AlLSNE JVINIVALA X ANJIN AU Uiasan)

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unfikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materiale (e g . maps, drawings, charts) are reproduced by
sectioning the orginal. beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced

torm at the back of the book

Photouraphs included in the original manuscript have been reproduced
xerographicallv in this copy Higher quality 67 x 97 black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order

UMI

A Bell & Howell Information Company
300 Nerth Zeeb Road. Ann Arbor M1 48106-1346 USA
313/761-4700 800/521-0600

NEURAL NETWORKS FOR DATA FUSION

By

FENGZHEN WANG, B. Eng., M. S. Eng.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Ph.D. of Engineering

McMaster University

(©Copyright by Fengzhen Wang, January 1997

Extended Summary for Neural Networks for Data Fusion

From Fengzhen Wang

March 6, 1997

This thesis describes the results of research carried out on the use of neural networks for
implementing data fusion.

The process of data fusion may be viewed as a multi-level hierarchical inference process
whose ultimate goal is to assess a mission situation and identify, localize and analyze threats.
Each succeeding level of data fusion processing deals with increasing levels of abstraction.
The lower level is concerned solely with individual objects where sensor data are processed
to derive the best estimates of current and future positions for each hypothesized object as
well as inference as to the identity and key attributes of the objects.

A unique contribution in the thesis is that a new technique of measurement data as-
sociation in a multitarget radar environment is developed. The technique is based on the
mean-field-theory machine and has the advantages of both the Hopfield network and the
Boltzmann machine. The new energy function built in the thesis can be considered as a cost
function. the cost function takes a minimal value when the plot-track association is in the
optimal status. In the technical development, three new energy functions have been created.
Theoretically, the critical annealing temperature is found to determine the annealing tem-
perature range. Neural data association capacities have been evaluated using data sets with

and without clutter for different measurement radar precisions.

lished herein provides an affirmative assertion that the mean-field-theory machine globally
asymptotically converges to a stable equilibrium provided the network satisfies the condi-
tions described in the theorem. It also gives us a rule for devising a physical energy function.
This is a remarkable achievement which helps to fill in a void in mean-field-theory machine.

As a benchmark, the nearest neighbour association is compared with neural data asso-
ciation. The neural data association has higher capacity than does the nearest neighbour
association: it demonstrates remarkable improvement in high target density circumstances.

The new energy functions derived in the thesis have been extended to multiple dimen-
sional data association. A comprehensive analysis carried out using computer simulations
demonstrates that the new technique developed in the thesis possesses high association ca-
pacity in the presence of false alarms; as well. it can cope with track-crossing in dense target
environments. In the case o, = 0.3. the neural data association capacity with multiple di-
mensional measurements is 30% higher than that only using position measurements for the
environment described in Chapter 3.

Another unique contribution of thesis is the feature-mapping data fusion. the accuracy of
which approaches the Cramer-Rao lower bound. The feature-mapping data fusion has many
advantages over the conventional fusion approach. Since it is based on a neural network
technique. it can learn from the observations and get the same precise fusion centroid as
that obtained by applying ML in the case of Gaussian distributed measurement error. As we
know. in the case of ML. the measurement error distribution function and sensors accuracies
need to be known a priori. If the sensors accuracies are not available, the calculation overload

is huge. If the error distribution function is unknown, ML is unable to contribute to the

ol M. reature-mapping dadla 1usiOli Call 1Cdlill 110311 dlly LIV Ao b sl 2Rl Riaity e 2mew
the observed data together. On the other hand, the method presented here, can be easily
built into a VLSI network which possesses parallel computation potency. In other methods,
as well. the cluster boundary should be found in order that the data, which are from the same
target can be fused. In a dense target environment, the feature-mapping fusion approach
avoids the difficulty in finding the cluster boundary by introducing adaptive lateral feedback
in the postsynaptic layer. This makes the fusion implementation very feasible and easy.

In this thesis, we have studied neural networks and multisensor data fusion, and developed
the techniques for multisensor target classification. Multilayer perceptron neural networks
trained by Backpropagation have been designed. A feature set contaminated by noise. which
possesses the dominant characteristics of targets and has a certain dynamic range. is chosen
to train the networks. The entire system consists of identification (IN) and classification
nets (CN). Each identification network is used to extract a particular feature of the target.
then the outputs of the identification networks are fused by a classification network to give
the decision. Like hierarchical structure of adaptive expert networks. the system structure
makes the learning process fast. In the system, each subsystem is a simple neural network.
[t is easy to train the neural networks that have simple structures. For a simple target
signature. one hidden layer is enough to make the simple network converge. If uncorrelated
signatures are mixed together during the learning phase of a simple network, the network will
not converge. Even though we can increase the number of hidden layvers to make the network
converge. however. the convergent speed is very slow due to the uncorrelated signatures. In

a practical application of the back-propagation algorithm, learning results from the many

complete presentation of the entire training set during the learning process is called an epoch.
The learning process is maintained on an epoch-by-epoch basis until the synaptic weights
and threshold levels of the network stabilize and the average squared error over the entire
training set converges to some minimum value. In order to speed up the training or decrease
the number of epoches used in the learning process, both momentum and adaptive learning
rate (feasible in practice) methods are used. The simulation results to be presented in this
thesis show that the technique of automatic target classification using neural networks can
achieve robust decision performance.

Neural networks for data fusion have proven to provide for a flexible solution. It is easy
to extend them to accommodate future changes. More importantly, without modifying the
general structures of the networks. additional training facts can be added to the training sets
so as to include more target features or perform more complex tasks. If more signatures are
used to carry out target classification, we can deploy additional identification networks and
increase the number of input nodes in the classification networks. If more than two targets
are to be classified. the functions of the classification network can be extended by increasing
the number of output neurons. In addition. once neural networks are well trained. real-time
data fusion can be realized since neural network operation is a parallel one, which means
that neural networks have prominent advantages over other devices.

Finally. the research results are summarized as follows:
e neural techniques for multisensor target classification,
e new technique of measurement data association,

e establishment of the convergent theorem for mean-field-theory machine,

e multidimensional data association.

e evaluation of data association performance,

e feature-mapping data fusion, and comparison with maximum likelihood fusion.

The attainments made in the thesis provide the approaches to solve the intractable data

fusion problems.

NEURAL NETWORKS FOR DATA FUSION

PH.D. OF ENGINEERING (1997) MCMASTER UNIVERSITY

(Electrical and Computer Engineering) Hamilton, Ontario
TITLE: ‘ Neural Networks for Data Fusion
AUTHOR: Fengzhen Wang

B. Eng. (Nanjing University of Science and Technology)
M. S. Eng. (Nanjing University of Science and Technol-

ogy)

SUPERVISOR(S): Dr. John Litva. Professor

Department of Electrical and Computer Engineering

NUMBER OF PAGES: xx. 183

Abstract

The process of data fusion may be viewed as a multi-level hierarchical inference pro-
cess whose ultimate goal is to assess a mission situation and identify. localize and
analyze threats. Each succeeding level of data fusion processing deals with a greater
level of abstraction. The lower level is concerned solely with individual objects where
sensor data are processed to derive the best estimates of current and future positions
for each hvpothesized object as well as provide an inference as to the identity and key
attributes of the objects. With the recent proliferation and increasing sophistication
of new technologies. it is recognized that the incorporation of new techniques, such
as neural networks and others. will make the data fusion system more powerful in

tri-service (command. control and communications).

In this thesis. optimization neural networks are investigated. A new technique
of measurement data association in a multitarget radar environment is developed.
The technique is based on the mean-field-theory machine and has the advantages of
both the Hopfield network and the Boltzmann machine. In the technical development,
three new energy functions have been created. Theoretically. the critical annealing

temperature is found to determine the annealing temperature range. A convergence

iii

theorem for the mean-field-theory machine is put forward. Based on the technique,
neural data association capacities have been evaluated in cases with and without

clutter, taking into account different accuracies for radar measurements.

New energy functions have been extended to multiple dimensional data asso-
ciation. A comprehensive analysis by computer simulations has demonstrated that
the new technique developed here possesses high association capacity in the presence

of false alarms: it can cope with track-crossing in a dense target environment.

A feature-mapping neural network for centralized data fusion is presented. and

its performance is compared with that of the Maximum Likelihood approach.

In support of our study of multisensor data fusion for airborne target classifica-
tion with artificial neural networks (ANNs), we designed a neural classifier. Multilayer
perceptrons neural networks trained by back-propagation (BP) rule are discussed. In
order to speed up the training or decrease the number of epoches in the learning
process. both momentum and adaptive learning rate methods are used. The simu-
lation results show that the technique of automatic target classification using neural

networks has the potential to classify targets.

Acknowledgements

I am greatly indebted to my supervisor, John Litva. for initially allowing me the
freedom to explore various research areas. and subsequently introducing me to the
exciting world of data fusion and neural networks and providing invaluable support.
encouragement. and recommendations as my work progressed. I would like to thank
Defence Research Establishment Valcartier for its financial and technical supports.
Special thanks must go to Eloi Bosse for the useful discussions. I am grateful to
my supervising committee: Simon Haykin and Patrick Yip. for their suggestions and

recommendations.

I greatly appreciate the advice, help. and companionship from all the past and
present researchers and graduates I have had the pleasure of meeting. The last word
must go to my family, for without my family’s constant encouragement and support

I would not be where I am today.

List of Symbols

W(K)
2(k|k)
vi(k)
3;(k)
P(k|k)
Pp

P

Kalman gain.

State estimate at time k.

Difference between the jth measurement and track at time k.
Probability of the jth measurement coming from target.
Covariance matrix of the state z.

Probability of detecting the target.

Probability of the target’s measurement falling

within the track’s extension gate.

Covariance matrix of v;(k).

Number of clutter measurements.

Volume of the extension gate of a track.

Limiting or threshold function:

sigmoid activation function.

Syvnaptic weights of neural network.

External excitation of neuron z.

Input of neuron.

vi

Y;

Output of neuron.

Positive constant or variable which controls

the slope of the sigmoidal function.
Current flowing through the resistor R;;.
Excitatory synaptic weight.

Inhibitory synapse.

Resistor.

Conductance.

Capacitance.

External current applied to the input of
neuron j in Hopfield net.

Scaling resistor.

Matrix of synaptic weights.
I1=[h.1,... L)

Inverse of function of ¢;.

Energy function of neural network.

jth neuron output at (k + 1) step.

X = [11,Z2. ... 74

Random number between zero and one.
Annealing temperature.

Thermal noise component.

Critical temperature.

dxy
d,
Ex;

UXi

o

Lmin

Objective function to be minimized.

Output of analog neuron.

Connection weight on the link from the jth
neuron to the :th neuron.

Distance between X position and Y position.
Penalty constant.

Mean field of a neuron.

Neuron output corresponding to plot X and track z.
Cooling constant; momentum constant.
Steady state of neural network.
n—dimensional measurements.

jth predicted point.

RCS measurement precision.

Position measurement precision.

Speed measurement precision.

Minimal track distance.

_ Lp..(minimal distance)
p= «(precision))

Desired response of the jth neuron.

Error signal at the output of neuron j at iteration n.
Summation of squared error.

Average squared error.

Threshold of neuron j.

n Learning rate.

6;(n) Local gradient of neuron j.

w* Optimal weight.

W Weight vector.

(X)) Best match neuron index.

g(y) Positive scalar function.

Nix) Topological neighbourhood of the winning neuron #(.X).
N;i Neighbourhood function.

o(n) Effective width of the topological neighbourhood.
px(X/®) Conditional joint probabilistic density function.
(D) Likelihood function of ®.

L(®) L(®) = In[l(®)].

a; Target centroid.

List of Acronyms

ANN Artificial neural network.

AR Auto-regressive model.

BIBO Bounded input-bounded output.
BP Back propagation.

CN Classification net.

FMDF Feature mapping data fusion.

ID [dentification.

IN Identification net.

JPDA Joint PDA.

KCL Kirchhoff's current law.

LS Least-mean-square.

LP Linear programming.

MDA Measurement data association.
MFT Mean-field-theory.

MFA Mean-field annealing.

MFTDA Mean-field-theory data association.

ML

MTI

MTT

NDA

NPDA

PDA

PD

PDF

PPI

RCS

SOFM

TSP

VLSI

Maximum likelihood.

Moving target indicator.
Multiple-target-tracking.
Neural data association.
Neural network PDA.
Probabilistic data association.
Pulse Doppler.

Probabilistic density function.
Plan position indicator.
Radar cross-section.
Self-organizing feature mapping.
Travelling salesman problem.

very-large-scale-integrated circuit.

Contents

List of Symbols
List of Acronyms
List of Figures

1 Introduction

1.1 Survey of Data Fusion

1.2 Review of Data Association . . .

1.3 Review of Classification

1.4 Scope of Thesis

2 Basic Models of Artificial Neurons and Networks

2.1 Basic Models of Artificial Neurons

2.1.1 Basic Neuron Model-McCulloch-Pitts Model

xii

vi

XX

16

20

20

2.2

2.1.2 Fukushima Model of the Neuron

Artificial Neural Network Models

Optimization Networks

3.1

3.2

3.3

3.4

Traditional Approaches to Combinatorial Optimization

Hopfield Artificial Neural Networks

3.2.1 Analog Model

3.2.2 Discrete Model

Boltzmann Machine and Simulated Annealing

Mean-Field-Theorv Machine and Annealing Algorithm

Neural Data Association

4.1

4.3

4.4

A New Energy Function for MDA and Neural Computation

1.1.1 TSP Network and Comments on Its Solution

4.1.2 Derivation of a New Energy Function

4.1.3 Calculations

Critical Annealing Temperature

Dynamics of Mean-Field-Theory Machine

Data Association Performance

24

25

29

30

33

33

40

55

Ut
on

ot
02}

4.4.1 Performance Evaluation 79

4.4.2 Comparison of Neural and Conventional Data Association .. 84

4.4.3 Applicability 87
4.5 Alternatives of Energy Functions for MDA 90
3.6 COMMENLS .« v v v vt e 91
NDA with Multiple Dimensional Measurements 93
5.1 Principle o Lo 93
5.2 Results . . o . o o e e e e e e e e e e e e e e e 95
5.3 COMPATISON . « « v v v v e e et e e e e e e 102
Multisensor Target Classification 107
6.1 Multilayer Perceptronso ..o 108
6.2 Backpropagation Learning oo 110

6.2.1 Algorithmo 110

6.2.2 Initializationo e 127

6.2.3 Stopping Criteriao 129
6.3 Target Classification 130

6.3.1 Target Characteristics 131

6.3.2 Architecture - .« .t oo oo e e e e e 131

6.3.3 Training and Testing« o oo oo 133
6.4 Discussions of Target Classification 138
Feature Mapping Data Fusion 140
71 Introduction . . - v v v v i i e e e e e e e e e e e e e e e e 140
7.2 Feature-Mapping Learningo 142
7.2.1 Basic Feature-Mapping Models 144
7.22 Function of Lateral Feedback 147
7.23 Algorithm of SOFM oo 150
7.3 Measurement Data Fusion -« « o o oo 156
7.1 Comparison of Fusion Accuracyo v vve e 162
7.4.1 Maximum Likelthood Approach 163
7.42 Performance Evaluation 165
T.5 SUMIMALY . « ot o e e v e e e e e e e e e e e e et e e e e e 167
Conclusions 168
8.1 Contributions o o e e e e e e 168

8.2 Future Works v o v i i e e e e e e e e e e e e e 170

List of Figures

o
—

o
[§

3.1

4.1

4.3

4.4

4.6

Neuron model.« o i i e e e e e e e e e e e e e e

Electronic analog model of the basic neuron.

Hopfield model of neural networks.-

Neuron configuration for TSP and MDA.

Neural data association result for eight plot-track pairs.

Nearest neighbour association result for eight plot-track pairs.

Association result for 15 plot-track pairs.

Neuron activation function signal for 15 plot-track pairs.

Neuron mean field state for 15 plot-track pairs.

Energyv variation versus simulated temperature for 15 plot-track pairs.

Energy variation versus No. of iteration for 15 plot-track pairs.

xvi

(]
(M)

N
N

34

60

1.9

4.10

4.11

1.12

1.13

1.15

1.16

1.17

Percentage of correct association in the cases without clutter and with

clutter, sensor precision: 0, =0.15. L L

Percentage of correct association in the cases without clutter and with

clutter, sensor precision: 0, =0.20.

Percentage of correct association in the cases without clutter and with

clutter, sensor precision: 0, =0.25.

Percentage of correct association in the cases without clutter and with

clutter. sensor precision: o, =0.3.o oL
Percentage of correct association in the cases without clutter.
Data association capacity with different numbers of clutters.

Percentage of correct association by using nearest neighbour in the

cases without clutter. o o i v i e e e e e e

Comparison between the neural data association and the nearest neigh-

bour method, 0, =0.15. Lo

Comparison between the neural data association and the nearest neigh-

bour method. 0, =0.3.o
Tracking using neural data association.

Tracking using neural data association.

Data association using positions in the case without clutter , o, = 0.8.

81

3}
(V)

o4}
(V]

9 4]
-1

Tt

(W1}

N

-1

.10

1

Data association using positions and speeds in the case without clutter

Lo, =080 e e 97
Data association using positions in the case without clutter , o, =0.8. 93
Data association using positions and RCS’s in the case without clutter

O, =0.8. L e 98
Data association using positions in the case with clutter returns, o, =
0.5, e 99
Data association using positions and speeds in the case with clutter
returns. 0, = 0.5,o oo 99
Data association using positions in the case with clutter returns. o, =
0.6. o e 100
Data association using positions and speeds in the case with clutter
returns. 0, = 0.6.o 100
Data association using positions in the case with clutter returns. o, =
0.6. o e 101
Data association using positions and RCS’s in the case with clutter
returns, o, = 0.6.o 101
Comparison of data association between using speed and without using

speed in the case without clutter , 0, =0.2. 103

6.3

6.4

6.6

6.9

Comparison of data association between using speed and without using

speed in the case with 3 clutter returns, o, =0.2. 103

Compearison of the data association between using speed and without

using speed in the cases of different clutter densities, 6, =0.2. . .. 105

Comparison of the neural data association using multiple dimensional

measurements. g, = 0.3. Lo oo e 106
Data association performance versus p.o 106
Multilayer perceptrons neural network. 110
Layout of classification networks. 132

One sample of the first target’s Doppler frequency for training the first

ID 1L, o o e 134

One sample of the second target’s Doppler frequency for training the

first ID DEt. v o o e 134

RCS distribution of target 1 and target 2 for training the RCS ID net. 135

Routes of target 1 and target 2 for training the position ID net. ... 135
Learning curve of frequency IDnet. 137
Learning curve of RCS ID network. 137

Learning curve of classification network. 138

-1

-1

=1

=1

=1

-1

=

-1

T

)

~1

Centralized plot-level data fusion.
Willshaw-von der Malsburg’s model.
Kohonen’s model. . . . « o« c . i i e e e e

One-dimension lattice of neurons with feedforward connections and
lateral feedback connections: the latter connections are shown only for

the neuron at the centerof array.

Feature-mapping data fusion result for one target and four sensors,

sensor precision o =1.o e

Feature-mapping data fusion result for one target and ten sensors. sen-

sorprecision d =1.o

Feature-mapping data fusion results for two targets and ten sensors,

sensor precision 0 =0.8.o o

Feature-mapping data fusion results for two targets and ten sensors,

sensor precision ¢ =0.8.o e e e e e

9 Variance comparison for different fusion methods.

.10 Variance comparison for different fusion methods, o =1.

Chapter 1

Introduction

1.1 Survey of Data Fusion

Data fusion consists of a data integration or correlation process which combines data
from multiple sensors to derive meaningful information not available from any indi-
vidual sensor[l]. The process of combining data has been variously referred to as
multisensor or multisource correlation. multisource integration. or sensor blending
[1. 2]. It is a multilevel process (i) dealing with detection. association. and estima-
tion: it combines data and information from multiple sensors to achieve refined state

and identity estimation. and (ii) inferring target intent and assessing situations.

The data fusion function continuously transforms data and information from
multiple sources into richer information concerning: individual objects and events:
current and potential future situations; and vulnerabilities and opportunities to friendly,
enemy and neutral forces. In these contexts, data fusion provides continuous “refine-
ment” of input data from a variety of sources in support of decision requirements or

1

“assessments” which may be required at any time by operators and commanders. The
process of data fusion may be viewed as a multi-level hierarchical inference process
whose ultimate goal is to assess a mission situation and identify, localize and analyze
threats. Each succeeding level of data fusion processing deals with a greater level of
abstraction. The lower level is concerned solely with individual objects where sensor
data are processed to derive the best estimates of current and future positions for
each hypothesized object as well as inference as to the identities and key attributes

of the objects.

Situation assessment deals with the continuous inference of statements about
the tactical picture provided by the lower level data fusion function. It is concerned
with associating hypothesized objects with known and expected organizations and
events. and it uses what is known about enemy doctrine and objectives to predict the

strengths and vulnerabilities for threat forces and friendly forces.

Situation assessment. together with operator interaction, is used to derive plan-
ning and decision support functions for allocating and scheduling the use of critical

defence resources and coordinating defence actions in support of the mission.

The data fusion has the following characteristic features:[1]

1. robust operational performance,

2. extended spatial coverage,

3. extended temporal coverage,

4. increased confidence,

5. reduced ambiguity.

6. enhanced spatial resolution.

-1

. improved detection performance,
8. improved system operational reliability,

9. increased dimensionality.

Since it has encouraging advantages, multisensor data fusion increasingly draws the
‘nterest and attention of researchers in a number of relevant fields. Research activities
and results in directly and indirectly related areas are reported annually at the US
tri-service data fusion symposium held at John Hopkins University and at a variety
of the annual SPIE conference. and IEEE Transactions. among others. A number of

promising theoretical developments and technological branches are:

1. development of optimum decentralized detection. estimation. and tracking meth-

ods.

2. development of representation and management calculi for reasoning in the pres-

ence of uncertainty,

3. development of spatial and contextual reasoning processes suitable for assess-

ment of activity and intent, based on temporal and spatial behavior,

4. development of integrated, smart sensors with soft-decision signal processing for

use in systems that perform numerical and symbolic reasoning in uncertainty,

5. development of both distributed and integrated data processing architectures

applicable to data fusion,

6. decomposition of processing algorithms into parallel processes for implementa-

tion on parallel machines,

. creation of neural networks and application of neural network technology to

detection. tracking. classification. and assessment problems.

As mentioned above. data fusion is a multi-level process. Level 1 data fusion
is defined as the first stage of a process which deals with the detection. association.
and estimation: it combines data and information from multiple sensors to achieve
refined states and identity estimation. For level 1 data fusion, there are three main
functional models: data association. data estimation. and identity declaration. The
functional role for Data association is based on the proposition that given n obser-
vations from one or more sensors. how do we determine which observations belong
together. and which identities among observations are of the same entity, in which
there are three subdivisions to be considered. observation to observation. observation
to track. and observation to observation for identity. In the course of data associ-
ation. alignment. prediction (performed in data estimation). and gating have to be
implemented before assignment. Alignment functions in a multisensor scenario: it

transforms the measurements into the same reference coordinates. Gating performs

an initial screening to eliminate unlikely observation-to-observation or observation-
to-track. The assignment step invokes decision logic to declare that two observations
or an observation and a candidate track belong together. i.e. they represent the same

underlying physical entity or process.

The factors to be considered in data association include:

1. what metric will be used to measure the similarity between observations?

2. how many scans of the data will be used?

3. will an observation be uniquely assigned to another observation or track?

4. how many and what kind of hypotheses will be considered at any one time?

Data estimation deals with the problems related to (i) determining the lo-
cation of a stationary entity. (ii) determining the position and velocity of a moving
object (in tracking). (iii) estimating the inherent characteristics of an entity. (iv) es-
timating the parameters of a model. The conventional optimization criterion used
in estimation is one of the following: least squares. weighted least squares. minimum

mean squared error. Bayesian weighted least squares, or maximum likelihood.

Identitv declaration uses pattern recognition techniques such as templating.
cluster analysis, adaptive neural networks, or physical model techniques to recognize
an entity’s identity. The concise description of the pattern recognition technology

is given as follows: In the parametric templates, preestablished parametric limits or

boundaries are used to define identity classes. Cluster algorithms use heuristic meth-
ods to group data into the natural clusters which represent object identity. In the
neural network technology. adaptive neural networks emulate biological nerve connec-
tions to perform a nonlinear transformation between an input feature vector and an
output identity class. On the other hand. the physical model matches observed signa-
ture data against a predicted signature. computes correlation between the predicted

and observed data.

The three functional models of data association, data estimation and identity
declaration can be joined together to obtain extended reasoning. The output of each
model may be used by other models as an input to improve the functions of these
models for identifving the events with high capacity. One example consists of the

case where data association is structured to partially use the target’s attributes.

1.2 Review of Data Association

Often in multitarget tracking. there is more than one measurement available for up-
dating the state of a single target. To solve the problem of data association between
targets and measurements. two typical approaches have been reported in the literature
in the 1970s. One is called the target-oriented approach in which each measurement
is assumed to have originated from either a known target or clutter, as in probabilistic

data association (PDA) [3. 4, 13, 14] and joint probabilistic data association (JPDA)

[3, 5, 13]. The other is called a measurement-oriented approach in which each mea-
surement is hypothesized to have originated from either a known target, a new target,
or clutter [6]. Recently, a new approach is proposed in [7] to deal with the data asso-
ciation problem in multitarget tracking. The new approach is called a track-oriented
approach in which each track is hypothesized to be either undetected, terminated.
associated with a measurement. or linked to the start of a maneuver. In these ap-
proaches. the number of data association hypotheses can increase rapidly with the
increase in the number of targets and the number of measurements. Therefore. in the
case of multitarget tracking algorithms. the computational cost of generating the data
association hypotheses can become excessive when both the number of targets and the
number of measurements are large. In [12], The unified framework was developed to
provide a systematic scheme for the generation of data association hypotheses in the
target-oriented, measurement-oriented, and track-oriented approaches. By adapting
the depth-first search (DFS) algorithm. a huge amount of calculation can be allevi-
ated. In PDA. the computational cost for data association is reduced drastically by
isolating targets from each other. Only the measurements which lie in the validation
gate of a target are considered for data association. Since the PDA ignores the in-
terference from other targets, it may, sometimes, cause tracking errors in the case of
closely spaced targets. as discussed in [5]. This difficulty is greatly reduced by using
JPDA [5]. because it takes into account the fact that if a measurement falls inside
the intersection of the valid gates of several targets. it could have originated from

any one of these targets or from clutter. In JPDA, targets are divided into clusters.

The targets are in the same cluster if there is at least a measurement inside each of
the intersections of their valid gates. The computational cost for data association is
reduced by grouping targets into clusters. The number of different data association
hypotheses in each cluster is still an exponential function of the number of targets in
the cluster. Due to the complexity of data association, the implementation of a mul-
titarget tracking algorithm has only been carried out in a 2-target case [5. 6], except
in [8]. where JPDA filtering was used to track 11 nonmaneuvering and maneuvering

targets.

In order to get a picture of the mechanism which supports PDA and JPDA.
let us review them briefly. PDA is a method of associating measurements detected in
the current readout of the sensor, or scan. with current tracks using a probabilistic
score. A score is a measure of how well the measurement-to-track association fits.
Once the score for each measurement is calculated, the tracks are updated with a
weighted sum of the measurements, where the weights are the calculated probabilities.
This has been considered to be a very good method for tracking targets in dense
clutter without having the large processor and memory overheads that are needed for
multiple hypothesis tracking. PDA can be extended to tracking maneuvering targets.
A detailed derivation of the PDA can be found in [3] and is briefly described here.

