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ABSTRACT

- . - -

A critical discussion of the formulation methods for the finite element analysis of
nonlinear problems is given, which includes the Lagrangian, the updated Lagrangian, and

the Eulerian formulation. It is shown that each formulation is suitable for a specific class of

nonlinear problems. In the literature many authors treat updated Lagrangian formulation as
an Eulerian formulation. Therefore, the basic differences between the two formulutions are

critically discussed .. _ : : )
7 - ‘ .
. Consistent Lugrangian and updated Lagrangian formulation are derived {rom’ the

virtual work principle expressed in current configuration, then transformed to the proper |
reference.configuration. A detailed Eulerian formulation in the current configuration ix

derived by means of the virtual work principle. Explicit forms for the stiffness matrices

contributing to the total nonlinear stiffness matrix, for the mass matrix, and for the load”
increments are presented in each case. Differences between the presented Lagrangian and

the updated Lagrangian formulitions and similar formulations in the literature are found to

exist in the number of the stiffness matrices in the final ineremental equilibrium equations as

as well as those between the -

well as in the definition of the load increments. These differcnces

existing formulations in the fiterature are assessed within the framework of the basic

equations of the continuum mechanics. Specific forms of constifutive eXuations for elastic and

clasto-plastic response of the materials are presented. A dis{ussiopZon the use of the stress-
Crates to derive acceptable canstitutive equations iz also given

For the Lagrangian and the updated Lagrangian forinulition two example prohléms

- -

have been solved to demonstrate the applicability of the presented formulationsund the effect

of the individual stiffness matrices as well as the definition of the follower-load which results
from the consistent formulatiorr These problems are: -dlastie, large deformation static

.
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- . -

analysis of a cantilever under uniformly distributed load and elastic-perfectly plastic dvnamic
analvsis of a pipe-whip problem. .

To assess the presented Eulerian formulation and to show the effectiveness of the
.Euleriar finite element analysis using fixed mesh in space; a metal-extrusion problem has
been solved. In this approach. the mesh is maintained {ixed in space and the i}t_'lcz_'ement of

‘ ' : o
stress tensors for a forward incremental step are added to a set of interpolated stress temsors.
Then these stresses are interpolated back to obtain the state of stress of the body-points

. momentarily occupying the fixed integration péints of the mesh.
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AIST OF SYMBOLS N

The following is a list of frequently used symbols. For a brief comrent on the adepted

<

system of notation, the reader is referred to page 28 of this document,

Y - acceleration vector
A . areid of the lo‘uciing surfuce - .
b body force vector
. p i}
C configuration‘ofa body
B rutéofdet’ormut':oh tensor
4 \
D fourth order tensor re_latin‘;: stresses Lo strains ~
N ‘unit base vector
2 deformation tensor
Young's modulus
E Green-Lagraage strain tensor
F. force veegtor
? deformation yradient tensor
fy interpolation functions -
B :-:Lr;;:m‘h-urdenint_t modulus ' .
{ identity matrix . ’ -
-+ Juacobtan matrix
K clement stiffness matrix ) 1.
M element mass maltrix
ris,t local coordinate system of the element
R voneralized f‘m'ce’\..rvctur'
§ ~econd Piola-Kirehhotff stress tensor
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b LIST OF SYMBOLS {continued)
: -
time

first Picla-KirchhofT stress tensor

displacement vector

displacement gradient tensor

velocity vector

unit vector in s direction

unit vector in t direction

spin tensor

body-point

current or spatial position vector

reference or Lagrangian position vector

vield stress -
identity ténsor
variation operation

.preﬁx indicating a finite increment
prefix indicat‘i'ng summ;t.it;n
effective stress

Cauchy stress tensor

nominal or Kirchhoff stress tensor =
cffective strain

Euler-Almansi strain tensor

mass density

Poisson’s ratio

displacement interpolation function

X1
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LIST OF SYMBOLS (continued)
SUBSCRIPTS |

Right Subscripts

i direction
j direction -

K number of nodes per element

Left Subscripts

0.1,2 configuration to which the quantity is referred

SUPERSCRIPTS

Right Superscripts

T transpose of a matrix, or of a tensor

-1 inverse of & matrix, or of a tensor

Left Superscripts’

0.1,2  configuration at which the quantity is measured

—
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CHAPTERI _ _ S
INTRODUCTION . : :

[l PREAMBLE

During recent vears an increasing demand for tﬁe solution of various engineering
problems with geometric ana,’or muaterial nonlinearity has arisen, and, consequcn-tl_v, an
intensive research effort has been devoted to the development of efTicient solution procedurés
for such problems. The increasing importanc__e of nonlinear analysis s largely due to the
emphasis placed by various agencies in more realistic modelling and accurate un-aLvsis of
critical structural components which ari;:, for exumple, in the safety ¢nsideration of
strategic structures ;;.nd nuclear reactor components, and in the design of satellites. Lutely,
thq finite element method has proven tobe very effective in linear analvsis, and by means of it
solutions have been obtained to some cather complex nonlinexr probiems, yet most problems
are still very difficult and cnmpgtaLic)nuily \'cr}"'cxpgnsi\'c to analvze R-ccu'ml_v. much
research is underway to improve the theory of continuum muchanics, the clmstitutivc equi-
tions of the material experiencing ‘Ii!r‘f_{f.‘ deformation, the finite element formulation, the
numerical integration procedures, :md.lhu computer impfonwntatin;s Presently, various
large scale computer programmes und smaller speeial purpose codes are used which affer
vartous capabiiities for analysis  Althouwh these codex can be used effectively to solve a large
number of problems, they still have serious limitations

t
*

[.2 I’RI‘)[‘X,{H.\'.-\I{Y REMARKS

The solutions of nonlinear problems in vontinuum mechanics mainiy contain two

types of nonlinearity: the geometric and the material nontfearity. Geometric noniinearity

x
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- * . -

arises from nonlinear straip-displacemeént relations, whereas material nonlinearity arises

from the material response as in inelastic, elasto-plastic, und.creep behaviour of the material,

The main aspects in the formulation of such preblems are: the choice of proper formulation for
specific applicdtions, the proper modelling of physical problems, the construction of the proper
constitutive equations, the introduction of un incompressibility constraint, and the use of

proper numerical techniques for solving the nonlinear equilibrium equations...In what

follows, the formulation methods are briefly discussed. I!n Chapter [ a more detailed »
discussion will be given. The other aspects of the formulation will be discussed later. .

Four types of kinematic description of motion are in common use in continuum

mechanics. According to Truesdél]'s definition [ 1,2], these four types are: the material, the
N .

referential, the spyptial, und the relative deseription.

-

. In the material deseription, the independent variables are the body-point X 2ndl the

’ B - I . ' - ~ . .
time b, This description s the most natural one from the point of view of the

general principles of motion and is used exclusively inanalytical dynamies.

N

2 . In the referential description, the independent variables are the position X of the

body-point X in an arbitrarily chosen reference configuration and the time t. -

3 In the spatial description, the independent variables are the.current position x of

the body point X and the time t

x

-

In the relative description. the independent variables are the position X of the body-
point X in the present confuzuration und a variable time o
In finite element applications, only three desceriptions of motion are in common usce:

the referential (Lagrangian), the spatial (Eulerian, and the relative tupdated Lagrangian)

“deseription. The relative deseription (updated Lagrangian) s introduced to overcome some

disadvantages of the referential 'Lagrangian) description. The formulation of the Firite




element theor\ b.}bea on Lhese Lhrce descnptmns are called Lhc refercntzal (Lagrdng:an) thc

spatial (Eulen.m} and the r:eiar.ne (updar.ed Ldﬂrangmn) formulatlon

[.3 STATEMENT OF THE PROBLEM

nonlinearity, it i3 necessary to rely on the incremental formulation of the equations of motion.

Most of the researches which have been done in formulating the equations of motion in the
finite element solutions start with the \'irt.L.J:-.ll work prineiple, or the energy balance equation,
in the deformed configuration and then trgnsform it efth(;r, to the (refei‘cntial) undeformed

conﬁguration in the thmnm'an‘—fwmmuon, or to the present tthe Idbt ca!cula.tcd)'

- .

Lonﬁ¢?x1r¢t:on in the updated [40r.1n 7ihan {ormu!dtlon On the ather hand, in the Euleriun

(spatial) formulatxon these cunLlons shouid be conslderod in the current Lonﬁi_{umuon

[t appears that"moﬁ of the work done on fimite element formulations of nonlme.ir
continua is based on the Lagmngian fqrmuiation and only relatively smuli amount of *
research use the upda;ed I.;i\,‘:mngiun;!'ormulation, wh‘crc-aé- very little effort has been made
concerning a detailed Buleriun formulation,

[n the Lagrangian and the updated Lagrangian formul;(tion, it appears that the

o

inconsistent transformation of the virtual work principle leads to incorrect definition of the

load increment and the siiffness matrices [ 15, 21.24, 43, 52

;Jl

56, 61.74]. It 'also appears that

during the lincarizatian prpeess of the kinematic relations within the increment some non.

linear terms have been omitted when they appear with other incremental quantities [11, 23]

»
-

Also, some of the existing formulitions introduce an implicit final form for the «tiffness

matrices contributing to the total stiffness matrix of the element {14, 44, 45 687, 71]. More-

Y



over, some of the updated Ldgr.mgmn formulations have been mistakenly named: Eulerian

formulatzons[fZ 80, 81, 83].

. ln the Euler:an formulation mentioned above many authors treat the updated

Lagrangian formulation as an Eulerian formulation, Hence, relatively little effort has.been
devoted to the development of a consistent and detailed Eulerian formulation (51,85, 86].

L4 SCOPE OF THE WORK ~ °

L41 Survey of Formulation Methods

In L.his section, the ditTcrqnt formulution methods for the finite e!.ement anul_\'sié oi"
non!inear problems and their pertinent chur.lctcrmlu are crmca[l» discussed, and the
. differences between Lhc existing formulations in the literature are examined. These
differences may he due torthe simplifving ;u';sumptions tmposed upon the nonlincar kir.u:matic
rlclut'ions within the lincar increment, to the different uses of stress measures and their
conjugul.tc :;Lrain definitions, and to the interpretations of the virtual work grinciplc'in‘ the
,Lxhdéfr?rmcd Lugr:m;:i;m configuration.  The basic differences between the updated

Lagrangian and Eulerian formulation are explained.  Finally, the choice of the proper

formulation for speciiic a pplications isdiscussed

4

.42 Formulation Methods
421 Lagrangian Formulation

A consistent Lagrangian formulation is derived from the virtual work principle
established with respect to the current conflizuration: and then transformed to the

Lagr‘_ungian undeformed configuration. For comparison, -explicit’ forms for the individuai

stiffness matr:ces contnbutmg to Lhe total stiffness nmt.rn of Lhe element are given. For

R

numerlcal con\'cmcnce the form of the LO[.dl stiffness 'mm'ix of the clement has been



rearranged. Differences between the derived formulalion and similar formulations [5, 14-21,

31,44, 45]inthe literatg.:rc are discussed.

‘[.4.2.2. Updated Lagrangian Formulation

An ﬁpdated !.ugruﬁgi;m formulation is derived on a bhasis similar to the
devclopment_ of the Lagrangian formulation. The form of the individual stiffness m_quicc-s are
presented. The final form of the total stiffness matrix has been rearranged as it was done in
the [.uuf;mui;m l'o'rmulrution._ Once again, differences between the present formulation and

similar formulations [16-21, 31| in the literature are discussed.

[+23 Fulerian l“nr.n'ml.':tiun

A detaited Euleetan formulation in the current configuration has ht.‘l_'fl derived by
means of the virtual work principle. Specifie approximations which muke Fulerian
formulation suitable for numerical applications are examined. 'l'h'u distinctions between :._ho

presented formulation and those extsting 185.86] jn the literalure are discussed.

[424 Constitutive Equations
The constitutive equations for hnearly elastic r('.\";)mlsu, and infinitesimal strajns
areonly considered  Discussion on the use of stress rates which are invariant with respeet 1o
rigid body rotations for the derivation of acceptable constitytive CGULLIONS IN presented
[43 Numerical Assessment of the Different Stiffress Mutrices in Fach Formulation
For. th Lagrangian and (the updated Lagrangian formulation two example
problems have been solved to -qcmnnstr;nc the upplicuhi’lit,_\"nrLhu presented formulations and

the effect of the individual matrices on the aceuracy of the anulysis The two problems are:

~ — R




elastic, large displacement anal‘_vsis of a cantilever under uniformly distributed load and
elastic-perfectly plastic analysisofa pipe-whip probilem.

'i‘o assess the presented Eulerian I'orrr.xulut.io.n and to der_nqnst.rute the numerical
procedures which can be used to solve nonlinear problems based on the E-fuluriun farmulation,
a metal-extrusion problem hus been solved. In general, some metal-forming processes, ,suchl
as extrusion, rolling, und drawing, operate under steady-smtc; condition. Therefore, the
analysis of such processes is f‘ncilitéted by the use of an Eulerian type mesh which is fixed in

space. . 1

e




£ ]

CHAPTERI .

FORMULATION METHODS OF NONLINEAR: PROBLEMS IN CONTINUUM

MECHANICS: LITERATURE SURVEY

INTRODUCTION

For the description of the motion of a body, there exist four methods of formulation:

Truesdell [1,2] calls them: the material, the r.ef'ercn-tia[; the spatial, and the relative

formulation.

. . : ~ . ' "
In the material description, the independent variables are the body-point X, and
b hY

the time t. This descrﬁ\r.in is the mast natural one with respect to general

principles of motion, and 1% the one exclusively used in analytical dynamics.

However, it is rarely used in formulating problems in continuum mechanics, and

especially so in the finite element method of solution.
- - . *~

in the referential description, the independent variables are the positien ¥ of the

" body-point X in an arbitrarily chosen reference configuration, and the time ¢ [t -

should be noticed thut the choice of the reference canfiguration is arbitrary, and

such a choice should not affect the results of the analvsis, A particular referential

description was introduced by Euler in which the reference configuration is taken

as the configuration of the body at t =o, which means that the position X of the

~

body-point X at the particular timet =0 is used to describe the subsequent motion
of the body-point This purtigtlar description is often called Lagrangian

- haad - .‘ -
description in the literature. Thus, the motion x=x (X,1) gives the position

occupied by the body-point X at time t in the Lagrangian deseription.

-
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In the spatial description, the independent variables are the current position X of
the body-point X, and the time t. _[ﬁ the spatial description, attention is focussed on'
what is happening in a fixed region in spatce as the !ir_ne progresses instead of on o
given element of the body. This description sccﬁts to be ideally suited for the
analysis of the MNow pféb!cnif;;. [t was introduced by Danicl Bernoulli, and later

used by [YAlembert and Euler in hydrodynamics |, but in the literature it is usually

called the Eulerian deseription. [t is important to cmphasize the fact that the

independent variable X is a function of the Lagrangiuan position X-und the time t,
be x=x (XU [h the spatial description, for example, the velocity field is o function

of the current position X and the time U v =giN U, where the function g is unique.

Thus, while there are infinitely many referential descriptions for any given motion,

there s only une unique spatial description. Owing to the explicit dependence of
the current position x on the time in tracing the motion ol o body-point, X, all
material time derivatives are more complicated in the spatial deseription

I the relative deseription, the independent variabies are the position x in the

present conliguration and the time o, whereas the presenl configuration itsell
depends upon the time. Since Lthe present configuration 1% taken as the reference
configuration, the past and the future configurations are descrabed relative to the
present configuration. The variable time s the time relative to the presen
configuration when the bodyv-point X occupied the position €8 (x.0). L is
unportant to ohserve that, instead of using i.ul. time L=0 in the relerential
description, the position T\"-:AIL\ time Uis used in the relative description, which
justiﬁcs Lhu.ussignm-cn:. ol the referential nature to the relative deseription. This

deseription in Finite Element analysis is usually called the updated Lagrangian




description; and it is introduced to avoid some of the disadvantages of the

-

Lagrangian deseription which \yi[l be discussed in the fol.Iowing sections.

. As mentioned above, only the last three descriptions are in common use for finite

élement formulatzons of prob]ems in non[mear contmuum mechanmb 'In the following

sections, an assessment of dxﬂ'erent finite element f'ormulations available in the literature

within the framework of the deﬁm.ttons given akp\e is prescnted The simplifying

v

assumptions and the reasons for the dxfference‘; between the existing formulations are also

examined. Finally, the choice' of the proper formulation for Speciﬁc nonlinear problems is

discussed,

) ] . .
(L2 LAGRANGIAN (REFERENTIAL) FORMULATION

Lagrangian formulation is the most naturzl one and, also, is the most widely used

form;zlation in ﬁnifc; clel':rtent analysis of nonlinear problems, see for example references [11,
14-28] um(‘)‘ng many others. The' main advantage of the Lagrangian formulation which refers
the motion to a fixed 'rei'crcnce configuration is that: Lthe treatment of most of the kinematic -
éuestions in such configuration is relatively sim}le. This advunt:‘lge exists actually for zll
integrated quantities since in the Lagrangian formulation the integration is taken over the
" initial configuration. Another advantage of-thc Lugrangian formulation is the simplicity with
which mhterial' time deri:';;tivcs c.an be caleulated. However, the use of the Lagrangian
'formt‘xiation entails some disadvantages which c;)me from the requirement of a continuous
‘updating of the boundary conditions as, for example, in contact problems, metal-forming
problems, and, crack-propagation problems, all‘ of which'are difficult to handle in the
Llagrangian formulation " In a.ddir.‘ion. the requirement that the stresses which act in the
instantanecous conﬁgurati‘on have to be referred to the 1mitial configuration i.s physically

-

quite artificial vet mathematically consistent.  The continuou:ﬂ'dcf‘ormai.ion of the
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body tends to distort the original finite element mesh, and such distortion might affect the

| S :

accuracy and the reliability of the solution.-

.

Most of the Lagrangian finite element formulations utilize an incremental method

based on linear increments. The general approach to the incremental Lagrangian
formulation is to consider complete nonlinear kinematic relations within a linear increment.
The differences between thehexisting formulations are due to simplifying assumptions

imposed upon the nonlinear kinematic relations within the increment, to the interpretation of

the virtual work principle in the initial Lagrangian configuration, and to the use of different

stress measures and their conjugate strain definitions.” In the incremental theory, the

incremental equilibrium ¥quations may be formulated by using the virtual work principle
[13- 27, 29-33, 36-45] orlthe energy balance equation [46-49, 51, 851, and then variations in

the variabl{es are imposed. In the rate-type theories of continuum mechanics, the incremental
7

equilibrium equations may be formulated by utilizing rates of the variables within the

increment (72, 97-99, 104-109].

