations of the dispersion, the possible pitch range of the PCF is from 0.7 

to 1.6 µm. Two examples of the PCF structures compensated for dispersion of typical 

commercial deployed transmission fibers at the wavelength of 1.55 µm are demonstrated 

as follows. 

(a) 
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Figure 5.11 Modal parameters as a function of wavelength for the PCFs with fixed pitch 
A = 0.9 µm and air-hole size d = 0.81 µm. (a) The effective index neffi and (b) The 
geometrical dispersion Dg(A). 

The dispersion properties of two typical commercial deployed transmission fibers 

at the wavelength of 1.55 µm are taken from Ref [87], which are shown in Table 5.4. 

Here we assume that the K coefficient of the CSF is a constant value over the DWDM 

wavelength range. Figure 5.13 shows the K coefficient as a function of pitch for different 

d/A values of the PCF and CSF. The intersection points between them, which have the 
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same K coefficient, are the corresponding pitch of the PCF. The optimum PCF structure 

and corresponding dispersion are shown in Figure 5.14 and Table 5.5, respectively. 

400 
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S: 
o"" 
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Figure 5.12 Geometrical dispersion Dg(A) as a function of wavelength for the PCFs with 
fixed minimum dispersion at the wavelength of 2.0 µm through the scaling 
transformation of Dg(A). 

Table 5.4 Typical dispersion properties of some commercial deployed transmission fibers 
h I h f at t e wave engti o 1.55 µm. 

Type of CSF fiber Dispersion Dispersion slope K coefficient 
(ps/nm/km) (ps/nm2/km) (nm) 

Standard SMF 17.0 0.058 298 
True wave-RS 4.5 0.045 100 

Compared with the conventional PCFs, as evident from Table 5.5, the newly design 

of the PCFs is shown to provide large normal dispersion (up to -811 ps/nm/km from -521 

ps/mn/km) and large mode effective area (up to 2.2 µm2 from 1.5 µm2) at a typical C 

band wavelength range (up to 50 nm). With a dispersion of -811 ps/nm/km and a mode 

effective area of 2.2 µm2 (or -703 ps/nm/km and 4.0 µm2), a PCF could compensate the 

dispersion of over 50 times (or 150 times) its length of the CSF within ±0.05ps/nm/km. 
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Figure 5.13 Coefficient Kasa function of pitch for the PCFs with different d/A values. 
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Figure 5.14 Total dispersion D(A.) as a function of pitch for different PCFs with d/A = 
0.9 at the wavelength of 1.55 µm. 
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Table 5.5 Typical PCF structure compensated for dispersion of some commercial 
deployed transmission fibers at the wavelength of 1.55 µm. 

Type of CSF fiber Original design New design 
(d1= d) 

Standard SMF A=0.922µm A=l.lµm 
(Square shape d= 0.830 µm d = 0.99 µm and d1 = 0.6 µm 
in Figure 5.14) D = -521 ps/nm/km D = -811 ps/nm/km 

Aeff = 1.5 µm2 Aeff = 2.2 µm2 

True wave -RS A= 1.1 µm A= 1.5 µm 
(Circle shape d=0.99 µm d= 1.35 µm and d1= 0.54 µm 

in Figure 5.14) D =-80 ps/nm/km D = -703 ps/nm/km 
Aeff= 2.2 um2 Aetr = 4.0 1..1m2 

5.9 Summary 

Based on the rigorous vector mode solvers and the scaling transformations of the modal 

properties, a general design model of the PCFs for the dispersion-related applications is 

proposed. By using the proper combination of the numerical mode solvers and the scaling 

transformations, the design parameters of the PCFs can be optimized automatically to 

realize the desired dispersion properties. Several typical examples for dispersion-related 

applications are given in great detail. For certain dispersion-related applications, we show 

that other modal properties such as the mode effective area and the single-mode operation 

can also be accounted for as additional considerations in the overall design process. And 

some typical examples for dispersion-related applications are given. 