When using PDA or JPDA. the update equation of the Kalman filter becomes

2(k|k) = 2(k|k — 1) + W (k)v(k), (1.1)

where #(k|k) is the state estimate at time k given k updates, £(k|k—1) is the prediction

of the state at time k given k — 1 updates, W (k) is the Kalman gain and the weighted

sum of the measurements takes on the form

v(k) = 3 Bi(k)wi(k), (1.2)

=1
where v;(k) is the difference between the jth measurement and the predicted position
of the track at time k. 3;(k) is the probability that the jth measurement came from

the current target in track. The updated covariance matrix is given by

P(k|k) = Bo(k)P(k|k — 1) + [1 = Bo(k)|P°(k|k) + P (k). (1.3)

where
P(k) = W(k) fjﬂj(k)vj(k)uf(k) — vk (k)| WT(k). (1.4)
Pe(k|k) = [I — W(k)H (k)] P(kik —1), (1.5)

where P is the covariance matrix of the state #, H is the linearized mapping of the
state onto the measurement space, I is the identity matrix, and 3, is the probability
that none of the measurements in the extension gate originate from the target in the

track.

The probabilities of the jth measurement originating from the target in track

at time & is given by

‘ €; .
3:(k) = ——— =1,...m,

Bo(k) = (1.6)

b+27;1 er

where

e; = expl—1/27 (k)™ (k);(R)]. (1.7)
b= M2xS(k)|/*(1 = PpPs)/ Pp, (1.8)

) is the spatial sensitivity of false measurements. Pp is the probability of detecting
the target. Pg is the probability of the target’s measurement falling within the track’s
extension gate, and S(k) is the covariance matrix of v;(k) which is computed in the
Kalman filter gain equation. This calculation of the probabilities assumes that there
is one measurement in the track’s extension gate which originates from a target and
the rest are random clutter which will average out to zero in the weighted sum of
(1.2). If the measurement of another target is persistently in the extension gate of
this particular target. the probability calculation will be wrong and poor tracking will

result. To account for multiple targets, the JPDA was developed.

The JPDA is the same as the PDA with the exception of the probability
calculations. The probabilities are computed as joint probabilities to account for the
fact that the measurements under consideration may have come from more than one
target. The probability of track 1 being associated with measurement 7 in the JPDA

is computed from the law of total probability and is given [3]

Bi(k) = 3 P{6(k)| Z* }w(8(K)), (1.9)

(k)
where w(8(k)) is a binary variable indicating whether joint event 0(k) contains the
association of track 1 and measurement j. A joint event is a set of measurement-to-

track associations which have measurements assigned to either clutter or to one track,

and each track assigned to only one measurement or declared missed. Z* denotes a
cumulative set of measurements. The probability of the individual joint event is given

bv

7k 1 0' i T T L t\$ t \1-6
P{o(k)|Z"} = [Nwi(R))]™ % I_I(PD) ‘(1= Pp) ™, (1.10)

Ve
cV j=1

where ¢ is the number of clutter measurements, V' is the volume of the extension gate
of the track. m is the number of measurements on this scan, 7; i1s a binary variable
indicating whether the measurement is assigned to a track, T is the number of current
tracks. Pp is the probability of detection, and é; is 2 binary variable indicating whether

a track has been assigned to a measurement.

Calculating these joint probabilities is a formidable task. To find the prob-
ability that track 1 will be legitimately extended by adopting measurement 7. the
algorithm must calculate all feasible joint events. compute their probabilities using
(1.10) and then add all probabilities from joint events which include the event of
association of track 1 with measurement i. The computation of all of the joint events
has been shown to increase computer loading exponentially as the number of targets

increases.

To reduce significantly the computational cost for data association. several
approximations to the JPDA and the algorithm in [6] have been reported in literature.
A first version of the approximate or “cheap” JPDA was published in [9], where the
probability of association of target t with measurement j was computed by an ad hoc

formula. The “cheap” JPDA in [9] performed fairly well in the case of two targets but

failed to track four targets [10]. In [15], a fast JPDA algorithm was proposed for the
computation of the B!s in the JPDA. For j > 0, Bi(k) is the a posteriori probability
that measurement j originates from target ¢ at time k. For j = 0, Bi(k) is the a
posteriori probability that no measurement originates from target t at time k. In the
fast JPDA algorithm, the computation of Bi(k) was implemented using an enormous
number of vector inner product operations. An optical processor was suggested in
order to approximately realize these operations. Alternatively, Nagarajan, et al., [16]
arranged the hypotheses in the measurement-oriented approach [6] in a special order
so that the probabilities of the hypotheses are proportional to the product of certain
probability factors that have already been evaluated. The algorithm locates the NV

globally best hypotheses without evaluating all of them.

One of the useful methods for data integration is the maximum likelihood,
which is distinct from the PDA or JPDA in terms of its data model [19]. In some
situations we can describe target-originated measurements as random variables. in-
dependent from scan to scan, with probability distributions which are given except
for some unknown non-random parameters. Such target models are applicable to
the sensor fusion problem with independent sensors. One example is the problem of
location of several targets using returns from several sensors. The sensors may be of
different types (bearing. range. velocity, etc.). Moving targets may also be included
if their motion is described by a deterministic model with unknown parameters, and

measurement noise is independent from scan to scan. One way to solve this kind of

problem in such a situation is to perform a search for the measurement-target associ-
ation which maximizes the likelihood of the observed measurements. This results in
an optimal integration, but computationally it is costly. This is the trade off of using

the maximum likelihood approach.

In [10] the JPDA was emulated by a neural network. However. a comprehen-
sive analysis [11] reveals several drawbacks of the neural network approach developed
in [10]. Sengupta and Iltis [10] formulated the computation of the a posteriori proba-
bilities for the JPDA as a constrained minimization problem. This technique, which
is based on the use of neural networks, was also extended so as to apply to maneu-
vering targets. By comparison with the travelling salesman problem (TSP), they
proposed a Hopfield neural network to approximately compute the 8is and called
this neural network probability data association (NPDA). In fact. 3} is approximated
by the output voltage \r’;-t of a neuron in an (m + 1) x n array of neurons. where
m is the number of measurements and n is the number of targets. Sengupta and
lltis claimed that the performance of the NPDA was close to that of the JPDA in
those situations where the numbers of measurements and targets were in the ranges
of 3 to 20 and 2 to 6. respectively. There were six penalty constants in the energy
function built by Sengupta and Iltis. Since there are no strict guidelines for choosing
the constant coefficients of the energy function for the Hopfield neural networks. the
coefficients used in the NPDA were selected essentially by trial-and-error. However,
using the coefficients chosen by [10]. the architecture of the neural network in [10]

degenerates into individual columns with identical connections and the input currents

throughout the neural network are almost of the same amplitude. Furthermore, the
neural network in [10] has a strong tendency to converge to the V}s which are close
to 1/(m + 1) with the given initial values for the V}s. Zhou and Bose in [11] pointed
out that it might be a good idea to use the neural network to approximately compute
the a posteriori probability 3! in the J PDA. However, the neural network developed
in [10] was shown to have improper energy functions. This resulted from misinterpre-
tations of the properties of the JPDA which the network was supposed to emulate.
Furthermore. improper choices of the constant coefficients in the energy function in

[10] make the situation worse.

Data association can be viewed as an example of the classical assignment
problem. The optimal solution to an assignment problem minimizes problem-oriented
cost function. Smith et al. [17] built an energy function of Hopfield reural network
for measurement data association. The energy function was a cost function which
was related to the total distance between measurements (plots) and tracks. In order
to obtain a stable solution, the authors used inhibition measurement technique and
desired input computation technique. The inhibition measurement technique is based
on measurements of the inhibition on a row by row and a column by column basis.
variations to the sensitivity of the row/column inhibition. and diminution of this
sensitivity as the network iterates. The desired input computation technique centers
on starting out with large values to ensure stability, then gradually decreasing the
desired input as the network iterates to generate only valid solutions. However, the

energy function built by Smith has five constants to be chosen arbitrarily, and it

often sticks to the local minimal point, which makes this method a shadowy one for
applications. Another approach for solving the assignment problem is 0 — 1 integer

programming [18]. The problem is how to build a reasonable objective function.

1.3 Review of Classification

Computerized information extraction from sensor data sources has been studied over
the last two decades. The data used in the processing have mostly been multispec-
tral. and the statistical pattern recognition methods (multivariate classification) are
now widely known. There may be many kinds of data available from different sensors
observing the same scene. These are collectively called multisource data. It is inter-
esting to use all these data to extract more information and get higher accuracy when
carrying out the classification. However. the conventional multivariate classification
methods can not be used satisfactorily in processing multisource data [20]. This is
due to several reasons. One is that the multisource data can not be modeled by a
convenient multivariate statistical model since the data are multitype. They can. for
example. be spectral data. elevation ranges. and even non-numerical data. The data
are also not necessarily expressed in common units, and therefore scaling problems
may arise. Another problem with statistical classification methods is that the data
sources may not be equally reliable. This means that the data sources need to be
weighted according to their reliability, but most statistical classification methods do

not have such a mechanism. This all implies that methods other than conventional

multivariate classification must be used to classify multisource data.

Recently. there has been a great resurgence of research in neural networks.
New and improved neural network models have been proposed for classifying com-
plex data. The generalized delta rule is an example of such a method. Neural network
models have such an advantage over statistical methods that they are distribution-
free and no prior knowledge is needed about the statistical distributions of the classes
in the data sources in order to apply these methods for classification. The neural
network methods also take care of determining how much weight each data source
should have in the classification. A set of weights describes the neural network. and
these weights are computed using an iterative training procedure. On the other hand,
neural network models can be very complex computationally, and the iterative pro-
cedures that are used for training are sometimes slow to converge. The performance
of the neural network models in classification is dependent on representative training
samples. whereas the statistical approaches need to have an appropriate model of

cach class.

1.4 Scope of Thesis

This thesis describes the results of research carried out on the use of neural networks

for implementing level 1 data fusion.

Generally speaking, an artificial neural network (ANN) is an information or

signal processing system composed of a large number of simple processing elements.

called artificial neurons or simply nodes. which are interconnected by direct links
called connections and which cooperate to perform paralle! distributed processing in
order to solve a desired computational task. One of the attractive features of ANNs
is their capability to adapt themselves to special environmental conditions by chang-
ing their connection strength or structure. Artificial neural networks are sometimes
considered as grossly simplified models of the human brain. This view is somewhat
exaggerated and misleading because the human brain is not well understood and in-
deed its behaviour is very complex. In our opinion it is more reasonable to compare
artificial neural network capabilities to simpler nervous systems of primitive animals

such as insects which have the ability to adapt themselves to a complex environment.

It can be seen that neural networks possess potential for enhancing the capacity
of multisensor data fusion. since they have an ability to learn from signal environ-
ments and to generalize. A network is said to generalize well when the input-output
relationship computed by the network is correct (or nearly so) for input-output pat-
tern (test data) never used in creating or training the network. In a linear prediction
network. the generalization is nothing but an interpolation. Data contaminated by
unknown noise can be used to train the neural network. and the signal signature and
noise distribution feature are stored in the connections. Once neural networks are
taught well. the association between input patterns (test data) and output patterns
is implemented in real time. This capacity makes them play an important role in
identification and classification. This ideal will be highlighted in the design of target

classification networks.

A neural network is a massively parallel distributed processor. It resembles
the brain in two respects: (i) knowledge is acquired by the network through a learn-
ing process. (ii) interneuron connection strengths known as synaptic weights are used
to store the knowledge. The paradigmatic strength of neural networks for potential
applications. which require solving untractable computational problems or adaptive
modeling. arises from their spontaneously emergent ability to achieve functional syn-
thesis. Therefore. neural networks may be considered a potential approach to im-
plementing data fusion. The main features of neural networks are, as mentioned
above. their ability to learn from the natural environment . and the fact that they
are inherently non-linear. Techniques common to neural networks are supervised
learning. self-organized learning. and combinatorial optimization. The objectives of
our research consist of investigating and developing ANN algorithms for data fusion.
carrying out performance analyses and developing software for implementing data
fusion. The work has focused on level 1 data fusion. In particular. data association.

target position fusion and target classification are studied.

In Chapter 2. two basic models of a neuron. the McCulloch Pitts model and
the Fukushima model, are introduced. The neural network is composed of different
neurons interconnected by synaptic weights. According to the interconnections and

network characteristics. the classification of neural networks is discussed.

In Chapter 3. three optimization networks of Hopfield network, Boltzmann

machine and mean-field-theory machine and their relationship are explored.

In Chapter 4 is presented a new energy function for a mean-field-theory ma-
chine which can be used for measurement data association. A convergence theorem is
put forward. The critical annealing temperature related to the new energy function
is obtained. By computer simulations, the performance of neural data association is

studied and is compared with that of a conventional method.

In Chapter 5. we discuss multiple dimensional neural data association. which

has a powerful association ability.

In Chapter 6. Multiple target classification by the use of multilayer perceptrons

is studied, a neural target classifier is designed.

In Chapter 7. we present a novel data fusion approach-feature mapping data
fusion (FMDF). the fusion accuracy of which can reach the Cramer-Rao lower bound.
A comparison is made between maximum likelihood fusion and feature mapping data

fusion.

In Chapter 8. we conclude by giving the highlights of the conclusions which

have been derived from the results obtained herein.

Chapter 2

Basic Models of Artificial Neurons

and Networks

2.1 Basic Models of Artificial Neurons

Artificial neurons, also called neuron cells, processing elements or simply nodes. at-
tempt to simulate the structure and function of biological neurons. However. artificial
neuron models are not exactly constrained by real neurons and are based only loosely

on biology. This stems from the following facts:

1. We do not completely understand the behaviour of real nervous systems because

of their complexity.

2. Only part of the behaviour of real neurons is essential to their information

processing capacity and part of the behaviour builds up irrelevant side effects.

3. From a technical implementation point of view it will probably be impossible
and also inefficient to simulate the full behaviour of real neurons.

20

4. Artificial neural networks are designed in order to realize very specific compu-
tational problems. and their architectures and features depend on the problem

to be solved.

Below we will describe the basic models used for describing artificial neurons. The
use of a particular model depends on the applications in which the algorithms used

are close to neural information processing principles.

2.1.1 Basic Neuron Model-McCulloch-Pitts Model

The basic artificial neuron can be modelled as a multi-input nonlinear device with
weighted interconnections wj;, also called synaptic weights. as shown in Fig.2.1. The
cell body is represented by a nonlinear limiting or threshold function ¢{(u;). The
simplest model of an artificial neuron sums the n weighted inputs and passes the

result through a nonlinearity according to the equation

Y; = l:z wjiT; +],-] . (2.1)

i=1

where > is a limiting or threshold function. called an activation function. I; is the
external threshold. also called an offset or bias. wj; are the synaptic weights. z;
(; = 1.....n) are the inputs. n is the number of inputs and y; represents the output.
Note that a threshold value I; may be introduced by employing an additional input
ro equal to +1 and the corresponding weight wjo equal to the threshold value. So we

can write Eq.2.1 as

o
]
A

Yy =9 [Zn: wjixi] ; (2.

i=0

where w;jo = I;. o = 1. The basic artificial neuron is characterized by its nonlinearity
and the threshold I;. For example, the early McCulloch-Pitts model of the neuron
used only the binary (hard-limiting) function [21, 22]. In this model a weighted sum
of all inputs is compared with a threshold ;. If this sum exceeds the threshold. the
neuron output is set to the “high value” or logic 1. otherwise to the “low value” or

logic 0.

Figure 2.1: Neuron model.

Generally. the threshold function may be replaced by a more general nonlinear
function and consequently the output of the neuron y; can either assume a value of
a discrete set (e.g.{—1.1}) or vary continuously (usually between —1 and 1). The
activation level or the state of the neuron is measured by the output signal y;. In
the basic neural model the output signal is usually determined by a monotonically
increasing sigmoid function of a weighted sum of the input signals. Such a sigmoid

function can mathematically be described as

1 — e—2—qu

Y; = tanhyu; = m,

(2.3)

for a svmmetrical (bipolar) representation or

1
L — 2.4
YT + 7 (24)
for an unsymmetrical unipolar representation with u; = > iqw;iTi where v is a

positive constant or variable which controls the slope of the sigmoidal function. In
comparison with the hard limiter, the sigmoid activation function is usually more
convenient for analog hardware implementation; moreover, it is more realistic for

biological neurons.

A model of the above sigmoid function can be built using traditional electronic

simulates the cell body. and the variable resistors model the synaptic weights. The
sigmoid activation function is naturally provided by the saturating characteristic of
the amplifier. The input voltage signals z; supply current into the wire in proportion
to the sum of the products of the input voltages and the appropriate conductances.
By applyving Kirchhoff’s Current Law (KCL) at the input node of the amplifier we

obtain the expression

(O]
Ot
~—

7}_ Gilf
2 = D = =0 i K
yJ ‘r’(uj) ¥ { ?=0 Gji] ’ (

where r's are the input voltages, u; denotes the input voltage of the jth amplifier, y;
means the output voltage of the jtk neuron, ¢(-) is the sigmoid activation function of
the amplifier, G;; = B};' is the conductance of the resistor connecting the amplifier 2

with the amplifier j and I;; is the current flowing through the resistor R;:.

The above equation can be written in the compact form
n
Y= [E wjimi] ; (2.6)
=0
where w;; = Gjif Zizo Gji-

X,

n-1

L % %3 x,
E\%\Rﬂ z\%ffz \%513 4\%{?,-,...1\%\

Ao o,
i

1

Figure 2.2: Electronic analog model of the basic neuron.

2.1.2 Fukushima Model of the Neuron

The synaptic weights can generally be positive. zero or negative. They are called
exciting if they are positive or inhibitory if they are negative. In the model of an
artificial neuron suggested by Fukushima all synaptic weights and all input and output
signals are nonnegative. i.e. they can take zero or any positive value [23]. In this
model the inputs and corresponding synaptic weights are separated into two groups:
(i) exciting and (ii) inhibitory. The excitatory part which is the weighted sum of all
the excitatory inputs. is suppressed by the inhibitory part, which is the weighted sum
of all the inhibitory inputs in a shunting manner. The output of the neuron can be

described by the expression

1430, ajiz;
L i= _ 9~
Vi=e [1 + i bjivi e (2D

where

u; if u; 20,
o(uj) =
0 otherwise.

In this expression the a’;s mean the excitatory synaptic weights and the b’;s are the
inhibitory svnapses. The z’s and vis are excitatory inputs and inhibitory inputs,

respectively.

A series of neuron models can be derived from the above neuron structures
according to algorithms or learning rules. Usually, the specific neuron structure and

activation function are chosen according to the problems to be solved.

2.2 Artificial Neural Network Models

A wide range of models of artificial neural networks (ANNs) has been developed
for a variety of purposes: they differ in structure, implementation and principle of
operation. but share common features. Generally speaking, artificial neural networks
are computing systems made up of a number of simple highly interconnected signal

or information processing units (artificial neurons) with the following features:

1. Processing of information and memory are distributed among the whole struc-
ture. and therefore it is difficult to separate the hardware and software in the
structure. In fact. neural networks are trained, rather than programmed to

perform the given task.

Artificial neurons are highly interconnected in such a way that the state of

8

one neuron affects the potential of the large number of neurons to which it is

connected according to the weights of connection.

3. The connection weights are usually adaptive. Since adaptation can take place

everywhere in the structure of the network. we speak of distributed memory.

4. The processing units contain typically nonlinear activation functions, i.e. the
new state of the neuron is a nonlinear function of the signals created by the

firing activity of the other neurons.

5. Although the networks often use imprecise elements, they are characterized by
high robustness to noisy input data and element failure through the use of a
highly redundant distributed structure. In other words, neural networks ex-
hibit notable robustness since their functionality is not affected by parameter

variations covering a wide range.

There are many different ways to connect artificial neurons to large networks. These
different patterns of interconnections between the neurons are called architectures or
circuit structures. Such large networks may be able to perform complex tasks which
would be impossible for individual neurons. The architectures of artificial neural

networks can roughly be divided into three large categories:

o feedforward (multilayer) networks,

e recurrent networks,

e cellular networks.

In feedforward neural networks artificial neurons are arranged in a feedforward man-
ner (usually in the form of layers), i.e., each neuron may receive an input from the
external environment or from other neurons, but no feedback is formed. A feedfor-
ward network computes an output pattern in response to some input pattern. Once
trained the output response to a given input pattern will be the same regardless of
any previous network activity. This means that the feedforward neural network does
not exhibit any real dvnamics. and there are no stability problems in such networks.
For feedforward networks the dynamics are often simplified to a single instantaneous

nonlinear mapping.

On the other hand. for recurrent (feedback) neural networks the dynamics
are no longer trivial. since they consist of processing units with dynamic building
blocks (e.g. integrators or unit delays) and they operate in feedback mode. The
dynamic properties of such networks are described by a system of nonlinear ordinary
differential or difference equations. A feedforward network is represented by static

nonlinear maps. while feedback neural networks are represented by nonlinear dynamic

syvstems.

Cellular neural networks consist of special artificial neurons. called cells. which
have regular spacing and only communicate directly with their nearest neighbours.
Adjacent cells can interact with one another by means of mutual lateral interconnec-

tions. Cells not connected together can affect each other indirectly because of the

propagation of signals during the transient regime. The cells are usually organized
in a two-dimensional array of a rectangular, triangular, hexagonal or other regular
grid pattern. Due to local connectivity, every cell is excited by its own signals and
by signals flowing from its adjacent cells. Due to mutual interactions the processed

signals propagate in time within the whole array of cellular networks.

Generally speaking, an artificial neural network is characterized not only by its
architecture, but also by the type of neurons used, as well as by the learning (training)
procedure and by the form (principle) of operation. Artificial neural networks can
operate. in general. as deterministic or stochastic systems. In deterministic ANNs all
parameters and signals have a deterministic nature. In stochastic ANNs signals and
parameters are changed randomly (from time to time with the same probability) by
some random amount. In the next chapter, we will discuss stochastic neural networks

and their direct applications to combinatorial optimization issues.

Chapter 3

Optimization Networks

In many branches of science and technology, difficult optimization problems are often
encountered that have combinatorial complexity. For such problems. there is a large
but finite set of possible solutions from which we want to find one that globally min-
imizes the cost function. Typically, if the combinatorial optimization problem is of
size n, then the possible solutions are of the order e or n!. Combinatorial optimiza-
tion problems are divided into classes according to the computational time needed
to solve them. The most important and difficult class of combinatorial problems are
NP-complete (nondeterministic polynomial time complete) problems {24. 25]. Be-
cause of the combinatorial nature of these problems the time needed to solve them
grows exponentially and therefore when they have reached a large size they become
intractable [25]. For NP-complete problems no algorithm is known which provides
an exact solution to the problem in a computational time which is a polynomial in
the size of the problem. In the last 30 vears some heuristic algorithms which provide

sub-optimal solutions (in a time that is proportional to a polynomial in the size of

29

problem) have been developed {25, 26]. Unfortunately, known heuristic algorithms
for NP-complete optimization problems are problem-specific and their implementa-
tions on fast parallel computers appear to be very difficult. Recently, a promising
new approach has arisen to solve such problems efficiently and in almost real-time by
applying neural networks. In the neural network based techniques for combinatorial
optimization, the solution consists of finding the minimal point of the neural network
energy function. In this chapter. we first review traditional approaches to combina-
torial optimization. then we present Hopfield artificial neural networks, Boltzmann
machine and mean-field machine in order to pave the way to build our new energy

function for data association. which will be given in the next chapter.

3.1 Traditional Approaches to Combinatorial Optimization

Cutting planning technique is one of the methods of solving combinatorial optimiza-
tion. originally due to Gomory [27]. From an integer linear programming perspective.
the idea behind this method is to successively add extra constraints which do not ex-
clude any feasible integer points from the constraint polvtope. After each such “cut”
has been added. the LP-relaxation solution is found using the simplex algorithm. At
each step. either the LP-relaxation solution is an integer. at which point the problem
is solved. or else the LP-relaxation solution is used to generate a new cut. Cutting
plan algorithms describe how to generate cuts so that no feasible points are excluded

at each cut. and so that the algorithm converges in a finite (exponentially bounded)

number of steps.

In addition to cutting plan techniques, there are enumerative methods. based
on intelligent enumeration of all feasible solutions. The most common enumerative
procedure is branch and bound. A good survey of the techniques is given by [28].
At each stage of the branch and bound procedure. the set of possible solutions is
partitioned into ever smaller mutually exclusive sets: this is the branch operation.
An efficient algorithm is then used to compute a lower bound on the cost of any
solution in each set: this is the bound operation. As the sets become smaller, and
clearly in the limit the set will contain only a single solution, it becomes possible
to identify the best feasible solution in a set: at this point exploration of this set
can cease. Exploration of a set can also be halted if the lower bound is inferior to
any feasible solution found so far. Eventually. it is possible to stop exploring all the
remaining solution sets. for one of the above two reasons. At this point the problem
is solved. since the best feasible solution found must be the optimal solution to the
problem. The branch-and-bound algorithm provides a way of enumerating all feasible
solutions without having to consider each and every one. However. this can still take
some time. and it is often necessary to terminate the branch-and-bound algorithm
before optimality is reached. In such a situation a lower bound on the optimal solution

is available.

Another enumerative technique is dynamic programming., which is well covered
in [29]. Here it is necessary first to express the problem as a multistage decision

process: a process in which a sequence of decisions is made, the available choices being

dependent on the previous decisions. Dynamic programming exploits the principle of

optimality:

An optimal sequence of decisions has the property that whatever the ini-
tial state and initial decision may be, the remaining decisions must be an
optimal sequence of decisions with regard to the state resuiting from the

first decision.

Essentially. this means that the solutions to subproblems can be used to prune the
search for the solutions to larger subproblems. and finally to the problem itself. In
practice. enumerative methods have found many more applications than cutting plane
methods. A full description of all these approaches can be found in an integer pro-

gramming text [32].

When exact techniques still take too long, inexact heuristics, tailored to partic-
ular problems, often perform extremely well. A good example is local search. Starting
with some feasible solution. a subroutine is called to search for improved solutions
within a small neighborhood of the initial solution. The best improved solution is
stored. and the subroutine is called again in an attempt to improve this new solution.
When no further iterative improvement is possible. the algorithm halts. The skill in
designing local search algorithms lies in identifying suitable small neighborhoods in
which to search for improvements. With a good choice of neighborhood, local search
can perform well [33]. Similar local search techniques also perform well on graph

partitioning problems.