[n this work, the Lagrangian formulation is based on the virtual work principle
referred to the current configuration (see Chapter\I‘I[). When fully nonlinear kinematic
relations are used within a linear increment, it is found that there are throe stiffness n_m‘Lrices
contributing to the nonlinear clement stiffness matrix [4,5]. These are: the usual small
displacement or the incremental stiffness matrix, the initial stress or the geometric stifTness

matrix, and the initial displacement or the initial rotation stiffness matrix. Also, it is found
from the consistent "development of the incremental equilibrium cquations that a fourth
stiffness matrix: the load-correction matrix, or the initial load matrix contributes to the total

stuiness matrix. Many authors, however, differ in considering the load-correction matrix as

will be discussed later.

T



As stated above, one of the main reasons.for the differences botween the existing
formulations is the simplifying assumptiens imposed on the kinematics relations. Much of

the earlier literature on finite element applications to geometrically nonlinear problems

neglected the initial displacement.lor the inittal rotutiop stiffness matrix and used the initial
“stress sL‘iancss matrix to co'rrcct the usual small displacement or the incremental stiffness
matrix at the end of each loud inerement. As di:;cusscd by Oden {4] and Oden et al. [41],
.unless a new frame of reference is cstablishéd in the deformed element at the end of ecach
increment, as is done, for e.‘xumple, by Stricklin et al. [33, 36] and Murray et al. [43], this
procedure is incorrect. Also, for higher order elements, this convected coordinate system may
be inadequate since {inite rotations within the element may tthe place. The importance of
Ancluding the initial displacement stiffness matrix in certain nonlinear analysis 1s discussed
- by Marcal {54). VI.J:‘LmTSS] makes an e.xrl\. attempt to develop the lmromenul Lagrangian
Furnmlat:on for geometrically nonlinear prol)lct;l\ by mcludlnpf the h:;.,hcr m(ic T Lerms in Lhc
strain tensor, and presents an expression for the initial displacement stiffness matrix for
some elements. [A reference {59] Kawaifollows a similar approach with applicition to ciustic
plates. Wunderlich (23] has introduced a consistent development of an incremental
Lagrangian formulation. However, he omits specific nonlinear terms for the intended
lincarization process within the increment, when Li‘m'\' appeur with incremental quantities,
In reference |241 and [65] o similar :-;impliﬁ‘cd approach is applicd to the plate and shell
probiems. Larsen et al. [44] present an incremental l,;:gr;mg—i;m formmulation by means of
subtracting the virtual work prineiple referred Lo two consecutive configurations. Ilowcver‘,

A

they present an implicit-form for the incremental equilibrium cquations  In a similar

treatment, Felippa et al. [67] alse introduce an incremental Lagrangian formulation and
present an imj)lic_:&t form for the individuul stiffness muatrices contributing to the total
—

nonlinear stiffness matrix, Jones etal. (69, 70 developa different Lagrangian formulation in
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which they use the variation of the incremental strain tensor in the current confliguration

instead of the present configuration, and, consequently, obtain an expression for element toty! -
stiffness matrix which is unsymmetric. Jones et al [89, 70| eliminate the initial stress, or the
geometric stilTness matrix, while its contribution is included in the generalized load term

through an estimation of the next incremental displacements.

-

Cescotto et al. [25, 26] and Frev et al [27] introduce generalized ingcremental
equilibrium equations for the Lagrangian formulation based on the virtual work principle.

They assume’ a nonlinear displucement field within the element T'he inal tnerementat

equilibrivm equations include an additional initial stress mateis and a symmetric initial load
mutrix which, in general, have non-zero vitlues. However, it should be noticed Lhal in the

usual isopurametric finite element formualation, the shupe functions ure lincarly dependent
T

. . ' L3 ~ - . - . .
on the generalized-displacements, and therefore, these Lwo additional matrices will
identically vanish. Carey (28] presents a Lugrungian formulation based on the steain energy

lor geometrically nonlinear problems  He shows that various early approximations for
geometric nonlinear formulation may be obtained by introducing or neglecting specific terms
in the complete strain energy expression,

Fully nonlinear kinematic relations are used by Oden [4] and Oden et al, [39. 31,

.\i.;u'c;:l 153, 551, Hibbitet ab 1532], and lollowed by many authors. Bathe | 14,15], Bathe et al
PUG 2T]L and Ishizaht et al (311 also (ollow the ceneralized consistent .lppr;:;lch [or deriving
the Lagrangian ‘I"nrmnl;ll.inn but they present an implicit form Jor the final incremental
equilibriun cquations Also, Ramm [22], Nagarajan ot al, [68], Hrl)‘ckmun [45], and Mondkar
etal [64] have used the siame approach as in references [17.21] Lo dc-\-vlup their formulations
and they also prrrsc‘:nL an implicit {orm for the final incremental equilibrium cguutions,
Gadala [51] and Gadala et al [46-49] use a different approach Lo develop their formulation

which is bused on thy cnergy balunce cquation, and then by ulilizing increments of the




. . . . . .. = . ) .
variables within a lirear increment to derive expiicit forms for the element stiffness matrices
“

and the increment of the load vector. We may state concerning this particular discussion that
none of the stiffness matrices contributing to the total stiffness matrix of the element should

in general be omitted.

The second point which may be one of the reasons for the differences existing
between the various formulations is the Lrangformation of the virtual work prineiple from the
current {incremented) configuration to the initial (undeformed) configuration. Most of the

works done in the Lagrangian as well as in the other formulations start with the virtual work

-

principle expressed in the current configuration. If we consider three different configurations

of the body: the initial (undeformed) configuration C, at time o, the -present {the last
caleulated) coﬁﬁguration C, attime t, and the current (the incremented) configuration C, at
time t+ At, see Figure (I[.1), then we may express the virtual work principle in the current

configuration C.3 as o~
LI e [ 9. L 0= 9, { . 5=
pTa-87u d‘\:J PTb-5TudV + d"A "0 §
o Y

v Y v A

.
[ 3+

-

o isthe Cauchy stress tensor,

)

. .. ! . .
is the variation of the deformation tensor,

(’65'1.; 5% s

L2 L2
d"x a~x

Dy -.

-\ 15 the current volume,

9 . . . )

“p  isthe materizl density,

. .

“a  isthe current acceleration vector,

8*u  isthe variation of the displacement vector,

“b  1sthe body foree per unit mass,
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2A  isthecurrent loaded areas.

25:5% means the double dot-product of the two second order tensors 2o and 5% (i.c.
—r s - . '

22:_523 =% 5% ).

A ¢énsistent transformation of eqn. (IL.1} from the current deformed configuration

to the initial conﬁguratio.n gives[4, 39, 411 (also see Appendix A). -

T .- . (11.2)

where the left subscripts indicate the configuration to which the quantity is referred,

—

0"’8 is the second Piola-KirchhofT stress tensor,

803,E - isthe variation of the Green-Lagrange strain tensor., T
9% istheinitial volume, ;

- ’ .A .- . : . -'..:‘.
9 is the material density in-the initial configuration,

',ZFT is the transpose of the deformation gradient tensor.
In the previous work, it appears that many authors differ in their treatment of the

» s\urfuce traction term in eqn. (H1.2). Bathe and his coworkers [14-21, 311 drop the transpose of
the deformation gradient tensor ”'3-;"' from the surfaces traction term. Also, ”'“)f--:" has been
dropped in refercnce.st {22, 23, 44, 5‘.2‘-56, 641, White, it;1 reference [52] Hibbit et al. introduce a
rather intuitive argument by setting AF = Al _\K‘_Um, F where F is the surface traction
“or the body force vector to obtain the f'orn;. of the Inad-correction matrix which has zero value
in some loading cases. In IITI'BaLhc et al. consider u similar treatment to that given by
Hibbit et al. [52] for the dcforma-tion-dependcnt loading.  Alsoe, in reference [68] a similar

consideration for the load-correction matrix is presented. The load-correction matfix derived

here is obtained through consistent transformation of the virtual work principle with no
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veference to the tepe of loading  The development of the load-correction matrix presented

here ts simtlar 1o the procedures given hy Oden (4], 2nd Oden et al [39,41] even though, their
form of the load-correction matrix does not coincide with the form derived here  lowever,

& . ’ . - . ‘ - + N . -
Oden et al *pointed out the bmportance of intluding the load-correction matrix in the

incremental formulations. In conclusion, we suggest that the introduction of the loud-
correction matrix is important both in large strain and in infinitesimal s}ruin analysis with

finite rotations  The effect of including this matrix on the accuracy of the solution is

-

dependent an the nuture of the application )

.

Finully, we make some eritical remarks gbout the choice of the compatible stress

. ‘
and slrain measures Within the ramework of the definitions given by PR T27, 128] and
based on the virtual work of stresses per unit current-volume expressed s 1 e, the conjugat

pairs of the stress and strain can he expressed as (ollows o
la. el Tr.del, TISFL (8, 6E) 'y
' N .
where o and ¢ are detined ahove, and i - : Y
=Moo -, - (4
i~ the rominal or Kirchboff stross tensor,
1 .
. . poe 22 N (15
TN
is the deformation gradient tensar,
- = = == i
H DS D DSV IR S .

X

. . . . » - . . M
i~ the third scadaranvarant of The deformation pradient tensor, s tepresent double-dot

and double cross products of tensors, respectively,
— : -—
([Tl

: T EE

i~ the unsymmetric first Piola-Kirchho!l stress tensor, I8 is the inverse of the deformation
=

pradient tensor

(A
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is the symmetric second Pio!a-Kirchﬁoff‘. also known as the Kirchhoff-Trefftz stress tensor,

- K E = § (FT.F-1) : (11.9)
is the Green-Lagrange, or thé Euler-Lagrange strain tensor and, finally, 1 is the identity

tensor. .

. In finite element formulations, the last two conjugate pairs are in common use,

‘especiall_\' the last pair. It can be seen from eqns.. (I1.1) and (I[.2) that the transformation of

the virtual work principle from the cu;rent to the undeformed configuration leads to an
exp'ressi.org of virtial work of stresses in terms o\'f"g and Erwhich is used b)" many authors [14-
27, 31-33, 34-41, 44-58]. Owing to the symmetry oftiw second Piola-Kirchhoff st.ress tensor §
the formuiation idcntic;ﬂl_\: satisfies the moment equilibrium ec{uations. The use of the
conjugate pair {'.:F:,SF} arises maialy in formulating the incremental equilibrium equations
based on'the complementary energy principle. This will not be discussed in this work since

weare concerned with the displacement-based finite element formulation, which at present is

regarded to be the most effective method of analysis.

I.3 LUPDATED LAGRANGIAN (RELATIVE) FORMULATION

As discussed above, the reference conﬁgqration in the relative description is taken
at a ;'uriubie time t. In the relAaLive description, we describe the past and the future
configuration with respect to the present. In the updated Luérun‘gian the independent
variables are X and t, where X is the position occupied by the body-point X at time t. This
indicates that the present configuration is dependent on the time t, a feature which makes the
i relative formulation referential in nature.. [t should be noticed that, in updated Lagrangian
-_)-"-' formulation we still follow the deformation of the body-point X, _vet,- the deformations are
referred Lo the present configuration, This is diiTer.enL from the Eulerian formulation in

which we ure concerned with what is happening in 2 fixed region in the space. This particular




point is usually i%;nored in the finite element literature, and many authors [72, 80, 81, 83, 841"

describe the updated Lagrangian (relative) formulation under the name of Eulerian
. . ] . .

formulation.
Owing to the nature of the dpdated__Lugrangiun, it has certain advantages
“compared to the Lagrangian formulation. For example, the continuous updating of the

boundary conditions and the mesh distortion will be relatively easy to handle in the updated

Lagrangian formulation. Also, in the updated Lagrangian formulation the stresses will be
referred to the present configuration which represents the true s.Lress state. ()n.' the other
hand, since the reference contiguration is variable it may lead to some difficulties in carrying
vut the integration over the present configuration. Also, in the updated Lagrangian
formutation, special attention should be devoted to the Lr.unsf:ormution of the stress and strain
tensors in cach increment.

As in the Lagrangian formulation. the differences between th- existing updated
Lagrangian formulations basically lie in the simplif'ying assumplions imposed on the
kinematic refations, the interpretation of the transformed virtual work principle in the

present configuration, and the use of different stress measures and conjupate strains Once-

& W
again, we base the updated Lagrangian formulation on the virtua! work principle written in
, .
the current configuration, cgn LD D Ina procedure similir to that given in Appendix Q;,_Lh(-
: . N

virtual work principle referred to Lhe present configuration may be expressed in Uhe form
2

= = I BF e = { - B Sl
[ I‘D t‘i_']‘l'l A lp“u Bad Vel lp“h STud Vs
1

bf 5% u - (11,10

As shown in Chapter 1L, the use of the fully nonlinecar kinematic relations within a

linear increment gives the same number of stilfness matrices contribuling to-the nonlingar

N
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element.stiffness matrix as the Lagrangian formulation. However. there exist some

differences in the expression of the'incremental equilibrium equations.

Concerning .the simplifying assumptions, Murray..’et al, [43] utitize ‘2 local -

coordinate system which Lranslate and rotate thh cach element and also rcﬁne Lhe

" subdivisions of the'structure. By this means, they assumed that the” dmpldcemcm. and the

dlbp!acement gradients are small with reference to the Ioca[ axes. Their approach tackles the
- =
nonlinearity in the strain-displacement relationships through 2 geometric transformation.

However, the local coordinate system may not be adequate for higher order elements.

Yaghmai [62], and Yaghmai et al. [61] introduce an updated Lagrangian formulation based
on lhe vir‘ﬁual wor(p:rinciple. The incremental virtual work-expressibn is obtained as th;?
difference between the_ virtual work expression for two cdnsecutive co.ﬁﬁéurations. They
neglect the nonlinear terms in the strain increment. Sharifi and Popov [63] extend the
formu!.ation given by Yaghmai et al, [Gllrto elasto-plastic ana]ysié .in\;c_)lving infinitesimal
strains _buL finite rotations. In the work by Felippa and Sharift [67] based on the L;agrangiun

approach, they refer to the above work and the updated Lagrangian formulation by Yaghmai
. ’ >
et al. [61] as Eulerian formulation. In a similar proceduré to that given by Yaghmai et al,,

I-{c')fmeist.er et al. [30) present. their updated Lagrangian formulation. In reference [33]

Stricklin et al. follow the work by Yaghmai and Popov [61]. Howeveér, their formulation is

“restricted to small strains, Gunasekera et'al. [75] follow a general approach to develop their

Ay -

formulation. They indicate that under proper updating of the coordihutes‘oﬂ the svstem, the

initial displacement, or the initial rotation stiffness matrix can bé conveniently discarded.

Wilson et al. [76] follow a systematic approach to develop' the updated Lagrangian

formulation, but they do not introduce a clear definition of the constitutive equations.
McMeeking *and Rice 72] introduce another updated Lagrangian Formulati)j

I3

based on the rate of the virtual work principle for the incremental deformation given by Hill

PR
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[132] under the name of the Eulerian formuliation. [t can be seen that their analysis follows

the deformation of the body, which formulation is referential in nature, rather than,

-

' cfm:ﬁderin_g what is hupﬁe’ning in a4 fixed region in space. A!so, they-discuss some previous
relative formulations under the name of the Eulerian formul-ation. Wunderlich [23] presents
A con‘sis-tent development for tHe updated lLagrangian formulation. Howe‘ver, as in his -
Lagrangian formulation, he omits specific nc;n[inezlr terms in the linearization process within
the inerement. Bathe et al, [16-21, 31] follow a similur approuach to present their f'nrn;mul-.uion.
Simill;r to the Lagrangian formulation, they introduce an imp[icii. form for Lh.crinc:'cmcntul

equilibrium equations. A similar approach is used in references |29, 1,73, T4 Argyris and

Chan [13] give anpther updated Lagrangian formulations They do not, however, give a clear

definition of their stress und strain mcu:}ure:\:. Argyriset al, [12] 1% a distinet updated
Lagrangian for.‘nmlution orl the basis of Kleiber’'s work [95], in which they utilize the
/‘\. RS . . . . ) . . .
dntermediate stress-lree state as a reference configuration. This conﬁ;zur-fxtmn is obtained by
the hypothetical removal of ercsscs"wiLhouL. 'causing further plasti¢ deformation. Since
infiritesimal increments of the independent variables are us,cd,‘tf-m'y neglect the nonlinear
ter;ns in the incremental steain. However, the use of the nuturul-u;prouf:-h which s based on
stress-free state makes it dif’ﬁc'ult. to compare the final cquilibrium equations of Argyris's
work with the corresponding ones in the literature. Cescotto el ul: 125, 28] develop an upduted
Lagrangian formulation similar to their development of the I.ugrun’gi;m formulation. In their
analysis, only small displuccm;:n'l increments are used and it is shown that the displacement
field is 4 linear function in the discretized parameters and, consequently, the additionad
. initial stress matrix and symmetric load-correction-mateix vanish, whereas the unsymmetric
displuccr.ncm-depcndcnt, load-correction matrix will not vanish  Gadala [51] and Gadala et

al. [46-49] present o consistent development of the updated Lagrangian formulation based on

the energy balanee equation. They also show that the most general approach for the updated
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Ve
Lagrangian f'nrmulul.ion_is to consider [ully nonlinear kinematic reluti\ons wit.hin- a linear
increment, where none of the stiffness matrices should bfomXted.
" Lee elal. [97-99 introduce an updated Lagrangianfformulation based on the rate of

the virtual work principle given by Hill {132]. Their formulation leads to a development of

stress-dependent stiffness terms in case of curved boundary conditions. They present an

implicit form for the final cquilibrium equations, Yamada [104] and Yamada et ajpl105-108] .

. present an updated Lagrangian formulation utilizing rate quantities on the basis of Hill's
work |132]. They employ stress-rates in-the constitutive equations thercfore Lheir
formulation I¢ads to a development of a geometric stiffness matrix which is symmetric or

unsymmetric depending on the stress-rate utilized. Therefore, the final expression of the

.

inecremental equilibrium cquations is dependent on the stress. ride used 1in the constitutive
cquations. Yamada et ul's ['urmuluﬁn.'r; leads to a development of a qud-cm'récti(;n factor for
cuses i which eoupling exists between the stresses and 1he houndary velocities, The
expression ol the load-correction matrix is based on speetlving Lthe load vector il.\'-.\'()Ci;llCd with

the updated surfuce arca.  The expression of the load vector depends on the state of
deformation. Yamada et al. [105-108] suggest the use of an infinttesimal form of the strain

rate-velocity relationship. This procedure eliminates the initial displacement stiffness

matrix from the final incremental equilibrium caquittions - s

Considering the virtual work principle in the present conliguration, eqn. 11O, it

R

can be scen that the surfiee traction term is dependent-on the relative deformation eradient
tensor between the present and the current conligartion 4 is shown in Chapter I that this
Lerm leads Lo the development of the inttial oad, or the loid correction matrix whicticpends

on the increment of the surface truction trom the present W the current configuration. As in

the Lagrangian formulation, many authors dilTer in treating the surface traction term integny
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(1110} We may conclu%'this section with the same r¥murks given or discussed in the
Lagrangian formulation. .

