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ABSTRACT

This thesis describes a detailed study of the dynamics of the

4.3-~m CO2 laser. Pulsed laser action at 4.3-~m··±e achieved by u~ing.a· ~

10.4-~m sequence CO2 laser to optical~y pump CO2 molecules which have.

been excited in a discharge. Quantitative data regardi~g the processes

involved in 4.3-~m lasing are presented, and techniques for optimization

of performance are described. Single~line putput energies of 15

obtained using a
..

mJ/pulse and peak powers of 100 ~se are

con:entional ttansv~rsely-excited (TE) CO2 discharge 88 cm in length.

Furthermore, -it is shown that pulse energies are scalabl~ to several

hundred millijoules.

The construction of a high poweJ; sequence CO2 pump laser is

discussed in detail. The laser utilizes an atmospheric pressure T~

discharge 88~cm long and an intracavity hot CO2 cell. Output ~hergies

of up to 6 J/pulse are obtained. Other work involves the

characterization of discharge-excited CO2 and the opti~ization ·of

discharge operation. Several discharge .parame t ers are measured

including mode temperatures, collision-broadened 'nnewidths, and

overlapping gain and absorption coefficients. These measurements

provide accurate input data for·a rate-equation model of the 4.3-~m

laser.

The study of 4.3-~m dynamics involves extensive.measurements·of.
small-signal gain and energy extraction.

iii

B1.. making quantitative
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..
comparison~ between these .~easurements and the rate-equation model, the

influence of various ~arameters on the operation of 4~3-~m lasers is

examined. The factors which dominate the dynamics of 4.3-~m lasers are

found to be the short ~llisional lifeti~e of the 4.3-~m upper laser
I

level, the degree ,0 discharge excitation, and the presence' 'oJ

interfering absorptions. As a result, efficient operation is restricted

to discharge'pressures below 100 'Torr and CO2 contents of less than 5

percent. The conditions which qptimize performance are identified, and

guidl'lines for scaling' the 4. 3-~m laser to higher pulse energies are

, presented.
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2-2 Symmetry properties of
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levels (from Ref. [14]).
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, The, values .in
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2-3 Detailed transition diagram of laser osCillation in the 10.4- 15
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2-4 Calculated fraction of discharge input.elec~rical energy lost
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The predicted efficierlcy' given by (b) increases with
increasing ratio of N2 to CO2 (from Ref • .,{23]).

2-5 Summary of collisional relaxation processes relevant to CO2
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whereas the dashed lines represent laser transitions. The
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18

23 '

1/

. ,

3-1 Photograph of ,the Lumonics K-:902-2. UV-preionized TE discharge 50'
module used for the work described in this thesis. The .gain
lengt-h is 88 cm (44 cm in e.ach section), and the ove,rall
length ~s ~45 cm.

3-2 Schematic diagram of the excitation circuit used with the 52
Lumonics TE discharge. The ranges of values for the various
,parameters are shown in .their correct ):espective order (Le.,
the first value of the r~nge corresponds ~o Jow,pressure
oper?- tion). ...

.3-3 Voltage and current pulses measured fo~he discha~ge cir~uit 53
of Fig. 3-2, corresponding to a' singl~discharge section
having a 1.5-)lF capacitor charged to 4 kV. A gas mixture of
5% CO 2: 10% N2: 85% He at 80 Torr was used. ' Note thaI: the
voltage pulse is negative with respect to ground.
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and 10.4-Um ~mall-signal gain coefficients •.
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beam. The oscillo~cope photograph s,uperimposes 10, shots
taken o,Jer a 3d s period. ,Note, the excellent reproducibility
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mixtllre 'is 3% C92: 10% N2:87% He at a' total pressure 'of 80
:rorr, and gain is.measured on the P(8).10,4-lJm line. .
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~red vibrati~nal temperature T3 as a func~ion of (stored) 60'
'input electrical energy to the discharge. The input energy
was changed by ,varying either the
mai.n 'discharge capac{tance,' C.'
indicated. Increased excitation

"obtained by reducing E/N. , "

charging voltage or the
Peak E/N values are

efficiency is clearly

..
3-8 Measured vibrational temperature T3 and ;',rotational

temperature T as a function of N20 content in a discharge.
The values of T3 ~orrespond to the maximum attainable in a
self-sustained discharge due to the 'effects of electron
de-excitation. The CW , discharge data are taken from Fox a'ld
Reid [95], where it is noted' that T1 typically equals T.
Effective percent N20 refers" to the N20 remaining in the gas
mixture after dissociation is taken into account. See, text

