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ABSTRACT

[ .
in cold climgtes, temperatures higher than the ambient bhave

been observed near the bottom of water iakes in the vicinity of

thermal discharges. Concern QQS‘Qbeen expfesséa about the adverse

effects of such abnormaliy warm water on the winter eéology‘of lake

bhottoms. It is éxpected that the existence of a density extremum in
water at 4° C and the- resulting “noni inear relgtion between sc!b.c_’nsityxnd
temperature‘ gives rise to -densimetric flows, whi;h are markedly
different Frqm those in the linear range.

Tﬁis thesis 'presents- experimental aggz‘ Aﬁ%erical
investigations that. give some insyght into the phencmencn of the
thermali'bar and the manner in which it may influence nearshore
transpo?t orocesses'in the vicinity' of a thermal cutfail in_a_cold

climate. The investigations are restricted to an icdealized model where

the Jlock exchange mechanism is selected due to the fact that its

-
-

pehaviour is close to that expected in the prototype situation.

The experimental investigation provices dramatic proof tha£
the existence of an extremum in the density-temperature relation has a
profound i%f!&ence on the behaviour of densimetric flows in general

and lock exchange behaviour in particular. Three zones in the vicinity



-

of a thermal bar are clearly defonstrated viz. (i) the thermal
overfiow region, (ii) the thermai bar, and (iii) tﬁe therma!l underflow
region. The experiments provide data on _the horizontél'scale at which
sinking takes place.

-

A numerical model.has been constructed to develop a meéns of

modelling the behaviour -of a thermal .bar'at the outfall of a steam
electric generating station cooling water system. The numerical model -
employs a finite-difference scheme. whe?e ‘the resuléing algebraic
finite difference equations are solved using an alternating direction

b

implicit method and a sparse-matrix package. The nqmerical model has

-

been verified by comparing it to numerical solutions of four different
cases of the idealized ﬁézbiem of steady laminar flow in .an enclosed
rectangular cavity with differentially heated end walls. Moreover.,
additional acceleration technigques are introduced ta improve the
numerical solution procedure., The numerical Todel is employed to solve
the actual problem of simulating lock exchange flows created between
two water beodies having different temperatures around the temperature
of maximum density (i.e. having temperatures above and below 49 C}.
The general behaviour which hag been observed experimentally is also
cenfirmed numerically. The sensitivity of the associated parameters
is examined. The relative extension of the thermal bar igy;orrelated
N
with relevant system parameters. Difficuity was experienceds in

obtaining numerical results for the same (high) Rayleigh numbers as
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. * B - .
were used for the physical experiments. Despite this, an encouraging
degree of consistency was observed between simulated and- observed

behaviour.

The important aspgc;_of the study is to draw attention to the

-

adverse effects of the sinkihg phenomepbn (thermaf bar),wbich'may

octur in the vicipity of man-mace warm efRluents as well-as in natural

bodies of water during the spriqg warming pericd. The study is

-

significant, i terms of the horizontal scale at.which siﬁking takes

place, for the design of poyer station orce—through-ceoiing water

.
.

sysfems that must operate in cold climate-winter conditionp.
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CHAPTER 1

SCOPE AND OBJECTIVES OF STUDY

1.1 Introduction -

Despite increéses in the overall efficiency of mechanical
plants a large fraction of the heat input tc steam electric generating
stations is discarded. In stations with once-~through-coeiing water
system this waste heaf‘is discharged to the environment im the form of
heated erfluent with a temperature typically 10 C° above that of the
rece{ving water. Under the tempe;ate climate conditions which common ly
obtain., this warm water forms a raft with a .pronounced discontinuity
in the vertical temperature distribut}on and a frontal sysftem driven
by the thermal density difference. When targe statio are located
adjacent to natural bodies of water these warm water discharges give
rise to environmental concerns which are frequently more important
than the 'techpical problem of warm surface water being drawn into the
cooling water intake with consequent reduction in the thermal and

economic efficiency of the station.



1.2 Statement Of Problem

1

!n cold c}imateﬁ the behaviour of theFmal density currents
may be altered when the receiving water is close to the greezing point
due to the fact éﬁat fresh wate; attains its ﬁéximum density at a
temperature of 4° (., Temperatures pigher than the ambient have been
observed near the bottom of fresh water lakes in the vicinity of
thermal discharges [Hog&und and Spigarelli- (1?72), Pipes, Pritchard
and Beer (1973)] and concern has been expressed about the adverse
effects of such abnormally warm water on the winter ecology of lakes
in colé climates. When the—receiving water is ‘;armer than 4° C the
lightér fluid will spread out in the usuai fashion shown in Figure
l.1(2), however when the ambient lake water is less thaﬁ 49 C an
entirely different behaviour is found [Metcaife (1980)]. This may be
seen-  from the wel!~ Krown non-monotonic nature of  the
density-temperature relation shown in Figure |.i(b).

[T may then be seen as demonstrated schematically in Figure
i.1{c) that thermal discharges warmer than 82 C wil] have positive
buoyancy ancd spread és a surface layer but when an ambient temperature
of close to 0° C is assumed then the plume will begin to sink when its
temperature is brodght to less than 8° ¢ by cooling and mixing
processes. since at this point its density is greater than the
receiving fluid.

Thereafter there is the possitility that the warm water wil]

spread over the bed as a density current subjecting 1ife forms on the
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iake bed to a transient and unseascnal increase in temperature. The
sinking phenomenon,-kéowﬁ as a thermal bar..may occur in the vicinity
of man-made warm ef;luents and also in natural boqies of water during
the spring war 'ng period as reported by Rodgers (1968) and Spain;
’

Herneft and Hubbard (1976). It seems iikely that the formation of a
thermal bar has a ‘significant effect on exchange mechanisms in
nea;shbre waférs and is therefore of some importance in the problem of
disposing of warm effluents in cold climates.

1.3 Objectives And Summary

The purpose of 'this dissertation is to analyse the behaviour

of the thermal density currents in water subject to a nonlinear
4

relation between density and temperature which results from the

existence of a density extremum at 45 C. This behaviour is markedly

gifferent from the well established behaviour in *he ]inear range. The

objectives of this study are :

L1y To prove that the existence of an extremum in the
density—tempera%ure relation has a prefound influence on
the behavicur of fhe thermal density currents.

(2} To demonstrate the principal flow regime in an ideg]ized
case which is likely to occur in tne vicinity of a

* thermal outfall,

{3) To provide sufficient data on %he horizontal extension at
~



- 1

which sinking takes place.

{4) To develop a mathematical model tp simulate the mechanism

-

and allow the sensitivity of the associated parameters to

be examined.

The bibliography of the subject is presented in Chapter 2.
The 1iterafure review of the environmental investigations indicates
sufficient evidencel of the existence of the sinking plumes. Moreover,
it draws - attention to such abnormally warm water which may cause
disruption of temperature dependent life cycles of aquatic organisms
within the area of elevated bottom temperature. To confirm.guch
oehaviour, physical experi@ents are required to provide a valuable
basis for continuing work on the analysis of such phenomena. To mere
closely approximate the prototype conditions at a thermal - outfall a
two-dimensional experiment was required which would allow tnspection
of the zones upstream and downstream of the thermai bar as well as the
plunging region of the bar. Even a simple two-dimensional mode!l of a
therma! outfall presents a relatively complex phenomenon, combining
beth inertial and densimetric effects. it is worth mentioning that the
phenomena of the sinking thermal plume are due to the buovancy effect
(i.e. existence of a density extfemum). therefore, it was decided %o
restrict the experiments to an idealized model in which buoyancy is
the coniy force governing the motion of the flow. Consquent]y, the

-

literature review of the idealized mocals will be presentec only for

the bucvancy induced convective motion. The lock exchange flow

w



experiment was selected d&e to the fact that its behaviour is close to’
that expected .in prototype situat{on. |

The lock exchange flow experimenfs are illustrated in Chapter
3. The densimetric flows -were created in a-horiZAntal flume between

s
two water bodies having the same surface elevation but which differ in

*
[y

temperature (i.e. densjty). The experimentél temperatures were
adjusted to set up initial temperatures T,, and T. for the warm and
cold water respectively such that T, >8°Cand 4 > To > 0°C. The
initial flow - pattern was similar to the classic lock exchange
mechanism, the ;armer. buoyant layer which was identified with a weak
tréée of fluorescene extending over the coid receiving water.
Concurrently, 5 cold, dense wedge was propagated under the warm body
of water. After the warm front had progressed for some. distance,
filaments of fluorescene dyed water could be seen extending downward
from the interface through the colder water to the bed of the flume.
As the voiume of water entrairmecd in this way increased, however, the
warm front was arrested and a layer of dyed water was, seen to
propagate along the bed of the flume in the same direction as thé
original surface layer. It was found that the three Zones of interest
in the wvicinity of a thermal bar were clearly demcnstrated viz. (i)'
the thermal overflow region, (ii) <%he therma! bar, and (iii) the
thermal wunderflow region. The experiménts proQide dramatic proof that
the existence of an extremum in the density-temperature relation has.a
profound influence on the behaviour of densimetric flows. The.ratic of

the maximum extension of %he warm front o the depth of the flow was



related to .the density difference between the cold and warm water

thfough a3 simple quadratic relation.

The thermodynamic simulation of the phenomena associated with

-

thé thermal bar is generally exp]aiﬁed in Chapter 4. The governing
differential equations of the fluid motion and heat transfer e;e
described by a set of c0upied.. nonlinear pértial differential
eﬁuations. The systém is transfered from the dimensional primitive
form to the non-dimensicnal conservative form by using the
vorticity-stream function approach and deFin}ng certain
noh;dimensional terms. Accordingly, the physical parameters involved
in the problem collapse into two parameters,i.e. the Rayleigh number
and the Prandtl “number, which are usually used to deseribe the Flow
patterns; It may be noted here that in cértain related studies (e.g.
cavity flows) the aspect ratio may be inciuded as a third parameters.
The governingsaffferential1 equations are solved by using the finite
difference method. The aglternating direction implicit (ADI) method is
selected to solve the parabolic forms and a sparse—matri§ packébe' is
utilized to solwve the elliptic form of +the resulting partial
differential equatioﬁs."For simplicity, the time-dependent, nonlinear
partial differential equaticns are usually solved by considering them
to aF linear in some smal)l time interval, the magnitude of the ;ime
step being dictated by the requirement of numerical stability of the
solution. To accelerate the soiution procedure.'flarge time steps are

attempted, subject to numerical stability, along with the introduction

of inner correcter iterations within each time step to correct the
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estimated values of the nonlinear terms.
In Chapter 5§, the numerical. model vefiFications and
improvements are i]lustfated. The idealized probiem of steady laminar
J'Flow in an enclosed rectanguiar cavity with differentially heated end
walls was .chosen for the purpq;e‘of numer ical verification. The mode!
is verified by comparing it to humgfical (and thus indirectlyl
experimental) solutions of four different cases of the idealized
‘probiem. The results of the four veriFica%?bn cases considered suggest
h that the numerical _médel is highly suitable for the solution of
problems of this type. Moreover, significant numerical ‘improvements
are shown to result following the introduction of additional
acceleration fechniques and from modification of the finite difference

-

approximations. The solution procedure is improved by using a variable
time step with step‘ size ébntrol. averaging ang extrapolation
technigues. It was found that if the advection term is approximated by
the second upwind differencing method instead of by central-difference,
approximation, high values QF Rayleigh number can be simulated over a
stable scheme.

Finaliy, the numerical analysis of the phenomena associated
with the thermal! baris presented in Chapter 6. Tée numerical model

was employed to soive the actua! problem of simulating lock exchange

fiows created between two water bodies having different temperatures

~
L]

ground the temperature of maximum density. Due to restrictions in
terms of computer memory and cemputational costs, the numerical

investigation was restricted to the simulation of similar cases for



which accurate and stable results could be achieved with reasonable
computational cost. The effect of the nonlinear deqsity-temperature
relation on the behaviour of the thermal density currents was studied.
Moreover, the general behaviour which had been observed experimentally
was also éonFirmed numerically. The sensitivity of the associated
parameters are examined by means of the numerical model. Tﬁe relative
extension of the <«hermal bar is  correlated with relevant system
parameters by an empirical relation and the numerical results are

compared with the experimental results.



CHAPTER 2

BIBLIOGRAPHY OF SUBJECT AREA

2.1 Introduction

»

The review of the available literature, related tor-the
phencmena of the sinking plumes presented in Chapter I, can be covered

by dividing the background area into the following main topics :

{1) Environmental investigations

(2) Idealized models for buoyancy induced convective motion

The first fopic is classified into biclogical implications due to
heated effluents, and actual field temperature measurements which
indicate the existence of such phenomena. The second topic deals with
previcusly published idealized models which are used to approximate
the prototypé conditions and provide some insight into these more
di?Ficult problems. Two idealized model types will be covered which

are found to be related to the subject.

10
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2.2 Environmental Investigations

“

2.2.1 General

Large quantities of waste heat from steam electric generating
stations‘are discharged in the form o; circulating cooling water into
natural water bodies such as lakes, rivers and oceans. This method of
"once through™  cooling is mofe economical than the "closed loop
system™ (i.e. cooling ponds, spray pdnds. and cooling towers), and is
employed provided the temperature standarﬁs set by various regulatory
agencies can be achieved. Lately, some concerns have been expressed
(based on field temperature measurements) about the adverse effects
(biological implications) of ;arm water on the ecology of water bodies

during winter when the ambient temperature of the lake water is near

the freezing mark.

2.2.2 Biological implications

[f is commonly suggested that thermal discharges into natuza!
water bodies cause disruption of temperature dependent 1ife cycles of
aquatic organisms, sueh as premature hatching of fish and insect eggs
or recuction of viability of young.

The major fall spawning species in the Great Lakes that might
be affected by a sinking plumes are the coregonids (whitefish, herring
and  chubs) and lake trout. The effect of controlled incubation

temperature on the survival and development of whitefish (coregonus

clupeaformis) and herring (coregonus artedii) have been studied by
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Price (1940) and Colby and Broocke (1970), respectively. It was found
that a constant fncrease of 4.5 C° (from 0.5° C to 5.0° C) resulted in
the réductipn_ of incubation time for }whitefish eggs from 141 to 71
days and for herring eggs from 236 to 106 days. In general, increased
incubation temperatures resulted in reduced incubation periods and-
incidence of abnormatlities for both species.

The. literature is very scant relative to the effects of
thermal dischérges on lake 5enthos and various studies have provided
contradictory \information. Coutant (1962) observed reductions in
species diversity and bioméss of benthos downstream from a thermal
discharge in the Delawere River during summer months; the benthic
population recovered-to some extent during cooler seasons. Craven and
Brown (1970) observed no detrimental effects of 3 heated efFluent on
take benthos; biomass, numbers and species cmeOSition did not differ
between heated and unheated areas.

Few studies have considered the effects of temperature
elevations during winter and the possible influence on emergence of
aquatic insects. Nebeker {197!) found a constant increase of 3 ¢°
above ambient resulted in updating of stream insect emergence by 1-2
months.

~ A prcbable effect of the sinking %hermal piumes is the
stiqglation of periphyton growth within the area of elevated bottom
tempe;;tuqss. Stucies of periphyton production at Point Beach during
the summer of 1971 by Spigarelli and Prepejchal (1972) revealed

significantiy higher biomass at near field plume stations than far



, .
field. During the winter, stimulation of periphyton growth may be
significant, relative to normal seascnal growth, considering the

greater temperafhre increases at the bottom.

2.2.3 Field Temperature Measurements

The phenohenon of a sinking thermal plﬁme was observed during
March and April 1971 at the Point Beach Nuclear Power Plant, Wisconsin
{Hoglund and Spigérelli {1972)1. Temperature recoréers were placed on
the bottom of Lake Hichigan'near the outfall of the plant. Analysis of
the déta revéa{ed the warm water cdid interact with the bottom as tong
as the lake temperature was 49 C or tess. When the ambient temperature
exceeded 4° C, there was lTittle indication of temperature perturbation
on the bottom as a result of the thermal discharge.

The same behaviour was also observed during thermal plume
surveys in Lake Ontario which hac been carried out by Ontario Hvdro,
Metcalfe (1980), to investigate the behaviour of thermal plumes during
cold weather in general and at the Pickering Generat}ng Station in
particular. The results of the thermal plume mapping from December
1972 to March 1980, indicated that the maximum extent of the plume on
the bottom is larger than the maximum extent of the plume on the
surface.

For more exampies, sinking plumes were observed near the
Oskarshamn Power Plant [Svensson {(1%80)] and thé Wauhegan Generating
Station [Pipes. Pritchard and Beer (1973)].

Unfortunately, these field measurements did not provide data
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on the horizontal scale at which sinking takes place, but it gives

s -

sufficient evidence of the existence of the sinking plumes. *

2.3 Ideal ized Models For Buovancy Induced Convective Motion

4

2.3.1 General

When a heated fluid (such as warm water) is introduced info a
cold environment (such as a natural water body), it will §pread qUe to
the initial momentum of the heated fluid (created by its discharge
ve}ocity). or due to the buoyancy forces {(created by the temperature
difference), or a combiﬁaticn oF'both. The important behaviour in this
investigation is the spreading due to buoyancy forces. Consequently,
the discussion for the previous idealized models wilf be presented
only for the buoyancy induced convective motions.

The transport of heat or mass by buoyancy induced convective
motions is a mgchanism which finds relevance in many physical .systems;
accordingly there have been numerous theoretical, experimental and
numerical studies 5F various aspects of natural convective flows.
Usually the direct modelling of these natural systems is very complex,
however, the idealized cases of such convective motions do provide
some insight into these more difficult problems. Large scale physical
models of such phenomena were common in the 1950-i970 period and a}e
cdescribed in more detai! later in this section.

It is worth mentioning that three main types of basic models

may be used te increase understanding of buoyancy induced convection



mechanisms :
(1) Rectangular heated cavity
{2} Lock exchange flow
e
r
(3) Buoyant plume

Only the first two are tonsidered here.

2.3.2 Rectangular heated cavities

The fact that air is a good insulator has been appreciated
ang utilized in the construction of buildings for many vears. For
instance, in the constructioﬁ' of dwellings, it is common practice to
build walls consisting of two thicknesses of brick separated by an
unventiiated air gap of a few inches. The same practice is used for
douidle giazing insulation. Heating engineers have therefore been
concerned with discovering how heat is transferred across the air gap.,
and with how the rate at which heat is <transferred depends on the

-

distance between the two vertical walls and on the temperature
diFference " between them. Thus, considerabie insight into the basic
Phencmena can be obtained from the idealized problem of laminar fiuid
flow in a two dimensional cavity with differentially heated end walls.
Récently. the idea of this idealized model has been utilized for the
motion set up in the epilimnion of lakes or reservoirs by non-uniform
ragiative heating.

Generally, the convective motion of a fluid enclosed in 3

rectangular domain has been studied for several different boundary

%
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conditions, aspect ratios and temperature gradients according to_ the
specified physical system (i.e. environmental application).

For a situation where a lineaf density-temperature
relaﬁionship can be assumed, the steady-state problem F@r which tHe
aspect ratio is greater than or equal to unity was solved analytically
[Batchelor (1954); Gill (1966)], experimgntally [Eckert ané’Carlson
(1961); Elder (1965)]) and numerically [Wilkes and Churchill (1966); de
Vahl Davis (1968); Newell and Schmidt (1570); Quon (1972)]. Although
occasionally included as part of a wider study [e.g. Cotton, Ayyaswamy
and Clever (1974)], the small aspect ratio case was not treated in a
detailed way until Cormack, Leal and'Imbergér {1974); Cormack, Leal
and Seinfeid (1974); Imberger (i1974) examined The problem from the
analytical, numerical ~and experimental points of view respectively.
The unsteady probiem has been studied by Wilkes and Churchil! {1966},
who obtained some transient results and by Patterson and Imberger
{1980), who examined the tramsient behaviour in detail by numerical
studies and also presented a scaling analysis based on these numerical
results. In most of these' studies, the flow pattern phend&ena are

classified in terms of the well established non-dimensional parameters

such as the Rayleigh number Ra' Prandt! number Pr and aspect ratio A;

where

glap)H?

pvk
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A = — - 2.3
L _ .
for which o \
4p = density dié?er;nce. (= Py ~ pg)
(”‘\N\\z depth of cavity
L = lengtﬁcg; cavity -
g = gravitational acceleration
v = kinematic viscosity
¥k = thermal conductivity
p = reference density te.g. Pave = (p1 + p2)/2]

Using these parameters, Patterson and Imberger (1980) classified the
\.

flow pattern into a number of possible transient flow types depending

on the value of Ra in relation to various combimations of P. and A.

These regimes were further combined to. provide a broad classification

of the flows into :

(1) conductive Ra <1
-~ )
(2) transitional ] < Ra ¢ Pr‘
. 2 [
or (3) convective Pr < Ra < PLA

Lt
and P.ATT <R

depending on the relative values of Ra.
More recently, Patterson (1984) and Ivé} {1984) studied,

analiytically and experimentally respectively, the transient phase for
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which Ra > Pr“A'“ where an oscillatory approach to final steady-state
conditions exists for certain flow regimes.
The convective motion of an enclosed rectangular water

.
cavity, in the region of maximum density, has been studied for several
different geometries, 'boundary conditions and temperature gr;ﬁients.
The transient behaviour of water contaimed in a rigid rectangular
container insulate& and cooled from above to near, freezing has been
considered by Forbes and Cooper (1975). Vasseur and Robillard (1980}
have studied the transient cooling of water, enclosed in a recténgu]ar
cavity with the wall éemperature maintained at 0° C. Supercooling of
water contaiped in a rectangular cavity subjected %o convective
bqsndary conditions has been investigated by Robitlard and Vasseur
(1981). Cooling of the cavity by a constant rate has been extended by
Robillard and Vasseur (1982). Generally, it was found numerically that
the resulting flow motion is greatly influenced by the presence of a
maximum density effect which slows down the initial circulation inside
the cavity and subsequently reverses it. The resulting heat transfer
is thus reduced in comparison to a standard situation without max imum
density effect.

Moreover, Desai and Forbes (1971) and Watson (1972) have
studied numericaily the steady-state of the heat transfer and flow
patterns in cold water in a rectaqgﬁlar enclosure with vertical
boundaries maintained at different temperatures and with insulated

horizontal boundaries. [t was feound that the fluid moves in two

opposite vortices (cells) which have the same size when symmetricai
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temperatures about 4° C  are assumed. More recently, Hamblin and lvey
{1584) studied analytically, numerically and experimentaliy the same
problem for cavities of small aépect ratios and symmetrical

temperatures about the temperature of maximum density.

2.3.3 Lock exchange flows
[t has become a common practice to use.estuaries énd other
bodies of water for the disposai of waste heat from thermal. generating
stations. Although such dumping h;éy be safely caf?ied cut in many
situations, it is important to take pProper consideration of its impact
;n fhe biochemical processes that depend critically on the water
temperature. This is pqrticuiar]y true when organic pollution is
ccupled with waste heat disposal. However, before outFai] systems can .
be designed so that these limits are n¥t exceeded, it is necessary to
understand more fully the mechanisms by which these warm effluents are
dispersed within the receiving body of water. The geometry of the
estuary is complicated, and the flow is turbulent and generailly
coupled with the tidal cycie. Therefore, a complete dynamic model of
an estuary, of course, would be very complex. Moreover, estuaries are
usually shallow and have sufficiently strong vertical mixing to
prevent the formaticn of density wedges, the resul; is a density
distribution which is vertically uniform but varies in the horizontal
directior. There was, however, concern lest local concentrations of
heat should prove undesirable from the point of view of recirculation,

~

injurious to the marine environment or should, in particular, affect
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adversely the Eassage of migratory fish by the formation of a heat
barrier. The lock exchange flow fs usually selectea as an analogous
pheno&énon. where knowledge exists.regarding the varying pattern of
diminution of Front_ﬁelocities of the density disconﬁinuity over a
wide range‘qf écalé and under “controlled conditions. o

The phenomencon of lock exchange fiow is the classical case of
unsteady non-uniform flow in the field of small density difference
‘hydrauIics- This phenomenon ‘OCCUFS when a3 lock gate or other such
division separates :bodies 6F}:still_ water with the  same surface
elevation 5ut which differ slightly iﬁ densfty. While the opening of
the gate may result in local disturbances, the predominent effect will

be .8 continuing exchange pattern of & flow ' which.is caused by the

&
density difference.

Experimental stuaies of thermaf densimé;ric flow have been
reported by a large number of investigators. Keulegan(1946, 1957) and
Schijf and Schonfeld (1953) used salinity as the density difference
agency., whereas Barr (1963, 1966, 1967) used both thermally induced
and sal{nity density flows. More recently, Simpscn (1582) has given a
broad-ranging account of :gravity currents, which includes a m&st
comprehensive bibliography.

Barr {1963-A) discussed the significance of the densimetric

Froude-Reynolds number FAR deP\ned by

/ atapIH’ |
FuR .= —_— | , 2.4

-
-

pv
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It has been customary to compare lock exchangé flows on the basis of

.

. ;
K.FAR where K is the initial velocity, Uy» coefficient :-

Y Yo

. © . 2.5

Voo u, T~

- -

K =

i

The results are usually shown on a diaéram relating ﬁhFAR to L/H whefé
L is the horizonfa[ extent of the front measured Aom the barrier with
u/uo being a thir& parameter where u is the front velocity.

Barr (i963) and Barr and Hassan (1963} showed experimentally

that the initial velocities of the fronts of the underflow and

_['

overflow appear uniform for a greater or lesser relative distance
depending on the scale of the experiment, and are unaffected by the
channel width to depth ratio (W/H) except for extreme cases where the
channel width, W, is significantly Iesglthan H/Z.

The resﬁlts of such investigations have been applied to large
scaie physical models of lock exchange flow {Frazer, Barr and Smith

(1967), (i968)] in order to estimate the appropriate degree of

vertical scale exaggeration which is required to simulate surface

spread correctly. New diagrams for lock exchange flow are utilized
(plots of L/H against FAR for diFFérent values of the non-cdimensional
time t/t, where Tty =V He/glan)].

The wvarious experimental investigations indicate that the
expectec relationship between the veiocity of spread u of either the
overflow front, u,, or the underflow front, Uz, and the densimetric

velocity Uy is



) u; .L%/t - : .
= ——" = constant, i=1,2 2.6

Uy v glap)H/p- S I - \

. - )

This constant was found exper1mentally by Barr 51963).