The final point to discuss in the updated Lagrangiun formulation is the choice of
the compatible stress and strain measures. Let us refer to the delinition of the conjugate pairs
given by eqn. (11.3). A'-. in the [.ugrungizln formulation, it can be seen [rom eqn. (11.10) that

the last conjugate pair comes from the consistent transformation of the virtual work prineiple.

This pair is used by many analysis[17-21, 23, 25, 26, 31, 33, 46-49. 511.
As mentioned above, Argyris und Chun |13 do not define whut meuasures of either
stress or strain are intended in their work. It is not clear that their stress measure is a

member of the conjupate family,
McMeeking and Rice {72, Lee and his" coworker |97- 101, and Yamada and his

g M I'd . - v . .
coworkers [104-108] utilize the rate form of the virtual work principle. which has been cited

by HIH [132]. Referring o the definition ol the conjugate pairs, Gon. (1130, 1 uses the rate of

" the Lhird conjugate pair {T, SF}.

—
-

g ELULERIAN (SPATIAL) FORMULATION ::;

As discussed above, the main difference between the Bulerian formulation and

other formulations is that the deformation of the material moving through a Nixed region in

~ k)

space ix determined as i function of time instead of determining the deformation of the
material element.by following its motion in space Furthermore the independent variables in
the Fulerian desceription are the current position x of the body-point X and Lthe time t. For the
mauterial motion, x itself becomes dependent on the time 1, which fuct complicates material
time derivuL.‘I‘vc:-; in the spatial description.

It the finite element analysis based on the Fulerian formulation, the above points

are usually overlooked, or ignored, and many authors deseribe the updated Lugrangian




-

Lagrangian formulation. -
-_;'v_- N . .
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formulation un_der'the name of the Eulerian formulation (see for exam'ple. Hartzman [81], 4
MeMeeking and Rice [72]'.‘_ahd Fengels [S3i). On the other hand, there has heen little ef'fprt o R

made concerning the dé@e]opment of-a consistent Eulerian formulation (see for example,
Gada:.la, Oravas and Dokainish{85]; Ncrria“b.\'ass_er and Shatoff [82), and Ke_\-' [79D..

Hartzman and Hutchinson-[80] make an early attempt of the Eulerian formulation

-

in which the geometric and the material nonlinearity areconsidered. They utilize the praper
material time derivative for the acceleration term, point out is‘.s complications and provide 2
[ N )

lumped mass approximation to overcome the computational difficuities. . The governing

partial differential equations of the system’ are reduced to a set of simultaneous noniinear

: . .

ordinary differential equations. They present an implicit form for the incremental
: : oy 5 .

equilibrium equation. Hartzman and Hutchinson [80) introduce a system of local coordinates

-

that translate and rotate with each element, which, strictly speaking, imposes a referential
nature on the analysis and makes it similar.to the updated Lagrangian formulation.
1 . L .

Furthermore, it ¢an be seen that the transformation of the stress, the strain, and the

constitutive equations introduced in [80), are identical to the procedures used in the updated

s

. 'I'n (82} anor.f'aer treatment of the Eulerian formulation is mxcn by Nemat. Nasser
and Shatoff. They utilize an. absotute minimum principle for sr;w]l cieformatic.)-n superimposed
on a finitely-deformed, ;stabl-e configuration of';m'?elastic solid. An incremental Fc;rmulzltion in
the so‘lution of problems involving geometric:.and material nonlinearities- is given. They
present an accurate discussion of the differences between the Lagrangi?n and tbe Eulerian
formulation. An accurate discussion of the stress and the strain increments, and the

constitutive equations in both the Lagrangian and the Eulerian formulation is presented.

However, the authors seem to overlook the difficulties in obtaining the material time.

-



. - applicable t'(';:th'e Lagrangian formulation.

L
- -

w

- “derivatives irg-tﬁe'Eulerian formulation. Therefore, thé final equations they present are only

Al

Anéther;attempt on the gubject is made by Key [79]. He gives an accurate

discussion of the basic differences existing between various formulations, points out that if

~ the mechanics are carried out properly 'and- the: numerical procedures- are sound, the

-~ .

differences in the results should be minor when translated to a common frame of reference.

Based on the work of Truesdell and Noll [1301, Key {79] preseﬁts e'x brief discussion of the

-

kinematics of the problem. He gives a careful treatment of the constitutive models and the
time-integration schemes and a 'proper transformation between the second Piola-Kirchhoff

_ and the Cauchy stress tensor. In the Lagrangian formulation, an interpolation functions

‘.‘ﬁxed in the coordinates of the reference conﬁgur.'ationﬁre émplo_ved making the material
time-derivatives.straightforward, whereas, in the Eulerian formulation the ingerpolation'
- ' v ' R

functions are function of the current configuration making.th'e material time-derivatives

rather _au.-kward. | To remedy this difficulty, I\'ey’ (79] restricts his analysis to the

isoparametrie e[erénents in” which the coordinates -and the displacement have the same
L - .

interpolation. Tht_: }W coordin;}tes: effectively become mat.erial coordinates and
play a similar role to the coordin;-i'tes of the reference configuration. However, the solution
-procedu.r'e and‘ the transformation ;)f the stress seems to be identical to the procedure used in‘
the updatcd__l,a'grangiar.: formulation. - . -

Fengels {83] introduces another Lagrangian and Eulerian formulation for solving
large deformation problems which include material as well as geometric nonlincarities. He
employs two types of rcfen‘:nces: the first is the Lagrar}gian formuiation in which the s_mall.
deformation resulting from incremental Ioadi‘ng is referred to the undeformed configuration )

and superimposed on a finitely-deformed, stable configuration: the Second is called the

g -
Eulerian formulation in which the small deformation is referred to the present deformed



v

conﬁgurauon and superlmposed on the same def'ormcd conﬁguratmn The second formulat.lon

is actually the updated Lagrangian formulat:on but- it is referred to as the Eulenan

formulation,

A different approach to the Eulerian formulation is given by Derbalian et al. [86],

In this app;_roach. they utilize an updated Lagrangian formulation relative to a fixed mesh in

space 5}' adding the incremental stresses obtained in a forward Lagrangian step to a set of

"interpolatéd stresses to determine new set of stresses at the fixed mesh points. The

interpolation technique used seems to be inconsistent and computationally expensive,
Derbalian et al. (86] discuss the advantages of the fixed mesh finite element analvsis, which is

Euleriq.n in nature, compared to'the updated Lagrangian one.

Gadala, Oravas and Dokainish [85] discuss the basic differenc'es between tﬁe;

Eulerian, the Lagrangian, and the updated 'Lugrahgiun‘ formulation. They introduce a

general approach for developing Eulerian formulation on the basis of the energy balance

-

equation in the current configuration. Gadala et al. utilize fully nonlinear kinematic

relations within a linear increment. When such analysis is carried out, it is found that only

two stiffness matrices contribute to the total nonlinear stiffness matrix of the element. They .

also point out that a comparison between the Eulerian and other formulations may not be

, strictly logical, owing to the particular .nature of each formulation. On the other hand. to

obtain an expression for the velocity of the bod_\.:-point“.‘(‘, Gadala et al. [SS] a_pply the general

form of the material time derivative in the spatial description which leads to an expression-

dependent on the dcformauon gradient, When they utilize the’ proper time derivative {'or the

accelera.txon a compllcated and h:ghl) nonlinear exprc:mon is obtained. Thcrefore they

suggest replacing this complicated gxpression for the deceleration by an. equivalent

expression associated with a Jumped-mass approximation. They do noet give any application

-
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to support their formulation and to show the numerical procedures that can be used to make
Eulerian formutation suitable for numerical applications.
A consistent Eulerianformulation is developed in this wark, based on the virtual

work principle referred Lo the currint deformed conﬁguration. As shown in Chupter IV,

utilizing the fully nonlineur kinematic relations within lincar increments, specific

simplifying assumptions have to be imposed in order to obtain the final incremental

equilibrium 'cquutions in a form suitable for numerica‘l*upplicut.ions. It is also found that only

two stiffndss matrices contribute to the total nonlinear stiffness matrix. As discussed by

Gudala et al. 185], owing to the nature of cach formulation, a strict comparizon may be not

logical between the spatial formulation on once side and the referential formulations on the

- -

other side THowever, the two stiffness matreices T the FRulerian formulation correspond to the

usual small displacement, or the ineremental stiffness matrix and to the initial displacement,
orinitial rotation stiffness matrix of the two Lagrangian formulations  The load-veetor

increment is independent of the deformation gradient tensor contrary to the Lagrangian and

the updated Lagrangian formuluiion. This fact eliminates the initial load or the load-
correction matrix in the Eulerian formulation. As discussed ahove, this formulation is

perfectly suited to the study of fluids and some of the metal forming processes which operate

under steady-state condition



CHAPTER I
LAGRANGIAN AND UPDATED LAGRANGIAN FORMULATIONS

AND APPJ’.ICRT[ONS

As previously mentioned, only the Lagrangiun, the updated Lagrangian; and the

Fulerian formulation are used in {inite element applications to continuum mechanies
problems.  In this chapter, we will discuss the simplifying'ussumptioﬁs and the basic
equations for the Lagrungiur} and the updated [;ugr;ngian formy!ution whereas, the Eulerian
formulation will he considered in the next chupt;:r. On the busi‘s‘nf these basic equutions, we
will develop consistently the final incremental equitibrium equations in an explicit form in
cach case  We will also examine the basic dichr-cncc:-'- between the derived f'or:tlt:lutinﬁs and

Fl

similar formulations in the literature. Firaily, two example problems will be solved to show

the applicability and effectivencss of the derived formiftations. ’I‘Eqsc problems are' large
displacement static urnuly::.is of a cuntilcv‘cr beam and a dynamic analysis of pipe whip.
Comparisong are mu.de with available ;mu[_vticul‘.solut.inns as well as of other Known
numeric;t! ;&'scs. | .

\
- ”

HI1 FORMULATION OF THE INCREMENTAL EQUILIBRIUM EQUATIONS

'

HLTT ASSUMPTIONS AND BASIC EQUATIONS

HL1.1.1. General Assumptions
A general body which occupies a finite region of Fuclidean space as shown in
Figure ([1.1)is considered. Subjected to bresc;‘ibcd surface tractions and body forces the body

undergoes the motion x = x (X,th A fixed rectangular frame with Cartesian coordinate

system in three-dimensional space is established to deseribe the motion of the bhody. Threc
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conﬁgurntions of the body arc considered. These are: the initial configuration C at time 0,

the present configuration C, at time t, and the current configuration C, at time t + At

Assume that the complete solution of t.l"m problem for all time steps At from time 0. to time t,
inclusive, has been obtained, and that the solution for time t + At ix required next. In order
to formulate the equilibrium equations, complete .nonlinear _kinemutic rcIuLions.wiLhi;x H
linear increment will be used throughout the formulation, The sccond order incremental
variables will be neglected. We will consider only perfect mechanical systems which take no
account of thermodynamical effects. Further stmpliflying assumptions will be introduced

where required.

(.1.1.2  Nomencluture
It is useful at this point to set the notatjons which will be employved in all

formulations. A Cartesian coordinate system fixed in three-dimensional space s extablished
to .dcscrihc the motion of the body, We adopt the direct method of Lensor analysis in which the
tensor can be referred to its hasis. The order of the lensors s identificd by 4 number of
superposed bars which equals the order of the tensor  All repeated indices are to be summed

over their udmissible range. Right subscripts in upper case refer to nodal points, whereas
’ . .

lawer cuse right Greek scripts refer to generalized displacements  Lefl superscripts

fnumbers) indicate the configuration” at which the guantity is meusured whercas, left

subseripts tnambers) indicate the configugation to which the guantity is referred.

HIF1.3  Deformation Gradient Tensors and Strain Measures
Referring to Figure (11.1), the position-veetor x of the body-point X at configuration
C, and C, may be written as follows
|-

— - (I
x =N & L



— A= am = a= ' (1.2
2.\:=0'X+3u=lx+fu

The deformation gradient tensor at configuration C, referred to configuration C is defined as

. . .t B = x a
e (111.3)

Substituting fromeqn. (II[.1 i'n_tq eqn. (I11.3), 0‘? may be written in the form

t . .

IF =7 o 2% _ T .13 (I11.4)
0F-—IA. O_.—I.Ou
a X

where 1 is the identity tensor and Olu is the displacement gradient tensor. Similarly, other

deformation gradient tensors may be formed

5, - 1= Lol
= “x 4 = ud e = M e = = (I11.5)
éF:n"' =1+ == = =éF+0__ ={I)F:+'1“’u
i X a X 3 X ¢ X
and
-
;. X8 T . (111.6)
1 T - T "
¢ X

When the components of the displacement gradient tensor are not small compared
to the components of the identity tensor such as in the case of finite strains_'the prob‘lem of
char'acterizing the strains is moere difficult than in the case of small strains. Several different
kirids of [Tnite strain measures have been proposcc'i, the majority of which can be computed
from thg deformation gradient tensor. In what follows, hou:'cver‘. we will be mainly using the
Gr.'ccn-[.agrnnge strain tensor, which‘ can be written in configuration C, but referred to
configuration C, as follows:

u o Tud (L7

=l
"

[~
B )~

| SV I
Qs
=
-
=9
-
@
<
g
Qs
[=}
e

. Substituting w='u-
2= = = , .8

where
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_ - | T T :
g Lf2y  ud du ua} (111.9)
02 139% 99X 99X o°%
- 1 dlu 1“‘] r]tu ud o'y 1ur] (L 10)
. .f_\.oh (lincar) = - = + = o= o=t o= — . ’
213X % 8% %X . 40X 4°X
and ’
L2 i - .
V3 e 1] 98 ud ‘ (1)
.. 3y EAnonlinear) = = o= o=
. Co 20X 8% *
For the updated Lagrangian.
=" 2 = = B T
;E = IE + .'ll E {lincar) + A: E (nonlinear)
where - - '%“"-.
I ‘.
. : ;:.;l lal"l-: . ltlri' Lr][u . lua (111 [?)
! 2 a : 4 X X X
-
2 2 T - - 27
= i 9, u ud _(]I_LI u d d o gt (I 1)
Ali_'. linear)e= 5 — + — t— —— = -
: = alx o' x atx d'x T d x  3'x
and ‘
- h et y =
(1115

A:E (nonlineur) = 3

HIE.14  Displacement Assumption
In thé Lagrangian formulation, usually the displucement assumption within any

given element is assumed in the form

lui i} ‘P‘[,(Ui)lﬂu (H1.186)
and ) S
-_[3u| ;‘Plu(ni)fgu (ran
In the updated Lagrangian, we have .
- (118

' =y (lx)lu
H 1 —{3



and

1= .2 (HL1%
.- e =y Cx)tu

where, in generat, a displacement veclor can be expressed as u = u e, e (i=1,2 3are the
Cartesian base vectors, w,, are the finite element shape functions, and u  is the nodul

displacements vector.

»

.1 1.5 Incremental Strain Tensors
Substituting the disp[accmént assumptions, eqns. (11116, [I1.17) into the inerement

of the Green-Lagrange strain tensor eqns. (111,10, 111.11), we obtain
- —.‘__:.-'..'.‘_;;-'ﬂ,"'l? .
.;ﬂ E @otal) -50&(!xngd1) ; .30 E (nonlinear)

! e 1’ ; .
d . j
! lexu "( 1.{—’] a J uk , tpku J le d lpko J tpk a llJ|v< How o l - -
=30 bw b 0 ( - Oy 0 i 0 0 e R f coe
. . . .. . . 0. . . - _u
= d .\; a X TR | d )\ g .\J d \] X o .\! !
: . = . J . '
. . o

(HEzm

Since we are considering the nonlinear kinematic cquations within a linear increment, eqn.

(I1.20) muy be writlen as y

,
' ‘él 3 "ilu dy, | dlu, ar '
= 1 lJIu ¢ pjd - Ko pku ¢ k pkn i) - = (1121
3o B ) 0w v T o e 0 b e 0
. Srtax A X ' a'X, arxX et
I b .
Ina similar manner, we may write the incremental strain tensor in the updated Luprangian
formulation in the form . - s
- = awy. day alu dy. ity dp ’ ot 90
| 1 ra ju ok ku k Ku Jo 40— = . (12
) "\1'1“:; TR ! 1 1 ! ety I .
1 -l 1
~ a'x " dx. d'x. d°x d X d°'x ) !
. . J oL ! ] =

L L : Yo . 1 : .
- Al this point, we should emphasize that the referential nuture of the anitlysis is
implied in the-obtaining of eqns. AUL21,.11.22). In the Lagrangian formulution, the

derivatives.are tuken with respect to the initial (undeformed) canfiguration wnd the

displacement 'u i a functien of the relative time t. whereas, in the'updated Lagrangian
formulation, the derivatives.are ttken with respect to the priesent contiguration.

’ -~
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e

Substitution of displacement assumptions, eq‘ns. (II[.IG-II[.IQ): -irx'sg:;".the

deformation gradient tensors, eqns. (IL.4, [I1.6), yield . Ce - b
: ) .
. = _ d'x. _ _ A - - (I11.23)
'éF=éF..ele.= 01 e e= (_6..+ Ol“uq)eie. '
oY boog X, ooy % - !
X ot : .
= . - . ax _ _ 3y - - . (111.24)
fF‘:fF.,e‘e‘= le e.=(8 -+ m,l,u )e e. - .
) U RS g 2ee /T

where Sij denotes the Kronecker delta.

[I[.1.1.6 Virtual Work Principle

Since the solu_tion is assumed to be known at all discrete time intervals 0, At, ..t,
i.e. until conﬁgur:.ztion C,.see Figure (IL.1), the basic aim of the formulatic;n is to establish th&l:
incremental equilibrium equations from which the unknown solution in the configuration c,
at time t + At Ean b_c obtained. We start withk the virtual work principle referre‘c\x\w
current configuration given above in eqn. (11.1) in Chapter 1. Equation (I.1) cannot be solved
directly since the configuration C,attimet + At is unknown. A solution cun be obtained by
referriné all variables to a previously known calculated equilibrium configuration. As
. discussed above, in the Lagrangian formulation, the virtual work principle is transformed to
the initial configuration C, (see Appendix A). For a quick reference, the transformed

equation is reported here:

| 38sEave| % wianva| %% shatve|
0, o, v

FLsy

wri

0% 2
d A -7

[T 37

(1125

In the updated Lagrangian formulation the virtual work principle is transformed
to the updated, that is to the variable Lagrangiun reference configuration C,. Similar to the
development given in Appendix A, the virtual work principle referred to configuration C,

~ W
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may-be written in the form
|38 @Eave [, b2 hav=], b2 shave [, 41325 e
v v v ' A ’
(111.26).