3.2 Hopfield Artificial Neural Networks

3.2.1 Analog Model

The Hopfield network belongs to the class of feedback neural networks in which the
dynamics are no longer trivial, but play an important role. The dynamics of such
networks are described by a system of nonlinear ordinary differential equations and
by an associated computation energy (also called Lyapunov or potential) function
which is minimized during the computation process. The basic Hopfield model can
be implemented by interconnecting an array of resistors, nonlinear amplifiers with
symmetrical outputs and external bias current sources as shown in Fig.3.1. The
neural network depicted in Fig.3.1 consists of n fully interconnected artificial neu-
rons. Note that a second inverting output of each amplifier is required to implement
negative (inhibitory) connection weights. The required weighted sum is produced
by superimposition of the resistor currents at the input of each nonlinear amplifier.
More precisely. the mathematical model can be derived from Kirchhoff’s Current Law
(KCL) applied to every input node of the amplifier as

=ZGji(Ii*Uj)+I§—u4, (3.1)

du;
C J
Rjo

r

=1
which can be rewritten as

du; Ui | c :
]?T=—-R_J+ZG'“$1+IJ’ J = 17---7”#

=1
where z; = ¢;(u;), C; > 0 is the capacitance, u; and z; are the internal and output

voltages of the neuron j, respectively, If is an external current applied to the input

Figure 3.1: Hopfield model of neural networks.

of neuron j. Gj; is the conductance representing the synaptic weight from neuron ¢

to neuron j defined as

and (2;(u;) is the nonlinear, differentiable, monotonically increasing activation func-

tion; typically it is defined as

oi(u) =[1+e ™)™ or ¢;(u;) = tanh(v;u;). (3.2)

The above system of differential equations can be written in the more conve-

nient normalized form

du; z .
Tj# = —ojuj+ 3 wigi(w) + 1. j=1l..n, (3.3)
=1
where
Ti c
T = T‘J'C_,'. a; = -1%— wj; = T'jGj,'. Ij = TjIj,
J
r; is the scaling resistance (a; = 1 in the special case r; = R;). The system of

differential equations can be written in the compact matrix form

."_‘t‘ — —ou+Wo(u) + L (3.4)

T

where

7 = diag(r1C1,72C2, ..., 7aCh),

a = diag(ay.az,....),
wyp W2 -t Win
Wwep W22 - W2n
W =
Wn1 Wn2 -~ Wnan

o) = [p1(w1), 2(u2), vy @nlun)]?,

I=[hI.... L)

In the original Hopfield model the matrix W of the synaptic weights is symmetrical

with diagonal elements equal to zero [34, 35].

The dvnamics of the network are determined by the values of the capacitances
C; and the resistances Rj; used. Note that the dynamics of the nonlinear amplifiers
are assumed negligible. The shape of the nonlinear characteristic of each amplifier is
determined by the gain +; > 0 which adjusts the slope or growth rate of the function.
Generally. the parameter v; is not fixed, but can be changed during the computation
process. The connection weights which are determined by the conductances Gj; of
the corresponding resistors R}; or Rj; are also generally not fixed, but they can be

variable, i.e. electronically reprogrammed for specified tasks.

The set of equilibrium points of the Hopfield neural network is determined
from the system of differential equations (3.3) by taking du;/dt =0, i.e. from the set

of nonlinear equations

— aju; + Z wj,'c,';;(u,-) + IJ' =0, g=1,....n (3.5)

=1
Hopfield has shown that a sufficient condition for the stability of the network is that
the svnaptic weights are symmetric i.e. w;; = wj; with w;; = 0.

It has been shown that the stable states of a network are the local minima

of the computational energy function which is constructed as the first integral of the

dynamic differential equations (3.3) [34, 35, 36, 37]

1 2> n o [
E(x)=~3 SO wiiziz; — Szl + > o / ’ @7 (z)dz, (3.6)
< j=1i=1 i=1 =1 7; JO

which can be written in the more compact matrix form

1 LS
E(x) = —;xTWx—xTI+ > 9_1_/0 ’ o7 (z)dz.

=17
where x = [r1.T2, .. za)T. I = [11,12,...,In]T, a; = rj/R;, and apj‘l(.zrj) is the in-
verse function of the activation function z; = ¢;(u;). The first two terms of the
so formulated energy function correspond to a quadratic cost function which. when
minimized. will vield the desired solution to the problem of interest. The last term
of the energy function is usually not used in the design procedure of neural networks,
and its value depends on the specific shape of the nonlinear activation function ;.
For high positive gain v;. as the slope of ©;(u;) approaches infinity at u; = 0. the

activation function will approach the signum function given by

. -1 if u; < 0. _
wj(u;) = sign(y;) = (3.7)
+1 if u; > 0.
In practice. the integral of ¢ '(z) can be neglected since its value is very small. If
4; (7 = 1.....n) takes on very large positive values. the nonlinear amplifiers used in

the network Fig.3.1 can be viewed as hard-limiter elements or switches. In this case

the computational energy function simplifies to the form
1 T T Q
E(x)= -5% Wx —x'L (3.8)

The stable points correspond exactly to the local minima of the computational energy

function associated with the network. The operation of the Hopfield neural network

can be considered as a minimization computation process of the energy function.

An important property of the Hopfield neural network is its guaranteed con-
vergence to stable states (often interpreted as stored memory) under the sufficient

condition that the matrix W is symmetrical.

Lyvapunov’s stability theory requires the energy function E(x) to be monoton-

ically decreasing in time. Consider the time derivative of the energy function given

by Eq.3.6
dE Z. JF dzx; = dz; []
—_— = — = - wixi + I; — aj;u
dt ;0 5 dt = dt 2 v 7
_ _dz;du; da:]
= ~XLhh @ Z e [
]—
= -1 ’ dxj ? .
= -l @l |7 (3.9)
=1
Since the time constant 7; = r;C; is positive for all j and the nonlinear inverse

function pJ-'l(.vj) is monotonically increased, we can write

dE
— < 0. 3.
<0 (3.10)

dE/dt = 0 implies dz;/dt = 0 for all j. Combining this with the fact that the energy
E(x) is bounded. we conclude that the network converges to a stable state which is

a local minimum of E(x).

The Hopfield analog model is one of the most popular models of artificial

neural networks today and has already found many applications. Moreover, it can

easily be implemented by VLSI electronic circuits. However, this model suffers in

some applications from several deficiencies, i.e.

™

Whenever the value of a resistor R}; or Rj; is altered to adjust the correspond-
ing value of the synaptic weight wyj;, the total resistance R;, which determines
the coefficient a;. changes. Thus it is impossible to independently adjust the

parameters of the network.

The internal potential u; may assume very large values and., therefore, scaling

may pose a problem in practical implementations.

The set of equilibrium points is determined by a set of nonlinear equations which
are rather difficult to solve and. therefore, it is hard to check the performance

of the system.

. The computational energy function may pose many unnecessary (spurious) local

minima which are difficult to avoid.

Mainly for these reasons. many modifications of the Hopfield model have been pro-

posed [38]. The modified models can directly be obtained from the Hopfield model by

replacing all lossy integrators and nonlinear amplifiers by ideal (lossless) integrators

with saturation. With the modifications, the network has some flexible performance,

however. it may still pose many spurious local minima.

3.2.2 Discrete Model

Let us now focus our attention on the dynamical discrete-time Hopfield models.
Discrete-time models can be derived from continuous-time models (3.3) by considering

the system of nonlinear equations (for du;/dt = 0)
n
—ajuj+2wj,~.7:,-+1j =0, 5g=1,..,n, (3.11)
=1

where z; = @;(u;). For iteratively solving the above set of nonlinear equations we can
apply the relaxation method to get

. 1
ugk+1) _
Qa;

l:zn: wﬁxf + Ij] . (3.12)

i=1

where uf = u;(k7) with the sampling period 7. Assuming for simplicity and without
loss of generality that o; = 1 for all j and taking account that z; = ;(u;) we can
write

-

2 = o) lz wjirh + IJ] . k=0.1,2,.... (3.13)

=1

where 7% = z;(k7). In the digital implementation of the discrete-time model a hard-
limiting quantizer (signum function) is usually used as the nonlinear activation func-
tion since it is more easily realized and computed than any other differentiable sigmoid
nonlinearity. So Eq.3.13 can be written as

1. if uf*P >0
] = k=0.1,... (3.14)

n
(A+1) _ _: k
T = sign E wjix; + 1
=1 —1, otherwise

For this discrete-time model the associated computational energy function can be
defined as

E(x) = —=xTWx — x"1. (3.15)
5

where x = [21, 22, s 2Ty L = [T, Ly oo, In]T, W = [wi]nxn With wji = wij. Every
neuron can take on the values +1 or —1, depending on which of the two possible
states it is in. The next state of the whole network is computed from the current
state by performing the evaluation according to Eq.3.14 on a subset of the neurons
to be denoted by {N'} [39]. The number of neurons of this set can vary from 1 to n.
The discrete-time neural network can assume different models during its operation
(depending on the number of neurons which can change their state in each time
interval). If the computation is performed with all neurons in the same time. we say
that the network operates in a fullv parallel mode. If the computation is performed
on a single neuron in any time interval, then we say that the neural network operates
in a serial mode. All the other cases with 1 < N < n (where NV denotes the number of
neurons in the set {N'}) are simply called parallel modes of operation. The set {N}
can be chosen randomly or according to some deterministic rule. The convergence
property and stability of a discrete-time neural network depend on the model of

operation and the structure of the matrix W of synaptic weights.
Let us consider a discrete-time neural network operating in the serial mode.

Suppose that r; is changed to ng+1) = x;' + Ax; at some arbitrary time t = (k+1)7.

The resulting change in the energy function given by Eq.3.15 can be expressed as

AE(x) = E(x%) — E(x*)

1[& L y 1
= —ijg ij,‘l‘f-i-z:wlj:tf' —ijj(A.’Bj)2——A$jIj. (3.16)

i=1 =1

Assuming that the interconnection matrix W is symmetric, we can write
i 1
AEx)=-AQz; [Z wjizt + Ij] - 5(Az;) w;;. (3.17)
i=1 <
Note that the term in brackets is exactly the argument of the signum function in
Fq.3.14 and, therefore. the signs of Az; and the sign of the term in brackets are the
same (or Axz; = 0). From this consideration. it can be seen that the energy function
is nonincreasing if the interconnection matrix W is symmetric with nonnegative el-
ements in the main diagonal (w;; = 0). Since the energy function is bounded from
below. the network will always converge to a stable state which corresponds to a
local minimum in the energy function. Up to now. we can conclude that both analog
and discrete-time models of the Hopfield network converge to a local minimum. In
physical applications. we will need to find the global minimum. It will be shown in

the next section that this can be carried out using the Boltzmann machine.

3.3 Boltzmann Machine and Simulated Annealing

A large class of combinatorial optimization problems can be solved by the Hopfield

model of neural networks described by the computational energy function

1 n n n 1
E(x)==53 3 wyziz;— 3 i = —=xTWx —xTL (3.18)
= i=1 =1 i=1 =
where the vector x = [.’L‘],.’L‘Q....,.’Bn]T represents the state of the neural network,
the matrix W = [w;;] is a symmetric matrix which represents the synaptic weights

between the neurons and vector I = [I4, Iz, ..., I]T contains the input bias signals. Let

us consider the discontinuous Hopfield model of a neural network which contains n
binary neurons. Each neuron can take on only two states, i.e. ON (+1) and OFF (-1);
this means x; = +1 or z; = —1. With symmetric connection weights (w;; = wj;) the
local minima of the energy function are reached at the stable states. A local minimum
can be reached when the network is iterated from an initial state by updating each

neuron asynchronously in accordance with the updating rule

3

25 = sign l:Z wijxf + Iz] , =1, (3.19)

i=1

We recall here that asynchronous iterations are performed in such a way that at

(k+1)

each discrete-time point t;41 = (k + 1)7 only one new value z;(txy1) = 1; is

generated leaving the other z; (j # ¢) to be computed during a future iteration. In
contrast. for syvnchronous iterations at time 44 a new value xgk“) is generated for
every x; using the values z¥ which were computed at the last iterations. A common
pathology of the synchronous mode of operation of the discrete-time mode is a limit
cycle behaviour (i.e. the solution oscillates between two states) which often occurs in
nonlinear discrete-time systems. The important advantage of the asynchronous mode

of operation is the fact that the neural network always converges to a stable state

which corresponds to a local minimum of the energy function.

The energy function E(x) may contain many local minima, so that it may
be very difficult to find a good solution using the algorithm given by Eq.3.19 which
is only guaranteed to converge to the nearest local minimum. In order to escape

from a bad local minimum one may be forced to use more sophisticated optimization

strategies than the gradient descent. There exist different stochastic procedures for
performing the hill-climbing necessary to avoid getting stuck in a local minimum. A
frequently exercised and promising approach is the Boltzmann machine [40]. The
Boltzmann machine is a kind of stochastic feedback neural network consisting of
binary neurons connected mutually by symmetric weights [40, 41, 47, 48]. In fact
the Boltzmann machine is an energy minimization network consisting of statistical
neurons which appear probabilistically in one of two states ON or OFF(e.g. +1.
—1 or 1. 0). The algorithm used by the Boltzmann machine to locate the energy
function minima follows the simulated annealing approach [40, 42, 43. 44]. Simulated
annealing is a stochastic strategy for searching the state of neurons corresponding to
the global minimum of the energy function (3.18). This strategy has an analogy to the
physical behaviour of annealing of a molten solid [42, 45]. At a high temperature all
particles (atoms) of a metal lose the solid phase so that the positions themselves are
random according to statistical mechanics (i.e. at a high temperature the particles
are in violent random motion). As with all physical systems the particles of the
molten metal tend toward the minimum energy state, but a high thermal energy
prevents this. The minimum energy state usually means a highly ordered state such
as a defect-free crvstal lattice. In order to achieve the defect-free crystal the metal is
annealed. i.e. at first it is heated to an appropriate temperature above the melting
point and then cooled slowly until the metal freezes into a “good” crystal. The
slow cooling is usually necessary to prevent dislocations and other crystal lattice

disruptions. The metal having a random thermal energy must also be gradually and

carefully cooled down in order to reach the defect-free crystal state corresponding to

the global minimum of the thermal energy.

The Boltzmann machine introduces artificial thermal noise, whose amplitudeis
gradually decreased with time. This noise allows occasional hill-climbing interspersed
with descents. Strictly speaking. the fluctuations of the energy function E(x) are
allowed to be a Boltzmann probabilistic distribution (hence the name of the network)

exp [~ £7|
> yexp []

P(x) = (3.20)

where the sum runs over all possible configurations of the states, and T is a controlling
parameter called the computational temperature. In physical systems the tempera-
ture T has physical meaning: in the Boltzmann machine the temperature is simply a
parameter which controls the magnitude of fluctuations of the energy function £(x).
The idea is to apply uniform random perturbations to the output states of the neurons
and then determine the resulting change AE in the energy. If the energy is reduced
the new configuration is accepted. However, if the energy is increased the new config-
uration may also be accepted but with a probability proportional to exp(— A E/T).
In other words. we must select a random number N, between zero and one using a
uniform density function. If N, < exp(— A E/T). then the new state is accepted.
otherwise it is rejected. At a high temperature the probability of the energy function
moving uphill is large. However, at a low temperature the probability is low, i.e. as
the temperature decreases fewer uphill moves are allowed. The simulated annealing

allows moves uphill in a controlled fashion, so there is no danger of jumping out of a

local minimum and falling into a worse one.

For the energy function (3.18) the probability of a particular neuron being in

the ON(+) or OFF(-1) state is given by [47, 48]

_ _ exp(xu;/T) q
Plai= 1) = e Ty (3.21)

where w; =Y wijz;j + L, =i € {-1,1} Vi.

=1
In practice the probabilistic acceptance or rejection of the state is achieved by adding

to each neuron a separate “thermal” noise component N;. So the output state of any

neuron can be computed as
x§k+1) = tanh [7 [E w;j:tf + N;:H , where ~v>1,
;=0

where z§ is the input bias signal. The gain ~ should be high enough so that the
sigmoid activation function closely approximates the signum function. Each neuron
should be fed by an additive zero-mean independent noise source in such a way that
its state will be unaffected by the noise applied to the other neurons. The noise must
be slowly reduced in time in order to perform a process of simulated annealing. The
efficiency of the simulated annealing approach crucially depends on the choice of the
cooling schedule for the control parameter T Similar to the diffusion optimization
algorithm in the standard annealing schedule the temperature T is inversely propor-
tional to a logarithmic function of time. Such a temperature cooling schedule is rather

slow. often too slow to be practical. Generally speaking, if the cooling schedule is too

slow, a satisfactory solution might never be reached, and if it is too fast. a premature

convergence to a local minimum might occur. The problem of accelerating the sim-
ulated annealing algorithm is the subject of current active research. The simulated

annealing algorithm can be performed as follows:

1. Get an initial system configuration; begin with an arbitrary state x(n).

o

Define a parameter T’ which represents a computational temperature, start with

T at a large value.

3. Make a small random change in the state.

4. Evaluate the resulting change in the energy function E(x).

5. If the energy function is reduced. retain the new state, otherwise accept the
transition to the new state with the probability P = exp(— A E/T). For this
purpose select a random number N, from a uniform distribution between zero
and one. If P(AFE) is greater than N, retain the new state. otherwise return to

the previous state.

6. Repeat steps 3 through 5 until the system reaches an equilibrium. i.e. until the

number of accepted transitions becomes insignificant.

. Update the temperature T’ according to an annealing schedule and repeat steps

~1

3 through 6. In practice, the factor used for decreasing the temperature from

one step to another is chosen as 0.85 to 0.96.

The algorithm stops when the temperature is small enough to consider the system to

have reached a state near ground level (absolute minimum). The main drawback of the

simulated annealing algorithm is a very long computation time, since it is necessary
to perform a large number of random searches (elementary transformations) at each
temperature step to arrive near the equilibrium state. One promising approach for
speeding up the convergence in order to arrive at an optimal solution is to apply the

mean-field theory [47].

3.4 Mean-Field-Theory Machine and Annealing Algorithm

In [49]. Peterson demonstrated that the stochastic simulated annealing process in
the Boltzmann machine can be replaced by a set of deterministic equations in the
so called mean-field-theory (MFT) approximation. This mean-field-theory learning
algorithm typically provides a substantial speed-up over the Boltzmann machine.
For feature recognition problems. the mean-field-theory requires a substantially small
number of training epochs than BP and provides as good generalization properties as
that obtained by BP. Peterson[48] applied the mean-field-theory idea into TSP. This
method limits the redundancy of measurements within the neural network. a small
population of observations are used and the quality of the solution for TSP is in parity
with those obtained by using optimally tuned simulated annealing heuristics. Clearly,
the measurements in the stochastic network (Boltzmann machine) are statistically
random. Replacing a large amount of random measurements by the mean of the
measurements is a shortcut to finding a neuron stable state. The MF'T machine is to

use a small population of observations to achieve as good a solution as that obtained

by the Boltzmann machine which uses a large amount of measurements within the

neural network.

The Mean-field-theory machine is a kind of deterministic feedback neural net-
work consisting of nonlinear continuous neurons connected mutually by mean fields
(functions of mean values of the binary neuron states). In contrast to simulated
annealing, which is a purely stochastic algorithm, the mean-field-theory (MF T) pro-
cedure is deterministic [47. 48]. The basic idea is to replace stochastic binary neurons.
say with two binary states z; = 1. by analog neurons with continuous outputs v;
constrained between —1 and 1. More precisely. the continuous variable v; of the
ith analog neuron will be determined as the average (mean) value of the ith binary

neuron variable x; at the temperature T, which can be written mathematically as

vi=<a; > lr=Plei= +1)—Pla; = —-1) = tanh [%il . (3.22)

Assuming that the energy function. called the free energy. of the analog model of the

neural network is defined as

n T

EXU)=-—3§:§:uwvﬂy——§:vJ}=-—évTVVv-vTL (3.23)

i=1y3=1 =1

the MFT approximation takes the form

18qu, i=l...n. (3.24)

v; = tanh H;Z; wi;v; + I,~:| /T} = tanh [_—Tf e

In this way the complex stochastic process of simulated annealing has been approx-
imated by a system of nonlinear deterministic equations called mean-field annealing

(MFA) equations [48]. We denote %:% as the mean field, which is the connection

between the neurons. The solution of these equations should give the global minimum
of the energy function E(v). under the assumption that the time schedule of changing
the controlling parameter T is appropriately chosen. However, mathematically. the
rigorous proof of the convergence of the mean-field-theory machine is still a void to
be filled. During the annealing process, it has been found [41, 47. 48] that above a
certain critical temperature T,, all the variables v; remain nearly constant, having
approximately the same value. At the critical temperature, the network exhibits a
behavior analogous to a phase transition, and all the variables v; start diverging in
value. Since the convergence is very slow. if any, for T > T., the efficiency of the

network can be greatly improved by slowing down the annealing process at T = T..

The MFA equations can be solved by various kinds of neural network models.
At first. let us consider the continuous Hopfield model (for details see Section 3.2)

described by the system of nonlinear differential equations

du,‘ U; i
Ci'd_t = _E +§ szv_] + Iu
v; = tanh(yu:), 1=1.....n, (3.25)

where G;; is the conductance representing the synaptic weight from neuron j to
neuron i. I; is the input external current of the neuron i, u; is the internal potential
of the neuron 7, v; is the output voltage of the neuron ¢, C; is the capacitance.
R; = [RLO + 0=t Gij]_l is the total input resistance of the itk neuron, 7; is the slope
of the activation function of the ith neuron. Note that the set of equilibrium points can

be determined from the above system of differential equations taking du;/dt = 0, V7,

i.e.

u; = [Z Gi;v; + Ii] R;, 1=1,...,n. (3.26)

=1

Taking into account Eq.3.25 and assuming that v; = 1/(R;T), we can write

U;

v; = tanh(R_T .

Hence

v; = tanh [[i G,’j”b‘j +];} /T:l . (3.28)

J=1

Note that Eq.3.28 are equivalent to the MFA equation (3.24) at an equilibrium under
the assumption that

wi; = Gij- (3.29)

We have also shown that the continuous Hopfield model with sigmoid activation func-
tions directly simulates the MFA equations, provided that the nonlinear differential

equations of continuous Hopfield network are converged.

It is worth mentioning here that the Hopfield neural network with discontin-
uous (hard-limiter) activation functions has a smaller degree of freedom. since it is
constrained to changing the states along the edges of an n—dimensional hypercube
QO = {—1.1}", thereby increasing the probability of being trapped in a local min-
ima. Replacing the signum activation functions by sigmoid functions has the effect
of smoothing out some of the local minima. Especially. if the neurons have a low
gain. the network can traverse the interior of a hypercube 2. but then the discrete
final states {—1.1} are not guaranteed. Therefore, it is usually necessary to gradually

increase the gains of neurons during the optimization process to provide a discrete

final state vector. This means that in the hardware implementation of the Hopfield
network we should use amplifiers with tuned gains ;. Varying the gain of the neurons
(amplifiers) is equivalent to changing the temperature T. If the gain of all neurons is
very small (which corresponds to a high temperature T) the neural network behaves
approximately as a linear system (since all amplifiers operate in the linear region), so
each neuron could take any value between —1 and 1 instead of the well-defined binary
state (—1 or 1). However, if the neurons have a high gain (which corresponds to
a low temperature) the states of the neurons will be forced to either the ON or OFF

state due to the positive feedback of the network.

There are many different possible implementations of the MFA equations.
As an alternative to Eqs.3.25 one can use. for example. the system of differential

equations [4T]

(lc;zif) = —u; {Lri(t) — tanh l:(i wivi(t) + I,-) /T} } . i=1.....n. (3.30)

=1

where p; > 0. The above system of equations can be realized by the simple analog
neural network. they can also be solved by using iteration formulas. i.e. by a discrete-

time model. For example. by applying the Euler rule

dvi(t) _ vi((k+1)7) = vi(kr) oD — ok o
o = . = -) (3.31)

we obtain from Eq.3.30 the iterative algorithm

o = of oy {Lf‘ — tanh [(Z wijvjl-" + I,-) /T:l } .
i=1

kI =0.1.2...., i=1.2,..,n. (3.32)

In the special case that 7u; =1, Vi, the above algorithm simplifies to

'Uz(k-H) = tanh [(Z w,-jvf -+ L) /T] s k=0,1,2,.., 1=1,2,....n. (333)

i=1

Note that for a temperature T close to zero Eqgs.3.33 closely approximates Egs.3.19.

In many applications of neural networks the output states are represented by
{0.1} instead of {—1.1}. For this representation of the output signals of neurons the

MFA equations 3.24 can be modified as

v = 1 {1 + tanh {[i W + 1,] /T:‘ } . t=1,....n. (3.34)

=1

|

This means that in hardware realizations of these equations, the bipolar sigmoid
activation functions (the hyperbolic tangent) must be replaced by the unipolar logistic

activation functions.

The important advantage of the MFA equations 3.24 and 3.34 is that they
provide a good estimation of the collective nature of the stochastic neural networks
independently of their practical implementations. i.e. without appealing to compli-
cated neural network dynamics. In other words. they provide a shortcut to achieve
an optimal solution by the use of a small population of observations within the neural

network.

In summary. instead of directly simulating the stochastic network (Boltzmann
machine) it is possible to estimate its mean behaviour using the mean-field theory
which replaces each stochastic binary variable z; € {-1,1} by a deterministic contin-

uous variable v; € [—1,1] (=1 € v < 1) representing the mean value of the stochastic

variable. In this way the simulated annealing procedure is replaced by a determinis-
tic dynamic procedure. The mean-field annealing algorithm exhibits better (quicker)
convergence while preserving a nearly equal quality of the solution afforded by the
simulated annealing approach. In the next chapter, as a further development of the
mean-field theory. we create a new energy function of the mean-field-theory machine

designed for multiple target data association.

Chapter 4

Neural Data Association

Multiple-target-tracking (MTT) is an essential requirement for surveillance systems
employing one or more sensors, together with computer subsystems. to interpret
an environment that includes both true targets and false alarms. With the recent
proliferation and the increasing sophistication of new technologies. system designers
are recognizing that the incorporation of new techniques, such as neural networks.
fuzzy logics and others, into MTT will make the surveillance system more powerful
(7). (17]. [33]. In MTT. the key component is data association or data correlation. As
far as data association is concerned, the probabilistic data association (PDA) and all-
neighbours joint probabilistic data association (JPDA) methods are currently popular
in the literature related to tracking. Both techniques probabilistically “smooth” or
~filter” the data within the gate of interest [53]. The predicted track positions are

associated with the smoothed points instead of the real plots.

This chapter develops and analyses the neural network for measurement data

association, i.e., assigning plots (measurements of target positions) to predicted track
positions. This particular design of neural network can achieve functional synthesis.
For a simple example of functional synthesis, we will refer to mathematical func-
tion approximation. It has found a wider range of applications in the optimization

processing area. particularly in multitarget data association in recent years.

The measurement data association (MDA) problem can be viewed as an exam-
ple of the typical combinatorial optimization like traveling salesman problem (TSP).
In TSP. given the positions of a specified number of cities. assumed to lie in a plane.
the problem is to find the shortest path that starts and finishes at the same city.
The TSP is thus simple to state but hard to solve exactly, in that there is no known
method of finding the optimum tour, short of computing the length of every possible
tour and then selecting the shortest one. In a pioneering paper among many publica-
tions. Hopfield and Tank (1985) demonstrated how an analog network, based on the
svstem of coupled first-order differential equations, can be used to represent a solution
of the TSP. Specifically, the synaptic weights of the neural network are determined
by distances between the cities visited on the tour. and the optimum solution to the
problem is a fixed point of neurodynamical equations. Herein a key point is how to
map the combinatorial optimization problem onto the continuous Hopfield network.
The network acts to minimize a single energy (Liapunov) function, and yet the typ-
ical combinatorial optimization problem requires the minimization of an objective
function subject to some hard constraints. If any of these constraints is violated, the

solution is considered to be invalid. The early mapping procedures were based on a

Liapunov function constructed in an intuitive manner, usually employing one term

for each constraint. as shown by
E=EP +qE+cE5+.... (4.1)

The first term. E°. is the objective function to be minimized; it is determined by the
problem at hand. The remaining terms, Ef, E. ..., represent penalty functions whose
minimization satisfies the constraints. The ¢;, cs. ..., are constant weights assigned to
the respective penalty functions Ef. E3, ..., usually by trial and error. Unfortunately,
the many terms in the Liapunov function of Eq.4.1 tend to frustrate one another. and

the success of the neural network is highly sensitive to the relative values of ¢y, ¢a. ...