By following the general design model and methodology for designing the 

broadband DCF based on the PCF structure, an optimized broadband dispersion design is 

obtained through proper scaling of two design parameters of the PCF and refinement by 

the rigorous numerical analysis. Two typical design examples for the DCF are 

demonstrated. With a dispersion of -811 ps/nm/km and a mode effective area of 2.2 µm2 

(or -703 ps/nm/km and 4.0 µm2), a conventional PCF (or the PCF with the different air­

hole size of the second air-hole ring) could compensate the dispersion of over 50 (or 150) 

times its length of the CSF within ±0.05ps/nm/km over a 150-nm wavelength range. 
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Chapter6 

Conclusions and Suggestions for Further Research 

6.1 Conclusions 

In this thesis, the modal characteristics of photonic crystal waveguides (PCW s) in both 

one and two-dimensional configurations were investigated theoretically in a systematic 

and comprehensive fashion by both approximate and rigorous methods. Depending on the 

design parameters of the PCWs, there exist two different guiding mechanisms, i.e., the 

total internal reflection (TIR) and the photonic band-gap (PBG). Firstly, through the 

comprehensive analysis of modal properties and transmission characteristics of ID 

PCW s, the deep physical insight was gained and salient features were revealed. In 

addition, we also presented and compared the scope of validity and degree of accuracy 

for several approximate solution methods (e.g., the effective index method and the 

envelope approximation method). Secondly, we studied in depth the modal characteristics 

of 2D PCWs (i.e., PCFs) by using the versatile finite difference method and the 

physically more revealing plane-wave expansion method. In this context, we for the first 

time to our best knowledge carried out a comprehensive assessment of the scalar and the 

semi-vector approximations by way of examples. It is shown clearly that the semi-vector 

approximation is sufficient for accurate prediction of the modal properties of the typical 

PCFs, whereas the scalar approximation may lead to significant errors. Finally, we 

discussed the design optimization of the PCWs with respect to applications in broad-band 

fiber-optic communications. A general scaling transformation of the modal properties 

related to the design parameters of the PCFs are derived. Based on the high accuracy 

analysis models and scaling transformations of modal properties, a powerful procedure of 

design and optimization of the PCFs for desired modal properties is proposed and applied 

to several practical examples. High-performance PCFs with such an optimization 

procedure are designed and demonstrated. 
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In the following, a summary of the major contributions made in this thesis is given: 

1. Comprehensive Investigation of Modal characteristics of lD PCWs 

One of the major contributions of this thesis is the comprehensive investigation for the 

modal characteristics of the ID photonic crystal waveguides (PCWs). Despite their 

structural simplicity, the ID PCWs provide a revealing example for analyzing and 

understanding the underlying guiding mechanisms and the modal characteristics of the 

PCWs in general. By using the standard transfer matrix method, we performed a 

systematic analysis of typical ID PCWs. With the help of the band-gap map of the 

corresponding photonic crystal structure, we have, for the first time, identified four 

different guiding regions in which different transmission characteristics of the 

waveguides are analyzed and discussed. The modal properties of the PCWs, such as the 

effective index, the modal field, the group velocity dispersion, the mode effective area, 

the beam divergence, the model polarization and modal birefringence, the confinement 

loss, and the single-mode operation, are all examined in detail. Also, we employed two 

approximate methods, namely, the envelope approximation method and the effective 

index method. Their scope of validity and level of accuracy are assessed by comparison 

with the exact solutions. Further, scaling transformations of the modal properties related 

to the design parameters of the waveguide structure are derived. Finally, the similarity 

and difference between the 1 D PCW s and 2D PCW s are discussed. 

2. Scope of Validity and Level of Accuracy for the Semi-Vector and 

Scalar Formulations 

It is well established that the scalar formulations is accurate enough for analysis of the 

modal properties of the weakly-guided optical waveguides such as the conventional 

single-mode fibers. For the PCWs, it was generally believed that the scalar approximation 

could be used for small air-hole PCWs. A more in-depth examination of this issue by the 
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systematic simulation for typical PCFs is carried out by using the rigorous finite 

difference method, which helps to fill certain holes in knowledge of the vector properties 

of the PCFs. Through the comparisons among the full-vector, the semi-vector, and the 

scalar formulations, it is demonstrated clearly that the vector nature of the guided modes 

on the PCFs needs to be considered in analyzing the modal characteristics such as the 

effective indices, the dispersions, and the model field profiles. In this respect, the semi­

vector formulation can be used to obtain solutions of high accuracy with the same level 

of computation effort as the scalar solutions. This conclusion is of considerable practical 

significance, considering the simplification of the semi-vector formulation and the 

reduction of the computation resources required in comparison with the full-vector 

formulation and computation. 

