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In cold clim<ltes. temperatures higher than the ambient have

been observed near the bottom of water lakes in the vicinity of

thermal discharges. Concern ')3s4.been
..

expressed about the adverse
.-

effects of such abnormally warm water on the winter ecology of lake

bottoms. It is expected that the existence of a

water at 40 C and the resulting nonlinear relation

density extremum in

between ~ensity~nd
•

temperature gives rise to ·densimetric flows. which are markedly

different from those in the linear range.

This thesis . presents experimental numerical

I investigatio~s that give some ins,ght into the phenomenon of the

therma J • bar and the manner in wh ich it may i nf Iuence nearshore

transport processes in the vici~ity of a thermal outfal I in a cold

c] i mate. The invest j gat ions' are restr i cted to an' j dea 1i zed mode 1 where

the lock exchange mechanism is selected due to the fact that its

behaviour is close to that expected in the prototype situation.

The experimental investigation provid~s dramatic proof that

the existence of an extremum in the density-temperature relation has a

profound influence on the behaviour of densimetric
..

flows in general

and lock exchange behaviour in p~rticular. Three zones in the vicinity

iii
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of a thermal bar are clearly d~nstrated viz. (i) the thermal

, .

is examined.

overflow region. (ii) the thermal bar. and (iii) the thermal underflow

region. The experiments provide data on the horizontal 'scale at which

sinking takes ~lace.

A numerical model.has been constructed to develop a means of

model ling the behaviour _of a thermal bar'at the outfall of a steam

electric generating station cooling water system. The numerical model

employs a finite-difference scheme. where the resulting algebraic

fin ite difference equat ions are so I ved usi ng an a I ternat ing direct ion

imp I i'c i t method and a sparse-matr ix package. The numer i ca I mode I has

been verified by comparing it to numerical solutions of four different
'L

cases of the idealized problem of steady lamrnar flow in .an enclosed

rectangular cavity with differentially heated end wal Is: Moreover.

additional acceleration techniques are introduced to improve the

numerical solution procedure. The numerical model is employed to solve

the actual problem of simulating lock exchange flows created between

two water bcdies having different temperatures around the temperature

of maximum density (i .e. having temperatures abcve and below 40 C).

The general behaviour which has been observed experimentally is also

confirmed numerically. The sensitivity of the associated parameters

The relative extension of the thermal bar, i~rrelated

with relevant system parameters. Difficulty was experienced- in

obtaining numerical results for the same (high) Rayleigh numbers as

iv



were used

(

. ..
for the physical experiments.

-....,.. /

. 0,
Despite ~his.

-an encouraging
" .

•

,.

\

degree of consistency was obs~ved- between simulate~ ~nd·observed

behaviour.

The important asp~~}-of the study is to draw attention to the

adverse effects of the sinking phenomenon (thermal bar),wbich may

occur in the viciQity of man-made warm ef~lue~ts as well·as in natural

bodies of water during the spri~g warming period. The study is

sign ifi cant. fori terms of the hor izonta I sca Ie at·wh ich sink ing takes

place. for the ,~sign of PO~er station once-through-C001 ing water

systems tha~ must operate in cold climate"winter condition~..
i
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