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. ABSTRACT - - . .

- This thesis pr.es;ancs a comprehensive approach for the steady
state stab;lity analyéf.a of AC-DC power sy;stems;. A new method\ is |
presented for the evaluation of the system state matrix which 1s then
used to detemine system stability and develop new algorithms for the
stafwility analysis and control of large power systems.

The method exploits the powerful features of the Component
Cot.mection "Method for power system modelling and overcomes -the
disadvantages of the earlier methods. The state matrix is fof:mulated
from two separate sets of equat{ons. One set models the component
subsystems whereas the other defines the intercomnection  between the
subsystens. The maln advantage of this 1s the great flexibility .
provided in t;he modelling of the power_ system components. As Jlong as
the input-output quantities are fixed the modellit;g complexity of the
subsystems may be changed without affecting the interconnection equa-
tion. A compact interconnection equation has been .derived'relating‘
machine voltages and currenfs in the presence of a multiterminal HVDC
network. The subsystems retlail; their ‘physical identity in this formu-
lation and allow the derivatives of the system state matrix to be
easily obtained. The %{" system operating point is detemined by a

new sequential AC-~DC loadflow scheme. Any AC loadflow method can be

iv



ugsed. The DC .network is solved using the Gauss-Siedel method and any

HVDC network configuration and terminals control scheme can he accommo—

dated. The DC network solution need AOt be repeated and the method
enSur;s that a feasible HVDC system operating point is ;elefted.

A new eigenvalue tracking algorithm hqs been developed based on
the evaluation of the sensitivity of a matrix determinant. IE itera-
tively updates the eigenvalues followlng an§¥chénge‘in the system state
matrix at one-third the cost of eigénvalue computation using the QR
algorithm. Used togegar with the pt-'oposed state ni'q.trix f.ormulation
method, it is particularly useful for identifying the modes due to any
.particular subsystem. |

Two new methods for ‘decentralized pole- Jacement have been
developed. The first method assigns the given poles among the various
subsystems and the elements of the feedback gain matrix are ;aried to
" cancel the effects of thé system Iinterconnection. The second method 1s
based on the sensitivit} of a matrix determinant and solves the decen-
tralized pole placement broblei as an inverse eigenvalue problem.I Both
methods are easy to implement and computationally efficlent. |

The methods presented in this thesis have all been verified by
applying them to realiiFic power system models. These have included a
single machine infinite bus system, a three-machine AC system with six
buses and nine lines and a three-machine three-terminal AC-DC system.
These applicatiéns include simulation, analysis and decentralized

controller design. .
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LIST OF PRINCIPAL SYMEOLS

TEsTid ,rkq _\

=~

Generating Unit Model _ ' -

vdiVq - stator voltages in direct- and quadrature—axis cir=
cuits, respectively. |

VD) VQ - sgtator voltages in. DO synchronous referéence frame.

Ve -~ stator voltage. '

id,iq - stator currents in direct- and quadrature-axis cir-
cuits, re;peétively.

iD,iQ - stator currents in DQ sjnchronOus reference frame.

Adsrq - stator flux linkages in diréct- and quadrature-axis
circuits, respectiéely. ' _

-xd,xq - syncﬁronOus -reacFanceé in direct- ;nd quadrature
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Xf£,Xkd - self reactances of fileld and direct-axis damper
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Xaf ~ stator field tutual reactance.
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T - stator resistance;
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fflkdslkq - -
Eegg -

Xe

Tdo _— -

Excitation System

voltage behind synchronous impedance.

currentds In field and damper windings.
[

. .
field voltage.

total reactance between generator terminal and bus-

bar.

total resistance between generator terminal and
busbar.
rotor angle. .-
angular frequency of Infinite bus.
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input torque to genéraﬁor shaft.
generator output elec;ric;I torque.
angular speed of rotc¥.

active and reactive power. ' . o -+
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voltage proportional to'quadrature-axis flux 1link-

s

age,

voltage proportioﬁal to direct—-axis flux linkage.

stator transient reacfance.
quadrature-axis transient open-ci?cuit time con-
stant. .

direct—-axis transient opep—circuit tgpe constant.

damping coefficient.

voltage sensor output.

amplifier output voltage.
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( o .,. .- - T
Vy - stabil%zer output veltage.
: TR ' . - vo ge seﬁsor time constant.
rA - amplifier time constant.
TF i - gstabilldzing loop ‘time constant.
-~
R (g : ~ exciter time constant.,' :
KA- _ . ~ amplifier gain.
Kp - stablizing loop gain
Kg - ;xciter gain. S . .
Veef - exciter reference voltage. .
,
-
DC Terminal Controller
Ipc - terminal DC current. ) "
Voe - - terminal DC voltage.
IREF ‘ - reference current.
VREF ; =.reference voltage
.
Vg ~ stabilizing input.
a - - f;ring aﬁgle. T s
KAQ - constant current controller amplifier gain.
Kpy . . — constant voltage controller amplifier gain.
. ‘Ks . - stabilizing input gain.
Irb — current controller.time constant.
' rv- ‘ - voltage controller time constant. ’
. DC Converter Stabili;er
Kgr - , — stabilizer gain.
Ky : - voltage feedback gain.
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speed feedback gain.
rotor angle feedback gain. i
lead-lag time constants.y "

output voltgge.
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prefix denoting incremental change.

supefscript ‘denoting differentiation Qith respect

to time.
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CHAPTER 1- .

. INTRODUCTION

1.1 Dynamic Properties of Power Systems

An interconnected electriq power system 1is an' example of a
large-scale multivariable system, It is spread over a hide geographi-
cal area with a large number of fenerating units supplying the
electrical load through a transmission network. The analysis of a part

of the power system may require that the whole interconnected system be
considered.

An important question in power system operation 13| that of
staﬁility. Traditionally a system was considered stable if, following
a distﬁrbance, the individual generating machines remained in synchro—
nism.' The study of power system dynamics éor thg first one to two
seconds following the disturbance waS‘gene;ally considered adequate for
determiﬁing stability. However, increased system éize and complexity,
ahd the trend toward‘operating the system closer to its steady state
stability limit has resulted in system disturbances characterized by
oscillations developing over several seconds. It 1is therefore
necessary to study the system dynamics over a time span lénger than

that “traditionally cqnsidered,

-~
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HVDC 1ink; are increasingly being considered for inclusion in
AC power systems because they offer a number of economical and
technical advantages. Of particular relevance to existing power
systems is the role of HVDC for interconnecting. AC networks. In a
number of places 1t 1s extremely difficult to link two nelghbouring AC
networks because of stability considerations. The HVDC 1ink provides a
stable intertie by’acting as a buffer between two AC networks trans-
forming the AC to DC and the DC back to AC again. The inclusion of the
HVDC link and its associated controls, however, contributes further to
the system coﬁplexitf_sﬁa_gffects its dynamics.

Power system dynamics may be placed under three éajor
categories [1],

1 - Prime mover energy supply dynamics‘and controls.

2 - System governing and generation controlé

3 - Electrical machine and network dynamics.

Energy supply dynamics (e.g., boiler effects), usuvally last for
many minutes. System governing and generation control &ynamics last
from several seconds to a few minutes while electrical machine dynamics
are usually over in a few seconds. The appropriate level of detail in
reprégenting power system components - which include the transmission
netuﬁrk, synchronous generators and control equipment - is determined
by thé type of phenomena judged to be important ;ﬁ a particular
stability study. For example, for electrical wmachines and network

transients, the machines, the network and the loads are required to be

modelled in detail whereas the mechanical system including prime mover



and governing contréls may be represented by a simple model. Again
where the effects of significance are system frequency and interchang;
-
control, network representation 1is reduced with a corresponding
increased emphasis on prime mover and. energy supply representation [1].
) One major area of concern has been the study of elgctrical
machines and system dynamics; particularly where the Instability may
develop over several seconds. Analysis of this type of ptoblem
requires that the interaction be;waen machines, excitation systems,
turbine~governor systems, etc., must be carefully considered. This is
further complicated by the inclusion of the HVDC network with its
associated‘ converter controls and requires an understanding of the
relevant subsystem models.

‘Another modelling 1ssue that 1s of great importance felates to
the question of how much of the system external to the study area needs
to be repreéented in order to obtain meaningful results. Thf;—;uestioﬁ
and reléted-ones, such as the level ‘of detail for the external system,
can'at present be answered only on the basis of experience and a system
by system appreach. This often requires.that the system dynamics be
szudied for a number of cases with varying degrees of modelling detail,
makipé it essential to have fast and computationally efficient tools

for analyzing large power networks.,

1.2 Steady State Stability -

The steady state stability problem considers the  dynamic

AR

behaviour of a power system which has been subjected to small
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perturbations and has emerged as an Important consideration in power
system planning and operation on;y over the past two decades. Steady
state stability is characterized by such phenomena as self-excitation,
network torsional {interactions, control system related oscillations,
inter-mechine (roter , - electromechanical) interactions, ‘ turbine
governor related oscillations and monotonic instability assoclated with
exceeding the steady state power transmission limits of the' system.
The potential for steady state instability has increased due to recent
trends in the design and operation of powerdsystem. Cne major factor
has been the use of fast response exciters to 1mp;ove tgggsient
stability. This has resulted in decreased steady state stability
because of their 'negativé effect on the inherent damping of the
synchronous machine rotor oscillafions (2].- Again the machine may
suffer oscillatory instability in the presence of a series compensated
transmission line [3] or a HVDC converter controller [4]. Another
source of instability is the decreased strength of transmission systems
relative to the size of the generating stations [5]. |

In steady state stability analysis, the focus of the study is
on small perturbations around a given operating point. For this
purpose the non-linear differential equations describing the power
system dynamic perfdrmance are linearized around the operating point
and assembled together in state space form. This enables the use of
linear system theory and the application of many control theory
concepts thereby facilitating stability evaluation and also allowing

the design of suitable controllers for improving system stability,

LY



The introduction of HVDC links in an AC power system greatly
influences the steady state and dynamic behaviour of the (AC-DC) power
system. HVDC transmission systems are generally of signifi&ant size
ard their dynamic performance and controllability provide a significant
capability for improving the AC-DC sttem dynamic response. The role
of HVDC in preseat day power systems 1s reviewed in the following

section. N

+

“This thesis 1s basically concerned with the study of steady
state stability of AC-DC power systems with the aim of developing a

ccmputatibnally efficient tool capable of analyzing the wide variety of

steady state &tability aspects of AC-DC s&stems.

1.3 The Role of HVDC

Historically, it was IC that was used first for electric supply
applications. The supply of power was however limited to short
distances because of excessive voltage drops and powér losses over long
transmission lines. long distancé transmission became practicable only
with the advent of AC which allowed higher voltage levels, thereby
reducing line power losses, and which has now come to dominate electric
supply and transmission systems. AC systems however, have their own
disadvantages which have become more evident with the 1increase 1in
syséem size and voltaée level. _Thg inherent difficulties of AC:
trénsmission are basically related to inductive voltage drop, corona
discharge, charging current requirement and the need to keep gene;atoré
operating 1in synchronism. Theserdifficulties are not présent in a IC

~

system and the DC transmission 1ine has emerged as a sgerious



alternative to ACAfQF certain power transmission applications such as
undergrour;d or underwater -cables [6], very .1on;;.'ouerh'end transmission
lines [7] or asynchroncus connections [B8],

In an ,AC-DC power system, the HVDC network including its
- associated converters,. can he hasically considered as a special
compé)neht c')f the AC transmission system. This component converts AC
power to DC, transmits the DC and converts it back to: AC at the receiv—
ing end. HVDC systems constructed so far have heen two terminal links,
which particularly for long distance bulk power transmission applica-
tior.w have had to compete with AC links primarily on the basis of
costs. DC lineé, towers, and rights of way are cheaper compared to .
}:hoée required for AC but the mnecessary converter stations are more
expensive than AC substations. 'I‘hi-s for a-long time resulted in the IC
link being considered only above a certain "break-even” distance where
the cohverter costs were offset by the cheaper cost for the DC line,
However, for certain applications, technical considerations outweigh
any cost factors and DC is the only practical alternative.r Examples of
this are the interconnection of asynchronous ‘AC networks and long
distance underg}-ound or underwater bulk power transmission. ‘In the
first case, an Aq 1ink 18 not ‘possible because of stability consid_era—

tions, while for the second case excessive charging current requirement
-~

poses a limit on the capacity of AC cables.

1,
e,

‘One significant fe'at'ure of an HVDC system is that it is not
paésive, but must be controlled to function. The power flow on a DC

line 18 much more easily and directly controlled than is the case for



the passive AC transmission line, However, when the AC netwo‘rk and DC
].inc.rare combined the centrol of power flow on the HVDC line can be
- ‘ &
used to %':;lt‘rol‘ Eh)e flow of power in the AC network. The DC Lline
" accomplishes rhis by extracting a controlled amount of power at one
nodes- from the AC system and simuLtar:ueously injecting it at a different
point. Consequen/tl?f,nthe‘_[lcflyi'ne'contribution to the short circuit
-power “at th\e”[n?]‘ected node is much less than the case for an AC line.
This fact has been utilized in the -King North line [9] which was
insta}rea to supj)ly power to a dense inner city area primarily to limit
the growth of sbbft circuit power. The introduction of a ‘multiterminall
HVDC network consisting of a large number of HVDC lines would have a
dominénf influence on the power flow of the AC system since power flow,
distribution on the HVDC network ‘'may be used to control the AC line
power flow.
Besides influencing the system steady state power flow the
HVDC link also affects the power system dynamic characteri&:ics. This
has been the subject of considerable research aimed at improving the
system dynamic response by a proper control of {its transien__r:»(::”harac-
teristice. For two terminal systems t':hi.s has-included power j)r ;oltage
modulationg[10], the use of classical control methods [11] or of‘modern'
control methods utilizing opti\_mal controi [I2). The effect of power
modulation has been investigatéd in [13] usiné the linear model of a
synchronous machine con’necﬁtéd to an infinite bus by means of a bipolar

HVDC 1link. Simiiar methéds have been used in [14] for the case of a

single machine connected to an’infinir.e bub by -a parallel AC-DC line.

~



The case of a parallel AC-DC line has also been considered in [L5],
whe_;)e & number of methods have heen used to donstruct optimal, subopti-
mal and conventicnal controls and their small ayd large sgignals
perfermance evaluated. <
Since 1954 -when the first HVDC 1link was commissioned in |
Gotland, .Sweden, a large numher of DC links have becom_e; operational.
Reference [16] 1lists the existing and planné{i systems for No‘rth
America. In most fsje the existing HVI’C dystems are equipped with
contr.ols to .allpw the links to enhance system performance [18]. In -
[18]), a smalhsignal mod el nf the chific HVDC intertie has been
developed and classical techniques usetl to design , a controller to
L;Ln{prove the damping on the _parallel AC !intertie. The controller has
permitted a significanfs increase in the capacity of the AC intertie

from 2100 MW to 2500 MW. The Nelson River HVDC System 1ncludes provi-

sion of damping to the receiving end and a reduction/g_ﬁ_gfansmitted
power in the cade of loss of AC tie lines to the U.S. [19].
. . 48 two-terminal RVDC syatems have m;atured interest has also
been focused on interconnecting more than two terminal stations by

means of a DC network, The more difpersed m?rulation capability of

multiterminal HVDC appears to offer a grefter potential for enhancing
e .

system behaviour. The first ~"realisti operating strategy for
multiterminal gystems was glven as early as 1963 [20] and similér to
the case for two terminal schemes, various terminal characteristics

have been proposed [16,21]. Centralized control principles for
. ) ® ‘
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multiterm_innl systems have been lnvestigated in [_22] and the feagi-

bility .of using on line computer control [23] has been shown.

-

For steady state‘stahility studies simplified DC converter

Pl

models are adequate. This has been verified by comparing simulation

‘results from both simple and extremely detailed HUVDC system models

o

Approaches based on optimal and suboptimal control [25] as well

as modal control [26] have been propbsed -for increasing system

.
'

stability, A more recent app'roach using ‘decentra’lized feedback has

been presented in [27]. '

1.4 ) Objective of the Thesis

The steady state stability analysis of a modern day inter-

connected “poper systsm requifes the solution of a large number of

.

coupled differential equatdons whicﬁ are linearized  around a given

op:rating point. Direct time domain solutions of system differential

equations are possible, .but the effectiveness of the approach is
< - . '
seriously limited because of the following practical considerations
. [

[28,29]:

-+ 1) Time responses are dependent on the choice of disturbance

- as well on the variables selected for observation. An
-

incorrect choice of disturbance may not provide the appro-
priate excitation of the critical modes., Further the

observed time response containg many modes and the poorly

damped modes may not be immediately apparent. To get an

indication- of the growing oscillation it is therefore

~ -



necessary to carry out the simulation over a period of 10 °

to 1.5 seconds. Such simulations are costly because of the
extensive computational effort required.

.ii) Time responses do not provi_c.ie ndequat-e inform.:t‘ion about
the source of instability and yleld little insight as to
t.he p;rémeters that must be 'adjtlséed to make the system
‘stable. _ - ’

The attention has therefqre focused on _usinglli_near gystem techniques

for predicting system stability. ' )

The'b.:rsic approach followed 1s to arrange the differe.ntial
equations of the system into state space fd-rm. " Steady state stability
is then determined from the eigenvalues. of “the system state space
matrix. The advantage of this r;lc;thod 1\s't:hat all the modes are clearly

separated and identified by the eigenvalues. The elgenvalues indicate

the frequency and damping of the oscillatory modes as well as the rate

of decay of the non-oscillatory modes. A further assessment of the .

degree of stability 1s carried out by means of eigenvaiue sensitivity.
analysis, eséentially to determine whether syétem stability is compro-
mised in the event of any‘,chang'es in syfstem parameters.

- The fomulation of the system differential equatio:;s into state
8space form can be easily p;e.rformed for ;zmall systems. Analysis of
practical power systems, however, involves a large numﬁer of systems

)
which interact together in a complex manner. Formulation of the

overall system matrix in this case requires an understanding of the

different subsystems as well as of the interconnection between thenm,

)
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A number of approaches have been employed for the formulation
of the state matrices for large power systems. The main disadvantage
shared by most of the existing techniques 1s that the formul_ar.ion
process requires the inversion or elimination of matrices. However an
efficient approach for AC power systems has been preschted ‘in [5]. It
does not suffer from this disadvantage and further retains thé system
parameters explicitly in the state space matrix. Thig latter fdature
is particularly useful -for system 1identification and par'a;n'eter sensi-
tivity analysis. v

The major aim of this thesis is the development of a comprehen~-
sive approach for ;:he steady state stability analysis of AC-DC power.
systems. An efficient éomputational method has been developed for the
formulation of th‘e system Bf‘.‘e matrix. This method is based on recent
advances in »linear system theory and is capable of handling wide
varilety og mbdels representing ’the various subystems in the power
system. The method considerably simplifies t'he‘ task of state matrix.
derivative evaluation s;ince system parameters are retained explicitly,

An eigenvalue, tracking method has been developed which utilizes this

derivative to analyze the system stability as 1its parameters are

varied,

1.5 Thesis Structure

The thesis has a total of seven chapters. The first two

chapters may be viewed as introduction and background information,

\



whereas the remaining develop and apply the proposed state matrix
formulation for power systems steady state stabilit§ analysis.

Chapter 2 essentially serves to put present research in an
appropriate perspective and reviews the previous research in this area.

An AC-DC loedflow is required for determining the system steady
stater operating pbint for subsequent stability analysis. Chapter 3
describes the loadflow program developed for thié-purpose. )

Chapter 4 presents the state matrix formulation Ffor AC power
systems, Both single machine infinite bus and multimachine power
systems are considered.

Chapter 5 extends the techniques of Chapter 4 to d{nclude
multiterminal HVDC systems. It develops’a simplified interconnection
equatiorn for ‘the AC-DC transmission system and the HVDC network
components are considered as additional subsystems in the overall
formulation.

Chapter 6 uses the proposed state matrix formulation approach
to develop new tools for power sgystem analysié and control. A new and
computagionally inexpensive eigenvalue tracking method is preéented

4
which helps 1n'analyzing system stability by determining root movement
with respect to parameter variation. For power system control two
simple and efficient decentralized pole placement algorithms are also

\ .
presented.

Finally, Chapter 7 summarizes the specific contributione of the

thesis followed by suggestions for future work.



CHAPTER 2
* A REVIEW OF METHODS FOR THE STEADY STATE ANALYSIS OF

POWER SYSTEMS INCLUDING MULTITERMINAL HVDC LINKS

2.1 Introduction

| The advent of HVDC has necessitated the development of

. appropriate computational tools for analyzing AC-DC power systems.
From a system analysis viewpoint this requires the development of a
suitable model for the converter station which is the only essentially
new component; andtthe incorporation of models for HVDC transmission
lines, converter stations and control equipment into existing AC power
system analysis programs. This chapter reviews the progress which has
been made in the adaptation of loadflow and stability analysis to
include HVDC multiterminal systems.