Hopfield organization networks have been applied to the TSP by various re-
searchers. but with varying degrees of success because of recurring instability and
local minimization sticking. Usually. there are five constants to be decided arbitrarily
[17] [51]. In practice, it is very difficult to choose the five constants to make sure
that the optimization will be achieved. On the other hand. the Boltzmann machine
is another alternative for solving the TSP. However, the Boltzmann machine’s con-
vergence speed is very slow, even though it can achieve an optimal solution of the
TSP.

MDA has been studied by several authors [17]. It can be structured in a basic
framework very similar to that of the classic TSP. Therefore the untractable problems

in the TSP also exist in MDA.

To cope with these problems, this chapter presents the mean-field-theory ma-
chine for MDA which is an alternative of the Hopfield network and the Boltzmann
machine. and has the advantages of both. Since the neuron arrangement is the same
as for the Hopfield network. we call it mean field Hopfield network. In the chapter, we
present the new energy functions and its calculation to get the optimal plot/track as-
sociation. and derive the critical simulated annealing temperature that is very useful
for neural computation. The convergent theorem is put forward. which describes the
dyvnamic of the mean field machine. Then we describe the performance of the mean
field Hopfield network for MDA with the different accuracies of measurement data.
and discuss the applicability of the neural network. The new technique developed

here is denoted as mean-field-theory data association (MFTDA).

4.1 A New Energy Function for MDA and Neural Compu-

tation

4.1.1 TSP Network and Comments on Its Solution

Hopfield [35] [37] demonstrated that neural networks can solve optimization problems.
such as the TSP. which is similar to the association problem. A major contribution
on his part is the demonstration that an appropriately constructed network will find
local minima of an energy function which is defined as:

; N

N N
F = —3 Z ZT,']'U,'UJ' bt ZviI;, (42)

4 J

o) -

where E is the energy. N is the total number of neurons, v; is the value of the itk
neuron, T}; is a connection weight on the link from the jth neuron to the ith neuron,
and I; is the external excitation applied to the :th neuron. As long as the weights
T;; and Tj; are equal, the network is symmetric, and E above is a Liapunov function

characterizing the network’s dynamics. the network seeks a stable equilibrium.

Hopfield showed that if an optimization problem can be mapped into this
energy equation, a neural network can be designed to solve it. However, because the
network seeks local minima of the energy function. it is not certain that the solution

obtained with the Hopfield network is globally optimal.

Fig.4.1 is the simple representation for the solution to the TSP. It shows a
square grid with each row corresponding to a city and each column to a position in
the tour. Every square in the position (X.7) in the grid represents the event “city X
is in position 7 in the tour.” If the output of a neuron in the position (X.2) is “17,

the city X will be visited in position z.

The neural network energy function used in Hopfield and Tank (1985) [35] in
an attempt to generate a minimal length tour through a set of n cities (i.e. the TSP)

1s

A
E = 7222”\%\:*- Zzsz,
= X ¢ jF#i i X Y#X
C
+7 Zzb\z) +
D
72 z Zduvm(vyzﬂ + vyi-1)s (4.3)
< X Y#X i

where the v's are continuous variables in the region [0,1] such that vx; = 1 indicates

TSP and Plot and Track Association
Position i

Ni-
City X g? Plot X
N

Track j

Figure 4.1: Neuron configuration for TSP and MDA.

that city X is the ith city to be visited (otherwise. vx; = 0). The first term of
Eq.4.3 attempts to insure that any city X does not show up on the final tour in
two (or more) positions ¢ and j. The second term biases the final solution such that
any two cities X and Y are not assigned to be visited in the same position ¢ on the
tour. The third term makes sure that the total tour visits all n cities. The final
term sums the distances. dxy. between adjacent cities on the tour so as to find the
total tour length. (All tour indexing operations are done modulo-n.) Thus. the first
three penalty terms try to maintain a feasible solution while the final term steers the
neural network towards those valid tours with the shortest length. Comparing Eq.4.3

to Eq.4.2. it is easy to find neuron interconnection weights Tis [17).

The settings for A, B, C, and D determine the priority of each term in the

objective function. Setting low values for the parameters A, B, and C emphasizes
the length term and usually leads to short, invalid tours. Alternatively, making A,
B. and C large stiffens the penalties so much that the network will converge to any
feasible solution regardless of its total length. From experimentation, it is known that
good values for A. B, C. and D may exist in very narrow. difficult-to-find regions in

the parameter space.

Smith [17] and others deployed above energy function to carry out the mea-
surement data association. In Fig.4.1, each row corresponds to a plot and each column
to a track. Each square in the grid stands for the event “plot X associates with track
7.7 Using above energy function for MDA. there are five constants to be decided by
trial and error. (In addition to A. B. C, D. the n has to be chosen arbitrarily.) It is

not feasible to apply this technique to tracking systems.

4.1.2 Derivation of a New Energy Function

A highly attractive feature of the Boltzmann machine s that it can avoid local minima
by incorporating a relaxation technique based on simulated annealing into its learning
procedure. However. the use of simulated annealing requires excessively large com-
putation times: this fact has hindered experimentation with the Boltzmann machine.
Not only does simulated annealing require measurements at a sequence of temper-
atures that defines the annealing cycle, but also each measurement requires many

sweeps of its own. To overcome this major limitation of the Boltzmann machine, we

may use a mean-field approximation, according to which the stochastic, binary-state

neurons of the Boltzmann machine are replaced by deterministic, analog ones.

The idea of mean-field approximation is well known in statistical physics. In
the case of a network with a large number of neurons. the neural states contain vastly
more information than we usually require in practice. In fact, to answer the most
familiar physical questions about the stochastic behavior of the network, we need
only know the average values of neural states. In information processing. using the
smaller amount of samples can achieve the same effectiveness as using a large amount
of random samples by employing mean fields. In a combinatorial optimization, the
constraints are incorporated into an energy function [48]. Therefore. the network
needs not learn from outside. In the application of the mean-field-theory to optimiza-
tion problems. the mean fields act as the links between the neurons. These links will

guide the energy function to the lowest value during the evolution of neuron states.

In Eq.4.3. the neurons are fully interconnected by equivalent transition func-
tions [17) [35]. In a mean-field-theory machine. neurons are interconnected by mean
fields. Referring to the template of plot/track association in Fig.4.1. and ponder-
ing deeply over the Hopfield approach, the third term in Eq.4.3 can be omitted by
neural normalization. We can simplify the energy function by means of the mean-
field-theory. and avoid the local minimization sticking through simulated temperature
annealing. An energy function can be built in such way that its global minimum value
corresponds to minimal summation of plot-track distances when the association ar-

rives at an optimal status. It can be considered as a cost function; the cost function

takes a minimal value when the plot-track association is in the optimal status. When

we deploy the neural normalization [51], the MDA energy function can be written as

=§ZZZ v\ﬂ/Y:'*‘ZZL\zZv\’ dx;. (4.4)

i X Y#X
where X. Y denote plot index and ¢ .j denote track index, vx; is the neuron output
which represents the probability that plot X associates with track . dx; is the distance
between plot X and track j. and d, is a penalty constant. The first term maintains
feasibility by acting as a repulsive force that discourages two plots from associating
with the same track. while the second term accounts for the total distances between
plots and tracks when the neuron states arrive at a state of optimal association. These
two terms are related through a single parameter, d,. which is simply set to a value
slightly larger than the twice the largest distance between any plot and track. If the
value of the constant d,, is set large. the first term in Eq.4.4 is emphasized. otherwise,

the second term is emphasized.

Note that no term is provided in Eq.4.4 to penalize a plot which is not assigned
or is assigned more than once. This constraint is handled in an explicit manner as
follows: Each neuron’s function level vy; is looked upon as the probability that plot
X is currently assigned to track i as the plots undergo random thermal perturbations.
At a given simulated temperature T, the probability that plot X associates with track

i obevs a Boltzmann distribution

vy; x e Exi/T, (4.5)

where E.; is the mean field of a neuron that corresponds to plot X and track ¢, which

can be expressed as

Exi=d, > vyi+ Y vx;i(dx; + dxi). (4.6)
Y#X J

The neurons are interconnected through the mean field strength. Thus, the tracks
with higher mean fields are less likely to be associated than those with lower values

which correspond to shorter plot-track distances with fewer violated constraints. In

order to be a true probability, the neural function levels are normalized as follows:

e—ExilT

¥, e Ex /T’ (.7

vxi =

which guarantees that each plot will be assigned once (S;vx: = 1). The first term
in Eq.4.4 guarantees that each track will associate one plot. and the second term
in Eq.4.4 stands for the total distances between plots and tracks which will be the
shortest when a state of optimization is achieved. Thus. valid and global distance
minimization plot-track assignments are guaranteed through the combined action of
the new objective function and the explicit normalization procedure when the network
arrives at a state of optimization. The network optimization state can be obtained

by the use of temperature annealing.

4.1.3 Calculations

The quantity E. given by Eq.4.4, is the objective function that is to be minimized.
It depends on a vector argument, T = {vx;}, and is a super-hyperboloid. The large

number of possible combinations of the interacting variables makes searching for the

optimal solution very difficult. Here temperature annealing is incorporated into the
calculation of the objective function that was originally used by Hopfield and Tank
(1985), where the neural gain () was increased as the network evolved. Actually.
the temperature annealing is the Boltzmann machine’s operational behavior. When
T changes. the super-hyperboloid changes. too. This activity overcomes the problem
of sticking at a local minimum. The pseudo-code for the mean field Hopfield network
calculation is presented as follows: This algorithm begins at a temperature somewhat
above the critical point T, and visits a decreasing series of temperatures as specified

by a cooling constant a < 1.

initialize each neuron
T < T.+ AT
while T > T. — AT
continue until a fixed-point is found
select a plot X at random
sum =0
fori:=1:n
Exi=dpYyzx vyi + 5; vxjldxj + dxi)
sum < sum + e~ Exi/T
fori=1:n

vxi = e~ ExdT [sum

d
E=%25,Tx Tygx vXivyi + Lx 2 UXi 1; vxjdx;

T < aT

where n is the number of tracks. From the above we can see that this algorithm

has the following features:

1. Neurons are fully interconnected by the mean field,

™

The probability that plot X associates track 7 obeys a Boltzmann distribution.
3. Use of neuron normalization.
1. Use of simulated temperature annealing.

5. Neuron activity levels update non-synchronously.

In Fig.4.2 is given an 3-pair plot-track data association result. In the solution
searching process. the cooling constant, @ = 0.9, was used to make a series of temper-
ature changes. At a low temperature, the neurons come to rest in a stable state. and
the energy function achieves the minimal value, E = 1267. This value is the total
distance of the eight associated plot-track pairs, where global distance minimization
is achieved. If. in this example. we deployed the nearest neighbour association. the
nearest plot and track would be associated during the first operation. Then in order
to complete the eight-pair plot-track association, the plots and tracks which had large
separations would have to be linked together. The cost (or risk) would be larger than

for the optimal case. In Fig.4.3 is given the nearest neighbour association result.

plot to track association, O: piot; *: track
800 T - r T T v r r

7001 -1

600+ .

j Etot=1267

300k / —
200+ 4

1 o850 300 350 400 450 500 55 600 650 700 750
X_position

Y_posilion
[4]]
(o]
(=]
T

H

(o]

o
T
1

Figure 4.2: Neural data association result for eight plot-track pairs.
plot to track association, O: plot; *: track
800 T T T T T T T T v
700+ / —

600 -

[0}
3

T
*\0
1

Y_position
b
o
o
T
1

300

200 4

10 . ; L X " A A . A
850 300 350 400 450 500 550 600 650 700 750
X_position

Figure 4.3: Nearest neighbour association result for eight plot-track pairs.

4.2 Critical Annealing Temperature

From Eq.4.5 and Eq.4.7, it can be seen that at high temperatures each plot will be

smeared equally across each track position:
1 -
T—oo0o=>vy; — —, VX.0.
n

At lower temperatures. the plots coagulate onto particular tracks. which causes the
total distance to be minimized. To gain further understanding of the neural asso-
ciation behavior. let us consider a 15-pair plot/track association example. In this
case. the X — Y position coordinate is normalized. Each plot position is generated
by a random Gaussian distribution with the corresponding track position being the
distribution center. In Fig.4.4 is shown the association result. In Fig.4.5 is pre-
sented the neuron activation function signal when the energy function is reduced
to its minimum value. Fig.4.6 is the neuron mean field state at the final optimal
stage. In Fig.4.T is presented the variation of the energy function versus annealing
temperature. Fig.4.8 shows the variation of the energy function against the number
of iteration. Figs.4.4-4.8 describe the network evolving process in detail. In this ex-
ample. as the temperature varies from a large value to a small one. the value of the
energy function drops and finally the neuron mean fields are in their stable state, i.e..
the neurons corresponding to optimal association are saturated. At this stage. the

network remains at the equilibrium point which is the optimal one.

plot to track association, O: plot; *: track

6 — T T T T v T T
al \ " 4
[S
s S —
I |
2 \o \9 4
o —

€5 -4 -3 -2 -1 [§) 1 2 3 a
X_position

Figure 4.4: Association result for 15 plot-track pairs.

Neuron logic decision

Track index Plot index

Figure 4.5: Neuron activation function signal for 15 plot-track pairs.

Neuron state

35+
304
254
20 4

15

Track index o o

Plot index

Figure 4.6: Neuron mean field state for 15 plot-track pairs.

Relationship between temperature and energy

25

20+

Energy (dB)

151

10 1.5 2 2.5 3 35 P 2.5 5

T: temperature

Figure 4.7: Energy variation versus simulated temperature for 15 plot-track pairs.

Relationship between energy and No. of iteration
30 T T T T T T T k3

28

26

24

Energy (dB)
M) N
(o] N

-
o

16

14

12

! 00 100 200 300 400 500 600 700 800 900

No. of iteration

Figure 4.8: Energy variation versus No. of iteration for 15 plot-track pairs.

Based on a large number of experiments, we have found that there is a pre-
cipitous drop in E at certain temperatures. Continuing the annealing through tem-
peratures much beyond the drop point is wasted work since it has little effect on the
energy function; actually, most of the optimization occurs at a lower temperature,
which is the so called critical temperature T.. Carrying out the annealing at temper-
atures much less than the critical one does not qualitatively alter the solution found
near T.. but serves only to saturate the neurons at 1 or 0. Thus annealing is useful
only over a certain range around the critical temperature. In practice, annealing will
be carried out for temperatures below T. to saturate the neurons in order to invoke
assignment logic. Carrying out annealing around T. will save on the computation

overload. Now we start to find the critical temperature.

At a given simulated temperature, T, the energy function is a rough super-
hyperboloid. At high temperatures in an n-pair plot-track case, each track will as-
sociate with each plot with a probability of approximately -71; Suppose that plot X
coagulates with track ¢ , and the probability of plot Y associating track : changes by

a small amount. Avy;. From Eq. 4.6, we have

A Ex; = d, D vy, (4.8)
and from Eq.4.7. we derive
Avxi _ e Ex/T(—7)(j—CE_.EXJT/I; — e Ex/T) (4.9)
AEx; (X, e ExilT)?
and by simplifving. we obtain
Dvuy;
= vyi(vxi — 1)/T 1
NPT (vxi —1)/T (4.10)

By combining the above formulas, we get
Avxi = vxilvxi = 1)/T x dp Doy, (4.11)

For the critical temperature T.. Avy; = — & vx;. i.e.. when plot X coagulates on
track 7. any change of the neuron activation function signal. vy, will be absorbed by
the neuron activation function signal vx;. Before coagulation, the probability of each
plot associating with each track is approximately ;1; Therefore we get roughly the

critical temperature.

I.= dp. (4.12)

During experimentation. the annealing temperature is changed from large to small.
At the beginning, the annealing temperature has to be larger than T, by an amount
AT. In Fig.4.7, where T, = 3. we can see that when the annealing temperature is
sufficiently small. the slope of the energy is close to zero. Therefore. the neurons are

in a stable state. which allows a decision to be made.

4.3 Dynamics of Mean-Field-Theory Machine

The stability of a nonlinear dynamical system 1s a difficult issue to deal with. When
we speak of the stability problem, those of us with an engineering background usu-
ally think in terms of the bounded input-bounded output (BIBO) stability criterion.
According to this criterion. stability means that the output of a system must not
grow without bound as a result of a bounded input. initial condition, or unwanted
disturbance. The BIBO stability criterion is well suitable for 2 linear dynamical sys-
tem. However. it is useless to apply it to neural networks, simply because all such
nonlinear dvnamical systems are BIBO stable because of the saturating nonlinearity

built into the constitution of a neuron.

The state of neural network is defined by a set of state variables whose values
are neuron outputs. When the neural network evolves dynamically. a sequence of its
states forms a trajectory. For investigating a nonlinear dynamical system with an

equilibrium state X. the definitions of stability and convergence are as follows:

Definition 1. The equilibrium state X is said to be uniformly stable if for any

given positive . there exists a positive é such that the condition
l|x(0) —x|| < &

implies
lIx(¢) —x|| <e

for all ¢t > 0.

This definition states that a trajectory of the system can be made to stay
within a small neighbourhood of the equilibrium state X if the initial state x(0) is

close to X.

Definition 2. The equilibrium state X is said to be convergent if there exists a

positive é such that the condition
x(0) — x|l < 6
implies that

x(t) =X as t— o0

The meaning of this second definition is that if the initial state x(0) of a
trajectory is close enough to the equilibrium state X, then the trajectory described

by the state vector x(¢) will approach X as time ¢ approaches infinity.

Definition 3. The equilibrium state X is said to be asymptotically stable if it

is both stable and convergent.

Here we note that stability and convergence are independent properties. It is

only when both properties are satisfied that we have asymptotic stability.

Definition 4. The equilibrium state X is said to be asymptotically stable in
the large. or globally asymptotically stable if it is stable and all trajectories of the
system converge to X as time ¢ approaches infinity. At the same time. the trajectories
of this kind of system (described by an energy function) are also called globally

asymptotically stable.

Clearly. this definition implies that the system cannot have other equilibrium
states. and it requires that every trajectory of the system remains bounded for all
time ¢t > 0. In other words. globally asymptotic stability implies that the system will

ultimately settle down to a steady state for any choice of initial conditions.

The state of the neural network is described by a set of state variables. For
convenience. we suppose that x, is the state of the neural network such that at any
moment and for any initial state, the condition E(m) > E,, is satisfied. where E, is
the neural network energy corresponding to the state x,. We define X, as a global
minimization state. and E, as a global minimum energy. When the temperature
changes. the state of neural network forms a trajectory. If lim,— E(m) = E,
for anv initial state. the trajectory of the energy function E(m) is called globally
asvmptotically stable. If an energy function of the mean-field-theory machine has a

global minimum state. we have the following theorem:

Theorem: The trajectories of a mean-field-theory machine will be globally
asymptotically stable when using simulated temperature annealing and neuron nor-

mali=ation. under the condition that the neurons interact by the mean fields. and the

outputs of the neurons are proportional to Boltzmann distribution.

This theorem provides an affirmative assertion that the mean-field-theory ma-
chine globally asymptotically converges to a stable equilibrium provided the network

satisfies the conditions described in the theorem. It also gives us a design rule.

Proof:

It is supposed that Ty is a temperature at which the network arrives at an
equilibrium, later we will show that it is a global optimization point. Since T — To,.
AT < 0. To prove the theorem, it is required to show that % > 0. If we assume that
simulated annealing is applied to the network, while satisfying the condition ‘f;f—. >0,
the energy of neural network will change. and satisfy:

dE
AE—ﬁAT<O.

Because E(m + 1) = E(m) + AE, we get E(m + 1) < E(m). Combining this with
the fact that the energy function is bounded. we conclude that the network converges
to a stable state. that is, limpm—es E(m) — E,. Therefore E, is a global minimum

energy. otherwise the energy function would continue to decrease.

Based on the condition that the outputs of neurons are proportional to Boltz-

mann distribution. and that the neurons are connected to one another by the mean

fields. and are normalized. % is derived as follows.

dE OF Jvx;
T = 2Fem oT
e—EXI/T !
= Z,: Ex; ('—Z]_ e-Ex_,/T>

e Exi/TEy; [T?S; e ExilT — (3, e~ExsITEy ;[T?)e~ExilT
= Z Exi e~Ex,/T)2
l (25 e)

6_EXt/T

- y B S e B0l S ExlTEy,
ZE‘XITZ(ZJ‘ e"EX]/T)2 [X ;e ;e X

- .. vxi y —Ex,/T _ -Ex,/ITE., .
= Z:E_szz(z.e‘Ex]/T) [E',\,;e ! %:e ’ E-XJ]

J

Exiy vxj =2 UXJ'EXJ'J
3 ;

1
= zl: E.\'iv.\’iﬁ

S Exivxiy_vx;iExi — S Exwxiy, 'UXjEXj:I
; ; ; ;

1
T2
1
= TE [ZZUX{Q\'J'E_Z“ — ZZEXiEXjUXiU.T\’j] . (4.13)
T J i 7

Due to neuron normalization, 3°; vx; = 1, therefore the equation above can

be rewritten:

dE 1 |
T = T L;U_\’iE_in—;;U.-‘{ivXjE.\’iEXj
1| .
= -—T—2 ZUXiE:\»i—ZUXiEXiZUXjEXj:l
g i ;
= ?1_ va,-E},-—(Zsz-Ex;)?}. (4.14)

Let /Tx; = a;. and /ox;Exi = b;, by the use of the inequality:
(> aibi)? <D aid b,
i i :
we can obtain:
(Z VoxivexiExi)? < Z UXi Z vxiE%i = Z vxiE%,.
: i : i

In the above formula, if Ex; = Ex2 = ... = Exy, equality holds. This will not

happen. since Ex; is the mean field which is determined by neuron states (outputs)

and physical features of the problem to be optimized; the outputs of neurons are

proportional to Boltzmann distribution. Consequently, we have
(S vxiExi)? <> _vxiEx;-
i i

By substituting the above inequality into Eq.4.14. we arrive at

dE

ﬁ>0.

In the above proof. we do not need to know the practical energy function
E. Eyx; is the only quantity we deploy. Therefore that is ubiquitous in mean-field-
theory machine. The energy function E depends on a physical problem. In Fig.4.7
is presented the variation of the energy function versus annealing temperature for a
15-pair plot-track association. where T, = 3. We can see that when the annealing
temperature is sufficiently small. the energy is constant. and the neurons are in their

stable states. thereby allowing for a decision to be made.

4.4 Data Association Performance

In this subsection. we test the data association ability of the mean field Hopfield
network by carryving out computer simulations. We describe the results of the perfor-
mance analyses for two cases: those without clutter (false measurements) and those
with clutter. The association results in various clutter environments are demon-
strated. The comparison between the neural data association and a conventional

method of nearest neighbour association is made. The tracking trials based on the

neural data associator are included. The applicability of the neural network in the

tracking systems is discussed.

4.4.1 Performance Evaluation

In the computer simulations, the radar plan position indicator (PPI) is normalized,
the X-axis goes from —5 to 5 and Y-axis coyers the same range. The track positions
are distributed uniformly and plot position departures from the tracks are dominated
by Gaussian distributions. The clutters are uniformly scattered on the screen. Each
case (with certain numbers of plots. tracks and clutters) is run a hundred and fifty

times to calculate the percentage of correct associations.

Figs.4.9. 4.10. 4.11 and 4.12 are the association ability curves plotted against
the number of plot-track pairs for the cases with and without clutter appearing dur-
ing each scan. The normalized measurement precisions are 0.15. 0.20. 0.25. and 0.3.
respectively. In these trials (one hundred and fifty iterations each). the test result is
counted as a correct association. if and only if all the plot-track pairs are assigned
correctly. It can be seen that when target density is increased. the association ca-
pacity diminishes. and the association capacity for the case without clutter is always
higher than that for the case with clutter. When the radar accuracy decreases, there
are more chances for the clutter to be linked to the track positions and to form a
misassociation. Therefore. the correct association ability degrades in the case with

clutter. Comparing Figs.4.9-4.12, we can see that the above viewpoint is correct. In

Fig.4.12. the association ability curve goes down quickly as the number of plot-track
pairs increases. It corresponds to the situation where the radar range is 10km. and
the area into which the plot falls with a confidence of 99.7% is 3.6km. This kind of
radar is rarely used in practice, since it has very poor accuracy. In the case without
clutter. the error of plot-track association is due to the fact that the tracks fall near
one another. Again in the case, when radar accuracy decreases. misassociations in-
crease. This conclusion is highlighted by Fig.4.13 in which data association capacities
of four cases corresponding to the situations without clutter are plotted. If we fix the
track positions. and the separations are large enough. then the correct association

percentage rises to 100%.

In Fig.4.14 is shown the neural data association ability in the case where
various numbers of clutter returns are present. These simulations are based on four
tracks. It can be seen that when the accuracy of measurement radar decreases. the
association capacity is degraded. When the clutter density increases. especially in
the most heavy clutter environment, the association ability deteriorates. This will
be overcome by incorporating the target attributes (speed feature. RCS) into the
neural network energy function. Actually. in the case of very heavy clutters. without
target identification information. it is not possible to get highly accurate association

capacity.

Percentage of correct association

T T T T T T

0.95

0.85 -

Ratio
(@]
ﬂ
4]

T
1

0.65 .

0.6t — : without clutter, ... : with three clutters -

0.55 4

8 10 12 14 16
No. of plot—track pairs

0.5 1 -
2 4]

Figure 4.9: Percentage of correct association in the cases without clutter and with clutter.
sensor precision: o, = 0.15.

Percentage of correct association

T T T T T T

0.95

0.9

0.85F . -

Ralio
@]
~
[§)]

1

0.7 .
0.65 .
0.6l — : without clutter, ... : with three clutters i

055+ 4

0'52 4 6 8 10 12 14 16

No. of plot—track pairs

Figure 4.10: Percentage of correct association in the cases without clutter and with clutter,
sensor precision: g, = 0.20.

Percentage of correct association

T =T T Y T T T

0.95

0.9

0.85

o6 - : without clutter, ... : with three clutters .

0.55 _

O'52 a4 6 8 10 12 14 16

No. of plot—track pairs

Figure 4.11: Percentage of correct association in the cases without clutter and with clutter.
sensor precision: g, = 0.25.

Percentage of correct association

T T T T T T

0.95

0.9

0.85

0.6 - : without clutter, ... : with three clutters -

0.55 .

-

.5 1 1 1 L i 1
° 2 4 6 8 10 12 14 16

No. of plot—-track pairs

Figure 4.12: Percentage of correct association in the cases without clutter and with clutter,
sensor precision: o, = 0.3.

Ratio

Comparison of data association capacity (without clutter)

T T U T T T
-

0.7r
0.651 4
o.6F - :sigma=0.18, ... : sigma=0.2, —. : sigma=0.25, — - : sigma=0.3 A
0.55r- .
° 2 4 6 8 10 12 14 16

No. of plot—track pairs

Figure 4.13: Percentage of correct association in the cases without clutter.