" reported by Frazer. Barr and Smith (1967 and 1968) to be about 0.5 for
underflow and 0.6 for overflow amd by Yih (1980) to be 0.5 basedron
energy’ c;nsiderations. 'équation‘ é.é -Qas. %ound to.se applicable in
turbuient flows whére thé phenomenon . is indépendent‘of viscosity [P.
Ackers in ldiscussion of Frazer, Barr and Smith (1968). reported by

Elsayed (1978)]. The 1imit to ‘the . turbulent Zzone is ‘represented

approximately by :

H - glap)/e HE/Z

FAR. = 3
L.i ULi -
2.4 Discussion
\
Review of the available literature,. related to the problem

presented in Chapter 1, has been covered in this chapter. The
biologicai fmplications due to warm effluents indicate that therms!

discharges into natural water bodies may cause disruption. of

temperature dependent 1ife Cycles of aguatic orgamisms. In aadition.

thermal plume surveys in cold climates give sufficient evidence of the
exsistence of sinking plumes. Consequently, adverse effects on the
winter ecology of a natural water”bogy may be expected within the area
of elevated bottom temperatutgsiéssociated with the phencmenon of the

sinking plumes.

150 - ) 2.7

-
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The idealized models for buoyancy induced convective motionr
provide inéight intolsuch '3hen6mena.Two tyﬁes of i?ealjzed models
have been *presented, the rectangula; heated qavities and the lock
éxchange flows. A fact of éome significance is tha; the‘pheﬁbmenon of
tﬁe thermai bér ‘may be observed in both the reEtangu]ar cavity and
lock exchange systems if asﬁmmetrical or symmetrical temperatures
around 4° C are assumed. However. the fYow patterns in thé two ‘models
-are different. Lock excﬁgnge flow was se}ected to.apprOXimate the
prototype due to -the fact that its behaviou? is close to that expected. 
'in.a prototype situation. .!n the following chapter, the experimental
investigation to examine such behaviour. is }estricted to'églock‘

exchange flow in a two-dimensional, horizontat flume of rectangular™s

cross-section,



CHAPTER 3 .

EXPERIMENTAL INVESTIGATION

E N

3.1 Introduction -

This chapter describes a series of physicql experiments which
were carried out‘to {nvestigate the phenomenon of the sinﬁing plume
which has Been described in Chépter I. The lock exchange Flow
exper iment was selegted as ‘the basis of the study for a3 number of
reasons. First1y. the experiment is free from external inertial
effects, motion being produced entirely by the density difference
between two dissimilar but miscible bodies of wafer. A second reason
is the large body of documented experimental work which<has been
carried out for iock exchange flows in which the éensity is a linear
function of temperature. This-h;; been discussed in Chapter 2.

In ﬂhe tests described here, densimetric fiows were produced

between two bodies of water having asymmetridal temperatures around 4°

C. In ‘gais range the relation between density and temperature is

nonlinear with maximum density being attained at 4° C. To the author’s

-

24
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‘knowledge, this type QF experiment had not previously been carried out
at the time of writing. _.

The experiments were car?ied out to conFirﬁ the existence of
the sinking plume phenomenén and to alldw insagction of the zones
upstream and downstream of the thermal .bar as Qell as the plunging
region of the bar. It was hoped also that the tests would pfovide some
quantitative data relating to the maximum horizontal extension of the
upper layer to the point af which sinking occurs.

The chapter contains a description of the experiments and
bpth.qualiﬁative and quantitative results relating to the formation of
the thefmal bar. Some attempt is made at empirical correlation of the
relative extension of the bar with relevant system parameters which
provides a basis for - the numerical simulation which }s described\éh

later chapters.

3.2 Lock exchange flow_Experiment

3.2.1 General

The experiments were designed to be carried out at reasonable
cost and within a limited time period for which the special facility
was available and with the objective of providing gualitative and somé
quantitative evidence on which to base a numerical model i ing stratégy.
The t&%F were made possible by obtaining the use of a flume in the
Cold Room.of the Hydraulics Laboratory in the Canaca Centre for [nland

Waters. This facility [Tsang (1977)] provides a temperature controlled
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environment with 2 range from -30.0° ¢ to +15.0° C with accuracy of

*0.5° C and uniformity of =+1.09 C. The existing flume is horizontal,
10 m in length with a cross-section 0.6 m wide by 0.5 m deep. The bhase
and rear wall of the filume are thermally insulated and the front is of

transparent plastic with removable {hinged) ihsulating panels.

. 3<i:2 Theoretical considerations

The ﬁensimetric exchange flow experiments may be regarded as
an ideatized mode! of the motions set up in the cold receiving water
bodies (T, = 0° C) by heated effiuent (T; > 8° 0. In such
appl}cations, inertia, buoyancy, and friction ought to be the

principal forces governing the motion of the flow with Coriolis farces

playing a secondary role. A non-dimensional number incorporating these

forces is the Rayleigh nambér. Ra--uhen R, 1is defined in the usua)

) wa&. }t has an approximate range of 10“ to st, when typical prototype

Values for turbulent diffusions thermal diffusivity, friction, depth
and densiéy differences are assumed.

Some researchers have attempted .to use synthetic liquid
mixtures witﬁ volatile comﬁgnents (fluid consisting of aicohol with
ethylene glycel in various pfoportions mixed with water) to simulate
the nonliear dénsity—femperature relationship (Turner (1966)]. In this
case, with the avéilability of an experimental cold facility, it was
possible (and indeed desirable) to use the same fluid {i.e. water} and

temperatures in the ‘laboratory .as in the field setting. Thus a

simuiation of the field values of Ra would reguire water depths in the

e!
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laboratory ranging from 10 to 50 mm baseé\ggon molecular values of
viscosity_and conductivity. It was considered to be impractical to
work with such a thin layer of FIuiq. or to control! the temperature -
differences with the re&ﬁired accuracy to maintain sufficientlgismall
density contrasts. The more reasonable wﬁrking depths -of 0.10 to U.IS-
m and larger density dfFFerences result in corresponding Payleigh
numbers from 107 +o 10%,

In thé,laboratory experiments the Rayleigh number is defined as

gH>

Ry = (8p)/Paye . 3.1

- Uorto : - :

where

Ap = density difference between coid receiving water and
heated effiuent

H = depth of water in thelF!ume

Pave = average density . =

Vo = kinematic viscosity of water at 4° C

Ko = thermal conductivity of water at 4° ¢

3.2.3 Apparatus and procedure

To partially insulate the third dimension of the flume {i.e.
the free surface) removabie sheets of polystyrene were used. A
removable plastic vertical barrier was fitted into grooves formed at
the joints of the walls and in the base. The thin, flexible barrier

was reinforced by providing a second. mare robust barrier adjacent to

\& .
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it for the purpose of 5rotecting the thin barrier from small
differences in elevation across the barrier during the setup period
when the two portions of the flume were being F{l]ed and mixed, and
also to provide greater thermal insulation between fhe two dissimilar
bodies of water. The stiff barrier was carefully removed some minutes
_prior to the start of the experiment to allow thelsmall volume of
water between the barriers to be made homogeneous.

The wvertical barrier was 1o;ated asymmetrically along thel

length of the channel, being at the quarter point, 2.5 m from one end.
The shorter portion was used to contain the warm water. As a result,
care had to be taken that the region of interest was not affected by
the negative internal wave which reflected off the end wall of the
flume. Care was also'taken to seal the verticai barﬂfer with grease to
prevent minor leakage of the warm water which would have formed &
thin, surface tension layer on top of the cold receiving water.
Setting up of an experiment involved the initial cooling (but not
freezing) of water in the whole length of the flume. Then the barriers
were inserted and sealed and the shorter section was heated by mixing
with hot water piped in from outside the room. Weirs were fitted at
each end of the flume to provide a simp!é means of ensuring that the
depth on both sides of the barrier was the same prior to the
experiment. Figure 3.1(a) shows +*he general arrangement of the
apparatus.

Water and air temperatures were monitored prior Yo the start

of the test by means of calibrated thermisters connected to a data
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Iogg%r which forms part of the basic. facility. To obgerve the vertical
distribution of temperature during the tests it was necessary to
devise a simple form of instrumentation. A number of thermisters were
' obtainéd from the Flow Systems Laboratory of Ontario Hydro. These
therﬁisters were calibrated tb\an accuracy of 0.1° ¢ by Ontario Hydro.
The thermisters wer; arranged on a moveable carriage such that the
measuring points were ranged over a vertical line, along the centre
line of the flume and uniformly spaced over the depth of watér used in
thé test. fhis arrangement is shown in Figure 3.1(b). The thermisters
were connected through a rotary switch to a 3.5 digi{ multimeter to
read the resistance in K-ohms as shown in Figure 3.1&:). During the
Eests the investigator manually operéted_the rotary switch, observing
éhe reading on the multiméter and recording this on a pocket dictation
machine together with remarks about the progress of the experiment.
Although of limﬁted capability, "this intermediate level of technoliocgy
proved adeqpate in that it was quickly and cheap]y constructed andg
“allowed tests to be monitored with a degree of confidence that may.
have proved difficult to obtain with‘sophisticated equipment in such a
hostile environment. With very little practice it was possiele to
record the array of ten temoe;atures in some 15 to 20 seconds.
Movement of the surface front was sufficiently slow that a scanning

time of this magnitude was acceptable.

To aid obse%vation of the spreading front the warm, initially

buoyant, layer was identified with a weak trace of fluorescene. [n

add}tion, vertical streaks of dye tracer with nearly neutral buovancy
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were injected at intervals. Due to the need to thermally insulate the

front panel and the free surface, observation and photography_of the

lock exchange was made rather difficult and in ‘most cases the
photdgraphic records were supported by audio recorded remarks durihg

the course of the experiment.

3.3 .Experimental Results

3.3.1  General -
The range of the test parameters included two values oF the

depth H and a "range of density differences corresponding to

~ temperature increments between il and 18 degrees Celsius. The seven

tests are summarized in Table 3.1. Generally, the densimetric Froude

number given by ;

u

Fo = —— : 3.2

v g(8plH/p

is normaliy a gocd descriptor of lock exchange behaviour, particularly

the initial exchange velocity.

3.3.2 Cbservations

The tests were commenced wHen the two bddies of water were
judged to be acceptably homogeneous and quiesceht. following the
remcval of the stiff, thermally insulated secondary barrier. Then the

primary barrier was removed by hand using a smcoth, swift movement to

~
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-
Table 3.1
Parameters used in experimental investigation
@ _l

Test H, in T,, in T2, in AT, in

# meters deg. cel. deg. cel. deg. cel.

-

l 0.10 18.20 0.00 18.20

2 6.10 14,15 0.00 14.15

3 0.10 12.15 0.30 11.85
T4 0.10 12.14 0.05 12.09

5 0.15 10.80 0.25 10.55

& 0.15 18.15 0.45 17.70

7 0.15 12.45 0.70 11.75%

Note : tm= 3.28 ft

5(°F - 32)/9
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minimize lacal disturbénce. Almost immediately a classic iock exchange
mechanism could be observed with tﬁe warmer; buoyant }éyer extenqing
ovef the cold'recgivfng-water with. an initial velocity close to théf
given by -[Barr (1963)] |

~

% = ¢,V glaole - ' 3.3

where, C = 0.55 for oVerFio;.
| Concurrentiy, a cold, dense wédge was' propagated under the
;armf body of wét?r -[seer Figure 3.2(a)]. As. the buecyant raft
progressed, the mixing process at the front diécaﬁded an interfacial
Iéyer of mixed water, with £he Frontallrheaq being replenisheé by a

" surface flow of warm‘étnadulterated water. Afteg the warm front had

progressed for some distance (LHQ - measured from the barrier
position), filaments of fluorescene dyed water could be seen extending
- -

downward from the interface through fhe colder water to the bed of the
Flume [Figure 3.2(b)]. This mixing process appeared tc be initiated &
short distance behind the head of “khe buoyant layer and at firss
appeared to cause only a small reduct™n in the rate of propagation of
the warm surfade layer. As the volume of water entrained in *+his W3y
increased, hﬁwever. the warm front was arrested and a layer of dyed
water was seen %o propagate along the bed of the flume in %he same
direction as the original surface layer {Figure 3.2(e)].

Two transitional stages between the onset of sinking and the

fully developed sinking plume are shown in Figure 3.2(c) and 3.2(d).

-
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During this transifion it may be noted that the lower layer is
reFlgtted by the ené—wall. After the reflection, the reverse
travelling Qéve c&htinues to supply warm water to the sinking zone.

As the warm but now diluted layer proceedeq‘élong the bed of
the™ flume 'towards;the end wall it had a temperature' such that its
density exceeded that of the layer T,. C;nsequently. a second lock
; exchangg mechanism was set up in that part of the Flumé containing the
cold receiving water with the result that an.overfiowing layer of cold
water, T,, .was forced over the plunging layer [Figure 3.2(f)].

Eveﬁtually.. aFter a conéfderable time during which the
various fronts were EeFlected from the end walls and had traversed the '
length of the flume, a three layer .system was produced with distinct
fnterfaces as shown in Figure 3.2(g).

During the progress of the experiment, the vertical
temperature distribution was recorded along the centre line of the
flume and a short distanﬁe behind +the warm water errFIow front. .
Sometimes the temperature measurements Qére repeated for the same
location or recorded scme distance behind the_Front. Some typical sets
of observations for different relative extensions oi the front are
shown in Figure 3.3 while more tgmperature measurements are presented
in Appendix 1. With the benefit of hindsight, it would have peen
be£ter to mount the array of ten anglied thermister probes such that
the supQOfting 7 mm diameter tubes did not intrude in the overfiow
front. Because of this there is some doubé as to the accuracy of the

temperature measurements very close %o the edge of +the fronmt, due *to

4
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boundaty la}ér effects around the probes.

3.3.3 Discussion

Table 3.2 summarizes the observed and calculated parameters

for the seven tests. The temperature was based on observed thermfstef

resistance using a calibration equatioh supplied by Ontario Hydro.

b

From the computed temperature the density was estimated Ffom iCheng,

Takeuchi and Gilpin (1978)] :

4

P = Po/(l + by.T # bg T2+ ba. T + b T™) : 3.4

where

b, = -0.678964520%10" . C 3

By = +0.907294338%107°

* by = ~0.964568125%10 @ ¢

b, = +0.873702983*10"° © ¢c~" ‘
Po = 0.999839600 gm/cm’
T = temperature in 9C

The values of the density ratio 8p/P5,e 3nd the Rayleigh number R

‘were obtained by Egs. 3.5 and 3.] respectively.

8p/Paye = 2.{p2 = p1)/(py + p2) 3.5

In addition to the measured temperature profiles, Figure 3.3



" Table 3.2

»

i -~

Values calculated from experimental observations.

Test pl. ‘in -pz; in (1) . ‘ -
S s0/ogve | (LM pax | RgT107
# am/cm’ gm/cm’ - '
1 0.9985575 | 0.99983%6 | 0.00128 42.5 6.33
2 0.9952225 0.9938396 0.00062 - 30.0 3.04
3 ., 0.9994793 0.9598592 0.00038 23.5 1.87
4 0.9994805 0,9998430‘ 0.00036 22.5 1.79
S5 0.99%6243 0.9998560 0.00023 16.7 3.86
6 0.9985668 0.9998683 0.00130 . 43.3 21.69
7 £.5994440 0.9998827 0.00044 23.2 7.31
&
Note : ! Kg = 1000 gm = 2.208 Ib
I m= 100 cm = 3.28 'ft
.
. : —~
(1) The accuracy of temperature measurememts (i.e. 0.1 C°) implies an

error bar of 0.0000605 (i.e. up to 5% error) in calculated dens ity

difference ratio Ap/pave.
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{\\;—~M,f - S . I
'shows'tﬁe corresponding density diéfriputjbn ipst behind 'the front and f
at various Iocatjoﬁs‘alqng'the;Flﬁme.)Inifialéy the interfaéjél layér:
which contains water at maxfﬁum‘densit;f is gquite thin but _a§ the
-mixing ’process deve]ops. the middle 'zbne of 'maximum density water
increases in thickness, reduces in Forward veloc1ty and is eventually
pFECIpltated" through the cold water which is marglnally less dense.

It was observed that ‘the'thickness of the middle zone was
about one quarter of the total dépth.

- The ~ extension (Lu)max of the upper Iayer is the maxlmum
distance attained by the buoyant‘overflow layer and is expressed as ar
relat1ve distance using the depth H as.a normalizing dimension.

It appears clear that 'the revérsa]'oFrkthe lock exchange flow
illustrated in (e) to (g) of Figure 3.3 is due entirely fo the fact
that the system is closed and does nét correctly represent 5rototype
conditions in a matural en;ironment- interest is therfore limited to
the initial occurrence of the plunging bar and the arresting of the
overflow wedge.

A number of arguménts magrbg- advanced as to why the warm
surface wedge is arrested. The norma) case of an arrested wedge occurs
when the receiving water has a uniformly distributed velocity in
oeposition to and almost equal to the spread.velocity; clearly this is
not the case here. The existence of an adverse velocity gradient at
the surface due either to wind shear or mass transport from gravity

waves [Smith (1965)] can also prevent the replenishing flow of

unadulterated water at <4he surface and cause arrest and progressive



40

breakdown 6F the front;; For normal lock exchange +tests it has been
shown [e.g. Keulegan (1957{. gérr (1563 and 1967)] that the inftial
Frontél _velocity diminishes after some relative ;xtension,
particu[§r1y ;hen the Rayleigh number is relatively. smalf. In such
cases, however, the diminutiqn of ygépcity oécurs‘gradually wher§a§'in
‘,theﬁﬁests geécribed hefe. the warm wedge appears to be érrested_more
abruptily as a consequence of "the énhanc§d sipkihg veloc%ty dQe to the
49 C water produced by mixing/gntraiﬁment at the front.

. The quasi-steady state [Figure 3.2(e)] which results
following the formation of a thermal bar ﬁay be examined lby means of
‘simple dfﬁehsional anglygis. Assuming a relatibnsﬁip involving the

function :

-
-
=
- O
T}
<
m
>
°
xT
It
(e ]
(¥ ]
[43]

and adopting the first itwo guantities of Eg. 3.6 as_repgating
variables it can be shown that the following rather obvious
rd

dimensionless groupings are cohbtained.

Tm{l) = LU/H : {2y = Ao/oave 3.7

Inclusion of g, v anc « in Eg. 3.6 results inm accitiona’
parameters one of which would be equivalent to the Rayleigh number of
fc. 3.1. Figu%e 3.4 examines the hypothesis that the maximum relative
axtension of the warm front

(LU/H)maxi is @ function of the density
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~

- difference ratioc (8p/p,0) using a simple quadratic plot. The seven

test results fall close to the straight line given by

-

(Ly/Mpgy = 1200 (80)/Paye . ;.8

The range of Ray]eigh numbers covered by’ the tests is
necessarily scmewhat timited since the densify difference ig small in
the nonlinear range around 4° C. The scale of tests is also restricted
by the physical ]ength of the flume. Despite these limitations however
the consistency of the results is encouraging. The large constant QF
proportiogality in Eq. 3.8 is probably due to additional dependence on
such parameters as the Prandil! number, P. = v/c, which is impossible”
to vary in the laboratory experiments.

The evidence of Figure 3.4 is of some interest but remains
far from cpnclusi;e concerning the prediction of the location of a
thermal bar. It is clear that the occurrence of a thermal bar is
caused by the formation of an interfacial layer with a density ciose
to the maximum, of sufficient thickness and in the absence of a
sustaining forward relative velocity. ﬁhat.is not vet clear is whether
the formation of the layer with a temperature clése to 4° ¢ results
from the mixing process at the front or from the cooling effect of the
air under which the warm surface flow must pass in order +o replenish
the front and so sugfain the frontal velocity.

The latter hypothesis is partly supported by the correlation

between the maximum extension (LU)rnax and the initial temperature T1
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far any dépth H . If this was true, however, .it would be expected
that the same phenomenon would be significant when the ambient
temperature is of the order of 15° C (say) and the density-temperature
relation {s nearly linear. In fact, Barr (1963) has reported
"negligible difference between lock exchange experiments in which the
same density difference ratio has been produced -respectfvely by
saIinitQ fconservative) and temperature (non-conservative) difference.
On that basis it seems reasonable to assume that frontai mixing is the
dominant process whereby the interfacial tayer of maximum density is

produced.
3.4 Conclusion -

The experiments provide dramatic proo% that the existence of
an extremum in the density-temperature relation has a proFoﬁnd
influence on the behaviour of densimetric flows in general and iock
exchange behaviour in particular.

The thfee zones of interest in the vicinity of a thermal bar
were clearly demonstrated viz. (i) the thermal. overflow region, (ii)
the thermal bar, and (iii) the thermal underfiow region. The results
are qualitatively consistent with observations reported in the

literature.

The quanitative ~ results, . aithough subject te some
uncertainty, are sufficiently good to give a picture of a gradually

thickening interfacial layer of maximum density which eventual ly



aominates the flow regime. The Ioéation of the thermal bar appears to
be stromgly linked to ;he initial density difference although the
scoég of the tests and. limitations of equipment were such that other
influences can not as yet be ruled oﬁt.

The experimental resu]ts fHarmoush. Smith and Hamblin (1984)]
are significant for the design of power station-cooling water systems
which must operate in severe winter con?itiong* Moreover, it providgs
a valuable basis for continuing work on the numerical simulation of

the phenomena " associated with the thermal bar which will be presented

in the following chapters.
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'CHAPTER 4

THERMODYNAMIC SIMULATION

Introduction

The governing set of differential equations of the fiuid

motion and heat transfer is the obvious starting point for <a

comprehensive simulation. In general, a thermodynamic simulation

involves the following steps:

A

(i)

(ii)

{iii)

{iv)

{v)

derivation of the appropriate forms of the governing
‘equations. (Sec. 4.2)l ) .
Forﬂylation of the approp;iate numerical schemes.
(Sec. 4.3)

definition of the initial and boundary conditions.
{Sec. 4.4)

determination of the solution procedure. (Sec. 4.5)
verifications and improvements of the numerical

techniques.

s -~
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. ———

Step (v) is described in Chapter S while the other steps, (i) to (iv).

are reviewed in the following sections.

4.2 Governing Differential Equations -
RN
_ Th?*Fluid mqtion .and heat t}ansfef are ge&erally described by
a set- (system) of coupled (simﬁltanebus) partial "differential
equations which are mathematicai statements of the conservation of -
momentum, ene;gy and mass. Moreover, the equation of state for the
Fluid of interest should be defined ovér the temperéture range to.be

simdlated. The system of equations.'therefore.'is-comprised of :

(i) the Navier-Stokes equation (conservation SF mbmentum):
{i1) thé heat-transfer eguation (conservation of energy);
(iit) thé continuity equation {conservation of mass);

(iv) the, equation of state for the fluid (density

-temperature relationship).

4.2.1 Primitive equations
For a fluid element in a certain domain, the two-dimensional
governing differentiai equations fLamb {1945) and Schiichting (1968))

are:

3u au 3w -1 sp

at . Ix 3y P



av
at
aT

at

v av . -1 3p’ _ Ap
— t vV— = —— + y Vv - g— - © 4.2
x .3y . pg Y - Po
AT aT .
-+t V= = g VT : : 3 4.3
ax Yy
3u av \
— + — =0 : 4.4
.8x ay ¢ : .
p = p(T) 4.5
P

‘where -

PorVorfo

;o

two-dimensionét Laplacian operato}. az/ax2+3278y2;
horizontal and vertical ccmpohents. of velocity
field, respectively: .

tempergture;

presgure:

density difference;

gravi€ationa1 acceleration;

fluid properties (density, kinmematic viscosity and
thermal conductivity, respectively) at some
specified reference temperature, To;
time;

coordinates of elements in the horizontal and

vertical directions, respectively.
[}

The equations are written in an Eulerian frame of reference, i.e., a

space-fixed reference within which the fluid flows [Bird, Stewarc and

Lightfoot (1960), Mehaute (1976)]. In these equations, it is assumed

N
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. that the fluid is incompressiéle and also follows a.Newtonian shear

stress law whereby the Wiscous force is linearly related to the rate

of strain. Moreover, the _BoUssinesq_appfbximation is applied, [Gray

--and .Giorgini (1976)], where :

(i) the density is assumed constant, except. whem it

-directly causes buoyancy forces, i.e., - gravitational

4

forces; - o S

{(1i) all other fluid properties are assumed constant, such
a5 Pyr Vo, kg and defined at a certain Feference
temperature, To;

(iii) the viséous_dissipatfon is assumed negligible.

The equations-.are written in terms of the primitive variables, u, v, -
P. T+ Ap.sand are often referred to as the primitive form of the
governing differential equations. Although it 1is possible to obtain
. numericé1 solutions for these equations, most successful numerical

sclutions have utilized the vorticity-stream function approach.

4,2.2 Appropriate equations

The equations of motion, Egs. 4.1, 4.2 and 4.4, can be recast
in another format, in which- the pressure £erm is eliminated from the
NaviergStokes equations, 4.1 and 4.2, and therefore only one transport
equation needs to be involved. The pressure, p, can be eliminated by

first cross-differentiating Eq. 4.! with respect to y and Eg. 4.2 with

S /
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: Eespect. to x ahd then subtractjhg "the two resultant equations.

Moreover, by defining the }-y plane component of vorticity, u, as

) au v
W = — - —

Yy ax

—

the following verticity-transport equation is obtained

3w . dw duw C, 3 4p.
i T + U — + v — = vV + g —(—)
3t ax ay _ ax Po

-
-

Defining the stream-function, v, by

-

3% av
—_— = -y and — = \4 v
. Ay 3x

<

Eq. 4.6 may be rewritten as

2%y 2%y ,
—_— = ~w !
ax? 3y
or
A

~

[t is noted that the continuity eguation, 4.4,

satisfied by the introduction of the séream—Function. ¥

4.2.3 | Conservative equations

is

4.6

4.7

4.8

4.9(a)

4.9(b) ~

identically

a_

/

The heat-transfer equation 4.3 *and vorticity-transport

equaticn 4.7 can aiso be recast in different but equivalent form to

»
[




take advantage of the conservétion property discussed by Roache
{1982). Stightly modified versions of the continuity equation 4.4 are
eﬁployeq, with respect to the properties of temperature and vorticity,

ViZ.

au av au av

T(=— ¢+ —) =2 T— + T— = 0 : 4.10
ax ay 3x y
du av du av _

@ {(— + —) = w=— + wg— = ( . 4.11
3x ay ax a3y

These are added to both sides of Eqs. 4.3 .and 4.7, respectively, to
-yield the so-called "conservative form" of thecheatvtransfer‘énd'

vorticity-transport equations, i.e.

aT auT avT
— F —_— F — = :OVZT 4.12
at ax ay

- du  duw v 3 Ap
— + — + — = v ¥u + g — (—) = 4.3
at ax 3y ax Pq

[t is noteworthy that the conservative form of the governing
_ L4

" differential equations 'gives more accurate results +han the

non-conservative form {[Torrance et al. (1972)]l

4.2.4 Normalized equations

The governing differential equations can be normalized by
~defining the following non-dimensional terms

§
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E 4 X Yy te, ' -
X = — 3 Y = — ; T = - 3
. H H H?
" o ' . .
uH vH ‘ wH™ :
Uu = ; vV = ; Q = ; 4.14
co ‘O - .:o _ .
¥ T-T
¥ = ; & = =2 ’
<o AT .

where the water depth, H, is tQS characteristic Iehgth. Due to the
‘semi-infinite nature of the. domain of interest it is not .possible to
normalize Fhe equations in terms of any characteristic horizontal

f2ngth. Substituting the terms of £q. 4.14 into Eqs. 4.8, 4.9, 4.12

and 4.13; the normalized conservative governiﬂgdsyfferéntial equations

become ' o Y -
- .
, .
a8 aue ave )
— + — + — = Vg 4.15
at ax Y
an aun ave , af(8)
- + — 4 — = Pr TG0+ Ra Pr 4,16
aT ax Y ax
vy = - : 4.17
y ay : av ‘
U = = =— . V= — 4.18
: aY ( axX
wherexpr is the Prandti ngmber. Pr = “o/‘o‘ The Rayreigb_ number, Ra

and f(8) will be definmed according to the specified equation of state.
For example wher the linear version of the equation of state 5.1 isg

used then Ra and f(8) are defined as ch(AT}H3/v0<O and 8,
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respectively. Op-the other ~hand, they are defined as,gBA{AT)zHB/udﬂo.

and ez. respectiveTy when‘the~nbnlinéar'éqﬁation offstate 5.9 is used. -

~ . . .

b ' .