3. Study of Dependence of the Modal Characteristics of Practical PCWs 

on New Design Parameters 

Another important contribution of this thesis is to study and clarify the dependence of the 

modal characteristics (e.g., the modal field, effective index, dispersion, confinement loss, 

bending loss, mode effective area, and confinement factor) of the lD and 2D PCWs on 

certain key design parameters such as the number of air holes and size of interstitial 

holes. Such effects are practically important, yet have not yet been examined and 

reported in literature prior to this work. Furthermore, some scaling transformations of 

modal properties related to the design parameters of the PCW s, which are very helpful in 

design of practical optical waveguides, are given. 

4. A General Procedure for Design Optimization of the PCFs 

Efficient and reliable procedure that can be used to perform design optimization for the 

PCFs is highly desirable for the application of such waveguides as a transmission 

medium. Such a procedure for design of the PCFs with desirable dispersion properties is 

developed and presented in this thesis. The design model is based on the combination of a 
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rigorous vector mode solver and a scaling transformation for the dispersion properties of 

the PCFs. In comparison with the conventional design method, the new design procedure 

is more efficient and can be readily automated for the purpose of design optimization. 

Several applications of the design procedure, e.g., the design optimization for the 

dispersion shifted fibers, the dispersion flattened fibers, and the dispersion compensation 

fibers, are demonstrated and discussed. 

5. Designs of High-Performance Dispersion Compensation Fibers 

As a good example for the application of the powerful design optimization methodology 

described in the previous section, a PCF is designed and shown to exhibit large normal 

dispersion up to -474.5 ps/nm/km, nearly five times of conventional dispersion 

compensating fibers, and compensate conventional single-mode fibers within ± 0.05 

ps/nm/km over a 236-nm wavelength range. Further, through the change the size of the 

second air-hole rings, a novel design of the PCFs for the dispersion compensation is 

obtained. In comparison with the performance by the conventional PCFs, the newly 

designed PCF is capable of providing large normal dispersion (up to -811 ps/nm/km from 

-521 ps/nm/km) and large mode effective area (up to 2.2 µm2 from 1.5 µm2) at a typical 

C band wavelength range (up to 50 nm), which represent the best overall performance 

ever reported in literature. 
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6.2 Suggestions for Further Research 

Based on the modal properties of the PCWs, which are investigated thoroughly in this 

thesis, future work and research should focus on the development of the new devices and 

related solvers. In the following, suggestions for further research are given. 

As we know, the research and development of the PC-based devices and 

components, such as couplers and multiplexers, just begin. Many novel devices with 

some unique features need to be discovered and assessed. Except the optical 

communication, different application areas, such as optical signal processing, bio-optics, 

and optical sensors, also call for the novel devices. Based on the unique features of the 

PCW s, it is very natural extension of the current work. Further research can also be 

devoted to the design and optimization of the PC-based devices with in-plane 

propagation. 

On the other hand, further research is needed to develop the new analytical and 

semi-analytical solvers by utilizing the unique features of the PCs. By analogy with the 

electronic band-gap material and the microwave/RF transmission theory, more mature 

analytical and semi-analytical methods are desirable for design and optimization of the 

PC-based devices and circuits. 
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Appendix A 

Performance Parameters of Optical Waveguides 

The overall parameters of optical waveguides can be categorized into the design 

parameters (e.g., physical dimensions, refractive indices, and environmental effects), 

performance parameters (i.e., modal properties or transmission characteristics), and 

mechanical parameters. Among them, modal properties are of utmost importance for 

optical communication systems. By solving the eigen-value equations of the waveguide 

modes through some approaches mentioned in Chapter 2, we can obtain two fundamental 

modal properties: complex effective indices Neff (e.g., ne_u+ jn;) and modal field profiles 

(e.g., Ex and Ey) of the corresponding modes. From them, other modal properties of 

optical waveguides, which are frequently used in this thesis, can be derived. 

A.1 Pe:rfo:rmance Parameters Related to Mode Effective Index 

A.1.1 Confinement Loss 

The confinement loss Le. an attenuation caused by the waveguide geometry (i.e., without 

considering the material absorption and waveguide imperfection), is given by 

(A.I) 

where k is the propagating constant in free space, A is the operating wavelength in µm, 

and n; is the imaginary part of Neff· It is worth to note that, if the waveguide is bended 

with a radius R, the loss calculated by (A. I) includes the bending loss. 

A.1.2 Group Index and Group Velocity 

The group index ng is defined by 

dk dne·fJ dne·fJ n (A.)= c_g_ = n -A.-"-1 = n + m-"-1 

g dm elf dA. elf dw (A.2) 
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where neff is the real part of the complex effective index Neffi k= is the propagation 

constant, and wis the angular frequency. The group velocity Vg is defined by 

v (A)= dkz =-c-=_l ( )
-1 

g dw ng(2) t'g 
(A.3) 

where c is the velocity of the light in a vacuum and t'g is the group delay. 