Percentage of correct association

0.7+

o6} — : sigma=0.08, ... :sigma=0.12]
0.5F -. :sigma=0.15, ~ :sigma=0.2 i
0.4} |
0.3 L L . 2 L L .

2 4 6 8 10 12 14 16 18 20
No. of clutters

Figure 4.14: Data association capacity with different numbers of clutters.

4.4.2 Comparison of Neural and Conventional Data Association

This section makes a comparison between neural data association and nearest neigh-
bour approach by computer simulations. The nearest neighbour association is a
popular method for use in tracking systems. It works in such a way that a predicted
point pairs with the closest radar measurement according to a distance norm. In
the comparison. the PPI is normalized, both the X-axis and the Y-axis go from —5
to 5. The track positions are distributed uniformly in each trial, and plot position
departures from the tracks are generated using a Gaussian random distribution. Each
case. comprised of a certain number of plots and tracks. is run through a hundred and
fifty trials to compute the percentage of correct associations for both methods. i.e..
the neural data association and the nearest neighbour association. For the following
results presented in this section. the test result is counted as a correct association.
if and only if all the plot-track pairs are assigned correctly. In Fig.4.15 is shown
the nearest neighbour association ability for four cases without clutter. in which the
normalized measurement precisions (standard deviations) are 0.05. 0.15. 0.3 and 0.4.
respectively. In Fig.4.16 is presented the comparison between the neural data asso-
ciation and the nearest neighbour association in the scenario without clutter. where
the normalized measurement precision is 0.15. It can be seen that when the number
of plot-track pairs is less than 11, the two methods have somewhat the same asso-
ciation ability, whereas, when the number of plot-track pairs increases, the neural
data association has better association ability than does the nearest neighbour. In

Fig.4.17 is given the comparison with the same situation as in Fig.4.16 except for

the measurement precision being equal to 0.3. If in the previous case, the results did
not clearly demonstrate the superior association ability of the neural network, the re-
sults in this case clearly show it. For 15 plot-track pairs, the neural data association
capacity is about 20% higher than that for the nearest neighbour. It is a gain we
obtained by using the combinatorial optimization network. Actually. the neural data
association has more advantages than those presented here. In the next chapter, we
demonstrate that neural data association has a powerful potential since it can deploy

target attributes to associate plots and tracks.

It should be noted that from the viewpoint of engineering implementation. the
nearest neighbour is easier to implement than the combinatorial optimization network.
Therefore. the higher performance of neural network is achieved at the expense of
the complexity of equipment structure. Fortunately, the rapid development of VLSI

provides the opportunity for realizing complex networks.

Association ability of nearest neighbour

1 T T .
=S - - C L i
=~ _-—_—~ = -~ ~ N
0.9 Sl e : o]
~ ~
~ . ~ = .
~ = -
~ ~
0.8 h ~ ~ N =
~ ~
~ ~
~ ~
~ ~
~ ~
0.7 S o ~ . -
= ~ ~
= ~ : sigma=0.05 RN N
~
- ~ ~ —
0.6 ... : sigma=0.15 S ~a ~ o
~
—. : sigma=0.3 S
0.5+ . A -
—— : sigma=0.4 N
N

N
0.4 -

0'3 1 1 1 1 1 1

2 4 6 8 10 12 14

No. of plot—track pairs

Figure 4.15: Percentage of correct association by using nearest neighbour in the cases
without clutter.

Comparison of association ability
14 v T

T T T

0.95+
0.9

0.85 -

0.7+ — : using neural network -
0.65 + : using nearest neighbour
0.6+ -1

0.55| 4

0.5 1 1 1 i 1 L
2 4 6 8 10 12 14 16

No. of plot—track pairs

Figure 4.16: Comparison between the neural data association and the nearest neighbour
method. o, = 0.15.

Comparison of association ability

T T T ¥ T T

0.6+ — : using neural network 4

+ : using nearest neighbour

0.4 p 6 8 10 12 14 16

No. ot plot—track pairs

Figure 4.17: Comparison between the neural data association and the nearest neighbour
method, o, = 0.3.

4.4.3 Applicability

To demonstrate the applicability of neural data association. we applied this technique
1o tracking. In order to show association. we do not use a filter (either a o — 3 filter
or Kalman filter) to smooth the tracks. Fig.4.18 shows a simulated tracking result. In
the trial. the measurement precision is chosen to be 0.8 and the screen is normalized
as before. In Fig.4.19 is shown another tracking trial result in which the accuracy of

measurement radar is 0.1.

In the aforementioned energy function. there is only one constant to be deter-

mined. which is simply set to a value larger than the twice the largest distance between

any plot and track. On the other hand. referring to Fig.4.1, the neuron configuration,
in combination with the energy function, annealing technique and normalization, is
easily built into a VLSI neural network, which has a parallel computation power.
Consequently. the technique presented here possesses potential applicability in MTT

systems.

Y_position

Y_position

Tracking using neural net, *: true tracks

T T T T T

L 1 2 Il 1

-5 -4 -3 -2 -1 (o] 1 2 3 4q
X_position
Figure 4.18: Tracking using neural data association.
Tracking using neural net, *: true tracks

[T — T T T T T T T
s -

a4 i

al -

e A~ ‘A gt
2+ 0 P
1 - Lh o~ e’ 2N . _ - gy
e o i
ot e,
-1 - .4.‘
v 4
-2F
A
3 ~%s
4 . : : . . : : \ :
-5 -4 -3 -2 -1 (o] 1 2 3 4
X__position

Figure 4.19: Tracking using neural data association.

4.5 Alternatives of Energy Functions for MDA

In the previous subsections, we have designed and analyzed an energy function for
MDA. and demonstrated its capacity for implementing combinatorial optimization.
As we mentioned before. many combinatorial optimization problems can be mapped
onto neural networks by constructing suitable energy functions. thereby transforming
the problem of minimization into one of associated networks. The formulation of the
combinatorial energy function is the central issue in the design of optimizing neural
networks. Based on the MDA problem and the paradigm built above, the other two
new energy functions for MDA have been designed. In the following, the definitions
of mathematical symbols are the same as in Eqgs.4.4. 4.5 and 4.6. An alternative to

the energy function can be expressed as

= _)EZZ Z UXiVyi +sz\zd’kz- (4.15)

i X Y#X

the mean field of a neuron. which corresponds to plot X and track ¢, can be obtained

Ex:i=dy, > vyi+dxi. (4.16)
Y#X

The other alternative of the energy function can be represented by

E__PZZ Z U\zviz'*'ZZLXz(Zv\JdAJ+dXL) (417)
i X Y#EX i J#i
the mean field of a neuron describing plot X and track z is given.

Exi=d, 3 vyi+ Y vxjdxj+ > vxdxi + dxi. (4.18)
Y#X J#i J#

The computational procedure of Eqs.4.15 and 4.17 follows the calculation pro-
cedure of Eq.4.4. Both energy functions can be used to obtain the results given in
Figs.4.2 and 4.4, and get the global optimal data association in the different trials
under the condition of setting initial neuron states in uniform distribution with stan-
dard deviation very small. It is found that Eq.4.15 is susceptible to the neuron initial
states. i.e.. if the neuron initial states are not set in uniform distribution with small
deviation. sometime, the network output may not be optimal. Since Ex; is more
directly dominated by dx; than it is in Eq.4.17, the convergent speed of Eq.4.15 is
faster than that of Eq.4.17. On the other hand, Eq. 4.17 is more tolerant of neuron
initial setting than Eq.4.15. It can adjust when the annealing temperature goes down.
but with the cost of lower speed. The convergent speed of Eq.4.4 is a compromise

between Eq.1.15 and Eq.4.17.

4.6 Comments

A new technique of measurement data association in a multitarget radar environment
has been presented in this chapter. The technique is based on the mean-field-theory
machine and has the advantages of both the Hopfield network and the Boltzmann
machine. The new energy function, used in combination with normalization and
annealing, can obtain a globally optimal solution. As it is known, track quality
mainly depends on the associator’s performance, therefore the technique presented

here can enhance the performance of tracking systems.

The convergence theorem presented in this chapter provides an affirmative
assertion that the energy function of the mean-field-theory machine globally asymp-
totically converges to a minimum point. Usually the energy function is the cost
function of a physical problem. The theorem also offers a network design rule. The-
oretically and practically. the energy function presented here is a new approach to

measurement data association.

The mechanism of plot-track association which is presented here is based on
finding a global optimization, which is susceptible to sensor degradation. When the
sensor precision diminishes, the performance of neural data association technique will
degrade in the two situations of interest, i.e., with and without clutter. In the case
where clutter is present, the capacity of neural data association diminishes as the
clutter density increases, as well as when the sensor’s precision decreases. In the next
chapter it will be shown that this limitation can be overcome by incorporating the

target’s attributes into the energy function.

Chapter 5

NDA with Multiple Dimensional

Measurements

5.1 Principle

The motivation for using multiple dimensional measurements (attributes) to link plots
(radar contacts) and tracks together is that we intend to deploy the distinct attributes
of targets in order to be better able to make distinctions between them. so that the
data association can be made clearly. Practically. drawing a clear line of distinction
between targets is not easy. since the dynamic properties of targets change with time.
However. we can use as much information as we can to get rid of the association
ambiguity. In order to put across this idea, let us suppose that there are two aircraft
that are sufficiently close that they are separated by less than a beamwidth, but that
they move with different speeds. In a coordinate system consisting of position (X-Y)
and speed (V), each aircraft falls in a probabilistic region which is an ellipsoid. Since

93

the speeds of the aircraft are different, the two ellipsoids do not overlap. therefore,
the targets can be easily separated. However, if only position measurements are used,
the region in which an aircraft falls is the projection of an ellipsoid onto X-Y plane,
the overlapping of the two projections, corresponding to two ellipsoids. is complete.
In this situation. it is not possible to separate these targets based only on position

measurements.

In Pulse Doppler (PD) radar., antenna pointing direction provides the el-
evation and azimuth: range gates indicate the target distances, and the outputs
of a Doppler filter bank provide target speeds. By intuition. in addition to us-
ing position measurements. we can extend our method to incorporate Doppler in-
formation. Generally. we can deploy multiple dimensional measurements. Sup-

pose that we have n-dimensional measurements for each target. and denote them

J

as Zx = (Zx1-5X2¢ - 2yn)T. X =1..... K. where X stands for the index of the radar

142}

contact. A predicted point is defined as P; = (Pj1sPj2sePin)T+ J = Lo M. The

norm distance between a predicted point and a measured point can be written as

dx; = |Zx — P;|I'?. X =1,..K. j=1..M. (5.1)

The ranges of X and j are different due to the appearance of false alarms (clutters).
Again. the multiple dimensional data association issue can be translated into a com-
binatorial optimization problem. All the developments of an optimization network
are similar to that in Chapter 4. For convenience, we reproduce the energy function

here, i.e.

——~
Ut
V]

-

d
E= 3”-22 > vxivyi +ZZUX1'Z:UdeXj7
t J

i X Y#£X X
where X. Y denote plot index and i .j denote track index, vx; Is the neuron output
which represents the probability that plot X associates with track 7. dx; is the distance
between plot X and track j. and d, is a penalty constant. Refer to Chapter 4
for a description of the computation of the energy function for measurement data

association.

5.2 Results

It is well known that in data association. there are two situations which are tough
to deal with: a) tracks that are very close to one another or tracks that cross one
another. b) a plenty of false alarms. The following demonstrates the capacity of
multiple dimensional data association to handle these circumstances. In computer
simulations, four tracks are fixed to be in close proximity. the track positions are:
o= [1.6.2.4]. po = [2.2.8]. ps = [2.4.24]. ps = [2,2]. The separations of the tracks
are less than radar measurement errors. Furthermore, the target speed deviation
due to the measurement error and acceleration is supposed to belong to a Gaussian
distribution. During each scan. the RCS of each of the targets is supposed to remain
unchanged. and is equal to the mean of a Rayleigh distribution of RCS. We are
only concerned with the measurement error. which belongs to Gaussian distribution.

In Figs.5.1-5.4 are shown the data association results in the case without clutter .

Figs.5.5-5.10 are association results in clutter environments. In Figs.5.1 and 5.2 are
shown the association results without using speed and using speed, respectively, where
the position measurement precision oy, is 0.8, and the speed measurement precision o,
is0.1. The normalized speeds of four targets are 1, 2, 3, and 4, respectively. In Fig.5.1.
all associations are wrong, which corresponds to the case where only position is used.
In Fig.5.2, all associations are correct by using a target attribute. In Figs.5.3 and 5.4
are presented the association results without using RCS and using RCS, respectively.
where o, = 0.8, the RCS measurement precision og is 0.2, the RCS’s of the four
targets are 3, 1. 2, and 3.5 m?, respectively. The advantage of using RCS is clear. In
the following results. clutter speeds are set to be less than 0.5. In Figs.5.5 and 5.6
are given the association results without using speed and using speed. respectively.
in the case with 10 clutter returns. where o, = 0.5. o, = 0.1; the normalized speeds
of four targets are 6. 9. 12. and 3. respectively. In Figs.5.7 and 5.8 are given the
association results where speed is deployed and not deployed. respectively. in the case
of 50 clutter returns, where o, = 0.6, o, = 0.2. The target speeds are the same as in
Fig.5.6. In Figs.5.9 and 5.10 are demonstrated the association results without using
RCS and using RCS. respectively. in the case with 30 clutter returns, where o, = 0.6.
or = 0.2. The RCS’s of targets are 3, 2.8, 2. and 1 m?2, respectively. The RCS’s
of clutter returns are set to be less than 0.2. Clearly. the multiple dimensional data
association demonstrates powerful association ability in both cases, without and with

heavy clutter returns.

plot_track association
5 T T T T v T

= —
| / |
1.— -

_2 1 1. ‘;
X_position

Y_position

N8
®
»
(3]

»

Figure 5.1: Data association using positions in the case without clutter . o, = 0.

plot_track association
5 T T T v T T

ol — _

Y_position

X_position

Figure 5.2: Data association using positions and speeds in the case without clutter . o, =
0.8.

plot_track association
5 y T T T T T

Y_position

1k 4

=) A o 1 2 a3 P 5

X_position

Figure 5.3: Data association using positions in the case without clutter . o, = 0.8.

plot_track association
5 T T Y v T T

Y_posilion

1 1 1 I

%2 -1 (o] 2 3 4)

1
X_position

Figure 5.4: Data association using positions and RCS’s in the case without clutter , o, = 0.8.

plot_track association

Y_position

1

T T T

1 It

_gz

[o] 1 2
X_position

Figure 5.5: Data association using positions in the case

plot_track association

with clutter returns. o, = 0.5.

Y_position

'?2

1
X_position

Figure 5.6: Data association using positions and speeds

op = 0.5.

in the case with clutter returns.

plot_track association

5 T T T T Y T
4l . . . p
3t - : o . . -
.. L% & -~ ’:. - :

é 2r . . * L _

= *

g LT

> 1} il - - -
o+ .
S1F N
25 A) 1 2 3 4 5

X_position

Figure 5.7: Data association using positions in the case with clutter returns. o, = 0.6.

plot_track association

5 T T T T r T
4- . R . . -
3t . : - : . -
.5 2r . : x*) s .]
> 1} : . . -
or i
-1k .
25 -1 6) 1 2 3 4 5
X_position

Figure 5.8: Data association using positions and speeds in the case with clutter returns,
o, = 0.6.

plot_track association

Y_position

2 1 2 3 a 5
X_position

Figure 5.9: Data association using positions in the case with clutter returns. o, = 0.6.

plot_track association
5 T T T T T T

Y_position

2 2 3 a 5

1
X_position

Figure 5.10: Data association using positions and RCS’s in the case with clutter returns,
o, = 0.6.
P

5.3 Comparison

In parallel with Chapter 4, further performance analyses have been carried out using
computer simulations. In the following performance analysis. the PPI is normalized.
and both the X-axis and the Y-axis go from —35 to 5. Unless otherwise stated. the
track positions are distributed uniformly in each trial, and plot position departures
from the tracks are generated from Gaussian random distribution. Each case, with
certain numbers of plots and tracks. as well as speed and RCS parameters. is run
a hundred and fifty times to compute the percentage of correct associations. For
the following results presented in this section, the test result is counted as a correct
association. if and only if all the plot-track pairs are assigned correctly. In Fig.5.11 is
shown the association capacity for both using speed and not using speed in the case
without clutter. where o, = 0.2, o, = 0.2, normalized target speeds are uniformly
distributed in [3 — 10]. In Fig.5.12 is presented the association ability for the case
where speed is and is not considered. Three clutter returns per scan are assumed.
where o, = 0.2. o, = 0.2. Target speeds are uniformly distributed in the range
of [3 — 10]. clutter speeds are uniformly distributed in the range of [0 — 10]. The
reason we choose this range for the clutter speed is that, in addition to slow speed
clutters generated by flocks of birds or mountains., the new targets which may enter
into the illuminated zone. with predesignated speeds. will be considered as “clutter”
for the existing tracks. Only after initiation and the formation of a new track, can

the association start.

Comparison of association ability

T T T T T T

0.95- 4

0.7+ - : using speed i

+ : without using speed

0.551 -

0.52 4 6 8 10 12 14 16

No. of plot—-track pairs

Figure 5.11: Comparison of data association between using speed and without using speed
in the case without clutter . o, = 0.2.

Comparison of association ability

T T T T T

0.7+ + : without using speed B
— : using speed
0.65} 'ng sp i
0.6 i
0.55 .
0. I It L L 1 N
52 4 6 8 10 12 14 16

No. of plot—track pairs

Figure 5.12: Comparison of data association between using speed and without using speed
in the case with 3 clutter returns, o, = 0.2.

In Fig.5.13 is shown the association capacity for the case of four fixed tracks
with increasing clutter densities, where o, = 0.2, o, = 0.2: the speed parameters
are the same as in Fig.5.12. It can be seen that the association ability obtained
by using speed information is 20% higher than that obtained without using speed
information. In Fig.5.14 is given the performance comparison of the neural data
association for three cases. 1) that based on position association, 2) that based on
position and speed association, 3) the remainder. which is based on position, speed
and RCS association. It is supposed that there are three clutter returns per scan.
and 6, =0.3. 0, =02, op = 0.2. The speed parameters are the same as in Fig.5.12.
The means of the RCS’s are in the range of [3 — 5]. It clearly demonstrates that
the more information the optimization network incorporates, the higher the data
association ability of the network. In this particular case, data association ability
with multiple dimensional measurements is 30% higher than that only using position
measurements. The comprehensive analysis carried in this section using computer
simulations supports our motivation for using multiple dimensional measurements to

enhance the data association ability.

By an analogy of the detection of a signal in a noise environment. we define
an ~association threshold” to assess the performance of the neural data association.
First. we define a quantity p as a ratio of minimal track distance L,,;, and measure-

ment radar precision o:

L..;»(minimal distance)
o(precision)

(5.3)

p:

The p;. which corresponds to a 95% correct association, is defined as an association

threshold. In computer simulations, four tracks are fixed closely in an environment
without clutter . The track positions are p; = [1.6,2.4], p> = [2,2.8], ps = [2.4,2.4],
ps = [2.2]. At each p value, two hundred association trials are carried out for both
neural associators which deploy positions only and positions and speeds. respectively.
Again, each test result is counted as a correct association. if and only if all the
plot-track pairs are assigned correctly. In Fig. 5.15 is presented the association
performance versus p. According to the definition of association threshold. we can
find that the threshold for the neural data associator using positions is 2.68. the
counterpart for the neural data associator using positions and speeds is 1.2. It can
be concluded that the more information the associator uses, the lower the association
threshold is.

Comparison of association ability
1.1 T T Y Y T T T T T

0.6 — : using speed i
05L + : without using speed i
0.4+ —
0.3 1 1 1 1 1 1 1 [l 1

2 4 6 8 10 12 14 16 18 20

No. of clutters

Figure 5.13: Comparison of the data association between using speed and without using
speed in the cases of different clutter densities, o = 0.2.

Figure 5.14: Comparison of the neural data association using multiple dimensional mea-

Performance comparison

1 e - T -
» 3 e L
F
0.95} ' 1
S - — 6 — _ £ »
S~ a - » »
0.9+ e - e
O\
0.85}+ ~. i
S~ _a R
0.8t S e -
~
~
- ~ —
0.75 o
0.7 . . = ~ 7]
+ : using speed. RCS and positions N °
oesf . . e T TN g
* : using speed and positions
o6 o : using positions i
0.55+ 4
5 ; L ; : L :
0 2 4 10 12 14

8
No. of plot—track pairs

surements. o, = 0.3.

ratio

threshold comparison

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

: using positions

I Il A L

: using positions and speed

2 25
rho

Figure 5.15: Data association performance

3.5 4.5

versus p.

Chapter 6

Multisensor Target Classification

This chapter presents the multisensor data fusion for airborne target classification
using an artificial neural network. A feature set contaminated by noise. which pos-
sesses the dominant characteristics of targets and has a certain dynamic range. 1s
chosen to teach the network. The entire system consists of identification nets (IN)
and classification net (CN). Like hierarchical structures of adaptive expert networks.
it makes the learning process fast. In the system. each subsystem is a simple neural
network. It is easy to train the neural network which has a simple structure. For
one simple target signature, one hidden layer is enough to make the simple network
converge. If uncorrelated signatures were mixed together to teach a simple network.
the network would not converge. Even though we can increase the number of hidden
lavers to make the network converge. we find that the convergent speed is very slow
due to the uncorrelated signatures. Each identification network is used to extract a
particular feature of the target. then the outputs of identification networks are fused

by a classification network to give the decision.

107

In this chapter, we discuss multilayer perceptrons neural networks trained by
the back-propagation (BP) rule. In a practical application of the back-propagation
algorithm. learning results from the many presentations of a prescribed set of training
examples to the multilayer perceptrons. One complete presentation of the entire
training set during the learning process is called an epoch. The learning process
is maintained on an epoch-by-epoch basis until the synaptic weights and threshold
levels of the network stabilize, and the average squared error over the entire training
set converges to some minimum value. In order to speed up the training or decrease
the number of epochs required in the learning process. both momentum and adaptive
learning rate methods are used. The simulation results show that the technique
of automatic target classification using multilayer perceptrons neural networks can

achieve robust decision performance.

6.1 Multilayer Perceptrons

A multilayer perceptron consists of an input layer, hidden layers and an output layer.
The input layer is constituted of source nodes. which has a function of distributing
signals. The hidden layers and output layer consist of neurons, which perform a

transformation function [50. 89].

A multilayer perceptron, as shown in Fig. 6.1 , has three distinctive charac-
teristics: (1) The model of each neuron in the network includes a nonlinearity at the

output. The important point to emphasize here is that the nonlinearity is smooth.

A commonly used form of nonlinearity that satisfies this requirement is a sigmoidal
nonlinearity defined by the logistic function:

1

- 6.1
1 + exp(—v;)’ (6.1)

Y;

where v; is the net internal activity level of neuron j, and y; is the output of the
neuron j. (2) The network contains one or more layers of hidden neurons that are
not part of the input or output of the network. These hidden neurons enable the
network to learn complex tasks by extracting progressively more meaningful features
from the input patterns. In practice, we deploy more than one hidden layer. The first
hidden layer acts as a detector of local features, and the second hidden layer acts as
a detector of global features. Local features are extracted in the first hidden layer.
Specifically. some neurons in the first hidden layer are used to partition the input space
into regions. and other neurons in that layer learn the local features characterizing
those regions. Global features are extracted in the second hidden layer. Specifically.
a neuron in the second hidden layer combines the outputs of neurons in the first
hidden laver operating on a particular region of the input space. and thereby learns
the global features for that region. (3) The network exhibits a high degree of feed-
forward connectivity. determined by the synapses of the network. It is through the
combination of these characteristics together with the ability to learn from experience

through training that the multilayer perceptron derives its computing power.

Multilayer perceptrons have been applied successfully to solve some difficult

and diverse problems by training them in a supervised manner with a highly popular

algorithm known as the back propagation algorithm. This algorithm is based on the

error correction learning rule and will be discussed in the next subsection.

Hidden level
Input level

Output level

Figure 6.1: Multilayer perceptrons neural network.

6.2 Backpropagation Learning

6.2.1 Algorithm

The backpropagation process consists of two passes through the different layers of
the network: a forward pass and a backward pass. During the forward pass. an
activity pattern (input vector) is applied to the sensory nodes of the network. and
its effect propagates through the network. layer by layer. Finally, a set of outputs is
produced as the actual response of the network. During the forward pass the synaptic

weights of the network are all fixed. During the backward pass, on the other hand.

the synaptic weights are all adjusted in accordance with the error-correction rule.
The actual response of the networks is subtracted from a desired response to produce
an error signal. This error signal is then propagated backward through the network,
against the direction of synaptic connections. The synaptic weights are adjusted so
as to make the actual response of the network move closer to the desired response.

The mathematical development is described as follows [50, 89].

The error signal e;(n) at the output of neuron j at iteration n (i.e.. presentation

of the nth training pattern) is defined by
e;(n) = d;(n) — y;(n). (6.2)

where neuron j is an output node, d;(n) is the desired response of the jth neuron.
and y;(n) is its output. We define the instantaneous value of the squared error for
neuron j as %ef(n). Correspondingly, the instantaneous value ¢(n) of the sum of
squared errors is obtained by summing 2e3(n) over all neurons in the output layer:
these are the only “visible” neurons for which error signals can be calculated. The

instantaneous sum of squared errors of the network is thus written as

. 1 :
() = 5 3 n), (6.3)
= jeC
where the set C includes all the neurons in the output layer of the network. Let
N denote the total number of patterns contained in the training set. The average

squared error is obtained by summing ¢ (n) over all n and then normalizing with

respect to the set size N. as shown by

|-

C(l v

2

3¢l (6.4)

The instantaneous sum of error squares ((n), and therefore the average squared error
Cav. is a function of all the free parameters (i.e., synaptic weights and thresholds) of
the network. For a given training set, (,, represents the cost function as the measure
of training set learning performance. The objective of the learning process is to adjust
the free parameters of the network so as to minimize (4, To do this minimization we
use the technique that is very similar to LMS algorithm. Specifically. we consider a
simple method of training in which the weights are updated on a pattern-by-pattern
basis. The adjustments to the weights are made in accordance with the respective
errors computed for each pattern presented to the network. The arithmetic average
of these individual weight changes over the training set is therefore an estimate of the
true change that would result from modifying the weights, based on minimizing the
cost function (.. over the entire training set. In the multilayer perceptron network. the
net internal activity level v;(n) produced at the input of the nonlinearity associated

with neuron j is therefore
P
vj(n) = Y _w;i(n)yi(n). (6.5)
1=0

where p is the total number of inputs (including the threshold) applied to neuron j,
w;(n) denotes the synaptic weight connecting the output of neuron 7 to the input of
neuron j. The synaptic weight wjo (corresponding to the fixed input yo = —1) equals
the threshold 8; applied to neuron j. Hence the function signal y;(n) appearing at

the output of neuron j at iteration n is

y;(n) = p;(vi(n)). (6.6)

In a manner similar to an LMS algorithm, the back-propagation algorithm
applies a correction Aw;;(n) to the synaptic weight w;:(n), which is proportional
to the instantaneous gradient 9¢(n)/dwj;in). According to the chain rule, we may

express this gradient as follows:

9¢(n) _ 9¢(n) B¢ (n) 9yi(n) duj(n)
dwji(n) ~ dej(n) By;(n) duj(n) dw;i(n)

(6.7)
The gradient d((n)/Ow;i(n) represents a sensitivity factor. determining the direction
of search in weight space for the synaptic weight w;i(n).