CIIL1.2 LAGRANGIAN (REFERENTIAL) FORMULATION

The development of the Lagrangian formulation to Foliow is based on the virtual
work prineiple transformed to the jni'r.ia[ (undeformed) conﬁguratiqn Coy eqn. (LIL25). The |
integral on %V extends over the volume of the continuum and that on OA over the surface
areas subjected to surface traction, In thc‘d‘eveloprrfént of the formulations, it is cpnvenient to
consider only:a single finite élem.cnt. and then the total incremental equilibrium equations
can' be obt.;;ined by sup'erimposing the contributions tlrom‘ gll the clements inside the

_conﬁinuhm.- With this in.mind, then considering the left hand side and the right hand side of

-

the virtual work principle, eqn. (I11.25), as follows:
E

nm.s.‘:J 5. 8 d%’é—[ % %3 -§%udv
Oy . - - Jog *

- substituting for the displacement assumption, eqn. {II1.17), and the incremental strain tensor

given by eqn. ([II.‘.?.i). we obtain ) .. - - i .. -

R 20 Oy o 27 - S og2 Oy
LHS = L _asijSOEijd + [0 pTa -y e b Ead V.
-' v -.— M v .

! 1
. . o0y, .oy d'u, dy d'u, dy
. i 1 s k k k k . p
.= [ =33, ( R T = - - a.)d% 8"%
LN R 12 ST 2o S b R 2o SR B VRE S 8 ‘
‘- " o, - .
o )dl)\-' d 1 2 62
- 0 Cp l{J“‘ wlﬁ . dt;’ ( EB T lt_lﬁl uu

S (F1.27)
Now, consideriné‘ the f'a'c't_. that a second order tensor (axp-la/a"xj e, Ej) can be

N . ¢ l . *
decomposed additively as follows: -

(.‘,
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Al
atp:q - = 1 alpic:. BL[JQ - = I alyiu awju - -
o, Ci%iTi3\ 0. T €€ 12\ 0w T o )1ej
(_ a XJ. 2°X. @ X, sym <4 XJ. 8 .\i ; skew
(I1.28)
where sym means the symmetric part of the tensor and skew denotes the skew symmetric
part.
Double-dolting of this tensor with the stress tensor gives
-zg (awiu - ‘) -_gs c]l.p-l'c-
: e e | =8 -
O a0 T 0T oy ‘ -
) ]
) dy. 1
- lgs__( Sy ) o (111.29)
: 20 ', %
Sincc_Lhe double-dot product of second order svmmetric and skéws_\'mmetric tensors is zero.
By utilizing eqn. (111.29), the L.H.S. of the virtual work principle may be written as
0 ’ 1
dy. d'u, ,dy
- : k k
LHS. =” s, ( — - : )d O
oy et %X a"xj |
B Oy d” | RN (EI1.30)
+| Pplyg MVE— Cug = Ta g 57u 1 :
tu P R { 12t —t
2, . dt SR
. \ . -
Increments of the above equation give
: . alpk atpk( )
) , ., ALHS) = ([ (581 — b :fus)du\’
o, " g0 40 -l
i ]
: ey d lu 'r} V]
i X k¢ 3
. + ( - + I)(.1"8)“”\"
P g% 9% g0 7 T
v X X X,
+ [ oty y a0V & Qlu,+ A% s
OV ta Tifd dl.z B g =0
Introducing the assumptioﬁs
g —a(d lsy-alg | ! (IIL3D
AOSij = A _(OSij + AOS:';') = AOSij +0 [A(AGSU)I.
where ( signifies "of order™
Als = p- alg : (111.32)
Ar)S-i,' - oD.Jkl Aﬂhk! ’ : ' £




and -

., : ”

dt”

REAEPUNE AT SN
T8 ug T AU =y

where, in eqn, (I11.32) we express the increment of the second Piola-KirchhofT stress tensor as

linear function of the increment of the Green-Lagrange strain tensor using the fourth order

tensor ODijk] of the material. Different forms of O‘Di}kl will be discussed in a separate section.

Then the increment of the L.H.S. may be put in the form

| By_, dw__-
A(L.H.S.)-—-(” 53( =b —ﬂ)d"v
RRELAAEAR L

3

u

-8

2
1

1 : 1 '
a‘yio J um alpmak . aq;kﬁ g un alpnB 2
+ - + : )oDi.k1 + d % IEH
oo et et A% T P e 8%
S . . (111.33)
oL 0 R ) .
- [ Jo p(“’ieq’,sp)d?-V 12p ,)8 Y
N Y 4 .
For comparison, the above equation may be put in the form
' : T S (111.34)
e | Lt 12y 1433, 2 o ring T2 2
A(L.H.S.l—([ohcﬁ - KO+ K1) - [OMcﬁl{lu_B}&G u
where ' ‘ )
e _ [ e W 0y (I11.35)
OKcﬁ - Oy~ Oijkl d -
oy 3°X, %X,
i5'the usual small displacement, or the incremental stiffness matrix;
3 Sy . o
cigw o 1g mB T¥ma o (111.36)
K = S — d . .
Ored o, T a0 4%
v ) ) .
_isthe initial stress, or the geometric, or the tangent stiffness matrix;
) = 1
0 _ f 5 (axpm g u, alpnﬁ . Bl{lkﬁ dru aq:m
D o, TS s, % L% %X, 3%,
1 1 T L
Su, M du, Wy 5 : (11£.37)

- _ Jav
a“xl .aoxj c_aoxk 503(]

is the initial displacement, or the initial rotation stiffness matrix:and

L
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. . ty -1 0
. OMqB = [ p(tp o\ )d -V . . (I11.38)
. 0“r -

is the consistent mass matrix of the clement.

Now, !ci. us consider the right hand side of eqn. (I11.25)

'R.u.s.=-['°p2§-6'-’§d°v+[ d%%A -
_ -y ¥ : A
Substituting expressions for the displacement assumption, the deformation gradient tensor,

4

and eonsidering the following relat.ion

- K (.)Zg Ssnd Op . : ([11.39)
we abtain '
: {1 o2 0 T2 aluj_ i 2
RILS. ;( [ p%, . d% + J 3, TR A)S u
. OV - OJ\ : a i

increments of the-above equation yield

K] u
- __\.u{.n.s.):([ Al %y, doV + J A3 (y +'—tp SIER
1 1a 07 a e ]
. 0., 3] 1 a \
-V A
'+J (S (afuj m).ldOA j6 o
- 1 u - . b
Or\ 4] n, 80}{i pgu ) pty - i '.‘?_-
0 2 -o o { dluj | 0 ..
-_—(" Al p"b’.)lpiod V o+ J -[.AUSn Wy o+ ™ lp]u}ld A
0. 0 | J7°X.
Y ) A 1
dy. .
) i 0,2 e
+ —_— 1 5°
[L 070 S0y ¥, Jd oA 15;;,)‘ e
1
Or
PR Liotds 2 S . {4
ARISY=1(A O_!'-{“ + [01'\.0B | {lu_“})h uo .
where
e By 40y \ o'y, ¢ (H1.41)
AOEC— . ACp bi)lpic + , [AOS l(q; + o W )1d %A

v A X,

isthe increment of the load vector, and



dy . )
Jetdy _ 2 1B 0 : (T11.42)
oKy = L (-s —L )d A

+

is the initial load, or the load-correction matrix. -
{/
T he incremental virtual work prinéiple'is obt,dmed by collectmg‘the results of'eqns

(E[1.34-111.38, [11-40-111.42)

h -+ (2 + 3, 2 1 2 2 _ 1.t Ity (2 2
([ Ke Kup OhuB 1{155} * IOMQB]{IEB )5 L= (A oty * [oRap! {'1543})5 Lo

or

Lty [ 1peiih 1 (3) (41 2
4 ([nK(,ga+oK + K 'K { }+1\1 ]{

afi 0" "af} OQB AR )8.-1_10.:0

B}

Considering arbitrary virtual displacement vector & "gq, the above equation is satisfied if, and

only if, g
Lt 91420 1 144y, 2 2= 1 _
([uhau * ol t U!\QB — oK ! {12,0} ,_[n“o:s“lﬂu} A:L{a, =0
or i
Al lIl 2 et + t ldl_ Liatdy, 2 Y ([I1 43)
Ak =1, h hos oft ap ~ ofup] {:‘_Jg} F M {1 g} K

which represedts the mcrcmenwl equilibrium equations in the I.ugr;mglun formulation.

The \f'orm.ulat.ion in the form of eqns. (I11.43) is computationatly expensive.

)f'hcref'orc, for.numerical ¢onvenience one can rearrange the final form of the incremental

—~ e .
e

equilibrium equation as follows: - Bat: T \
* For lincac increment (first increment) .
Aty gD 0 0 O - ._ U1 a3y
AR = !ﬂh(:ﬂ Ha n_u} T [gM sHA ol : , ‘ '
where .
J -3 : Ce
Ol Vi - y  ap | Oy (111.45)
0 aff - 0\‘ anx 0 gkl J“X ¢ - -
1 1
* For nonlineagincrement.b
— T A ety (111.46)
A R [ K + ohun OK ]{ B} I '\‘I I{l Uy .

where
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! 14021 1o, (4} 1
AORQ. OKugs . oKog and 0.\105
are defined above, and. )
' & & .
LTy _ lpptly . 20003 e kp . N Y]
KD = Igih 2 =J D, —d%
0 af 0 cB‘.. 0 "af 0\- 50}{] 07 ikl aoxl
where )
L 1 . -
P _({a‘i’.c B Wma‘) (I11.48)
303\', : ao.\'J 3% aUXj .

The reason for writing the stiffness matrix 01 KQB‘T’ in the above form is that both terms

1 1
( alpiu . g Y al{’!mu ) and (al{}kﬂv ) J Ya alpn.ﬂ )
% 8O 8% % " 3% %
i ! i 1 k 1
in eqn. (II1.33) have the same form. Therefore, the former term can be calculated at each

numerical integration point and used to calculate the contribution of that point to the,

elements oftl;’e stiffness matrix 01 KCB‘__T_’. This arrangement results in a significant reduction
O - .

of computation time. .
The formulation developed here differs from similar ones in the literature [14-23,
31, 44, 43, 52, 53, 68] in the definition of the load inerement, eqn. (11141}, and the develop-
"ment of the load-correction matrix, eqn, (II1.42). Onece again, Bathe [5,14,15], Bathe et al. [17-
21, Ramm [22], Wunder!icﬁ [23], and Nagarajan ct al [68], among others discarded the
transpose of the deformation gradient tensor, 20?1‘. from the surface traction term. As it is

shown above, this term is obtaingg through the consistent transformation of the virtual work

principle without any reference to the type of louding  The importance of including the load-

correction matrix in the analysis was pointed out by Oden et al. [39,41] and Gadala et al.

{48,49]. Bathe et al. [17] presented a similar argument for the case of defermation-dependent
loading, however, their expression is not identical to the expression developed here. In
reference [68), Nagarajan et al. follow a similar approach as given by Oden [4] and Larsen et

al. (44} for the same type of loading. Hibbit et al. [52] introduced a rather intuitive argument

4



in'-setting :".\.F =A ,F+a4

load F, where F is the surface traction or the body force vector.

géom
Based on the above assumption Hibbit et al. developed a load-correction matri;\c which’ will
have zero value in some loading cales. Frey et al. [27] and Cescotto et al. [25,26] introduce an

additional initial stress stii_'fnéss matrix and a symmetric initial load _matrix. It should be -

noticed t.hat. in the usual isoparametric finite element formulation, where the interpolation

functions are independent of the nodal di'splacehfe'ﬁts these two matrices will vanish. The- .

formulation H‘evelope‘d here coincides with the procedures given b\ Oden et al. [39,41] and

Gadala et al. [48,49], however, the forms of the individual stiffness matrices are different. -

-

HI.1.3 UPDATED LAGRANGIAN (RELATIVE) FORMULATION -

As discussed above, in the updated Lagrangian formulation the reference configu-

ration coincides with the updated or the present configuration C,» see Figure (II.1), which

b

means that in the updated Lagrangian formulation we refer the current and the past configu- v

ey

ration to the present configuration. To derive the incremental equilibrium -equations, we

start with .eqn. (I11.26) and by folldwing a similar procedure to the development of the

Lagrangian formulation, we have

. f = ; = e
LS. = fs:sfﬁdlv— h2a-s%uglv
i Ft .
Vv v

Substituting for the displacement assumption eqns. (111.19) and the increment of the strain
-tensor egn. (111.22), and by following the method of developing eqn. 111.34) and introducing

the assumption

Ala — 1 (111.49)
a 15.11 - ID;Jkl’llEkl )
we obtain .
7. = lpethr L Ly L3, 2 ol 27 e 2 . 111.50)
ATLHS) = (K= KO+ K Qup + (M) Guhs®a (

where



dy
Lt [ ia D awkﬁdlv
boef 1, alx 1K alx -
A j [

is the usual small displacement, or the incrementat! stiffness matrix:

T, dw o dy

: : mf ma .

:K;‘é’ = J ‘:Sl. ] - dlv
v Palx ek

. . T i

is the initial stress, or the geometric, or the tangent stiffness matrix:

ma

N 1 .1
(owic J U awn[l ) aq}kﬂ ¢ 8 i

1.3

K =[ D :
1 171kl .

ap IV 4 alx. alx a[x dlt él'c a‘»:

] k, 1 B B 1

1 L
4‘_‘.aum Y . aun atpns)dlv
6[.\:'l alxj alxk alxz

is the initial displacement, or the initial rotation stiffness matrix, and

l l — L1 R
1:\'{0[1 - [l P (‘{Jia lp:B)d v
v

is the consistent mass matrix of the element.

(IIL.51)

(HI.52)

(IH.59

Considering the R.H.S. of eqn. (I11.26), substituting for the deformation gradient

tensor eqn. (111,24}, we obtain

2
1

! quq)‘d ‘A )52u

RUS = | J 'p by Nd'V + [ 'S (ww +

1

where in deriving the above cquation we employed the following relation

dIK"fg =-:f§"d l.'\
Increments of eqn (111.55) give
. Jz -
. [ u .
sire — 12 Ly oo A2 ot 1,
h.u.s.-” ey d'V J \(AISH){%J — q;l.c) d'a
Iy L 1 a°X
£ . 1
3 B(Afuj) ] 9
+J l(;sn_)( ~ ‘*’:‘o) d v)a u
1.‘\ H ad xi

substituting the assumptions

4%

- - ]
v A ' X .

{I1L.55

(IIL.53)
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A% =ads +als y=als +olanals
. T a, 1 n-1 1 n, 1 n, ‘ 1 2,
and )
A% =aA'u)=0
i i )
into the above equation, we obtain . T
ARHS _( L2 Iys 1 ( alui 1A 5:!
aets)=( | ade oy ave | @is (e, + 5 q,rjc)d ; ) u
v A -t a xl. oo
1 L2 1 t ¢
.=(J[ e )y, d'V + L (a]s, w4 A
AR Y
(Al ¥ etalz s - C IL5e)
P * ISn. W1 qJJG) A 11'_15)8 Ec \ - '
1 . 1L g X,
A :
or . . .
o atn ol 2 2 (1L57)
s@us)=(al8 ~ UK,
where .
Al = Ao Byw ¢ | @als wodlal ' (111.58)
1-a ) p o)W, ’ : 1 nlw:u . I o
- . v A '
is the increment of the load vector, and
. . A dy
: 1ot _ 1 1B 1 . (111.59)
lhcﬁ = Jl a 1Sn - wJo)d A

LY 'a.‘(:

s the inttial load, or the load-correction matrix.

,

Collecting the results of eqns. (HL.50-111.54, III.ST-III.lSSJ. and by following the
methc)(i of obtaining eqn. (1[1.43), the final incremental equilibrium equationé'in the upda-t;:d_
Lagrangian may take the forrﬁ |
(I11.60)

I = (letll L b L 1pad)  tpetdn 2oyl 2
"\‘1&:‘ [1}\05 i Ehuﬁ * 11\0‘3 - !haﬁ]{IEB} ’ [1MQBH1

where all individual terms are defined above.

Eﬁ}

As was done in the Lagranéian formulation, the final form of the ineremental equi-
librium equations can be rearranged to make the updated Lagrangian formulation suitable
for numerical applications. Therefore, the incremental equilibrium equations may be put in

the form
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¥ For linear inerement (first increment) -

Hpp  _ pthet A B A the
AR = lthuﬂ | mn‘ixs’-* [c)‘“.mlmuﬂ;‘} i (16D
where
Ol _ T “¥ip oy )
UKGB_ 0 Oijkl 0 d
- OV d > &.xl

* For nonlinear inerements

4

Ip _ T | Lyt Lortd g g2 - ! 2 (FI1.63)
AR =Ky 1 Kp - 1Ko Hiugh = [M 1 {ugh .
where '
Al L2 lad) 1
A 1Ru, Ith . lhcﬁ and 1.\‘105
are defined before, and
Ty 9y, Sbgp . (1ILe4y
lhaﬁ - 1 1D1jkl 1 d v .
1‘. g :cj 3 X,

It can be noticed from the two eqns. {I11.41) and (II1.58) that, the dependence of the
foad incrementlvector on the deformationl gradientﬁhsor exists only in the Lagrangian
formulation and not in the updated Lagrangian formulation, which can be visualized from the
nature of the reference configuration in each case. For the same i-'eason, it would be expected
that the load-correction watrix in the updated Lagrangian formulation is dependent on A
ll-Sn. the increment of the surface traction vector from conﬁguration C1 to C._,, where in the
Lagrangian formulation it depends on ogén'

The ﬁpdatcd Lagrangian formulation presented here differs [from similar
formulation in the literature {17-21, 23, 25-26, 31] in the dchnition of the load increment
vector eqn. (HI.58), the development of L}-m load-.c.orrection matrix egn. (II[.59), and the
number of the stiffness matrices contributing“to the total stiffness matrix of the element.
Bathe et al. [17-21] and Ishizaki et al [31] introduce the same load increment for thc-
Lagranpgian and the updated Lagrangian formulation. Concerning the load-correction

matrix, Buthe et al. [17] develop an expression for the case of deformation-dependent loading



I

"based on the same argument as in their Lagrangian formulations. In reference [23]
Wunderlich introduces kinematic assumptions which eliminate the initial displacement

stiffness matrix in the updated Lagrangian. Cescotto et al. (25,26] assume that only small

displacement increments will be used in the updated Lagrangian hence, it is shown that the
A
a linear function of the nodal parameters. By such means, both their

displacement field is
additional initial stress matrix and the symmetric load-correction matrix vanish. The

formulation presented here coincides with the procedures given by Gadala et al. [46-49].