4.3 Numerical Formulation N

In generdl, the-‘goverhihg-.diFFerentia]' equations are.qot

amenable to anéfyticai solufidn,.and a sol;tion has to be obtained

; numericérly, for example,rby _uéing e{ther a Finite‘ diFFérenﬁe'methed
or a lFinjte- élement ”mEtﬁod. fﬁ the pfeéent 'study. the finite
diffekeﬁcé methodf fs;rconsiderea to be: ﬁsre appropriate Fof the

following reasons : . .

(i) its treatment is gansiderab!y simpler for the
rectangﬁiar geometry involved;

{ti) it requires iless computerlstorage:

(iii) there is a vast litgrature on its application *o other

fluid mechanics problems.

As a result, a finite difference method was selected for the numerical

simulation using a wuniform size mesh, AX, AY over a reCtanguiar

computational domain as shown in Figure 471'

In 8 finite difference method, the derivative of any function., F,
.(such as 2, o, v, -...ect}) with respect to S (such as X, Y, and 1) are
.replaced by approximations in terms of the differences of the values

of the function at the neighbouring nodes. The general finite

Y,

\
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-

-

difference expressions for first and second derivatives are obtained
below for the uniform size mesh.
- A function F may be expanded in a Taylor series expansion

~ forward and backward from a point S to the neighbouring points S:AS to

give ; . | _ -
9F 1 3%F] ‘2 1 3% . -

Fseas =Fs = $85 +~ —lgeS e I
L oase

Fs_gs = Fs - Pl e 1R T TS v oust 20

The expression for the Ffirst derivative, 3F/3S, .is obtained for

first-order accuracy using Eg. 4.19 as

S+As T Fs

as és\é T T s

which is the known "forward-difference approximation”. Subtracting

aFl &F F
—l = = + 0(AS) 4.21

£q.4.19 and 4.20, a second-order accurate expression is obtained as

. b
oF &F F - F__ -
__Is x —{g = S*As stas 0(as™) 4.22
as S 245 .

which is the known "centrai-difference approximation". The expression
for the second derivative, azF/aS2 is obtained for second-ordes

accuracy by adding Eg. 4.19 and 4.20, i.e,

a%F §°F

e
3s? 852 AS

F -2 F. + F__ )
. - s+As 5 s-As + O(ASZ) 4.23

2



In the present préblem; the time derivative, L3/9t, s

, . : | -

expressed by Eq. 4.21 and the Spokial derivatives, 3/3X, 3/3Y, 3%/3x2,

aZ/aYz. are expréssed by Egs. 4.22 or 4.23. Now, selecting an

appropriate hethod for the numerical solution of each governing

equation is a di?FicuIt tasé. There are a large num?er of available -

methods which have been applied to ?luid dynamics and heat t;ansfer

problems. The selection of methods for each of the governrng eguations
is d1scussed in the sections which Follow.' .

- 4.3.1 Heat-transfer equation

For convenience the governing equation for heat-transfer is

shown below.

a8 aue ave .
—_— + —— + —— - g8 4.15
T ax ay

The resulting diFFerengg equations produced by applying the
heat-transfer equation 4.!5 at each node {i,j), where i,j describes
the location dF the node, can be solved explicity or implicitly for
the unkmnown e j. whe:e n is time-iﬁdex. The sclution process for an
explicit scheme is a simple time-stepping procedure, where +the
algebraic difference equations are uncoupled. However, a Fourijer
stability analysis for this scheme shows 'that the time step is
severely restricted by two limits, advection limit and diffusion 1imit

[Roache (1S982}]. For problems involving large integration times, these

constraints on At may be unacceptable. The implicit scheme is

\

<
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‘unconditionally stable, thus al]oéing a8 large time step. Yet, the
solution process involves either a direct’ inversion of a large
nonlinéar gparse- generally banded matrix or an iterative method of
solution. Both approaches are very costly in terms of computer storage
and execution time. . ’ o ) - -

An alternative to the explicit and implicit methods is the

) -~

.Qlternating directioh impli;i;. ADI, method. The ADI method [Peaceman
and Rachford (19553. Douglas (1955)] .is computationally stable and
does not involve itssftion or direct inversion of a.large matrix.
Instead. only the sélution of tridiagonal matrices altgrnating along
the rows or columns of the grid is- required. The ADI method is also
knowg,as the meThod of variable direction {Kuskova(1968)].

The parabolic, second order heat-transfer equation 4.15 is
solved using the ADI method which advances the solution from time
fevel % o time level n+l in two steps. Using the interpretation
indicated in Figure 4.2, the first step is the solution for éhe
variation in the X-direction only , then foliowed by the second step

‘where the sclution is on!y for the Y—girection. Substituting for the
unsteady, convection and diffusion terms by their finite diFFérence
approximations, 4.21-4.23, then the first step advances the solution

in the X-direction to an intermediate tevel n+]/2. This result is

given by

n+i/2 n n+l/2 n+ls2
g 78, Yien, j8ien, 5 - Ui, 58550

at/2 2AX N




1
R A—
2 ®
o™
T = o
‘ <
3 J,
/ n @ —e @
- X ’
Figure 4.2 Construction of ADI method in two dimensional

rectangular domain.
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n n
Vi, j+19i, j+1 = Vi j-18i_ j-1
‘IJ+ l'j+ ]vJ ‘vj 4-24
) 24Y -
n+l/s2 n+l/2 n+ls2 n n n
_ Sier,5 =285 5+ 85y L Ziljer T 267 5 %67 5
ax? . ar?

-

The second step advances the solution in the Y-direction to time level

n+] and is given by

N+l n+ls2 n+l/2 nels2
8.5 ~ 8. o i, j€ien, g~ Uion 5850,
" at/2 24X
n+ n+1
Vi 14187 qer - Vi o80T
+ I, J+1%7, j+ 1,] 1, : 4.25
24Y .
n+l/s2 n+l/2 n+l/s2 n+! n+l n+t
o i, T8y Oy O, ge T 285 5 765
ax? | NG

Rearranging the equations in a format appropriate for the use of the
Gauss elimination technique [Richtmyer and Morton (1967): Peaceman
and Rachford (1955}; Von Rosenbegg (1969); Ames (1969)) gives

n+l/2 n+l/s2 n+is2
- . =i = = - 2
ale‘_l'J + b1e"J + c181+1'j = dl 4.25

-
for the first step advancement along the X-directicn, and

n+1 n+1 N+l

ajei‘J_l + bjei.j CJ3@.J+1 = dJ 4.27

for the second step advancement along the Y-direction. In these

b 4
b

equations the coefficients are defined as follows.



and

. —(R

= (Ryx

2(1 +

~(Ryy

(R

+(R

-(R

2{1 +

(Rox

+(F<‘xx

At /AX

At /AY

+ U.SRin_l'j)
Ry .
= 0.5R, U541, j)
0.5R 2
*0-5RyV, 5-1085
- 0.5R ?
-SRyVi, 541985, jar
+ D'SRyvi.j-1)
R;y)
- O'SRyVi.J"'l}
n+ls2
+ D-SRin_l.J‘)ei_l'j
n+l/2
- U.SRin+!'J)ei+!'j
' Rxx
. Ryy
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4.2853)
4.28(b)
- 4.28(c)

+ 201 - Ry 0]
4.28(d)
4.2?(3)
4.29(b)

4.29(c)

A+l/2

XX

4.29(d)

‘-..”

= At/aX°

N
f
{
N 430

/

= At/AYC
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4.3.2 Vorticity-trap;port equation

For convenience the governing equation for vorticity

=transport is shown below.

ae  aue  ava ) af (8)
— t* — + — = P¥0 + RaP-

3t aX ay - . ax

4.1

The parabolic, second order vorticity—tranSporf equation 4.16

is 'also solved using the AD! method for the same reasons mentioned in.

Sec. 4.3.1. In the. same manner as for the heat-transfer equation 4.15

the adgancemapts along the X- and Y- direction are given by :

n+l/2 n+l/2 nels2
BiQi-1,5 * bRy, 5 t+ cilis1,j = d;
n+! n+l n+1
ajni'J_l + bjni‘j + Cjni'j+1 = dj

In these equations the coefficients are‘deFined as follows.

4.31

‘4,32

4.33(a)

4.33(b)

4.33{c)

a; = —(PrRxx + O.SRin_l'j)

by = 2(1 + PR )

i = (PR = 0.5RU; )

4G = PRy + 0.5RyV; 5.0aT 5o+ 201 - PR IAT

n
+(eryy - D‘SRny.J+1)Qf.j+1

60
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+0.5RaPr.Rx[F_(9.) NS (OFES B 4.33(d) -
a5 = -(PR, + b.SRyVi'j_l) T 4.34(a)
_ - |
b; - 2(1 + PRy - o {._34“:)
5 = PRy < 0.5RYVG ju) ~ ' 4.34(:)
dj = (PrRey + 0.5RU5y 10701 + 20 —hPrRxx)n?fj-}z

nels2

+0.SRaPrRx[F(e) i+1,j f(98) i-l.j] 4.34(d)

It is worth menticening that from a study of the literature it
appears that the AD! method is currently the most popular approach to

solve such problems over simple rectangular regions.

4.3.3 Stream—function equation
For convenience the governing equation for stream-function is

shown below.
v¥Y = - 4.17

The stream-function equation, or Poisson equation, 4.17
represents a boundary-value or "Jury" problem. For the cases under

consideration, it is solved for Dirichlet boundary conditicons in which

7
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-~

values of ¥ are known at all nodgélon the boundary of the domain. The

P

. . - discretized form* " of Eql 3.177 using second-order differences

_ approximation 4.23 is the “S—pqint.FormuLa?-[Thom and Apelt (1961)] =

N P
Fivr, g - 2% 3+ ¥y g Jinger — 2% 5 Y ¥ 5 - a3
. B . = i". -
ax? “ ay? ’

The finite QiFFergnge analog 4.35 of the stream-Function equation 4.17
is solved ern‘diFFefent'rectangular domains using :

) - -

(a) iterative ~method = (successive over-relakation, SOR.

method)
(b) direct methods
- 1- Fburiér—series method
2~ sparse-matrix package

&

(a) There are many variations of iterative methods for the
Poisson ‘equation. ~The most popular method _is the “"successive
over-relaxation™, SOR, method [Frankel (1950): Young (1954)] where the

solution is expressed as

K+1 K a k K+l 2, k K+1
Wl = ¥ + — [ly L a  +BT(Y. . + ¥, )
. i, 2 i+t, i-1, i, j+l iej-1

i.] J 2(148%) J J J J
~201 + 8R4 ax3a 4.36
i, 1,43 . .




-

X

where B is the mesh aﬁpect ratio, 8 = AX/AY. This method makes use of
a relaxation #actor. a, to speed the convergence 'and‘uses new values

of the stream-function as they become available, Moreover, the optimum
: -

valuey-ao. of the over-relaxation parameter is used as

-

0 = A0 ¥V I- 08 »- 437

which provides the maximum rate of convergence, where

E = {[cos(n/(i-1}) + Bzcoq(n[(J-z))]/[1 + 82117 4.38

where [, J are the maximum number of nodes in the X- and Y- direction,
resbéctively.. ,

(b.1} For the direct methoed, Fourier-series methods asre
utilized which are Qased on the fact that an exact solution +to the

finite difference analog 4.35 can be expressed in terms of finite

éigenfunction expansions [Jorr (1970)] as

¥, = vV 2/t ?Hp’j‘sin(pnxi/)() 4.39
p=1
where
X; = (i-D)ax
N o= -2
The Hy j are the solutions, for 1 ¢ 'p < N, of the tridiagonal

difference egquations
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. 2 '
(Hp'j_l - ZHprj + Hp.j‘!‘l)/-AY + lpHp'j = —Vp‘j 4.40

with.

e N = :
and

-, N -
vp'j = Y 2/(N1‘1) Z Qq+1'j+1 Sin(quAX/X) . 4.4]
. = q:l ‘ - Py
Ao = [2/8X*)[cos(phax/X) - 1] P 4.42
1

. e
(b.2) For- the direct method, a "sparse-matrix pQEkage" '

courtesy of the National Water Research Institute, is utilized to

‘

. solve the sparse linear equations produced from the discretized form,

4.35, of the stream-function equation 4.17; as a8 system of

simuitaneous linear algebraic equations. §

-

[AJ[Y] = -[0] 4.43

where A is an N by N nonsingular sparse matrix, and ¥, Q are ‘vectors

of léength N, where N is equal to (1-2)(J-2). i.e. solving for all

non-boundary nodes. The discyssion on the initial désign of this

package is gixen by George and Liu (1979).. One of the attractive
H - 4. .

features Qf this package 1is that., for a certain domainﬁénd-different
time steps, the sparse matrix A can be ‘set-up, ordering and

factorizing just once and  thereafter using the factors repeatedly in
N BN

L

(S1)

Chas
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the calculations of ¥ for each diFFgrent tihe-step, i.e. different @

in Eq. 4.43. Moreover, the package allows the user to stop the

calculation at some point, save the results on an external sequential

file, and then restart the calculation at exactly that point some time

later. This advantage is found to be very useful in the present time

integration probiems.

-

A number of numerical experiments were carried out using

rectangulaﬁ' domains of different sizes. The following observations

*were made

(i)

(ii)

(iii)

The succéssive over-relaxation (SOR) method is
reasonable Foé a §méil domain.

The Fourier-sgries method can be used for small to
deerafe size problems. The method required additional
storage but yielded aCCUré;; results.

For large domains, when many equations must be solved

which differ only in the right hand sice, the sparse

-matrix package is probably the best.

Conseguent!y for the presgyt case involving large integration times

(i.e.

many time steps); the exact solution of the stream—function

,

equation 4.17 is obtained using the sparse-matrix package.

4.3.4

Velocity-field equation

e

For comvenience the governing equation for velocity-field is
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;hown below.

1] ay

Uu = - — ‘ H AV = — 4.18
aY . ‘ ax

The vefocity—FieId‘ equation 4.18 can be evaluated by the

finite diF?erence approximation of Eg. 4.22 for second-order accuracy

as
' n+l n+l
Vs AU PR L S P Y.
’ . 2ay
| Al 141 4.44
SO Yirt,j " ¥io1,j .
i,j =
J 24X
4.4 Initial And Boundary Conditions

~~

In the soilutions of any initiat-value, boundafy-va]ue partial
: _
differential equations, it is necessary to specify the initial state
of the flow domain and the‘conqitions at its boundaries.’lt is worth
menticning that all common problems describing thermodynamic fiow
patterns involve solhtfons of the same partial differential equations
4
in which the solutions are distinguished only by boundary and initial
conditions, and by the’thermal flow parameters R, and P.. }
For the present probiems, an irrotational fluid Initially at
]
. . {
rest ‘E-!.e. _Qi._j = 0; l?]“j = 0: Ui.J = V'I'J = 0) I1s assumed. The
\ ”
fnitial valye of the non-dimensional temperature e; j will be

specified according to each problem.

~ ~
.

-
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-~ The boundary conditions are described as being of dominant
importance in computational fluid thermodynamics [Cheng (1970)].‘§bst
of the boundary conditions given éfe either Dirichlet conditions
(specified function value) orf the Neumann conditions (gagcified normal
gradient). The various boundary conditions involved in the

computational domains under. investigations can be classified as

follows 3 )
LY

L
(n The boundary conditions at the free surface.

The free surface, say B!, is considered as a rigid slip

-

wali where :

Y

) 3 constant ¥ can be assigned, i.e.,.¥|g; = 0;
ii) the wvelocity component ﬁormal to the surface is
2ero, t.e., V g1 = f. where Vv represents the
normal veldcity component:: .
iii} the velocjty component along the surface, say U{
is free t& develop, i.e. 3u/aY¥|gy = 0, when Y is
— the normal direction to the surface;
- ivl] in the absence of applied external shear,
vorticity must be zero at a free fluid surface,
i.e. Qlel = 0. This can be shown by combin;ng the
.
conditions’ VlBl = 0 and au/aY|g, = 0 with

equations 4.17 and 4.18.
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(I1) The boundary conditions at the solid surface.
The .solid- surface, say B2, is considered as rigid

no-slip wall where the following conditions apply :

x

-

i) Since a solid impermeable wall is a streamline,

any ébpropriate constant value of ¥ may be chosen,

-

. the conventional choice is
- * w82=0;
ii)‘ No slip is permitted at- the boundaries so that
both velocity components are set td)zero at all

'ﬁen—nodes. i.e.
j’ UlBZ = VIBZ = 0:
ii1i) THe second-order accurate boundary condition for
vorticity along a solid nd-slip wall is-used,

as described by Jensen (1959), Pearson (1965},

~and Briley (1970). This is given by

_7‘F| + 8‘?] - ¥ ) ’

B2 B2+An 2+2AN 2

QIBZ = 3 + O(An )
24N

h
with a consistent expression for the parallei

velocity component, say U, at and only at B2+an
-

- '5w182+4v|82+ﬁn+?|82+2An 2
N Ulgzsan = + 0(an™)
4AN

» -

where An is e normal distance to the surface B2,

-
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The boundary condition For & fis also specified according to the
_ ' e
circumstances of each probliem. When constgnt temperature is assigned

over surface B3, then the specified given value e|B3 is assumed.

However, if an insulated surface, say B%, is assumed, then 39/3“]8% =

0..The adiabaﬁic surface temperature elsg_is evaluated by subtracting

the two expfessions of the Taylor series expansion for /the
. -
S
neighbouring temperatures at points B%+An and B +2An, i.e.

Voo2e "1 3% -
4(8|gussn = &fde + —|gu(am) + - — Bh‘A“)?ru* o(an®)] 4.45
Q;<:§ n 2 an N - ’
k*-\*\ 30 1 3% , . o
el@,+25n = 8|gu + ;; gu(24an) + ; ;;; g~{28n)7 + 0(2an7) 4.46

Satisfying the adiabatic‘conditién 38/an|g, = 0. the following one
L

sided difference expression is obtained . 4

] ®lgw = tdels*;ln ~ 8lgusagn)/3 + Olan?)

4.5 Solution Procedure

_The heat-transfer equation 4.15 and the vorticity-transport
<

equation "4.16 are parabolic, -second order due to the viscous

. . . r .
diffusion terms} v o; Prvzn. In addition, the equations are nonlinear

-

due to the quadratic convectige inertia terms, 3US/3X; 3Ve/3Y; aUQ/3X;
.

avQl/3Y, since U and V are functions of the vorticity Q via equation

4.17 and 4.18. Moreover, equation 4.16 and equation 4.15 are coupled

v
by vidgbe of the buoyancy term, R P.ar (8)/axX. Both eguations are time

N\
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= oa

-

dependent, thus posihg.a "marching” or_initial~;alue problem, wherein
the solution is stepped out from some ini?ial coqditiqp.

The stream-function equation 4.17, Poisson equation, is
el]iﬁtieJ f.e.. i; 505;5 a "Jury" or boundary-value ptoblem with the
vorticity as the driving function. |

The system (set) of the governing differential equations. 
Egs. 4.15 to 4.18, comprises coupled {simultaneocus), nonlinea}.
partial differential equations. For simpliéipy, fhe equations are

usually solved by cdnsidering them tc be linear in some small time
' A

interval, the magni%ude of the time step be%ng dictated. by the
requirement of numerical stability of the so]utign:*!n some casegs, the
nontinear terms-play an important ro}e and ihis frequentiy requfres
£he use of even smaller time intervals to ensure numerical stability
and accuracy. In genera;. the solutions 'tb such problems are
computationally expensive in 'order ~to a€Pieve a certain state (or
steady-state) solution. To acceierate the solution procedure, iarger
time steps can be attempted, subject to numerical stability, along
with the introduction of inner ~ iterations within each time step to
correct the estimated values of the nonlinear terms. This latter

&+
aprroach may reduce the overall computational time.

In order to sclve these coupled nonlinear partial

differential equations 4.15 to 4.18, the following iterative procedure

is used.

¢ At the nth time step, the values of Ui V. ., Y.

J'o IiJ e

i

n By using an inner iteration

jv

and Qi.j are cbtained for < + At

n+l = Tn

Q =
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scheme. This inner iteration scheme for the time step n with

increment At and %nner iteration loop index k is as follows.’

Procedure inner iteration

Step 2 :

Step 3 :

Step 4 :

Step 5 :

Set :

n+1

’ n
Ui, 51¢0) = Ui,

n+1 n
Vi3 = Va5

Ke1 -

s n+t ‘ .
Obtain 8,51y by solving

heat-transfer equation 4.15

h
n+l n+l n
U, 5l IV, 51k » and 65

. n+1l .
Obtain [Qi.j](k) ?y solving
vorticity-transport equation 4.1!6

n+! n+! n+l
U, 530 TV, 530+ 195,51 (k) and

Solve the stream-function egquation

PPN oL 3 - !
with LQ?.j](k) to obtain [\P?Tj](k)

the

with

the

with

o]

Te]

4.17

1
Compute the velocity vectors [U?Tj]{k}

n+l
and [Vi.j](k} by using the vetocity-fielg

¢
equation 4.18

O
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Step 6 = ' -
- ’ Update the values of parameters on tbe
boundaries, using the most recent values

at ~the interior nodes adjacent to the .

i boundaries according to Sec. 4.4
& ‘
Step 7 :
Test if the following convergence
criterion is satisfied,
- . ]
rn+i n+l
9,53 (k) = 197, 51 (k-1)
£ & - v
N+l max
(85, 53k
If not, go to Step 9
Step .8 :
Set : ‘ ’
N+l n+l
Ui = Vi3l
n+1 n+l S </"-H\
Vivi T Vi, 5l
n+! n+l
Yivgow Y 5lmo
\
ntl n+l :
I IR G S
/>ﬁ\t> n+!l N+l
‘ B, = 095 5100
Exit fromeprocedure inner iteration . - (
——
-
) -
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k + ktl
] If k¢ kﬁax (the maximum number of
_ iterations permitted) then
Go back to Step 2.

Ctherwise

Set  CONV = FALSE™

Exit procedure inner iteration.

End of procedure inner iteration.

4.6 Summary

bl

In this chapter, the governing equations of théifluid_motiOn

¥

and heat transfer are described Forl an ¥compressible fluid. The
f coupled, nonlinear bartial

governing equations yield to a system
diFFe;fntial equations which has been generalized to non-dimensional
consefvative form, where the solutions ére distinguished by boundéry
and iqitial conditions, and by the' thermal flow parameters Rayleigh
number R, and Prandt! number P.. .

The governing partial diFFerential equations. are solved by

‘using the finite difference methods over a rectangular domain with

* The logical varisble CONV is utilized by
an external aigorithm described in Sec. 5.3.2.
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regular boundéries. fhe alternating direction implicit (ADI) method is
sele&ted to solve thg_parébolic eqdations {i.e. the heat-transfer and
vorticity-tréﬁsp%{t eqﬁations) and a sp;rse—matrix package is utiliéed
to solve the elliptic-equation (i.é. stream-function equation) of the
resulting partial differential equations.

The initial condition is specified and the boundafy
conditidh; are treated numerically in general circumstanqgs where the
selections are Hgggndent on the specified probiem boundary conditions.

Inner iterations procedure within each time step is utilized
to correct the estimated values of the noniinear terms. Consequently;
larger time steps can be a;tempted subject to numerical stabilitx.

The numerical applications of this mathematical model are

" presented in terms of veriFicatidn procedure and simulation of the

r
%

thermal bar phenomena, as described in the next two chapters.



CHAPTER 5

P

MODEL VERIFICATIONS AND IMPROVEMENTS i

5.1 Introduction

The mathematical raspects of the proposed model have been

-

prESentgd in Chapter 4, including the numerical Formui?tions as well
as the solution précedure. The proposed fﬁpmerical model is programmed
in Fortran 66 and the results reported henceforth were obtained from
runs on a Cyber 170/730. Details of the computer programs are
Qresented in Appendix I.'

This chapter is concerned with <*he Jast stage of the
simulation procedure which relates to!the verification and improvement
of the proposed model prior to its use Fér actﬁal probiem
simulation. : ; .

The numerical hode] is verified by comparing.it to numerical
solutions of four different cases of an —idealized problem of
two-dimensional steady laminar flow in an enclosed rectangular cavity
wii? differentiajly heated end walls which ﬁas been discussed in

-~

75

‘.’ho
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"advection terms.

76

. Chapter 2. ' . ' -

“Moreover, significant -improvements- in the computational
efficiency of the 'numerical procedure have been achieved by

introducing different acceleration techniques to the émployed solution

procedure and by modifying the finite difference approximation for the

5.2 Model Verifications .

.

5.2.1 Genmeral . .

The icealized probiem of steady lam}nar flow in an gnc!osed
rectanguiar cavity _with differentially bheated end walls has been
chosen for the numerical verification of the model. The reason for
this choice is due to the large body of documented experimental, .
numerical and analytical studies ,uhich have been carried out for
heatéd- end cavities. These have been discussed in Chapter 2. The
gq;;;;’;ECtangular two-dimensional cavity is of length L and height H,
with rigid non-slip boundaries on all sides, and contains a Newtonian
fluid which is initially at rest and at temperature Té- The upper and
lower boundaries are insulated. At time t = 0, the left- and right-
hand end wails are instantaneously heated and cooled respectively to
temperatures T, + AT and T, ~ a7, and thereafter, maintained at these
temperatures.

Tﬁb selected problems are solved by the proposed numerical

model as a verification procedure. These two problems were treated by
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Patterson and Iimberger (1980) “and  gilambliin and Ivey (1984)

respectively, Frém--the analytical, numerical and experimental points
of view. The notation used in this chapter is consistent with that

introduced in previous chaptg%s and may differ from that used in the

references cited. ' . - .

5.2.2  Test problem # 1
| This problem ‘is anqh&zed by Pattgrson and Imbergér (1980) to
study the transieni natdral convection in a cavity of aspecf ratio A =_,
I' (A = height/length) with differentially Aheafed end ﬁalls -at

temperatures greater than 82 C, as shown in Figure 5.1(a). For_ this

problem, théy use a linear version of the equation of state 4.5, i.e.