A.1.3 Group-Velocity Dispersion and Dispersion Slope 

The group-velocity dispersion D is defined as the change in pulse width per unit distance 

of propagation and given by 

d ( 1 J A d 2neff (A.) D(;/,) =- -- = 2 , ps/km/nm 
dA. Vg(A) c dA. 

where II, is the operating wavelength. The dispersion slope S is defined by 

S(A.) = dD(2) 
dA. 

A.1.4 Modal Birefringence and Beat Length 

(A.4) 

(A.5) 

Modal birefringence B is defined as the difference in the effective index between the two 

orthogonal polarizations, and given by 

(A.6) 

where neff,x and neff,y are the effective indices of two orthogonal polarizations, 

respectively. The beat length Ls is defined as a period with the power exchange between 

two polarizations, and defined by 

(A.7) 

where II, is the operating wavelength. 
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A.1.5 Propagation Constant and Phase 

The propagation phase f/J is calculated by 

(A.8) 

where A, is the operating wavelength, L is the length of the optical waveguide, kz is the 

propagation constant ( kz = kneff = 2tr neff I 1 ), and Vp is the phase velocity ( v P = w I kz ). 

A.1.6 Mode Cut-Off Conditions and Single-Mode Operation 

The basic criteria to judge a mode cut-off is that the modal effective index neff is less than 

the index of the cladding, and given by 

(A.9) 

where nc1 is the refractive index of the cladding of the optical waveguide. The single­

mode operation of the optical waveguide is that only fundamental modes exist and all 

high-order modes are cut-off. 

A.2 Performance Parameters Related to Modal Field Pattern 

A.2.1 Confinement Factor 

The confinement factor in silica r is defined by 

r = fimca(I Ex(x,y) 12 +I Ey(x,y) l2 )dxdy 

f1u(I Ex(x,y) 12 +I Ey(x,y) 12 )dxdy 

where Ex and Ey are the modal electric field profiles along x and y, respectively. 
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A.2.2 Far-Field Divergence Angle 

Except obtaining directly from the far-field through the Fourier transfer of the modal 

field profile, the beam divergence angle e can be calculated from the mode spot size w0, 

which can be obtained through the Gaussian approximation Ae.ff= 1Cw/ of the modal field 

profile by 

8 = tan -I(-/..-) 
n: Wo 

where A, is the operating wavelength. 

A.2.3 Mode Effective Area 

The mode effective area Ae.ff is defined by 

[J f(I Ex(x,y) 12 +IEy(x,y)12 )dxdy]2 
Aeff(1)=-------'-----­

ff(I Ex(x,y) 12 +I Ey(x,y) 12 )2 dxdy 

where Ex and Ey are the modal electric field profiles along x andy, respectively. 

A.2.4 Mode Spot Size and Mode Field Diameter 

(A.11) 

. (A.12) 

The mode spot size w0, also called the mode effective radius, is defined by fitting the 

field pattern into the Gaussian field pattern, 

(A.13) 

where w takes the value wo to maximize the coupling coefficient 

(A.14) 

where E(x, y) is the modal field pattern. The mode field diameter (MFD) dis defined by 

d=2w0 (A. l 5) 

where w0 is the mode spot size. 
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Appendix B 

Optical Properties of Optical Waveguide Modes 

B.1 Mode Classification 

For the. ID optical waveguides, the polarization of modes is defined in terms of 

components of the EM fields. For the 2D optical waveguides, the modes are hybrid 

modes and the polarization of modes is defined in terms of the dominant component of 

electric fields with respect to the y direction (or dielectric interface of the waveguide) as 

shown in Figure 2.1. The detailed polarizations and components involved in each 

category of the optical waveguide are summarized in Table B.l. 