Multiterminal HVDC (MQPC) ﬂe&works have not yet come into
existence but have nevertheless been proposed because of numerous
advantages foreseen 1in power systems operation. Both series and
parallel DC nétworks have been proposed and an excellent survey on MTDC
systems is presented in {21]) with an extensive list of references.
Most work on MTDC systems is céncentrated on the parallel connected
system because it is superior to the series connected system in terms

of minimum transmission line loss, ease of control and flexibility for

13
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future operation [30]. The first MIDC system will most probably be
formed by a parallel extension of an existing two-terminal link.
Section 2.2 reviews AC-DC loadflow methods. Section 2.3
reviews existing AC steady state stability analysis metheds and
Section 2.4 outlines the inclus%on of HVDC networks in stability

analysis programs.

2.2 " Loadflow Analysis Methods FoF AC-DC Networks

The incorporation of HVDC systems in AC loadflow solutions has
been continuing for a long time. Initial methods using network
anal&zers were presentéd by Uhlmann (31} and Horigome and Reeve [32].
Horigome and Ito developed a digital computer approach based on an
equivalent circuit concept [33] which involved separating the system

Into parts but tock no account of the method of control. Methods that
o

developed following these early efforts can be divided ‘into two

groups. The first group of methods termed the Sequential Methods solve
the AC and DC system equations alternately till convergence is obtained
at the AC-DC,system interface. The second group of methods are termed
the Integrated Methods with the AC and DC system equations ?eing
combined' and solved togéther. quore reviewing these methods, the
loadflow problem ‘will be defined and solution types introduced.

We c;nsider first an "n" bus (node) power system network, At
any node (i) in che-neéwork, the net injected complex power (S) must

equal the power outflow through the network. Thus: o



Si* = Vi z Yi’k Vk . (2.1)
k=

P
o

where Yy) are the elements of the bus admittance matrix describing
the transmission network and Vi is the bus voltagé. (The * denotes

complex conjugate.) The net injected power 1is the difference between

the generation and 1load connected at "the bus. - If all the §; and

Yik are known, equation (2.1) can be solved iteratively for Vi

The Gauss~Seidel form of solution requires a simple rearrangement

of (2.1) to give

S k=n ’
vivtl o 1 {[__iv]* - 7 Yk V) (2.2)
. Yi3 Vg k=1 -

k#l
where y. = 0,1,2,... denote the iteration step, This method features

simplicicy of programming that is effective for low order problems.

-~

The Newf:on-Raphson ?{pproach is more complicated but 1is

“

generally more efficient on Jlarger };blems. The~ifference_ between’

the left and right hand sides of (2.1) is called the bus power mismatch
and 18 non-zero unless an exact solution has been obtained. * Since
equation (2.1) 1s complex, it {ig separated into real and imaginary

parts and written as a set of two real equations. 1In the polai' form of

solution the bus power mismatch function is formulated in terms 'of
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changes in the bus voltage magnitudes and bus voltage angles. This is

written as:

AP A9 .
= J , (2.3)

where AP and AQ are the real and reactive bus power‘mismatch vectors
and AV and ag dengte the bus voltage magnitude and bus volfage angle
changg vectors, The matrix J is called thé Jacobilan and is the matrix
of the derivatives of the mismatch . function with respect to voltage
magnitudes and angles. Equation (2.3) 1s used to obtain the
corrections for the bus voltage. and angles. Matrix J 1is sparse in
typical loadflow appli;at}ons and” (2.3} is solved directly and rapidly
ueing sparsity-programmed optimal order triangulation and back-
substitutioﬁ. The Newton method 1is very reliable and extremely
fast in convergence for loadflow applications. An advanced version of
this method ;sing approximations to the Jacobian is ‘called ‘the Fast
Decoupled ﬁechod [34]. The approaches to AC-BC loadflow solutions are

- .

now described.

2.2.1 Sequential Methods

YOne approach has been to treat the DC link as a load for the AC
network. This has been adopted both for two-terminal and multiterminal
HVDC system analysis {35-41]. The method can be illuégraéed a§

follows. Using an estimate of the converter AC voltages, calculéte_the

) -



real aﬁd reactive load of the HVDC link on the AC system assuming that
converter parameters and DC currents are known. " Run the AC loadflow
with the above loads and obtain improved estimates of the AC voltages.
Repeat'lthese- éteps unr.ill convergence 1Is obtalned and desired DC
conditions are consistent with AC conditions..’ Since the AC and IC
sys‘temsb aré solved independently of each other, the H.VDC system may
consist of one or more ;:wo—teminal links or an arbitra‘rily' connected
multiterminal system. For multiterminal systems, Fhe DC network itself
can be solved easily using either the Gauss-Seidel approach employing
-RBUS.'-matrix [40,41) or by means of the Newton—Raﬁhson method and
employing the Ggyg [39] in the Jacobian. Both methods provide for

Adifferent DC converter’ controls such as constant current, constant
power or 'constar{t firing angle. The Gauss-Seidel method is particu~
larly attractive because of its simplicity. Since the number of buses
_on the DC network is éoing to be fairly small, no a&vancage 1s gained
from using the Newton-Raphson metl‘wd.

2.2.2  Integrated Methods

Another approach to solve the HVDC loadflow problem '1s to*

incorporate the DC system parameters directly in the Eacobian for the
AC network formed normally in the Newton-Raphson method, The Jacobian

is expanded to contain entries associated with the converter and IC

transmission line in addition to the usual AC system coefficients,
g N
This method can incorporate DC -terminal controls [42,43] bukan

important shortcoming is 1ts inability to hangle converter transformer
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tap limits. The AC fast decoupled method has also been. similarly

modified to include multiterminal HVDC system [44,45,46].

2.2.3 Discussion

Both approaches-to AC-DC 1ogdflow problem namely, the sequen-
tial and integrated, have their own advaﬁtages. The Newton-Raphson and
fdst decoupled integrated approaches can provide good ;omputing.

efficiency but require rewfiting the compiete program. Also, new AC

~

loadflow techniques may not be as easily accommodated. The sequential

abproach_ﬁas the advantage that any existing loadflow program can be

used 'so that the computational efficiendy or convenience of a specific

program can be retained. The sequential approach has the capability to
~—

handle converter transformer tap limits as well as discrete transformer

taps [41] which 1s not possible with the integrated methods,

One further disadvantage of &ntegrated methods is the increased
computer storage required because the Jacobian size increases rapidly

as the numTj7 of variables increases to account for the HVDC-systmn\

2.3 Steady State Stability Evaluation of AC 'Systenms
The dynamic behaviour of the power sysﬁém ‘may be described by a

set of non—linear differential equations:

;(t5 = f(x{t),ult)) x(tg) = x,
‘ ‘ (2.4)
y(t) = h(x(t},u(c)) = .
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Here x(t), u(t) and y(t) denote the state, Input and output vectors of
the system and xg is the Initial system operating point.

A steady state gtability study investigates the system

/

stability in the vicinity of the operating point xg. Since we are only
interestekd lin the system stability in the f)resence of small distur-
bances, equation (2.4) can bhe expressed in tetlms of deviations around
:he operating point, If the disturbance is assumed small enough,
second order and higher terms are negligible in a Taylor series

éxpansion. The equations therefore take on the linear form:

Ax = [A] &x + [B] Au

\ : (2.5)
' Ay = [C] &x + [D] Au '
[ ‘ .
where A, B, C amd D are real constant matrices of the appropriate
L] . *
dimensions. The entries of these matrices are function of all system

parameters as {well -as the steady stéte opérati'ng condition.

Steady : ate stability may now be analy;zed using different

v L

approaches, Thé fir_gt is to use direct numerical integration of the

system differential equations (2.5). However, because of the longer

—

time period of the phenomena of interest, inte'gr'ation .can be computa-

N

, tionally expens-ivg. The second and better appfoach 1s to apply modern

control theory ﬁechniquea [47, 48],
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The evaluation of stead& state stability then basically
. involves two felated. aspects. One 1is to use a formulation which
reduces.the system equations to state sﬁafg/fonq. The other is the use
of an appropriate analysis -technique to assess system stability. Both

.

these aspects are now covered for AC power systems.

0

2,3.1 Formulation of the State Matrices

he formulation of the system state matrices in equation (2.5)
from the system equations (2.4) is a coqylex and difficult task. For
small problems éuch as a single ﬁachine infinite bus, ;Fe nuﬁber-of
differential and algebraic equations describing the system perfafmance
ié relatively small, The reduction of these equatiens to state space
form is simple and easily performed. Analysis of pracficaL systems,
however, involves aAlarge number of subsystems and complicat;d inter4
aétions. V Formulatién of the overall system state matrices requires
careful choice ;F what to include and how best to'combine the parts.
This has been the subject of much. interest pinée the early works of
Enns et al [49] and Laughton [50].

nEnns et al suggested the so-called 'PQR' technique. 1In this

method the linearized syétem differential and algebraic equations are

arranged as:

P = QAx + Rau _ (2.6)
Ay ) '

A3 P

‘-
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where the state, dutput and input vector x,'y and u are of the same

dimensions as those of equation (2.5). P, Q, R are appropriately

iy,
dimensioned mhtrices and are functions of system structure and

L

operating point. Equation (2.6) can now be easily transformed to 62.5)
®

by premultiplying by_P"1 and appropriate partitioning. This gives:

L]
<

" AR ' S
= [P7! Q] ax + [P7IR]au C2.T)
. AY ~

\” -7 The approach of Enns et al has been used by Anderson [51,52]
for multimachine systems and. extended to include network and _shaft

dynamics by Nolan et al [53]. "This technique was considerably improved
- f' - : .
e
by Alden and Zein El-din[54] where the organizational simplicity of the

PQR ‘technique was combined with an effigient sub-matrix buildup method.

» The approach siuggested by Alden and Zein El-din (54] avoided

tﬁg inversion of a large matrix by orderiné the state, algebraic and
.output variables of each individual machine  in such a way 8o as to set
up the P matrix in the quasi-block diagonal form. Equation (2.6) 1s

then rewritten, after partitioning. the matrices P, Q and R, as:

I ba || ax QA RA

- AX + Au (2.8)
0 PB (| ay R RB

The state space form. equation (2.5) can be now written as:
.

~
= .
.

A = [QA - PA P! QB] ax + (RA] au
. : . (2.9)
ay = [PB7! QB] ax + [PB™! RB] au
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AiCanatiJely Laugﬁton YSO] used a direct eliminatien techhiqué

. to form the .state matrix from the complete diﬁférential and algebraic

equation for the wholé system. Undrill [55] proposed using a submatrix

bg}ldup tecppique witﬁ emphasis on Fhe efficlency that results by
avolding large blocks of null elements. |

The %g;hod desctibed b? Muir [56] uses the elimination

technique ,described by Laughton: ‘Thé state matrix is formed 'py

- eliminating * the algebraic variébles of the complete gystem in a number
of stepd? Initially, the network equétions are combined with the
Flgebraic and di}ferential equations of the first machine and written
as: , ) .« . .
.| #0 0 éVN
wuy | = W || sk 4 2, ax, | (2.10)
5 o 1;. 0 Ay,
. [}
whege;Akl, du; and Ayl are the staté,'input anq plgebraicybectors of
machine 1 and vy 1s ﬁhe network voltage Vectqr: ) The qlgebréic
variables y; and the fdﬁ node equations corre:}onding to machine 1 are
. L] "
) - now eliyinated resulting in the'reduqed equatién: .
<
. 0 ‘ - o ] AVN]'
= WR] ) o+ ZR] (2.11)
v ) duy | " AXy . AXy :

*

N



The matrices Wpy and le
WL and Z; and le
of the nodes for machine I.

combined with equation (2.11) to glve:

4

In this equation AXp, Aup and Ay, are the stafe;

véccors of machine 2.

(

giving:
[ 7 F = 7 N
v 0 " 0 [-Asz
dup | = ¥r2 8% Zr2 8%
. a
. auy A%, A%,
L . L L JL "

[0 7 [ TTo 7 . T Mavy' T
A 4% 4%
. = W . Z 9
Aup AXp H AXs
v .
M i [ 0] 1 H oy J

"

R\“l . i [- FA;C] F Ax]

dup | = ”RM‘ 4% Zpmos || %2
- Auﬁ Axy jé? Axy

L1 L L L

-
are the reduced matrices correaponding to.
is the reduced voltage vector after the elimination

The equations for machine 2 may now be

(2.12)

input and algebratc

Again the algebraic variables maf be eliminated

(2.13)

The remaining machihes_are. added similarly resulting in the equation:

(2.14)
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The state equation for the M machine system 1s obtained as:

ax = = [Wpyl™! Zpy ax + {Wpyl”! au (2.15)

-

where aAx = [AxlT, szT reen AKMT]T

au = [anT, au,T ... AUMT]T

As seen from equations (2.9) and (2.15), these methods are
costly in terms of the computational effort barticularly in view of the
matrix inversions required. The 'methoq proposed .in this thesis and
presented in Chapters 4 and 5 does.not require any mat;ix inversion for
AC systems and the inversion of a submatrix of order equal to the
number of DC terminals, for the case of an AC-DC system.

An important aspect of state matrix formulation is the grouping

of the state variables. These can be either:

1. Type Grouping where all states associgted with the _same
[ process in each.machine are grouped together, e.g., roto
angles of all machines, rotor speeds of all machines, etc.

.

2. Machine Grouping where all states associated with® a
patéicular machine are grouped together.

The first approcach has been mdopteé in [5], [5S0]) and [55],

whereas the second approach has been used in [(52), [53]), [54] and

[56]:~The second scheme has a number of advantages in terms of savings

in computational time and improved flexibility for subsequent stability

.

- »
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analysis [54,57]. It occurs naturally using the state matrix formula-

tion method proposed here.

One other method for steady state stability analysis is EQEE—
proposed by Larsen et al [58]. It is based on using a transie;;
stability simulation program to construct the system matrix via
numerical differentiation. The _approach is atéractivé and easy to
implement, however :in may be susceptible to ingccurac& caused by

numerical instability associated generally with the numerical differen-

tiation process [59].

2.3.2  Analysis Techalques

Steady state stability may be determined directly from a

numerical integrstion of the linearized system differential equation,

JHowever, as mentioned in the previous section it is uneconomical to

perform numerical integration for steady state stability evaluatign

because of the necessity to continue the integration over a long time

period.

Classiqal control theory techniques such as Routﬁ—Hurwitz [60],
Nyquist [61] and Root-locus [62] have all been utilized for analysing
power system dynamiﬁa. ?he concepts of damping and syncﬂronizing’
torques, based on a frequency response techniqué, has also been used
forlthe analysis of synchronous méchines %éd its excitation systems
[2;63]. These methods while useful for the understéndiﬁg of basic
concepts are restricted to small systems such as a single machine‘

infinite bus system,
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The most promising  and commonly used method is the use of
eigenvalues of the system state matrix A of equétion (2.5). The eigen—
values of A (Ai =0y + jwi, 1 = 1,2,...n) completely specify the nature
of the modeled system's response to small d;sturbance. In the time
domain the components of the incremental state Ax are expressed as
linear combinations of the modes ekit. The oscillation freqquﬁy.k
is given by ui/2n and o4 define éhe decay characteristic. The system
will be stable 1if all the ¢gi are negative so that the oscillations
deqay with time. A positive g; denotes an unstable system.

' The wuncertainty in power system data, variation in system
parameters, and inaccuracies“in measurements mean that the elements of
the ;ystem state matrix A are incorrect and therefore its eigenvalues
may be different from that of the actual power” system. It is therefore
necessary to further characterize stability by evaluating the senziti:
vity of stability to these parameter variations. This 1is accomplished
by means-.of elgenvalue sensitivity evaluation and haé been wused
frequently for power system analysis [53,54,64,65,66). Expreséions for
first order sensitivities have been derived using a number_ of methods
[67,68,69]., These have been extended for second order [70] and nfh

order sensitivity evaluation 171].

» Eigenvalue sensiFivity is particularly useful for identifying
which system parameters have a significant 1mbact on damping of
particular modes and can therefore be used to adjust these parameters
to\hrovide an adequaeg Etability margin. This is accomplishgd by means

of eilgen¥alue tracking, i.eﬂ, plotting the root-locus, as-the system

:
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'
control or design parameter is varied. (;j-:;;hnique for tracking a
subset of c¢ritical eigenvalues has been developed in [70]. It is
useful 1in cases where only a few elgenvalues are sensitive to parameter

variations.

A major characteristic and limitation of eigenvalue-based
approach to system stability evaluation is the large aﬁgcht of computer
memory and time required for eigenvalve evaluation particularly for
large systems. The tracking approach of [72] is particularly useful as
it is more economical than repeated eigenvalue computations.

2.4 Inclusion of HVDC System

The developﬁent of the,state matrix for an AC-DC power system
started_ with the more siﬁple systEms representing a single machine
connected to an infinite bus through a parallel AC-DC line [73,74]:
Goudie [73] used the elimination méthod of [50] for the study of steady

state stability of a parallel HVDC-AC system. A 'more general

’
formulation was reported in [75] for an arbitrary multimachine system

coﬂt;;ling one. or more point to— point HVDC 1links. In this method

- v . v

detailed representation of generators, DC 11qk and aBsoclated

controllers was considered, The component. models are formulated

separately and interconnected using‘the network model obtained directly

from the Jacobian found by the Newton-Raphson loadflow method. The

state matrix 1is then found by the elimination of the_ algedbraic

variables.
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Linearized models of AC networks containing multiterminal DC

~ systems have also been reborted. However, these formulations have used
simplified modelg of the AC system and are basically attempts to solve

a specific problem [76,77]. This deficiency is overcsme in the
proposed state matrix formulation®’method presented in Chapters 4 and 5
owhich -has a number of significant advantages in terms of ease of
formulation, inclusion of a wide variety of subsystem models and stéte

. ~

matrix derivative evaluation for eigemvalue sensitivity calculations.

\ 2.5 Summary

This chapter has presented ~a survey of the various existing
lechniques available for HVbC—AC s;stems for bOCh' loadflow énd
stability studies. While sgbstantial digital simulation chpacity
exists there is a need for a general'small signal model which includes

a full representation of the AC system.



CHAPTER 3
LOADFLOW ANALYSIS OF MULTITERMINAL AC-DC SYSTEMS

i

3.1 Introduction

An AC-DC lgadflow is required for,the determination of the base
operating point of the AC-DC system. The machines and DC conve;ter
equations are then linearized around this operating peint for the
evaluation of system dypaaic stability. Since efficient A& lgadflow
techniques’ are available’and also as the majér part of a multiterminal
AC-DC power system would be AC, it is natural to take advantage of these

techniques and extend them to include the DC network for -AC-DC loadflow

studies. i

. ) In an HVDC transmission network, unlike the passive elements of
the AC transmission system, the DC converters are activé devices. They
are equipped with a variety of controls to adjust the DC system
voltage, current or power flow. Under normal steady stat; condidtions
there is further a converter transformer tap changer which keeps the
converter firing angle close to some minimum value. All these controls
are utilized to enhance the AC system operation by. controlling the
.system power flows. It is thgrefore necessary for the AC-DC loadflow

method to be able to accommodate the many different control modes.
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J There are’ two ways to solve the AC-DC loadflow problem. 1In the
first approach the AC and DC system equations are combined together and
solved using a Newton method [42]. The second approach is to treat the
DC system as a 1036 on the AC network and iterating back and forth
between AC and DC systems to match the bourndary conditions between the
two systems [39,40,41). Both types of methods have beeﬁ discussed‘in

Chapter 2. A new method based on the second or sequential épproach is
presented in this chapter. It has the following advantages:

l. The reactive power requirement of the DC system is
estimated first prior to running any loadflow. iteration:
This ensures the selection of a feasible operating point
for the HVDC system' by checking that adequate reactive
power support is available.

2. . The DC network laadflow 1s not’required to be repeated.

3. The Gauss-Seidel method 1s used with the conﬂuctance maLrix
to solve for the DC loadflow. _'This results in minimal
storage combared to the use of the Newton method fo:
solving the DC system, .