-

p= pgoll - c(T—TO)] | _ 5.1
where

Py = density of water at temperature To:

a =

thermal expansion coefficient:
To = 3an-arbitrary reference temperature.
)

Consequently, the non~dimensional *governing - differential equations

4.15 - 4.18 are modified to the form

38 3ue ave’ -
— + — + —s T 5.2
3t ax ay

¢
an auQ ¢ ava ' o 36
— +t — + — = PV -"PR,— - . 5.3
3z ax ayY 3x

|
’ ,//



i’
L 4 -
U =v=0T/3y =0
H u=v=0 At t=0 [LI=V=0 U=v=20
’ T=T,+AT T=T, T=To-AT
i - X
. u=v=3T/3y=0
(a) ‘
Y
A
" 1/A -
- U=V=1V = 36/0Y=0; Q= -Ap/sy>
[ U=sv=y=0 : U=V=¥=0=0 {U=V=¥=0
1 =410 At T=0[ 6:-150 s
l Q =-Ap/aX o=0 Q =-3W/3X
- 3 3 — X
U=Vv=W¥=26/3Y=0; Q=-3/Y
(b)
Figure 5.1 Rectangular cavity notations, initial and boundary

(a)
(b)
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conditions of test problem # 1for:

dimensional parameters.
non-dimensional parameters.



vy = - Q ‘5.4
<« av . v .
U = = =— ’ V = — 5.5

aY axX ‘ -

where Ra is Rayleigh number, defined in this case {(i.e. 4inear range)
as gao(AT)Hafébvo. Other terms are as defined in Sec. 4.2.4.
The associated non-dimensional initial and  boundary

conditions, as shown in Figure 5.1(b), are

It~
o]

H
o
-

For =<0 : U=V=v=z=2g8 everywhere 5.6

For 30 = U=V=¥=0, at, X=0, I/A; Y =0, 1
Q= =3"¥¢/ax~ , at X =0, 1/A
: A\
8 = +] » at X =0
8 = -] y 3t X = I/A 5.7
36/3Y = 0 . at Y=0,1

Q= -3%%/3Y* , at Y =o0, |

For aspect ratio A = |, Patterson and [mberger presented

solutions of 7 numerically-simulated runs, classified in Table 5.1 as
Run # 1 to Run # 7. In their solutions, the steady state is assumed
to have been reached when the two values of the Nusselt number, A
one at the heated end, N,e+ and the cther at the centre line, Nyer of
the cavity become equal to within a prescr%bed tolerance. For this

purpose, the Nusselt number, N is defined as

u"
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Table 5.1
Patterson and Imberger’s.numerical runs
Run & 1 2 3 4 5 6 7
Ry 0.1 | 2t.0 | 1.0"10% [ 1.4%10" | 1.4°10°% | (.4*10" | 1.4710°
Pr 7 7 7 7 7 2 2
Note : For all runs, A = |




. . 11 39

Ny = —f (U - —) dY - 5.8
24 © ax

In Eq. 5.8 the term U® is a measure of the heat transfer by advection;
on the other hand the gradient 36/3X is an indicator of the amount of
heat flux by conduction. In a steady state éituation. there can be no

net addition or los§ of heat in the system and thus the Nusselt number

Nu will remain constant with respect to time.

Two cases are solved by the numerical ::ffl/3f4‘thapter a4
which correspond.to Run # 3 (i.e. R, = 10, P. = 7-ard A = 1) and Run

#4 (i.e. Ry = 1.4*10", Pr = 7 and A

1}. To reduce the computational
cost while still simulating significantly high Rayleigh numbers, runs
at the highest values of Ra aﬁd/or Tow Pr were ngt'attempted. JThe
results obtainéd for -these two cases are compared with Patterson and
Imberger’s results by plotting contour lines for the same values of ¥
énd 0 as shown in Figures 5.2 and 5.3 and by plotting the variation of
Nu with respect to time as shown in Fégure 5.4. 1t is worth Tentioning
that Patteréon and Imberger solved the non-dimensicnal governing
differential eguations in  primitive form using finite difference
methods. Due to the use of diFFerenf normal izing parameters, the
values obtained for ¥ (¥ = ¢/<O} differ by a factor of Pr (P = Yo/ kg)

from their published values for ¥ (¥ = ¢/u0).

5.2.3  Test problem # 2
This problem is anaiyzed by Hamblin and Ivey (1984), in order

to study the convection near the temperature of maximum density due to
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Dimensionless Time. T .

(a)
{b)

Comparison betiween Patterson and Imberger’s
results and model results (shown, as solid and

dashed lines respectively) for variation of N, with
respect to time for:

Run #3 (see Table 5.1).
Run #4 (see Table 5.1).
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horizontal temperature differences in a cavity of aspect ratio, A ¢ 1.

The .temperature range is specified to be between 0° and 8° C. It is

coﬁvenient to employ the same nonlinear equatioh of state as used by

-

Hamblin and Ivey(1984), i.e.

>

» I N 2 . -
p= TPyl = B(T - Tod™] ) 5.9
where
Po = density of water at 4° C (i.e. maximum density):
8 = thermal expansion coefficient;
T, = temperature of water at maximum density py (i.e. 49 C)

Consequently, the non-dimensional governing differential equations

4.15 ~ 4,18 are modified to fhe form

36 aue 3ve : _
— -+ " —— o+ — = vze . ’ 5- 10
a1 ax aY
an aum ave , 39
— + — + —— = P.VQ P.Ry— 5.11
3t ax ay 3ax
Vz‘? = = 5.12
3y - ¥
U = = = N V = = 5.13
ay ax

where Ra is Rayleigh number, defined in this case (i.e. nonlinear
range) as gBO{AT)2H3/<Ouo. It is worth mentioning that the set of

tequations 5.2 - 5.5 solved by Patterson and Imberger differs from the



~ set of equations 5.10 - "5.13 bnly in the buoyancy term oF the

¢
vort1c1ty-transport equatlons 5.3 and 5! due to the thFerence,

between the 1inear and nonl inear eqpations of state, 5.1% 529~
Due to the symmetrical behavioﬁr. Hamblin and Ivey are able
-~
— ‘ .- -
to solve for only‘half of ‘the domain; as shown' in Figure 5.5(a), where

the assocxated non-dimensional initial and boundary conditrons. are as

shown in Figure 5.5(b),and are llsted below.

For =<0 : U=V=¥=6=02=0, everywhere 5.14
Yor 130 : U=9-=0 . at X=0,'t/A; Y =0, 1
Q2 -3%/3x? , at X = 1/a
8 = +] v at X = 1/a
V=20 N at X = 1/A 5.15
v/aX =8 =0 =90, at X =10
V = 3g/ay = 0, at Y =10, 1
2= -a%wsav? . at v -,
. Hamblin and Ilvey present solutions for three cases, listed in
Table 5.2 as Run # | to Run # 3. All cases are solved for P_. = 11.6,

r

i.e. for water at 4° C. The steady state solution is assumed to have
been reached when the values of Nusselt number, Nu,' at the plane of
symmetry (rigid slip wall) and at @ warm (or cold) boundary (rigid

no-slip wall} become equal. For this purpose the Nusselt number, NU.

is defined as :

oo 86.

17
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- A
L .
) ¢ u=v=23T/ay=o0
. U=3V/aX=0 At t=o0 =V =
H / [T=To U=V =0
‘ T=TO - T=To-+ AT
L. [_ ________ > X
. U=v=23T/a¥Y=0
(a) .
Y
A
1/A ]
U=V="=236/3Y=0; Q=-Aysy>
T
| ‘ o U=V=¥=0=0 [U=V =¥=0
1 [USVRX=¥=01 At oo §=+1;0
. #=0 9=0 Q=-3"v /ax?
. l Q=0
A . — X
| U=V=10=0360/aY=0; Q= f/5vy°
(b)
Figure 5.5 Rectagngular cavity notations, initial and boundarv
conditions of test problem #2 for : .
, (2) dimensional parameters.
(b} non-dimensional parameters.



Table 5.2 -

-
Hamblin and Ivey’s numerjcal runs
Run # 1 -2 ™3
R, 2.00710° 1.24%10"" 144105
A 0.200 0.118 0.118

Note : For all runs., Pr = 1.6
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11 3 . ) |
N, =—J —d y : 5.16
A0 X |

-

where the heat transfer by advection term -U8 is eliminated from the

similar £Eg. 5.8 due to the assumed rigid boundary (i.e. U = 0) at both

F rﬁ )

Two cases are solved by the numerical medel 'of Chapter 4

- >

vertical ends.

-

which correspond to Run # 1 (i.e. R, = 2.0"10°, P.=11.6 and A = 0.2)

a
and Run # 2 (i.e. Ry = 1.24"10°, P_ = I1.6 and A = 0.118). Run § 3

was not simulated b§ the author because of the larger valge;PF
Rayleigh number which proved costly in terms of storag;k and
computation time. The results obtained for the two runs are presented
in Figureé 5.6 and 5.7 by plotting contour lines for the same values
of ¥ agg.e. Detailed comparison between thehreéults obtained using the
author’s médel and tﬁase obtained by Hamblin ang Ivey (private
communicatioﬁ} showed a very satfsfactory measure of agreement.
Hamblin .and Ivey {1984) solved the apprepriate,
non-dimensional form of the governing diFFerential'quations us&ng the
finite element method, and, due to different norma2lizing methods, the
values obtained for U and ¥ are larger by a factor of ARa. Figﬁre.sps
compares the values obtained using the present model for U at the

middlie of the cavify to those ~published by Hambiin and [vey (1984)

based on their normalizing parameters. ' ’

5.2.4 Discussion -

The analytical solution of the well known problems of steady
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i —~@-—~ Run g1
-—O— é_un # 2

1.0 See Table 5.2 ftor

definition of runs

-~ . .
! ] ! ® 2222227 ! ! !
< © © < ™ o N o= © © =)
T 1 ! 1 1 ol * + + + N

. . -3
Horizontal velocity; u,10 .
»
Figure 5.8

Comparison between Hamblin and [vey's results
and model results (shown as _circles and lines

respectively) for horizontal welocmtv U.at middle of
cavity.
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laminar flows in enclosed’ rectangular cavities with differentially
-heated end walls [Patterson and Imberger (1980); Hambiin and Ivey
(1984)] shows that heat conducted }nto the fluid from fhe wall,
reaults in a vertical layer of heated Figjd' of non-dimensional

thickness O(GTJ. where

-1/ : _
St S 5.19

13
A

The appropriate non-dimensional boundary layer length sca]e:\6T..due
to conduction-convectfcn balance is also idenfica] With the same scale
obtained by Braun, Ostrach and Heighway (1961) and G|11 (1966) for the
orrgspondlng steady-state' problems. For accurate spatiat and temporal
'representation of the solution, 2 limit on the mesh size is enforced
“Ey_the appropriate length scale, &1, o? such probiems, in adgition to
any other stability criterion in use. For example, for convection
dominated flows, it is essential that at least two mesh points are
contained in the boundary layer at each. vertical level. Heﬁce. for a
uniform grid of N points in the X- direction, with spacing aX which

is half of GT'
) -1 .

Nx 2 ZRE A . N 5.20

For the present verification runs it is sufficient to note

that the grid spacing utllized has been determined initially according

to the appropriate criterion 5.20 and then refined in order to achieve
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the numerical stabilityH:here necegsary. It is worth mentidning that
for a sauare domain, i.e. A= 1, a uniform grid may be used [Patterson
and Imbérger (1980)] but for low aspect ratio domains, i.e. A ¢< 1, a
variable mesh 1is® recommended in order to_‘ reduce the storage

requirements [Hamblin and lvey (1984)].

5.3 Mode!l Improvements
5.3.1  General
In Sec. 5.2, the proposed numerical modei is verified,

yielding numerical results which ére consistent with the numerical

solutions of two problem by other methodsf thus allowing the humericat
model tq Ee pérFected prior to actual simulated problem. The present
section is concerned with numerical‘impr0v¢ments which are dictated by
hiéher values oF' Rayleigh number, R, pJer large.domains, A << 1,
where even modest  improvements are of value in reducing the
computational time. Such numerical:improvemgnts can be achieved either

N

by introducing additicnal acceleratiné technigues throughout the

solution procedure or by medifying the finite difference appquimation

utilized tolrelax the numerical stability constraints.

5.3.2 Alternative acceleration techniques . :
To enhance the overall computational time, use has been made

of the following three computational techniques :
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(i) step-size control with variable time step;
(ii) averaging; and
(iii) extrapolation. T

™
[

Variable time step :

Since the behaviour of the solution changes with time, the
use o; diFFeréﬁt time steps, Atn, should be appropriate. The choice of
smaller time intervéls reduces the numbé; of inner iterations per step
but the number of time steps needed to reach the steady (or required)'
state ‘solutign increases proportionately. AOn :the other hand, the
choice of larger -time intervals .incréases . the numper of inner
iterations per step but decreases the number of time steps. needed to
reach the required state solution. Most o% the matﬁematica] models
reporfed in the literature employ a constant time step over the time
of integration;

For the proposed numefical model, step-size control with a
variable time step is introduced where the value of the nth time step,

41, is calculated at the end of the previous time step n-1 as
My = (1 - (k=5) /Koo AT,y 5.17

where k is the number of inner iterations required at the (n-l)th time
step. If k takes a value other than 5 the time step will be either
increased (k < 5) or reduced (k > 5). The value of Kmax 15 set at 10

iterations; if convergence is not achieved within kmax iterations
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(i.e. CONV = FALSE), then - -
Aty = At,/2 . 5.18

and the time step is repeated again. The logical variable CONV is

defined by the algorithm described in Sec. 4.5.

Averaqging :

Hhi]e carrying out the numerical experiments it was observed
that during the inner iteration, the errors in the successive
approximétions obtained for. U and V "oscillated aroﬁhd the final
solution values. Because of this, an averaging technique is introduced
whereby the average of the values obtained by two_ succéssive
A{terations are used [Pearson (1965); Aziz and Hellums (1967)].-This is

achieved by inserting the following step into the inner iteration

procedure (Sec. 4.5)

Step 5.1 :
n+l N+l
Set ot (Ui, 5k * DU, 50 (k-1
et (Ui,idy -
\ 2
N+ n+t
] . Vi, ila * DY, 53k-1)
P Vi il - ;

Extrapoclation :

At time stepn (n 3 1), the solution values for the previous
time step (n=1) are known. This information can be used for

. e . . nt! n+| .
calculating the initial estimates [Ui,j](ﬂ) and [Vi.jJ(O) by u?ung
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linear extrapolation [Briley (1978)]. This is achieved by repfacing
step 1 in the inner iteration procedure‘(Sec. 4.5) with

Step 1" : _.. .

If n = 0, then set :
n+l n
Ui 53 = Ui,

n+l
Vilileoy = ViLj

. W
Otherwise, set : -
' - AT

- n+l n n N r-1
(Ui, 51co), = Ui,5 ¢ Ui, 5 - Ui, j

- A'[n;_l
n+l n A'{n \n ‘n—I

Vi, 5l = Vi, * Vi, 5 = Vi,;]
- ATn_I

To compare the dfFéerent acceterating techniques without
unreasonably increasing the computational cost, the Patterson and
Imberger problem (Sec. 5.2.2) for Ra =-103 was chosen 35 a3 test case.
In order to cémpaﬁe the diFFerént computational methods, four runs
were made as detailed in Table 5.3. The behaviour of each different
run (technigue) is demonstrated in Eigure 5.9 and Table 5.4 which give
an explicit comparison between the alternative acceleration techniquess
to ascertain the relative eFFiciency.

The non-dimensional time 1 is a measure of the degree of
" convergence and the total number of inner iterations'ZR is a good

index of computation cost. The introduction of the different



A
Table 5.3 1
Comparison of computationat methods
Run # Computational methods
]
l I- variable step with step-size control:
2- inner iterations.
2 1- variable step with step-size control;
2= inner iterations;
3= averaging.
3 1- variable step with step-size control;
2- inner iterations;
3~ extrapotation.
4 I- variable step with step-size control;
2- inner iterations;
3- averaging;
4- extrapolation.

98
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""" o Table 5.4

Comparison between alternative acceleration techniques

i -

Run # ! Run # 2 run # 3 ‘ run ¥ 4

B . =

0.0010 | 232 | 0.0010 | 326 | 0.0052 | 204 | 0.0095 | 1es
0.0020 | 432 | 0.0020 | s26 | 0.016¢ | 290 | 0.0221 | 467
0.0030 | 632 | 0.0033 | 717 | 0.0284 | 767 | c.0768 | 729

0.0040 831 0.0052 909 | 0.03C4 |- 1084 | 0.1020 925

0.0052 | 1027 | 0.0079 | 1101 | 0.0528 | 1362
0.0084 { 1417 | 0.0183 | 1485 | 0.0778 | 1910
0.0108 | 1612 | 0.0266 | 168! | 0.0900 | 2185

0.0138 | 1807 | 0.0367 1876 | 0.1022 | 2468

0.0i76 | 2902 0.0493 | 2072
0.0221 2200 | 0.0655 | 2265
0.0271 2398 | 0.0886 | 2456

0.0327 | 259 | 0.1020 2544

0.03%90 | 2793
0.0545 | 3187
6.0780 | 3593

0.101% | 4094 .
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£y

acceleration techniqués did not involve significant additional coding,

»

" nor was there any extra memory reguirement. [t may be(:;asonably

assumed that the computational cost .per__ iteration did not change

significantly.

5.3.3 Alternative differencing methods

Stabilit f a finite difference scheme is concerned with the

. unbounded nowti or controlled dbcay of any errors associated with the

-

solution of the finite difference equations. In case of a

*

computationally stable difference scheme, ali disturbances remain

- bounded in the computation. Stability can be investigéted analytically
rusing vérious methods [Smith (19%5)] such as the discrete perturbatign
stability analysis, Von Neumann stability analysis and Hirt’s
stability anatysis. It is difficult to apply the methods of stability
analysis to a .set of coupled, nontinear, partial differential
equations, hence, the stability requirements for the |inear mode!l
equation may give some insight to the stability requirements for *he
nonlinear model equations. Consequently, the two necessary cenditions
for stability of the édvection-diFFusion equation [Roache (1982)] are

(1) Courant number, C = uat/ax ¢ (C) ;.
{(ii) Cell-Reynolds number, RC = uAx/y ¢ (Rc)cr.
Qhere_y is the diffusion coefficient which may be represented by the

thermal conductivity Ka» 3s in the heat-trans?gr equation 4.12 or by

I
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[ * -

. the kinematic viscosity uo; as in the vorticity-transport equation-

4113. The two numbers C and Rc should be within certain eritiecal
limits, otherwise, unstable results may be obtained.
Obviously, maintaining a reasonable cell-Reynolds number, Rc,

requires a small Ax which, in turn, restricts the time increments at

to keep Courant number, C, within the critical limit ((C)er = 13. To

satisfy the first constraint, C ¢ Ccr' the ADI method was employed to -

solve. the time-dependent partial differential equations, as described
before in Sec. 4.3. This method is unconditionally time stable.

Consequently, the stability constraints involve only the celi-Reynolds

number., R., where the critical limit CRA) o] is dependentpﬁgn the
differencing scheme used for the advection terms. .

The accumuiation of error due to the advection terms is
independent of time derivatives and there?ore_cénnot be removed by
Towering fhe time step At. The problem can be overcome by employing
some other finite difference method. Therefore, particular care has to
be taken in choosing a differencing scheme, see - Sec. 4.3, for the
agvection terms 3AF/3S (where A symbolizes the advection..u or Vi), in
both the heat-transfer eqﬁation 4.15 and *the vorticity—trans;ort
eguation 4.16“‘Adopting different difference methods, it was found
that the seco;;’.upwind diF%erencing methed (donor celi method)
[Gentry, Martin and Daly (1966)7 can be used with higher values of the
critical cell-Reynolds number, Rcrﬁ to achieve stable soiutions. Other "

methods, inciuding the central-difference method; used before in Sec

4.3, produce unstable results. For that reason, the second upwind
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AN

differencing metﬁod is adopted for the spatial derivative convection

-

térms as
o BAF/3S = GSAF/8S = [ASF, - AFLI/AS + 0(aS%) 5.21
" where
Ay = h[As+As + Agl/2
Ap = [Ag + Ag_ 5172
Fa = Fg for Ay 3 0
= FS+AS for Aa <40
Fo = Foas for Ay 30
= FS for . Ab <0

}ﬁis methéd is second-order accura?e and possessés the transport
property where the effect of a pertufbatipn is advected only in the
direction of the velocity.

For the actuai. problem of simulating densimetric lock

exchange flow, the associated experimental values of Rayleigh number,

Ré ~ 0(108) are required to be employed for

»

such high values of Rye thejﬁdvection terms pl

erical simulations. For
-

g

#is frequently requires the use of appropriafe esh size, AX and AY

to ensure the required accuracy and numerical staility. Due to the

high order of the advection rms in the differentiat ipns. the
lowest-order terms in the Tayldr series expansion™Egs. 4.!9 and -

are not sufficient to accuzgzély describe the advection terms if AX

and AY exceed certain values such that the higher-order terms and
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truncation errors, cause unstability in the solutions. To overcome

§ . ) . . o
such problem, AX and AY should be smell enough to @chieve numerical

;stability and, consequently, the computer storage may restrict the

required simulated values of RaLaQs\f for a required domain. -

- S

. 5.3.4 Discussion
’\\3 For the iteration procedure, the step-size control with
variable time step technique is used for additional flexibility where
the approbriate time step is utilized according to the numerical °
stability requirements.
For the inner corrector iterations procedure, fhe averaging
and extrapolation techhiquqs——ere employed. The averaging techniqhe

[

improves the solution by damping %the oscillation of the nonlinear

terms within the inner iterations. The extrapolation technigue
L) .

\

“improves the solution by giving better \estimated values for the \

nonlinear terms at the beginning of the \inner jterations. [t is
interesting to note that although .the extrapolati _\technique exhibits

\ : -
rapid convergence close to\ the initial conditigns, %his is not

\ . .
maintained as the solution app#oaches @ steady state. The net benefit
of the extrapolation tg;hnique compared to the averaging algorithm at
the's;eady state is thus not very dramatic, and both methods involve
approximately the same number of global iterations. Combining the
techniques results in both rapid initial convergence and reasonably

/

fast convergence close to the solution.

. Moreover, using the second upwind TFFerencing method for the
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‘ . '.,,
spatial derivative convection terms instead of any other difference
approximation allows the - simulation of higher values of advection
terms, over é stable scheme, when associated with high values of the

Rayleigh numbers.
5.4 Conclusion

The numerical model developed in Chapter 4 and improved by
methods described in the present chapter, has been employed to s9lye
the well known problem of steady laminar flow in an enclosed
rectanguiar cavity wi@h differentially heated end walls. The sclution
" (i.e. steady sféte) was determined by iteréting the set of coupled,
nonl inear, par%ial differential equations which describe the
thermodynamic behaviour of the.p;esent prbblem.

The numerical results obtained in *his way have been compared
to. numerical solutions of four different cases of the idealized
problem described in the literature. The excellent agreement obtained
suggest that the numerical model has the ability to solve problems of
;:his type.

Different accelerating techniques have been develioped and
empioyed to improve the efficiency of the solution procedure. It is
observed that £he combination of the three‘used technigues, i.e.
step-size control, averaging and extrapolation.'improves the outer and
inner iterations over the iterating time steps. The actual magnitude

of the improvement factor is a function of the time of integration.
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Consequently,‘this technique ié introduced to the numerical mode! and
also recommended to be used when the solution of a system 6F coupled,
nonlipear, paréial.différential equations is required.

Thé advectipn terms are reapproximated where the second
upwind differencing ﬁethod is used instead of the central difference

‘approximation to simulate high values of Rayeigh number over 3 stable

TN
e

scheme.

. ~
The results of the wverification studies and the testing of

the numerical improvemeﬁt schemes [Marmoush, Chakravarti and Smith

(1985)] have confirmed the validity of the numerical model. The model
can thus be applied with some confidence to the actual problem of
simulating lock exchange flow which will be presented in the following

chapter.



i -CHAPTER 6 .

NUMERICAL INVESTIGATION

6.1 Introduction

. This chapter déscribes a series of numerical investigations
which are carried out to providg a more comprehensive study of the
phenomenon of the sinking . plume which had been confirmed
experimentally as described iHME;;;E;;“S:—-

The mathematical model has been constructed to develop a

means of modelling numerically the behaviour of a théémal bar at the

outfall of a steam electric generating station céoling water system as

~

explained in Chapter 4. S——
Moreover, the numerical model has been verified and
S
additional improvements have been introduced prior to the actual

numerical investigation as discussed in Chapter 5.
This chapter contains the numerical results which provide an
explanation for the lock exchange flows created between two water

bodies having asymmetrical different temperatures around the

107



temperature of  maximum density. Some attempt is made at empirical
correlation of the relative extension of the thermal_bar with relevant
system parémeters. Comparisbn between” the nuﬁerical andnexperimentql
results are discussed.

6.2 Numerical Considerations

- 6.2.1 Generatl

The main objectives of the numerical ana}ysis for the lock
exchange flows subject to the existence of a density extremum in water
at. 4% C are : .

-

I- to confirm the general behaviour which had been observed

experimentally.

-

r

2= to describe the existence of the three zones oF interest
in the‘vicinity of the thermal bar: namely, the thermal
overfiow region, the thermal bar and the thermal
underflow region.

3- to allow the sensitivity of the associated parameters to
be examined and to‘ guide the formuiation of scaling
arguments. |

4- to integrate the numerical and experimental results into

a comprehensive framework.

&
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6.2.2 Limitations

/ o’

In the “envifoqgental applications, the Rayleigh ﬁumber.
defined by Eq.',;,ﬂ,\{ﬁas values ranging from 18" to 105, Due to-
laboratory considerationé discussed in Sec. 3.2.2 (specifically the
use bf molecular values . of viscosity and conductivity), an
experimentallRayleigh number with wvalues Eanging from 107 to 10°% was
used. For the computationai simulation, two éonstraints should be
considered which_are expressed in terms of the numerical étability and
accuracy (Sec. 5.3.3).. Consequently, the mesh size should be fine
enough™ to ach{eve the accurate and stable results.

With the available-computer facilities, the direct memory is
not sufficiently large in order to provide the required storage to
simulate the experimental values of Rayleigh numbers over such large
domains. Additional virtual memory has been used to increase the
storage size but the computational costs in terms of execuﬁion time
restricted such trials.