Differentiating both sides of Eq.6.3 with respect to e;(n), we get

)
dej(n)

ej(n). (6.8)

Differentiating both sides of Eq.6.2 with respect to y;(n). we get

Je;(n)
dy;(n)

=—1. (6.9)

Next, differentiating Eq.6.6 with respect to v;(n). we get

ayJ(n) = S (v:(n
a’Uj(n) - ‘r’j(vJ())3 (6'10)

where the use of prime (on the right-hand side) signifies differentiation with respect

to the argument. Finally. differentiating Eq.6.5 with respect to w;i(n) yields

dvj(n) .

Hence. the use of Egs.6.8 to 6.11 in Eq.6.7 yields

9¢(n)
awj;(n)

= —¢j(n)g}(vi(n))yi(n). (6.12)

The correction Aw;;i(n) applied to w;i(n) is defined by the delta rule

A wji(n) = o) (6.13)

—ﬂm7
where 7 is a constant that determines the rate of learning; it is called the learning-rate
parameter of the back-propagation algorithm. The use of the minus sign in Eq.6.13
accounts for gradient descent in weight space. Accordingly, the use of Eq.6.12in 6.13
vields
D wii(n) = ndj(n)yi(n), (6.14)
where the local gradient §;(n) is itself defined by

_9¢(n) de;(n) Oy;(n)
dej(n) yj(n) Ov;(n)

§i(n) = = ¢;(n)(v;(n))- (6.15)

The local gradient points to required changes in synaptic weights. According to
Eq.6.15. the local gradient é;(n) for output neuron j is equal to the product of the
corresponding error signal €;(n) and the derivative @’ (vi(n)) of the associated acti-

vation function.

From Egs.6.14 and 6.15 we note that a key factor involved in the calculation
of the weight adjustment Aw;ji(n) is the error signal e;(n) at the output of neuron
j. In this context. we may identify two distinct cases. depending on where in the
network neuron j is located. In the case I. neuron j is an output node. This case is
simple to handle, because each output node of the network is supplied with a desired
response of its own, making it a straightforward matter to calculate the associated
error signal. In case /1. neuron j is a hidden node. Even though hidden neurons

are not directly accessible, they share responsibility for any error made at the output

of the network. The question is how to penalize or reward hidden neurons for their

share of the responsibility. In the sequel, case I and case I are considered.
Case I: Neuron is an output node

When neuron j is located in the output layer of the network, it is supplied with
a desired response of its own. Hence we may use Eq.6.2 to compute the error signal
¢;(n) associated with this neuron. Having determined €;(n). it is a straightforward

matter to compute the local gradient é;(n) using Eq.6.15.
Case II: Neuron j is a hidden node

When neuron J is located in a hidden layer of the network, there is no specific
desired response of its own. Accordingly, the error signal for a hidden neuron would
have to be determined recursively in terms of the error signals of all the neurons to
which that hidden neuron is directly connected: this is where the development of the
back-propagation algorithm gets complicated. According to Eq.6.15. we may redefine

the local gradient &;(n) for hidden neuron j as

_a¢(m) Byi(n) __ 9¢(n)
dy;(n) Ovj(n) dy;(n)

§;(n) = Pl(w(n)). (6.16)

where neuron j is hidden. To calculate the partial derivative ;5((';)). we use k instead
Y,

of j in Eq.6.3 in order to avoid confusion with the use of the index j that refers to a
hidden neuron under case I1. In any event. differentiating Eq.6.3 with respect to the

functional signal y;(n), we get

(6.17)

Next. we use the chain rule for the partial derivative dex(n)/0y;(n). and rewrite

Eq.6.17 in the equivalent form

aC(n) Jer(n) dvi(n)
Bt~ 2 Buuln) By, (619)
However, from Egs.6.2 and 6.6, we note that
ex(n) = di(n) — yr(n) = di(n) — pr(vi(n)), (6.19)
where neuron k is an output node. Hence,
der(n ,)
S — i (wu(n)). (6.20)
We also note that for output neuron k. the net internal activity level is
q9
n) =y wi(n)y;(n). (6.21)
=0

where ¢ is the total number of inputs (excluding the threshold) applied to neuron
k. Here again, the synaptic weight wio(n) is equal to the threshold 8,(n) applied
to neuron k. and the corresponding input yo is fixed at the value —1. In any event.
differentiating Eq.6.21 with respect to y;(r) yields

ka(n)

a—y]—(n—) = wkj(n). (6'

V]
RV}
—

Thus. using Eqs.6.20 and 6.22 in 6.18, we get the desired partial derivative:

d¢(n

03/1(- Z ex(n yk(v n))wi;j(n) = Z Sk(n)wij(n), (6.23)

where we have used the definition of the local gradient éx(n) given in Eq.6.15 with

the index k substituted for ;.

Finally, using Eq.6.23 in 6.16. we get the local gradient §;(n) for hidden neuron

j as follows:
6j(n) = P(vi(n)) 3 b(n)we;(n), (6.24)
k

The factor (v;(n)) involved in the computation of the local gradient §;(n) in Eq.6.24
depends solely on the activation function associated with hidden neuron j. The re-
maining factor involved in this computation, namely. the summation over k. depends
on two sets of terms. The first set of terms, the §;(n). requires knowledge of error
signals ex(n), for all those neurons that lie in the layer to the immediate right of hid-
den neuron j. and that are directly connected to neuron j. The second set of terms.

the wy;(n). consists of the synaptic weights associated with these connections.

We may now summarize the relations that we have derived for the back-
propagation algorithm. First, the correction Awji(n) applied to the synaptic weight

connecting to neuron i to neuron j is defined by the delta rule:

Weight learning local input signal
correction | = | rate parameter | X | gradient | X | of neuron j; |- (6.25)
Lacji(n) n 6;(n) yi(n)

Second. the local gradient é;(n) depends on whether neuron j is an output node or a

hidden node:

1. Ifneuron j is an output node. é;(n) equals the product of the derivative ¢ (v;(n))

and the error signal e;(n), both of which are associated with neuron j.

2. If neuron j is a hidden node, §;(n) equals the product of the associated derivative

@(v;j(n)) and the weighted sum of the §’s computed for the neurons in the next

hidden or output layer that are connected to neuron j.

The two passes of computation

As mentioned at the beginning of this section, the back-propagation has two
passes: a forward pass and a backward pass. In the forward pass the synaptic weights
remain unaltered throughout the network. and the function signals of the network are
computed on a neuron-by-neuron basis. Specifically. the function signal appearing at

the output of neuron j is computed as
yi(n) = o(vj(n)). (6.26)
where v;(n) is the net internal activity level of neuron j. defined by
P
vj(n) = Y wii(rn)yi(n). (6.27)
=0

where p is the total number of inputs (excluding the threshold) applied to neuron j.
and w;j;(n) is the synaptic weight connecting neuron i to neuron j , and y;(n) is the
input signal of neuron j or, the function signal appearing at the output of neuron :.
If neuron j is in the first hidden layer of the network. then the index 7 refers to the

ith input terminal of the network, for which we write
yi(n) = zi(n). (6.28)

where z;(n) is the ith element of the input vector. If, on the other hand, neuron j is

in the output layer of the network, the index j refers to the jth output terminal of

the network.

yi(n) = o0;(n), (6.29)

where o;(n) is the jth element of the output vector. This output is compared with the
desired response d;(n). obtaining the error signal for the jth output neuron. Thus.
the forward phase of computation begins at the first hidden laver by presenting it
with the input vector, and terminates at the output layer by computing the error

signal for each neuron of this layer.

The backward pass starts at the output layer by passing the error signals
backward through the network. layer by layer, and recursively computing the 6 for
each neuron. This recursive process permits the synaptic weights of the network to
undergo changes in accordance with the delta rule of Eq.6.25. For the neuron located
in the output layer. the § is simply equal to the error signal of that neuron multiplied
by the first derivative of its nonlinearity. Hence. we use Eq.6.25 to compute the
changes to the weights of all the connections feeding into the output layer. Given the
§'s for the neurons of the output layer. we can use Eq.6.24 to compute the é&’s for all
the neurons in the penultimate layer and therefore the changes to the weights of all
connections feeding into it. The recursive computation is continued, layer by laver.
by propagating the changes to all synaptic weights. In each forward and backward

propagating process. the input pattern is fixed throughout the round-trip phase.
The local gradient of sigmoidal neuron

The computation of the é for each neuron of the multilayer perceptron requires

an explicit formation of the derivative of the activation function ©(.) associated with
that neuron. For this derivative to exist, we require the function y(.) to be continuous.
In basic terms. differentiability is the only requirement that an activation function
would have to satisfy. In the multilayer perceptron networks which we will use in the
Jater section. the sigmoidal nonlinear activation function is used. a particular form is

the logistic function:

1
= 1T+ exp(—v;(n))

y;(n) = ¢;(v;(n)) —oo < vj(n) < oo. (6.30)
where v;(n) is the net internal activity level of neuron j. According to this non-
linearity. the amplitude of the output lies inside the range 0 < y; < 1. The 6 for
the multilayer perceptron network with each neuron having the logistic function is
generated as follows. Differentiating both sides of Eq.6.30 with respect to v;(n), we
get

dyi(n) _

exp(—v;(n)) y
1 + exp(—v;(n))]? (6.31)

Using Eq.6.30 to eliminate the exponential term exp(—v;(n)) from Eq.6.31. we may

express the derivative of activation function as
Pi(vi(n)) = yi(m)[1 — yi(n)]- (6.32)

For a neuron j located in the output layer, we note that y;(n) = o;(n). Hence. we

may express the local gradient for neuron j as

5:(n) = e;(n)g}(v;(n)) = [dj(n) — 0;(n)os(n)[1 — 0;(n)], (6.33)

where 0;(n) is the function signal at the output of neuron j, and d;(n) is the desired

response for it. On the other hand. for an arbitrary hidden neuron J. we may express

the local gradient for neuron j as

6;(n) = £;(vi(n)) Ek: i(n)wi;(n) = y;(n)[1 —y;(n)] ; bk (n)wi;(n). (6.34)
It can be seen that from Eq.6.32 the derivative ¢/ (v;(n)) attains its maximum value at
y;(n) = 0.5. and its minimum value at y;(n) = 0, or y;(n) = 1.0. Since the amount of
change in a synaptic weight of the network is proportional to the derivative ©(v;(n)).
it follows that for a logistic activation function the synaptic weights are changed the
most for those neurons in the network for which the function signals are in their
midrange. This phenomenon will guide us to initialize neurons and change the rate

of learning.
Rate of learning

The back-propagation algorithm provides an “approximation” to the trajec-
tory in the weight space computed by the method of steepest descent. The smaller
we make the learning-rate parameter 7. the smaller will the changes to the synaptic
weights in the network be from one iteration to the next and the smoother will be
the trajectory in the weight space. This improvement is attained at the cost of a
slower rate of learning. If. on the other hand, we make the learning-rate parameter
n too large so as to speed up the rate of learning, the resulting large changes in the
svnaptic weights assume such a form that the network may become unstable (i.e.,
oscillatory). A simple method of increasing the rate of learning and yet avoiding the

danger of instability is to modify the delta rule of Eq.6.14 by including a momentum

term as follows:

A wji(n) = a Awji(n = 1) +16;(n)yi(n), (6.35)

where a (0 < |a| < 1) is usually a positive number called the momentum constant.
Eq.6.35 is called the generalized delta rule; it includes the delta rule of Eq.6.14 as a

special case.

The incorporation of momentum in the back-propagation algorithm represents
a minor modification to the weight update, and vet it can have highly beneficial
effects on the learning behavior of the algorithm. The momentum term may also
have the benefit of preventing the learning process from terminating in a shallow
local minimum on the error surface. We will say more on learning rate related to the

classification network training in the next section.
Pattern and batch modes of training

In the practical application of the back-propagation algorithm. learning results
from the many presentations of a prescribed set of training examples to the multilayer
perceptron. One complete presentation of the entire training set during the learning
process is called an epoch. The learning process is maintained on an epoch-by-epoch
basis until the synaptic weights and threshold levels of the network stabilize and the
average squared error over the entire training set converges to some minimum value. It
is good practice randomizing the order of presentation of training examples from one
epoch to the next. This randomization tends to make the search in the weight space

stochastic over the learning cycles, thus. avoiding the possibility of limit cvcles in the

evolution of the synaptic weight vector. For a given training set. back-propagation

learning may proceed in one of two basic ways:

Pattern mode. In the pattern mode of back-propagation learning. weight up-
dating is performed after the presentation of each training example. To be spe-
cific. consider an epoch consisting of N training examples arranged in the order
[z(1),d(1)]s ... [2(N).d(N)]. The first example [2(1),d(1)] in the epoch is presented
to the network, and the sequence of forward and backward computations described
previously is performed. resulting in certain adjustments to the synaptic weights and
threshold levels of the network. Then the second example [z(2).d(2)] in the epoch
is presented. and the sequence of forward and backward computations is repeated.
resulting in further adjustments to the synaptic weights and threshold levels. This

process is continued until the last example [2(N).d(N)] in the epoch is accounted for.

Batch mode. In the batch mode of back-propagation learning. weight updating
is performed after the presentation of all the training examples that constitute an
epoch. For a particular epoch, we define the cost function as the average squared

error given by Eqgs.6.3 and 6.4, reproduced here in the composite form:

N
-3 €ln), (6.36)

where the error signal e;(n) pertains to output neuron j for training example n
and which is defined by Eq.6.2. The error €;(n) equals the difference between d;(n)
and y;(n). which represent the jth element of the desired response vector d{n) and

the corresponding value of the network output, respectively. In Eq.6.36. the inner

summation with respect to j is performed over all the neurons in the output layer
of the network. whereas the outer summation with respect to n is performed over
the entire training set in the epoch. For a learning-rate parameter 7., the adjustment
applied to synaptic weight wj;. connecting neuron ¢ to neuron 7. is defined by the

deita rule

Oe;(n)

d ev 77
A“'ji _ C . E J()
6 Wiy

N Ftn) (6.37)

To calculate the partial derivative de;j(n)/Ow;; we proceed in the same way as before.
According to Eq.6.37. in the batch model the weight adjustment Aw;j; is made only

after the entire training set has been presented to the network.

The pattern mode of training is preferred over the batch mode for “on-line” op-
eration. because it requires less local storage for each synaptic connection. Moreover.
given that the patterns are presented to the network in a random manner. the use of
pattern-by-pattern updating of weights makes the search in weight space stochastic
in nature. which. in turn. makes it less likely for the back-propagation algorithm to
be trapped in a local minimum. On the other hand. the use of the batch mode of
training provides a more accurate estimate of the gradient vector. The mode which

is used in practice is determined by the problem at hand.
Summary

Suppose [x(n).d(n)] is a training pair, namely, x(n) is the input pattern vector
and d(n) is the desired output vector. The pattern-by-pattern updating of weights

in backpropagation algorithm for L layer neurons cycles through the training data

{[x(n),d(n)); n=1,2...N} as follows:

1. Initialization. Start with a reasonable network configuration. and set all the
svnaptic weights and threshold levels of the network to small random numbers

that are uniformly distributed.

2. Presentations of Training Examples. Present the network with an epoch of
training examples. for each example. perform the following sequence of forward

and backward computation.

3. Forward Computation. Let a training example in the epoch be denoted by
[x(n).d(n)], with the input vector x(n) applied to the input layer of sensory
nodes and the desired response vector d(n) presented to the output layer of
computation nodes. Compute the activation potentials and function signals of
the network by proceeding forward through the network, layer by layer. The
net internal activity level bﬁ(n) for neuron j in layer [is

vi(n) = Xp: whi(n)yi™ (n). (6.38)

=0

where p is the number of synaptic weights connecting to neuron j.yi"Y(n) is the
function signal of neuron 7 in the previous layer [— 1 at iteration n and wﬁ»;(n)
is the synaptic weight of neuron j in laver [that is fed from neuron ¢ in layer
[—1. For i = 0. we have y5'(n) = —1 and wg-o(n) = 0_17(n) where Hg(n) is the

threshold applied to neuron j in layer [. Assuming the use of a logistic function

in neuron response, the function signal of neuron ; in layer [is

Ly 1 .
y;(n) = T exp(—ol(n))” (6.39)

If neuron j is in the first hidden layer (i.e., [= 1), set

yj(n) = zj(n), (6.40)
where r;(n) is the jth element of the input vector x(n). If neuron j is in the
output layer (i.e. [= L), set

yE(n) = o5(n), (6.41)
where o0;(n) is the output of jth neuron in output layver. Hence. compute the

error signal

e5(n) = dj(n) — oj(n). (6.42)
where d;(n) is the jth element of the desired response vector d(n).
. Backward Propagation. Compute the local gradients é of the network by pro-
ceeding backward. layer by layer:

6}‘(71) = eJ[f(n)oJ-(n)[l — 0;(n)] for neuron j in output layer. (6.43)

6§(n) = yﬁ-(n)[l - y§(n)] XL:&L"'I(n)w‘k'}'l(n.) for neuron j in hidden layer /.
(6.44)
Hence. we adjust the synaptic weight of the network in layer [according to the

generalized delta rule:

wé,-(n. +1) = wi‘i(n) + a[w.lii(n) - w_lii(n -1+ 775;'(77)215_1(")-, (6.45)

where 7 is the learning rate parameter and a is the momentum constant.

Iteration. Iterate the computation by presenting new epochs of training ex-

Ut

amples to the network until the free parameters of the network stabilize their
values and the average squared error computed over the entire training set is at

a minimum or acceptably small value.

The above process which minimizes the average squared error is tantamount to max-
imizing an @ posteriori probability function E[d(n)[x(n)] for every n. in which F is

the expectation operator.

6.2.2 Initialization

The first step in back-propagation learning is to initialize the network. A good choice
for the initial values of the free parameters of the network can be of tremendous
help in a successful network design. In cases where prior information is available,
it may be better to use the prior information to guess the initial values of the free
parameter. But how do we initialize the network if no prior information is available?
The customary practice is to set all the free parameters of the network to random

numbers that are uniformly distributed inside a small range of values.

The wrong choice of initial weights can lead to a phenomenon known as pre-
mature saturation. This phenomenon refers to a situation where the instantaneous
sum of squared error ((n) remains almost constant for some period of time during

the learning process. Such a phenomenon can not be considered as a local minimum,

because the squared error continues to decrease after this period is finished.

When a train pattern is applied to the input layer of a multilayer perceptron,
the output values of the network are calculated through a sequence of forward compu-
tations that involves inner products and sigmoidal transformations. This is followed
by a sequence of backward computations that involves the calculation of error signals
and pertinent slope of the sigmoidal activation function to form a synaptic weight
adjustment. Suppose that, for a particular pattern. the net internal activity level of
an output neuron is computed to have a large magnitude. Then assuming that the
sigmoidal activation function of the neuron has the limiting values 0 and 1. we find
that the corresponding slope of the activation function for that neuron will be very
small. and the output value for the neuron will be close to 0 or 1. In such a case,
we say that the neuron is in “saturation”. If the output value is close to 0 when the
target value is 1. or vice versa, we say that the neuron is incorrectly “saturated”.
When this happens. the adjustment applied to the synaptic weights of the neuron

will be small, and the network may take a long time to escape it.

At the initial stage of back-propagation learning. both unsaturated neurons
and incorrectly saturated ones may exist in the output layer of the network. As the
learning process continues. the synaptic weights associated with unsaturated output
neurons change rapidly. because the corresponding error signals and gradients have
relatively large magnitudes. thereby resulting in a reduction in the instantaneous
sum of squared error. If. however. at this point the incorrectly saturated output

neurons remain saturated for some particular training patterns, then the phenomenon

of premature saturation may arise. The phenomenon can be avoided by choosing
the initial values of the synaptic weights and threshold levels of the network to be

uniformly distributed inside a small range of values.

6.2.3 Stopping Criteria

There are some reasonable criteria each with its own practical merits. which may be
used to terminate the weight adjustments. To formulate such a criterion, the logical
thing to do is to think in terms of the unique properties of a local or global minimum
of the error surface. Let us denote an optimal weight vector w™ which corresponds
to a local or global minimum of the error surface. A necessary condition for w™ to be
optimal is that the gradient vector 9((n)/dw of the error surface be zero at w = w™.
Accodingly. we may formulate a sensible convergence criterion for back-propagation

learning:

The back-propagation algorithm is considered to have converged when the

Euclidean norm of the gradient vector reaches a sufficiently small gradient threshold.

The drawback of this convergence criterion is that. for successful trials. the
learning time may be long. Also. it requires the computation of the gradient vector.
Another unique property of a minimum is the fact that the cost function or error
measure is stationary at the point w = w*. We may suggest a different criterion of

convergence:

The back-propagation algorithm is considered to have converged when the

absolute rate of change in the average squared error per epoch is sufficiently small.

Typically, the rate of change in the average squared error is considered to be
small enough if it lies in the range of 0.1 to 1 percent per epoch. The threshold

depends on the problem at hand.

6.3 Target Classification

In order to classify targets, it is necessary to identify the target features. In the sim-
ulations presented here, a feature set, which possesses the dominant characteristics
of targets and has a certain feature dynamic range. is chosen (see target characteris-
tics). The entire classification system consists of identification nets and classification
net. Each identification net is used to extract a particular feature of the targets. the
outputs of which are fused by a classification net. Each net is trained by training
set with BP to achieve a maximal a posterior: probability E[d(n)|x(n)] whereby the
target feature information has been stored in the neural network “memory”. For the
positive logic. when the test datum x is presented to the network. the output of net-
work stands for approximately an a posterior: probability E[d|x]. Given a threshold.
we can make a decision that the target feature is detected or not. or which cluster
the target belongs to. In some applications, neuron firing state stands for one feature

and off another.

6.3.1 Target Characteristics

In the simulation. three flight target features are deployed: radar cross-section (RCS)
of targets. Doppler frequencies and target traces. Therefore three corresponding
sensors are used to obtain three messages quantitatively. MTI radar works at X-band
(9.83 GHz). Suppose that there are two targets. The first target has a radar cross-
section range [0.8 — 1.3]m?, Doppler frequency range [200 — 1200] Hz, the primary
Doppler frequency caused by the flight body has a range [245 — 308] Hz. and flight
route: y = 1.3z + 3 + n. where n is measurement error. The second target has a
radar cross-section range [2.7 — 3.2]m?, Doppler frequency range [200 — 1200]H =. the
primary Doppler frequency caused by the flight body has a range [400 — 460] Hz. and

flight route: y = 0.8z + 2 + n. This is the situation we simulated.

6.3.2 Architecture

The design layout of neural networks is shown in Fig.6.2. There are three identification
(ID) nets and one classification net (CN). In the first ID net, the input layer has 32
source nodes which will sense the target Doppler frequency. The hidden layer has 24
neurons. The output layer has one neuron. Its output “17 stands for the first target.
0" for the second target. In the second ID net. the input layer has 2 source nodes,
which will perceive flight route data. The hidden layer has 16 neurons. The output
layer has 2 neurons. The output (1,0) stands for the first target, (0,1) for the second

target. In the third ID net, the input layer has one source node which will feel the

RCS. The hidden layer has 16 neurons and the output layer has two neurons. The
output (0,1) stands for the first target, and (1,0) for the second target. In the CN,
the input layer has five source nodes which will collect data from ID nets. The hidden
layer has 10 neurons and the output layer has 3 neurons. The output (1.0,0) stands
for the first target. (0.1.0) for the second target. and (0.0,1) for unknown targets. The
number of neurons in the hidden layer of each net is determined by trial to ensure

the convergence in training process.

tdentification NN

Freq
__9 1
Decision NN
5 1 o o0
Post
\ [1 o
— 2 —_— —_—
L] o 1
1 2 un
RCS
= 3

Figure 6.2: Layout of classification networks.

6.3.3 Training and Testing

The target echo (received signal) is estimated by an AR model frequency estimator.
The spectrum from the AR model frequency estimator at 32 discrete points is fed to
the source nodes of the first ID net. Herein, 60 temporal intervals are used. 32-by-60
batch input matrix is formed and 1-by-60 batch target vector corresponding to the
batch input matrix is formed in accordance with different target echo. By analogy.
we can form batch input and batch target for the second ID net, the third ID net and

CN.

In Fig.6.3 is shown one sample of the first target’s Doppler frequencies. which
is the output of the AR spectrum estimator. In Fig.6.4 is shown one sample of the
second target’s Doppler frequencies. In Fig.6.5 are given the RCS distributions which
are used to train the RCS ID network. In Fig.6.6 are presented the target tracks

which are used to train the position network.

A multilayer perceptrons trained with the back-propagation algorithm may
learn faster (in terms of the number of training iterations required) when the sigmoidal
activation function built into the neuron model of the network is asymmetric than
when it is nonsymmetric. We say that an activation function @(v) is asymmetric if
2(=v) = —¢(v). This condition is not satisfied by the logistic function. Based on
the stipulation of the architecture for the neural target classifier, we use the logistic
function for the neuron model in the output laver; in the first hidden layer. the

asymmetric activation function — hyperbolic tangent. is deployed for the neuron model

AR spectrum no.1
0 r T T - T T v r T

-10

dB
&
o

_600 100 200 300 400 500 600 700 800 900 1000
frequency(Hz)

Figure 6.3: One sample of the first target’s Doppler frequency for training the first ID net.

AR spectrum no.2

a8
o)
o

) 100 200 300 400 500 600 700 800 900 1000
frequency(Hz)

Figure 6.4: One sample of the second target’s Doppler frequency for training the first ID
net.

target RCS distribution
3.5 - . T T r

2.5F -

RCS

0.5F 4

o] 0.5 1 1.5 2 2.5 3
target index

Figure 6.5: RCS distribution of target 1 and target 2 for training the RCS ID net.

flight track
10 T T T T T v T T

y axis

-

o} 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x axis

Figure 6.6: Routes of target 1 and target 2 for training the position ID net.

to speed up mapping process.

The batch mode is used in the training network: the weight updating is per-
formed after the presentation of all the training examples that constitute an epoch,
instead of updating pattern by pattern. In our experiment, both momentum and
adaptive learning rate are deployed to improve the training performance. The mo-

mentum is set to be 0.95. The learning rate changes as follows:

If the new error exceeds the old error by more than a predefined ratio
(tvpically 1.04), the new weights. biases and output error are discarded.
In addition. the learning rate is decreased (typically by multiplying by
0.7). Otherwise the new weights, etc. are kept. If the new error is less
than the old error. the learning rate is increased (typically by multiplying

by 1.05).

In Fig.6.7 is given the learning curve (the summation of squared errors is
plotted against the training epoch) for the frequency ID net. In Fig.6.8 is shown the
Jearning curve of the RCS recognition network. In Fig. 6.9 is presented the learning

curve for the CN.

Testing is carried out to estimate the classification performance of the neural
network. Both training data and interpolating data are tested. When we set the

detection threshold at 0.96 in CN, the classification capacity is 100%.