The converter equations are pregsented in Section 3.2, followed

by a description of the differen:’ DC network configurations in
Section 3;3, "Section 3.4 discusses the IC conﬁgrter operating modes
for multiterminal DC systems. Sections 3.5 to 3.8 ﬁresents the new
AC-DC loadflow method® and giﬁes the géaults of loadflow analyses for

! &
two test examples. ' -

.
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3.2 Converter Equations

The following basic assumptions have been:made to dérive the
converter equations [78,79,80):
I. The AC source delivers a constant sinusoidal voltage.
Three phase voltages and currents are balanced. -
2. All highér harmonics of ;oltaée and currents produced “by
the converters are filtered out and' do not appear in the AC
system. .
3. The converter tag.cpanging transformers are ideal with a
series reactance.
4. Converter is lossless and has no érc érop. ‘
5. The dikect voltage and current are smooth.
The DC converter equations must mesh in with the AC system
equations expressed In per unit system. There are a number of ways
that this Qkuld be accomplished. Cne setYof AC and DC per unit syst;m

adopted in the literature [39,40,41] is used here and is given in

Appendix Al.

The converter equations whiéh relate the DC system to the AC
system are written with reference to Figure 3.1(a) whiﬁh sﬁous one
equivalent converter per pole. For symmetrical_operation this bipolar
circuit may be repi;ced by the. monopolar equivalent ecircuit in
Figure 3.1(b). Any parallel or geries converter configuration may be
reduced ko one of these two equivalents [39,80].

The terminal DC voltage of the converter is given by
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Vpg = aVcoss - Relpe (3.1)

‘where Vpc = Converter DC output yoltage "~
Ipc = Converter DC current
Re = Commutating resistance‘
a = Trapsformér tap ratio
V = AC bus voltage
g = C;nverter firing angle
= g for Rectifier

= vy for Inverter.

Since a lossless inverter has been assumed

/

P = Py ’ ‘ (3.2)

DC
which gives
Voelpe = aVlcos (y - ) : ' . (313)

where y and g are defined in Figure 3.1(a).

Since the AC and DC currents are equal in per unit we obtain

Vpc = aVcoss . * (3.4)

—

where ¢ = (p - £) denotes the power factor angle,

bl
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3.3 DC System Configuration j,

There are a number of possible DC system configurations. These
are [21): |

I. Multiple pair.

2, Series connection.

3. Paraliel connection,

The multiple pair connection 18 shown in Figure 3.2. It essen-
tially requires double conversion and is strictly not a multiterminal

system, being formed from separate but adjacent two terminal links.

“~//_\lwﬂhe serles connection is shown in Figure 3.3. The same current

flows through the entire DC network which is groundéd‘at one terminal

. only. One converter works in the constant current mode while the rest

of the converters are operac#ng'in the constant voltage mode. The DC
series system suffers from serious disadvantéges such as severe reac-—
tive power requirement, difficulty in eftending the network, large line
losses and the impossibility of operating the system 1n case of a line
ocutage.

The parallel connection includes both the radial and mesh

configurations as shown Gj;} Figure 3.4ia) and (b). The IC network
t

operates at nearly a co ant voltage level with one converter deter-—

the rest of the converters operating either in
constant current or cohgtant power mode. The parallel connection
overcomes .the disadvantages of the series connected systems with the

mesh interconnection resulti in the most flex;ble power interchange

sed reliability and reactive power



15

b

> -

.
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- S .
., consumption 1s minimized because the converter operates at low values

of control angles. Further, DC network losses are minimized because of
&

natural DC loadfows [21,29].

| ] .
#andﬁmbéubsehuent sections a parallel mé&titerminal system 1is

aSsuéed, since due to its inherent i:;ggzages it is"likely that the

fii?t nultiterminal HVDC system is of this type and therefore it has

been studied extensively 1n the literature [21].

' b

3.4 DC Converter Operating Modes

It is assﬁmed_that there is a central dispatch control respon-
'

sible for the current or power setting of the gonverters to implement a
desired power interchange on the multiterminal HVDC: network. One
terminal determines the DC system voltage thle the current or active
power-is fixed for the rest of the terminals. The poﬁer flow for a
constant current converter will depend on the terminaT*VU{QEEe which is
unknoﬁn at the beginning, hence such a scheme .13 not expected to
provide accurate power dispatch at the c;nstant current terminal,

The constant yoltaée DC ‘terminal operates at either its minimum
firing angle, apip. 1f it 18 a rectifier or at its minimum extinction

3

angle, ypin» 1f ft is an 1nvegter. These may be expressed as:

.. spic - .
Vo " Ve . (3.5)
SPEC -
8 OMIN (3.6)
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"

SPEC SPEC
MIN OMTN for a rectifier

SPEC
R . YMIN for an inverter

where ¢

and SPEC stands for speciffed.

For a converter with scheduled constant power or constant current
" .

operation it is neccessary that the terminal operates at a DC voltage
-

lower than its own firing angle or extinctlon angle characteristics. A

-

3% voltage margin is often provided [39] and 1is neccessar$ to prevent
normal fluctuation of AC voltages from causing mode changes. For a

. constant current terminal the converter control equations can therefore

be written as:

SPEC - ,
I = Ipe ‘ ' (3.7)

' - SPEC .
VDc 0.97 (aVcosQMIN - RC;DC )] (3.8)

#

Similarly, for a comstant power terminal

+ SPEC
. Pre Poe (3.9)

»
i C 0.97 (aVeosoy y ~ RoIpe) | . ' (3.10)

<<
L}

Considering that the converter voltage equation (3.1) 4is still

applicable ‘ {/’

. VDC =  aVcosg - RCIﬁC

.
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and comparing with equations (3.8) and {3.10) we have

aVcos - RCIDC = 0.97 aVcoseMIN - 0.?7 RCIDC

or cosg = 0.97 cosgy;,. + 0.03 Relpe/al (3.11)

This shows that the control angle 1s strongly dependent on My and
changes only slightly with a, V or Ipg. Therefore, rather than
specifying a voltage margin we can fix the control angle for the

constant current or constant power terminals. The .converter voltage

equations (3.8) and (3.10) are replaced by equation (3.1) with

® = BmapcIN : (3.12)

where SMARGIN = OMARGIN fOF 2@ rectifigr

YMARGIN for an inverter
For a rectifier taking a typichl value of gyry to be between 5° - 77,
aMARGIN Would lie between 14° - 16°. In the case of thé inverter
where yyiNy 1s around 16° - Ig°, voltage fluctuation may be taken into
account by choosing ymaggyny between 21° - 23°,

The loadflow method presented in the next secﬁion, therefore,
considers the control angle to be fixed for consfant current or

.

constant power tgerminals.
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3.5 DC Loadflow Equations

The DC network equation for mesh, radial, monopolar or bipolar,

- symmetrical or assymetrical network can be written as

‘Im = va (3.13)

Since the number of DC buses in general will be small the Gauss-Seidel
method 1is adequate for solving the DC loadflow. For a k terminal HVDC
network where-the kth terminal is the voltage controlled terminal and

1s taken as the reference, the voltage at the constant power terminal

DC bus is given by

SPEC

P k~1
C (u+D) 1 pci (v)
Vbe1 IR ) L Voen Byl (3.14)
i1 v n=1
DCi
n#i

where v is the number of iterations (v = 0,1,2,...). For a constant

current terminal

k=1

(v+l) 1 SPEC (v)
v - {I - z v g ] {(3.15)

DCi U g11 DC nel DCn in .

I -

nzi
The iteration is ﬁggrted by assuming
SPEC , - _
VDCi - VDCk (1 1,2... k-1) (3.16)

The DC power of the current controlled terminals 1s evaluated from

.



PDC = VDCIDC (3.17)

. k-1 .
Ppek = Vbok b Zki Vbci (3.18)
1=1 A
3.6 AC Loadflow

The primary advantage of sequential AC-DC loadflow methods is

that any existing AC loadflow method may be employed. The DC network

‘ ‘ig simply considered as a load on the AC system. For an n bus power

( systeﬁ the static loadflow equations are given by
. n .
N PGi - PDi = vi jxl Vj(Gijcos;pij + Bijsinwij)

. for 1 = PQ and PV buses
- (3.19)

: n
QG% -0y - V% jzl_Vj(Cijs:lmp1j - Bijcosq;ij

.
a

for 1 = PQ buses )

The Newton-Raphson method has been used herej to solve equation (3.19)
for bus voltage magnitude V and bus voltage angle Y given the load
demand Ppys Qpy and the system power generation Peys Qg4 -

e
_Gij and Bij are elgefnts of the bus admittance matrix Y = [G + 3jBl.
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3.7 AC-DC Loadflow Method
’ ﬁ‘.
The method is as follows:

1. Estimate the DC system reactive power requirement. This
basically requires an approximation of the terminal power factor since *

the active power P is known from the desired interchange. The power

factor is obtained using equations (3.1) and (3.4) and is given as

= . ©(3.20)

Initially, both the'transformer tap setting a and AC bus voltage V are

'taken’/;s 1.0 pu. Also, Ipc is given for the current controlleéjﬂ

terminal. For a constant power terminal _J
) .
SPEC
. Pc
DC VDCkSPEC

4

assuming that there is no voltage Hrop across the DC network and ;he'

L]
kth terminal 1is on contant voltage control.

Again, the current . for the constant voltage' terminal +s

computed from: ] \\‘1?f
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7

The contrel angle g 1s taken equal to either OMIN ©OF BMARGIN A8

mentioned earlier in Section 3.4 and depends on whether the terminal is

a rectifier or inverter. The reactive power requirement of the ith .

terminal Is given by

\

Pooy tan ¢y ‘ ‘ (3.21)

ey

where the real power Ppe 1s given by

PDCSPEC' for a constant power terminal '
' P ={ v_1, SPEC for a constant cu?rent terminal (3.22)
SPEC
VDC IDC for a voltage controlled termina{

\
»

2. The AC loadflow is now, carried out using the equivalent AC

-

loads for each DC terminal determined in Step I,
3. If the AC system voltage profile is satisfactory, a DC

loadflow is carried out. This gives the exact power and current flow

L

in the DC network, which 1s used to update the AC equivalent loads

(-3

calculated in Step l.

4. The AC loadflow is repeated .using the updated DC system
loads. The AC bus voltages obtained in Step 2 are used as the initial
values. ‘This results 1In quick convergence, within two or three

. lterations, of the AC loadflow because. the exact and estimated AC

- ' .
A :
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equivalent loads are quite close and thel® voltages V's obtained 1in
Step 2 lie near the AC loadflow solutioi‘
5. The AC bus voltages determinga—zﬁoveiig used to calculate

the transformer tap ratio. Rewriting equation (3.4) gives

.

. : AT . (3.23)

a = Vp./Vcosy

If the transformer tap changers are within(;}&mits problem 1is
T

solved, Usually no tap limit violation will be found
N

operating range. However, in case of tap-limit violationm, 1f either of

the normal

the upper or lower limits has 'been exceeded, the voltage at the voltage
controlling converter 1s rescheduled and Steps 3 to 5 are repeated.

s
The new voltage can be determined using

SPEC (OLD) , alower

VDC : 3 a( alower .
vore - ' _ (3.24)
» ,‘gt\v
. upper ' "
o ySPEC (OLD) , abP? 2y aupper
¢ v . \—_-,

-

If there is more than one upper tap limit violation or moré than one

lower tap 1limit violation, the largest (alimit

VggEC. If there are simultaneously lower and upper tap violation there

-

/a) 1s used to change

is no feagible solution [39].

- * .
‘ o4

-
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3.8 Test Results

This section presents 'the results of applying the AC-DC
loadflow algorithm to two different examples. The first examplé shows
4 nine-bus, three-terminal AC-~DC system which has been used In
subsequent stability studies in Chapters 4 and 5. The.second example
has been chosen to demonstrate the versatility ;f the metﬁod for the
case of an assymetrical bipolar network.

L
3.8.1 A Nine-Bus, Three-Terminal AC-DC Power System

In this example a three terminal HVDC network is overlayed on

a nine-bus nine-line AC power .system as shown in Figure 3.5 [8l]. The.
bus data and the transmission line data for the AC and DC systems is
given in Tables 3.1 to 3.4. ‘\\‘r
~

Converters Rl and R3 operate as rectifiers in the constant
current mode with converter I2 determining the DC system voltage and
operating as an inverter. The operating point of the HVDC system has

t .

been chosen such that Rl and éi\extract power from AC buses &4 and 6

Vg
which is simultanecusly 1njected.9y Ig\at bus 1. The results of the

""AC-DC loadflow are given in Tables” 3.5(a) and 3.5 (b).

Besideé qetermini;g the system operating point for stabilicy
studies in Chapters 4 and 5, this example also serves to highlight some
of rthe adJantages of incorporating HVDCInetworks in AC power systeﬁs.
The AC liné flows for the AC-DC system a;e compared to the line flows
for the AC system in Table 3.6. Note the effect of the DC network on

rerouting AC. power flows. The power flow on lines 2 and 7 1is decreased

A
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FA A

Fig. 3.5 A Nipne-Bus, Three-Terminal AC-DC Power System
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Table 3.1

Bus

No.

4

7

AC Bus Deta for-Nine Bus, Three-Terminal Power System

Bus voltaxe
- 0
- 0
- 0
- 0
- 0
- 0
1.025 0
1.025 1
1.040 0

Generation

P

.008
.000
.000
.000
.000
.000
.850
.630
.16

0
0
0
0
0.
4]
-0
0.
0.

Q

.000
.000
.000
.000

000

.000
.109

063
270

Load

.000
.250
.98
.000
.000
.000
.000
.000
.Coo

COCcCO OO ~—O

OO0 O0CODOCOoOOO

.000
.500
.300
.000
.350
.000
.000
.000 -
.000

Table 3.2 AC Line Data for Nine—Bus, Three-Terminal Power systen.

Line
No.

VD~ Wy

f
O P @ py

Bus
To From

2
4
5
4
6
?
3
1
9

. *

/

-01000

-03200

- .00850
-00000
-01190
-00000
.03900
.01700
-00000

.08500
.16100
.07200
.06250
.10080
.05860
.17000 °
.09200
.05760

L

. ‘\ *

B

r

.0880
.1530
.0745
.0000
.1045
.0000,
.1790
.0790
.0000
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Terminal
No.

1
2
3

Table 3.5 Results for AC-DC Loadflow

DC

Voltage

.972
966"
.973 -

49

3) DC Loadflow Rasults
. <

Powe s

P Q
. 243 .0@1
-.483 .182
.243  ,081

* denotes the control values

Bus
No.

N @ w2 O e B —

b) AC Loadflow Results

Bus Voltage

1

1
l
1
1
1
1
1

Magnitude

-020
.992
.008
.020
.010
.026
.025
.025
.040

Angle

~2.19
-5.16
-4.91

-2.72.

-1.50
1.21
5.91

.00

P

-

.0000

-0000
.0000
.0000

.0000°

.0000
.8500
1.6300
.70517

) AV
Current Tap Control AC Bus
Angle Voltage
.250%  1.01 16.00 1.020
-.500  1.01 *16.00 1.020
-, 250% 1.00 16.00 1.026-
. .
PN
(\\ ¢
Power v Load
Q P e Q
. -0000 4 -.4830 .1818
-0000 61.2500 . 5000
.0000 .9000 .3000
.0000 .2431 .08
.0000 -1.0000 .
. 0000 L2432 .0812
.0009 .0000 0000
.1628 .0000_ .0000
L3717 .0000 .9000
e
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while being increased on lines | and B. This capnbillty-of controlling
AC line flows is nn'impo;tant‘advancage of multiterminal HVDC networks.

Thé bus voltages for the AC ané AC-DC systems are compared 1in
Table 3.7, While the bus voltpge magnitude is decreased slightly
because of the reactive power req’uirements' of the DC terminals, the bus

voltage angles at the generator buses 7 and 8 are significantly reduced
3 . : -
in the AC-DC system, Thus the HVDC network 1s seen to strengthen the

system, A parallel AC system could alsc have been employed- for

étrengthening the system instead of using the HVDé‘nef rk, but in this

-

case line power flows could only 'be controlled by Tescheduling the

generators power outputs. This may result in uneconomic operation if
. . .

generators operate away frumitheir optimal power settingé.

.
‘

-

3.8.2 A Six-Termjnal Assymetrical Bipolar HVDC Network

The second example considers a six-terminal ass trical
bipolar network tied into a large AC sygtgm and shown in ure 3.6.
This network was first presented iIn reference [42] a has been
included here primarily to demonstrate the'versatility of the proposed
algorithm. Since AC network data was not avsilggle it is assumed that
"enough reactive power capability exists at each converter bus so as to
be able to provide a constant AC voltage at each of the DC terminals.
Here- converters C2 and C4 set the DC network voltages, converters Cl,

‘ . T »
C3 and C5 are on constjyx cuTrent control and converter C6 operates in

a constant power mode. b

reference [42] and "are sho

|-.—b—
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Table 3.6 Comparison of AC Line Flows

.~
Line . From To - AC
No. Bus Bus P
l 4 2 . 40923
2 2 4 -.84288
3 4 5 . 76350
4 8 4 1.62935
5 5 6 -, 24087
6 6 1 ~.84966
7 6 3 .60793
8 3 1 -.30526
9 i 9 -.71612

Bus *°AC Network{:;
No. Voltage

agnitude Angle

1.026 .. ~2.
-3.
.69
.12
.13
.97
.66
.28
.00

Network

22
99

Q

. 22984
.11324
.00795
.06647
. 24297
. 14954
.18072
.16546
.23924

]

AC-DC Network

parison of AC Bus Voltages

0.

P G
. 64905 .18818
-.60528 -.17457
. 716913 -.00293
1.62935 16276
-.23536 -. 24088
-.B4966 .03939
.37036 -.15219
-.53443 -.10436
-.70545 -.33779
AC-DC Network
Voltage —
Hagnitude Angle
1.020 -2.19
.992 =-5.16
1.008 -4.,91
1.020 .32
1.010 -2.72
1.026 -1.50
1.025 1.21
1.025 5.91
1.040 00
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Table 3.8 Six—Converter Example — DC Loadflow Solution

Terminal Converter Tap Control Converter Load AC Bus
No.  Voultage Current Setting Angle P Q Voltage
an

1 0.9810 4,900* 1.022 16.0 4.807 1.599 1.012

2 0.9710* -4,999 7.040 16.0 -4.854 1.622 0.984

3 -0.9808 -4 .900* 1.021 16.0 4.806 1.599., 1.012

4 -0.9710¢* 4.900 1.034 16.0 -4.758 1.5856 0.990

5 0.9802 4,999 1.028 16.0 4.,900* 1.635 - 1.005

6 0.9704 -4,900~ 1.063 -22.5 -4,755% 2.141 1.001

Ld
-

* denotes the control Yalues 4
A .

”

o ® g0 ©

N

> — — o

AA
\VA
\Vi4

NN

> — > |

— O

—

_—
—

Fig. 3.6 A Six—Couverter Assymetrical HVDC Network

- . A



3.9 Summary

This chapter has presented a new sequenttal AC—DC-:kbadf}ow
method which has several significant advantages. The method éstizftes
the reactive power requirements of the HYDC network and thereby ensures,
that a feasible DC system operating point has been selected. It uses
the conductance matrix to solve, the DC network using a Gauss-Seidel
method. This results in the minimal storage requirements compared to
the storage required for the elements of the Jacobian using the Newtgﬁ
method. The proposed {fthod will accommodate a variety of converter

control modes and the control on each converter can be specified

independently of the other converters in the DC system. Again, any DC

network configurgtlon may be considered. However, as in all applica?///)“\

tions of powerflow, it is the usé?bh!_rqﬁponsibility to define a“
consistent’ set of terminal controls.
N »

The method will e used in subsequent‘chapters for determining-

the base operating point for AC-DC steady state stability studies.



CHAPTER 4
STATE MATRIX FORMULATION OF AC POWER SYSTEMS
b P

-

4.1 Introduction
The steady state or small signal stability analysis of a power
system requires writing the linearized differential equations of the

complete s;stem in the state space form

X = Ax + Bu s
, ’ ~ (4.1)
ye= Cx + Du -

r
. 'OI'IC( the equations have been obtained in this form, the “eigenvalue of
the state matrix A wen be calculated and examined to obtain information

of the dynamic- behaviour of the system.

’ *
"

Tl":ere are a number of methods for the ‘formulation of the state
matrix as reviewed eariier in Chapter 2, The main disadvant.age of
these methods is that they tequire costly matrix inversions. One
important consequence of these in;rersions is that system parameters are

- no longer 'explic:lltly available in the overall system state matrix.
This chapter presents a syst‘ematic approacI{ for state matrix assembly

W - .
’ which does not require any matrix inversions and 1s based on the

3

-

54
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- . ) g’;"
-Component Connection method [82]. Each of' the subsystems are
represented In state space form and linked by an interconnection
matrix. The formulation presented here 1is flexible enough to include
network dynamics and any degree of complexity in subsystem modelling,
The formulation in this chapter 1is confined to multimachine AC systems

and is later extended t.o include power systems including HVDC links in

the following chapter.