[t was found that the experimental flow patterns associated

with large Rayleigh numbers and low aspect ratios (e.g. R, = 107 -

103. A =0.01 - 0.015) regu¥{;;\;ery large array sizes to accomodate:

the physical domain and could not be simulated numerically. Therefore,
it was decided to restrict the numerical investigation to +he
simulation of similar cases but with lower values of Ra (up to 105) to
be withih the environménta] range, although still #ar from the

experimental range.
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6.2.3 Discussion

The objectives of the numerical analysis can be achieved b&
simulating lower 'vaiues of .ha under a certain condition. This -
condition is expfessed‘in terms of the fliow regime (i.e. fiow type)
associated with the specified value of Ra' The simulated cases using
lower wvalues of Ra may be regsonably assumed to represent the
behaviour with higher Qalues of Ra if both é%ses are in the same #Iow
regime. Due +to insufficient ' experience with the phenomenon of the
sinking plume, the same classification established Fdf.the heated end
cavities, Sec. 2.3.2, is assumed to be valid for'sucé a phenomenon.
‘Using these criteria it follows that in order to create flow patterns
which are dominated by convection, it is necessary to ensure that the
lowest value of R, is greater than Pri.

It is worth mentioning that the numerical analysis will he
for lower wvalues of Ra' therefore, a direct comparison between the
Humerical and experimental results canﬁot be achieved. But. some
measure of consistency can Se demonstrated if correlatién between the
extension of the thermal bar wgfh relevant system parameters is Féund

to be valid in both experimental and numerical cases.

6.3 Numerical Analvsis

6.3.1 General

For buoyancy induced convective motions, the £low patterns

are wusually described and classified in terms of non-dimensional
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parameters. These parameters prov1de the crlterla which are requ1red .
for the appchat1on of the laws of sxmllrtude. For complete srm11ar1ty
these parameters shqu]q_ have the same values in both models and
protot}pes.' ‘ | ]
. For example, the flow patterns produced in the heated end
cavities are usually described by using the Rayleigh number, Ra' =
‘g(Ap)HB/put. or Grashof number, Gr = g(Ap)Hafpvz. The Rayleigh number
provides 3 measure of the relative }mportaﬁbe of the buoyancy. viscous'
and .diffusive forces while the Grashof number reiates buoyancy.and 

viscous forces. The relation between the R, and G- is given by :

Ry, = G..P_ | 6.1
where ﬁr is the Prandt] number, P_" = vw/¢k, which is the ratio between

the momentum viscosity to the thermal conductivity.
On the other hand, the flow patterns produced in the lock -

exchange mechanisms are usually descr1bed by the densnmetr1c Froude

Reynolds number, F R-- V/g(Ap)H /pv . This number can be considered as

a combination between the Reynolds number, R = uH/v, [i.e. (inertial
force)/(viscous force)] and thé densimetric Froude number, FA ; ;/
vV glap)H/p, [i.e. (inertial force)/ (gravitational force}]. However,
the requirements of both densimetric Froude and Reynolds numbers
criteria can ‘be‘ met together over a8 wide range of practical
circumstances if the densimetric Froude Reynolds number is used,

.

When the motion is free from the external inertial effects
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(i.e. motion is produced entirely by the density differences) all

these non-dimensional parameters can be related as
Ty

.
G. = (FAR) = Ra/Pr 6.2
In tﬁé‘ following investigation, the flow patterns will be
presented with reference to the Rayleigh'and Prandt! numbers.
Moreover, when the nonlinear density-temperature relation is
assumed, three wvalues of-Rayleigh numbers are found to be involved.

These three values are :

pu - po oH®

1) the cold Rayleigh number, (Ryle =
| Po Voo
. ‘ Py - p, gH
2) the warm Rayleigh number, ) (Ry),, =
- Po VoRo
3
‘ Pe = P, oH
3) the lock exchange Rayleigh number, (Ra)] = ———

1t should be noted that any one of the above definitions of Ra is
dependent on the othe; two wvalues. In the following investigation,

(R.) and (Ra)l are considered the independent parameters while (R

alc alw

is assumed to.be the dependent one as

(Ra)w = (Rgle + (Ry), 6.3

[t is worth mentioning that when symmetrical different temperatures



around 4° ( are assumed, (Rj). = (Ry),, and {R3); = 0 and only one
value of Rayleigh number need be involved to describe the behaviour.

Morecover, -when the linear 'density—temperature relation is .used

assuming To = Tas (Ry)y = (R and (Rj). = 0., and again only one

alw
Rayleigh number can be used.

~

The. numerical investigation is carried out for the lock
exchange flows shown in Figure 6.1(a). The associated non-dimensional
initial and boundary condftions, shown in Figure 6.1(b), are detaiied

in Eqs. 6.4 and 6.5.

For T ¢ 0 : U=V=¥=0-=0 + everywhere
e =6, . . at X0
~ 8= (8, + 8.)/2 3t X=0 6.4
8 = o, o .3t Xo0 -
For 1> @ : U=2aV/aX =¥ = 36/aX =Q =0, at X==L,,.+L
U/3Y =V = ¥ = 38/3Y = Q=0 . at Y=0. | 6.5

The lower boundary condition of aU/23Y = 0 is judged to be acceptable

since :

(1} interest is concentrated in the penetration of the upper
layer only; ’ \

(2) inciusion of a ‘no-slip’ boundary layer would greatiy
rincrease the cemputer storage requirements due to the

== N

~
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(a)

Figure 6.1:

(a)
(b)
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y
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=
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dU/3Y=v=03T/3¥=0

4

o| Warm water : Cold water ‘ﬁ
s I
S| At t<0 §: At t< 0 E '
"ﬁ U:V:_- 0 E: U=V =0 %
: = [ —
A u/3y =v=3aT/ay=0 |
~
Y ‘ - .
T Q
< dU/aY=V=V=38/4vy=(Q -0 i 7
C-? At T%o ?
3 U=v=¥=(-0 S
§ ' S
> -
I 21 i
P Ow E: ‘ ac ’9“"
L @ I
5 ? 2.y
i WoY=v=¥=36/0Y=0=0 = -
=

Rectangular flume notations, initial and boundary
conditions of lock exchange flow for:

dimensional parameters.

non-dimensional parameters.
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increased node density close to the boundary.

- Generally, for any numefical run, four dimensionless input parameters
are required to be specified prior to the numerical calculations.
"These " four pgrame;e;; are 8., 6., P. and R, and can be calculated as
shown in Table 6.1. The corresponding physical parameters {{Rg)w,
(Ra)c: {(R3);]. the eguation of state, and fhe buoyancy term which are

defined according to the specified temperature-density range are also

listed in Table 6.1.

6.3.2 Density-temperature relation -

When the lower temperature is greater than or equal to 4° C
it is common to assume the relationship 'between density and
temperature to be linear. This ‘may be appropriate for large
temperature ranges (e.g. 4°% C to 20° C). The assumption may be less
justjfiable if the temperature range is smail and just above 4° C
(e.g. 49 C to 10° ().

‘ Equation; of state, 5.1 and 5.5. may be used for the linear
and honlinear.cases respectively. The validity of thé above assumption
was tested by simulating two cases of the lock exchange mechanism as

-~
illustrated in Table 6.2, where the cald temperature is assumed to be

49 ¢,
For the first case (i.e. Run # 1), the linear equation of
state is wutilized and for the second case (i.e. Run # 2), the

nonlinear version of equation of state is assumed. All  other
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Table 6.1

Specified numerical and physical parameters

Temperature range Linear Nonlinear
Ty ~ To . T, — 4
8, 0 { ¢ 1 g < g1
T, - Te Te = Te
Numerical Tc‘— To Te = 4
I 0§ — ¢ 1 -1 < ¢ 0
mode! Te - Te Tw = Te
input’
Pr Pr Pr
parameters
gag (AT)H® g8, (aT) °H’
R e -
PoVeko PyVLKy
(Ry),, R,.8, > 0 R-8, > 0
corresponding
+ physical (Ry)e * Rg.8c 3 0 “Rg.8c 3 0
parameters
. 2 - 2
(Ry)y Ry (8, = 68.) > O R,(8,, S8 >0
Ap Ap 2
Equation of state — = - al(T - &) —_— = - 8(T - &)
P, P
Buoyant term 2
R, P, 28 p. p. 382
aF(e) = r ax a ax
Ry Pr °
ax




Effect of different versions of the edquation of state

.’q

"\‘_/'

Table 6.2
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Numerical model Corresponding Employed

physical .
* input parameters parameters

Run &ersion
L I - P- RS (Rgly | (R)o| (Ry)y | of state
-

1 +1.0 0.0 11.6 10000. 10004, 0. 100090. Eg. 5.1

2! +1.0 0.0 11.6 10000. 10000. Q. 10000. £Egq. 5.5

‘,' e
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. parameters were assumgd to be constant. Both cases were run for the
~ ,same time, t = 0.16, and the resdlts are shown in Figure 6.2 apg 6.3.
Both cases show the same-cléssical- iock exﬁhange mechanism where the
bouyant warm water extends as an upper - laver whf]e_the heavier cold
water penetrates in the opposite direction as a lower layer. The fliow
patterns and thé éemperature distributions are significantly different
inﬁ%he two cases. The result of Run # 1 (linear range) shows complete
Ssymmetry wﬁereas those for Run # 2 (nonlinear.range) show asymmetrical
Eehaviour, The observed symmetrical behaviour of Run # 1| is due‘to the
linear density—temperéture relation where ap/aT is assumed constant

which' indicates that

(30/3T) for warm water = (2p/3T) for cold water 6.6

It follows that the effect of the heat loss on the upper laver has the
same effect as the heat gain on the lower iayer because no other’
extefnal heat losses are assumed. Consequentiy, a completely
symmetrical behaviour should be obtained.

On the other hand in the caée of a nenlinear density
~temperature relation, the extensgons are expected to bg asymmetrical
as demonstrated by the observed bghaviour oF' Runf’# 2. From the
relationship shown in Figure 1.1(b) it is clear that (ao/aT) for warm
water (e.g. > 8° C) is numerically greater than (3p/3T) for cold water
(i.e = 4° C). The effect of lock exchange is a dilution of the water

at the warm and cold fronts. Consequently for a dilution which causes

-
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an equal magnitude of temperature change of =+ AT C° at each front, the
result will bera much - greater reduction ih the density. difference a£
the warm front compared to the cold front ana thus the driving force
for the Qarﬁ Iayef,will be smaller thén for the cold layer. This
explafns the much morg; pronounced diminution of velocity in the
Emu;ant‘warm Iéyér compared to that of the cold underflow.

By contrast, the linear case (Run # 1) éxhibits no “such
asymmetry in either (3p/3T) or in the diminution of frost velocity,

Further supporting evidence can be obtaingd by comparing the
numerical results obtained from Run # 1 (i.e. the linear case) with
experimental results published by Barr (1967). The parametérs of (Ra)ﬁ

= 10000 and = = 0.}6. used in Run # |, are equivalant to Barr’s

parameters of FAR = 30 ang t/at 54. The numerically predicted

re!ative'extension of the warm layer of approximately 7.2 (Figure 6.2)

is quite consistent with extrapolated lines of Barr’s "tongruency
-]

diagram™.

6.3.3 General behaviour

The noniinear density-temperature reigtion, Eq. 5.9, is
adopted in the following numericai ana]ysis. For asymmetricai
temperature around 4° C, the general behaviour needs to be confirmed.

The general behaviour will be discussed for a numerical run where the

values of the lock exchange ((R3};] and cold [(Rg).] Rayleigh numbers

are assumed to be 15000 and 1000, respectively. These two chosen

values of Rayleigh numbers correspond to warm (ew) and ceold {ec)
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dimensionless tempe;atures of +0.8 and -0.2, respectively. The Pranct]
number P is assumed to have a value of 11.5 which is the
corresponding vaiue Forha reference temperature of 4% C. This run will
be designated as Run # 8 in Sec. 6.4 and Tabie 6.4.
| To reduce the computatlonal cost :n. all simulated runs, a
smaltler domatn, as shown in F[gure 6.1, is jnitially used when the
variations of the variables involved (0, 6, ?; U, ¥) occur only within
a small distance from the barrier (i.e. X = 0). Thereaftea. when t;e
varigtion of any variable close to the vertical side boundaries
reaches = 0.1% from its maximum ealue within the' domain at the same
time step, the working domain is etretched‘By introeducing additional’
nodes having the same specified initial eoeditions as the originai
domain and subject to the required boundary conditions For the_
simulated case. This movable vertical boundarles techn:que shows a
very 51gn1F1cant saving in the computat:onal cost 1n terms of storage
ancd execution time. Generally, the numerical re5u1ts are presented in
this chapter over sufficient domains; as required to illustrate the
obtained results, But in most cases, these domains are_less  ia extent
than the actual simulated domains.
The computational resuits obtained for this case (i.e. Run #

8) 1nd1cated that : e

i

1) The initial behaviour is governed by the initial inertial

force-, and is typically like the classic lock exchange mechanism. The
warm water extends as an upper layer, while the cold water extends in
e
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the opposite direction 2as a lower layer, as shown in Figure 6.4. As :

the motion of both layers is governed by the inertial -force, almost
symﬁetrical behaviour for both lavers around thé barrier is to be
expected.

2} As_the relative extension distance between the upper and
lower fronts increases, the heat transfer betwee; the two layers
causes 3 reduction in the buoyancy driving Férce. Due to the nonlinear
density response to different temperatures in the warm and cold water
layers, as discussed in Sec. 6.3.2, asymmetrical behaviour exists as
shown in Figure 6.5.

3) Due to the continuous reduction of the horizontal inertia
and mixing ét the warm front, the dilﬁted water near the front attains
~ the temperature of maximum denéity (8 =0, T =4°C). This water then
sinks vertically from tﬁh{upper layer and is entrained by the lower
layer which results in ;5; incfeasé bf the temperature of the lower
layer. The location of this sinking phenomenon can be identified as
the point at which the isotherm for © =0 (T = 4° C) is vertica!
through the upper layer, as shown in Figure 6.6,

4) Due to the phenomenon described in (3) above, the sinking
frontal extremity of the upper layer forms a closed convgctive cell as
shown in Figure 6.7. Forward movemeﬁt of the upper Front'ceases at
this'stage.

5) The temperature gradient created between the cold water
and'the ﬁhermal bar drives a cgmpensating convective cell in the colg

region as shown in Figure 6.8;
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6) Thereafter, the 'simulated domain is diVideéiZ}nto two

convective cells of 9pposite rotational sense on éither side\ of the
lpcétion of the thermal par.'Each of these is governed by the'gradigﬁt
between the ‘ambient” waﬁer‘temperature (Gw_or eeq and the thermal bar
'-femperature (& = 0). Both of them transpbrt ambient water to {through
the upper layers) and from (through thg 1ower.layers) the thermal bar'
location. o - |

| 7) The - location of the thermal bar  is dependent on the
thermal balance between the heat-transfer by édveqfion through Ehe
upper layers and the heat-transfer by conductién betwégn the Qwo-
conveckive cells at the thermal bar, as shown in Figure 6.9.

"To reduce the computational costs, the numerical calculation
is stopped when the tﬁermal bar loqation shows an acteptably small
variation with thé elapsed time. It should be noted, however, that
this point is not a final equilibrium state but it is considered to
repreéent‘the point at which the horizontal extension is aﬁrested by
the wvertical sinking. The maximum extension of the thermal bar is
obtained byl relafing the upper Eenetration distance L/H for the
isothgrmal line & = 0 (which corresbonds to the maximum density) to

the elapsed time =1, as plotted in Figure 6.10, by the following

relation

L/H = a(1 - eVt/bye ) 6.10
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This correlation was found “to ‘be reasonable for all the numerical
results obtained in this investigation, where the coefficients a, b

énd c are determined according to the best curve fitting of the

numerical results for each run. For examplé. by fitting this equation =

to the obtained results for Run #.8, it'is found that the best curve
fitting ' occurs when a,, b and ¢ are equal to 6.16, 0.1% and 2.30

respectively where the relation yi&ids to be

L/H -= 6.16(1 _,eJ't_JO_I'S}Z‘g . -

As T+ = , (L/H) = (L/H)pa, =+ 6.16 which indicates that the maximum

penetration distance for the thermal bar; measured from the barrier,

is 6.2 times the working depth.

6.3.4 'Discussion

The natural convection motions under investigation are

k]

produced due to differences in density (i.e. due to temperature‘

gradient). Generally, the flow patterns‘are mainly- dependent on the

+

specified wvalue of the Rayleign number R, Prandtl number P. and

aspect ratio A.

When a linear density-temperature relation is assumed, only

one specified value of Ra is sufficient to describe the flow pattern.

Most of the numerical results published .in the 1inear range are

-

referred to one specified value of Ra. This value provides the

criterion which is required for the application of the laws of

4’.\

e
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similitude. But, when the nonlinéar density-temperature relation is

used, two specified values of Ry must be employed to describe the

relevant behaviour.

-~

The. aspect ratio A has a significant effect on the Flow
patterns particulariy for the case of densimetric flows produced by )
the temperature gradients  bet;éenr the surrounding boundaries.and
enclosed fluid, as for ‘the case of the' heated end cavities. By
contrast, the flow pa%terns produced in the lock.exchange mecganism
are created almbst entire]y-by'the dens%ty differences between the two

water bodies. The assumption of zero heat flux é@ the boundaries is

-

discdésed further in Chapter 7. ' .

N '

. \\_Ihe flow resistance in-terms . of Prandt!l number Pr plays an
important role particularly for flow ;aﬁterns dominated by convection.
The Prandtl %umber Pr is temperature dépendent wherevit has a vélde of
11.6, 9.0 and 7.0 for a specified témperéture of 4, 15 and 20° C,
respéctively. This variation with tempefature is due mainly to the
change in the kinematic viscosity.

Unlike the case of the conyentional cavity convection
problem, in which A, Pr and Ra specify the flow pattern, the lock
exchange flow mechanism is a function of Ra and Pr. The aspect ratio A
will be determined by these parameters as long as the numerical
domains are essentially semi-infinite.

The general behaviour of the. density currents wﬁere the

maximum density exists is identical with the observed exper imental

behaviour for asymmetrical temperatures around 4° C. Moreover, the
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numerical results éhéw thaf the'inifial pghavjour antﬁe lock éxchange
fiow is mainly gove}ned by the inertial Fbéce where'the-loék-exchénge
Rayléigh number (R )y is éq?%iciéné_ té 'descrfbe such behaviour.
Thereafter, due to the effect of the maximum density, the behavioﬁ? 6F
the twd opposite convect}ve.cells'is described by two specified values

of Ry, namely. (Ry); and (R,).. Consequently, " the maximum’gkten%ion

distance (L/H) oy will be a function of these £wo numbers.
6.4 Numerical Results : ' -
6.4.1 . General

For a dénsimetric flow created betiween .two‘water bodie;
having diFFefént temperatures arognd 49 C, the flow: pattern produced
can be described over three zones “of iﬁferest- These thrée zones are
demonstrated schematically in Figure 6.11. Figufes 6.11(a) and'G.ll(b)
are expressed in terms of dimensional and non—dimensi;nal parameters,
respectively.

over one of these zénes. the densimetric F]o@ is maintained
by the density differences between the thermal baf {(i.e. ® =0, or-T =

4° C) and the warm water body (i.e. 8 = 8,,0r T=T Two warm

H)'
layers having different temperatures, both ﬁore than 4° T (8 >. 0) and
less than Ty (8 < 8,) are established. The ccnveFtiVQJmotion.jn this
zone will be identified as é-warm convective cell which transports the

ambient warm ‘water to the thermal bar, where the water approaches

maximum denmsity, sinks and by contindfty returns as a reversed under

Y
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(a)

(b)

water around thermal bar for:
(a) dimensional parameters.
(b) non-dimensional parameters.

) ]’ ' ~ Warm g
- : Convective ol Convectiye
H 2 .Cenn . S ~ Cell £
l Tw=>T> 4 @) LT >Te
- l .
B . = ! :
.y
(L/H)max
T T
——— ' ‘
Warm | g c Coldt_
Convective - o | Convective
g 2 -l Cell
1 <) Cell 5 E
8, >6>0 Cﬂ: = 0>6> 0.
— + g .
L ! =
Figure6.11 Schematic diagram showing general behaviour of



Flow. .

.ln the other zone, the-deﬁsimetrig f]ow is maintained by the
dedsfty diFFérences betﬁeen the thermal bar (i.e 8 =10, or T = 4° ()
énd the cold water body (i.e. © ='ec; or T = Tc). 'IVO coid layers
having different temperatufes, éﬁth less than 4° C (8 ¢ 0) and more
than Tc (6 > 8.) are established. The conbecfive ‘ﬁption_in‘this zoné
will be identified as é cold -convective cell ;which tfansports the

ambient cold water to the thermal baf. where the water approaches

maximum density, sinks and by continuity returns as 2 .reversed under

flow. .
It is worth” mentioning that for both warm and cold convective

cells, the water layers are vertically stable.

.

Between these two zones (i.e. the warm and cold convective

cells}, the thermal bar. exists forming the third zone and showing a'

constant vertical temperature 8 = 0 (i.e. T = 4° Q).

The maximum distance (L/H) ., between the location of the
thermal bar and the original location of m{xing {i.e. the barrier) is
a function of the assoéiated parameters (R };. (Rj)s and P_. The
maximum distance (L/H)max ts produced in two stages caused by a
di?Ferent balance of forces. In the first stage, the inertial force

L]
governing the extension of the flow is mainly dependent on the lock
exchangé Rayleigh number ({j.e. L/H = f[(Ra)]]}. Thereafter, any
additional penetration distance - (second staée) will be due to the

difference in the density gradient around the thermal bar. It is

difficult to separate the two different mechanisms because the density

L : o _ ) 136
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g}adient is usually set up-byfrfhe inertial penetration. Moreover, the
viscous effect (i.e. shear stress), expfessed-by Pr.. may affect the
maximum extension of the thermal bar. This viscous effect is expected
to be more significant in the first “stage than in-the second stage.
Generally, the maximum extension.of the thefmai bar (L/H)max

can, be assumed as

W) ey = FLRZ, + (Ryde » P 6.12

In  the following sections, the sensitivity of each associated

parameter will be examined. The numerical results of the sensitivity
analysis will be used to correlate the relative extension of the
thermal bar with these system parameters. Moreover, 2 comparison

between the numerical and experiments] results will be discussed.

6.4.2 Sepsitivity analysis

All  the tests in the present experimenta} investigation were
carried but with cold water temperatures close to 0° C. Thus the
effect of the variation of (R,).. caused by different cold water
temperatures, .could not be examined based on the experimental data. By
definition P. is a function of temperatukgdrfgz:ﬁpy specific fluid
angd it is therefore subject to minor variations bepween warm and cold
zones in the laboratory experiments. For calculation purposes, a
constant value was assumed and defined at a referencg temperature of

4° C, Consequently, the empirica! relation, based on the experimental
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results, showed the maximum extension of  the thermai bar (L/H) s to
be a function of the initial density difference of the_cold and warm
water {Eq. 3.8). However, the .lnrgé— value of the eonstant of -
proportionality in this eduation {1200) gives an indication that other
system parameters_should be inclnded in this relation. The effect of
these parameters is discussed in this section.

Generally, the sensitivity analygis was <arried out to
investigate the effect of the variation of each parameter on (L/H)max;
This was done by varying each paraneter while keeping the other
parameters constant. The same procedure as discussed in Séc. 6.3.3 was
followed toe determine (L/H)max Dy using the time history of L/H t;'
obtain the best curve fitting of Eq. 6.10. The coefficients of Eq.
6.10 obtained for all the numerical runs are listed in Table 6.3. The
numerical results of the sensitivity analysis in terms qF the
stream-function and temperature distributions, as presented in this

section, represent conditions at the end of the computational time.

The sensitivity of (L/H)max to the variation of (Ra}] was

examined using 6 numerically simulated runs, listed insggblé 6.4 as
Run # 3 to Run # B. The values of the input rameters were chosen to
;.-_‘

cover two ranges of (Ra)1 . %With a constantivalue of (Ra)c for Bach
range. The numerical results are shown in E gures 6.12 to 6.17 for the
last computational stage of these runs. The calculated value;yof
(L/H)max is also listed in Table é.A. The relétion between (L/H)max
and (Ry)) is plotted in Figure 6.18 for the two values of (Ry)e. It

fs noted that (L/H)__ is proportional to [(Rg)117°-%° for both values



Ca'lculated_coeffjcienté for numerical runs

-

Table 6.3

<.
RUN & a . b c
"

3. - 0.99 1.40 0.97

4 2.09 0.70 1.35

5 3.51 10.37 1.75

6 1.79 0.70 110

7 3.29 0.25 1.74

8 . 6.16 0.15 2.30

10 2.76 0.50 1.43

i 4.49 0.65 1.45

12 " 2.48 0.11 2.27

13 4.04 0.12 2.42

16 .80 0.65 21

17 1.84 0.75 1..33

19 8.89 0.30 2.47

Note : :

RUN #6 = RUN &9 = RUN # 15
RUN #8 = RUN & 14 = RUN & |8

139
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Table 6.4

Effect of variation of the lock exchange Rayleigh

number (Ra)I on the maximum relative exfension‘(L/H)max

Numerical mode! : Corresponding
: . . " physical

input parameters parameters L

Run c . : (=)
H
# O ¢ Pr | Ra (Ra)y (Rg)e (Rg); max
3| +0.6 | -0.4]|11.61 625.0 225.0 | 100.0 |. 125.0 { 1.0
4 +0.7 -0.3 11.6 1111.1 544.4 100.0 444 .4 2.1
5 +0.8 -0.2 11.6 2500.0 1600.0 | 100.0 - 15400.0 3.5

) S

6 +0.6 -0.4 11.6 £250.0 2250.0 1000.0 1250.0 1.8
7] #0.7 | -0.3 | 11.6 | t11t1.1 | 5444.3 | 1000.0 | 4444.2 | 3.3
8 +0.8 -0.2 11.6 25000.0 16000.0 1000.0 15000.0 6.2
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Plot of maximum extension (LJ.E:{)max against lock
exchange Rayleigh number, (Ry);.
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OF-(R ale- The constant oF prOportlonallty (i.e. the slope) decreases

‘as (R, )c increases.

Tbe éame séﬁsftiﬁity -procedure W3S~ ﬁepeated to study theﬂ,

effect of the variation o?“(R e for two d|FFerent values of (R J], as

[ Y

I:sted in Table 6 S The numer1cal results are shown in Flgures 6.19°

>
to 6.22 and Table ‘6 5. In these .runs_ (L/H)_,  was found to be

is

proportional to [(R, c] £.36 a5 shown in FIQUFE 6.23.

- The eFFect of P on (L/H) x Was examin :l{stea'in Table

6.6 for two values of (Ra)l" The Hume;iéal,resulfs_are shown in
S ngUres 6.24 to 6.26 and Table 6.6.‘ In'th{s case, it was Found.'as:
. shown -in Flgure 6.27, that. for small values of (R )I; {L/H} is;not

sensitive to Prh but for high values oF.(Ra)],it is proportional to

-0_15 .
R

6.4.3 Numeri;al correlations

. +~ The experimental parameters dgscribed in Chapter .3 are
used to determine the numerical parameters listed in Table 6.7. The
relation between the maximum extensipn of the uﬁber layer -(L/H}max and

the system parameters [(Ra)l' (Ra)c. P.] was assumed to take the

general form :

(LM g = € [(RY) 1R, IPIP 1€ ‘ 6.13
/ .
As a first trial tg\gbtain the proper relation, the exponents

of the system parameters (a, b, ¢) in £q. 6.13 were assumed £c have

-



number (R). @n the maximum relative exteréion (L/H) .