2-Layer Backpropagation with Adaptive LR & Momentum

T T T T T T T

N

-
o

a
o
[
—
1

N
1

Sum-Squared Error
-l
O
b
T
1

107 -
10 . . s . . . : .
o] 50 100 150 200 250 300 350 400 450
Epoch
2-Layer Backpropagation with Adaptive LR & Momentum
8000 T - T v T T . T
@ 6000 —
[+-]
(-4
24000 -
=
g
— 2000+]
o0 50 100 150 200 250 300 350 400 450
Epoch
Figure 6.7: Learning curve of frequency ID net.
2 2-Layer Backpropagation with Adaptive LR & Momentum
10 . T . T v

-t
Q
(-}
T
1

Sum-Squared Error
on

107 F
1 0-6 . L 1 : L
o] 50 100 150 200 250 300
Epoch
2-Layer Backpropagation with Adaptive LR & Momentum
2000 T T . : :
o1 500+ -1
(3]
@<
£ 1000} J
15
-]
(7]
- 500} -
0O 50 100 150 200 250 300

Epoch

Figure 6.8: Learning curve of RCS ID network.

2-Layer Backpropagation with Adaptive LR & Momentum

N

-
o

-
o
©
)
1

Sum-Squared Error
)
N
T
1

10 '+
1 0-5 L L L 2 2
(o] 50 100 150 200 250 300
Epoch
2-Layer Backpropagation with Adaptive LR & Momentum
8000 T T T T Y
o 6000 =
[
<4
24000 .
=
g
— 2000+ B
o :) 2 ;
[¢] 50 100 150 200 250 300
Epoch

Figure 6.9: Learning curve of classification network.

6.4 Discussions of Target Classification

Optimum data fusion in CN is performed with multilayer perceptrons trained by
BP. Alternatively. it can be implemented by a linear combination of ID net decision
outputs followed by the application of a threshold. The optimum weight vector for
the linear combination is a function of the performance probabilities of ID nets.
This fusion algorithm is equivalent to a perceptron for which the weight vector can
be adapted by the error correction rule. The perceptron is the simplest form of a
neural network used for the classification of a special type of patterns said to be
linearly separable. It consists of a single neuron with adjustable synaptic weights and

threshold. The weights can be adapted using an error correction rule given by [50].

Neural networks for data fusion have proven to be a flexible solution. It is
easy to extend them to accommodate future changes. More importantly. without
modifying the general structures of the networks, additional training facts can be
added to the training sets so as to include more target features or perform more
complex tasks. If more signatures will be used to carry out the target classification.
we can use additional identification networks and increase the number of input nodes
of the classification networks. If more than two targets are to be classified. the
functions of classification network can be extended by increasing the number of output
neurons. In addition. once neural networks are trained well, real-time data fusion can
be realized since neural network operation is parallel, which makes neural networks

have prominent advantages over other devices.

It is worthwhile noting that in the presence of noise. the features contaminated
by the noise should be used to train the networks. When the features overlap. more
hidden layers should be used to increase the generalization ability of the networks.

In this case. the training speed will be slow.

The real data performance test for multilayer perceptron networks should be

carried out for further research.

Chapter 7

Feature Mapping Data Fusion

7.1 Introduction

The problem of multitarget tracking using multiple sensors has received considerable
attention in recent vears. The pay-off that results when one combines data from a
variety of sensors is obvious. Basically, it consists of an enhancement to the over all
system performance. Sensor data fusion may be carried out by either combining sensor
tracks or sensor observations. Track fusion was studied by Singer and Kanyuck [63].
who assumed independent noise process at each sensor. A practical implementation
is given in [64]. Bar-Shalom refined the track fusion equations by accounting for the
common process noise that is observed at the sensors [65]. An alternative approach is
to fuse sensor observations rather than tracks [52] [66]. In [66], Roecker and McGillem
compared tracking fusion and measurement fusion methods. and gave an example
which showed the improvement in the uncertainty of the resulting estimate of the
state vector when the measurement fusion method was used. In this chapter we will

140

discuss a new approach to the measurement data fusion.

The measurement fusion (plot-level) tracking model is shown in Fig.7.1. In
this model. the sensors produce streams of plots or individual target detections which

are processed by a single tracking filter to generate the integrated database directly.

Sensor 2 plot-level

fusion

Figure 7.1: Centralized plot-level data fusion.

This approach is recognized as having the advantages of (i) generating accurate
continuous tracks. (ii) being free of error correlation problems. (iii) having a low total
computation load. (iv) being more amenable to sophisticated techniques. It has the
disadvantage of being susceptible to sensor degradation. In the case of the plot-level
data fusion. data clustering has to be carried out before conventional methods are
applied. This turns out to be a very difficult problem to solve when targets are close
to one another. In this chapter, a centralized plot-level data fusion technique, which is

based on a neural network, is presented. A self-organized feature-mapping technique,

which learns from sensor observations, is used to integrate the data from several
sensors with various unknown measurement accuracies. This new technique for data
fusion is termed as feature mapping data fusion (FMDF'). Topological neighbourhood
formulation among the network for integrating the data is described. Since the neural
network learns from the sensor observations. it is not necessary to cluster the data.
In the development of this approach. it is supposed that coordinate transformation
and synchronization have been done before the observed data are transferred to a
fusion processor. Through computer simulations., the feature-mapping fusion ability
's studied. Data fusion results are presented herein. As well, comparisons are made
between the results obtained using the neural network method. Maximum Likelihood

and other ad hoc methods.

7.2 Feature-Mapping Learning

Self-organized feature mapping is based on competitive learning. The output neurons
of the network compete among themselves to be activated or fired. with the result
that only one output neuron. or one neuron per group. is on at any one time. The
output neurons that win the competition are called “winner-takes-all” neurons. One
way of inducing a “winner-takes-all” competition among the output neurons is to use

lateral inhibitory connections (i.e.. negative feedback paths) between them.

In a self-organized feature map, the neurons are placed at the nodes of a lattice

that is usually one- or two-dimensional; higher dimensional maps are also possible

but not common. The neurons become selectively tuned to various input patterns
or classes of input patterns in the course of a competitive learning process. The
locations of the winner neurons tend to become ordered with respect to each other in
such a way that a meaningful coordinate system for different input features is created
over the lattice [67]. A self-organizing feature map is therefore characterized by the
formulation of a topographic map of the input patterns, in which the spatial locations
(i.e.. coordinates) of the neurons in the lattice correspond to intrinsic features of the

input patterns. hence the name “self-organizing feature mapping.”

The development of this special class of artificial neural network is motivated
by a distinct feature of the human brain [50]; the brain is organized in many places in
such a way that different sensory inputs are represented by topologically ordered com-
putation maps. In particular. sensory inputs such as tactile. visual, and acoustic are
mapped onto different areas of the cerebral cortex in a topologically ordered manner.
Thus the computational map constitutes a basic building block in the information-
processing infrastructure of the nervous system. A computational map is defined
by an array of neurons representing slightly differently tuned processors or filters.
which operate on the sensory information-bearing signals in parallel. Consequently.
the neurons transform input signals into a place-coded probability distribution that
represents the computed values of parameters by sites of maximum relative activity
within the map. The information so derived is of such a form that it can be readily

accessed by higher-order processors using relatively simple connections.

7.2.1 Basic Feature-Mapping Models

Kohonen [67] found that the spatial location of an output neuron in the topographic
map corresponds to a particular domain or feature of the input data. The output
neurons are usually arranged in a one- or two-dimensional lattices. a topology that

ensures that each neuron has a set of neighbors.

The manner in which the input patterns are specified determines the nature
of the feature-mapping model. In particular, we may distinguish two basic models,
as illustrated in Figs.7.2 and 7.3 for a two-dimensional lattice of output neurons that
are fully connected to the inputs. Both models were inspired by the pioneering self-
organizing studies of von der Malsburg, who noted that a model of the visual cortex
could not be entirely genetically predetermined; rather, a self-organizing process in-
volving synaptic learning may be responsible for the local ordering of feature-sensitive
cortical cells. However. global topographic ordering was not achieved. because the

model used a fixed neighborhood.

Two-dimensional array of postsynaptic neurons

[[() (e <
(e (] < (] L
< < (] [[
< o < N/ =3
(=1 (=1 (=] [—4 <
(=1 (=] < o (=3
Two-di ional amay of presynaptic r

Figure 7.2: Willshaw-von der Malsburg’s model.

Two-dimensional amay of postsynaptic neurons

Figure 7.3: Kohonen’s model.

The model of Fig.7.2 was originally proposed by Willshaw and von der Mals-
burg on biological grounds to explain the problem of retinotopic mapping from the
retina to the visual cortex. Specifically. there are two separate two-dimensional lat-
tices of neurons connected together. One lattice represents presynaptic (input) neu-
rons and the other lattice represents postsynaptic (output) neurons. The postsynap-
tic lattice uses a short-range excitatory mechanism as well as a long-range inhibitory
mechanism. These two mechanisms are local in nature and critically important for
self-organization. The two lattices are interconnected by modifiable synapses of a
Hebbian type. Strictly speaking, therefore. the postsynaptic neurons are not winner-
takes-all: rather. a threshold is used to ensure that only a few postsynaptic neurons
will fire at anv one time. Moreover. to prevent a steady buildup in the synaptic
weights that may lead to network instability, the total weight associated with each
postsynaptic neuron is limited by an upper boundary condition. Thus, for each neu-
ron. some synaptic weights increase while others are made to decrease. The basic idea

of the Willshaw-van der Malsburg model is for the geometric proximity of presynaptic

neurons to be coded in the form of correlations in their electrical activity, and to use
these correlations in the postsvnaptic lattice so as to connect neighboring presynap-
tic neurons to neighboring postsynaptic neurons. A topologically ordered mapping is
therefore produced by self-organization. Note . however, that the Willshaw-von der
Malsburg model is specialized to mappings where the input dimension is the same as

the output dimension.

The second model. of Fig.7.3, introduced by Kohonen. is not meant to explain
neurobiological details. Rather. the model tries to capture the essential features of
computational maps in the brain and yet remain computationally tractable. The
model’s neurobiological feasibility is discussed by Kohonen. It appears that the Ko-
honen model is more general than the Willshaw-von der Malsburg model in the sense

that it is capable of performing data compression.

In reality. the Kohonen model belongs to the class of vector coding algorithm.
We sayv so because the model provides a topological mapping that optimally places a
fixed number of vectors into a higher-dimensional input space. and thereby facilitates
data compression. The Kohonen model may therefore be derived in two ways. We
may use basic ideas of self-organization. motivated by neurobiological considerations.
to derive the model. which is the traditional approach. Alternatively, we may use a
vector quantization approach that uses a model involving an encoder and a decoder.
which is motivated by communication-theoretic considerations. The derivation of the
self-organizing feature-mapping (SOFM) usually associates with the Kohonen model,

its basic properties, and applications.

7.2.2 Function of Lateral Feedback

In order to pave the way for the development of self-organizing feature maps, we first
discuss the use of lateral feedback as a mechanism for modifying the form of excitation
applied to a neural network. By lateral feedback we mean a special form of feedback

that is dependent on lateral distance from the point of its application.

For the purpose of this discussion. it is adequate to consider the one-dimensional
lattice of neurons shown in Fig.7.4. which contains two different types of connections.
These are forward connections from the primary source of excitation. and those that
are internal to the network by virtue of self-feedback and lateral feedback. In Fig.7.4.
the input signals are applied in parallel to the neurons. These two types of local
connections serve two different purposes. The weighted sum of the input signals at
each neuron is designed to perform feature detection. Hence each neuron produces a
selective response to a particular set of input signals. The feedback connections, on
the other hand. produce excitatory or inhibitory effects, depending on the distance

from neuron.

The neural network described here exhibits two important characteristics due
to the lateral feedbacks. First. the network tends to concentrate its electrical activity
into local clusters. referred to as activity bubbles. Second. the locations of the activity

bubbles are determined by the nature of the input signals.

Let xq. Ts. ..., , denote the input signals applied to the network, where p is the

number of input terminals. Let wj;.wj2,...,w;, denote the corresponding synaptic

Figure 7.4: One-dimension lattice of neurons with feedforward connections and lateral feed-
back connections: the latter connections are shown only for the neuron at the center of
array.

weights of neuron j. Let ¢;_k.....Cj—1.€j0-Cj1:---- CiK denote the lateral feedback
weights connected to neuron j. where K is the “radius” of the lateral interaction.
Let y1.¥a.....yx denote the output signals of the network. where N is the number

of neurons in the network. We may thus express the output signal of neuron j as

follows:

K
Y, = (Ij + z Cjky_,'.;.k) . J=1.2,.. N. (7.1)

k=-K

where 2(.) is some nonlinear function that limits the value of y; and ensures that
y; = 0. The term I; serves the function of a stimulus, representing the total external

control exerted on neuron j by the weighted effect of the input signals: that is,

)4
IJ' = Z ‘w]'(.’L‘l.
=1

The solution to the nonlinear Eq.7.1 is found iteratively, using a relaxation technique.

Specifically, we reformulate it as a difference equation as follows:

K

yin+l) =9 (Ij +8 cjkyj+k(n)) ., J=L1L2..N. (7.2)
k=-K

where n denotes discrete time. Thus y;(n+1) is the output of neuron j at timen+1.

and y;+x(n) is the output of neuron j + k at the previous time n. The parameter 38

in the argument on the right-hand side of Eq.7.2 controls the rate of convergence of

the relaxation process.

The relaxation equation 7.2 represents a feedback system which includes both
positive and negative feedback. The parameter 3 plays the role of a feedback factor
of the system. The limiting action of the nonlinear activation function ¢(.) causes
the spatial response y;(n) to stabilize in a certain fashion, dependent on the values
assigned to 3. If 3 is large enough, then in the final stage corresponding to n — oo,
the values of y; tend to concentrate inside a spatially bounded cluster. that is. an
~activity bubble”. The bubble is centered at a point where the initial response y;(0)
due to the stimulus /; is maximum. The width of the activity bubble depends on the
ratio of the excitatory to inhibitory lateral interconnections. In particular. we may

state the following:

e If the positive feedback is made stronger. the activity bubble becomes wider.

o If the negative feedback is enhanced, the activity bubble becomes sharper.

Of course. if the net feedback acting around the system is too negative, formation of

the activity bubble is prevented.

7.2.3 Algorithm of SOFM

The self-organized feature-mapping (SOFM) model belongs to the class of vector
coding algorithm [50], which was introduced by Kohonen. The SOFM network is
comprised of two layers: a presynaptic neuron layer (input layer) and postsynaptic
neuron layer (output layer). The input vector. representing the set of input signals.
is denoted by

X = [z1. 72, s)T (7.3)

where p is the number of neurons in the presynaptic layer. The synaptic weight vector

of neuron j in postsynaptic layer is denoted by
W, = [wj1,wize cves Wip] > J = 1,00n N, (7.4)

where VN is the number of neurons in the postsynaptic layer. The input vector X is
connected to each postsynaptic neuron by a feed forward synaptic weight vector. In
the postsynaptic layer. there exist self-feedback and lateral feedback to control the
postsynaptic neuron activity level. If the feedbacks are appropriately introduced, the
network tends to concentrate its electrical activity into a local cluster. referred to as
an activity bubble. The locations of the activity bubbles are determined by the nature
of the input signals. To find the best match of the input vector X with the synaptic
weight vector W . we simply compare the inner products VVJ-TX for j=1,....N and

select the largest amongst them. This assumes that the same threshold is applied to

all the neurons. Thus. by selecting the neuron with the largest inner product WJ-TX,

we will have in effect identified the location of the activity bubble.

In the formulation of the adaptive algorithm, we find it convenient to normalize
the weight vector W to constant Euclidean norm (length). In such a situation. the
criterion for best match is equivalent to selecting the minimum Euclidean distance
between vectors. Specifically, if we use the index ¢(.X') to identify the neuron that best

matches the input vector X, we may then determine #(X) by applying the condition:

i(X) = argmin[|X — Wj|l, j=1...N,
2

o~~~
~1
Ut
p—

where ||.]| denotes the Euclidean norm of the argument vector. The particular neuron
i that satisfies this condition is called the best-matching or winning neuron for the
input vector X. By using Eq.7.5. a continuous input space is mapped onto a discrete
set of neurons. Depending on the application of interest. the response of the network

can either be the index of the neuron. or the synaptic weight vector.

For the network to be self-organizing. the synaptic vector W; of neuron j is
required to change in relation to the input vector X. In Hebb’s postulate of learning,
a synaptic weight is increased with a simultaneous occurrence of presynaptic and
postsvnaptic activities. For the type of unsupervised learning being considered here.
however. the Hebbian hypothesis in its basic form is unsatisfactory for the following
reason: changes in synaptic weights occur in one direction only, which finally drive all
the weights into saturation. To overcome this problem, we may modify the Hebbian

hypothesis simply by including a nonlinear forgetting term —g(y;)W;, where W; is

the synaptic weight vector of neuron j, and g(y;) is some positive scalar function
of its response y;. The only requirement imposed on the function g(y;) is that the

constant term in the Tayvlor series expression of g(y;) be zero, so that we may write
g(y;) =0 fory; =0 and forallj .

The significance of this requirement will become apparent momentarily. Given such a
function. we may then express the differential equation that defines the computational
map produced by the SOFM algorithm as

dW;
dt

= ny; X — gy)W;, j=1.2,... N, (7.6)

where # denotes the continuous time and 7 is the learning-rate parameter of the

algorithm.

Let A;x) denote the topological neighbourhood of the winning neuron, 2(X’).
When the feedback is strong enough in the postsynaptic layer. the neurons inside
the topological neighbourhood of winning neuron are saturated due to the clustering
effect (i.e.. the formation of an activity bubble). The neuron response is “one” if the
neuron is inside the neighbourhood A;(x). otherwise it is “zero”. Furthermore, let
¢(y;) = o when jth neuron is active. where o is a positive constant. Without loss of

generality. we may put a = 7. in which case Eq.7.6 simplifies as

dW; (X — W), 7€ Aix)
dt

0 otherwise.
Finally. using discrete-time formation, Eq.7.7 is cast in a form whereby, given the

svnaptic weight vector W;(n) of neuron j at discrete time n, we may compute the

updated value W;(n + 1) at time n + 1 as follows [50]

W;(n) + n(n)[X(n) — W;(n)l; j € Aixy(n)

——
=1
v2)

(bl

Win+1) =
W;(n) otherwise.

Here A;x)(n) is the neighbourhood around the winning neuron 7 at time n. and
n(n) is the corresponding value of the learning rate parameter. The neighbourhood
Aitx)y(n) is chosen to be a function of the discrete time n: hence we may also refer to
Aiix)(n) as a neighbourhood index function, which reflects the bubble size. Numerous
simulations have shown that the best results in self-organization are obtained if the
neighbourhood index function A;x)(n) is selected fairly wide in the beginning and
then permitted to shrink with time n [50]. This behavior is equivalent to initially using
a strong positive lateral feedback. and then enhancing the negative lateral feedback.
The important point to note here is that the use of a neighbourhood index function
Aix)(n) around the winning neuron i(X) provides a clever computational shortcut
for emulating the formation of a localized response by lateral feedback. This idea is

the motivation for using the adaptive bubble size.

There are three basic steps involved in the application of the algorithm after
initialization. namely, sampling, similarity matching, and updating. These three steps
are repeated until the map formation is completed. The algorithm is summarized as

follows [50]:

1. Initialization: choose random values for the initial weight vectors W;(0), j =

1,2,.... N. It may be desirable to keep the magnitude of the weights small.

(8]

Sampling: draw a sample X from the input distribution with a certain proba-

bility: the vector X is the input of network.

3. Similarity matching: find the best matching neuron ¢(X) at time n using the

following criterion: i(X) = argmin; || X(n) — W[, j = 1..... N.

4. Updating: adjust the synaptic weight vectors of all neurons using the update

formula:

. W;(n) +n(n)[X (n) — W;(n)], J € Aix)(n) _
Win+1)= {7.9)
Wi(n) otherwise,
where n(n) is the learning-rate parameter, and Aix)(n) is the neighbourhood

index function centered around the winning neuron #(X); both 7 and A;x) are

varied dynamically during learning for best results.

5. Continuation: continue with step 2 until no noticeable changes in the feature

map are observed.

The learning process involved in the computation of a feature map is stochastic in
nature. which means that the accuracy of the map depends on the number of iter-
ations of the SOFM algorithm. Moreover. the success of map formation is critically
dependent on how the main parameters of the algorithm. namely. the learning-rate
parameter 1 and the neighborhood index function A;. are selected. There is no the-
oretical basis for the selection of these parameters. They are usually determined by
a process of trial and error. Nevertheless, the following observations provide a useful

guide.

1.

o

The learning-rate parameter 7(n) used to update the synaptic weight vector
should be time-varying. In particular, during first 500 iterations or so. 7(n)
should begin with a value close to unity; thereafter, n(n) should decrease grad-
ually. but staying above 0.1. The exact form of variation of n(n) with n is not
critical: it can be linear, exponential, or inversely proportional to n. It is during
this initial phase of the algorithm that the topological ordering of the weight
vector W;(n) takes place. This phase of the learning process is called the order
phase. The remaining iterations of the algorithm are needed principally for the
fine tuning of the computation map: this second phase of the learning process is
called the convergence (stable) phase. For good statistical accuracy. n(n) should
be maintained during the convergence phase at a small value {on the order of
0.01 or less) for a fairly long period of time, which is typically thousands of

iterations.

For topological ordering of the weight vector W; to take place, carefully consid-
eration has to be given to the neighborhood index function A;. It can take any
shape. In any case. the neighborhood function A; usually begins such that it
includes all neurons in the network and then gradually shrinks with time. To
be specific. during the initial phase of 500 iterations or so. when topological
ordering of the synaptic weight vectors takes place. the radius of A; is permitted
to shrink linearly with time » to a small value of only a couple of neighboring
neurons. During the convergence phase of the algorithm, A; should contain only

the nearest neighbors of winning neuron .

7.3 Measurement Data Fusion

In Eq.7.9. the bubble corresponding to the neighbourhood index function around the
winning neuron i (this bubble is denoted as the neighbourhood function) is assumed
to have a constant amplitude. The implication of this model is that all the neurons
located inside this topological neighbourhood fire at the same rate. and interaction
among those neurons is independent of their lateral distance from the winning neuron
i. However. from a neurobiological viewpoint there is evidence for lateral interaction
among neurons in the sense that a neuron that is firing tends to excite the neurons in
its immediate neighbourhood more than those farther away from it. To account for
the lateral effect of a winning neuron ¢ on the activity of its neighbouring neurons. we
may make the topological neighbourhood function around winning neuron. 7, decay

with lateral distance.

Let d;; denote the lateral distance of neuron j from the winning neuron ¢,
which is 2 Euclidean measure in output space. Let [,; denote the neighbourhood
function centered on the winning neuron ;. From the discussion on neurobiological

evidence. the (;; is chosen:

Nji =e.\'p(—_);_'2). (7.10)

where the parameter o is the “effective width” of the topological neighbourhood. This
is a Gaussian neighbourhood function. Therefore we may now rewrite the recursive

relation (Eq.7.9) for updating the synaptic weight vector W; of neuron j at lateral

distance d;; from the winning neuron 1(X) as follows:
W,(n + 1) = Wj(n) +1(n)Nji0(m)X (n) = Win)], (7.11)

where the learning-rate parameter n(n) and the neighbourhood function MN;;(x)(n) are
both shown as being dependent on time n. For the SOFM algorithm to converge.
it is important that the width o(n) of the topological neighbourhood. as well as the
learning rate parameter 7(n), be permitted to decrease slowly during the learning
process. A popular choice for the dependence of o(n) and 7(n) on time n is the

exponential decay described as. for a(n) and n(n) respectively.
n -
o(n) = oo exp(—2). (7.12)
T1

and
n -
n(n) = noexp(——)- (7.13)
T2
The constant o, and 7, are the respective values of o(n) and n(n) at the initialization
of SOFM (i.e., at » = 0). and 7 and 7 are their respective time constants, which
are determined according to data category. Eqs.7.12, and 7.13 are applied to the
neighbourhood function and the learning rate parameter. respectively. only during
the ordering phase. In the stable learning phase. the small values are assigned to

these parameters for refining the mapping results.

It is assumed that there are L targets and M radar sets. We can get P
(P = L x M) position observations each scan, with each observation having two
components. We suppose that coordination transformation and synchronization have

been done. Here we have L predicted points. Based on the above assumptions, the

feature-mapping net can be established with two neurons in the presynaptic layer
and P + L neurons in the postsynaptic layer, where L neurons correspond to the
predicted points, which are forced to their firing states. P neurons correspond to the
observations. The topologically lateral distance of the jth neuron corresponding to
the jth observation from the kth firing neuron corresponding to the kth target is a
Euclidean measure of the jth observation with respect to the kth predicted point. The
outputs of the neural network are the synaptic weights which are connected to winning
neurons. The whole learning process is an adaptive one. There are two phases in the
adaptive process: an ordering phase and that which is referred to as the stable phase.
In the ordering phase, the effective width of the topological neighbourhood o(n). and
learning rate n(n) are changed in the iterative process according to Eqs.7.12, 7.13. In
the stable phase. the o(n) and n(n) are assigned in appropriate constant value. The
choice of 7(n) will affect the speed of convergence and the choice of o(n) is dominated

by the performance of a position predictor.

In the computer simulations that follow. we normalize the radar plan position
indicator (PPI): the X-axis varies from —5 to 5 and the Y-axis covers the same range
of values. The departures of the observation point from the tracks are dominated by
Gaussian random processes. The extent to which the observations are scattered 1s
controlled by the precisions of the radars. In Fig.7.5 is shown a one-target fusion result
using the feature-mapping neural network presented here. The data are obtained
using four radars, all with the same precision: ¢ = 1. In Fig.7.6 is demonstrated a one-

target feature-mapping fusion case using ten sensors, each with the same precision,

o = 1. It can be seen that the more the number of sensors we use, the more accurate
the fusion result. In Fig.7.7 are given the feature-mapping fusion results for two
targets with ten sensors, where each sensor’s precision o is equal to 0.8. In Fig.7.8
are presented the fusion results for two targets with ten sensors. each having precision
o = 0.8. Here we can see that the two observation clusters overlap each other: it is
very difficult to separate them. However feature-mapping fusion does not need to
know the cluster boundaries nor the measurement error distributions. it learns from

the observations. In practice. this is a significant advantage over classical methods.

Multisensor data fusion, o: plot, *: track, +: fused point

Y_position
(=]
T

-3+ 4

-4 .

b

= -4 -3 -2 -1 0 1 2 3 4 5
X_position

Figure 7.5: Feature-mapping data fusion result for one target and four sensors. sensor
precision g = 1.

In the stable learning phase, the weight vector of the winning neuron would

not change any more after a certain number of iterations. At this point, all the

Multisensor data fusion, o: plot, ": track, +: fused point

41+ -
3} i
o
Q
2} o 4 -
(o)
1k - i
] ° o
‘é’r ok o o -
S
-1 .
o
oL -
-3+ _
4+ -
== -4 -3 -2 -1) 1 2 3 4 5
X_position

Figure 7.6: Feature-mapping data fusion result for one target and ten sensors. sensor pre-
cision ¢ = 1.

Multisensor data fusion, o: plot, *: track, +: fused point

6 i
a4t 4
o (o)
o o o -
o°
g °8 e “
4 o o° 9 -
ST OoF o (o]
-
2+ -
4+ 4
-6} -
ey -4 -2 0 2 4 6
X_position

Figure 7.7: Feature-mapping data fusion results for two targets and ten sensors, sensor
precision ¢ = 0.8.