.
. -

Finally, it should be noticed that the constitutive equations, eqn. (II[.49) are different from
eqn. (II1.32) in the Lagrangian formulation, this will be discussed in the following sub-section.

[II.1.4 CO.\'ST[TUTIV’E'EQUATIO.\'S_..'.‘

(i)

Elastic Material
Elastic material are relatively easy to deal with in practical analysis. The
(111.865)

constitutive equations may be written in the present configuration as follows:

-— 1:.
¢ 4

where !0 and '€ are the Cauchy stress and Euler strain tensors,
tensor of appropriate elastic constants of the material under consideration. In this case,

however, the analysis still includes gedmetric nonlinearity and, therefore, it is necessary to

employ incremental formulation. Equation (I11.65) may be written in its incremental form as
(111.66)

follows

|

lc_3—=ID:AIE N

A
where 4'0 and A'€ are the increments of the Cauchy stress and the Euler strain tensors

In the updated Lagrangian formulation the constitutive equations may be

respectively,
written inthe {ofmd
4'. . .
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' | = - | = . : (H1.67)
T ;:IS:-II)!.\II-: ) e

where & 1‘5 and A 1‘!‘2 are the inerements of the second Piola- KlrchholT stress tensor and the®

Green-Lagrange strain tensor, respectively. In the Lagrangian formulation o similar form

may be introduced

= = = (111.68)
AOS =0[) :.’.\01'.

where all the terms are defined s in the updated Lagrangian formulation but referred Lo the

initial {undeformed) configuration.
4

It should be noticed that oD and D are both constant tensors and defined in terms
of elastic moduli and Paisson’s ratio of the material. However, specifying: D is equivalent to
4 .

using a malerial tensor o1} which is deformation-dependent. This comes mainly from the

-

transformation of the constitutive equations, eqn. {111 67), to the initial configuration, nirmels

the following transformuation exists between the two material tensors

4
' L 1= - s - % - o= - o 1l 89
. D= -—= D CF e TOF e 1CF e e (1L &M
1 P LU g 0 mo nou pow \
L,
A
the components ol Dare
- H
N .
a'x d X, 4 \J [) d X, d X,
(T = . .o x . . (1170
o atx b a -af% MU NN
ni 1l il !(. . O
The inverse Lransformation is
4
TN LT B Sl S i B By -
UI) i[l” II)Illl!IIi (l} ! Lm”(]] ln”l)[ (p”“l' ‘-1J {51
i . :
the components ol alyare -
P = . Dy Uy . Uy Oy,
b TR i o '\, d KJ 5 N '\k d '\| (H1.72}
T = .- 1o '
v ‘d“.\'l r'll.\‘ rllx B rll\ .le
i n It q

Another possibility in deriving the constitutive equations is to characterize the

mitterial behaviour using stress rate defined with respect o the present confipdration C]

(517082979, 116,117, 'Phe stress rate used must be framelindifferent fnvariant with

"
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o - - .

respect, to 'rigid body rotation). The most common stress fat:é'ﬁf:?ea is the Jaumann rate vwhich

-~
-

isﬁeﬁnedincorxﬁgurationclas- e .

sla. d'o.. S - ©(HL:73)
( =) = ( B L P : . )
st 4 Y4t O Wi K Vi . .

where (§ loijlﬁt)‘J is the Jaumann stress rate, loik are the components of the Cauchy stress

-

tensor, and o -
P S : :
X 179V vy AIH.74)
T ol T . T
. . “ 4 X, d xj
are the components of the spin tensor
‘.' 1= 1 a l‘v- ‘c_ 3
. wo= - = - —T)
2V sl gt

N

Considering a unitincrement of time, the Jaumann strési;"incrernentjs . e

. L o " .
diu-, diu 37 W du . <3
1 ik p L 1 (1L.73)
§'o )J‘Ao——-lm(;{-_ 1‘)_—1 ( _-__._)__ . ,_'.
SRR A 0 TR L1 S A
= d°x d 'x. . - a x d x. .
ke | k . 1 E
where . ‘ ) . . oot .
(s‘o} .,k13 e, B ,: (IL76)

It :,hould be notlced that in eqn. (I £5] .3 9, is the mcrement of the Cauchx btrebs

J

tensor measured and referred to the current.conﬁguration C,. If' Lhis stress increment is

transformed back to the updated, Lag’rangmn conﬁguratxon C, it becomes the increment of the -

:,ccond P:ol.s. I\xrchhof‘f stress ten:,or from conf‘igurat:on C, to C, while referrcd to configura-
uc'm C,. Also, (;1; i5 thc?. Cauchy stresstensor referred to conﬁguration C!‘which_i's equivalent

- to the second Piola-i'\'“i-réhhoff.stress tensor measured and r:.;;t'erred to the configuration C,,
113”.. Theref’ore‘, eqn. (II1.75) may be written as -

2 . .2 2

| . 1 aluJ é ; qlul a!u
A8, =1D;'k131ek1 Y lolk( . T ok( TR

v ! = d x dx ety d'x -
- . k ) k S

Ky LA

0o [ —

Owing to the same argument of using Jaumann stress rate, any possibie frame-

indifferent stress rate may be used to derive the constitutive equations. For example consider

the use of the convected stress rate which is given as

¥+

v



46

5 Oij\ 5 0:; . . . \ (IIE.78)
] ('ﬁ) =( 5t ) * Do T, Dy

~ where (§ lcrijlﬁt)c is the convected stress rate, (8 loijlﬁt)‘] is the Jaumann stress rate, and

-.IV al _::" .
1 ,,1(° k| “i) (111.79)
S

a]‘xi alx

- . Tk 9
k

are the components of the rate of deformation tensor.

1= 1 1\.' d alv b

D=- = + _1‘_) :
20 5l 3 x

Considering a unitincrement of time, the stress increment is
.2 22 2 a'l
! e o, Lo (2% 9y 1 9y Yy (I11.80)
A[Sij=i\15£j + ool T " )4—; o\l T+t 3 )
- < s X, dx, 2 Mgl -d xj

Hibbit etal. {52} and Marcal 53] utilize the Jaumann stress rate and the Truesde!l
stress increment to develop their farm for the constitutive equations as given by
: 3 .

e e o'x, a'X %% - 3% - 8% o
1 : 51 501 - 8 Co
AOSiJ = 0_.l 1 H 1 -LDmnkl 1 * Cmn 1 - Omk 1 )
X' 3% a'x da'x 3 x d'x g
m n k l k n
3%
5 [II.81)
_1, s }518 (
nk 81 0 s

Since the.above form is complicated, Hibbit et al. [52] and Marcal [53) proposed the use of the

current configuration as a reference for the development of the stiffness matrices. When such

' .

procedure was carried out, it vielded a more complicated initial stress stiffness matrix,

Jtis worth mentioning that there are some othtr stress rates which may be used to

derive acceptable constitutive equations such as:

's rate, Truesdell's rate, Oldroyd's rate,
and some other rdates. Hill's stress rate has been used in the rate-type theory of formulation
[97-99, 104.108] while the Truesdell stress rate is rarely used in the finite element analvsis

{118].




(i) Elasto-Plastic Material
Dealing with the elasto-plastic behaviour of the material is quite diffiéult because

the constitutive equations in this case are governed by three concepts: u vield criterion, a Row
rule; und a strain-hardening rule. The yield criterion determines whethier the material is
" bebaving elastically or-plastically; the Mlow rule relates plustic strain increments Lo the

.

current stresdses and strcr‘;s increments subsequent to vielding; and finally, the hardening rule

specifics how the }'iefd condition is medified during the plastic low The most widely used

practicul approuch to elasto-plastic analysis is to employ a gencralized infinitesimal con.

stitutive equations in which we may asiume u fineur decomposition of strain‘increments into

their elastic and plastic parts. However, Lee [102]-and Lee et al. 1101,103] show that the

linear decomposition of strain inerements is, in general, not true. In Lagrangian formulation;

the tncremental constitutive equations may take the form of egn. (111.68) given above, where
3 . ‘ -

Lhe components of the tenser oD, nl)uk] are now derived from the elastic constants, the seeond

Piola-KirchhofT stress tensor, and the work hardening characteristics of the material In the
updated Lagrangian formulation, a sin.ﬁlur form to that given in eqn. (111.67), can be used but
Lhe components ]Duki in this cn:'r.e depend on the current state of the stress (Cauchy stress
Lensor) besides the elastic constants and the work hurd.enjng characteristics  The constitutive
cquuti(.)_ns in the updutgd Lagrangian t"ormu]atinrlu could be more uppcu[in.g‘thun in the

Lagrangiaun formulation since the Lrue stress components are used Lo define the material
4

!,
4 ..
tensor For this reason, the transformation of the two malerial tensoms, Pand ”I), ane into

the other, may nol exist since in the clasto-plastic unalysis, the one-to-one mapping of the twao
Lagrangian formulutions may nol exist  Presently, o great deal of rescarch is being per-
formed to improve the constitulive cquations in the case of elasto-plastic materia] behaviour,

see for exumple reference [142] .

;: ‘{(
L




Another possibility is to characterize the material behaviour using stress rates
which are frame-indifferent. Once again, the most commonly used stress rate is the Jaumann

rate given by eqn. (111.75) [5.17,18,29.116,117].

- . . - -

1.2 APPHICATIONS

“»

So far, the incremental equilibrium equations for the Lagrangjun and the updated
Lagrangiun formulation have been developed. It should be observed that the final ecquations
for cach formulation possesses two types of nonlinearity: the geomelric nonlinearity arising

from the generalized strain-displacement relations given by eqns. (111.21, I11.22), and the

- -

material nonlinearity arising from the nonlineur material response such s inelastie, elasto-

plastic, und creep behaviour of the material. To dcx_no‘q_gl.ruLc the applicability of the

' T . 8
presented formulations for static and dyvnamic analysis, the Laygrrangian and the updated

Lagrangian formulation have heen incorporated into a-special purpose finite clement |
programme which can be used for geometric andfor material nod’ﬁneurity analysis, Two

example problems have beer solved using this programme, these are lurge displucement
: ) oF

static analysis of a cantilever btam under uniformly distributed load, ahd a dynamic analysis

of pipe-whip. In the following, we are going to discuss the [inite element idealizations,

. ; . .
numerical integration, and computer implementation for the two example problems.

-

2.t LARGE DISPLACEMENT STATIC ANALYSIS OF A C-AN'E‘II.[‘]VI'II{

’
-

HE2.1.1  Analysis Using the Isoparametric Plane Stress Element

Figure (I11.1) shows a cantilever heam subjected Lo uniformly distributed loading.
[The dimensions and the properties of the cuntilever have been chosen to enable comparison of

the results obtained using the presented formulations with the available analytical and
- .* ) - . )
numerical solutions in the literuture. For the finite etémcnt'unu.ly.sis, the cantilever is
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v

idealized us an assemblage of five 8-node_isoparametric plane stress-elements as shown in

Figure (H1.2). It should be noted that in the i‘sopdrumctric. formulation the elements can have -

curved boundaries without any difficulties. Even if Lhe element houndaries are initially

_striight, they become curved and distorted .n"ter deform.ltmn which is relativcly easy to take

"mLU account in Lh(. lsopdmmctnc l'ormu!a.t.lon especially whcn L‘hc upddtcd Lagrangian

-

formulation is used in the analysis. This is an important advantagc overtthe generalized

coordinate finite. element formulation. The material of the cdntilm:er ix assumed to be

isotropic linear elastic material. This problem-provides a good example for the analysis of

reometric nonlinearity [15,17-19,68,94,114] since the cantilever stiffens with inéreasing

“displacements, ' . : .

For the caleulations of the element stiffness matrices and the load increment

vectors in both formulations, consider a typical two-dimensional element in the configuration

.

at time 0 and time t, as shown in Figure (IIL.3). In the isoparametrie formulation, the
coordinates and the displacements are interpoiated: in the same way {5-91. Thercfore, the

coordinates and the components of the displacement vector of o poin| in the element can be

expressed as follows:

Lxl(r's) = :'h[\‘ l_\.ji\' . : . (LI1.81}
K=1 - ‘__-..,.s__
. . )
' \ \I)
1ui(r,s) = ‘\_. h}-( lu:\ ' i=1.2 3 E[ll.bu’

where lxl are the coordinates of the point referred to the global wxes x, and x,,, hK(r,s] are the

interpolation functions [5-9], r and 5 are the coordinates of the point with respect Lo the

natural axes, inK are the coordinates of nodal point K and, finally, "ui and Lui}‘ are Lhe

components of the displacement vector of the point and nodal point K respectively. The shape

functions W, and the global shape function derivatives a\pmm‘x! are given in Appendix 3.

8

.
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(i) Lagrangian Formulation

Considering the shape functions and the shape function derivatives at time 0, and

. - -
the constitutive equations, eqn. (II[.68), the element stiffness matrices, eqns. (IIT.44-I11.48),

.. %

and the increment of the load vector, eqn. (I11.41), are calculated using numerical integration.

The Gauss-Legéndre' integration procedure of order 3x3 is employed. To evaluate the

-

components of the materidl tensor (often called Hookean tensor), it is necessary to establish
the relationship between this tensor and the matrix relating the stresses and the strains, see

Appendix C. The material tensor components ODijkl are evaluated in the same way as in the

-

smaf deformation analysis.
For the numerical integration, it should be noticed that the shape functions and the
shape function derivatives are functions of the natural coordinates, r and s. Therefore, the

volume integration extends over the natural coordinate volume and the volume differential

+

" d'V needs adso be expressed in terms of the natural coordinates. In general, we have

d'V = detYJdrds (IF1.84)

where det YJ is the determinant of the Jacobian matrix at time t. To carry out the integration

over the surface area in eqns. {1I[.41, [11.42), let us first consider the representation of the

-
Jacobian matrix in the three-dimensional case [T] as . . B
. -t t . A - - r b
‘ d X, d X, d 33 t.- tr tr l;
1 2 3
ar o ar ar .
.t t t (11.85)
te [«] xl 3 x,z a Ya _ t-_ L t _ ~ . )
J = = Spsy sy | = 3
3s os a5 -
- - t L 14
dx, dx, dx t t t -
1 M, 3 2
11 L2 :3 t
L & at gt - = - - -
and

) - - - . (.86
&gtﬂ:trx[s'% ( .

for two-dimensional analysis % takes the form



tot t .
T, 0 L A o -
. ) (111.8T) -
Tl = t :q 0 I= e ' ¥ : :
12 -
. _ . ¢ o0 1| |
L 4. L4

. Referringito Figure (111.4), the clementary pura[lelogrdm on the face s =1 has sides
'r dr and-%dt and.."'henqe t.hé vectorial surface urea d'A = Tx'r dr dt. The special pro-

gramming associated with the vector product can be avoided if the Jacobian inverse is inter-
preted as follows [7]: - | ) '

. 1 v - - - - - '
y-la s xtt Cuxtt trxts -  (111.88)
ety |- : : - ‘

Thus the.components of the differential surfice area vector d *A can easily be

extracted from the Jacobian inverse. Considering this differential surface arca vector in tHe ™ .

i;'zil{ul configuration €, with the relation given above in eqn. (III.‘39),.._nume!y, d(?K:f)zg: 028h -
c‘lU.:\', Ll‘;c companents of the vector gn d"A is calculated at each integration point on the surface
and then used in-.Lhc integration of eqn. (11420 The increment of the load vector, cqx';'.
(s, 1% calculated using the components of the surface traction A nlgn . together with

d®A = ["Tx O drds

Solution Technique

. For the solution of L}‘w incremental equilibrivm cc\;uutiuns, there are two difTerent
methods direct solution methods z_md iterative solution methods, However, in ﬁnil'(- clement
applications the direct solution methods are currently most effective 'I'hc._mnrc efficient
direct solution methods are bused on the applications of the Guussian elimination technique.

The efTectiveness of the equation solver is lurgely o result of the specific storage scheme used

and the specific implamentation of the Guussian climination technique. In this anulysis, the
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Figure (II1.4) A three-dimensional element showing an infinitesimal surface area

as 2 vector normal to the face.
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Frontal solution tcchniqu;e [7.9] has been emp-loye.gl.. The mainl idea of Fronta!l technique is to
assemble thf: eq;lations. eli-minate tkfe variables and store t'.he_rﬁ on back-up disc storage at the
_ same time. Tﬁerefore, the Frontal technique is :t“:le.sgg‘ned to minimize the cd‘reh.storage’
requirements and the number of arithmetic ope‘rar.ions.

Numerical Results
In .the Lagrangian formulation, it is fo;znd that by integrating the first term of t?;e -
second integral in the load increment, eqn. (I11.41), gives the increment of the vertical load, or
the conserﬂ-ative load l(load retains its; vertical diréction). ‘Figﬁr-e (I11.5Y shows the numerical
and the ;analy'tical solutions for the ve:'-'tical- load. The analytical solution is given by Holden
[94]. The numerical solutions include the results obtained from the developed programme:
with and without the Ioa;:i-corréction matrix, olKaBm' the result obtained {rom the AD[;\’A
' prograrmme by- Bathe et al. [15,17-19], and the resﬁlt obtained by Nagarajan and Popov [68].
When the second term of the second integral in the load increment is included{ in the
integration, it is found that it becomes the increment of the follower 1935, or nonconservative
load (load remains perpendicular to the top and the bottom surfaces.of the cantilever). Figure
(I11.6) depicts the results obtained and the result presented by Bath‘e etal. [17] for the follower
load. Inthis séec'rﬁc example the top and the bottom surface nodal points of tge cantilever are
used in Bathe et al’s analysis {17] to define the direction of the follower load increment.
Therefore, instead of following the deformation of the structure to specif:v- the ‘normal
direction to the deformed surfaces, the second term of the second integral in the load
increment can be included, ;;.nd ther the load increment will be the follower load tncrement.

Tabie (III.1) g"iv'eS the required number of equal load increments for the present Lagrangian

formulation with and without the load-correction matrix, ochBm' for the formulation
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of Bathe et al. [15,17-19], ur.md' for the formulation of Nagarajun and Popov [68] to ubtain’

58

“ . - _
identical solutions to the analytical solution given by Holden [941., All these solutions have

—

been obtained without cquilibrium checks.