\ In Sectioen 4..2 the Component Connection method is described.
The practical advantages of using this technique over others in dynamic
st&bilicy analysis are given in Section 4.3. Section lo..& describes the
various subsystems forming a large power system. Section 4.5 details
the modelling of AC network, Lastly, Section 4.6 illustrates the use
of the method. Two examples, a single machine infinifre bus system and
a multimachine system are presented. ~

4.2 The Component Connection Method

The Component Connection method details the formulation of the

\ ~

overall system state matrices from the state matrices of the different
subsystems forming the overall system.
Assume an interconnected power system to consist of N

subsystems (Figure 4.1) which are represented’ in st){e space fom as

.

ki = Agxy + Bjuy

) P . (4.2)
¥t = Cyxj + Dyuy ) '
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4
-~
Y1 Subsystem #1 7
—) I——
Y
N .
UN Subsystem #N IN
B .

Fig. 4._1 Interconnected System Structure




where xy, uy; and yj represent the state, input and ouput vectors
of the ith component subsystems., Llet the interconnection between
subsystems input and ouputs and their relationship to overall system

N .
‘”input and ouput be given by the algebraic equations

- u = Ly + Lj,u (4.3a)

y = LZI.; + L22u . (4-3[))4

- T
where u = [ulT,_uzT, u3T,...uNT]
T
y o= (5 oy, vy Ty Tl

and u and y are the overall system input and outputs.

r
'

For\a decoupled system the overall state matrices are given by

e
§’I
+
&

» ‘ ’ (4.4)

- ’ ! .
‘-} where

T
x1 = fxlT, sz, x3T,...xNT] .

- »

v

is the overall system state vector. Alse

- L

I—i—-b—



=1
[}

diag {Al »

=1
]

diag (B,

]
[]

diag [Cl'

(=]
| §

diag [D,,

Substituting for y in (4.3a) from (4.4) gives

or, u

A2v"‘AN]
Bz""BN]
CyyeeeCyl

Dyye.sDyl

u = Llle + LllDu + leu

-
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(I = L,,D)"'L;;Cx + (I - L,,D)! dzu

(4.5)

Substituting equation (4.5) into (4.4) and combining with (4.3b) gives

X = [A+B( -1 D)Ly, 81 x + (B - LyyD) 'Ly,

+ L22]u

which is rewritten as

with

~

4.7

- b —



A = K+ B(I - L,,D)-1L,,C
N

B = B(I -L,,D)-'L,C
(4.8)
C = L€+ Ly DA < Ly D)=y, C
N

U= Ly DI - LyyD)-'Lyp + Ly,

These expressions are considerably simplified if the D matrix

can be developed as a null matrix, i.e., subsystem output are dependent

only on their states. In this case

B = BL,
AN : (4.9)
C = L,C
D = Lzz
& .
- ‘

It follows then that once the subsystem state matrices and the
interconnection matrices L;,,L;3, L;; and Ly, are defined, the overall
‘system matrix is easily computable. The main advantage, however,
results from having Dy = 0 for the various suSsystems as the
cggputation i1s considerably simplified. Again the subsystem model may

-

/‘\
be of any degree of complexity but as long as the input-ocutput

relationships are tixed, the Interconnection remains the aame%”,—_h‘

!
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4,3 Advantages of the Formulation

The main advantage of the method presented 1n the previous
section lies 1in Fhe formulation offthe overall system state matrices
from the state matrices of the component subsystems. If the subsystems
are modelled such that Dy = Q in equation (4.8) then the ;taté matrix
A may be obtained simply by matrix multiplication and addition.

Cther advantages may be summarized as

v
1. Flexibii}ty in subsystem modelling. The subsystems.may be modelled
t; any degree of detail as long as Bubsystem inputs and outputs
remain the same, without neccessitating any change in the inter-
connection matrix. This is particularly useful for the evaluation
of different order models for a given system which re&tires the
gtate matrix to be determined for eachtbﬁythe alternative models.

The componeat matrices X, B, C and L;, afé extremely. sparse and it

is computationally inexpensive to obtain A using sparse matrix -
bl
multiplication.

2. The system parameters are, contained explicitly in the state
ﬂ matrix. Therefore system matrix éerivatives are easily computed
for use in eigenvalue gensitivity computations, From

equation {(4.9)



therefore, the derivative with respect to any parameter ¢ is given by

dA - - -
= H_E+E—L1‘C+B d_ﬁ C+BLllE (4.10)

The method is particularly attractive £0r state matrix derivative.

evaluation when compared to the previous methods described 1in
Chapter 2. The state matrix derivative using the PQR method 1is

obtained from equation (2.9) as

. ™

g = ol ) (2 - e (4.11)

\ For the éliminatiBn approach the state matrix derivative is given

by equation (2.15) .as

wA

a8 e SR S
de " RM de RM"' /7 RM

(4.12)

Comparing equltion (4.10) to equations (4,11) and (4.12) it is
ééen that the state matrix derivative is determined much more simply

and at a lower computational cost using the proposed method.

4.4 Power System Modelling

The development of a power sgystem model requires an

understandin f the modelling and dynamic behaviour of its individual



Hh2

Y
subsystems The extent to which a subsystem is modelled depends on the
application as well as the computing facilities available. Often the

machines %:X the area of ({nterest are modelled in greater detall
to

compared others outside this area. The - development of these

1
individual subsystem medels and subsequent analysis 1s by 1itself a
formidable task and, fortunately available in the literature [81].

In this section it is proposed to present these models i; the
context of the ComponenF Connection methéd. Essentially this requires
defining the input and output quantities of these systems. TLe common
power system ,components are:

.1. Synchronous machine.

2. Mechanical shaft system§.‘

}. Exciter stabilizer systems.

. 4. Turbine—governor,'boflers.

5. AC network,

Each of the above is now discussed, except for AC network which

forms the subjett of the next section. For simplification not all the

components need to be modelled. Boiler-turbine governcrs may be

eliminated by aésuming constant mechanical input power. Exciter-

-

stabilizer modelling may be omitted by assuming a constant field

-

voltage. typical subsystem! models are given in Appendix A2.

4.4.1 Syncﬁronoun Machine Modelling

+

A general model’ basné on Park's edﬁatibns has been used

extensively 1in the literature [50-57]. Either the flux linkages or
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’\

currents may be considered as state variables. Irrespective of the

. choice of states the linearized generator state space model may be

writteh as . ’
4
x, ¥
s T Ac%e * Be¥c
(4.13) s
L]
Yo = C6%g { *
N *

>, ™ — - .

The matrices Ag, Bg and C; are dependent on the type of —_

generator used. In the dontext of the subsystems interconnec— >
y ™

tions approach used here the £input=-output vectors L] andfﬁ need to

be defined. These are
¢ . - f"'—'“—\ (/‘-

-' pu

L4

A

The gene.rator model . is awn as shown in’_l'-‘igure 4,2, The gtaibr
voltages and current are given by, v&. vq and mq, respec-
tively, w is the rotor speed, v¢ i6 applied field volf:wd- T, 18 -
the electrical torque produced by the machine. This choice of 1fburs

Ll

and outputs ensures that no direct iﬁput—output connection 1is pre t- -/ ’

in the model. \ : : J
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' ' Figure 4.2 Cenerator Input-Qutput Model

4.4.2 Mechanical Shaft Model

system called the SWING EQUATICN v
. T
Mygn = Ty - T - Dy : (4.16)
' wherg 'ITm and T, are the mechanical and’ electrical torques, D 1is the

» -

damping coefficient, H 1is the intertia constant and  1is the rotor

speed.' This equation may be written in state space: form as

4 R

.

. kg = Agxg + Byug’ ) ' . '
.- ' i . . . 4 ‘. .(4.15)
ylg - Caxa . . - o . -
. .. . A T
: T LAt
. H'ith ,us - [TmITe] ' . e L
R Ys - [6'N]T . .

The most common shaft representation is as a second order -~

-
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The shaft: cgn be repréhented by a higher order system 1if

subaynchronous effects are to be considered. However, regardless of

.modelling detail, the shaft subsgystem can be‘viewed as In Figure 4.3

with electrical and mechanical torques as input and rotor speed and

rotor angle as output.

T ‘ Shaft
e ————-4————21”:\ f———— w
. ’ =

Figure 4.3 Shaft Input—Output Model

4.4.3 Exciter-Stablizer and Turbine Governor Systems

The excitation and governor schemes are described in two IEEE

committee repdrts [83,84]. For the excitation. system the state
equatlions are given by ' .
. .
).KE - AEXE"F Bgug. . . -
_ o (4.16)
YE = Cpxg 7
- o N
7~ Y o
N g

The basic input-outpit méﬁel is-shown in Figure 4.4.

L]
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-

the . machine terminal

(4.17)

'

[
a

ref
’ h .
V. . “Exciter
v o .
stab .
-
£
Figure 4.4 Exciter Input—Output Model
5 .
, .
The inpucs. are the reference voltage
voltage V., the stabilizer output Vg, and the oltput is the field
voltage Efq. Agaln, the excitef itself can be modelled to any degree
of detatl.
Y. Turbines—Governors can be represented similarly by
xer = AGTXeT * ver
N
yer = Cor¥er
3 : T
. with Uugt ™ Im, Pref]
Yegr = [Pm]
[ 4
]
whereé o 1s the speed, Praof 18 the reference mechanical power and Py
is the tJFbQ\e output power. ¥
t
2 ' - "

e
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Ao Turbine
p Governor AE—— |
ref —

Figure 4.5 Turbine—Governor Input—Output Model

4.5 AC Network

* ’

Power systems AC networks may be represented in either of two
ways. They could be described by a set of algebraic equations or
alternatively, if stator transients are of interest, modell in state

-

space form.

4.5.1 Static Netuhrk Representation

For static representation the network 1is assumed to be

completely described by the nodal admittance matrix equation

-~

Iy = YWy ) A (4.18)

By treating #11 the loads as constant impedances, all load buses in the

network can be eliminated. Under “ this assumption the reduced

-~

admittance matrix Yp of an order equal to the number of system

generator buses n is formed, This is converted to 2n real equations as

proposed by Taylor (85],
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where ( F11 - by fin =~ bpn
b1y £
WR = -
Ban ~ bap
b
’ bain  &mn
L l A
‘ - 1 i T
and IN [in N Dl se s Qn, iDn] .

VN L [VQ],/(DI,... \;'Qn, VDn]
' o

4

The machine equations described in _Section 4.4 and ;ﬁ
- Appendix A2, .are expressed with reference to the perpendicular ‘axis
(;,q) rotating in synchronism with the machine rotor. In order to
relate the internal quantities of the different machines, a reference
frame (D,Q) which rotates at the angular freﬁuency of the steady state
network current i; considered. The relationship between internal
machine reference frame '(di.qis) and thi general network reference

frame (D,Q), is shgdh in Figure 4.6. The machine voltages in terms of

.the general reference frame are

Vqi - co8sy sindy vVoi
- (4.20)
- vdi . -sindy ‘ co8dy vD{
or | .
g ot [Tyl vy .
) - B
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d,
i

q.
/—) |1

Figure 4.6 DQ-dq Referance Frame Transformation

-
For all machines connected to the network

Vy = [TIVy ) ‘ (4.21)
* i N 3 .
A . v
" where Vg = [v v ces V v ]T .
M -ql' dl’ qn? dn b 8

—_//v.

T
VN - [le, VDl,acn VQn, VDn]

L
™ <
T - T .
22
. . ¢
(Tnn |
L ] . ‘
.‘ [ 4
For small perturbations, equation-{(4.21) 18 linearized and written aa
o d ) ,
\
aVy = [Tl aVy + [Ty 46 (4122)
. .
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\ )
*© where —
- -
v Vd) g )
T, = |-
! Yayg [
- . ///"‘\\
V?&o '
agg
' : T S
N and  § = [81, §1,.e o8p)

*

Similarly the linearized equation for machine currents can be

L] .
written in terms of the reference' frame currents as.

ATy = [TglaIy + [T, ]as

where IM = [iql, idl, cese iqn, ldn]

-
and
* ’
14,
|
T2 = [lqy - ,
- -_- idno
] . i
© Tlnp .
- - —J
) N
Combining equations (4.20), {4.22) aad (4.23) gives
.

+

(4.23)

A2\



&

7

Aly = Y AVy + Ypa6 ' o (4.24)
where Y, = S[TOYRT‘II l -

. Yz - ['\1‘2 - TUYRTO_ITI]

Equation (4.24)} 1s the desired relatioh needed hgtween the

~machine voltages and currents 1if network transiefits are not modelled.

4.5.2 State Space Network Representatio

.

The network may be represented {; state space form 1f network

dynamics are of interest. A full version of Park's Equation [81,86]

includes stator flux 11nﬁages or currents as states. It would be

inconsistent to combine a machine model Incorporating these with a
network”modél représentéd by algebraic equations. While this inconsis-

tency leads to an erroneous prediction for the 60 Hz frequency modes,
. ’

it does not affect the accuracy in predicting the other modes [B7] aug

'
hence state space network models‘may be omitted. However, for subsyn-
chronous resonance studies stator transients are of interest and
network must be represented fully using differential equat{ggg,a

The state space .representation of a balanced three phase power

network ‘proceeds in two greps: '

1. A single phaée representation of the system.
L] gt
2. The single phase equations are extended te a balagﬁéd
PO Ak

vncoupled two-phase systeg- and the equations transformed

from a stationary to a synchronoualy~rot§ting frame. This

J

(!‘

s

[P,
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¢ ensures that the network equations are compatible with

those of the rotating machines.

4.5.2.1 Single Phase Network State" Space Representation

] )
The single phase state representation of a power network is

obtained by using the Component Connection method. Each fnductive or

capacitive element 18 treated ?a subsystem. For an inductive element

wwcted between nodely, p and q, the state equations a given as
r

follows:

S - 1 1 v
lipat = (2 [pq] + ko - b e

Lpq Lpg  Lpg
; _ \ (4.25)
[1pq] = [1] [1pq] -

Sigglarly the state equations for a -capacitive ell?ment connected

between node r and the ground are glven as:

N

. 1 -
[vel = [0] [v. ]+ (5] 1]

*/ (4.26)
[vel = (1] [v,]

Tﬁe interconnection equations can be constructed from equation (4.3):

_ u w Lyyy + Ljgu
\, 4 S ' (4.3) .

. 7
. N ’ ' r—
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- . T
with u = [UlTn UZT-" ueT] . A ’
oy t

. T
y o= T ove ey, T

and where e 1s the total number of elements in the nthork.
.J . -
For an inductive element connected between p and q
i _—

UiT - [Vp’) vq] R '

and yy = [iiq] | ‘

For a capacitive, element connect at node.r <\\‘/
. . ‘. . -
[y 4
uy = 4]
L}
and Y1 - [vrl 2

. * "
The AC system state matrices Ay, By, G may then be obtained from

. - 1]
- “ - |
Ay = Ag + Byl Gy ' /
. ___’:31 = Byl . ' (6.27)
:"- A ‘l
. _ ’ .
G, = LnG



T4

with A;, By and ¢ (4 = 1, 2,...e) obtained from equatiops (4.25)
and (4.26). .

.

4.5.2.2 Two-Phase Network Equations

The state equations for the single phase network may be

extended to a two-phase rotating frame representatﬁm [88]. If the

single plsxse r'ebresentar.ion is given as: :
‘ °
k) = Alxl + ﬁ1“1
' ) (4.28)
i o= Cxp
f
-
The two-phase is then given simply as:
Xy = A2"2 + fs2“2 coS . B
. e 4 ) . (4.29)
y2 = Cpxy .
- \ N -
- B, = diag 151’31] .
o - oa
Cz - diag .[Cl'cll " X ) \

sz :xdTI
¥z wall

where d and ¢f denote the ﬁhases of the two-phase system.
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The states can be transformed to a rotating reference frame
using Kron's Transformation
Xy = Txgy (4.30)
\e,. ‘ ( i
with :
. 7. N
coswgt I I +sinwget 1
T - — (4.31)
~sinygt 1T | cosygt I
xwT =[x, xpT) -

”

and (I 1s an identity matrix of order e, where e 1is the” npmber of

elements in the system. Again Q and D denote a synchronously rotating

reference frame;)Then, from equation (4,30) . —c\ f
k2 = My - UTxy
{ '
where - <
' ) 0 [ -w I ‘
U - : ,
wer I 0 ‘ v
Substituting in equation (4.29) gives -
Xy = - [T7'A,T + T7WUT) xy + TVB,T u,
- (4.32)
YN ™ [T"ICZT]XN b, . ,

. N _ .
~which may be written as . [\

\ -

w
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XN = Apnxy + Bayuy
(4.33)

'The statel equations given by equation (4.33) represent the
network 1in a' synchronously rotating reference frame. The network is
® now treated as a separate subsystem in' the overall multimachine power

system,

4.6 Application(to Pract{cal Power System

i

The advantage/gfthe approach adopted in t previous seetion
are now 1llustrated by applying to two different poyer aystemn. The
case of a single machir.uz connected to an infinite bys 1s presented
first followed by a t.hree—machine, nine-bus power system example‘.‘

A N S

4.6.1 Single 'ﬂach:lne Infinite Bus AC System e

4

The system to be studied 1s that of a single machine éon’ﬁ_eé:ted

., -

L. - P
\to an infinite” bus through an AC transmiss{m line. A single line

. - wro .
representation of the system i1s shown in Figure 4.7 [8I]. There _are

essentially two subsys‘t;en‘n_;, namely the synchronous mchine and the AC“

- ~
- Y

network, The machine its_e;f is conipo ed/ of three subsystems; the

. <+ - . : ’
shaft, .the generator and the exciter e governor-turbine is not,

modelled and constant mechanical torque {s assumed. -

The synchronou® machine to be studied is a 60 Hz synchronous

machine with the following parameters:
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W

'
‘ ,
-~
\
O
Figure 4.7
/
-‘ .

..
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X4 = 1.70 pu : x; = 0.15 pu
xq = .64 pu rg = 0.001096 pu
xg = 1.65 -pu re = 0.000742 pu
*kg = 1.605 pu ° ryg = 0.0131@ pu
Xkq = 1.526 pu Tkqg = 0.0540 pu
H = 2.37 secs: . b = 0.0 pu
Rated MVA = 160 MVA Power Factor = 0.85
Rated Voltage = 15 kV Speed = 3600 rpm.

b

i

The machine 1is connected to an_ "infinite bus through a
transmission line having a line ‘resistance re = 0.02 pu, 1line

reactance X = 0.4 pu and shunt susceptance Xc. = 0.01 "pu. The

. infinite bus voltage is 1.0 pu. The machine loading is P = 1.0 pu at
0.85 power factor. Note: Resistance and reactance values are in per

unit based on the machine ratings of 160 MVA and 15 kV,

The excitation system 1is represent'ecxl‘b'y‘ the fourth order IEEB/

-

" Type 1 exciter described in Appehdix ‘A2.3. The exciter parameters a_ii'e":"
4 . -

TR = 0,01 secs KR - 1.0

ta = 0.05 secs T Ky = 40.0 . i
TE = O.SO‘Eecs Kg = -0.05
o TF = (0.715 secs . KF = 0.04

The exciter saturation 18 represented by the following

]

" non-linear function.

. .
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v Sg = 0.0039 exp (1.555 Egq)

The state matrices for thé individuval ‘subsystems are now
evaluvated. The shaft subsystem is modelled as a second-order system
with rotor angle and speed as the state varables. The state space
equations for this system are presente& in Appendix A2.2 -and are

evaluated at the system operating point. The state, 1nput and output

vectors xg, ug and yg are as follows:

xg = (s, m]T
T

T
yS = I‘SQ !xl] ) )

The matrices for the shaft subsystem are obtained as:

e “- . 70.0000 . 0.0000 ]
. . A =
3 0.0000  0.0000 |
B L
0.0000  0.0000 ]
B o= ‘ . .
5 0.0006  -0.0006 | 5
[ 1.0000  0.0000 l
C = p -
- 0.0000. 1.0000

-

The generator.subsystem is modelled as a fifth order system.