Table B. l Mode classification of optical waveguides 

Polarization ID, n(x) 2D semi-vector, n(x,y) 2D full-vector, n(x,y) 

TE E>" H:x. Hz E>" H:x. lfz Dominant E>" Hx (Quasi-

TE) H>" Ex, Ez, Hz 

TM Hy. Ex, Ez H>"E:x.Ez Dominant H>" Ex (Quasi-

TM) Ey, Hx, Ez, Hz 

B.2 Modal Orthogonality 

The mode orthonormal relation between normalized guided modes with respect to the 

propagation direction +z are given as follows: 

(B.l) 

where 8ij is the Kronecker-8 function, and e; and h; are the electric field and its associated 

magnetic field of the ith mode. The modal orthogonality is the basis of the waveguide 
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theory involving waveguide excitations, discontinuities, and perturbations. For ID slab 

waveguide, modal orthogonality of guided modes is given by 

for the TE wave 

1 L kz L 1 ax;o L 2 s: - e -h -dx=-- --h -h -dx=- n (x)e -e -dx=u.-· 2 00 XI Yl 2ax;o 00 n2(x) y1 Yl 2kz 00 XI XJ lj 

for the TM wave. 

B.3 Overlap Integral 

(8.2) 

(8.3) 

The overlap integral between an arbitrary given field and a guided mode is a very useful 

to calculate the guided power involving the waveguide excitation, discontinuity, and 

perturbation. An arbitrary electric field E and its associate magnetic field fI can be 

decomposed as a sum of all modes including radiation modes, 

E = I (a; + b; )e; 
i 

fI = I(a; -b;)h; 
i 

(B.4) 

where e; and ii; are the electric field and its associated magnetic field of the ith mode, 

and a; and b; are the expansion coefficients of the forward wave (+z) and backward wave 

(-z) for the ith mode. By applying the modal orthogonality, we calculate the overlap 

integrals a; and b; as follows: 

l f(- -. . -) a; =4 Exh; +e; xH ·zdxdy (8.5) 

I (- -• * -) b; =4 f Exh; -e; xH · zdxdy (B.6) 

where the power guided in the ith mode should be that f'i = (ja;j2 - jb;j2) provided the 

input mode power is the unity. Therefore, the modal orthogolity permits us to express the 

power carried by the total field in terms of the expansion coefficients. 
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Appendix C 

Optical Properties of PC Bloch Modes 

C.1 Mode Classification 

Unlike . these of optical waveguides, due to the periodic dielectric function 

( n(r) = n(r + R) ), the modes of the PCs are Bloch modes ( u(f) = u(r + R) ), where R is 

the lattice vector in the x-y plane. The modal field of the Bloch mode in the PCs consists 

of plane waves: 

(C.l) 

where k is the wave vector of the plane waves (or Bloch wave number), G is the 

reciprocal lattice vector, un,G (n = l and 2) is the coefficient of the magnetic fields along 

en' and en stands for two unit vectors, which are perpendicular to the propagation 

direction k + G . According to the reciprocal lattice vector G and wave vector of the 

plane waves k, the detailed polarizations and components involved in each category of 

PC Bloch modes are summarized in Table C. l. 

Table C. l Mode classification of the PCs 

Polarization ID, n(x) lD, off-plane 2D, n(x,y) 2D, off-plane 3D, n(x,y,z) 
TE Ev, Hx, Hz Ev, H::o Hz Ex, Ev, Jfz NIA NIA 
TM Hy, Ex, Ez Hy, Ex, Ez H;x, Hy, Ez NIA NIA 

Hybrid NIA NIA NIA Ex, Ey, Ez, Hx, Ex, Ey, Ez, Hx, 
Hy, Hz Hv, Jfz 
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C.2 Modal Orthogonality 

According to the definition of the Hermitian operator E> [7]: (F,E>G)=(E>F,G), where 

(F,G) is the inner product of two vector fields F and G, the operator related to wave 

equation E>H(r) = (wl c )2 H(r) of the magnetic field H(r) is the Hermitian operator [7], 

and the orthogonality of the magnetic modal fields and normalized Bloch functions over 

a unit cell of volume Vo are expressed by 

(C.2) 

1e11 u * n'k (r) . unk (r )dr I Vo = t5nn' (C.3) 

where t5ij is the Kronecker-t5 function and t5(k- k') is the Dirac t5 function. Because 

the operator related to wave equation 'BE(r) = (wl c )2 E(r) of the electric field E(r) isn't 

the Hermitian due to the density function n2(r) [7], the orthogonality (C.2) of the 

magnetic modal fields cannot directly be used for the electric modal fields. However, we 

can derive it from (C.2) with the help of the Maxwell's equations and the periodic 

boundary conditions. After some simple derivations and dropping the constant term 

( wnµ0 I Wn•Eo ), we have 

- 2 -1ell E * n'k' (r) · n (r )Enk (r )dr = t5nn.t5 ( k - k') (C.4) 