)

-

Table 6.5

b

-

Effect of variation of the co}d'Raerigh

-

. 149°

Numerical modef _ Corresponding
C ) physical
input parameters parameters L
Run : (=)
H
1 e, 6c P Rg (Ry)y (Rade | (Rg)y | max
S | #0.6 | -0.4 | 11.6 | 6250.0 | 2250.0 | 1000.0 | 1250.0 | 1.8
10 +0.7 -0.3 11.6 3125.0 1531.3 281.3 {250. 2.8
11 +0.8 -0.2 11.6 2083.3 1333.3 83.3 1250.0 | 4.5
12 +0.6 -p.d 11.6 75000.0 27000.0 [12000.0 -15000. 2.5
13 | +0.7 [ -0.3 | 1!1.6 | 37500.0 | 18375.0 | 3375.0 | 15000. 4.0
14 +0.8 -0.2 |-11.6 25000.0 16000.0 1000.0 15000. 6.2
Note : * Run # 9 = Run # 6 -
L
" Run # !4 = Run # 8 %
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Plot of maximum extension (L/H)max*against cold
Rayleigh number, (Ra)e-



Table 6.8

Effect of variation of th; Prandt] number Pr

on the maximum relative extension (L/H)mé><

155

i Numerical model Cérresponding -
physical’
input parameters parameters L
Run o : (=}
H
" O OS¢ Pr Ry Kisg}w (Rye (Ra)y @ax
15 +0.6 -0.4 [1.6 6250.0 2250.0 1000.0 1250.0 [.8
16 +0.6 -0.4 5.0 6250.0 2250.0 1000.0 1250.0 1.8
17 | +0.6 | 0.4 | 1.0 | 250.0 | 2250.0 | 1000.0 1250.0 | 1.8
18 | +0.8 | -0.2 | 11.6 | 25000.0 | 16000.0 | 1000.0 | 15000.0 | &.2
19 +0.8 -0.2 | 1.0 | 25000.0 16000.0 IOQQ.U 15000.0 8.9
Note : . Run # 15 = Run # 6
e Run § 18 = Run & 8
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Figure 6.27 : Plot of maximum extension (L/H)max against the

Pragdtl number, P,.
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Table 6.7
Experimenté‘l val'ues of specified numerical
parameters .
- Numerical model Corresponding
: . physical
input parameters parameters L
Test = - (=)
- H
# Ow. - Ry (Rg),, (Ryde | (Ry) max
sl (21077 1077y | (*1077) | (*1077)
1 +0.780 -0.220 11.113 6.761 0.538 6.223 42.5
2 +0.717 -0.283 6.717 3.453 0.538 2.915 30.0
3 | +0.688 | ~0.312 |- 4.71F | 2.230 | 0.459 1,771 | 23.5
4 +0.673 | -0.327 4,904 2.221 0.524 1.697 22.5
5 "+0.645 -0.355 12.603 5.243 1.588 3.8655 6.7
6 | +0.799 | -0.201 | 35.473 | 22.646 1.433 | 21.213 | 43.3
7 +0.719 -0.281 15.633 8.082 1.234 6.847 23.2
Note : P. = constant = 11.6

r



Lo

0 | } - . 161

e -,
the same corresponding values (+0.50, -0.36, -0.15) achieved in the

sensitivity analysis of each individuél parameter. Consequently, Eg.
& ' !
6.13 is assumed to be

-

-0,36

(L/H) gy = CLRS) 1501 (Ry) P10t 6.14

cl

-
[

The ,computed ré§UIts.using Eq. 6.14 are compared with the numerical
an? experimental results in Figure 6.28 (a) and (b), respectively. The
curve fitting of Eq..s.lé shows that the constant of proportionality,
C. has two different values (i.e. 0;85, 1.75) when‘gpe qumeribal and
éxperimental parameters are used, respectively. The different values
of C ére to be éxpected‘psince different values of thé constants of

proportionality were observed in the sensitivity analysis. when

(L/H) max was correlated with a single parameter (i.e. (Rg);.. (R or

ale
Pr) over different ranges of the other two system parameters. [t was
also observed that Eq. 6.14 produces errors with a maximum value of

207 when the experimental pérameters are used. The difference between

the experimental Fesults and the results predicted using Eg. 6.!4 may

be due in part to laboratory errors in measuring the maximum extension

. of the upper layer or in the temperature measurements. Based on the

- b » .
experimental measurement methods, the laboratery errors are not

 expected to be more than 10%. The second source of error may be due-to

-

the differents flow mechanisms between the;numerically simulated range
v

(Ra up to 105) and the experimental range‘TRa up to lDB). Therefore,

Egq.'6.14 may be wvalid within tbe numerical range of Ra, while ancther

N
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v . . ‘ <
-relatiqn .(i.e. involving different exponents) should be used for the
experimental range of Ra.

As an alternative approach,‘ the constants in eduation 6.13
(i.e. @, b, ¢ and C) were assumed to be unknown. The optimum valueg of

’

these constagts were calculated by' minimizing the Fél]owing error

- function

LY

Znih = I ((L/H)gay = CL(RL)1PM(R,) IPIPLIC)2 6.15

1~
For the numerical system parameters, the optimumerelation was found to

be

-0,387

(L/H) oy = 0.5220(R.),17°-°73 (R (P.17°-133 6.1

alel

>

»1t is noted that the exponent values in EG. 6.16 are almost the same
a8s the corresponding values ig Eq. 6.14.

A similar procedure was followed using the egﬁerimental
values and assuming the Prandt! number is essentially constant. The
Prandt! number was therefore eleminated from the optimizagion

procedure. The experimental relation was found to Bé

(’/) .

+0_531 ~0,560
3 (L/H)poye = 17.345 [(R3)] TR

2l 617

4

»

The constant of proportional ity in Egq. 6.17 (i.e. 17.345) possibly

includes the additional dependence on the Prancdt! number, Pr' which
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ot < L
was eliminated From the optimization prdcedure. It should be noted

o .-

that both E£gs. 6.16 and 6.17 represent <the best fit (optimal

-— ‘ - "
correlation) between (L/H)pax @nd the relevant system parameters. based

on the numerical and experimental results, respectively. It was found
that ﬁost of the numerical and experimentéf results are within :1.0%S,
{where Sd is the standard deviation of each set) from the iines
represented by Eqs. 6.16 and 6.17, as  shown in Figure 6.29 (a) and
(b), respectively. Figure 6.30 show§ the relation between the obser;ed

and predicted values of (L/H)max when Egs. 6.16 and 6.17 are used for

the numerical and.experimental parameters, respectively.

\ ‘\\§
%
In this section an attempt is made to relate the estimated

-

{

6.4.4 Scaling analysis

value of the maximum extension distance of the thermal bar to the

relevant parameters by wusing a scaling analysis approach. A

mprehensive analysis is difficult because of the - several comp ! ex
L]

'mechanfsms governing the flow behaviour. Therefore, for illustration

L)
purposes, a simple case is considered in the following analysis.

Suppose the tthickness of the thermal bar is denoted as |
which s small comparéd to the veftical length scale H and the
extension‘length Ly [Fiéure 6.11(a)]. Using the relation between the
velocity ébmpoqgnts and the stream Function; Eq. 4.8, (it can be seen

- .

‘ ) .
that the cdhvection and diffusion terms in the heat-transfer equation,
] . .

4.12, are if the order of (¥aT/IH) and (¢AT/13), respectively. When

the thermal bar- attains a fixed location., the balance between



(L/H)max

(L/H)max

a, -
£

165
© g
A
19,’:
8" .//’:/ -
//://’ -
S . 058 =% (@)
"'}.’:’3 -
11,/”,’-\.06 .
4 1 oLl
7’, . S
10 ~-»=~
_ 12077 Slope of line
2l . 1849 *
B Eeon-37 0.522 ‘
,,‘," . E ]
2273 {
obk=="_1| 1 ] | ] i } ]
o ™~ < © @ . =} o 3 ©
: -0.133 _ _0.387 +0.572 )
Pr (Ra)c (Ra)l
~ U
A :
. // /’
- r
1.7 i
- ’,/ b
401} ot
-~ . .
Rt
x " -
2 ” 1/56
30+ $ 0 - (b)
- -~
- Pt
\ 4. ~e7
20 L // //
// //
//’/,’5 Slope of line
- -~
10 =~ /’ // 17.345
- e -~
-~ -~ .
/, ,/ -
0' ! 1 | B, | I 1 —_—
e T @ o © Q) « < ~
) ) ) - - o~ o~ ~ )
° - 0.56 +0.531 1
(RQC (Ra),
.
B 7
Figure 6.29 : Plotof maximum extension (L/H)max against

System parameters of:
(ar:: numerical results.
(b) : experimental results.

*'\

\



166

. S nsad [Rusmaadxo
pue  ulouinu Cao)= SanjeA  paAsasqo  pue
pajorpaad su XM rpuoisua)xo wapwxew jo 10 Doogrg aaniy)
uotamaoMmeAI\ .._vw
0 L1 B NS N
@« °© @ o & &8 & B & 2 .
2 0 0o o N o u s w8
-4 -t
- T T T T T T T T T T 0
- £ G
) 9l
. NFQ [ ] OP
s}N8aY (ED|JOWNN @ Mu—o. Ll
sjinsey |eluswiihdx3 o ¢ ‘Gl
L B .
'v8 Moo < 0z
£
G¢
QN 10
0e
- _ g
se
| I
\ o ov
61 Gp
) 9
v .
.

pajdipaid {xetu(-l /H)}



167

[
&
convection and diffusion requires that >
¥AT/IH ~ aAT/12
i.e. - .
¥ - xH/1 ° | _ 6.18

Similarly, in the vorticity-transport 'gquation, 4.13, the

<CHIT®Y,  (ve/1% ~ weH/15) 550d  (gan/ol), respectively, where Ap =

Pupes The balance between/diffusion and buoyancy génerates the ﬁoticn

at the thermal bar and gives

veH/1% ~ gap/pl
i.e. -
. .
1 ~ weHp/g4Ap
Using Eqs. 6.18 and 6.19, the vertical sinking velocity, v, at the
thermal bar can be obtained as

-~

- 2
v o~ ¥/l ~ xH/I

v ~ V [g(ap/8)IH Jue] /M

v o~ [(Ry)1Y? /M ‘ 6.2

b

Based on experimenté! observationswmHamblin and ivey (1584) estimated

“ -
————
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the vertical sinking velocity, v, as =~

v = 0.3 [(Ry)el? «/H 6.21
N y

LI

- —

On the other hand, the horizontélA_veIoci;¥ of the upper
) Iayer. u, can be estimated from the balance between the advection and

buoyancy terms (where 4p = Pe—py) iﬁ the horizontal equation'of
3 : .-‘

momentum, 4.1, which yields : \\‘////

u’ ~ glap/p)H

u o~ [(R),1'3/e&/H - 6.22
R
Based on experimental obsérvationé. Barr {1963) estimated the

horizonfai velocity, u, as :
1/2 '
u =0.6 [(Ry),3 " “Yo/H 6.23

“ " The  maximum extension distance (L )

u’max of the thermal bar is

° L4
achieved when the continuity equation, 4.4, is satisfied

WL ey ~ WM

and combining with £gs. 6.21 and 6.23 we obtain,
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Lu/Mimax ~ 20P.1Y[(RLY 1M 2/ (R 12 6.24

It should be noted that the above scaling analysis is carried out Fbr'
a sftuation in which tﬁé inertial force dominates the extension o% the -
upper layer. Conseqﬁently. Eq. 6.23 is reasonable for higher values of
R,. When -the Prandtl number is éssumed constant and defined at 49 C
(f.e. P. = 41.6), Eq. 6.24 is modified to be .

- ‘.

(LM ey ~ S.BIZE(Ra)]]+°‘5[(Ra)c]'°‘s 62

It is also noted that the exponent of the system parameters of Eq.

6.25 are close to the experimental relation, 6.17.

6.4.5  Discussion

The _numerical simulation was carried out for a range of
Rayleigh number Sétween 625 and 75000. In this range, the relation
betwe§n (L/H) oy and the system parameters cam be expressed by Eq.
6.16 which provides good agreement with the numerical results.

The experimental tests were éarried put %or a range of
Ray]eﬂgh number between 4.711°10° and 35.473%10°. In this range, Eq.
6.17 shows good agreement with the experimental results. Mereover, the
scaling anélysis confirmed that Fo; high délues of Rayleigh number,
-the exponents of (Ra)] and (Ra}c have the same values and should equél-

+0.5 and -0.5, respectively. Consequently: Eq. 6.17 can be used for

high valugs of R, based on the experimental results and the scaling
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aﬁalysis. ‘ -

It is worth mentioning that the di#Ference between equations
6.16 (ngmerical resu]té] andjﬁ.IT (experimental results) may be Bue to
the large diF?erence in the range of Ra used in each case which may
fesult®in  two different Flow regimes (i.e. inertial in the

experimental range and viscous/diffusive in the numerical range).

-

s "
. . - ( .
6.5 Conclusion . .
A series of numerical investigations was carried out to

provide a more comprehensive study of the phenomenon of the sinking
- ' o '

piume. The numerical model was employed to simulate lock exchange

flows created between two water bodies having different temperatures

around the temperature of maximum density.

* Due to restrictions in terms of available computer memory and
fégmputational costs, the experimental Rayleigh numbers of up to 108
could. not be simulated numerically. Consegquently, the numerical
investigation was restricted to the simulation of similar casés with
lower values of Rayleigh numbers up to 10° wﬁere accurate and stable
'results can be achieved with reésonable computational cost. The
%imulated cases Qsing lower va}ues of éa are assumed to also represent
the general behaviour at higher vajues of Ra.

The . nonlinear dé;ﬁity—temperature _relation has a profound

influence on the behaviour of the thermal density currents.. For a

dilution which causes a temperature change of * AT C, the result will
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- .

be a much greater reduction in the driving force of the warm water

—

than in the - cold water for the same amount of  entrainment.
Consequently, more pronounced dimingtioq of velocity in the warm layer
is expected compared to that of the cold layer.

When asymmétribal temperatures éfound 4°'C afe assumed, the
warm water é;fends as an upﬁer layer dominated by inertial force. As
the buovant layer attains the tfmpérature of maximum densitx.'it ;inks
vefifcally and forms a thermal bar. The. flow patterns produced show
three zones of interest viz. (i) the thermal overflow region (warm
convective <cell), ({i) the sthermal bar, and (iii) the thermal
* underflow region (cold. convective celi). The general behaviour is
consistant with the experimental observations reported in Chapter 3.

The flow pattern around the thermal bar ié\related to three
differently-defined values of Rayleigh number (where one ;F them is
dependént on the other t\L values). [t was found that the maximum
extension of the upper layer (yherelthe “thermal bar attains a fixed
iocation) can be related to the two independent vélues.of Rayleigh
number. [t was also found that this relation does not depend on the
range of Rayleigh numbers proviaed that the simulated cases are in the
same flow regime.

On the other hand, it was found that the location of the
thermal bqr is a]so. dependent on the Prandt! number. The weak
sensitivity of the thermaf bar location to the value of Prandgt! number
was found to increase with incréasing Rayieigh numbers within the same

flow ,regime.
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The empirical relation, 6.1, obtained by usihg the numerical
results over the simuleted,nange ' of Ra up to IOS.ShOHS acceptable
results. Due to the different mechanisms begtween the numerical and
experimental range of Rayle1gh number, another emp1r1c31 relatlon.
6.15.A was Found to be applicable for the expertmenta] tests. The
latter reTat:on was confirmed by the scal:ng analysis. It can be
concluded that for the numerical range of R both advectton and
lefu51on govern the extension. oF the upper layer. On the other hand.
for the expernmenta{ range of Ra the extension of the upper layer is
dominated by convection. - | ’

The numerical fnvestigation [Marmoush, Hamblin and Smith

\
(1985)]1 1is sufficiently good to' givk a picture oF the behav1our or

densimetric flows in general and lock exchange flows in partacu]ar cdue

.to the norlinear den51ty—temperature re]atlon._The empirical reiatlon

6.16 can be used to predict the maximum penetration distance for the

-

warm effluent in a typical field application since the values of the

1

governing parameters would be in the same range as the values used in_

the numerical solution. .
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SUMMARY AND, CONCLUSIONS

This chapter includgs a brief summary of this investigatioq
with:rgference to the general Finqings. It also includes a discdssiog
as tq the extent to which the objectives‘gf the thesis have been
achieved and the scope for future research. '

The behaviour of densimetric or density currents produced due
to heated effluent at the outfall of steam electric generating station
cooiing water systems where the linear relation between density and
temperature can be assumed have received considerable attention by
many researchers. This heated effluent forms a raft with a pronounced
éiscontinuity in the_vérticali temperature distribution and 2 frontal
system driven ‘-b)./ the thermal density daifference. Usually the direct

v .
modelling of these natural. system is very complex, however, the

idealized mocdels are used to provide some insfght into these more
difficult problems.

In cold climates. the existence of a density extremum in

water at 4° C and the resulting nonlinear relation between density and
- {
*~ . ' ;

173
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\

temperature gives rise.to denSImetrlc or denszty currents whuch are

markedly diFFerent from those in the l'inear range. Temperatures higher:

than the ambient have been observed near the bottom of lakes in the

vicinity of th&rmal discharges and concern hes been expressed about

the adverse effects of such abnormally warm water on the winter

ecology of lake bottoms.- It seems likely that the observed warm water

at the bottom is due to the sinking phenomenon which is known s a

-

\///// thermal bar. However, the phenomenon o? the thermal bar and the manner
- o

in ?whieh it may Tafluence nearshore transport processes in the

'vicinity of a thermal outfall in a coid climate merits Fu}ther %tudy.

"

The present -investigation addresses this prpb[em from the experimental
and numerical points'oF view.

The first step of tbe present study comprises a literature

review of :

{i) The environmental investigations in terms of biological

impiications and actual fleld temperature measurements

near thermal outfalls in winter concitions.
\@. ' . -

(i) The idealized models which _are wusually used to

.

approximate the prototype conditions.

The idealized mocel of Iock exchange flow was selected as the

basis of the study due to the fact that its behaviour is close to that
&z
expected in the prototype situation.

The Lgck exchange flow system which was set up expérimentally'

: N

- . -
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and simulateq numerical}y comprises a hori;ontal flume containing two )
water bodies bhaving asymmetrical 'diFFerént temperatures around the

. temperature of maximum density and initially separated by a removable -
_vertical barrier. Three physical parameters are Fouﬁd to be involved,
i.e. the lock exchange ngleigh number, the cold Raylei?h number and

the Prandtl number. Both experimental and numerical results show that

=9

the initial flow patterns are simiiar to the classical‘lock exchange
mechanism, the warm, buoyant layer-extending over the cold receiving
water. Concurrently, a cold, "dense wedge is propagated under the warm
body of water. Moreover, the initial symmetrical behaviour is mainly
governed by the inertial force where the lock exchange Rayleigh number
- is sufficient to describe such behaviour7 AFter the warm front has
prosagated for some distance, the buoyant layer attains the
‘temperature of maximum;denéity and then sinks vétéical}y forming the
thermal bar. Both experimental! and numerical investigations provide

r

dramatic proof that the _existence .of an extremum in the
. - .
density-temperature relation has a profound influence on the behaviour
of densimetric flows in general aﬁd lock exchange behaviouf in
particuliar. It 1is found that three zones of interest in tfe vicinity
of & thermal bar a;; clearly demonstrated viz. (i) the thermal
overflow region (warm convective cell), (ii) the therma! bar and (1ii)
- the thermal underflow region (cold Sznvective celi}f ’
The exﬁerimental investigation was carried out for high
values of Rayleigh numbers (up to [08) dictated by the need to use

reasonabie working parameters. Moreover, =2all of the experiments
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employed a cold water temperature Elose to 0° C and it was difficult
to control the Prandtl - number throughdut the experimental
investiga&ion. Consequently, the experimental relatio; for the maximum
e#tension distance_qf.the thermal bar was obtained as a function of
tﬁe initial density difference between the cold and warm water.

On the other hand, the numerical investigation was carried
out for smaller values . of Rayleigh numbers (up to 105) due to
practical limitations on the available computational resources. To
ensure similar behaviour, the numerical simulations were computed for
the same flow regime for which the experiments haa been carried out;
i.e. convection dominated the flow patterns. The sensitivity of the
maximum extension distance of the thermatl Bar to the range of the
relevant parameters was examined. For the numerical results,
sensitivity of the thermal bar location to the Prandt! number was
found to increase with increasing Rayleigh number within the same fiow
regime. The senéitivity of the other parameters was not significantly
different over the range of Rayleigh numbers explored.

Based on the experimental and numerical results, two
empirical relations were found *to be applicable for predicting the
maximum penetration distance of the warm effluent according to the
range of the Rayleigh number. The empirical relation based on the
numerical results can be employed in a typical field application since
the values of the governing parameters would be in the same range as
the values used in the numerical solution. The empirical relation _

based on the experimental results can be employed for large values of
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the Rayleigh number. Both empirical relations show good correlation
within the specified range of Rayleigh numbers.

in general, the investigations are sufficiently good to give
2 pictyre of the behaviour of the thermal density currents in general
and lock _ exchaﬁée flows in particular due %to the nonlinear

density-temperature relation.

This study represents a preliminary’ stage of a more
comprehensive study to deveiop a means of model ing the behaviour of a
thermal density currents at the qutfall of a stebm electric generating
station. Further investigations are needed which can be classified as

follows.

1- Local extensfcn of the investigation presented here.

Tg}s can be carriéd out eithgr experimentally or numerﬁéaLJy
for the id;alized mdde] of the lock exchange mechanism. Smaller
values of the Rayleigh numbers require to be employed in laboratory
tests for two rea;ons.' Firstly, the experiments must be within the
typical field application (R, = 10" to 10°%). Secondly, the numerical
simulafioﬁ of these.smailer values of Rayleigh numbers can be carried
out  with reésonabie computaticnal cost. Moreover, variable
temperatures for the cold water allow the effect of cold Rayieigh
number to be examinéd. TJo achieve laboratory tests with such
regquirements, sophisticated equipment mayg> be needed. It is worth

mentioning that recently -availabie micro-computers can provide large

storage where the numerical solution, for high values of Rayleigh
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number can be obtained with computational cost playing a seEOndary
~ .

role. The sensitivity analysis shows that it is usefull to define the

Prandt] number as a- function of teﬁpera£ure instead of using'a

constant value which can incur an error of up, to 7%. Moreover, the

large amount of numé}{cal results obtained in this investigation will

be usefull to determine ‘the limits of tpe different mechanisms

responsible for achieving a fixed location of the thermal bar and also

provide the basic data for the scaling gnaiysié‘of such behaviour.

-2~ Globali extension of the investigation presented here.

The numerical model was employed for the idealized case of
the thermal density currents where simplifying assumptions were made.
Examples of these :are the absence QF. the effect of external forces
such as the heat ex;hange between the water and air, bottom friction
and wind stresses. This indicates the need for a @;re sophisticated
turbulence model! to better represent the spatial distribution of
turbq1ent diffusion instead of the assumption of laminar molecular
diffusion. The numerical model caﬁ pe modified to simulate the actual
prototype situation where the thermal currents are depencent on the
discharge charactrestics and the hydrologic and meteorologic

conditions prevailing in the receiving water bodies.

>



R

APPENDIX I

LISTING OF COMPUTER PROGRAMME
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PROGRAM THROMC (OUTPUT,TAPE6=OUTPUT,TAPEILG,TAPE20, TAPE30)

LY

* PURPOSE  :

- -
N

»

* SPECIFIED
* PARAMETERS :

- INPUTS :

QUTPUT

DIFINITION :

™

OTHER DECKS

-
L 2
#*
L]
»
»
»
-
-
-
-
*
-
L
L]
-
-
-
L]
-
-
L]

GOMMON /VARIAB/
! .o
COMMON /INVERT/
) .
COMMON /PARAMT/
L :
COMMON /WORKAR/
COMMON /SPKUSR/
REAL

LA A AR A RN EENENNY)

* Specified parameters *

LA A A AR LR R NEEREENYE]

PR = 11.6
RA = 1000.0
TOL = 1.0E-4
DX =

0.10

Solving system {set) of coupled'(simultaneous)
partial differential equations.

PR,RA,DX,
TAPE10,TAPE20 |

: TAPE1D

PR

RA

DX

oY

NX

NY

TOL
TAPEIO

TAPE20 =

REQUIRED - : ENERGY,VORTCTY,STREAM,MOTION

.....'.......'.I.'."'..l"......'.‘."‘.....QQ‘..'I....I*-Q"

.number of nodes An X-direction

: ...'Q'ﬂ.’ll"'l'.ﬂ..!.'.l..'...Q'ﬂ.l"QQ'O‘....QQ!I"I“.I.Q_..Qﬂ

ol
DY, NX,NY,;TOL

the Prandt! number

the Rayleigh number
horizontal mesh increament
vertical mesh inqreament

number of nodes in Y-direction
allowable tollerance

sparse matrix package file containing
the restart system

data file' containing the initial or
previous values of the variabjles;U(l,J)
SNVIL,J),PSI(L,J),0MEGA(], J3THETA(I.J)

T & 8 & ¥ 2 9 5 & 4 & 3 B F 2 ¥ B 5 % F S P E B S & &5 B

THETA{21,11),U0(21,11),PSI(21,11),
OMEGA(2],11),v(21,11)
A{21},B(219,TRANS(21),BETA(2]),

C(21).0(21),GAMMA(2])
RA.NX,DX,RX,NX1,NX2,RXX,DX2,0X4,0XS2,

PR,NY,DY,RY,NY],NY2,RYY,DY2,DY4,0YS2,DTARS
WORK1(21,11),WORKZ2(21,i1)

"MSGLVL,
$(2242)

LE X EE RN E N ]

LA R X EENERR )

[ERR,MAXS, NEQNS



OO0 OO0 OO0 00

OO0 0O0

NY

DY2

DY
NX

3

DXz

DX4
Dy4d
DXS
DYS
DXs2
DYs2
NX1
NY1
NX2
NYZ

LTI LI T T T (T T (N T N VI TR ||

SRBERAED

* Start

RANBIRNGD

CALL SPR
MAXS =
MSGLVL =

LA R A AN X X

* Restar

LA X AN 2 X X J

CALL RES

TERRREREN

* Print

LA N A NN R X3

CALL PST

(AR AR XN N)

* Read %

(AL R R RN X )

) ~N
REWIND 20
READ(20,") ICOUNT,ITERAT,TAUS.DTAUS,DTAUO
0o 1 I=1,NX
[HO J=1,NY -
READ(20.") U(I,J),V(1,J),PSI(1,J),OMEGA{I.J},THETA(I,J)
CONT INUE
REWIND 30
0O 2 [=1,NX
00 2 J=1,NY

0.10
21

11
2.0"DX
2.0°DY
4.0°DX
4.0*DY
DXQQZ
DY!QZ
DX*DX2
DY*DY2 .
NX-1
NY-1
NX-2
NY-2

WA A AL E L LIS ENETERSEY SN R

rse package package *

SRBNERARAIROIBBTRARRIRIEGY

SPK
2242 |
9 .