The currents are selected as the state variables and tﬁe model {is



.déscribed 1in Aﬁﬁeﬁdix A2.1:  ‘The sthté, input and output yectors 'xg,

o -

ug and y. for the generator model are as-follows: »
.y - ‘
: ;\‘~ . ..
xg = 14, g Lgs ikq] R .
T b
gl = Togs ves vias v Vkq,w] »
- ) . ‘ T N
Yg \= lld!.if: lyds iqv tkq] ‘.'-

. . P T
The state matrices for the generator subsystem are:

-6.005% 0.0014 0.0447 -8.8798 -8.0676
0.0021 -0.0053 0.0671 3.0804- 2.7986
A = 0.0037 0.0038 -0.1162 5.6007 5.0884
G 9.1817 8.3716 B8.3/16 -0.0059 0.2848
-8.965] -8.1740 -8.1741 0.0058 -0.3134

~5.4145 1.8783 3.4150 0.0000 0.0000 -6.2247 | ,
1.8783 -7.1826 5.1226 0.0000 0.0000 2.1593
B = | 3.4150 5.1226 -8.8681 0.0000 0.0000 3.926l
G 0.0000 020000 0.0000 -5.4011 5.2736 9.0499
0.0000 0.0000 0.0000 5.2736 -5.8045 -8,8363
1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 1.0000° 0.0000 0.0000 0.0000
C =10.0000 0.0000 1.0000 0.0000 0.0000
G 0.0000 ©0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000

The exciter system has been modelleq by a fourth order model
described. in Appendix 2.3 and its state, input and output vectors Xg»

sug and yg are as follows:
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4T
= [VRa Vi V30 Efd]

. XE
. _- T
= g ug =" (v, Vg Vregl
N Yg = [Vf]_
u 2}. . " The state matrices

£0r the:exciter subsystem are obtained as:

-0.2653 070000 0.0000
0.0000 -0.0037 0.0000
~241220 ~2.1220 -0.0531
0.0000 0.0000 0.0053

0.0000
-0.0000
0.0000 | .~
-0.0014

C '

. -0.0868

oo 0.0000

0.0000

) 0.0000
. L3

0.1266
* 0.0000
,0.0000
~ 0.0000

R [ 0.0000  0.0000
S '

. A}

L
-

-

described 1a, Section 4.5. For the single transmission line network
3 : : -

. . L ..
‘uﬂ\zgp vectors xy, uy and, yy given by:

.0000
.0600
.1220
.0000

o NGO

0.0000 -.0008 ]

~ The AC‘networﬁ has- also been modelled in state space form as

Lﬂ<::‘this results 4in a- fourth order subsystem with its .state;. input and

N -

g L W = oy, vous ipa, vpylT

. \JN.. = IIOH’ VQCI' 1DP‘[’ VDQ ]T

——

+ YN =

T
[vom» vpu]

Q{?
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The state matrices are obtained as:

( ~0.0500  2.5000 - 1.0000  0.0000 ]
A = -100.0000«  0.0000 0.0000 1.0000
N -1.0000 0.0000 -0.0500 2.5000
0.0000 ~ -1.0000 -100.0000 _.0.0000 |
- . r
0.0000  -2.5000 0.0000 0.0000
8 = 100. 0000 0. 0000 ¢.0000 0.0000
4 N 0.0000 0.0000 0.0000  -2.5000 '
0.0000 0.0000

0.0000 0.0000 10

0.0000 - 1.0000C 0.0000 - 0.0000
€ = 0.0000 0.0000 0.0000 1'.0000
N 1.0000 0.0000 0.0000 1.9124
0 1.0000 0.0000

.0000 0.0000

The 1interconnéctions between the subsystems are shown in
Figure 4.8 and the interconnection matrix L;, is given in Table 4.1.
The reference frame transformation relating machine and network

voltages and currents is included in the *nterconnectidn matrix.

—

The state matrix for the singie machine infinite bus system is

o

then‘given by oo
. R BRI R N
- &

where A = block diag [AS: Ag, Ag, Apyl

(-]
[ ]

block diag [BS'_BG’ BE’ BAN]

C = block diag [Cg, Cc,kCE, Can!
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The matrix A evaluated for this éystem is shown in Table 4.2,

Apart from the ease of formulation of the state matrix one of

the main advantages of using this method is in the evaluation of ﬁhe

derivative of the system state .matrix.

For example, we consider the

evaluation of the state matrix derivative with respect to the amplifier

gain'K, of

where

the exciter. Applying equation (4.10) we get:

da

dKA

- dL o~
dA dB = L dC
—_— = + B —— —_— .
K ta L€+ B 3% C + BL ¥ (4.35)
A A
block diag [iﬁi Eﬁg gfg. iﬁéﬁ]
. 3 ¥
dK,’ dK, dK,’ dK,
dB_ dB. d dc
¢ 9G dCy
block diag. [==, 7=, ==, —_] .
dx, dK, dK, dKA
dC_ dc. d dc,.
s $Cc dCg dCyy
block diag. [——, =, —=, =]
dK, dK, dK, dK.,

Only the exciter subsystem matrices Ag and Bp are functions

of the amplifier‘géin Ky Therefore equation (4.34) can be rewritten

as:

{4.36)
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where: 1
- dA ‘
A black diag. [0, O, —E; 0]
dK . dK
A A
- R d
dB A
k-~ block diag. [0, O, T 0] )
A A
and:
0 0 0 0 |
- 'lr_ o .- ’rl"“ 0
dA; A A
aK,
A 0 0 0 o
‘ 0 0 - 0 0
- _
0 0 0. 0 |
0 0 0 %_
dB_ i A
dK
A 0 -0 0 0
0 0y 0 0
- - .

.

Y

It is seen that derivative evaluation is‘easily accomplished

-using matrix multiplication and is computationally inexpensive where

EA;-, -9-3—-. L;; and C have been stored in sparse form.
-‘t(a K, 11
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4.6.2 v hltinnchine AC Power System

The technique is next applied to a nine-bus three machine AC
powér system. The network is shown In Figure 4.9. It 1s the same as
considered carlier in Section 3.8.1 but without the HVDC system. The
bus and line data for the getwork is yiven in Tabies 3.1 and 3.2. The
data for.the three machines is given in Table 4.3, In this examﬁle
network dynamics haveA not been moéelled and the machines have ;Been
represented by siéplified models; _Machines \\jnd z a{e_both répre-
sented by fourth order models formed by combining the secord ,order
shaft mbdel with the two éxis gexierator fepresentation. Machine 3 is
represe;ted by the ‘second order classical.model. ‘

The generator(aﬁﬁg?ions are as foilows:

¢

~ Generators | and 2 (two axis model)

' E' = -E' - (x -x')1
qol di di qi i qi

- - o B — aet
Tqot Bqr . Egay T EQy f (xgy - oxp) Iy

(4.38)

y - _ - . -t - .
209 wy Tnt 7 Dywy = Tg0iBd1 = TgosBqs ~ Bdoilas ~ Eqotlqs

8y = wy o, 1=1,2



Figure 4.9 Mul timachine AC Power System
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Table 4.3 Generator Data . [81])
Generator . 1 S 2 3
Rated MVA 192 128 247.5
KV - . 18.0 ' 13.8 16.5
Power factor 0.85 0.85 1.0
Type ] S Steam L Steam Hydro
Speed . 3600 rpm ) 3600 rpm - .. 180 rpm
x4 ©0.8958 13125 0.146
xy . 0.1198 - 0.1813 . 0.0608
%, .0.8645 1.2578 0.0969 ',
.ox * 0.1969 o 0.25 0.0969
X, . ro . 0.0521 T 0.0742 0.0336
] ! A _ -
Tho 6.00 5.89 8.96
) . R .. LA
To 0.535 e 0.6 ' g 0.0
E! 0.7882 0.7679 - -1.0558 -
qo0 S .
E} ' 0. 6940 6668 0.0419 |
) - -t .
- X .
I 0.932 0.6194 -0.678 °
. Qo . . -
I, -1.2902 -0.5615 0.2872 >
0 N N .
6.4 3.01 23,64
1. 1 , 1

‘ Note: Reactance values are in pu on a 100-MVA base.
All time constants are in sec.
The inertla constants are in sec.
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.91
~ Generator 3 (classical)
&
2”3[1.)(]!:)3 = Tm3 - E31q3 - D3m3
\ L ]
63 = w3

~
Thus the system under study consists of ten first order

differential equations and 1is represented by the following state

I

variables:. Eqis Eqys 615 w1s Bq2s Eq2s 82, wp, 83 and g3.  The
o .

system interconnection matrix is given in Table 4.4 and is formed using

equs®on (4.24). The state matrix for the system is evaluated usiné

equation (4.9).and is given in Table 4.5.‘

»

A procedure has ‘beeli presented to form the linearized 'state

variable model for a multimachine power system. The basic structure of

equation (A.g) yields a number of advantages in the computational and

' conceptual process. . The sepafation of subsystem representation (A,B,C)

and the interconnections (LII’le'LZI) means that‘tﬁe assembly can be
modularizedf Given particular input-output quantitfes for thé
subsystems, the modelling complexity (order) within the subsystem can
be changed and only the relevant coefficient matrices for the subsystem

are affected. Several levils of assembly can be used to advantage.
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For example, a generating unit model can be assembled from shaft,

.

generator, turbine and exciter/governor control subsystems with

Interconnection matrices for the generating unit. With multiple

- choices of variables, these matrices are sparse and consist generally

of ones and zeros. Later this generater is considered as a subsystem
in an area within the overall interconnection and finally the areas can

be combined.

The structure of the formulation process is thus compatible
with the Wiy power systems are conceptually developed and the degree of
modelling complexity matched to the specific simulation problem. The
restriction that the D matrices be null 1is also consistent.vwith
engineering modelling practices.

Two examples consisting of a single machine infinite bus system

S

and a multimachine AC power system were included to illustrate the use

of the method. 0/ c



o CHAPTER 5

"STATE MATRIX FORMULATION FOR MULTITERMINAL AC-DC POWER SYSTEMS

5.1 Introduction

There is a significant impact of an HVDC system on the dynamic
performance of the AC system. The HVDC system introduces a new degree
of controllability which had not been previously availableuzéd current
HVDC systems incarporate as* variety of controls to enhance the
performance of the integrated AC;DC power system [18].

“»
The DC system performance may be considered under several

‘distinet classifications. The steady state characteristics are

determined from the AC-DC loadflow analysis. The dynamic response

characteristics depend on the sgystem ‘resSponse to large or all

-

disturbances. The modelling of the HVDC system is dependent o the |

partiéular performanc? characteristics being considered. (I steady

state modelling for pdﬁer flow purposes has been covered previously in

Chapter 3. This chapter 1s concerned with the development of a
o

linearized model of the integrated AC-DC power system to be used for

determining the system response to small disturbances. It éxtends the

formulation of the power system state matrix te include a multiterminal

HVDC network.

95
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The multiterminal HVDC syséem could either be of the paxgallel
or serles configuration. The paréllel connection has been.chosen here
because of 1its “advantages In terms of lower line losses, lesser
reactive power requirement and greater reliability. All multiterminal
stud&es énvisage a central controller for the coordination of the
current or power settings. In this chapter the central cohtrol 1is
gsspmed to have a dispatching function on;y and 1is therefore not
modelled for steady state stability study.

5.2 Modelling of the DC Terminal

The DC terminal has primarily three components; .namely tﬁe
converter 1itself, the converter firing angle controller and the
converter tap changing transformer. The dynamics of the converter are
much faster than those ;} the AC system and are usually not considered
for the purpose of determining steady statelstability. In this case

the converter voltage equation rewritten on a single phase power basis

[N .

is given by

VDC = 3aVACco$u - Relpe . . ) (5.1)

L)
Wicth an appropriate selectiod of ¢, the converter acts as a rectifier
for Vo > 0 and as an inverter~ for Vpe € 0. All finverters are
cgaagcted backwards in the DC system so0 that the rectifier deliver

‘power to this network, whereas an inverter absorbs it (and delivers it

LN
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to the AC system). The inverter voltage can also be written in terms

of the extinctlon angle vy as:

-

’
L)

v = JaVjccosy = Rel (5.2)
DC AC ctpC

The DC termina;‘ can function in either the constant angle,
constant voltage or constant current modes. In all cases the
controller 1s assumed to control éhe firing angle and 1s in general
represented, by a slngle,lag time ‘constant transfer function although
more _complexA Ai?resentations may be included %f desired [89]. The

converter controller model is represented In state space form as

Xpc = Apc xpc t Bpe upe
(5.3)
~ Yoc = Cpcxpc

with xpg = [ol

yoe = lal

and upcis dependent on the type of control mode. The block diagrams of

*

the converter controller for the diffferent control modes are shown 1in

Figure 5.1. Controller equations are given in the Appendix A2.4.




G8

I Kac
REF a
! + g TC
Vv
ST
-
Fig. 5.1(a) DC Converter — Conetant Current Controller
VDC
V. .. K
REF - + - AV -—a
I + g TV
v
VS'I'
F’ig. 5.1(b) DC Converter - Conatant Voltage Controller
YAC ——— Ky
(s + Tl)
w K + S VST
b
(1 + STJ)(S + 12)

. ng. 5.2 DC Converter Stabilizer

o
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/

.

The converter controller is alsc provided with an input signal
from a supplementary stabilizer. This stabilizer provides for the
modulation of the converter controller. The 1input signal for the
stab{lizers are selectable ffom various AC system quantities, such as
power flow, voltage, frequency; phase angle, etc. [89]. Inputs from
several inéependent sources may be required. The stabilizer model 1is

-

F
showqrin Fig. 5.2 and is represented in state space form as

XgT = AgT XgT t+ BgrugT

(5.4)
ysT = Cgr X§T

where yer = Vgr

-

and the states xgy afnd inputs ugr depend upon the stabilizer

repreéentation and the modulating quantities, respectively.

5.3 Modelling of the DC Network

The DC network is modelled in state space form. The method’

used is the same employed for the single phase state space representa-

tion of the AC network. For a k terminal network the state equations'

are

Xpc = Apy Xpy + Bpy upy
(5.5)
= C x : !
YDN DN XDN

' T
where upy = [VDC 1‘ > chz .s "VDCk] .

T
yDN = {IDCI’ IDCZ"'IDCk]

- e
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Vpney and IDbi are the DC voltages ‘and currents at the ith 1pput node.
The states xpy are the currents in the line Inductance or voltages

~

across the shunt susceptance. . o

5.4 AC-DC Interface

The AC-DC interface equations define the r;lationships between
tﬁe AC and DC quantities on both sides of the converéer. This will
enable the coupling of the AC and DC network.

| The relation between the DC converter current and the

corresponding AC compcnents is
21 2 . (42 4 4 2
a IDc (iD + 1O ¥/3 (5.6)

The components of the terminal AC bus voltage in terms of the reference

D-Q axes quantities is -

2 . 2 2 :
v,2 (Vp2 +V,2)/3 | o (5.T)

1

-

Assuming a lossless converter the input and output powers are equal
PAc = Pnc . (5.8)

where PAC bl VDiD + VQiQ

Ppc = JaVpclIpgeosa - Rcilz)c
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PEE

Linearizing equations (5.6) to {5.8) and solving for 1 and

ip, glves for each converter

Aioi . Pl{ le P3i Pl‘i AVOi ﬂ'
adpg Psy  Pey  Pyy  Pgy Avpy
' . (5.9)
Aay
AMpci

For a k terminal HVDC network this is written as

[- - r . ) bt BELE ol od T
8ig, Pir Py avq,
aip, Ps1  Pgy ' Avp,
. +
- v ' o (5.10)
Aiq( . a P1k Pok AVQk
Aka P Pyi AVDk
5 J L J 1 4
i M1 r 10,
P31 | Aay I Py : AiDCi
P2y . Pg)
+ +
Pik || 2ok Puy 8lpe,
L J L -~
P7y | Pgy.
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Now equation (5.10) relates the AC currents injected in the DC network

to the AC bus voltage, converter firing angle and currents.

5.5 AC-DC Interconnections

The relationship betgeen machine veoltages and currents when the
machines are connected in an arbitrary AC network were given earlier in
equation (4,24). The formulation 1is now expanded to include the
presence of a multiterminal HVDC network in addition to the AC network
already present. A static represgntation 1s assumed for the AC system.

Consider an AC-DC system with k terminals and r machines. The
addition of the k terminals result iq current Injection at k AC buses
apart from the original r AC buses where the ﬁachines are connected.

Eiiminating all load buses equation (4.19) can be expanded as:

Tac i Y2 Vac
- o (5.11)
i} Ly v y
where Iacs, Vacy (i‘ = 1,2...k) are the currents and voltages at the
AC buses at which the terminals are connected. Similarly, Iy, Vini
(1 = 1,2...r) are the current and voltages at the machine buses.

The net injected currents in the AC network due' to the DC

system 1s now given by equation (5.10) rewritten as

ATIsc = -[P1AVAC + Pada + P3alpc) (5.12)

4

Ve
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where a 1s the set of converter firing angle  and Ipc the set of

converter DC currents. Substitutiﬁg (5.12) in equation (5.11) gives

.0 TG+ P Yy, 8Vac P2 [Aa]+ Py [Alucj}

, ' . (5.13)

We now transform as before and then rearrange to obtain the
following equation which 1s equivalent to equation (4.24) for the

ex band ed AC-DC system

AIM Ls- LS L-, La ’ AIDC ‘
(5.14)
—_ . 86
AVy
where J
Ll = Y*Pz
L, = Y,Py
-1
Ly = Y¥pTe 'Ty

—
£
A

-1
Y,Y12To

Ly = Tp¥p Y,Py

&
[

TY71Y4Py
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- — _l .
Ly Ty = Tpl¥pp + ¥y ¥, ¥, ITp 7 T,y . b
-1 .
. Ly = Tol¥py + Yo Yu¥pplTy 7 .
N -~ L.
and Y* = _[Yll + Pl ]-l

“It can be seen that one matrix inversion 1s required whose order is

twice the number of DC terminals. ) A )
1
5.6 Test Examgléa 7 : . "

In this section the results of -the previous section are applied

to the single machine and multimachine test examples of Section 4.6.
- - "\

5.6.1 Single Machine — Infinite Bus System '’

The single ‘_:narlzhine—in‘finite bus AC-DC ]Sower system is shown in
Figure 53 It is féméd by adding a p.a'ra'llell BC t‘rlansmissio‘nl line to
the AC line in the si'ngle machine infinite ‘bus system. of. Section
4.6.1. "The -paramet.ers of the machine _and AC tl"ansmi:ssion nel:wo-Ek have
been given eari_ie‘r '1n _thai section. "The DC system - consists "Apf the
~rectifier and inver'ter_r.ermi'na‘l.ls and the HVDC transmission line. The
rectifier operates on cI:onstarit'current- coptroi with Ipcp = 0.5. pu.
Y The }nverter sets the system volt{a'ge and isl onic'onsl;'a'nt. \?c;ltgge control
‘with Vpcr = 1.0 pu.. Both the .conve_rters are equipped .with single

time constant controllers as shown in Figure 5.1. ° The parameters of

the converter controllers are:
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.. . Kac = 3-0Kge =1 1. = 0,01 secs

Kay = 3.0 Kgy =1 Ty ™ 0.01 secs.

- The DC transmission line has a line resistance of 0.01! pu.
The m:}chine' loading is P = 1,0 at 0.85 pf as before.

"I‘he state matrix of the AC-DC sys-tem is now formulated using
equation (4.9). The two termimal controllers have been combined

tog_eth; to form a single subsystem. The state, input and output

o™

 vectors for the combined m/;%lal controller are:

T

. [ 4 - Xne [CIR) GI]
T
upc = [Tggrs VREF» VsT» Vacy) :

T
[ 4 yw N [GR’ u‘t]

A A
i DC 1ine dynamics have been modelled with the line current as
< the state variable. The state, input and output vectors for the DC
network subsystem are: .
. : xpn = [Ipc]
" N - = ‘V Vi ‘ V, V, T
- . upy - = [Vors Vpr» Vo1» VpI+ ors oyl
. g
- YDN ( DC]
. . The subsystems interconnections for this system are shown in

Figure 5.4 and the interconnection matrix L;; is shown in Table 5.1.
. . ®

The state matrix of the AC/DC system is given by:
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Table 5.1.

108

Interconnection Matrix 1;; for Single Machine -

Infinite Bus AC-DC System

8

w 14

if

iyd

iq ikq Te “Vf VQM VDM IDC ar

ar

Vkd

a1
18:3:33
VREF
Inc

Vst
vSTI
Vact

El

E2

El

E2

E3

E4

Eb

E6 ~ES
-E5 E}
E6 ES
E6
PIR P2r P3r Pur
- Psg Pgr  Pyr Pgr

1.

Note:

El - E6 are defined in Table 4.1.
Pip — Pggp are given by equation (5.9).
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where
5 = block diag [{Ag, Agy Mps Aan> ADNY Apc)
B =.blo.ck di-;g [Bg, Bg» BEo Ban:» BON» Bpc |
¢ = block diag (Cg» Cqr CE» CANS Cpns Cuc!

l

ard Ly 18 the intefconnection matrix. The subscript DN and DC denote
the IC controller-and DC network subsystems, respectively.