T T Y T

Muitisensor data fusion, o: plot, *: track, +: fused point

Y_position
O
o

-2+

-3

4

S5 -4 -3 -2 -1 o 1 2 3 a 5

X_position

Figure 7.8: Feature-mapping data fusion results for two targets and ten sensors. sensor
precision o = 0.8.

knowledge supplied by the plots in a given scan of measurement data is learned by
the network. In the above methodological development, we used the two-dimensional
measurement (position (X.Y)). It is easy to extend it to multiple dimensional case. If
the target velocity is available. it can be incorporated to enhance the fusion ability.
The feature-mapping net can be established with four neurons in the presynaptic
laver. with one for perceiving the speed, one for acceleration. and two for position.
It could track the manoeuvring target. In practice. the Kalman filter is used as a
position predictor. its output is related to the history of a track, and this output is
used to determine the lateral feedback between the neuron standing for predicting
point and that denoting observation in the postsynaptic layer. Therefore the track

history has been sensed by the network through a position predictor in the learning

process.

Based on the learning rule, Eq.7.11 can be applied to any data distribution
model. therein allowing for the determination of the centroid. From the method
development above. it can be seen that the network does not involve recurrent process.
the learning is based on the comprehensively modified Hebbian postulate. Therefore.
the learning speed is fast. As mentioned above. SOFM learning does not need to know
the prior knowledge of sensors’ accuracies. Nevertheless. if such data is available. it
can be deployed to determine the time constants 7 and 7». the initial value of the
effective width of the topological neighbourhood. go. and the initial learning rate 7.
the learning will be optimized. For example, when o = 1. the learning parameters are
set as 7 = 200. og = 200, 72 = 100. 7o = 1. the number of iteration in the ordering
phase is 500. However. when o = 0.6, we reduce the oo in half, and decrease 7 in
half. the other parameters keep unchanged, the number of iteration in the ordering

phase is 200.

7.4 Comparison of Fusion Accuracy

\Maximum likelihood (ML) is a statistical method whose estimation accuracy can
rearch the Cramer-Rao lower bound in the case of Gaussian distributed process.
On the other hand. the SOFM network is based on unsupervised learning. which is
inspired by a study of neurobiology. In the following. we first investigate ML, then

compare data fusion performances of the SOFM network and conventional methods.

7.4.1 Maximum Likelihood Approach

Multisensor data fusion is used to estimate the target’s dynamic centroid. It performs
a function that is exactly like that of a parameter estimator. A class of estimators
that are often used are the maximum likelihood estimators. The method of maximum
likelihood is based on a relatively simple idea: Different populations generate different
data samples and any given data sample is more likely to have come from some

population than from others.

Let px (X/®) denote the conditional joint probabilistic density function (PDF)
of the random vector X having ;. ..., zas as its elements. and ® be a parameter vector
with o1..... dx as its elements. The method of ML is based on the principle that we
should estimate the parameter vector by its most plausible values. given the observed
sample vector X. In other words, the ML estimates of @,.....dx are those values of

the parameter vector for which px (X/®) is at maximum.

The likelihood function. denoted by {(®), is given by the conditional joint PDF

px (X/®). viewed as a function of the parameter vector ®. Thus
U®@) = px(X/9).

Although the conditional joint PDF and the likelihood function have exactly the
same formula. nevertheless, it is essential to appreciate their distinction. In the case
of conditional joint PDF. the parameter ® is fixed and the observation vector is
variable. On the other hand., in the case of likelihood function. the parameter vector

® is variable and the observation vector X is fixed.

Very often, it turns out that it is more convenient to work with the logarithm
of the likelihood function rather than with the likelihood function itself. Thus, using

L(®) to denote the log-likelihood function, we write,
L(®) = In[l(®)] = In[px (X/®)].

The logarithm of {(®) is a monotonic function of I(®). This means whenever /(®)
increases. its logarithm L(®) also increases. Thus. maximizing [(®) is equivalent to
maximizing L(®). The ML estimate &, obtained through maximizing L{®). satisfies
the Cramer-Rao lower bound for joint Gaussian process, which is one of the bhest

estimates.

In the application of ML approach to multiple sensor data fusion. it is supposed
that there are N independent radar measurements &;’s from N radar sites for each
target with its centroid being a;. and that & belongs to Gaussian distribution. the

log-likelihood function of a; can be expressed as

N N (e 02
L(aj)=1n]] ! +Z—(§‘_—T“i, (7.14)
=1

270; i=1 20}

where o; is the precision of ith measurement radar. The solution of maximizing L(a;)

can be easily obtained as follows:

N &
_ izl S
a = EN—I (1.1-3)

Eq.7.15 is used for multiple sensor data fusion, and its performance is compared with

that of the SOFM data fusion in the following subsection.

7.4.2 Performance Evaluation

Using computer simulations, we compare the fusion performances obtained using
feature-mapping network, Maximum Likelihood (ML) and ad hoc methods. In the
comparisons, we consider seven sensors with measurement accuracies (standard de-
viation o’s) 2. 0.5, 1. 0.3, 1.8. 1.4, 1, respectively. In each case, both the number of
sensors and the measurement accuracies are specified. The simulations for each case
are run 1000 times to calculate the variance of the fused point for each method. For
the ML method, we assume that each radar’s accuracy is known, otherwise the com-
putational overload is huge. The results of calculation are plotted against the number
of sensors. In Fig.7.9 is presented the fusion performance for the three methods. It
can be seen that the performance of the feature-mapping neural network (Koh fusion
in the figure) is as good as that for ML, and much better than that for the ad hoc
method. In Fig.7.10 are given the fusion variances of the feature-mapping and ML
methods. calculated for the same parameters used in Fig.7.9. except that here each
sensor’s precision is the same. Based on these results. it is obvious that the greater
the number of sensors is. the better the fusion results. The feature-mapping fusion
approach enjoys many advantages over ML. As mentioned before, it learns from the
observations. and therefore it does not need to have the prior knowledge regarding
the sensors nor the prior information on the measurement error distributions. As

well. the fusion speed is fast.

Variance

Variance

10 T T T Y T
- : variance of sensor average
4 : variance of Koh fusion(x)
5 -. :variance of Koh fusion(y) -
-* :variance of ML
o -
-5+
-10F
“155 2 3 4 5 6 7
No. of sensors
Figure 7.9: Variance comparison for different fusion methods.
2 T T T T T
-: variance of ML
ok ...: variance of Koh fusion(x) _
-. : variance of Koh fusion(y)
21
4+
-6
-8+
_1 1 L 1 1 3
01 2 3 4 5] 6 7

No. of sensors

Figure 7.10: Variance comparison for different fusion methods. o = 1.

7.5 Summary

We conclude that it is feasible to use the feature-mapping data fusion in practice.
Since this is based on a neural network technique, it can learn from the observations
and get the same precise fusion centroid as that obtained by applying ML in the
case of Gaussian distributed measurement error. As we know. in the case of ML. the
measurement error distribution function and sensors accuracies need to be known a
priori. If the sensors’ accuracies are not available. the calculation overload is huge. If
the error distribution function is unknown. ML can do nothing for the fusion problem.
Fortunately. the feature-mapping fusion approach overcomes the drawbacks of ML.
On the other hand. the method presented here can be easily built into a VLSI network
which possesses parallel computation potency. In other methods. as well. the cluster
boundary should be found in order that the data. which are from the same target. can
be fused. In a dense target environment, the feature-mapping fusion approach avoids
the difficulty of finding the cluster boundary by introducing adaptive lateral feedback
in the postsynaptic layer. This makes the fusion implementation very feasible and

easy.

Chapter 8

Conclusions

8.1 Contributions

In this thesis. we have discussed neural networks and multisensor data fusion. and
developed the techniques for multisensor target classification. Multilayer perceptrons
neural networks trained by Backpropagation have been designed. The whole sys-
tem. like hierarchical expert network structures, is easily trained using the adaptive
learning rate and momentum methods. This hierarchical network configuration has

a capacity to classify the targets.

A new technique of measurement data association (MFTDA) in a multitar-
get radar environment is developed. The technique is based on the mean-field-theory
machine and has the advantages of both the Hopfield network and the Boltzmann ma-
chine. The new energy function built in the thesis can be considered a cost function.
The cost function takes a minimal value when the plot-track association assumes its
optimal status. In the technical development, three new energy functions have been

168

created. Theoretically, the critical annealing temperature is found to determine the
annealing temperature range. Neural data association capacities have been evaluated

in the cases with and without clutter for different measurement radar precisions.

As a part of the development of the neural data association, the convergent the-
orem established herein provides an affirmative assertion that the mean-field-theory
machine globally asymptotically converges to a stable equilibrium provided the net-
work satisfies the conditions described in the theorem. It also gives us a rule for

devising physical energy function.

As a benchmark. the nearest neighbour association is compared with the neural
data association. The neural data association has higher capacity than does the
nearest neighbour association, it demonstrates remarkable improvement in high target

density circumstance.

The new energy functions have been extended to multiple dimensional data
association. A comprehensive analysis by computer simulations has demonstrated
that the new technique (MFTDA) developed in the thesis possesses high association
capacity in the presence of false alarms: it can cope with track-crossing in the dense
target environment. In the case o, = 0.3. the neural data association capacity with
multiple dimensional measurements is 30% higher than when only using position

measurements for the environment described in Chapter 5.

The feature-mapping data fusion (FMDF) presented in the thesis has much

more advantages over the conventional fusion approach. Since it is based on a neural

network technique, it can learn from the observations and get the same precise fusion
centroid as that obtained by applying ML in the case of Gaussian distributed mea-
surement error. As we know. in the case of ML. the measurement error distribution
function and sensors accuracies need to be known a priori. If the sensors accuracies
are not available. the calculation overload is huge. If the error distribution function is
unknown. ML can do nothing for a fusion problem. Fortunately. the feature-mapping
fusion approach overcomes the drawbacks of ML. On the other hand, the method
presented here can easily be built into a VLSI network which possesses parallel com-
putation potency. In other methods. as well. the cluster boundary should be found
in order that the data. which are from the same target. can be fused. In a dense
target environment. the feature-mapping fusion approach avoids the difficulty inher-
ent to finding the cluster boundary by introducing adaptive lateral feedback in the

postsynaptic layer. This makes the fusion implementation very feasible and easy.

Based on the above results, we have generated two technical research reports
for Defense Research Establishment Valcartier, Canada, and published four papers
in well-known international conferences. Two journal papers have appeared in IEE
Proc.- Radar. Sonar and Navigation., and another journal paper is in the course of

review for publishing on IEEE AES.

8.2 Future Works

Future research will be carried out in the following areas:

o

. Both techniques PDA and JPDA probabilistically “smooth” or “filter” the data

within the gate of interest. The predicted track positions are associated with the
smoothed points instead of real radar contacts. In MDA, the predicted track
positions are associated with real radar contacts. Therefore the comparison
between MDA and PDA or JPDA is not feasible at the association stage. In

future study. we should compare them by track quality.

Based on the method development and its performance evaluation for FMDF,

a VLSI neural network should be built for centralized data fusion system.

Hierarchical expert networks for recognition and classification should be inves-
tigated: it is possible that this sort of network has a potential in data fusion

applications.

. Hybrid networks for extended reasoning should be studied for situation assess-

ment.

Bibliography

[1] Edward Waltz. and James Llinas, Multisensor Data Fusion, Artech House.

Boston, 1990.

[2] David L. Hall, Mathematical Techniques in Multisensor Data Fusion,

Artech House. Boston. 1992.

[3] Y. Bar-Shalom, and T.E. Fortmann, Tacking and Data Association, New

York: Academic Press, 1988.

[4] Y. Bar-Shalom. and E. Tse, “Tracking in a cluttered environment with probabilis-

tic data association.” Automatica, 11, pp.451-460. Sept., 1975.

[5] T.E. Fortmann, Y. Bar-Shalom. and M. Scheffe. “Sonar tracking of multiple tar-
gets using joint probabilistic data association.” IEEE Journal of Oceanic Engi-
neering. OE-3. pp.173-184. July. 1983.

[6] D.B. Reid. ~An algorithm for tracking multiple targets,” IEEE Transactions on

Automatic Control. AC-24, pp.843-854, Dec., 1979.

[7] Y. Bar-Shalom. Multitarget-Multisensors Tracking: Advanced Applica-
tions, Norwood. MA: Artech House, 1990.

172

[8] A.K. Mahalanabis. B. Zhou, and N.K. Bose, “Improved multitarget tracking in
clutter by PDA smoothing.” IEEE Transactions on Aerospace and Electronic

System, 26. pp.113-121, Jan., 1990.

[9] R.J. Fitzgerald, “Development of practical PDA logic for multitarget tracking by
microprocessor.” In Proceedings of the American Controls Conference. Seattle.

WA. pp-339-898, June. 1936.

[10] D. Sengupta, and R.A. Iltis. “Neural solution to the multiple target tracking data

association problem.” IEEE Transactions on Aerospace and Electronic System. 25,

pp.96-108. Jan.. 1939.

[11) B. Zhou. and N.K. Bose. ~ A comprehensive analysis of "neural solution to
the multiple target tracking data association problem.’” IEEE Transactions on

Aerospace and Electronic Systems. 29, pp.260-263. Jan.. 1993.

[12] B. Zhou. and N.K. Bose, “ A unified approach to data association in multitarget

tracking,” Automatica, Vol.30, no.9, pp-1469-1472. 1994.

[13] B. Zhou. and N.K. Bose. * Multitarget tracking in clutter: fast algorithms
for data association.” IEEE Transactions on Aerospace and Electronic Systems,

Vol.29. No.2. pp.352-363, April, 1993.

[14] B. Zhou. and N.K. Bose, © An efficient algorithm for data association in multitar-
get tracking.” IEEE Transactions on Aerospace and Electronic Systems, Vol.31,

no.l. pp.438-468. Jan., 1995.

[15] J.L. Fisher, and D.P. Casasent, “Fast JPDA multitarget tracking algorithm.”

Applied Optics. 28, pp.371-376, Jan., 1989.

[16] V. Nagarajan, M.R. Chidambara. and R.N. Sharma. “Combinatorial problems in
multitarget tracking- A comprehensive solution.” IEE Proceedings Part F. Com-

munications. Radar and Signal Processing, 134, pp.113-118, Feb.. 1987.

[17) William F. Smith. Leon K. Ekchian, and David D. Johnson, “Neural network

implementation of plot/track association,” SPIE. April 1990.

[18] A.H. Gee. “Problem solving with optimization networks.” Ph.D. dissertation.

University of Cambridge, UK. 1993.

[19] Daniel Avitzour, “A maximum likelihood approach to data association,” IEEE

Transactions on Aerospace and Electronic Systems, Vol.28, No.2. April 1992.

[20] Jon A. Benediktsson. Philip H. Swain, and Okan K. Ersoy. * Neural network ap-
proaches versus statistical methods in classification of multisource remote sensing
data.” IEEE Transactions on Geoscience and Remote Sensing. Vol.28. No.4. July

1990.

[21] J.A. Anderson and E. Rosenfeld (Eds.). Neurocomputing Foundation of

Research, Cambridge: The M.I.T. Press, 1988.

[22] W.S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” Bulletin of Mathematical Biophysics, Vol.5, pp.115-133. 1943.

[23] K. Fukushima, “Cognitron: a self organizing multilayered neural network,” Bi-

olog. Cybernetics, Vol.20, pp-121-136, 1975.

[24] L. Herault. J.J. Niez, “Neural networks and combinatorial optimization, a study
of NP-complete graph problems.” in Neural networks: Advances and Applications,

Editor E. Gelenbe, Elsevier. Amsterdam, 1991, pp.165-213.

[25] E.L. Lawler, J.K. Lenstra, A.H. Rinnooy Kan and D.B. Shmoys (Editors), The
Travelling Salesman Problems; A Guided Tour of Combinatorial Opti-

mization, Wiley, New York, 1985.

[26] P.M. Pardalos and S. Jha. “Graph separation techniques for quadratic zero-one

programming.” Computers Math. Applic.. Vol.21, 1991, pp.107-113.

[27] R. E. Gomory. “Outline of an algorithm for integer solutions to linear programs.”

Bulletin of the American Mathematical Society, 64, pp.275-278. 1958.

[28] E.L. Lawler and D.E. Wood, “Branch-and-bound methods: a survey.” Opera-

tions Research. 14. pp.699-719, 1966.

[29] S.E. Dreyfus and A.M. Law. The Art and Theory of Dynamic Program-

ming, Academic Press, 1977.

[30] E.-M. Reingold, J. Nevergelt, and N. Deo, Combinatorial Algorithms—

Theory and Practice, Prentice Hall, New Jersey, 1977.

[31] M. R. Garey and D.S. Johnson, Computers and Intractability—A Guide to
the Theory of NP-Completeness, W.H. Freeman and Company. San Fran-

sisco, 1979.

[32] M.L. Balinksi, Approaches to Integer Programming, Mathematical Pro-

gramming Studies. North Holland Publishing Company. Amsterdam, 1974.

[33] S. Lin and B.W. Kernighan. “An efficient heuristic algorithm for the traveling

salesman problem.” Operations Research, 21(2). pp.498-516, 1973.

[34] D.W. Tank and J.J. Hopfield. “Simple ‘neural’ optimization network: an A/D
converter. signal decision circuit and a linear programming circuit.,” IEEE Trans.

Circuits and Systems, Vol.CAS-33, pp.5333-541. 1986.

[35] J.J. Hopfield and D.W. Tank. “Neural computation of decisions in optimization

problems.” Biolog. Cybernetics, Vol.52, pp-141-152, 1985.

[36] J.J. Hopfield, “Neural networks and physical systems with emergent collective

computational abilities.” Proc. Natl. Acad. Sci., Vol.79, pp-2554-2538, 1982.

[37] J.J. Hopfield. “Neurons with graded response have collective computational prop-
erties like those of two-state neurons,” Proc. Natl. Acad. Sci., Vol.81. pp.3088-

3092. 1984.

(38] J.H. Li. A.N. Michel and W. Parod, “Analysis and synthesis of a class of neural
networks: linear systems operating on a closed hypercube,” IEEE Trans. Circuits

and Systems, Vol.CAS-36, pp.1405-1422, 1989.

[39] J. Bruck, “On the convergence properties of the Hopfield model,” Proc. IEEE
(Special issue on neural networks analysis, techniques and applications, Eds. C.

Lau and B. Widrow), pp.1579-1585, 1990.

[40] E. Aart and J. Korst. Simulated Annealing and Boltzmann Machines,

New York: Wiley, 1989.

[41] D.E. Van den Bout and T.K. Miller, III, *A digital architecture employing
stochasticism for the simulation of Hopfield neural nets,” IEEE Trans. Circuits

and Systems, Vol.36. No.5. pp.732-738, 1989.

[42] S. Kirkpatrick. C.D. Gelatt and M.P. Vecchi. “Optimization by simulated an-

nealing.” Science. Vol.220, pp.671-680, 1983.

[43] S. Kirkpatrick. “Optimization by simulated annealing: quantitative studies.”

Journ. Statist. Physics, Vol. 34. pp.974. 1984.

[+4] J.P. Cerny. “Thermodynamical approach to the traveling salesman problem.”

Journal of Optimization Theory and Applications, Vol.45, pp.41-51, 1985.

[45] N. Metropolis, A. Rosenbluth. M. Rosenbluth, M. Teller. and E. Teller, “Equa-
tion of state calculations by fast computing machine.” J. Chemical Physics. Vol.21.

No.6. pp.1087-1092, 1953.

[46] T.J. Sejnowski, *Neural network learning algorithms,” Neural computers,

Springer-Verlag, pp.291-300, 1988.

[47] C. Peterson and J.R. Anderson, “A mean field learning algorithm for neural

networks,” Complex Systems, Vol.1, pp.995-1019, 1987.

[48] C. Peterson and B. Soderberg. “A new method for mapping optimization prob-
lems onto neural networks.” Int. Journal of Neural Systems, Vol.1, No.1, pp.3-22,

1939.

[49] C. Peterson, and E. Hartman, “Exploration of the Mean Field Theory Learning

Algorithm.” Neural Networks. Vol.2, pp.475-494, 1989.

[50] Simon Haykin. Neural Networks: a Comprehensive Foundation, Macmil-

lan College Publishing Company, INC., New York. 1994.

[51] D.E. Van den Bout. and T.K. Miller III, “Improving the performance of the
Hopfield-Tank neural network through normalization and annealing,” Biol. Cy-

bern. 62. pp.129-139, 1989.

[52] C.A. Noonan. M.E. Everett, and R.C. Freeman, “Sensor data fusion for air to air
situation awareness bevond visual range,” AGARD conference proceedings. 539.

1993.

[53] S.S. Blackman. Multiple Target Tracking with Radar Applications,

Artech House. Dedham. Massachusetts, 1986.

[54] F. Wang, T. Lo. J. Litva, and E. Bosse, “A new energy function of mean field
Hopfield network for measurement data association,” ICSPAT 94, Dallas, USA,

1994.

[55] F. Wang., and John Litva, “Neural data association” ICNNSP’95, Nanjing,

China, Dec., 1995.

[56] John Litva. F. Wang, and T. Lo, “Neural networks for multisensor data fusion,”
CRL Report NO. 298, Applied to DSS CONTRACT No.W7701-3-1426/01-XSK.

Canada. 1995.

[57] John Litva. F. Wang, and T. Lo, “Neural networks for multisensor data fu-
sion - A feature mapping approach,” CRL Report, Applied to DSS CONTRACT

No.W7T701-3-1426 /01-XSK, Canada. 1996.

[38] F. Wang, John Litva, T. Lo. and E. Bosse, “Performance of neural data as-
sociator.” IEE Proc.- Radar, Sonar and Navig., Vol.143, No.2. pp.71-78. April

1996.

[59] F. Wang. and John Litva, “Feature Mapping Data Fusion,” IEE Proc.- Radar.

Sonar and Navig.. Vol.143. No.2, pp.65-70, April 1996.

[60] F. Wang. John Litva, “Multidimensional neural data association.” submitted to

IEEE AES. 1996.

[61] T. Lo, F. Wang. H. Leung. and J. Litva, “Neural Networks for Multisensor
Multitarget Tracking,” 27th International Symposium on Automotive technology

and Automation., Aachen, Germany, 1994.

[62] F. Wang, T. Lo, J. Litva, and E. Bosse, “ Multisensor Automatic Target Classi-
fication with Neural Networks,” Seventh SP Workshop on Statistical Signal and

Array Processing. Quebec, Canada, 1994.

[63] R.A. Singer, and A. J. Kanyvuck, “Computer control of multiple site correlation.”

Automatica, 7, pp-455-463, 1971.

[64] W.R. Ditzler, “A demonstration of multi-sensor tracking,” Proceedings of the

1987 Tri-service Data Fusion Symposium, pp.303-311, 1987.

[65] Y. Bar-Shalom, and L. Campo. “The effect of the common process noise on the
two-sensor fused-track covariance.” IEEE Transactions on Aerospace and Elec-

tronic Systems. AES-22. pp.803-805. 1936.

[66] J.A. Roecker. and C.D. McGillem, “Comparison of two-sensor tracking methods
based on state vector fusion and measurement fusion,” IEEE Transactions on

Aerospace and Electronic systems, AES-24, pp-447-449, 1988.

[67] T. Kohonen. “The self-organizing map.” Proceedings of the IEEE 78. pp.1464-

1480. 1990.

[68] P. Ajjimarangsee. and T. Huntsberger. “ Neural network model for fusion of
visible and infrared sensor outputs,” conference. SPIE VOL. 1003, sensor fusion:

Spatial reasoning and scene interpretation, 1938.

[69] S. Blackman, and T. Broida, “ Multiple sensor data association and fusion in

aerospace applications,” Journal of robotics system (3) , pp-445-485, 1990.

[70] E. Geraniotis. and Y. chau, “Robust data fusion for multisensor detection sys-

tems,” IEEE Trans. on information theory, vol.36, Nov. 1990.

[71] A. Houles, and Y. Bar-shalon, * Multisensor tracking of a manoeuver target in
clutter.” IEEE Trans. on Aerospace and Electronic Systems, Vol AES-25. No.2,

March 1989.

(72] C. Sword, N. Simaan. and E. Kamen, ~ Multiple target angle tracking using
sensor array outputs .” IEEE trans. on aerospace and electronic systems. vol. 26,

No. 2, March 1990.

[73] S. Grossberg, “Nonlinear neural networks: principles, machines, and architec-

tures.” Neural Networks, 1. pp.15-57, 1938.

[74] J.J. Hopfield. ~Artificial neural networks,” IEEE circuits and Devices Mag.. pp.-3-

10, Sept. 1988.

[75] D.H. Ackley. G.E. Hinton, and T.J. Sejnowskii, “ A Learning algorithm for Boltz-

mann machines,” Cognitive Science, Vol.9, pp.147-169. 1935.

[76] J.S. Denker, “Neural networks models for learning and adaptation,” Physica

[77] R. Hecht-Nielsen. = Theory of backpropagation neural networks,” Proc. IJCNN-

89, I-593, 1989.

[78] R.P. Lippmann, “Pattern classification using neural networks,” IEEE Comm.

mag., pp-47-64, Nov. 1939.

[79] E. Yair, and A. Gersho, “The Boltzmann Perceptron network: A soft classifier,”

Neural Networks, Vol.3, pp.203-221, 1990.

[80] S.I. Gallant,“Perceptron -based learning algorithms,” IEEE Trans. on Neural

Networks, Vol.1. No.2, pp.179-191, 1990.

[81] R. A. Iitis. and Pei-Yih Ting, “ Computing Association Probabilities Using Par-
allel Boltzmann Machines,” IEEE Transactions on Neural Networks, Vol. 4, No.

2. March 1993.

[82] L. Jouny, F.D. Garber, and S.C. Ahalt. “Classification of Radar Targets using
Svnthetic Neural Networks,” IEEE Transactions on Aerospace and Electronic Sys-

tems. Vol.29, No.2. April 1993.

[83] James L. Crowley. and Yves Demazeau, ~ Principles and Techniques for Sensor

Data Fusion.” Signal Processing 32 (1993) pp.5-27 Elsevier.

[84] Huey-min Sun. and Shu-min Chiang, “ Tracking Multitarget in Cluttered En-
vironment,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 28.

No.2. April 1992.

[85] Lawrence A. Klein, “ A Boolean Algebra Approach to Multiple Sensor Voting
Fusion. ” IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No.

2, April 1993.

[86] Lang Hong. and Andrew Lynch, “Recursive Temporal Spatial Information Fusion
with Applications to Target Identification,” IEEE Transactions on Aerospace and

Electronic Systems, Vol. 29, No. 2, April 1993.

[87] Somnath Deb. Krishna R. Pattipati, and Yaakov Bar-shalom, * A Multisensor-
Multitarget Data Association Algorithm for Heterogeneous sensors,” IEEE Trans-

actions on Aerospace and Electronic Systems. Vol. 29, No. 2. April 1993.

[88] Bart Kosko, Neural Networks and Fussy Systems, Prentice Hall, Inc., En-

glewood Cliffs, New Jersey, 1992.

[39] Michael Chester, Neural Networks, Prentice Hall, Inc.. Englewood Cliffs, New

Jersey, 1993.

[90] Lawrence A. Klein, Sensors and Data Fusion Concepts and Applications,

SPIE-The International Society for Optical Engineering. Washington, USA. 1993.

4
> "o\
> \\// nW\\

N N
= =

e

16

14

150mm
6

125

0

© 1993, Applied Image, Inc., All Rights Reserved