SERBRNETARN

t system *

LA A RN R X XK X J

TRT (10,5}

LA A EEEE SR NS N]

statistics *

LA AR RN YR Y Y]
-

ATS

LA A LR AL RE " EEEEENSIE Y FE X NN N]

he values of aill variables *

..."‘.....I..Q.Q“ﬂl'“..'...'

A
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OOO0O0O0

OO0 0O0

OO0

L. 4

READ(20.%) U0,vO
WRITE(30,*) UO.VO
CONTINUE

QD.Q"'DI..QQ‘!Q!...

. ) .
* Quter iterations * .
(22 X2 X IR XN RN R Y FY

LS

DO 15 L=1,10 . .
WRITE(6,330) ICOUNT, ITERAT,TAUS
WRITE(6,340) DTAUS

RX = DTAUS/DX .
RY = DTAUS/DY

RXX = RX/DX

RYY = RY/DY : -
DTAUR = DTAUS/DTAUC

REWIND 30

DO 4  I=1,NX

DO 4 J=l,NY
READ(30,*} U0, VO

Q..;..QI"."..IQQI'QQ’......QQQQR

* Linear extrapolation technique *

b AL ALE LA LE XL ISR XY R F WYY FPRggrarges

V(IL,J)
CONTINUE

REWIND 30

DO S  T=1,NX

DO 5 J=1,NY o
WRITE(30,®) OMEGA(!,J),U(I,J),v(I.J)
CONTINUE

CALL ENERGY

CALL VORTCTY °

CALL STREAM (S)

CALL MOTION

UO+DTAUR® (U(1,J)-U0)
VO+DTAUR® (V(I,4)=V0) °

LA AL R EERE NS ENREE NN YY)

* Inner iteration *

LA R N B X R N E N NN NFER WRPEN

DO 9 K=1,3

ERRMAX = -1.0E10

VALMAX] ='-1.0E10

VALMAX2 = -1.0E10Q

VALMAX3 = -1.0E10

ITERAT = ITERAT+1 cooe
REWIND 30 :
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ad
DO 6 I=1,NX
DO 6 J=1.NY
WORK2(1,J) = OMEGA(I,J)

READ(30,*) OMEGA(I,J).,UP,VP

LAAA AL R RS E YRR YEY FYYY ¥

* Averaging technique *

LAAA L LR LR LR YR EY T8Ny

U(I,J} = (U(I,N)+UP)/2.0

V(I,J) = (V(I,J)+VP) /2.0 ' _ 4
CONTINUE Ry . .
REWIND 30 . -

D07 I=1,NX

00 7 J=I,NY .. C

WRITE(30,*) OMEGA(},d),U(I,J),v(I,d)

CONTINUE

CALL VORTCTY

CALL STREAM (S)

CALL MOTION ‘

D08 I=1,RX

D0 8 J=l,NY ™

VALABS] = ABS(WORK2(I,J))

VALABSZ = ABS( Ur,Jj)

VALABS3 = ABS( V(I.J))

ERRABS = ABS(OMEGA(I,J)-WORKZ2(1,J))
VALMAX] = AMAXI(VALMAX1,VALABS!)
VALMAXZ = AMAX1(VALMAXZ,VALABSZ2)
VALMAX3 = AMAX](VALMAX3,VALABS3)
ERRMAX = AMAXI(ERRMAX,ERRABS) .

CONTINUE

L Y Y Y Y i,

* Percentage of error *

LAA A AN AR LR Y RY REE PR PR

POE = ERRMAX/VALMAX]I
WRITE(6,350) K,POE .
WRITE(6,360) VALMAXZ,VALMAX3
[F (POE.LE.TCL) GO TO 12
CONTINUE

..'.'I.."’I'..'.“'.'.'I

* KRepeat the time step *

LA A AR R L E XYY NN FY WY WU Ggg

DTAUS = 0.50°DTAUS
REWIND 20
READ(20,*) 1A.1A,AA,AA,AA



OCcCOO0O

OO0

OO0 0

10

H

12

13

14

15

00 100 "I=1;NX E : :
D0 10 =1 NY ' -
READ(20,*) U(I, 9 el ,PSIC, J) OMEGA(I J) THETA(I.J)
CONTINUE -

Ty

REWIND ‘30 : _ . e

DO 1! . I=1,NX o N .
DO 11 J=I,NY . P )
READ(20,*) uO,v¢ ., . _ ' . . o
WRITE(30,*) UO,VO . . L
CONTINUE . I -
GO 7O 3 . . e s -
TAUS = TAUS +DTAUS = - - ~ e e
ICOUNT = ICOUNT +] - -
DTAUQ- = DTAUS, -~ = ot L

e ~
..IQ..‘."Qh.ﬂ’l.“'i.'QQDI".I..Q'QQCQI..QQ."CQQI..QQ

* Variable time step with step size contrc! technlque .

Il..'.’l.G.‘.QIQ'....IQ'.Ql.’..Q.."QQ’.Q......QQQO'CI'

DTAUS = (1.0+(5-K)/10.0)*DTAUS

REWIND 20

REWIND 30 . :

READ(20,*) IA,IA,AA,AA,AA a >

DO 13 . I=I,NX ~ :

DO 13 J=1,NY ' X
READ(20.*) UO,VO,PSI0,0MEGAD, THETAO

WRITE(30,*) UO,VO

CONTINUE

3

'.."'OQQIIQ..QI".I..Q..!"!..IIQ.Qﬂ.'ﬂ'l.lﬂ!

* Store the sclution at the end of time step -

.QQ'..'Q'.'Q.I.'..QQI!Q!'ll...."'!.'.'l‘..ﬂ"

REWIND 20

WRITE(20,*) ICOUNT,ITERAT,TAUS, DlAUS OTAUO

DO 14 [=1,NX

00 14 J=1I,NY

WRITE(20,%) U(L,J),V(1,J),PSI(1,J).0MEGA(],J) , THETA(T,J)
CONTINUE

..Q'Q"'.I.IQ.”'I.IQQQ"..I'.."

* Soive for ancther time step *

LA A AN AL RS R EEER Y RN BN Y Y PR P A

CONTINUE

REWIND 30

DO 16 [=1,NX
DO 16  Jd=t,NY
READ(30.") UO,VO

-
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OO0 0O0N

16

17

18

19

20

21
200
210
229
230
240
250
330
340

. 350

360

-
BREBBBERRNERNBERVERRINANARRARNS GG RERNERY

e i85

WRITE(20,"*). UO,VO

CONTINUE _
'.

* Print the required informations *

I"'I'.QQQ.'C'.'.l!'.ﬂl.‘.'IQ'.I'.. ) -

WRITE(6,330) ICOUNT, ITERAT, TAUS

WRITE(6,200)

DO 17 I=1,NX

WRITE(6,250) I, (THETA(I,J),J=1,NY)

WRITE(6,210) o

DO 18  I=1,NX .

WRITE(6,250) 1, (OMEGA(I,J),J=1,NY)

WRITE(6,220)

DO 19  1=1,NX

WRITE(6,250) I,(* PSI(I,J),J=1,NY)

WRITE(6,230)

DO 20  I=1,NX _

WRITE(6,250) I,( U(I,d),Jd=1,NY)

WRITE(6,240) C

DO 21 i=!,NX

WRITE(6,250).1,¢( V(1.J),J=1,NY)

FORMAT (1H1,//,40X, " THE TEMPERATURE DISTRIBUTION, THETA’., . //)
FORMAT(1H1,//,40X,*THE VORTICITY DISTRIBUTION, OMEGA’, = //)
FORMAT(1HI,//,40X,"THE STREAM FUNCTION DISTRIBUTION, PSI’, //)

FORMAT(1H1,//,40X, THE HORIZONTAL VELOCITY DISTRIBUTION, U”. /7).

FORMAT(1H1,//,40X, " THE VERTICAL VELOCITY DISTRIBUTION Vi, /1)
FORMAT(1X,[3,1X,11E12.4)

FORMAT(41!X,15,9X,15,12X,E10.4)

FORMAT(87X,E10.4)

FORMAT(110X,12,9X,E10.4)

FORMAT(4X,E10.4,5X,E10.4)

S5TOP

END

0
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[y
!Q'QFDQQQ.'.Q’.DIQ’lQ‘.I_“I.II".".'D..II.Q..QIQ.I'I'I‘Q'.Q.‘.Q

‘s & B

v 2 % ¥ & 5 9 ¥ 5 % B

- % ® & x 5 & 3 3 x & ¥ & ¥ ¥ 3 X & * ¥ ¥ g L g 8 2 B 2 8 £ & 8

PURPOSE
METHOD
GENERAL

-

S

PROCEDURE

- -

»

INPUTS |
" QUTPUTS

OIFINITION

OTHER DECKS
REQUIRED

: THETA(I,J)

: RX = DTAU/DX : RY = DTAU/DY
CRXX = DTAU/({DX*DX} ; RYY = DTAU/{DY"DY)
NX1 = NX-1i i NYl = NY-I
u{l,J} = horizontal component of velocity
V(I,J) = vertical component of velocity
THETA{I,J) = temperature

where :
NX = number of nodes in X-direction
NY = number of nodes inm Y-direction
DX = horizontal mesh increament
DY = vertical mesh increament
DTAU = time increament

Solution oF_the heat-transfer equation.

Alternating direction inplicit, ADI, method.

The

function derivatives are remlaced by the

finite-difference approximations where :

(A}

(B)-

<)

{1}

RX,RY ,RXX,RYY  NXT ,NY L, U(1,J},V(1,J), THATA(,J)

The unsteady term is expressed by the
forward-difference approximation.

The advection terms are expressed by
the second-upwind approximation.

The diffusion terms are expresses by
the central-difference approximation.

Advance the solution in the X-direction
from the begining to intermediate value
of the time step. Satisfy the boundary

-conditions on the 1ift and right sides

of the working domain. .
Advance the solution in the Y-direction
from the intermediate to the end value of
the time step. Satisfy the boundary
conditions on the lower and upper sides o
the weorking domain.

I,d location of node over domain

: TRIDAG, UPWIND

i

* X 2 5 F .3 = 8

% ® 8 » & @

" & £ 5 33

. s s @

Q.‘”'."‘.."ﬂ"..-..’.'.'*‘"'....Q..'.'ﬂﬂ.’....Q“"".'..'.".
2

* % &2 5 2 3 % 5 5 2 4 8 % & 5 8



COMMON /VARIAB/
1
COMMON /INVERT/
v 1. '
' " COMMON /PARAMT/
. \
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.y -

THETA(21,11),U¢21,11),PSI(21,11),
OMEGA({21,11),V(21,11)
A(21),8(21),TRANS(21),BETA(21),
€(21),D(21),GAMMA(21)
RA,NX,DX,RX,NX1,NX2,RXX,DX2,0X4,0XS2,
PR,NY,DY,RY,NYI,NY2,RYY,DY2,0Y4,0YS2,DTAUS ~

O0O00O0n

T IF(1.EQ.NXI)

COMMON /WORKAR/ "WORK1(21,11),WORK2(21,11)

'r’“.ﬁ"."’."'.‘GQ...IQ...I.‘!'O.IO.I"
5

* /advance the solution in the X-direction ®

bAAAA A A AR AL NIRRT NN Y EY Y YN RE R PR POy

<

0]
Do
UL
UR
vD
vy
FL
FR
FO
Fu
IF(

J=2,NY1
1=2,NX1

(UCT, D) +U(1=1,d)) /2.0
(I, D+UCI+1,0))/2.0
(V(L,J)+V(1,J=1))/2.0
(VII,)+V(1,J+1)) /2.0

UPWIND (UL) . BN
. UPWIND (UR)

UPWIND{VD)

UPWIND (VU)
.NE.2) GO TO 1

= 0w nu N u o

IQQIIC.Q”I.Q.QQQGQ!.IQGUI.I LAAL E A ERERE SRR ER YR N

* Satisfy the boundary condjtion on the 1ift side *

LA A AR A AR AL RS R LE SRR XY .‘..QH.IQ.Q’Q"Q.I\\‘-:Q

A(D) =-0.0 : (; /’
B(I} +(2.0+2. 0*RXX+RX*FR*UR-RX* (1. 0-F&) *UL)

1 —{RXX+RX*FL*UL)"(+4.0/3.0)

cn —(RXX-RX*(1.0-FR)*UR)

1m = (RXX+RX*FL*UL)"(-1.0/3.0)

GO TO 3

GO TO 2

A{1) = -(RXX+RX*FL"UL)

B(I) = +{2.0+2.0"RXX+RX"FR"UR-RX* (1.0-FL)"UL)
C(I),= ~(RXX-RX"(1.0-FR)"UR)

GO TO 3

i n i

AL AR AR LR AR ER YR EEN Y] .'.“IQQ.Q'QIQ‘C".QI.'.Q'

* Satisfy the boundary condition on the right side *

A AS R AL R RS AL LE SIS E R R R RR R YN NE ¥ BN RN N W g i

A(L) —{RXX+RX*FL*UL)

) = (RXX-RX* (1.0-FR)*UR)*(-1.0/3.0)

B(L) +(2.0+2.0"RXX+RX*FR"UR-RX" (1 .0-FL)"UL}
1 ~ (RXX-RX* (1.0-FR)®UR)*(+4.0/3.0}
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C(l) = -0.0 .
IF(J.NE.2} GO TO 4

".l."lﬁ!"'I'Gl.'l.'ﬂ’ﬂﬂﬂ'lll.."l.".ll"i'QQ!!.‘

* Satisfy the boundary condition on the lower side *

‘l!l"ll".l"ﬂ.Illlllfﬁll..QQ'..‘.QQ..".Q'I‘Q"!!Q

D(I) = +(RYY+RY*FD*VD)*{4.0*THETA(1,J)-THETA(I,J+1))/3.0
1 +(2.0-2.0"RYY-RY*FU*VU+RY* (1.0-FD) *VD)}*THETA (I, J)
1 +(RYY-RY* (1.0~FU)*VU) *THETA(I,J+1)

GO TO 6 . .

IF(J.EQ.NY1) GO TO 5

D(I) = +(RYY+RY*FD*VD)*THETA(I,J-1} .

I -, #(2.0~-2.0"RYY-RY*FU*VU+RY* (1.0-FD)"VD) "THETA(I,J)
1 +(RYY-RY® (1.0-FU)*VU) *THETA (I, J+1)

GO TO 6 S

.’QQI“G...‘QICIQ‘.".IQ"IQ.“.G..Q'QQDQI!’C‘Q.Q.QQ*
-

~ * Satisfy the boundary condition on the upper side *

.'Q'G.I'I.QI.!I.IG.I.'.Q.Q..ﬂ“.lIQQQQI‘*G.“.Q.."Q

0(I) = +(RYY+RY'FD'VD)‘THETA(I J-1)

1 +(2.0-2.0"RYY-RY*FU*VU+RY*(1.0- FD)’VD)‘THETA(I J)
1. +{RYY-RY"(1.0- FU)*VU) (4.0"THETA(I, JI-THETA(I.J-17)/3.0
CONTINUE

-
.
AL A RS S AR SR LR L L R Y R s TN
.

* Solve the tridiagonal matrix along Fow *

'I.QI'Q.QO'II.IQ'.HI.I.'.'.QQQIQ.!"I.DQQ‘

CALL TRIDAG (2,NX1)

.QQQ!!.I.'.QQQIO!I..IQIlﬂQQ.".lQ.QQ"'IGQ'.QQQCQ'.Q.IQHQ'l.!l

* Store the intermediate solution in the working array WORK] *

QQQQHQ'.I.I..QDQII.Q.IQQ'HQIQQDOQOQQQQ.I'I..!'.DIQ'.-'QQQQIQCQI

. ’ )

WORKI1(I,J} = TRANS(I)
CONTINUE

LA AR R R R A RN AR R R TR TN EY Y

* Soilve for another row *

LA AR R A LN SRR SRR EFY BN NN R

CONTINUE

C..'.!.QGQIG.Q."QQO.'I..'”Q'IQD.DQ.QIG'!.
- .

* Advance the solution in the Y-direction *

LA R A AL AR R R R R R e gy
~

-
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DO 16 I=2,NX1 ’ .
. DO 14 . J=2,NY] '

UL = (U(I,J)}+u(I-1,d))/2.0

VO = (V(I,0)+V(I,J~1})/2.0

VU = (V(I,J)+V(I,J+1)}/2.0

FL = UPWIND(UL) -

FR = UPWIND(UR} : -
FB = UPWIND(VD)

FU = UPWIND{VU)

IF(J.NE.2) GO TO 9

Q*Q.l".‘.'..ﬂ.".‘..'!'IQ'.*'.Q..QQQQ’Q'Q.Q'.‘QQQQ!’

* Satisfy the boundary condition on the lower side *

Q.‘Q!I*'Q‘.'I..'QQIDUQI.‘.QQQQQQQI."'GOQQQQ’QDOI.IQ

A(J) = -0.0
B(J} = +(2.0+2.0°RYY+RY"FU*VU-RY* (1. 0-FD)*vD) -

i ~(RYY+RY®FD*VD) " (+4. 0/3.0)

C(J) =-=(RYY-RY*(1.0-FU)"VU) )

1 ~{RYY+RY*FD*VD)*(-1.0/3.0) ' - b
GO TO 11 :

9 IF(J.EQ.NY!) GO TO 10

A(J) = =(RYY+RY*FD*VD)
B{J} = +{2.042.0"RYY+RY*FU*VU- -RY*(1.0-FD}*VD)
C(J) = —(RYY-RY*(1.0- -FU) VW)
GO TO 11l

Q*H..!.I.-I.lQﬂ‘.l...Q._QQ-IGQ!.I.‘QQIQO*QQ'..'QQQQHI"

* Satisfy the boundary condition on the upper side *

"IQ'I...'Q'I.'...Q.Q’ﬁ’ﬂ"‘...'ﬂ..ﬁ*!lQ‘IIORCIQO'".I

—(RYY+RY*FD*VD)

10 A(J) =
1 ~(RYY=RY*" (1.0-FU)*VU)*(-1.0/3.0)
B(J) = +(2.0+2.0*RYY+RY"FU*VU-RY"* (1.0-FD}*VD)

1 -(RYY~RY*(1.0-FU)"VU)* (+4. 0/3.0)
c(d) = -0.0
il IF(I.NE.2) GO TO !2

.“"*'..‘...I‘ﬂ'.......'Q.Q.I.‘.I."...""ﬂ'.'."

v}
* Satisfy the boundary condition on the 1ift side *

LA R AR RS RS AL LR L TR R R R R R PPy

D{J) = +(RXX+RX*FL*UL) " (4.0*WORKI(1,J)-WORKI{I+1,J)}/3.0

I +(2.0-2. 0"RXX~-RX*"FR*UR+RX* (1.0-FL) "UL) "WORK1 (1, J)
I +(RXX=-RX*" (1.0-FR)*UR) *WORKI { I+!,J)
GO TO 14

12 IF(I.EQ.NX1) GO TO 13

A
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B(J) = +(RXX+RX*FL*UL)*WORK1({I~1,J)

1 +{2.0~2.0"RXX~-RX*FR*UR+RX" (1.0- FL}'UL)'HORKI(I J)
1 +(RXX-RX* (1.0-FR) *UR) *WORK1 (I+1,J)

GO TO 14 .

‘QQ’.!'ﬂ'l.!‘a.‘ﬂ."ﬂﬂ...'Il"“QQQI'IQQ'I'...b’.'.ﬂ

* Satisfy the boundary condition on the right side *

BREBRE AP RN BB ER IR BB A BRRR R B RPNV AR RARAROABR R AR RIS

D(J) = +(RXX+RX*FL"UL)*WORK1(I-1,J)

1, +({2.0-2.0*RXX-RX*FR*"UR+RX* (1.0-FL)*UL) *WORK1 (I ,J)

l +(RXX-RX" (1.0~ FR)'UR) (4.0"WORKI(I, J)-NORKI(I -1,J})/3.0
CONTINUE

II.‘...’IQI’.ﬂ"Q',QQQ.Q'ﬂﬂiliﬂﬁﬂ.'lﬂﬂ.r‘lf.l

* Solve the tridiagonal matrix along column *

WAL SR LR S A R LI R Y Y Y Y Y NS Y R

CALL TRIDAG (2,NY1)

.IQ.'QQQQ"Q‘I'Qﬂ".".l."‘..!l.!.iI“...IQ’Q'

* Store the final solutton in the array THETA * \

..‘.QI...IQ.l.l...!‘!'."...."".Il"‘.!-.“ﬂ.

DO 15 J=2,NYL
THETA(I.J) = TRANS(J)
CONTINUE

AR AR R A LR R LR YRR R NEY NFEY YN

* Solve for another column *

AR AR AL SR RIS R YRR YT ERYEY]

CONTINUE

QCI!IIQ.Q!'.I...QﬂﬂIll!.I...QQQ&C.I....‘.'I'Q‘I..lQ.lIl!.'

* Update the values of THETA on the 1ift and right sides *

Q’ﬂ’*'I'Q.IQQIQI.'IIQQIQ'I"IQIQ'I*‘I”""I.'QQQQ.!.I..IQQ

00 17 I=1,NX
THETA(I, 1)
THETA(T,NY)
CONT ENUE

(4.0"THETA(I,2)-THETA(!,3))/3.0
(4.0*THETA(I,NY1)-THETA(I.NY2)}/3.0

!.I.'l'.l'.ﬁ“"lﬂ!l!Il.'QQ'.Q"Ql’!l*ﬂ’ﬁ"!"'l’ﬂl!'-.IQ'.‘

" Update the values of THETA on the lower and upper sides *

'H’I'l..."’ﬁ‘l!.l"ﬂﬂlil..lﬂﬂ'II"I..'QQQQ’I!I!.QQ.Q.'I.IQ

00 18  J=1,NY
THETA(1,J) = (4.0°THETA(2,J)-THETA(3,J))/3.0



191

THETA(NX,J) = (4.0°THETA(NX1,J)-THETA(NX2,J)}/3.8 . .-
18 CONTINUE ,
- . RETURN

END

4t
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SUBROUTINE VORTCTY

.".”!Q'.'Ql'."l’ﬂ"lI'.I.'.'Q.’Q'!'.ﬂﬂ..'.ﬂ.'l.'.ﬂ.l."I'I.‘I"‘ﬂ'

PURPOSE . _ : Solution of the vorti transport equation.

METHOD ¢ Alternating direchibon implicit, ADI, method.
GENERAL  : The function derivatives are replaced by the
T finite-difference approximations where :
(A) The unsteady term is expresses by the
forward-difference approximation. *
(B) The advection terms are expressed-by
the second-upwind approximation.
{C) The diffusion terms are expressed by
the central-difference approximation.
(D) "The buoyant term is expressed by the
. central-difference approxrmation

PROCEDURE  : (1) Advance the soiution in the X—direction
' from the begining to intermediate value
of the time step. Satisfy the boundary
conditions on the 1ift and right sides of
the working.domain.

(2) Advance the solution in the Y-direction
from the intermediate to the end value of
the time step. Satisfy the boundary
conditions on the lower and upper sides
of the working domain.

2 8 % 2 4 3 & 5 32 ¥ 3 % % % ¥ ¥ ¥ £ X % £ ¥ & W S %R

@ %= £ & % 5 = 2

INPUTS ol PR,RA.RX.RY.RXX,RYY.NXI.NYl.U(I.J),V(I.J). .
_THETA(I,J),0MEGA(],M . .
QUTPUTS : OMEGA(I,J) "
DIFINITION : PR = THE PRANDTL .NUMBER
. RA =-THE RAYLEIGH NUMBER
RX = DTAU/DX "; RY = DTAU/DY
RXX = DTAU/(DX*DX) ; RYY = DTAU/(DY*DY)
NX = NX-1 :ONY! = NY-1
u(i,J) = horizontal conponent of velocity
TV(1.d) = vertical conponent of velocity
THETA(I,J) = temperature
. OMEGA(I,d) = vorticity® "
* where : .
. NX = number of nodes in X-direction *
. NY = number of nodes in Y-direction *
. DX = heorizontal mesh increament .
. DY = vertical mesh increament .
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time increament
location of node over domain

OTHER DECKS
REQUIRED : TRIDAG, UPWIND

“il“

I‘.D.".Q..Q"DII"ﬂ..'Q'DQID‘QI.D."'II.Q‘I.Ib.!.ﬂl'lG'Q.I'Q.I.

COMMON /VARIA%Y THETA(ZI 11),U(21,11),Ps1(21, 11). ’
. - OMEGA(21,11),Vv(21,11)
COMMON /INVERT/ A(21),B(21),TRANS(21)}, BETA(21), .~
i C(21),D(21),GAMMA(21)
COMMON /PARAMT/ RA,NX,DX,RX,NX1,NX2,RXX,DX2,DX4, DXSZ
PR,NY,DY,RY,NY1,NY2,RYY,DY2,0Y4,0YS2,DTAUS
COMMON /WORKAR/ WORKI(21,11),WORK2(21, Il)

'Q..QQI.'Q‘.Q’IQ".'.QI.'ﬂ.l.....ﬂ'lﬂ’....'

* Advance the solution in the X-direction *

QQHQ.QQQ"'Q.."Q"D.'!I'QQ!'I'.IQ'QIQIIQ‘.

DO 5  J=2,NY! -
DG 3 1=2,NXI
uL = (UI,N)+U(1-1,4))/2.0
UR = (U(l,J¥+U(I+1,8))/2.0 : . . N
VD = (V(I,Jd)+V(I,J-1))/2.0
VU = (V(I,J)+V(1,J+1))/2.0 -
FL = UPWIND(UL)
FR = UPWIND{UR)
FD = UPWINDLVD) v
= UPWIND(VY)

IF(I.NE.2) GO TO I

Il.QGﬂQ".I.'Qﬂ.II..QDDI'l'I.IQﬂGl'QQ.IC.IQ*"'CQQ’

* Satisfy the boundary condition on the 1ift side *

QQI.!.D.QI'!..QIﬂ-!.I.Q.ﬂﬁ‘.'.'QQQ.Q.III..DQ'!.I'QI

AL}
B{I)

~0.0 v
+(2.0+2. U'PR'RXX+RX'FR'UR —-RX* (1.G-FL}*UL)

C(I) = ~(PR*RXX-RX*(1.0-FR)"UR)

D(1) = +(PR*RYY+RY*FD*VD)*OMEGA(!,J-1)
+{2.0~2.0*PR*RYY=-RY*FU*VU+RY* (1.0~ FD}'VD)'OHEGA{I J)
+{PR*RYY-RY* (1 _0-FU)*VU)*OMEGA(1.J+1) -
-U.S'PR*RA'RX‘(THETA(I+I.J)"Z.D—THETA(I—I,J}"2.0)
+(PR-Rxx+Rx-FL-UL)'OMEG¢(1-1.J)

GO TO 3

IF(1.EQ.NX1) GO TO 2

A(1) = —(PR*RXX+RX*FL*UL)

B(1) = +(2.0+2.0"PR*RXX+RX*FR*UR-RX" (1.0-FL)"UL)

ClI) = -(PR*RXX=RX"(1.0-FR)*"UR)

»
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D(I) = +(PR*"RYY+RY*FD*VD)*OMEGA(I,J-1) ,
+(2.0-2.0*PR*RYY=RY"FU*VO+RY* (1 .0-FD) *VD) *OMEGA (1..J)
+(PR*RYY-RY* (1.0-FU)*VU) *OMEGA(I,J+1)
-0.5"PR*RA®RX* (THETA(I+!,J)**2.0-THETA(I-1,J)}**2.0)

+

GO TO 3

I.I'.‘.QQQQI.l..Q..!.Q‘Q.l.Q"'Iﬂ"!.’il"...".Q'Ql

* Satisfy the boundary condition on the right side *

l'.‘.I'Q.ﬂ.l,l‘..'.'Q!'.'i'il*'ﬂ"".ﬂ"’I'.'*Q’.'..