The eigenvalues of the AC-DC systéh are shown in Table 5.2 and
are given iﬁ r;d/rad. For comparisoun the eigenvalues of the AC system
of Section 4L.6.1 are alsc given. Note that the HyDC system results in
three extra eigenvalues corresponding to the DC econtrollers and 0C line
dynamics. The complex eigenvalue palr (-0.8457 * j0.9272) is due tLO
the interaction of the rectifier controller and DC line dynamics. The

real eigenvalue (-0.2678) correqunds to the inverter controller. In

both the AC-DC system and the AC system the transient response is-
- 1

Yominated by two pairs of complex eigenvalues. For the AC-DC system
these ;Airs are (~0.0026 t j0.0307) and (~0.0004 % 30.0056) - The first
pair corresponds to the rotor electromechancial oseillations which
decay with 2 time constant of 1/(0.0026 * 377) or 1.02 secs and have 2
frequency of 1.78 Hz. The chond pair represents the 1qteraction
between the field circult and the exciter; F;r the AC systenm the
corrésbqnding pairs are -0.0013 * j6.0289’.and -0.0003 ¢t jQ.QOGh,

reSpectively. Note the rotor oscillations in the AC case have a decay

Fi—e—
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Table 5.2, Eigenvalues for Single Machine Infinite Bus AC-DC System

AC-DC System AC System
€C=20.20 - ¢ = 0.0!
-0.0360 + j0.0998 -0.0359 + 30.9983

~0.2653 -0.2652
=0.1046 ¢ j0O.0096 ) . -0.1215

-0.0994
~0.0547 -0.0547
-0.0026 ¢ j0.0307 -0.0015 + 30.0289
-0.0004 + 3j0.0056 -0.0003 ¢ j0.0064
-0.0041 . -0.0040
-0.3442 £ 37,7940 - =0.0600 £ j29.12
~-0.6399 + 3j6.0024 -0.0648 ¢ j27.12
-0.8457 + 30,9272
-0.2678
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constant of [.77 secs and a frequency of 1,73 Hz, Thus it 1is seen that
the rotor damping is considerably improved in the presence of the DC
system. The presence of the D¢ link has also reéulted in increased
damping of the field—exciter eigenvalue Eair.

The eigenvalue (-0,0360 * j0.99%80) corresponds to a very fast
transient of about 60 Hz which is damped with a time constant of
6.053 secs. This is the 60 Hz component injected into the rotor
circuit to balance the MMF due to the stator DC currents and is little
effected by the DC 1ink, The complex eigenvalue pairs (—0.3442 +
j7.7940) and (-0.6399 ¢ 16.0024) essentially represent AC liné.
dynamics and are different from those for the AC éystem since the line
shunt capacitance 1s increased to include the terminal compensating
cgpacitors in the DC case.

o

5.6.2 .Hulti-achine Multiterminal AC-DC Power System

*In this sgection the state matrix formulation approacﬁ is

app{ied to the three machine - three terminal AC-DC system of

Section 3.8.1. The power system has been redrawn in Figure 5.5.

Machines } and 2 have beeﬁ modelled by thelfourth order tyo axis model
described by equation (4.37) whereas generator 3 is modelled using the
classical second order repreéentatién of equation {4.38). The AC
Byséem repregentation ig the same as in Section 4.6.2, but additional
subsystems to écc0unt for the HVDC network are added. There.are two

subsystems per converter terminal, one each for. the -converter

contrdller and its agssociated stabilizer, regpectively, and one

s

)

L

- AT e ————— Tt
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subsystem representing the DC network, The OC terminal controllers are
modelled by the first order lagging time constant transfer function
respresentation of Figure 5.1. Eaéh of the terminal stabilizers is
represented by the lead—iag system of Figure 5.2 and its Iinputs are the
converter bus AC voltage magnitude and the generator rotor speed and
rotor angle. The parameters for the HVDC system controllers and
stabilizers are given in Table 5.3. The.étate matrix 1s again given by

equation (4.9) with

A = block diag [AGI’ AG, s AGy» Apc, » ADCZ' Apcyr ApN» Ag,» Ag,» A53]

(5.15)

where the subscripts G;, G; and Gy are for the three machines, DC,;,

DC;, DCy; denote the converter controllers; DN denotes the DC network

‘and Sy, S; and S3 denote the three converter stabilizers. The matrices

B and C are constructed similarly rep§%bing A by B or C in equa-
tion (5.15).
The AC~DC interconnection equation (5.14). is now used to

construct the interconnection matrix. The coefficients of

equation (5.14) form the entries of the expanded interconnection matrix

e

Ly; in equation (4.3) where -

u = [iql, idl, Tm‘]’ Efdl’ iqz, idz, Tmz, Efdz, iqa, Tma,

Irery» inc)» VYsT» VREF,» inc,» VsT,» Vqgr Vdy» IREF>
iDC3’ VS?al vq,°» Vd}, qu, Vdy» Vqg» 01 025 @3, Vi,

T
vy, V5]

.



Terminal Controllers

Ka
Ksg
t (secs)

Terminal Stabilizers

KgT

11 (secs}
vy (secs)
T3 (secs)
Ky
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Table 5.3. DC System Parameters

Rectifier
R1

Inverter
12

Rectifier

R3

o



L] 1
y = [quv E(']”(Sl- u)])qur Edzl 62, mz,63,_w3, @), A2y a3,

T
tocy» tnc,s tocy» VsTo Vs, Vst

The eigenvalues of the AC-DC System are given in Table 5.4,
For comparison, the eigenvalues of the AC system alone have also heen
given. The two complex pairs of eigenvalues (-0.00296 + j0.03685) and
(-0.00171 + 30.02736) correspond to the ‘Ffotor. oscillations of
generators.l and 2 with respect t§ generator 3, the reference machine.
For_the AC system the generators rotor oscillations are given by the
feigenvalue pairs (-0.00266 + j0.03648) and (-0.00062 * j0.02298) and as
for the case of the single machine infinite bus system the presence of
the HVDC system is\_seen to contribute te the system damping. The
dominant frequencies in both cases are between 1.4 Hz and 2.2 Hz.
Another eigenvalue pair of interest is (-0.06753 * j0.05598) and 1is due
to the terminal controllers for rectifiers Rl and R3. It has a

v

frequency of 3.5 Hz which lies within the range of l:urb:l.ne-generator

sUc dynamics. A discussion on the other elgenvalues & the AC-DC

system is delayed till the following chapter where a new eigenvalue
¢ . '

tracking routine has been developed ‘and is employed for identifying

.

these elgenvalues.

5.7 Summary
This chapter has extended the state matrix formulation approach

of Chapter 4 to include multiterminal HVDC systems. The DC system is

| S



-37.951

Table 5.4.

-84.592
-90.758
46,927
-56.559
-94,301
-0.10000
-0.63615
-0.34796
—0.06753
-0.14093
-0.01410
-0.00296

-0.00171

-0.00042
-0.00195

-0.00056

AC-DC System

H

[ S L
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Eigenvaiues of Three-Machine, Threc-Terminal AC-DC System

AC System

r—v-l;——-'!—-——-—' .-

P
30.05598
10.00530 -0.01664
- j0.03685 -0.01037
30.02736 -0.00266 t 30.03455
’ -0,00062 + 30.02299
-0.00045
-0.000200 + j0,00013
/’\\
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¥ J
represented as a sroup of additional subfystems within the overall
componént connection concept retaining all ité advantages, The AC-DC
lnterconnection has been Hﬂﬂgigped fin equation (5.14). " While
simplified DC subsystem models have been shown here, any le;el of .
modelling_complexicy can be 1included to include the varioug control .

.-

-~ - -
means of

functions of the HVDC terminal. The method was illustrated by

two examples.
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CHAPTER 6 ;
EIGENVALUE ANALYSIS AND DECENTRALIZED POLE PLACEMENT
6.1 . Introduction

.

The state hatrix foréulation approach presented in the previous
two chapters is now utilized‘in developing a comprehensive approach for
the stébility analysis' and control of a large-scale power system. In
this chapter new methods are presented for eigenvalue tracking and for
decentralized pole- piécééent. i Fiéfnvalue tracking is :iﬁportant_ for
determining' thé behaviour of the power syscém as .some cgntrol
parameters 'vary, Decent?aiized pole placement methods helps in
assigpiné.ihe system eigenvalues to ;;ecified positions to meet a given
design critéria. A |

A new eiéenhalue 'tracking aléofithm' is presented iqﬁ
Section 6.2. Section 6.3 shows how to é&alggte the derivatiye‘of the
system state matrix. Section 6.4 and 6.5 preséﬁts some examples and a

Jiscussion on _the practical applicability 6f the algorithm.

Section 6.6 prééents two decentralized pole placeﬁent methodg with

Sectien 6.7 and 6.8 containing examﬁles_ and' a disﬁussion on the

methods.

118 .« - .
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6.2+  Eigenvalue Tracking '
[}

' In dynamic stability studies .of large interconnected power

systems described in ‘state space form the evaluation of system _

perfgmance under a variety of operating conditions 1is necessary 1n

~* " both planning and operation. Since dynamic stability prediction of

v

such’ sydtems is a dire_ct ,function‘ of the system state matrix eigen-

< vlalues, ;igeniralue ‘analysis . techn:_Lq'ues are recelving consi&erable
_'atte'nltioq dn ’ r._h;“ ah‘alygis ’ of = power system dynamics
(33,55,64,65,70,71,90,914.

T\he‘ system e.igen\ie_\lues. éce.\-in ‘gener.al, functions of all

control andldesign :parameters. * A change in' any of the‘ss parameters

-affécts the system perfomavlce andaiis.__reflected as a shift in the whole

eigenvalue pattern. In order to predic!: the system performance for

different - parameter settings, the eigenvalues are required to be recom-

puted for everyi*parameter selection. For a power system, repea'ted

eigenvalueocomputation becomes very expensive 1n terms of computer time-

- . . -
v
. .

-and the usual approach 1s to employ elgenvalue sensitivites around the”

« base case to estimate the eigenvalue, .The new eigenvalue is given by

- )
Ay 1 2A1

. 3 . ,
A MNEW = Mowp o [ (8e) +_ae2 [eo(Ac)2 * evenes = (6.1)

. €0 | 21
. . = .
where Ac¢ 1s the. change in the parameter around.'a nominal operating
. point gg. This approach has been adopted ,in References {70,71) where

expressions for second and. higher order <%sensitivities have been

.

.
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b

presented. This approach 1s however useful only if a few eigenvalues

need to be tracked, otherwise the computationai effort becomes greater
than that required for the repeated application of the (R algorithm.
‘ ‘ .

In this séﬁtion an alternative approcach 1s presented for
updating elgenvalues fallowing a parameter change. It is based on the
determinantal approach to"eigenvalue sensitivity evaluation [69]. The
method. converges rapidly to. the exact eigenvalues "and all the
elgenvalues are simultaneously updated. The updated eigenvalue(}is
con;idered as the new base value'and the complete eigenvalue locus is

o+
traced as the parameter is varied.

The method requires the evaluation of the deriQative -of the

. system state matrix which is easily available if the state matrix

formulation approach proposed in the previous chapters is used.

-’
The following suBsections show the development and use of the

method. It 1s formulated to minimize the computational effort
réquired.
6.2.1 Mathematical Formulation .

' Eigenvalue sensitivity has been expressed as [69,93]

9% = [erladi(ayI-A)171) [adi(r I-A) 4 2A} (6.2)
de * d€ ‘
where-%% = change in system matrix with respect to the parameter g£ and

can be obtained as.outlined in the next Section 6.3. The 4 denctes

the inner product of two equally dimensioned square matrices

’ N



Ax B = ¥ aby . . ' (6.3)
i

.
where ay; is the 1ith row of A and b; is the ith column of B. Again

r

the derivative of_ the determinant of matrix [x{I-A]} 1is given by

- ) . L |
. [det(x 1-A = adj(a;I-A) 4 22 . 6.4
e [det(r{1-A)] adj(ay )*ae (6.4)
Combining (6.2) and (6.4) gives
LT {cr[R(xi)]}-l 3_ {det[ryI-Al}. . (6.5)
de 3¢
where
adj(x4I-A) A R(ry) )
r

The change in eigenwvalue AA; is then given by

v

My = erROPI! {g—c (dec(a41-A1)-ge] c o (6.6)

v &
e

The method proceeds by calculating arg{i = 1,...,n) and updating
agli = 1,...,n) ireratively using

(k)

A£k+l) A

N 4

oy ’ ' (6.73

X v AU p——— - -

P
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where k = 0,1,2.... and denotes the iteratien step. The iteration is
stopped when convergence is obtained. : '
Instead of calculating %z [det[ryT1-A]} in (6.6)\:ilng equa-

tion (6.4), we can write

I,

afder[r 1-aA]}

P

det(yT-A] = detlryI~(a + 32 4e))

but

det[)\iI—AI = 0
therefore

s aA =

A{det[ryI-Aj} = -det[ryI - (A + SE-AE)] (6.8)
Let

Y
A +?ﬁAE = A%
de
and converting it to Hessenberg form .
. ) ) _
A* = vayvTl _ ) (6.9)

where V is the product of~Unitary'Householder transformations. Now

[I-a*] = [aI-vapv™'] = VDgI-agv-! |
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therefore,
det[AjT-A*] = det[r;I-Ay] ' (6.10)

because det(A.B) = det A det B and det V = ]. Since [AZI'AH] is

in Hessenberg form 1ts determinant can be easily evaluated using

Hyman's method [67].

The use of equation (6.6) further requires the evaluation of

tr{R(xy)]. This 1s now accomplished. The characteristic polynomial

is
det[2I-A] = (A-3))(a=23)  (A-Ay)

It can e shown [92] that

EROD] = 2 {det(r1-al) : (6.11)

therefore

tr[R(rg)] = (A1= 13) k (6.12)

+ k=20

e L
o

n}t is seen Erom eqHation (6.12) that equ&tion (6.5) doéé not hold if
'

two eigenvalues are equal. Therefore if the eigenvalue loci intersect

= b c—t—
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ag the parameter changes equatio<:ggj;) wlll not converge, Conversely

a divergence indicates that the elgenvalue loci intersect and the QR
method must be used directly to find the eigenvalues following the

parameter change.

6.2.2 Algorithm Implementation

The algorithm 1s implemented as follows:
Step 1: Compute base case eigenvalues using QR algogithm.
.Step 2: Convert [A + %%-Ae] to Hessenberg form Ay,
Step 3: Calculate tr[R(xy)] 1 = 1;...,n using equation 6.12,
Step 4: Form the matri# [A4I-Ay) and calculate dts deter-
’ v

. ﬁinant for t = 1,...,n.

. Step 5: Find axq using (6.6) for i = I,...n.

Step 6: If AXxy .1s greater than some convergence criteria, -

update Ay using (6.7) for L = 1,...,n and return to
- °
} Step 3.
Step 7; On convergence, the XAy are a close estimate of the

. ' . eigenvaluéslof [A + %%‘AE]-

Steps 1| cthrough 7 are repeated for the next change Ae after
- .
replacing A by (A + %ﬁ Ac]. In this manner the elgenvalue locus can be
€ /
plotted as a function of parameter values, If the elgenvalue loci

crosd (i.e., two eigenvalues become identical), the algorithm has to be

restarted using the QR method.

i e ———————————

P
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(

6.3 The Evaluation of the Derivative of the System State Matrix

. The eigenvalue trackihg algorithm requires the determination of
the derivative of the gystem state space matrix. The state matrix is

given earlier as

A= R+ B LyC : - (6.15)

I

for the case where D = 0, Then

- = aL .
2A 2A 3B - -
¢ © 3¢ T3l C+B—H—C+BL,

de de de (6.16)

Qr
m [0

The parameter of interést (e) 1s usually contained ‘in the subsystem
state matrices Ai; ﬁi and'Ci from which the matrices K, B and C are
formed in accordance with equation (4.8). Thus the right-hand side of
equation (6.16) 1s easily evaluated;

For the case of mode idéntification the system state matrix is

assumed to be given by

A = E+B T (6.17)

.

where r dendtes-:he amount of interconnection introduced. For the case

r' = 0 the system is complePely decoupled, whereas r = 1 denote the

interconnected system. The tracking of the eigenvalues as the system

‘moves from the decoupled to the -fully coupled state helps 1in
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identifying the subsystem which contributes to any particular mode.

For this case '

dA = = ‘
a? el B Ll 1 C . . (6' 18)
6.4 Use of Eigenvalue Trécking in, the Analysis of Power Systems

The eigenvalue technique developed here 1s particularly useful
for the analysis of power system dynamics. It can be used to examine

\
the movement of the critical roots and then to adjust the design

parameters in such a way as to achleve stability improvement. It

-
.

provides the engineer with a good feel for the .,effect of differepnt
system paran.:et,er's on the overall stability of the systgm.

This use of eigenvalue tracking in‘:he_ analysis of synchronous
'machir;e dynamics 1{is illug.t:rated in this section by.considering two
examples. The first example examines the effect of the exciter gain
parameéer on the stability of a. synchronous machine connécted to an
infinite bus where the machine is repreéel:nted by a simplified third
order model. The 'second example considers aelarger‘multiméchine system
and demonstrates :\he use of eigenvalue tracking in both mode
identification -as.well as - stability determir;ation with respect to

parameter variation.

b

6.4.1 Simplified Single Machine Infinite Bus System with a Single
Time Constant Exciter S

In this example the effect of exciter paramter on the

eigenvalues of a synchronous generator connected to an infinite bus are

-
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studied. A single line diagram of the system 1s shown in Figure 6.1.
The system data has been obtained Erom reference [8l]. The AC machins
is repreéented by a simplified third order ﬁnodell. This model neglects
£he effect of damper windings, stator resistance and netw;ork
transients, The exciter 1s modelled as a singie time constant
Eegulator and conlstant mechanical torque 1s as'sumed. Under small
perturbations the .system can be represented by the bic;ck .diagram shown
in Figure 6,2. ‘Il; spite of its simplicity, this model has been shown
to be very useful in the analys;s and design of machine excitation
systems under a variety of conditions [2,94]. The block diagram
_caefficients (k;y - kg) are functions. of the machine and transmission
line parameters and the system operating conditions. The wvalue of
these coefficients for the loading conditions of Figure 6.1 are given
a'long the block di:;gt:an in Figure 6.2.
The- machine and exciter together form a fourth o-rder_system
. .,

whose state matrix can be written as:

— - —

L -, ‘ 4L 1L i

1 - ~ -
Eq “l/ka-::'do "kh/'{'do 0 . l/rge Eq T 0 t
5 ' 0 0 1 0 6 0
= . - + I~

w -kz/TJ : -klf-rJ 0 "0 w Tm/ 1]

b " -
- . . " - )
Egq J ~Kgkg/TE -Kgks/tg 0 ~-1/+g Egq (Kg /TEIVREF
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Xd = 1.70 pu

= 1.64 pu o
rg = 0.001096 pu

cos¢ = 0.85 pu

Ve = 1,0 pu

r = 0.02 pu

Xe = 0.40 pu

P = 1.0 pu

- . Figure 6.1 Single Macliine Infinite Bus System
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\
.
1 6 + T,
: +
\ ' J,
kl. k2 kS '
- +
kq ’ ks
+ T+ Skal Eé e v,

ki = 1.076, k; = 1.258, ky = 0.307, k, = 1,712, ks = ~0.041, kg = 0.497

LN S

T'4o = 5.90, Tg = 0.50, T = 2Hyy where H = 2.37, wp = 377.
ﬁ

Fig. 6.2 Block Diagram of the Linearized Model of the
Single Machine Infimnite Bus System
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Fig. 6.3 Eigenvalwe—15cud for - the Single Machine Infinite Bus System



The eigenvalues are plotted as exciter gain K; 1s varfﬁd from

s

5 to 300 in steps of 5. The eigenvalue lacug 1s given_in Figure 6.3
—
and we note that the system becomes unstable as Kg 18 1increased
pa
beyond 269. The eigenvalues obtained using the algorithm 1in
Section 6.2 Aree to five decimal places to those obtained using the
standard IMSL Library subroutine EIGRF.

6.4.2 A Three-Machine, Three-Terminal AC-DC System

In this section the eigenvalue tracking routine is used to

analyse the performance of the three machine three terminal AC-DC

system (Figure 5.5).

-

Machines 1 and 2 have been modelled using the fourth order two

‘axls generator model and ﬁachine 3 has been represented by the second

order classical model. Each of the three DC terminal controllers is
represented by a.ﬁingle lag tim; constant transfer function. Again,
each terminal controller is equipped with a second order stabilizer as
shown 1in Figure 5.2. The input signals for the stabilizer  are

1

converter AC bus voltage magnitude, rotor speed and rotor anglé, The

"galns Ky, Kw and and K5 can all be individually set to control

the composition of ;he stdhilizer signql. Note that this system has
béen considered earlier in Section 5.6.2 and its eigenvalues are given

in Table 5.4 Here the system performance 1is analysed by first

ldentifying the eigenvalues and then determining the effect of

parameter variation on system stability,

L
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To identify the eigenvalues and to determine which subsystems
c%ntribute to a particular mode the eigenvalues' are txacked as the
interconnection or coupling parameter 'r' in equation {(6.17) is varied
from 0 to 1. The result is summarized in Table 6.1 which identifies
the various eigenvalues'of the AC-DQ system.