, for further details.
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3-7 Measur;'d vib,ational" temperatures T1 and T3
CO 2 content of a discharge. The values of
the maximum attainable in a self-sustained
the effects of electron de-excitation. See
de.tails.
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as a function of
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discharge due to
text' for further
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3-9 Linewid~h , (HWHM) ,as a function of pressure' for the P(32). 69'
10.4-lJm transition in a·gas mixture.of 3% CO2 : 2% N2: 95% He
at ,a temperature of 304 ± 5 K. The straig~t-line fit is

. constrained to pas~ through the origin and gives a broadening
coefficient of 0.06~1 ± 0.9009 cm-1/atm. '

3-10 Linewidth (HWHM) as a functio~ of pressure'for the P(14)
10.4-lJm transition under the same conditions as given in the
~aption to Fig. 3-9. The straight liQe which is constrained
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and g'lvesa broadening coefficient of 0.0613 ± 0.0008

, cm-1/atm.
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3-11 Broadening coefficients, n, as a function of Iml for CO 2 at 75
'300 K. m = -J for the P branch and m = J+1 for the R branch. ,
The He-broadening data of the present study is compared. to.
measurements by Abrams [75] and Oodate and Fujioka [98J and
to the calculation of Pack [76]. Also shown are CO 2-C02 and
CO2-N2 linewidths (- - ~), which represent straight-line fits
to'measurements by others (see Eqs. (2-22) and (2-23»~

77

3-14 Rotational gain distribution in the 9.4- and 10.4-~m, regular 84
and sequence bands. The· ,discnarge was operated with a
5% CO 2: 10% N2: 85% He gas mixtu,e,at 80 Torr total pres~ure.

The smooth curves show the -best fi~.f the calculated
relative gai~ith T = 362 K, while th triangles show the
calculated absO\ute gain. Crosses are used to ind~cate the _
gain coefficients calculated for the anomalous lines. 'The'
measured vibrational temperatures were,T2 = 388 ± 15 K, and

.• T3'= 2460 ± 50 K. -.

3-15 Rotational gain d~stribution in the 9~4- and 10.4-~m, regular 87
ana sequence bands. The discharge was operated with a
5% CO2: 10% N2 : 8~ He gas mixture at 425 Torr total
pressure. The smooth cur~es show the best fit of ,the
calculated relative gain with T = 381 K, while the triangles.
show the calculated absolute gain. Crosses are used ,to
indicate the gain coefficients calculated for the anomalous
lines." The measured vibrational temperatures were T2 = 411 '±
15 K, and T3 = 2325 ± 50 K.
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COZ pressure for the P(18) regular and P(lS) sequence 10.4-~m
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0
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details of the calculation.

4-4 Measured and calculated hot cell absorption as a function of 101
COZ pressure for the P(ZO) regular and P(17) sequence 10.4-~m:
·lin~s. Further detai~ ~given in the caption to Fig. 4-3.

109 .4-5 Net gain per pass on. the P(18) regular and P(lS) sequence
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(b), and (c) are plotted for pressures' of 0, 450, and 760
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4-6 Comparison of theoretical 'and experimental pulse shapes for lIZ
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a reflectivity of 65 % for sequence operation and 36 % for

, regular operation.' The gas mixture is 11% CO : 16% NZ:
73% He and the discharge excitation energy is 115 J7z'atm.

.'

4-7

4-8

!he effect of cavity los~ § on sequen~e output energy. L
Lopt + 0hQt~ot where ~Pt is the optical loss per pass and
0hotLhot is the hot cell loss per pass. The data points
corresP9nd to the loss introduced' on the lO\4-~m P(lS)
sequence transition for ,hot cell 'pressures ranging from 400
to 760 Torr. See text for further: details. m

Calcul~te~ output energy (solid curve) and intensity (dashed
curve) as a function of cavity reflectivity for both sequence
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5-9 Peak gain as a' function of
intensity. Also shown is the
the pump pulse and thel
temperat~res are given in the

the 10.4-lJm P{Z5) sequence pump
time delay between the start of
peak 4. 3-lJm gain.' Discharge
caption to Fig. 5-1.' _/

147

.'
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