S

Table (II1.1): Number of equal load increments required to obtain identical

solutions for different Lagrangian formulations.

Present Formulation

) A Bathectal. Nugarajﬁn
laoad Case without OI Kggtd with 0‘ Kuﬂ( 4. and Popov
Vertical load 100 61 100 100
Follower load 100 61 100 100 &£

It 1s seen from Table (HL.1) that the . present Lagrangian formulation needs the

-

sume number of equal load increments as of Bathe et al. However, by tncluding the load-

a .
correction matrix

M)

N

{

af D inthe analysis, a total reduction of 39 increments is achieved. The

same problem was also solved for the case when the total vertical load is applied in fve equal

increments in order to show the effect of the loud inerement size on the solution. Figure {{1L.T)

shows the calculated results and Lhu comparison with that of Bathe et al. [19]. In this case the

solutions obtained by using the present and the Bathe et al's formulation are significantly

different from the exact solution because the incremental solution using either formulation is

not obtained gecurately. The resulls also sh{)w that the two solutions are different because in

the present formulation the second order incremental term in the increment of the steain

tensor, eyn. {11L.21), was omitted .whereas, in Bathe's formulation this term cannol be

eliminaled beeause it leads to the development of the initial stress stiffness matrix.

z
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(i) Updated Lagrangian Formulation

In the updated Lagrangian formulation, the shape functions and the shape function
derivatives are evaluated at time t (configuration C ¢)- Once the tensor components ODijkI are
defined in the const.xtut.we equations, the cpmponents of the tensor 1 D; ikl €aN be caleulated at
each mtegrat.ion point using eqn. (lI1.70). The compo_nex:xts of the second Piola-Kirchhoff
stress tensor IISij defined and measured per unit area in the present.-conﬁéuration C,, which
is equivalent to the components of the Cauchy stress tensor lcsij can be obtained using the I

following trunsformation formula at each integration point.

-_— 1 1
1 0% @ X, \ d X . (111.89)
Tl ST |3 0 0y '
. a'x ! 87X, x
._,S _ g . A% (111.90)
T I It 1)
and - /
!.' . 2 2.
: , alx g x‘ " d N.J {It.91)
';Sij = g - 1 -I‘Skl 1 ’
d7x d X, d X,

Having defined the shape functions Y., the shape funétion derivatives aq;m/aixj,

the Jucobian matrix 'J and its inverse L the components of the material tensor ID:jk!' and

the components of the second Piola: KirchofT stress tensor tlSij' the element stiffness matrices

are caleulated using the sime numerical procedure discussed in the Lagrangiun formulation,

"

Numerical Results

=y
Figure (I[L"E}Y'.sh()ws Lthe obtained results using the present updated Lagrangian
formulation in case of the vért:'rchi load. The total load was applied in 100 10, and § equal
increments. It is apparent from Figure (111.8) Lhat as the displacements are getting largcr the

predicted solutions deviate significantly from the numerica! solution obtained by using the
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Lagrangian formulation. However, the invertible transformation betWeen the two

Lagrangian formulations should exist, specifically for the clastic response of the material

where theone-to-one mapping exists. in considering the

the second Plola-Kirchholf stress tensor between the two

<.

transformation of the increment of

Lagrangian formulations, one can

start with the increment of the second Piola-Kirchhoff stress Lensor in the updated

Lagrangian formulation given by cqn. (1I1.67). and then substitute for the strain tensor

Aneremenrt from eyn. (111 22), which gives

gt t .
\ 1 'dgyku .‘rl Wia a. u axpm du d}ym ) .
als =-n 2 + )3
174 S Ukl b )1‘ 1 o ]1_ 31, _)1 1oa
. [0 - r \k & xk <. .\I t .\1 t .\‘.k
* i ) Iu Jy )
T ] AT 0 . (11192}
= I - I*u
gkl 1 ! 1 - -0
X X 0N ’
1 k ! 4

where the symmetry of the material tensor D= [)ukl

e e e e 15 utilized in the above

cqualion. Substituting for the muterial tensor from cyn. (HIE.70), we obtain;

J o
g 31
dtudy

-_— 1 | 1 1 -
0 . . . .
. RN d Nood xJ d X d N, Olpku. )
3 IS: = 1~ 3 0 OD i 0 1 + 1 lu:
. . " . . -
! a4 x N A M a% e B a'x. alx, 1
1 i P q 1 k |
0 a'x. a'x Jy atu, ey du Gy
I)-‘ v ] D ( ~pu+ K ka+ r ra): ]
- u
- . .0 v . R . |
Pt l o a0 e [L e T oy oy T oy oy Jite
) 1211 (1 It r‘ (l
”_1 Jl\ dl\ alu (}‘}J "!
. _ j a X ; | ( 1 r rn o )
N L1 ’ . e B e 0 ‘I"( T 0e 0w ll-lu.
dx C dX g \ - d X d9'X
n il no- 5
- —_ 1
ra Uy Gy ix : 1w dt
Lo FEX e TN s i 2 (111.93)
- d :: E l“\. s e 0 mng a”x g OX t=n
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-

The first bracket represents the transformution formula for the increment of the second Protu-
KirchhofT stress tensor between the two configurations C, and C,. This ckpression impliés
that the sccond term does not conform to the reversibility of the transformation of the stress -

tensor increments, therefore, this term and the corresponding stiffness matrix I'IKGB”-’ have

- -

been omitted in the updated Lagrangian formulation. In the literature, this term has been

discarded owing to certain assumptions imposed on the kinematic relations, or Lo restrictions
on the displacement field. Some analysts used various stress rates to describe the material )

~ behaviour within the increment to overcome this difficulty, : .
Figures (1119, [11.10) show the calculated results for the verticalb-and the follower

louds respectively. The increments’of the verticat and the follower lodd were cateulated”

.

through the integration of eqn.-(111.58). For the vertical load inerement. the increment of the

0
-

“surface Lraction, A, 'S, is kepl vertical, whercas lor the follower load increment, Lhe inerement

of the surfuce traction is kept normal to the loaded surfuces of the cantilever. The normal
. Aty _

direction o the loaded surfaces is deftned by means of xjmsing the Ln{,l) and the bottom nodal
points uf the cuntilbvcr."I‘uhlc'([[[.‘z} indicates the required number of equal load in.cr'cmcnts
L apply the total lo.ud for L_hc present updated Lagrangian formufation with and without the
load-correction matrix, 11Ku{§m' and that of Bathe et al. |15:17 I_9| to abtain identical
solutions to the analytical one given by i!ulden [94]. J\lll these solutions were obtained
without using equilibrium checks in the analysis

Table (HE2y. Number of equal load increnients required to obtain

identical solutions for'different updated Lagrangian formulations

Present Formulation ' Bathe et ul
‘Loud Case WiLh(.:L.lL i ! Kn““‘" with llKu”““ »
Vertical load 100 T 80 ] tuo
LI"n]Iuwur load | 104) ' 8i) | o Lo

i
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I

Owing to the drgument of omitting the initial displacement effect from the

increment of the Green-Lagrange strain tensor, proper transformation should make it
possible to transform the two l.agrangian formulations from one into the other. Therefore, it

~g expected that the updated Lagrangian formulution needs the same number of equal load

indrements as the Lagrangian formulation to obtain identical results, in spite of the use of

different numerical procec‘l}t_xres. Table (III.2) shows that by including the :‘an‘:, the load-
correction matrix, in ‘t..he analysis, a total red;ction of 20 increments is achieved. -Onee again, .
to show the effect of the size of the load increment on the predicted solution the same problcn-l
was solved for tht; case when the. total vert.ic:ﬁ load was applied in five equal increments,
";‘P:'_igure (11.T1) shows the solution obtained and tﬁe compar‘ison with the solution 'obLu'ined‘b_v
Bathe et al {19]. Owing to the same argument in the ‘Lu(grungian formulation the two'
predicted solutions differ from the analyticul one because the inc;'emental solution by either -

“formulation was notobtained accurately.

u

di21.2) Analysis Using the Isopura.metric Beam Element

Th; sum@oblem is analyzed using the isoparametric 3-node beam element. The.
cunt.ilew."er beam in this case is modelled as a 3-node beat element with six degrees of freedom
at cach node, Figlirc (IT1.12) shows a typical beam clement in the original configuration and
the ;:onﬁguration‘ at time t [5]. The basic kinematic assumpt.ion‘in the Formu[utior-l of the

element is that plane sections originally normal to the axis of the element remain plane but

. not necessarily normal to the deformed axis. Therefore, we can express the Cartesian coordi-

} - natesand the components of the displacement vector of a point in the element as follows:

L

et

] t. K
ay hx ‘v:“ +
1

1, K (I11.94)
bK hK Vtx

7"

1 l\
:"_
3= 4
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AT TIME .f
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Figure (I1L12) Beam clement undergoing large displucements and rotations.

\

—_————



3 3 3
t X v, 3N KL< K (111.95)
ui(r.s,r.)— > hK u’ A 7 - dxh.\s‘ 5 2 thK'vu
K=1 K=t = K=l
where
v SR OpR G R _tyK oK (111.96)
4] [ u . 51 51 st .
and

rs,andt.  are the coordinates of the point referred to the natural coordinate

system,
“
‘xi are the Cartesian coordinates of the point referred to the global axes
X1 Xy and X3, .
hk(r) are the interpolation functions,
tx‘k are t'hc Cartesian coordinates of nodal point k referred to the global
) 4
ZXES X, X,y and-xa,' .
“K'bx are the fross-section dimensigns at n.oi;IaI point K,
‘\.'mﬁ, ‘\'L;K areAhe components of unit vectors in s and t directions at nodal point

K. ,
"ul are the comgonents of the displacement vector of the point, .
"ulx are the components of the displacement vector of nodal poifit K.,

Finally, the vector \’\K and \'LK can be expressed in terms of the rotations about the global

Cartesian axes as follows
K = =K =K s =K 7
Vv :‘G,xu\' Vo= G_xnvh tI1L.9M
» K ~ t K t
_l-
where 0. is a vector listing the nodal point rotations at nodal point K. Equation (111.97) holds

provided that the gpgles of rotation are small However, having calculated the angles in the

-

finite element solution the unit vectors can be evaluated accurately using #
o
. -k =K - =K
RtV ST L g Y (111.98)

K



t= At TR _ W oR S _tohR
Vo = \J‘t + I_ dGKx \L ] (111.99)

t o
The integration in eqns. {I11.98, I[1.99) can-be carried out numerically using, for example,
Euler forward-integration procedure, see for example [141]. It should be noted that the unit
¢
lengths of the \'e;:ior ‘;\.-"SK and F.‘?:K must be preserved ’
The shape functions, the shape function deri\-uti\;-cs, and the Jacobian matrix are
derived in Appendix D. The constitutive equations are established through the relation

existing between the Hookean tensor com]:’onems,ODUkl and the matrix components C” relates

the stresses to the straj

s (see Appendix C). In similar numerical procedures and in the inter-
pretation of the Jacobiafd matrix that enables us to carry out the integration over the surface
area subjected to the surface traction, the stiffness matrices and the increments of the load

vector in the Lagrangian and the updated Lagrangian formulation are czleulated The

Gauss-Legendre integration procedure of order 3x2x2 is employed.

(1) Lagrangian formulation
Figure ([11.13) depicts the results calculated for the vertical load and the

comparison of these results with the analyvtical soiution given by Holden [94}. it is found that

the present Lagrangian fermulation needs 11 equal load increments without equilibrium
checks to apply the total vertical load in order to obtain a numerical solution which is com-

parable to the analytical solution. However, including the Ioad-co‘:‘re’cgi]qn matrix ulKvﬁm in

~

the analysis, the required number of equal load increments has decreased from 11 to 7. The

- .

first increment is-kept suﬁEienLl)' small so that the solution does not drm' from the
analytical solution. Figure (I11.15) shows the result for the follower load. On‘;c again, to"

. calculate the follower load increment, the second term of the second integral inegn. 1141 15
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Figure (111.13) Large displacement analysis of a cantilever using Lagrangian

formulation.
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] Present without nlﬁqﬁl‘“, 11 equal increments. :
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. A Presentwith 01 !\'[,B"“. 7 equal increments except the first.

— Analytical solution [Holden], vertical load.
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_ (ii)'L'bdated Lagrangian Formulation

-

included in the integration over the surface areas subjected to the traction fq'g'c':'é.,J.L can be

~

seen that as the displacements are getting larger in the case of the follower load, the predicted

solution deviates from the solution presented earlier in Figure (II1.6) and also from the

solution by Ba%he et al. [17]; where in both analyses the isoparametric 8-node plane stress

element has been used. This is so because in this case, the total load has been applied in 11

.
-

equal increments whereas, by using the isoparametric 8-node plane stress element the
analysis needs 100 equal increments. This means that in the latter case the follower load
-~ )

increments trace the deformation of the cantilever more accurately than in the case of the

analysis using the isoparametric 3-node beam element.

-

The ca[cu[_ated resuits using the pr;zscnt updated Lagrangian formulaﬁon for the
vertical load are show'n‘inﬁgure (II1.14). All these results were obtainc& .u'ithoutlcmp10)'jng
equilibrium checks in the ;mal_vsis, It s apparent that the pfedicted sgution withr the
11}(&13‘3;. the initial .displ_gcu':mer}t.-stiffness matrix, deviates significantly as the cantilever

deforms. Once again, owing to the same argument of the reversible transformation ot the

one-to-one mappingsbetween the two Lagrangian formulations, the effects of the initial dis-

placement have bken omitted in the updated Lagrangian formulation. Therefore, it is
expected that both Laér};ngian formulations need the same number of equal load increments
t‘o obtain comparable solutions, but this is not so judging from the results of Figure (I11.15),
because in updating the dimensions of the beam element, the integration in eqns. (I11:98,
lli.99) are carried out numerically usirf;_: Euler f'orward-integration. techrique. The
integration was obtained by forward-integration over a sufﬁci.ent number.of subincrements to

¥et the maximum accuracy. This method of updating the dimensions introduces some errors

; ) ' 2



.,

DISPLACEMENT RATIO (u/L, v/L)

O
o
|

O
o)

Q
3

O
N
1

] 1

Fioure Il T

4 6 -8 0
'LOAD PARAMETER K = PL3/EI

Larse displiccement analvsis of a cantilever using updated
: :
Lavrangian formulation

-—= Presentwithou: ll}\' . and ;]K““('“. L equalinerements
0y

- - Present without : l i\"w and | N l”"“. 21 equal increments
B . . A

- = Presentwithowt . N i”’”' with lIK m"h. 1T equal increments.
alh ay
-—— Present with’) 1l\'l,l,""wiLInuuL Y ! i\'u”'““_ 21 equal increments,
—  Analytical solution [Holdent yirtical ioad
T
- %

..'\ R

~ .



'DISPLACEMENT RATIO (v/L)

o
o

o
»

O
™

O
=

0.0

{ Ll I 1

0 2 4 \\6 g8 10
LOAD PARAMETER K= PL3/EI

Figure (IE15) Large displacement analvsis of a cantilever,
0 Present Lagrangiun without H"}\":”*‘. follower foad, t1 el

increments,
3 Presentupdated Lagrangian without ::K“” , follower I‘uud‘ 21
equal increments

- - - Bathe, follower load.

— Analytical solution [Holden], vertical load.




P,

75

‘.

in the solution, therefore, it was found that the analysis using the u:ﬁdar.ed Lagrangian
formulation needs 21 equal load increments to get a comparable solution to that obtained
using 1] increments in the Lagrangian formulation. Figure (IIL13} shows the results for the

follower load. Referring to Figure (111.12), the rotation about X, axis, 8, is used to define the

&

direction of the increment of the follower load.

1122 DYNAMIC ANALYSIS OF A PIPE-WHIP PROBLEM \_/ .

In the design of the nuclear reactor piping system an important problem is the

analysis of pipes that are subjected to high tmpact forces and tmpinging on the restraints.
The purpuse of installing the restraints is to prevent the large displacement in case of a pipe-
- .

break. *

Figure (II1.16) illustrates the pipe-whip problem. Once again, the dimensions and

the properties of the pipe and the restraint have been chosen to cnable comparison of the

"

calcu:!’atcd results with the available results in the literature [14,15,113-115]. The bcimviour
of t}'?; system is highly nonlinear because the materials of the pipe and the restraint are
assumed to be linearly elastic -perfccil_\' plastic, see Fig. (I11.16), and because the restraint
introduces insLanLQneously lar‘ge stiffness into the system. .For the finite cleman.modclling
the pipe cantilever beam was modelled 25 an assemblage of two 3-node isoparametric pipe
Beam clements with six degrees of freedom at each node. The gap and the restraint was
modelled using a truss element with initial gap as shown in Figure (11117 The mass of the
restraint is assumed to be ncqliéiblc with respect to the mass of \&\c pipe. The _maLeriul
deasity of the pipe is assumed p = 0,287 Ibiin®

_E-‘jgure (111.18) shows the gcc;metry of t.he isoparametric 3-node pipe beam element.
To describe the bchuviou;' of the element, the same assumption employed in the isoparametric

EN

3.node beam element is used, namely that plane sections normal to the axis of the pipe




element remain plane but not necessarily mormal to the deformed axis. Using the same

notation as in the beam element, the Cartesian coordinates and the components of the

-displacement vector of'a point in the pipe element can be written as follows:

3 3 3
] L O N I T ek N R (L 100)
- x.l(r.:w.l) = hK X Es N rohl\' \_\l .‘L o rnhh_ \/“ .

_ K=l K =i . K=1 -
. 3 3 ] b :
t = N R LN KW arK : (1100

~ urst) = hK ut s N r”hx\.M =t rnhK\lI

K=1 -~ R=1 K=1

where all the variables are defined intthe beam element, and r, s the outer radius of the pipe
clement.

It should be noted that the cross-section of the pipe element is hotlow, meaning that

eqns. {11100, L1101 are only applicable for the values of's and ¢ that satisfy the equation

-

L o s < ' (111.102) »

Sk

where T is Lhe wall thickness of the pipe This fact is properly taken into consideration in the

numerical integration.

Ina similer treatment to that given in Appendix 1), the :-i‘hi.lpc functions w, and the
shupe function dcrivu:.'wu’s ritpm/ﬁ&l have been constructed ‘IL should be noted thut the shape
function derivatives, similar to eqn..([.10), are established referring to the global axes by
uttlizing the Jacobian transformation. In t.h_c pipe beam clement, however, the stress strain
mutrix [C] referred to the local axes Ny, Ma. and 0, is known, see Figure (1H1.18). Therelore, the
global shape function derivatives are Lruns_t”ormed to the local axes, see Appendix.E. Since the
clement stiffness matrices are :evuluuted using numerical integration, the Lrunsgqrmution
from the global to the focal axes are performed during the numerical integration at cach
integration point. The er'ess-er;;in_ m;.nr-ix used in the analysis corresponds to .plune ;Lress

: < .
conditionin the n, - n, plane, see Figure (111L.18):

{38 =1C 1{a &} (11.103)
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.where E is the Elastic Modulus and v is the Po‘isson'é ratio of the material.