The variation in the eigenvalues associated with a particéiar
sdbsystem as v 1s varied 1is indicative of tne degree of” coupling of the
subsystem with the other subsystems.' A large movement of the
eigenvalues mean that the subsystem is strongly coupled whereas a small
change indicates that the subsystem is loosely conpled. "Figure 6.4
shows the real‘and imaginary part of the rotor oscillation eigenvaluee
(-0.002966 + j0.03465 and -0.00171 % j0.02734)‘for machines l‘and 2 as

a function of the interconnection. it is seen that.toth rotot damping
and rotor dseiilation 'frequency are ext%emely :sensitive to the
1nterconnection vand‘ that the subsystems corresponding to the‘ two
machines are strongly coupled. This is as expected since it is a three
machine with a strong transmission system. The real and imaginary
parts of the DC terﬁinal controllers eigen;alues are plotted similarly
in Figure 6.5. In this case’ uhile the damping remsins almost constant

the frequency of oscillation increases as the interconnection 1is
introduced. The complex eigenvalue pair (-0.06752 + 30.05598)
corresponding to the two rectifier terminals‘ controller has anp~

oscillation frequency of about 3.5 Hz (0 05 * 60). This frequency is

within the frequency range of rotor oscillations and can lead to
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Table 6.1. Eigenva;ues identification

Eigenvalue

Subsystem

~37.951
~-84.592

- -90.758
< - -46.927

-56.559
-94.301

-0.10000
-0.63615
-0.34796

-0.06753 + j0.05598

.
-0. 14093 ' /)

~0.00296 ¢ jdfdﬁGBS!

~0.00171 & j0.0273ﬁ/‘

i ~
-0.01410 ¢ §0.00530 ..

‘~fﬁngiijzer -~ Terminal RI

Stabilizer - Terminal 12

(:j"u Stabilizer - Terminal R3

.

DC Network

Conétant Current Controller
Terminals R! and R2

Constant Voltage Controller
Terminal 12

Rotor - Generator | .
Rotor - Generator 2

t Field - Geperators | and 2

. <« o
A . =0.00042 . . : Field - Generator 1
-0,00195 ". Field - Generator 2
~0.00056 -~ - Roteor Speed - Generator 3
* -
A



\

134

. *
oo o
1 Surrdnoy WOTIDFUUEDIIAIT] JO UOTIDUNI BEF | I0IvIIU3) JO
sanTeaua3ry 10104 Jo s83ied KieuySem] pue TEIY 9yl JO JUGWBACH (B)4*9 IInIfg

¥ 9NIIEN0) ¥ 9NINdNOD N
1 g g - 90 ce ) e 1. o g ar 1~ gt ¢ oo 2 e
" it 15 i T ooo” T T T T T T m r00°-
o1o* £0Q0*-
e -
0zZo z 200
D .
(7]
H
rd ]
0eQ* w 100°-
=< .

<

—{0r0"

000°

b3

' 1 ] | SESSEPYON NORUVRIN URTOOON A 050

o

To0*



1 Bur1dnoy VOTIdUUOIIAIUL JO UOFIDUNS BB g lojwiauan jJo
sanTeauadTd 10304 jJo BlaER] huwuﬁww-n pue 1B ay3 3Jo IWIWIAOH (q)%°9 0u=mwh

| INITdN0D d ONITd4NO3
1 s T I S LA LB S LR N CHN SRR DN SO U
; 7 A ) 000° LA wt i i I i T H00° -
{o10+ - Jeo0r-
- “
n : ]
- H 200°-
U 1020 =
D
@)
H
P
- . r -{of0" Ww 100~
=<
- Jasror / 000"
i 1 | ] ] I, 1 [ 1. 0%0° ‘ 1 1 1 ] L. [ ] ] ] 100%.




136

: Zurdno) uoy3ldeuLOl133UL Jo uoyldung
» B 5% £} PUP [Y STEUIRIIL. I SI3][0II00) ITIAIN) JURISWO) 3y3 03
Burpuodsaziop ganTrauaSTH °ya Jo 811eq L1euy3wwy pue Teay jJo JuemdAGH (B)G'9 3xn3dpy4

43y

4 INITdN0I d INIdNOI
[T} 8* a° i 3° 'S r” (3 2° 1° 0 . [} 6° L [ 9 s* L £ e*  .1* 0"
3 T T T 7 LI s i 300 ’ M T T T T g 010
u 1o : R ¢
. . o <J60°-
. : —jzeo*
= Hs0°-.
Jeor :
H
5
-1 10 o
-2
E s0* D
3 Q0
= -30* = .
3 E PPy ~ o
- Jro--
- EELN .
i..° - . - deor-
3 Jeo+ E .
t | I | ] 1 { 1 . 1 \ oTe . " 1 ] 1 PR ] 1 L ] i d 2pe-




137

S

e

Boydno) uwoy3llouLOIIIIUY
Jo woyjdung B Se 7] TeUrmIl], v 13T1ToIjuc) afejfop
1uelsuo) a3yl o3 3urpuodsarioy anTeauadyy oql Jo JuowRAdy] (q)¢*9 aindya

Yy INIIINOD -
01 E* 8 e g9* §* £ 2 1 .0 N
S T "7 T LARRRRALEM) RAASAAAS] MRASARAA! LASAMLLAN | ,A..n

I
93y

* D b



138
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potential problems with HVDC _terminal controllers interacting
unfavourably with the generator rotor dynamics_.

The effect of parameter variations on system eig;nvalues is now
i_llustratec‘i.. The parameter varied is the gain I(m of the stabilizer
of rectifiérv Rl which is varied from K, = 15 to Kw = 100 and the
system eigenvalues are tracked. The movement of the ‘:fotor elgenvalues
for machines 1 and 2 are shown in Figure 6.6 and it 15 seen that the
speed feedback leads to ;i cons';iderable. improvement in the damping of

rotor oscillations of both machines., This is similar to the case for

AC networks where speed feedback is used for stabilizing purposes.

6.5 Some Practical Considerations in Eigenvalue Tracking

There are two practical aspects that need to be considered when
programming this algorithm. The_first relates to the\ calculation of
the determinant and the second one to determining~when two eigenvalues
are equal and thus the algorithm needs to be restarted. -

'Ithe determinant of a matrix can be very large or very small and
very frequently its computation can cause an overflow b'rl underflow on
the computer; The deteminan? is usually évaluated as the 'pfodugt of a
set of numbers. For example using the LU lfact:orj..zation ‘approach, it is
the product of "the diagonal element:‘s of the L and U-matrices. If these
elements are very large or very “small, overflow or underflow will

occur. This pfoblem is circumvented by using logarithms to evalane

the product. . ~

N
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>

: 4
The main advantage of transforming (Ail—A) to Hessenberg form

and using HWyman's method iIs the lesser number of operations required

compared to direct LU factorization. Detenﬁ{nant evaluation using LU

. factorization of (AyI-A) requi\n:ﬁ n3/3 operations for  each

. -

(1 =-I-,...-f1-) resulting in a total of n"/3 operations. Tran‘a.';forming

(14I~A) to Hessenberg fdérm requires43/3 evaluations and determinant

eva'l.uation of ( 1I—AH) requires n2/2

for each

A4(1 = 1,...n) resulting in -a total ~5./3 operations.
Thus Hyman's method is more economical for system ords /great:er than 6
and, in additlon, is highly stable and single pre::ision computatior{-'is

considered adequate [67]. The accuracy of the method is proportional
to 274 @2 where t; = t - 0.08406 and t 1s the number of binary
L, ’ .

”
digits used for’ represénting decimal fractions in the computer. Again
n is the order of the matrix A. For most large .computers, t "is fairly
large, e.g., t = 48 for the CIC Cyber 170 and t = 24 for the
VAX11/750. This therefore ensures that no significant error is
introduced with ‘high order matrices and)@n\s’equently the use of this
method would tend to be constrained more by memory storage requirements
Vv
‘than by considerations of numerical accuracy.

. L ! N .

As mentioned earlier there is no need to explicitly determine
when two eigenvalues become equal because equation (6.12) does not hold
in .ghis case. Due to this si:pgﬁlarity the algorithm will not converge,

. - g
even 1f the eigenvalues of A and A + pAA are distinct, if the eigenvalue
loci intersect when moving from A to A + pAA. A divergence therefore

indicates tim!: the algorithm needs to be red@u‘tedé’ "

< ’
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We now proceed to show that it 1is indeed computationally
efficlent compared to re‘peated eigenvalue computation. Let us consider
a nth order system where the base case eigenvalues ére known. Ap
eigenvalue recomputation requires [67].
(a) (5/.3)n3 operations to transform . rthe system matrix to
Hessenberg form.

(b) 4n? operations per QR iteration. Normally, 2-3 QR
iterations are required pe; eigenvalue [67]. This,
assuming an average of 2.5 iterations per eigenvalue,

results in a total of 10n3 operations.

The total number of Qperations is then given by

N = (5/3)n3 + 10n3 = (35/3)n3 . (6.19)
\ ~

The tracking algoritlm suggested here requires

(a) (5/3)n3 operation té copvert A* .in equation (6.9) “to
WY
- ssehﬁawg form. This is required only once.
(&) (1/2)n? operations per iter;tion to compute the
ge{erminants in equafion (6.10) for A1(1 = l,eee,n).
(¢) na(n-1) = n? operations per iteration to compute
tf[R(Ai)} using equation (6.12).
The number of iterations required depends on the parameter variation
" and the convergence criteria. For the _example considered, four

iterations were sufficient to bring Ali(i = l,...,n) to less than

1075, Tﬂé number of operatian is then given by
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Noo o= (5/3)m% + 4[1/2)03 + a?] = (11/3)n3 (6.20)

1

Comparing equations (6.19) and (6.20) it is scen that the algorithm
requires less than one third of the computational effort as compared to
.repeated elgenvalue 'compucat§on. As mentioned previously, the
algorithm has to be restarted using the R method, if the elgenvalue
locid cros;. Thekmethod tracks all the eigenvalues as compared to the
methods reported in [71,72], which are designed to track a few
eigenvalues to be economically’ advantageous.

 For the analysis of power systems this"method provideé an
efficient approach. it is to be noted that there 1s a -limit to the
order of the power system that can be handled by this method. This
limip is dependent on the available memory on the computer used.'tﬂhile
spar;F mafg;;§‘technique5‘ may be employed to conserve storage, they
cannoi be used for eigenvalué evaluation as a sparse eigenvalue
,evalualion method has yet to evolve. fhe eigenvalﬁé_evaluation being
requirég to initialiéi'the héthod 6r%to,restart after two eigenvalues
become identical. i

. 6.6 Decentralized Pole Placement

While eigenvalue tracking helps in determining the system
behaviour with respect to parameter variation, pole placement requires
that tﬁe eigenvalues be moved to a desired ~set of locations in the
complex plane in order to obtain good system response. In general thié

requires the availability of all state variables'which are fed to all
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of the ‘inputs_.‘ However, spectrum assignment using centralized state
feedback 1is impractical for many large distributed systems because of ™
the difficulty 1in providing reliable and secure fee-dbnck between
subsystems located far apart. For this pur}ose decentralized state
feedback 1s advantageous since only local states are fed to local\.
controllers., It may be noted that large engineering systems fall under
the cate of decentralized control with a group of cont__rollers
controlling local 1np;uts and thereby indirectly controlling the large
: 1

system. This is particularly true for electric power systems which are
composed of interconnected but separately owned and operated utilities
each of Which“contains a number of local areas, each with 1its own
control center tied to an overall coorriinating center. Within each
area the tasks of coordination are repeated at ‘a'low-ér level where the
area control center coordinates individual generating. stat‘ions f:ach of
which is individually controllable. ' R .

The necessa;y cond‘i-r.ions underﬁwhich a sLel: of loczl feedbaék
laws exist were derived “first by Wang and Davison [94] and later
extended by Corfmat and Morse [95]. Thése imply that the fixed modes
of the system cannot be assigned using local feed'back. The concepts of
fixed modes being a generalization of the un;::ontrollable mode concept
oc-c/urring in .centralized control. Subsequently Saeks [96]) has shown
that the fizc.ed modes of the composite system coinc‘ide with the fixe?j .

; P

modes of the component subsystems. - " ' j !

Thls segtion presents two methods for finding the ‘deden-
tralized feedb::k\gu_ng provided no fixed mode exists. The first
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method 1s based on the Component Connection Method and uses a function

minimization approach. The desired eigenvalues are asslgned among the

Y

subsystems and the feedback -gain matrix pﬁrameters are varied to keep
. N : , i
the eigenvalues fixed as the interconnections are introduced. The

method is different from [97] in the way the déccntralized galns are
obtained. ~In [97] a continuat{on approach has been adopted where the
eigenvalue sensitivity 1is equated to zero as the e;ystem intercohnec—
tions are introduced. It requires the repeated- e\.raluationrof the
eigenvalues and the left and right eigenvectors of the system state
matrix as the interconnectiqny are fntroduced. Ine«this thesis tﬁe gain
matrix parameters are varied to minimize a cost function using standard

minimization routines and requires, at most, the calculation of the

system eigenvalues. The advantages are that the problem is easier to

\pryfn and 1s computatiofially less expensive.

-~

For the case of a strongly interconnected system the introduc-
- .

tion of the interconnection moves the eigenvalueé considerably far from
the decoupled subsystem eigenvalues. This “would require that the
Ainterconnections be ‘introduced slowl},; whi;:h will result in increased
computation time. Further the minimization routines may not converge

e S
native second method 1s proposed. This views the decentralized

due to the accumulation of numerical errors. In such a case an a'&r-

feedback gain probiem as an 1nverse eigenvalue problem, A Newton
iteration process is used to arrive at a solution [98]. In this method
the eigenvalues of the composite systems are moved® directly to the

- ‘ . ‘
desifed location instead of the subsystems eigenvalues being moved

' .
» 2

(3%
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first and chgn held fixed at the desired values as the interconpections,
. ‘ -

are introduced.

o5 e

. B
6.6.1 Pole Placement’Using Direct Minimization

Eigenvalue assignment requires the evaluation of the feedback

gain matrix K such that e

o[A +'BK] = A ' o " (6.20)

-

L e . -

Here A and B are the state and input matrices of the overall system,
5

u[A'; BK] denotes the set of elgenvalues of (A + BK) and A denotes the

desired eigenvalue spectrum (1, A2 yeen, ‘An). For deéentralized
feedback with local states only as local inputs we must have
. TN
old + B Kg]l = A . . (6.21)

/ |
Here Kd = block diagonal [Kdl, Kaé, et KdN] and Uﬁ?‘i'- 1: «vs N) is

the feedback gain matrix for the ith subsystem.

’

Lo . Direct Hininigatioﬁ Method - . . N
The algorithm @artg by assigning the dﬁgired gpectrum A among
JEn ious subisy em; as;uming Fhaﬁ the lafge system 1is completgly
decoupled. This .can be dod;- usihg any' pale placement method since
- subsystems are.usudlly of sﬁ&l; order. Then —{‘“
A
ol + BRy] = 4 , " (6.22)

-

If the 1nterconnej!jons are now introduced

-
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U(K + E(I-l‘l;llﬁ)_lrLlla + ﬁ R‘d] = A (6'23)

where A denotes the new eigenvalues which are shifted from the desired

[y

spectrum A due to intrth’tion of the 1ntercwction as .t varies from

0 to 1. The elements of K4 may now be varied such that

A-RA =0 : (6.24)
o . ‘
It is proposed to use function minimization for this pubpose. Two

L] . .
differenc-func’ﬂ/ﬁls may be used. The first 15'%R(find

~—~

min liFlllz _ . (6.25)

where, T\ o ] _ .

Xn o= Ap | ¢

L -

c

where Ay, Az,...lA, are the eigenvalues of j and “are “un tions of the

i y /
elements of Kg. - -~ !

This function however requires an eigenvalue computatioryat
each f.unction evaluation. This may be avoided by using the second

alternative function. ‘

p// . x |
o . . ) (6.26)

4

min 1




148

. . N ’
~ - -

th}- - -
det(A + B Kg - 1)

F2 = : /—\
det(A + B ¥y - A1)

- . - : ¢

.

The evaluation of the function F, may be considerably simpli-

fied 1f the matrix [A ™+ B Ed] is first transformed to Upper Hessenberg

form. The determinant for diff;rent A¢(1 = 1, ... n) can then be
computed using Hyman's method. Nhil; computation of function F, also
tequtres_ the Hesée'nberg tranéfomation folﬁ,igenvalue calculations, thé
computation of F, av‘oids time need for subsequent QR iterations.

. Either 1Fjn; or anag"are minimized with reepect to the
eleMts of the feedba;:k gain matrix K. The minimization is accom-
plished using standafd IMSL library subroutines Z_XHIN or ZXSSQ based
.on quasi-Newton and Levenberg~Marquardt methods respectively, These

~

7};ave the advantage of not requiring function derivatives for minimiza-
tidn.> The minimization is done for each value of r as it is increased
for 0 to .1. This introduces a mﬂa]\.l amount of coupling at a time and
ensures that A are close to A, thereby resulting in faster convergence

-

" of the minimization routine.

-

6.6.2 Newton Method , N

For a strongly interconnected system the introduction of the

interconnection moves the eigenvalues of the compostite system far from

.



149

- '
v

the location occupied when the sy.stems are assumed decoupled. 1If the
.desired elgenvalues are assipned among the subsystems, the inter—
connection coupling parameter r mus?Jbe increased 1in smaller steps
compared to the step required for a loosely coupled system. Since a
minimization is carried out at each step, this will lead to an increase
in computation time.

Consider such a strongly interconmected system where the

des{i‘yeigenv

this case, assign

4
ues lie close to the overall system eigenvalues. In

the desired éigenvalues among th;a suﬁystems leads
te large Initial values of the decentralized gains: whereas, sm the
-desired elgenvalues lie close to the overall system eigenvalues, low
gains are required. The wide difference between the initial and final
gains lead to a larger number of ‘minimizacion steps Wy cause
numerical difficulties in convergence because of_error accumx;lation.

In this situation a:x alternative formulation to directly move
" the composipe system eiéenvalues to the desired location—myed.
We -assume n constant matrices each premultiplied. by a cons.ia'nt
c4(1 = 1,...n) which when added to the compoSsite system state matrix
results in a new system inatrf‘x hav’ing the desired eigenvalues. This
problem in general is termed the inverse eigenvalue problem and we may
obtain the controllet: gains from the constants cy and the n constant
matrices. Mathematically the problem 1s formulated as follows.

Given the' overall state matrix A and n gustant_ matrices
K(i = 1,2..;.n), find the, constant cy(i = 1,...n) such‘.th'at “the

matrix - A -
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X
Me) = A+B T cyKy = A+ T cyBKy (6.27)
{ 1

has the desired eigenvalues xy (1 = 1,...n),

In this case F, may be written as

® det(A(C) - AII) Fz’l(c)

1 8 det(A(c) - A 1) Fa nlc)
~ b0 |

. it

and ¢ is a solution of equation (6.2%2 if Fp{c) = 0. The Ni:igp’ﬁarhod

solutibn is given by

N

sl
@t w - G(e™T Fp(e™), @ = 0,1,2,... (6.28)
. .

where the elements of G{(c)} are given by
3Fz,1(0)

-1
acj Fz,i(c)tr[(A(c)— ):11) BKi]

g1j(c) =

The structure of the matrices Ki(i = ]l,...n) is the same and

depends on ‘the state variables. For degentralized feedback
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Kii
Ky = Ki2
KiN
J
\ o
where N is the numbe® of subsystems. The, elements of K; are

-

arbitrarily selected .(e.g., by a pseudo-random number generator) so

that nom

n

1A = o § BKyn
i=1
]

-

For a'complex conjugate eigenvafue pair (Aj = XA4*) we choose Kj = K;
[ 3

and fix'c = ¢c;* at each iteration.
_C4 i

The decentralized gain matrix Ky 1s then given by

[
n o =
Kg = T eyKg
i=] o
and A-.§+§L“E .
y
and B = BL)Z

.

The success of the method is dependent on the initial values for the
cnnstants ci(i = 1l,...n), which were taken equal to the desired

eigenvalues.
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- Sz

6.6.3 Conditions for Existence

-y
The general conditions for the minimization of F) or F, depends

on the existence of Ky- This {8 pguaranteed for three

conditions  [98].

o {1) Each subsystem 18 controllable and observable.