A(1) = =(PR*RXX+RX*FL*UL)

B(I} = +(2.0+2.0*PR*RXX+RX*"FR*UR-RX"* (1 .0-FL)*UL)

C(l) = -0.0 ' '

D(1) = +(PR*RYY+RY*FD*VD)*OMEGA(i,J~1)
+(2.0-2.0"PR"RYY-RY*FU*VU+RY* (1.0-FD) *VD) *OMEGA (I ,J)
+(PR*RYY=RY* (1.0~FU)*VU)*OMEGA(I,J+1) .
~0.5%PR*RA®RX* (THETA(I+1,J)**2.0-THETA(I-1,J)"*2.0)
+(PR*RXX~RX*(1.0~-FR)*UR) *OMEGA (I+1,J)

CONTINUE .

WAL A LR AL LSS E LIRS NYEE Y FIE YR Y W W R R grargegy

* Solve the tridiagonal matrix along row *

lI.IQQ'Qﬂ“i!'..*ﬂ'."I.CQ‘.Q"]'..II..Q.QQ

CALL TRIDAG (2,NX1)

L]
..-'CI’*'.l.'.'ﬂ‘.".I!Q'QQQ!.I.IQ'QQQ*Q'Q".Ql*'!!l..l.l‘ﬂ..'

* Store the intermediate solution in the working array WORK! *

Q!OIQI.O.Q'IQ-.QQll'i....I'Q‘.IQQ‘Ql.IQ.QQQ.D'..Q'GDI..I..Q‘QQ

DO 4 1=2,NXI . ) ‘
WORKI(1.J) = TRANS(I} ’ {
CONTINUE .

LA AR RL RN EEXER YN FEYNW RN EI

* Solve for another row *

!I.QI.QQI'I.QQ’QC‘."..Q'

CONTINUE

-
RGN BN B R IR B RN AN A TR AT TR AAROI AR AR RN PR P R

* Advance the solution in the Y~-direction *®

Q'.ﬂ."'..QQ‘".'Q*..ﬂ".."'ﬂ‘ﬂ'..'."....

DO 10 1=2,NX]
00 8 J=2,NY!
UL = (U(T,J}+U¢I=1,d))/2.
UR = (U(I,)+U(I+1,d)})/2.
VO = (V{I,Jd)+V{l.J-1))/2.
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VU = (V(I,0)+V(I,J+1))/2.
FL = UPWIND(UL)

FR = UPWIND(UR)

FD = UPWIND(VD)

FU = UPWIND{VU)
IF(J.NE.2) GO TO 6

-

AL AR A AARE AL XL YRS YT YR N ERY X R TR YR RF PR g gnggrgragegegey

* Satisfy the boundary condition on the lower side *

l“.".‘..'ﬂﬂQQ‘.I!..I.IQI'Q’QI“.'G"'QQI.".I..".

A(J) = -0.0 ' -

B(J) = +(2.0+2.0*PR*RYY+RY*FU*VU-RY*(1.0-FD)"VD)

C(J) = —(PR*RYY-RY*(1.0-FU)*VU)

0{J) = +(PR*"RXX+RX*FL*UL)*WORK](!1-1,J) .
+(2.0-2.0*PR*RXX-RX"FR*UR+RX"™ (1. 0-FL}*UL) *"WORK1 ([ ,J)
+(PR*RXX-RX* {1.0~FR)*UR) *WORK1 ( I+1,J}
=0.5*PR*RA*RX* (THETA(I+1,J)**2.0-THETA(I~1,J)**2.0)
+(PR*RYY+RY*FD*VD) *OMEGA(1,J~1)

GO TO 8

[F(J.EQ.NY1) GO TO 7

A(J) = —(PR*RYY+RY*FD*VD)

B(J) = +(2.0+2.0"RAR*RYY+RY*FU*VU-RY"(1.0- FD)’VD)
C{J) = =(PR™RYY-RY*(1.0-FU)*VU)

D(J) = +(PR*RXX+RX*FL*UL)"WORKI(I-1,J)

+(2.0-2.0"PR*RXX~-RX"FR*UR+RX*(!.0- FL)'UL}'HORKI(I J)

+(PRORXX-RX* (1.0-FR) "UR) *WORK (I+1,J)

=0.5"PR*RA*RX* (THETA(I+1,J)**2.0-THETA(1~1,J)""2.0)
GG TO 8

.DI."....'..I..'.".'..ﬂ‘.'.......'.'.’Q’Q.I.'...Qﬂ

* Satisfy the boundary condition on the upper side *

LA R AL R AAL AL RNEERE RS EEEE R RE N E NN R N g g g gy

- (PR*RYY+RY*FD*VD)

A(J) =

B(J) = +(2.0+2.0"PR"RYY+RY"FU*VU-RY*(1.0-FD)*VD)

C{J} = =0.0

D{J} = +(PR"RXX+RX*FL*UL)"WORKI1(I-1,J)
+(2.0~2.0"PR*RXX-RX"FR*UR+RX®{1.0-FL)"UL)*WORKI (1,J)
+{PR*RXX-RX* ({.0-FR)Y*UR) *WORKI (1+1,J)
-0.5*PR*RA*RX*{THETA(I+1,J)"*2.0 -THETA(I-1,J}"*2.0)
+{PR®RYY-RY* (1.0-FU}"VU)"OMEGA(1,J+1)

CONTINUE

.l‘.......ﬂ‘....."'.ﬂ"..I.".Q*.Q"-".'...

* Sclve the tridiagonal matrix along column *

.'ﬂ'.""....G".I.....QQQ"'...Q.Q.'.."“ﬂ“ﬂ

. 1
CALL TRIDAG (2,NY1)
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0

c -
C RRRBREARRADRRRRIABRG NG RRAARR A AR AR RARTR AR ERERNON
C ; . * Store the final solution in the array OMEGA *
C - Ql"iQ.Q!Q‘IQl!ﬂl.'&!!l!lQl.lQ‘il.lﬁ‘.ﬂl'l"!l'h"
C , ‘..
DO 9  J=2,NYI - . ¢
OMEGA(1,J) = TRANS(J)
9  CONTINUE . .
C
C LAAASSRL ARSI ARSI SR X
c * Solve for another column *
C 'QQIQIlbﬂl’ﬂl.!ﬁ.lﬁ’ilﬂ'.!.!l
[
10 CONTINUE
RETURN
END

N
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SUBROUTINE STREAM (S)

.IQQ"'Q'.Q‘.I'Q!'.I*I.Qﬂ...ﬂ.l.'ﬂ.ﬂ!!.’."".IQI"!'!Q!I‘..I.ﬂ.

L - . L}
* PURPOSE : Solution of the stream-function equation. ol
- . »
* METHOD, < Sparse matrix package. *
- - *
* GENERAL : The sparse matrix package is initialized in .
» main program. In this subroutine, the R.H.S. *
* of the linear system will be specified and the *
- - corresponding solution is obtained. .
* INPUTS. : NX1,NYI,S(MAXS),OMEGA(L,J) ¢« "
» -
* QUTPUT : PSI(I,J) .
- ‘ *
*-DIFINITION : NXI = NX-~1 ; NYl = NY-1 S
. . S{MAXS) = array initialized in the main o
. program .
. PSI(I.J) = stream-function .
. OMEGA(!,J) = vorticity -
* where : .
. NX = number of nodes in X-direction *
- NY = number of nodes in Y-direction ®
o I,J = location of node over domain *
* MAXS = size of stprage required by *
. the sparse matrix package .
- -
* OTHER DECKS .
* REQUIRED : SPARSE MATRIX PACKAGE *
ﬂﬂ!*‘."'QOI."QQHQHQII!.Q';OOI'.I.IQ..'I'b."ﬂ"..l'l.'ﬂﬁ."l.l

COMMON /VARIAB/ THETA(21,11),U(21,11).PSI(21,11),
) OMEGA(21,11),V{(21,11)
COMMON /PARAMT/ RA,NX,DX,RX,NX1,NX2,RXX,DX2,DX4,DXS2,
PR,NY,DY,RY,NYI,NY2,RYY,0YZ,DY4,0YS2,DTAUS
COMMCN /SPKUSR/ MSGLVL, IERR.,MAXS.NEQNS :

. REAL 5(2242) -
K =1 '
DO 2 I = 2,NX1
DOt J =.2,NY]
VALUE = OMEGA(I. )

IQI!..CDQ.I'O.'QNIDGI.QQQQ*I.I.!..IQ!GG'

o Ihput to R.H.S. of the linear system *

ﬂ"“l..'ﬂ‘....'l'..'l...'ﬂ.'I‘.I..‘l..ﬂ

CALL INBI (K,VALUE,S)
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K = K+l
CONTINUE
CONTINUE

LA AR LR A XYY N

* Solve driver *
(EL IR XX EE TR N Y R ¥R

CALL SOLVE3 (S}
K=1

DO 4 I = 2,NX1
0o 3 J = 2,NYI,
PSI(I,J) = S(K)
K = K+1
. CONTINUE
CONTINUE
RETURN

END

198
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SUBROUTINE MOTJON
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¥
: E - .
LA 2 X 2 ) I.Q.'Ql'....ll'.ﬂ"i'.'..l..'ﬂ.ﬂﬁ'..'{ﬂ."QQIQ!‘!'IQ’Q.'..
. -

»

* PURPOSE : Solution of the velocity-field equation.

L 3

* METHOD - : Centrai-difference method.

» . -

* INPUTS : DXZ.DYZ,NXI,NYI{PSI{I.J}-a

»

* QUTPUT : UL, V(I

»

* DIFINITION : DXx2 o= 2. O'DX H 0Y2 = 2.0%DY

hd . NX1 = NX- P NY1 = NY-]

. Uir,dy. = horlzontal component of velocity
- V(I,Jd) = vertical component of velocity
- PSI{1,J) = stream-function

. where :

* _ NX = number of nodes in X-direction
* . . NY = number of nodes in Y-direction
® DX = horizontal mesh increament

o DY = vertical mesh increament

. I.J = location of node over domain
-

Q.Q'QQ'Q"I..I'Q’G"'Q'I'Q.50.".'1".'.0*".‘.!,"Q'..I.IQ.!Q

-

COMMON /VARIAB/ THETA(21,11),U0(21,11), PSI?Z!,H)
OMEGA(21.11),V(21,11)

COMMON /PARAMT/ RA,NX,DX,RX,NX1.NX2, RXX.DXZ.DXA.DXSZv
PR,NY,D0Y,RY,NY1,NY2,RYY,DY2,0Y4,0YS52,DTAUS

L]
AR AR RS R AL L R R T N R TR N g N N O R gy

* Caiculation of the interior velocity fieid *

iR AL A AR AR E LR LA LEREEE XY R NE PR FE RN S e g

Al

00 2 [=2,NX1
00 1 J=2,NY] -
u{t.Jd) =(PSI(1,J+1)=PSI(I,u-1)y/DY2

VII.J) = +(PSI{1+1,J)=PSi(I-1,J))/DX2
CONTINUE
CONT INUE

QQ"!'D!IIQQ'Q".IQQIﬂIﬂ..I.I.!'.ﬂ'!Q‘i!'...."".!.l.'l’*!ﬂ

* Calculation of velocities over the horizontal boundaries *

.ﬂﬂ.l!ﬂ*'-'."ﬂl.‘!.Q.'Q’Q'!.I.'QQQIQH'Q.'I.I"Qﬂ!'!.l..lQ'Q

D0 3 1=2,NX]
~U(I.1) = -2.0*PSI(1,2}/0Y2
UCILNY) = +2.0*PSI(I,NY1)/DY2

-

»
»
L J
»
-
»
-
-
»
-
*
L]
»
L J
»
-
»
-
-
*
-
»
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CONTINUE

I."D.ﬂlII'I_l'.'ﬁ"!ﬂ!'QI!.I.‘QQ’I".‘.I'C..I'.’!C".!"II

* Calculation of velocities over the vertical boundaries *

LAL A AL LYY Y X LAS AL XE LS E LY T T YR Y LYY Y YN PR N gegegguyey

D0 4 J=2,NY1

V(1.,J) = +2.0"PSI(2,J)/0X2 : Lt
V(NX,J} = -2.0"PSI(NX1,J)/0X2 -

CONTINUE

RETURN

END
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- SUBROUTINE TRIDAG (IF,IL) -
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bLAA LA S S ARSI RIS YT YT TR Y TY Y Y PRI Irrgrggngggegegegegy

» -
* PURPOSE : Solution of the tridiagonal matrix. .
L} ' »
* METHOD : Guassian elimination method. *
» P »
* INPUTS s IF,IL,A(L),B(I),C{I).D(I) o
[ I -
* OUTPUT = TRANS(I) *
» ~ [ ]
* DIFINITION : IF = number of first equation *
- IC = number of last equation .
* A(I),.B(I1},C(1) = array containing tridiagonal*
d matrix coefficients .
* DI} = array containing the given *
. ’ R.H.S. of linear equations *
* TRANS(I) . = array containing solution *
* . of linear equations .
* BETA(1),GAMMA(1) = working arrays *
» where : -
* I = the number of equations *
» "
IIQ‘Q‘Q‘!Q..‘Q.I"."..‘I.I.Q.QIQOQQQQH!‘IO'.IQQQ.'llﬂ.lli..""'

COMMON /INVERT/ A(21),8(21),TRANS(21),BETA(21}),
C(21).,D(21),GAMMA (21}

BETA(IF) = B(IF)

GAMMA(IF) = D(IF)/BETA(IF)

[FPL = IF+1

DO 1 I=IFP1,IL

BETA(I) = B{I)-A(I)*C(I-1)/BETA(I-1)
GAMMA(I)} = (D(I1)-A(I)"GAMMA(1-1))/BETA(L)
CONTINUE .
TRANS{IL) = GAMMA(IL)

LAST = "IL-IF

Do 2 K=1,LAST

[ = IL-K

TRANS(1) = GAMMA(1)-C(I)"TRANS(I+1)/BETA(I)
CONTINUE

RETURN

END
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FUNCTION UPWIND (X)

'Ql.‘l"QIIIQ'.G"'.’."Q."Q‘.0.§.'Q.ﬂ..".QI.I!Q‘.QD"!I'.‘.'Q!

» ’ . [ -
* PURPOSE . : Test for the signs of the velocities for the *
* use of the second-upwind method. .
* .

L
l.!lllQQ'I'!'GIl.l'bﬂ"'.I.'.'Qﬁ!'ﬂ..l‘lDQ.I.I!"IQ..I#II."‘IQQ

IF(X.GE.Q0.0) GO YO 1 ?
UPWIND = 0.0

GO TO 2 ?
UPWIND = 1.0

CONTINUE

RETURN

END
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Tabte 11{1

Temperature measurements for experimept #1 *

L/H _ : _ - : . _
5.0 { 35.0 | 37.5 | 40.0 | 41.5 | 37.5 | 35.0 | 65.0
- h/H : :
0.05 | 10.2 |12.2 [ 10.1] 8.8 | 3.5| 7.4 5.7 | o.1
.15 15.0 3.7 3.8 3.1 1.4 2.2 8.0 [-0.0
0.25 | 12.9| 2.8 | 2.9 25| 1.a| 2.6 | 6.3 0.2
0.35 5.4 1.6 1.8 1.6 ¢.8 2.2 4.7 | . 0.3
0.45 1.7 1.1 0.9 0.7 0.4 2.2 3.8 0.6
0.55 0.6 | 0.9 0.7 0.4 0.4 2.1 3.5 I.i
0.65 8.6 0.9 g.6 0.3 0.5 2.2 3.4 1.6
0.75 6.8 6.7 g0.5. 0.3 6.8 2.5 3.3 2.0
0.85 1.0 0.7 0.6 0.3 1.0 2.6 3.3 2.2
0.95 1.5\ 0.9 0.4 0.3 | 1.4 2.8 3.3 2.3
- %
Note : h = depth measured from surface
L = distance measured from barrier
H = total depth of water

Each column describes a temperature profile measured in
degrees celsius at increasing values of elapsed time.
Decreasimg values of L/H imply measurement some distance
behind the front.
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Table 11.2

Temperature measurements for experiment # 2

~. /_/ -~
.
- By
L/H .
15.0 25.0 37.5 40.0 25.0 25.5 26.0 28.5
h/H R
0.05° {10.7| 88| 0.3 0.3] 69! 8.4 8.0 0.4
0.15 6.1 5.3 0.3 0.3 4.8 5.4 2.8 0.5
0.25 4.2 3.4 0.3 0.3 4.4 3.8 3.0 I~ 0.9
g.35 2.4 2.5 0.3 0.3 4.1 3.0 2.7 1.2
0.45 2.0 2.1 0.4 0.4 3.3 3.0 2.8 2.0
.
0.55 1.5 1.8 D.8 0.6 3.2 3.1 3.0 2.6
0.65 0.9 {.t.7 | 1.3 0.9 2.8 3.1 3.1 2.7
0.75 0.8 1.5 1.8 1.8 3.0 3.0 3.1 3.0
0.85 1.3 1.3 1.9 1.7 3.3 3.1 3.2 3.1
0.95 1.7 1.3 2.0 1.8 3.3 3.3 3.3 3.1
Note : h = depth-measured from surface
L = distance measured from barrier
H = ftotal depth -of water

Each column describes a temperature profile measured in
degrees celsius at increasing values of elapsed time.
Decreasing values of L/H imply measurement some distance
behind the front.
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Table I1.3 ]

Temperature .measurements for experiment # 3

L/H . ‘
‘ 17.0 ] 20.0 | 22.5 | 25.0 | 30.0 | 22.5 | 20.0 15.0
h/H )
0.05 1L.0 10.1 . 4.8 a2.9 0.2 0.3 4.7 8.1
0.15 9.0 6.8 | 2.0 0.7 0.2 0.3 1.5 8.0
0.25 6.9 4.7 1.8 0.9 0.3 A 0.4 1.0 7.4
0.35 3.3 2.8 | I.1 0.8 0.3 0.7 1.2 { 62
0.45 2.4 |, 1.8 0.9 0.7 0.4 1.3 1.8 .HS.i
0.55 2.1 1.6 0.8 0.9 0.7 1.8 2.1 3.9
0.65 1.9 i{.5 0.9 1.2 | 1.1 2.1 2.3 3.8
0.75 1.8 1.6 1.4 1.8 1.6 2.6 2.6 3.8
0.85 1.8 1.8 1.6 2.0. 1.8 2.7 2.7 3.7
0.95 . 1.8 1.8 1.6 1.9 1.8 2.8 2.8 3.8
Note : h = depth measured from.surface
L = distance measured from barrier
H = total depth of water

Each column describes a temperature profile measured in
degrees celsius at increasing values of elapsed time.
Decreasing values of L/H imply measurement some distance
behind the front.

-,
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Table 11.4

Temperature measurements for experiment # 4

~
L/H : .
10.0 | 17.5 | 22.5 | 25.0 | 22.5 [ 20.0 | 15.0 { 25.0
h/H
6.05 10.2 | 10.8 | 5.1 4.0 7.4 | 7.6 7.9 1.1
0.15 5.7 | 9.4 2.6 2.7 2.9 | 3.6 7.8 0.8
0.25 - 2.4 5.3 2.6 | '2.0{ 3.0 2.8 |. 5.8} 0.9
0.35 o 31| 19| 16| 28| 23] as | o.s
0.45 3] 26| 16| 11| rel| 2.4 4.0 | 1.5°
‘0.55 0.9 | 2.0 1.2 1.1 |. 1.8 | 2.7 | 3.5 2.2
0.65 0.9 | 1.9] 1.0| 0.9 1.8 2.8 3.4 2.7
0.75 0.9 1.7 0.9 0.9 2.3 | 2.7 3.3 3.0
0.85 1.3 1.7 0.9 0.9 | 2.5 2.9 3.3 3.2 ]
0.95 1.9 1 2.0 0.9 1.0 2.7 | 3.1 3.3 3.l
Note : h = depth measured from surface
L = distance measured from barrier
H = totatl depth of water

Each column describes a temperature profile measured in
degrees celsius at increasing values of elapsed time.
Oecreasing values of L/H imply measurement some distan®e
behind the front.
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Table I1.5

Temperature measurements for experiment # 5

. L/H ) 1.
. B.3 8.3 10.0 16.7 | 23.3 26.7 16.7 3.3
h/H .
0.05 9.4 9.6 9.8 6.8 | ‘0.5 1 0.3 8.4 7.4
0.15 . B.4.| #6840 | - 8.5 1.7 0.3 0.2 7.0 6.3
0.25 4.1 5.8 4.1 0.6 0.3 0.3 2.5 2.5
0.3% 2.5 3.2 2.6 0.3 0.2 0.2 2.1 2.4
0.45 1. 1.7 2.5 0.3} 0.3 0.2 2.4 2.8
0.55 0.3 1.5 1.2 0.3 0.3 0.2 2.8 2.9
0.65 0.1 0.8 1.1 0.5 G.9 0.7 3.1 3.3
0.75 0.1 0.4 1.0 0.9 t.2 | 1.4 3.2 3.4
0.85% 0.5 0.7 0.9 0.9 1.7 1.8 3.2 3.5
0.95 0.9 1.0 0.9 1.6 1.9 [.9 3.2 3.5
¢7ﬁ\‘ﬁ =
Note : h = depth measured from surface.
L = distance measured from barrier
H = total depth of water

Each .column describes a temperature profile measured in
degrees celsius at increasing values of elapsed time.
Decreasing wvalues of L/H imply measurement some distance
behind the front.
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ke _ Table 11.6

-/
- Temperature measurements for experiment # 6

L/H ' _
: 16.7 | 16.7 | 23.3 | 30.0 | 36-7 | 43.3 | 43.3 | 30.0
h/H . .
0.05 15.1 | 16.8 | 17.0 | 15.9 | 16.0 | 2.8 | 0.4 | 9.2
0.15 9.4 { 17.1 | 17.0 | 16.0 | 11.6 1.0 | 0.6 | s.1
0.25 3.4 | 8.2 | 8.1 9.4 | 4.8 0.9 0.9 4.1
0.35 1.8 | 2.8 | 3.5| 49| 2.8 1.0.] t.2 ] 3.8
?{\ 0.45 0.8 1.7 22| 3.0 18| 1.2 1.6 3.2
1 0.55 0.3 | 1.6 ] 1.8 | 2.1 ] 1.5 1.4 1.8 | 3.0
0.65 0.2 | 1.8 1.6 1.8 1.4 1.7} 2.0 3.4
0.75 0.2 1.5 1.6 1.7 b5 [ 1T | 2.1 {03
0.85 0.3 1.7 1.8 P17 1.6 1.8 | 2.2 1 3.1
0.95 0.3 | 2.0 1.7 1.8 | 1.8 1.8 | 2.3 | 3.1
Note : h = dépth'measured from surface
L = distance measured from barrier
H = total depth gf water

Each column describes a temperature profile measured in
degrees celsius at increasing values of elapsed time.

Decreasing values of L/H imply measurement some distance
behind the front. -
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Table Il1.7

Temperature measurements. for experiment # 7

el
L/H _
' 10.0 15.0 20.0 23.3 23.3 23.3 10.0 106.0
h/H ‘ '
0.05% 10.0 10.7 11.4 4.1 1.5 0.3 9.6 9.6
0.15 10.5 |- 4.2 9.4 1.8 0.9 0.3 B.0 8.8
0.25 5.6 3.1 3.5 1.1 0.9 0.4 5.7 5.4
8035 3.2 2.0 1.6 0.9 0.7 0.4 5.1 4.3
0.45 2.2 |. 1.6 1.1 0.9 0.8 0.7 4.4 4.1
0.55 1.8 | 1.2 1.9 1.3 0.9 1.6 4.1 ] 4.0
- 0.65 1.8 1.2 1.1 1.8 1.6 2.1 4.0 3.9
0.75 1.5 | 1.3 1.3 1.9 | 1.9 | 2.5] 3.8 | 3.8
0.85' |05 | 1.7 15| 20} 2ol 28| 35| 3.6
0.95 0.4 1.7 1.6 2.1 2.2 2.9 3.5 3.5
Note : h = depth measured from surface ,
L = distance measured from barrier
H = total depth of water

Each column describes a temperature profile measured in
degrees celsius at increasing values of elapsed time.

. Decreasing wvalues of L/H imply measurement some distance

behind the front.
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NOMENCLATURE
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Dimensional Notations *

g = gravitational acceleration
h = depth meagured from surface
t = ;ime

u = horizontal velocity
v = vertical velocity

x = horizontal coordinate

¥ = vertical coordinate

P = pressure

T = temperature

L = total length
H = total depth

W = total width bt

8 = thermal axpansion coefficient
S = thermal cénductivity
v = kinematic viscosity

p = density
v = ‘stream function

N = vorticity

A = increment/difference

v = Laplacian operator
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Dimensionless Notatlons

. T
A = aspect ratio N
F = function o
K = initial. velocity coefficient )
U = horizontal velocity ' | :
v = vertical velocity ’
X = horizontal coordinate .
Y =- vertical coordinate
8 = temperature
T = time
¥ = stream function .
Q = vorticity '
C, = overflow coefficient
Fo = densimetric Froude number
FAR = éensime{ric Froude-Reynolds number '
Nu = Nusselt nuﬁber
P- = Prandt!l number
Ra = Rayleigh number
(Ry)e = cold Rayleigh number
(Ra)w = warm Rayleigh number .

(Ra)l lock exchange Rayleigh number

Y



Subscrigts

Superscripts

-

'vertjcal location

reference/initiatl .

horizontal location

warm water /upper layer

cold water/lower layer

receiving water bodijes

heated effluent
defined at 0° C
defined at 4° C
defined a£ g°c
densimetric
average

max i mum

time index

iteration index
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