Once again, to caleulate the stiffness m.at._rices and the mass matrix of the element,
numer.ical integration technique is used in the developed programme. Considering the
. assumed displacement distribution and the restriction given by eqn. (lil 102)', the Gauss-
Legendre p;ocedure is q‘zmlploycd with the following order: 3-integration poin.t.s along the axis
of clement, one-inte-grat.ion point through the wall-thickness, and 8-integration points around
thc.circur_nfgret;l‘cc. F‘rpm numerical point of view, iL‘is recommended not to use less than 6-
integration points around .the circumierence |

The material of the pipe :s assumed isotropic.. iincarl;v elastic .up to the yieldl limit,

N\ .
and perfectly-plastic thereafter In this anolvsis, the von Mises vield criterion and the

associated flow rule have been emploved. Ina similar procedure to that given infAppendix C,
* ) .
the compliance matrix ICI.-p or the stress-strain relation valid beyvond the proportional limit

has been cdlculated. In the Lagrangian formulation the vield eriteria and the compliance
muL:A[C]L_p are dependent on the second Piota-Kirchhe!T stress tensor, 038 whereas, in the

i

updated Lagrangian they depend on the Cauchy stress tensor a. In this case, the strain

hardening modulus H is set to zero
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* Solution of the (Dynamic) Incremental Equilibrium Equations

For the solution of the incremental equilibrium equations eqns. (I11.44) ar (111.46)

-

in the Lagrapgian i'ormulution-, and eqns. (II1.61) or (H1.63), in the updated Lagrangian

formulation; there are two techniques: direct integration and mode superposition techniques.” )
-,

In the dizect integration technique these equations are integrated using a numerical step-by-

step procedure which means that, instead of satisfying these equations at any time t, it is

. aimed to satisfv them onlv at o diserete time interval. The direct integration technique is

based on the idea that the variations of displucements, velocities, and zecelerations in each

time interval At are assumed. There are four methods commonly used for direct integration

of the incremental equations of motion [5,15.113-113,139,1401 Lhe central dilference methoed,

the Houbolt method, the Wilson 0-method, und the Newmark method, In choosing between

" these methods, the stability, the accuracy, and the initial conditions required for cach method

are considered. On the other hand, in the mode superposition Lcc;hniczue, the incremental
cquilibrium cduutiuns ure Lrunsil'ormed from the finite elcmbﬁt‘busis Lo the normal busis by
using the modal matrix which consists of the mod(l' shapes of the structure. By such means,
the above equations are reduced to a set nf'unéoup[cd second Qr(icr aifl:crentj;xl' equations, each
of which reprL"::c:\.Ls a single degree of freedom system, and which can be solved separately.
H‘uwcvc:l', in the-solution of the nonlinear Lr;xnsicm dynamic problems, the natural
frequencies and mode shapes of the structure are continuously changing, Therefore, it might

he toa expensive to use the mode superposition technique in the analysis, In general, Lthe use
. - - L)

- . - - .

of the mode superposition in nonlinear dynamic analysis can be effective when the solution
can be obtained without updating the total stiffness matrix of the structure tod, frequently.
According Lo the given discussipn it is preferable to employ the direét integration technique in

the nonlinear dynamic analysis, The most effective direct integration methods presently used

are the Newmark method and the Wilson 0-method [5.14,15,17-19,31,115,139,140|. The



Newmark method with time step At = 00002 second 15 used in the deveioped computer’

programme. > .
[n the Newmurk method, the direct integration scheme is bused on the following

assumptions for the velocity and the displacement and vector in each time intervai At

?."'.Btg = KE' - “1 _S] LE + 5{+3!.'B'|At . [[()5] .
Gy =ty AL - (1172 -a) = o TG (AY)” 1106)
v M r

where a and § ure parameters that can be determined to obtain integration accurzey and

stability. Newmark [139] originally proposed the constant-average-acceleration method as

an uncondilionuliy stable scheme, in which § = /2 and a = 13 '['hc.cnmph‘rtc atgorithin
using the Newmurk scheme is given in Table (I.II‘S').

It is clear that by emploving .\'—ewmurl; me-Lho(i. the incrcn;mn.tul equilibrivin
equatioﬁs which include the dynamic term become-incremental sL;uic equtlibrium eguations

at discrete time intecval At apalrt whic.h incluae the effect of the inertiu Therefore, it appeurs’
that all solution techniques used in static ;;nal‘_i'sis can also be used effectively in this cuse._ -[n
our programme the F:ont.a.I solution technique [7,9] l‘s emploved In the selution, howcve{,r,
'Lhe resulting inc?enient.al'equilibrium equa_tionb; are not satisfied cx:.{ctiy. Therefore, there s
an out-of-bu‘.lan'ce nodal force vector. In order to minimize this out-of-balance force vector and
to prevent t}'{e solution from drif.ting aw:l;' from the exact solution, equilibrium checks ure
gmplo.ved with modified Newton-Ruphson method. within euch increment, see Tuble (1 3),
Step C. [t is worth mentioning at this point thut the cqu.ilihrium check is more important in
dvnamic analysis than in static analysis. Namely, uny error that is ir}Lroduced inn the dynamic
) itep-h_v-step solution will accumulate and_cannot .be luter compen:‘s,uted for, us in the sofution

‘of'many static geometrically nonlinear analyses.

-



Table (111.3) Step-by-Step Solution usiag Newmark method

InitiaI-Calculations

1. Form the stiffness matrix [‘00[{1, and the mass matrix [00.\11.

2. [nitialize Ou_, OQ, then compute Oh_'. . .

3.  Select time step size At, L::sing"ii_‘: 0.25 anc{ & = 0.5, calculate integration
constants: _ ) l L .

a = ! :a=i";;——é'—'a=

1
: : — -1
e O(At]2 ! a At 2 a At 3 2a

] At
a, =~ —lig;= (- —2ka = A{l1-8)r a. =354t
f o a 2« 6 0

In Each Time Step
1. Calculate new stiffness matrix [0"}{], if it is required.
2. Form the effective stiffness matrix:

Ry = GRI+ 2 M

3. _Calculate the effective load vector at time t + At
St AL L+ At T Ty 1 '
oo OR}ch —){ OR}?[0.\”[30{uf1‘321u}?d31u})
4. . Solveforthedisplacement vectorattimet + At

. LAY A
K] o {7 ul = 7R}

eff
5 Calculate the acceleration and the velocity vector at time t + At
{“A‘G} = :1(; ({”'ﬁtu}-{"u}) -4, {"{J}:-us {*u}
{1*-;31{}} = {4 + a, i3+ an _{t‘-.‘llu}

6. If equilibrium check is requiredput i = 0,GOTOC.

GOTOB
ié‘quilibriumCheck. -
1. 1=1+1.

2 Cualeulate the ti-1) _checLivc out-of-balance nodal foree vector:



" {t“A;R}:—l. = {l+AéR}—[:‘.‘51]{ "'.11.u}=—1 - {T.“‘ASF}}—I

) .3' Solve for i'th Eorréction to the displacement vector;
* [rLJ:K]._-ff {At*mu}' = {L-ASR}i-l |
. 4. Check if the convergencé factor [{a t+ 4 u}"llgfllf""““u}‘[{2 <107t
v, . - .
’ If convergent GOTOB
-' [f not convergerit, then check if the number of the equilibrium iterations (i)
. - within the !.ir;xc. increment exceeds the limit number,
Yes: restart usin'g new total stiffness matrix and/or a smaller time'ste;.)" -
* size. .
No; cal;ulute .new displacement vector, and then® calculate ’ the.
) . corresponding éimnge in the velocity and the acceleration vector
. {t—Atu}l = {L‘.\tu}i—l + {_\H‘“u}: ) )
Fy 2 A Agx (3L )
. ‘ {Lvi‘.:a}z{t*;\ta}i-l % AOX{AL-‘-ALU}I
- Calculate the i‘rllcrcmenl ofstresses, and then the total stresses
GQTOC i .
where , T - N
o K, (-)‘.\I ) are the total stiffness and mass matrix of th.; structure
“A"O_!g - " isthe total applied load vettor -

erdig or A 1o e the total displacement, velocity, and accelération vector of

the structure respectively .
A te3tg, are the total incremental displacement vector due to the out-
of-balance load

'
and -



—

‘ ] .
* N b » - R - -
. ' L . T - e,
i ' “""-“of_ : is the totul internai force vector, and is formed from the local - -
- . . . - ':' R : .
. ¢ . internal force vector.of each element, which is defined in the
< _— lagrangian formulation as: N
o ‘ t~at
- . . d - d u, 4 .
A L+ At t+ ) Pla .4 k O Oxr
. SE, = S =+ : d %V
S "t 3%, a‘“xj AN .
and in the.updated Lagrangian formulation as: BN

2 ] . ~3 Lp‘i ’ - ..
L+ .ﬁlE'\ a.-=' [ l“'..l:.SU . a d ?.V.

) v e '\i: .

Finally, A A‘u}ll,, is the Euclideansigrm of the vector {A 131y} und,_is defined as

- -

Ha® -A:UHI,_.-= [Yiat .A‘:u.):I; L

The pipe-whip problem has-beqp analyzed using the developed programme and the

. i ] . . .
resuitstare given tn the following.
- - ' ) -
(i) Lagrangian Formuiation . A . .

Figure (I11.19) shows the'résponse of the pipe with respect to the time elupsed using

the Lagrangian formulation and the result obtained by Bathe (15}, Ma and Bathe [113] using

+

-~ -

Lh‘c-z\{)l;\'!\ programme. The .two.responses are comparable, however, there is a small

difference which becomes larger with the time. The main reason for this difference is thatin

*

the analysis of Bathe, Ma and Bathe, the pipe is modelled as an n::.:"cmbl;ige_nf'six S-node ts9-

parametric plahe stress elements  Fhe thickness of the plane stress elements was chosen to
. I's

givethe same value of the second moment of the cross-seetion about the centroidal x axis as

" that of the aclual pipe-section, This modelling imposes some additional copstraint on the

system= Figures (111.20-111.23) give the response of the pipe at various instants of time. It

would be expected in the static anilysis that the first vielding will occur at the root of the
cantilever but this is not the case in the dy¥namic analysis where the vielding stdrted close to

the loaded end, sce Figure (I11.21),
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The effect of including the load-correction matrix OIKEB“) is shown in Figure

-

(II1.24). The solution needs 4 time increments instead of 5 increments needed in the solution
without the use of the load-correction matrix in order to obtain comparable results. In the

above two solutions, only one equilibrium check was needed in order to obtain the maximum

deflection of the cantilever pipe.

(11) Updated Lagrangian Formulation

Fis;;ure (II1.24) depicts the obtained results using the updated Lagrangian

43

formulation with, and without the lead-correction matrix IIKQB In the solution without

the load-correction matrix, twe equilibrium checks were needed, while with the load-
, .

correction matrix only one was required in order to obtain the maximum deflection of the

cantilever p{pe, One possible reason for the small difference resulting between the Eésponées
obtained by using the Lagrangian and the updated Lagrangian formulation is that in the .
updating of the dimensions of the pipe element, the.integration in éqns. (111.98, 111.99) were

" carried oGt numerically [141].  Another possible reason for that small difference is the

constitutive equations, As discussed in the sub-section [I1.1.4 in the elasto-plastic analysis,
the constitutive equations in the updated Lagrangian formulation could be more appropriate.

For this reason, the two predicted responses using the lLagrangizn and the updated

Lagrangian formulation can exhibit some difference 113,19].  However, if the analysis
- 3
contains moderate deformation,. which is the case in the present analysis, the, responses

predicted using the two formulations are expected to be only slightly different.

L3 . DISCUSSION ' : L

1)

o
.

.In this chapter, the Lagrangian and the updated Lagrangian formulation have

beendeveloped. The formulations are based on the principies of continuum mechanics and
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include all nonlinear effects {both,geometric and material). To show the applicability and

i
effectiveness of the devcloped Formulauons two et"mQ)le problems have heen solved. The

results obtained compare well with the existing analytical and numerical solutions It should

.be noted that il the constitutive equations are defined appropriately, both formulations give

. [ ]
the sume numertcal results.

~ A natural question o ask is how to choose between the two formulations in a
Al -
specific cluass of nonlinear problems. The choice between the two formulations is decided on

the hasis of their numerical effectiveness. Furthermore, in applications such as in metal-

forming problems, in contact problems and in crack-propagation probiem¥, the updated

Lagrangian formulation should be employed owing te its éffectiveness in handling the

continuous updating of the boundary conditions and the distortion of the finite element mesh.
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. - | CHAPTERIV -

EULERIAN FORMULATION AND APPLICATION

N

ifference between the Eulerian formulation: and other

Oncé:'égain. the key d
formulationls. is that we are concerned “with the determination of the deformation of
c-ontinuous medium moving through a ﬁfed region in space instead of dctermin_ijg the
de.f‘ormat_ion of the. material-element by tracing its motion in space. In the Eulerian
t:ormulatiorj the independent variables are the current positilon x of the bod_v-point..x and the
time t where x itself depends on the Lagrangian position "X of the body-poiht X and the time t
when material time derivatives are to be calculated. As it is seen here and also in references
{51,79,80.85], this fact complicates rﬁaterial time derivatives as well as other relations in the
Eulerian formulation. In what follows. the basic equations and the general sil;nplif_ving
assurr;ptions will be discussed and we will develop C(_msistent Eulerian formulation by means
of the v.irr.ua.l work principle e.\'prcsscci in the current configuration. The specific
;zppr;)ximations which make the Eulerian formulation suitable for numerical applications are
diseusséd. Differences between the present formulation and similar formulations in the
Iiteratur;: [51,85] are exum':incd Finally, ;;rocedures of the stress and deformation analyvsisiof

metal-extrusion process using the Eulerian fixed finite element mesh technique hased on the

derived formulation are presented.



94

- -

I.V.l' . FORMULATION OF '[‘Hf) INCREMENTAL EQUILIBRIUM KEQUATIONS

IVl ASSUMPTIONS AND BASIC EQUATIONS

<IV.1.1.1 General Assumptions
In the Kulerian I'or'mt..xlur.ion, it i¥ intended Lo determine the deformation of a

continuous medium moving through a fixed region R of the three-dimensional space as shown’
in Figure V1), A fixed rectangular frame with Cartesian coordinute system. in three-
dimensional spuce is established to describe the motion of the body. The Cartesian

coordinutes of point § in the space {not a body-point) are X, X,, and i.;, and for this reason X,

are called spatial coordinates. In the analvsis, it is convenient to locate the position of the
’ 4

. Dt b R .
* body-point X. For this purpose, we should adopt a reference confizuration in which the

I ~

position vector of the body-point X is "X Onge again, in order to develop the incremental

cquilibrivm cquations in the Eulerian fofmulation, eomplete nonlinear kinematic relations”
within a linear increment is used. The sceond order ineremental variables will be neglected.

Only perfect mechanical systems which tuke no account of thermodynamical effects will be

considered.

V.1 1.2 Nomenclature .
In the development of the Fulerian formulation, we are soing to use Lhe same

notations cmployved in the Lagrangian and the updated Lagrangian formulation.

IV 113 Kincemalies of the Motion
On the basisof the assumptions discussed dhove, the position vector of the body
point X in the current configuration, scé Figure (11,17, is

270 2] AR

f
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Spatial Velocity and Spatial Acceleration
The velocity of the body-point X is defined as the material time derivative of the

position vector >x, so that

) © 40X + 2%y ) a2 (1V.2)
\ L dt at dt )

Considering the spatial description of the velocity fieid as a function of the current position %

and the time t as

2 = S Cx . av.a)
where ,
Z=%C"Xwv .0 (1v.4)
theref‘org
O W= WEOK 0,0 o avs)

"The accelerdtion field as the material time derivative of the velocity field is given by

n= 0 -
b 47 d2vxOX, 00
2 — . — =
dt lg- . dt 0—
X =const. ) X =const.
d v d *x iy
= + N )
dt la_ : dt lg_ 3%
X =const ‘X =const.
9 - n=—
aw w— 9 ¥
= + v o p—
gt 52,(
or
2T = -
—_ g v -— v . .
. 2y = + 27 — (11V.6)
dat I x

The first term in the above equation represents the local rate of change of the velocity,
L : .

whereas, the second oneigives the convected rate of change of the velocity .
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Strain Measure -
In the spatial formulation, the deformation is always rq_f_'crfed to the current
configuralion, Therefore, the Mnite deformation strain méasure in this case is the Eulerian or

Almansi strain teasor, which is defined by

= 1 = 5= - = . )
2T _([ _ 3R -4T I“-t) . . L av)

where T is the identity tensor and 02!? ts the deformation gradient tensor whichis defined by

- ~

. ; . 2% _x 3 . ave
. ", A

upon_the substitution of the cu{rent position of the body-point X, eqn. (IV.1}, into the above
\ cqual.inn-. and the resulting expression into eqn, (1V.7), the strain tensor becomes

9= "y 2 2T . ) ‘
. :? _1félu . "wa  d”u Tud ~ (1v.9)
T\ 2T 2T 2% e -
“h37x d°x  .d7x  Jd7x )

and the increment ol the Eulerian strain tensor may be given by

. I 9T ' - ' g— ‘,-. “w = -
= 1 rif_\“)u A“Ju:'l a‘:u A “,u d cm‘:u ‘:ua dA Tu ;_\"'u'(f TUV.10)
. 'l G - :; I B +_. [t - a ’ = + i ’ = * )y = ' [ ) .
- =la~x . Jd “x d " x Jd 7 x . d " x d 7 x a "N JdUx

.
. which for lincar increment beecomes

(i R L el 0= I Sl L1 R R ’

. 52? A.,I_ (:A‘::Jh.l“u d (i”u.A"u ciLéi..\"Lr'“u d ) '(-IV.II)
e 2T 2T T T 2T 2T T TN
=t d T PN I d x g X .{] h .