(C.5) 

where the Divergence (or Gauss) theorem was used. So the electric modal fields are 

orthogonal with respect to the density function n2(r). In general, the wave equation 

E>E(r) =(ml c )2 n2(r)E(r) with the Hermitian operator E> is a generalized Hermitian 

eigenvalue problem (GHEP) [88]. And the electric modal fields related to this wave 

equation are orthogonal each other with respect to the density function n2(r). 
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For the TE wave with off-plane propagation in the ID PCs, the wave equation 

related to Ey and Hx of (2.13) and (2.14) is rewritten as 

d2Ey 2 ( )2 2 
8Ey=- dx2 +kzEy=OJ/c n(x)Ey (C.6) 

d 2 Hx 2 ( )2 2 8Hx =---2-+kzHx = mlc n (x)Hx 
dx 

(C.7) 

where 0 (=-d2 I dx2 + k;) is the Hermitian operator. The orthogonality of electric and 

magnetic modal fields and the normalized Bloch functions over a unit cell of length A are 

expressed by 

where Ey(x) = uk(x)exp(jkx) and Hx(x) = vk(x)exp(jkx). 

On the other hand, for the TM wave with off-plane propagation in the l D PCs, the 

wave equation related to Ex and Hy of (2.13) and (2.14) is rewritten as 

(C.10) 

0H =-- __ Y +-LH =(mlc)2H d [ I dH ] k 2 

Y dx n2 dx n2 Y Y 
(C.11) 

where both 8 and 3 are the Hermitian operators. The orthogonality of the electric and 

magnetic modal fields and the normalized Bloch functions over a unit cell of length A are 

expressed by 

(C.12) 

(C.13) 
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whereEx(x)=uk(x)exp(jkx) and Hy(x)=vk(x)exp(jkx). The orthogonality of electric 

and magnetic modal fields and the normalized Bloch functions over a unit cell of area S 

for the 2D PCs with off-plane propagation can be derived in a similar way. 

C.3 Scaling Transformation 

Due to the scaling nature of the Maxwell's equations, there is no fundamental length 

scale for the EM waves. Therefore, we can easily derive the scaling transformation of the 

modal properties such as the effective index and the modal field pattern with respect to 

the change of the pitch A and the refractive index n(r) of the PCs and their related 

structures (e.g., PCWs and PCCs). For some given parameters, such as the pitch A0, the 

field position r0, and the frequency a,v, the wave equation related to the magnetic field 

fl (r) of (2.2) is rewritten as 

I - m0 2-
\7x[-2-VxH(r0)]-(-) H(r0 ) = 0 

n (r0 ) c 
(C.14) 

where \7 is a linear operator. Now we change the pitch ratio M (i.e., NA0 or r/r0) as the 

scale parameter of dimension of the PCs. So the index distribution of the PC is that n '(r) 

= n(r/M). We change the variable r0 of (C.14) by r = M ro. After some trivial derivations, 

(C.14) becomes 

V'x[-2-
1-V'x.H(r IM)]-( mo )2 H(r IM)= O 

n' (r) Mc 
(C.15) 

where \7' = \7 IM was used. As can be seen from (C.15), the new magnetic field pattern 

can be obtained through H'(r) = H(r/ M) with the frequency w= w0 ! M. Similarly, the 

electric field pattern has the same scaling rule: E'(r) = E(r IM). Therefore, the scaling 

transformations of the field pattern and the effective index ( neff = ck2 I w0 ) of the PC­

based modes are obtained through scaling the position r and the frequency m (or 

wavelength 1) by the same factor M, and given by 
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- - r A. 
E(r,A,M) lfixedd!A = E(-,-) 

MM 

- - r A. 
H(r,A,M) ifi.xedd/A = H(-,-) 

MM 

(C.16) 

(C.17) 

(C.18) 

where di A is the air-hole size-to-pitch ratio of the PCs, A is the operating wavelength, and 

Mis the pitch ratio (i.e., NA0 with Ao= 2.3 µm). Once the scaling transformations of the 

field pattern and the effective index are given, the scaling transformations related to other 

modal parameters defined in Appendix A such as the waveguide dispersion Dg, the mode 

effective area Aeffi the confinement loss Le, and the confinement factor r, can be easily 

obtained: 

1 ,l 
Dg(A,M) lfixedd/A = M Dg(M) 

2 A. 
Aeff (A, M) I fixed di A= M Aeff (-) 

M 

A. 
r(A,M) lfixedd/A = r(-) 

M 

where A is the operating wavelength and Mis the pitch ratio. 
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