(2) At most one subsystem is of odd order...

(3) Complex eigenvalues are distinct and exist in conjugate

pairs.
h .
Condition 1 is necessary for eigenvalue assignment whereas (2)

and (3) result in real feedback gains.

R;?f Exanmples of thé Use of Decentralized Pole Placement Algorithms
Two examples are presented to illustrate the methods. The
first 1is a mathematical ex%mple showing a . geventh order system
consisting of three subspdtems taken from [97]. For this loosely
coupled system it 1s shown that direct miﬁlmiza;ion ig feasible and
faster execution time achieved as comPared' to the continuations
- approach adopted in [97]. The minimization approach may be
unsuccessful . for a strongly inmerconrected system and this is seen for-
a threg machine AC power system which forms the second example. This

second example 1s solved successfully using the Newton method.

6.7.1 A Seventh Order System

This example represents a system consistiﬁg of three subsystems

as follows:



. t
-
T
hd -
Subsystem 1| il =  SE TR
)'(2 = —2x2 + u,
o T
4 : : ’
Subsystem 2 X LT TR P X, 4 !
X, = %) +ou, s
Subsystem 3 X, = %3 + Uy

R IR S

¥

The 1interconnection among the subsystems {is given by the

followin%h;zitem interconnection matrix L;} given below

[0 0 0000 0o 1 | " .

The elgenvalues of the original systems are '

System 1. 1, -2 ;

o
System 2 =0.5 t‘i0.866 : : T M

System 3 0.5 : j0.866, 1




A 1% — ¥

A

To achieve a certain desired system response, 1t 1s assumed that the -t

89
elggenvalues havé—to be shifted to the following desired values.
— -
-2 + 3, -1 v 3, -0.5 ¢+ jO.5, -3.
- .
As a first step we assign the desired eigenvalues among each of the
three subsystems.
Ay, = -2+ j _
- v ot
Ag = -1 =t j§
Ay = -0.5 ¢ 0.5, =3
, L]
This 1is accomplished by using any- pole placement method. For
simplicity Kdl' quq Kﬂa are chosen as in [97] N
-10/3 1/3
Kdyp = a
-10/3 1/3 . o
Kd20 - 0 -1 J -
r < 1 ]
-1.5 ~2%.5 -1
. Ky .
_ v‘{ ‘ \
-1.5 -2.5 -1
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Both functions F; and Fy were formed and minimized ing the
standard IMSL subroutine Zﬁg}N based on the quasi-Newton method. In
both cases §F 0; and WF,i, less than 107> were achieved in 10 secs on

the CDC Cyber 815 computer.® The feedback gain matrices obtained using
both functions are now given.
Function Fl IF1, £ 1075

-3.326  0.364

.Kd‘ | 337 0. ~
kg, =[ 0.103 -0.893 ]

( ~1,575 -2.507 : -0.981

-1.474  ~2.552 =1.045

Function F2 1F1,€ 1070

]
3.200  0.401 \

! -2.834  0.230

~

ke, = [ 0.113  -0.900 ] - . L

¥ '-1.600 ~2,574 -~0.854 |-

-1.449 -2.528 - =-1,001
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This example wvas also solved using the Newton method. The solution
time 1s dependent on the initial values chosen for ey(i=1,...n).

Selecting the ¢y equal to the desired elgenvalues required about 10

CP seconds to compute the decentral.ized)gains-. The galns matrices

. -
obtained are: S~ -

-3.126 1.260
]

1
~-1.915 0.094

a—

, [—0.6815 0.3084_]

. -2.415 -3.182 =7.423
Kd3 = - /\
-2.093 -2.860 -3.618

sy

For "this example both the direct minimization and l:he Newr.on Method

<4
took essentially the same time. This was thirty pertcent faster than
the 15 sec reported in [97] for solving the -same problem using the
continuations approach on the CDC 6500 computer which has the same

speed as the CDC Cyber 815. Q?.

2

6.7.2 ~ A Three—Machine AC Fower Systea

Thig example considers the three machine AC power system of

Chapter 4 which has been redrawn and modified to show two lines between



157

buses 2 and 4 with total line impedance remaining the same. This
enables the convenient” simulation of a line‘ removal with attendant
change of operating pof;t. The power system is redrawn in Flgure 6.7.
The generators | and 2 are represented by~fourth order modesl
dwhile generatory J is represented as a classical second order model.

The state equations for the subsystems were givgn before in Chapter 4.

The eigenvalues for the overall system are

~0.002664 + 0.034648
-0.000622 + 0.022984 .
-0.000199 + 0,000129

A = -~0.016647

-0.010373 N
-0.000455 < i
0.0 L T
——

' If the system i moved to a new operating point because one “of the two

lines between bus 2 and bus 4 1is opened, the eigenvalues change to

~0.002782 + ©.034601

-0.000541 ¢ 0.021439

-0.000191 + 0.000137
A = -0.016173

-0.009981

-0.000495

0.0
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It is desired l&—move the eigenvalues back to the original location.

The eigenvalues of the three decoupled generator subsystems are

System 1, 0.0 - A%
~0.0,004421

-0.000450 o ////

0.000440

System 2 0.0° : <n
. ~0.004958 : =
~0.000207 | ’

~0.000442 -

System 3 0.0
-0.0000561

< ' ' g

‘We first attempt to assign the eigenvalues among the subsystems

Ay = -0:002664 + 0.034648

-0.016647

-0.000455

A, = -0.000622 + 0.022984
-0.010373
0.0 ‘ _"



v
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The gain matrices for the decoupled systems are

<>
r9569.14

9569. 14
. 9569. 14
—'—-—3\ 2
(554.73
554.78

Kg,y = | 554:78
8 ;«N‘ 544.78

[ 0.0026

0.0026

ccmpled system eigenvalues A than to the eigeEaImJ of the decoupled
Subsystems. Therefore the getual decentralized gains would be smaller
as compared td\&hose given above by Kﬁo. Both subroutines ZXMIN and.e

v'zxsso failed to arrive at the‘minimum as t.he intercor}ctionsﬁgere

introduced,

The alternaqive approach using the inverse eigenvalue based on

equation (6.27) gave

9569, 14

N

)

160

Ay = =0.000199 + 0.000129

-1935.14

=-1935.14,

-1935.14.

=-1935.14

~394,45
-394,45
-394.45

~394.45

15.85

15.85

-23.89

-230 89
-23.89

-23.89

"0, ®0

¢.00

0.00

-10812.68

—

-53412,55
534]2.55
-53412.55

=53412.55 J

-10812,68

-10812.68

~10812.68

Qmuch closerv to the

Note chat the desired elgenvalues A

-

—
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- [ 0.41587  0.47010  0.10226 +3.7313
e
Kdl -
0.67568  -0.47228  0.56659 -1,49504 |
_; L
0.72922  -0.80143  -0.67366  2.86279
. Kg, =
0.85452  -3.32070 -1.74880  0.94660
Kg, = | 0.49526  2.76366

The computation time required on the CDC Cyber 30/815 computer was

about 45 seconds. ‘ . -
- .
6.8 Discussion on the Pole Pche-ent Methods

Two methods have been presented for pele placement using

t
decentralized state feedback. The direct minimization method .has the

Y

advantage that 1t is edsy to program and advantage can be taken of
. Optimization routines. The functions formed for minimization do not

* require _thé calculation of eigenvectors apd if the second function is

- T.

used, the calculation pf eigenvalues is also pot required. By setting

. . 4
“the minimization objective ‘the eigenvalues can be brought as close as
- St

de.asi.red to the -specified values, ' There  is little likelihood of the

- minimization routines cohverging to  some 1oca1..-iiu‘51";£é‘l of IFyb; and:

lellz.) The fact that the interconnections are introduq@d in small
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steps ensures that IF 1, and IFo1; are never far from their global

minimum. The method works well for a loosely coupled system as seen

in example 1in Section 6.7.1. However,‘ for a stronglyxinterconnected.

system where the system eigenvalues are far from the decoupled
subsystem eigenvalues, {t 15 less advantageous. A strongly céupled
system neeessitaées introducing the interconnections in a greater
number of steps and results at best, in additional, c;mputa:ion t{me
and at worst, in convergence difficulties with the minimization routine

because of round off errors.

f The second mdthod is based on formulating the decentralyi}e*

control problem as an inverse eigenvalue probleh, It uses the qv'er'all-
compo"site' sygten ‘state matrix and uses the Newton Method to calculate
the feedback gains iteratively This method 1s successful for both
loosely and strongly coupled systems. Both decentralized state

feedback methods can be easily adapted to include output feedback.

6.9 Summary

v .

This chapter has presented new methods for the analysis and
(]
control of large systems. A new eigenvalue tracking,mﬁhod has been

suggested which has been shown to be 5uperior in terms of computational

.effort as compared to repeated eigenvalue computation. The method has

he ? —~—
been .gpplied to power syeten examples Yg track eigenvalue movement with

respect ‘to pa)rametet varfal:lons as well as identifying as to uh:lch
<

modes are contfibuted by any particular subsystema.

—

Ve
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This chapter has alsc presented new methods for designing
decentralized state feedback controllers. _TJB methods have béen
sugaested. fhe first ':s based on uaing_ direct minimization using
Qtandard optimizatioh routines whereas the se;ond method uses a &ewton

method to solve for the feedbnck “gain. - Both- methods have been

11lustrated by means of examples.

e



CHAPTER 7 ) N

CONCLUSIONS

This thesis presents a comprehensive approach .for the steady
state thbilit)‘y analysis of AC-DC power systems. Steady state
st:r;tbility is wusually determined from the eigenvalues of the system
state matrix evaluated at the nominal operating condition. However a
kn'owledge of the eigenvalues 1is usually not Jnough to completely
characterdze system stability. ¥t is neqeésary to evaluate the degree
of stability as a function_ of the syst.em pz;.x-ame;ei-s and 1ts operating
point. Alao it:. shc.mld be possible to stablize the system, or if it is
stable to- improve its stability, A new method 1is presented for the ‘)
evaluation of the system state matrix which 1s ‘then used to develop new

.algorithms £or the stability analysis and co:;t:rol of large power

systems,

- S

A review of existing stability analysis methods indicated a (
need fozl a state matrix formulation method whic.h was simple to program
and computation'ally efficient while at the same time re'l:ained suffi—
cient flexibility to include*a wide varlety of power system models.
. The method presented here exploits the powerful feature;a of the

Component Connection Method for power system medelling and overcomes

the disadvantages of the previous methods. It allows the system state

164 ’
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matrix to be formulated in an elegant yet simple and efficient way.
Taking advantage of the nature of power system models, the state matrix

for AC power systems is coﬁstructed without the need for any matrix

[
inversions.

One feature of the method 1s that the state matrix 1s formu-
b

lated from two separate ‘seis of equations. One set models the

-

component subsystems whereas the other defines the interconnection

.

between t;e subsystems. The main advantage of this is the ‘great flexi-
bility provided in Elle modelling of the power system components. As
long as the input~output quantities are fixed the modelling c‘(;nplexit:y.
6f the subsystems may be changed witt‘mut affecting the interconnection
eqt;ation. Further, several levels of state matrix asgembly may be
employed. The state maFrix of a generator system consiating of a
number of subsystems (e.g., shéft, generator, exciter, etc.) may be
constructed first anld later the generator 1itself considered as " a
subsystem .in the overall power system model. The structure of the
formulatipn process “1s thus ‘compatible with the way power sys{egms

develop and the degree of modelling complexity can be matched to the

specific simulation problem.

A major advantage of the proposed state matrix formulation

method 1s that it retains the physical identity of the subsys'tem'
models. This is extremely useful for analysing the degree of system
stability using eigenvalue tracking since it permits the simple evalua-

tion of the derivative of the system state matrix. As shown in

Chapter 4 this”is accomplished easily us_f.-\ng ®ix mulciplication and
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requires less computational effort as compared to the PQR or the

elimination methods of state matrix forfulatien.

. In Chapter 5, a compact interconnection equation has been
»

derived relating machine y.zages and currents in the presence of a

multiterminal HVDC network. This has considerably simplified the state

matrix formulation of ‘QC—DC systems which at* most fequires the inver-

sion of a matrix of the order of twice the number of DC terminals in .

the systen. The HVDC network, the DC terminal controllers and
stabilizers are simply trated as additional subsystems in the overall
formulation. As before, any degree of modelling detail may be employed
and. derivatives of the s;stem state matrix are easily obtained.

A major contribution of this thesis is the development of a new
eigenvalue tracking algor-ithm.,‘ THis aigorithm i; based on the evalua-
tion of the sensistivity of a matrix der:erminant and ‘1terat1vely
'updateal the eigenvalues"fqllowing any cha.;Ee in the system state
matrix. It overcomes the disadvantage of exceasivé.coyutational
effort required par‘ticularly where elgenvalue computations are repeated
to determine g\e effect of parameters variation on s}?tem stability,
The algorithm ,\:;:latea all the system e;genvalues following ? parameter
change at one-third the cost of recomputing the eigenvalues using the
QR algorithm. Used tog%her with the proposed state matrix formulation
method, ;t 1:3 e'specially 'ug,eful for identifying the modeg due to any
particular subgys:em. 'It provides the engineer with a flexiblg and

cost effective tocl to study the effect '}of different ?aﬂm parameters

on ‘the overall system stabilircy.

s

| ——
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The far reaching consequencés “of the proposed state matrix

-
-

formulation method have been exploited in the development of two new
methods for: decentralized _pole p].:i:ement which are also presented in
Chapter 6. _Thg fir37 method assigns the given Poles among the various
subsystems and the elements of the feedback gain matrix are varied to
cancel the effects of thé system interconnection. This method requires

the evaluation of the system eigenvalues and has the advantage of being

simple, It works well for a loosely coupled system using standard
minikizgtion utines. It 1is, however, unsuitable for a strongly

coupled system hich 1nt'_;'o;!uces extra ‘computational effort for the’_
minimization routines and may fail to arrive at a solution be'gau;e of
the accumulation of numerical errors. The second method based on the
senaitivity of a ‘matrix determinant is, however, well suited for both
loosely and gtrongly coupled systems. The decentralized pole placemefit
problem 1s considered as an Ynverse eigenvalue problem and the feedback
" gain matrix is found uaing the Newton method Both methods are easy to
implement and computationally efficient,

AS part of the comprehensive approach to ‘steady state stability
analysis a new AC-DC loadflow scheme has béen pre.senr.ed liln Chapter 3.
1t id used tr..'> determine the bége operating -point of the system pfior io
the é;;l‘uation of the system state mat_rix. The sequential approach is
employed and any AC' loadflow method can be used. The DC network is
Bolved using the Geuas—s:l.edel -ethod and any HVDC network configuration

and terminals control scheme can bg accommodated. The main advantage

of: this method is that the DC network solution need not be repeated. |
. 3 .
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Further 1t ensures that a feaslble Dg-\eiystem operating point 1s
selected by comparing the reactive power requiremegts of the lIVI.)C
terminals with.r:he supply capability of the co%ected AC syst;em.
The methods presented in' this thesis have all been verified by
applyingv to realistic power systemfmodels, with the computer programs

>
being written for specific system fconfiguratichs., These have included

’ ¢
a slngle machine infinite bus stem, a three-machine AC system with

six buses and nine lines and a three-machine three-terminal AC-DC

gystem. The se examples(» contribute significantly to an -easier

understanding of the various methods and are fairly gé

Indicative of) the fact that the methods are easy to impldp
applicable to large scale power systems. 'I'he'J’publications [16,99-
are related to the work reported in this thesis. -

The work presented in this thesis provides some promi‘.sing

research directions for the futgr\e in the area of power systems
: '

'stability. " In particular, the speciflc, topics which may be considered

‘for further study are:

- (1) The extension - of the proposed formulation to 'st\udy

transient stablility, the gystem response to large distur-

bances.
-

-

(2) the extension ‘_ of the eigenvalue- tracking approach to

include systems with repeated efgnevalues‘. ",d-

i‘,k*-v"': E

<
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' APPENDIX I

. S _ PER UNIT" SYSTEM : ‘

., In this Appendix the .per unit- systems followed in the.thesi

...

“are presented. The per unit sy%tem for the AC-DC loadflow equations is

'ba_sed cn ‘three phase power as given in Appendix 1.1. The subsystems

.-equations for stability studies however are based on a single phas!

- power basge be'cquse the power invariant modified- Park tranformation is

used for‘re.presenting the machines equations in d, q form.
- . . Ve .
. ., r * - <

R .
1.1. ' Per Unii System for AC-DC Loadflow o
: ™ g g

)

A . \ ' ’ .
For loadflow analysis it is customary to work in terms of three,
phase pgke'r as base. The s'alrn'e,v pqyér base 1s chosen for AC and DC

- -
systems - .
5 * i : . o .
= Eac BASE = ‘P MW (three phase power) o : ]
\VA\.(;/BASE = V KV (line to .line) S
, p . _
‘ IAC BASE = Proal 10> A ) -
Z ' . ¥ - ohms- .
* BASE 7 31AC .BASE - , -
) N . —

Y For the DC side a cuprént base is chosen such that
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mn
Inc BASE = “— Iac Basg A

V6
“ ~\ -
Now
PDc BASE = PAC BASE MW,
LY , N
2pc BASE IDc BASE = V3 Vac BASE IAC BASE
. ‘
V2
Vpc BasE = ~—— Vac pade KV
d Zoe - 18,
an : DC BASE ~, “AC BASE
. . >
1.2 Per Unit System for Stability Analysis -

The per unit system was selected so' as to use ,the power

" invariant Park transformation.

PRASE =, P MW (single phase power)

- L - -
A\ . .
I VBasE "~ VLN kv (line to neutral)

¢

Ipase = Ppasg .= Ip A : .
' . 4
. tg = — 1l secs
WBASE - -
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N APPENDIX II

SUBSYSTEM MODELS -

2

The equations describing the performance of each subsystem are

1

presented here. The models have been taken directly from the text by

Anderson [81] with the equations have ‘been rearranged in a matrix form.

.

2.1 Synchronous Machine

Synchronous maéhine modelling has been aconsidered by many
al.lthOIS: N Either.' stator and rotor currents referred to the machine
rotor frame ot stator and rdtor fluxes referred, to the .machine rotor.
frame, may be chosen .as states, In this Appendix stator and rotor
currents have t_aq‘en selected as states, primarily because this approach
allow-s a direct coupling Pet:ween machine and network equations and th.e
inclusion c;f stator transients. ‘

The linearize'd differential. equations for a synchronous machine
are now given with ‘the'-A prefix ‘t;mitr.ed fo:.' convenien’ce.- The state

equation is obtained from > o "‘



“wg Xg

rf.

TwpXaf “wpXgd

Xaf
Xf

xfd

- Tkd

Xad
Xgd

Xkd °

" The output equations are given by

muxq

Xaq

-vg

vd

wo xaq

Xaq

xkq

1

«

(2.1) -
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N

BRI 1 0 0 0

iq |= 0 0 0 0
T -Aqd+xd1q0 ,-xafiqo xadiqo Ado—xqido xaqido

L E] LT3 T3 -3 3

2:2 Shaft Subsystem

A

(2.2)

The generator shaft is modelled as a second order system with

the state.equation as:

s| | o ! s
L3 "D
w 0 Ty w
8 1 0 §
w 0 1 w
J
&
2.3 ©  Excitarion System

"0 0 T,
1 _ 1
2Huwg, 2Hwg

(2.3)

(2.4)

-

The IEEE Type 1 rotating exciter has been used in this thesis

and is shown in Figure A.1. The exciter is represented in 'star.e space

form as

]
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L]
1L Mol Te 0]
v - — 0 - 0 0 , \ —
R L R er 0 VL
- ’ "
. K K K
v, -("‘__" S . 0 v 0 Aty ;
TA TA TA 1 TA Tre .
. . 3 J
L . : ' +
) K K (K_+5_) .
v, 0 f -1 __KR—EE_ LV, 0 0
TETF TF TF'E
‘ ~(K +s ) o
. 1 “E
Et‘d 0 T—E- ‘0 —T!-;— Efd 0 ‘0
L. B S - das)
¥ . ’ rf/3
Vf = 0 0 0 VR .
mxaf
— Vi
(2.6)
V3
) [ ]
. ’ Efq
2.4 Converter Controllers. . r . .

The DIC ,Converter Controllers are modelled -by a single time

constant circuit. The constant current converter is represented as

K K K,
dal = -1 ) () e =2l Ipc
Te Te Te Te :



The constant voltage contreller is reﬁresed‘éd

U4
. K Ky . Ky *
&1 = [-L1) @)+ (2 -2¥ 2y Vne
Ty TVOoty Ty
VREF

VT

as follows

\ ’