IV 114 Displicement Assumption

In Fulerian lormulation, we assume the displacement within any givenceleinent in®

-

the form . ‘ T : .
u w, (*x)7u . . IV 12)
- 1 |31 -1 .
and .
5 53 " . . B . ’
A ug—‘wiq(_x).’.\ L . {Iv.13)
For the veloeity within the element, woe assume also the fpllowing form :
0= wo (Ux) G . (IV.149)
(I gt — R

"



and
2 () AL -
8%, =y O adu,

.~ where .- aretheshape function

g:

is the nodal displacement vector.

is thenodal velocity vector

N - |

I

{V.1.2 .. EGLERIAN FORMULATION
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As mentioned above; the development of the Eulerian forulation’is based on the

virtual work principle referred to the current configuration for a single element, eqn. (11.1).

Starting with'the left hand side of equation (IL.1), |

LHS.= [ %g: 8%e dV+ [ 2,25 525 a¥v
2 - 2

Al ) W’

(Iv.16)

Substituting for the displacement assumption, eqﬁ. (IV.13), the above equation takes the form -

2 2 2= Tl
2 V.2 .2 dV*J,, P 3'(l_ymei}d‘,)5'
. 2. . _

< Y9x. T avx’
J i

! (&ym ay, s

Q
e e
L

LHS =(J 2;:

2
AN

<

“u
a

(IVaD

" where e, is thewnit base vector in the Cartesian frame of reference. Taking increments of the
e . 3 . .

above equation, yields

';\'.(L.'E-I.S-,'):(J' Ao

- e e I'd "\
y - .2 32 !
5 a \’.J - ; .
Lo 3 o 2= S v sl
. : ) + R Al%p alely e} ) Uy

(IV.18)

Following the above procedures for the right hand side of the virtual work principle

together with.the following relation . oo

‘ we obtain P /”/j1

-_\'(R.H.;S.‘)' = ( [

*

e e e e

(IV.19)

(IvV.20



" is the increment of the load vector.

The mcrement,al virtual work principle can be obtamed by collectmg the I'ESU.ILb of

eqns. (IV. 18, 1V.20) as foltows:

. 2 ..= l al'p aq"p - - 9., ™
@R) S =| 8%l (e 2 )i ety
2 2V 3% a"ti e
. o

-¢-[ .’.\.('p‘a)-(tpme)d“\r)S“u

] -

- v
wberc
S A A 2t e ' ;
. .A EBG—H,, Al"p bi)wiud V + [2 A oniq.:icd A} (IV.2D

On a similar basis of the development of eqn. (II1.43), and by considering a virtual

»

. 3 N
displacement vector § “u_, we obtain
1 v "

3 VIR
= |1 /9% - - 9= - F 99
AR = [ 0= ( S N) d V + [ Afp2a) (g, e)d’V V.22
Y.a " 9\ .2 32 " e
v : o x_] xi v .
" which represents the incremental equilibrium equations. - -~ -
* Tocomplete the formulation, we assume a constitutive equ.:ation in the form

- .= : = . - - ‘ (IvV.23)

) i\ "o =,D: ale S :
where , D is a fourth-order Len:-,or _\ c and AE are the inerements of the C&uch» stress and

Eulerian strain tensors.

Sub‘st’itutior; of the displacemcni ﬁssumptjon eqn. (LV.13), into the increment of the

strain tefisor, gives -

2= 1 dgA u aa uJ g uy LA u, da u, g U - -
€ =3 st S T S e e
“1l 4 x d"x d "x d “x. d “x d ™x
] 1 ! ) ! J
" 3 .
1 (a Wi dWt 9T dw, dwy 9 uk) N (IV.24)
IV Y TS T 2. L2 2 A-ﬂeej C .
< Jd"x d°x d"™x 97X d™. 47x -



N2 =a% cer=(D, A% e e
T S k" "1 7))

2%kl
. o ’ : T 2 .
1 (awkﬁ.a""m d"u aq.{mﬁ meﬂaum'.,_, - - St
=5L[‘)"j“- 3% e o2 aZ. X ak )& Spp it (V.2
i “k k Sl “k l "

utilizing the symmetry of the material tensor‘.,DW, the increment of the strain tensor fay be

put in the form. .

. . .
d Wi 8 u_ d I{J’ms‘ »
g\ _2 T 2 & Ya
o ax, I9X -

- = Lo avee) .
eie ' ’ .

nt

A2
- A Ta "

J

1 “k !
Considering the acceleration expression given by egn. (IV.6), which upon

incrementations yield

L2 - a2 - o -
AQZ.=OA \7+'A2:. g v . 2:_6.1 v ) _ IV.27)

———-vt—-r—". 9 - n= : L
@ : 87 x .3 %x . .

substi'tuti,ng for the velocity from eqns. (IV.14, [V.15) into the above equation, we obtain

27 - (e, — 2% a“’ia) e ]- 0 uvaes) .
Fa a_—quB-_\Eu+ Yis T + A up e S

To obtain the ﬁnal.incwl equilibrium equati?ﬁs, we shbsti_tute eqn. (1V:26)

N ~

. [ . N
together with eqn. (IV.28) into the incremental form of the virtual work principle, eqn.

. 1/
(Iv.2n, \
- ..‘ LA 3 L2 5
) S sy 9 W, du dw, R )
N T B - ,’“)( b P laviat
2 a , 9 2Tkl L2 L2 3 % 2 ax b
-\ d \(j o] ‘(‘ ‘(r o ‘(k 1 . -
A S (aV.29)
. @ u oy, 4 .
- 2 2 . 2t L1 A M IR A
'_\ Jq. PW‘U‘PiG"" p(wkﬁq}m 2 uk \p:c 2 )d N'A E[‘:
UL TR + 9 X, 47X,
which ma;:‘}‘_:Pe written as
D 2y o ZpetD Zphy a2y 2y 0 2 2Dy A 2 (IV 30)
AR =K,y - JKglia ugh = M A ugh F Mg o
where & 2230 is the increment of the load vector given by eqn. {IV.21),
RS - .
s _ | ] Wi T%a\( ¥\ o (IV.31)
"hnﬁ - ; '.ID:;kl ' 2 - 2 2 d v -
- A 3 "x_] d 'x.l 4 “xl

corresponds to the usual small displacement, or the incrémental stiffness maLri:\'_..
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L&

. 1
202
K =J - D ( ‘ + d
2" af 9 271}kl 2 . JAN) 2.
"T d xJ ] X, 8 Xy a X,

.

corresponds to the initial displacement, or the initial rotation stiffness matrix,

L2yl _ 2 g 2 _ I L v
_ My = L Py wgd VL | ., (1V.33)
- , , = . e . * '. .
is the mass matrix and, finally - i ..j, ’ ' .-
. .. 2{1 ’ "'L{J.- . )
o ' ay. . o T .
R e 2 R - iy, 2. (IV.34)
. Mg J p(‘*’kﬁ‘*’m 2 T % Pia e )d v :
\ K AR .

is the convected mass matrix.
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If the lumped mass approximation is introduéed for'tﬁ_e dynamic term, the final
, _{‘, ' ., = .

iﬁcrementul_equilibrium equations takes the form U '
A 2 — e 2y 2 VRS AECE h (IvV.35) "
8 oR, =GRy = BRGpH 187ug + 15 Mgl {4 En}, ’ L ¢
where all individual terms are defined above, and ' . .-

- -

P 1 "o 0
Moo= =1 - Y
" 1(;3 N aop J,, P d ‘ .
- ‘ -
is the iumped mass matrix, where N is the number of nodes per element and _[l] is the identity

. matrix. o

it is important to notice that ¢he expression for the load increment, eqn. (IV.21), is

.

| independent of the deformation gradient tensor which is contrary to the Lagrangian and the
" updated Lagrangian formulation. This form o;' the Toad vector eliminates the exist(.;nce of the
initial load or the Ioad-cox;rectidn matrix in the Eulerian formulation. A_iso. the use of 0 and
Ae as the conjugate pair of the variables, which ar'e discussed in Chapter lI,. in the
dpveloprpent of the Eulerian formulation eliminates the initial stress or the ‘geometric

stiffness matrix.

~

Once again, little work has been devoted to the.development of a consistent
Eulerian formulation. The formulation presented here, however, differs from the similar

formulations in the literature. Gadala [51] and Gadala et al. [85] introduce a consistent
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Eulerian formulation which is based on the-energy balance equation and utilization of

increments of the variables inside a linear increment. They present an accurate discussion of

B

the treatment of the constitutive equations and the stress and strain increments. However, to

-

obtain an expression for the velocity of the body-point X, they apply the general form of the )

material time derivative in the spatial formulation. This.leads to an expression for the
velocity which depends on the deformation gradient tensor. Accordingly, their expression for

the total stiffness matrix of the element is dependent on the deformation gradient tensor

" which makes it computationally difficult. For the sﬁmc‘ reason, the acceleration expression is

very complicated and highly nonlinear. To overcome '-tﬁis difficulty, the lumped mass

dppronmatton is introduced for the dvnamical term in the ener;,\ balance cquation. In the

formulation dev eloped here, the expressions ofthe total :.nffneqq matrix given in eqn. {(IV.30)

® and of the velocity vector given in eqn. (I1V.2) are indepe-::l.d::nt of the deformation gradient.
tensor. Accordingly, the acceleration e\cpresbmn in the d:r::.ﬂeioped formulation given in
equat:on {IV.8) appears to be less comphcated In refercncc [85] no applications are given to
support their formulation, to demonstate the numerical procedures, and to discuss the specific

approximations which make the finite element analysi$ using the Eulerian formulation

suitable for numerical applications,

1V.1.3 CONSTITLTIVE EQUATIONS !-"

(1) Elastic Material

In Eulerian formulation, we may assume a linear incremental constitutive

equations similar to eqn. (11.66), this equation may, as well, be expressed in the current ~

configuration C,, instead of C,, namely

: ; 4 ' '
bz e \) (IV.37)
_ - D ar . _
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" “where all individual terms are defined in Chapter III. However, in the finité element analysis

using the Euler‘ian formulation the mesh is fixed in space. Therefore, eqn. (IV.24) is used to
determine the increments of the\'s\t.rain tensor of the body-points momentarily occupying the
integration points at the Beﬁiﬁ-i_Eg of-eﬁch incremental 's_t;ep. _. 'fhen_,_t.he co.nstit.utivc
equatio:ns, eqn.-.(lV.37)‘, is ‘used to ;:alcﬁlnté the inc;-ements of the stress ‘tt_:néor at these body-
points. This aspect ofcalculation will be discussed in mor:e detail in Section (1V.3.3),

Ahothe_r posgiﬁility for deriving tl;ie constitutive equations is to char_act(.:ri;e the
material behavi.o.ur.w_l;th‘a stress rate which is frame-indifferent. Once again, the Jaumann
étress rate given above in_cqn. (fIL75) is the'.most commonly used stress rate in the [inite

- element analysis{5,17,18,29,79.116,117}.

{ii) Elasto-Plastic ;\‘Iatcrial

For the elast.o-plasti& behavicur of the material, we c.n_n assume a constitutive
equuLio-ns similar to L.halt given in eqn. (IV.37). In this case, the components '.!D:'jkl of the
“material tensor in cach integration point Eifpend- on t_.hesurre.nt stress state of the bod_v-pqi_ﬁt.
momentarily occupying this point in space; the elastic constant of the material, and the work
hardening characteristics of the -mat.eri:;l. Once :;gain_ J.aumann stress rate or any other
frame-indifferent stress rate can I;)c used to deriv-e lt.hc constitutive equatio_n;‘»/‘_ :

o

e FINITE ELEMENT ANALYSIS PROCEDURES USING THE EULERIAN

FORMULATION (EULERIAN FIXED MESH TECHNIQUE)

Referring to Figure (IV.1), in the finite'cloﬁmr_n analysis using the Bulerian

formulation, it is i'cqu-ired to determine the deformation of the body through the fixed region

R..Tt is assumed that the solution has been determined up to the time t so that the field -

functions are known in the configuration of the bady at time {. Consider the body-point X

| I
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subject.ed to the mcremental d1splacemcnt At u\ in the time mterval &t The mcrement.s 5

" the stram and the stress tensor can be calculated using eqns (IV'.24, IV.26) respectively.

Therefore, the stress at the moved body-pomt Xat ttme t+Atis gwen by

. L i ) . ' (1V.38)

an

As discussed in 91!1 section of the constitutive equations, it is necessary to determine the state

.

of the stress of the body-points momentanl} occupying the ﬁxed integration points in the

beginmng of each mc;:'emenx‘l'Q step. The dxsplacements of t.hejbod) -points momentarily

occupying the nodal point.s' should 2lso be known. ' Again referring to Figure (IV 1), assume .

" T . .l "h..
that the body-point X was occupying an integration point at time t. At time t+ At another

body-point occup'ies the same int'egration point. The state of the new body-point at the fixed

* integration point is detertined through an interpolatior® of the field functions from the

known values at the moved hody-points to those which come to the integration points. To
achieve this, we utilize an imaginary finite element mesh to interpolate the stresses and the

displacements at the beginning of cach incremental step.

’ . £

. Fl
.
L.

V.3 APPLICATION: STRESS‘:-‘\ND DEFORMATION ANALYSIS OF METAL- -

EXTRUSION PROCESS

In metal-forming processes, it is necessary to evaluate the stress and the

- -

deformation_distribution throughout the work-piece. This permits investigation of the

-

generation.of high residual stresses and the Lmttauon of the metal-forming defect such as

. »

surface and internal cracks. The resldual :,tresses. consutute the stress {ield after the work:

piece has emerged from the process. The triteria poverning the initiation and the growth of
cracks in the material are commonly based on the stress history in the material.
In many metal-forming processes, as, for example, in extrusion processes, finite

strains occur. The components of the elastic strain in these processes arc generally limited to

&
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the order of 18~ because the elastic moduli of metals are typically about three orders of

magnitude larger than the yield stress, Therefore, plastic strains dominate elastic strains in

.

a work-piece passing through such a process. Elastic strains, however, play an essential role
in determining the stress distribution in the work-piece. Therefore, in the solution of such a

. process using rigid-plastic material model [119,120] can only predict stresses in the region of

-

active plastic strains which, in case of the extrusion, usually represents a small portion of the

.
.

work-piece. Elastic regions would then -be modeled as rigid regions. Furthermore, residual
stresses in the pfocessed work-piece cannot be determined using the rigid-p[aétic -material
model. According to the givén discussion, it is recommended to employ the elasto-plastic

material model‘t‘(;be able to predict more accurately the stress history in the work-piece.  This

is casy to handle in the analysis when the finite element techrique is used.

In the analysis of the metal-extrusion process using the updated Lagrangian
formulation,. it is necessary to have the mesh division of equal size along the longitudinal

~ direction of the billet {97-98,106,121] since each cross-section will be subjected to the same

history of deformation followed by unloading. Also, to obtain steady-state extrusion analysis

requires a long billet so that u region of uniform residual stresses can develop in the

extrudate. Furthermore, difficulties arise from the updating of the boundur}: conditions on
the surface of the die ir; the analysis using the up;iutcd Lagrangian formulation. On the other
hand, utilizing the Kuleriun f;)rmulution in the finite element analysis (Bulerian fixed mesh
technique) such difficulties do not exist [n this technique, we have the ability to make
localized finite mesh refinements, such as, for example, Li'ze mesh used iﬁ the present étud_v,
Figure (IV.2), to improve the accuracy of the results in regions of high stress'variat.io s. In
the updated I.:;grangian formulation, such a rcﬁncmcntl would'bc necded for a long bi}
Fﬁrthérxﬁorc. in the Eulerian fixed mesh techpique, there is no such need for a long billet; the

size of the finite element mesh can be reduced to inelude only the reduction die and a short

>
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billet and extrudate since we assume that the work-piece is sufficiently -long and the material

- T

comes in and. goes out through the inlet and the outlet boundaries respectively {see the sub-

seetionV.3.2).

[V.3.1 Problem Description and Solution P:dcedures_ ’

Figure (IV.2) shows the .geometry and the dimensions of the metal-extrusion

process of an aluminum billet. The billet material is initially in a stress-free condition and is

forced into a symmetric die after sliding between smooth rigid plates. The die is shuaped in the

" form of a fifth-order polynomial curve with' zero curvature and slope at hoth ends. It is

assumed that the die produccs a 25% thickness reduction ovér u‘ distuncc of 1.2a, where a iy
the half thickness of the or :gmdl sheet, see. f* gure. (IV.2). The symmetry of‘the. die about the
centre-line of the billet allowed the analysis to be carried out only on haif of the billet as
shown in Figure {(IV.2). This 's_vmmetry also determines the boundary condir.i.ons on the
centr_‘g-line of the E;illct {sce the sub-section I1V.3.2). The finite element :h‘sh consists of 3 x
17 = 51 isoparametric 8-node plane strain elements. -

For the calculation of the élcment st.i-ﬁ'ness matrices, eqns, (1V.31, [V.32), the shape
functions w a.nd the global shape function deri‘vativcs aapm/azij given in :.\ppg'nd_ix B are
used. The components of the matcriu:l tensor '.zntjkl is evaluated in the same way as'in the
Lagrangian and the upd-ated Lagrangian formulation. In the elastic analysis, 'Lhc usuzl
stress-strain relation for plane strain, ic., the matrix {Cl (sec Appendi:w C) is used whereas, in
the elasto-plastic analysis, the compliance matrix IC]:{: is caiculated.i'olllowing the same

procedures discussed in ’\ppcndix C. F:quuti(_)n (C.11) can be expressed in this cuse as follows:

(Ao} = (101 - a[C]

}{W} ){Azé} ={C], {.’.\‘ 3 (1V.39)
a'o
‘ .o ! .

where allindividual terms are defined in Appendix C, and

W

a =0 forelastic loading and unléading
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a = 1" forcontinuation of plastic deformati;)n
In the present analysis, the aluminum material is assumed to be Ii.nearly elastic up
"o the yield point, and isotropic l.ineair.sti‘ain-hardening with the von Mises yic.l‘c_l-griterion
thereafter. The corrcsponding_stress-str#in- curve for the aluminum materf:z--l'us;,éd-is- .
illustrated in Figure ([V.4").' The displacement inc_rements appl.ied at the i:ist,qn boundary
were kept small to maintain accuracy: in_ pdrticular, to insure_closc followihg_of tﬁe stress-
_strain curve. Fi::ml]_v, the Gauss-[..egcncire integration procedu’ré with the re‘duced

integration of order 2x2 Gaussian points is employed to caleulate the element stiffness

matrices.

-

[n the Eulerian fixed mesh finite element analysis, any body-peint X may traverse
more than one plastic zone and hence deforms plastically after being unfouded The first yield
occurs when the tnitial -yigld‘\ﬁtress is first exceeded. Unloading of the body-point X is

indi.c:;tcd when the assumption of continued plastic deformation would result in 2t reduction of

the effective stress: For the special case under consideration, it was found that only one

.

plastic region arised p6 shown in Figure (IV.3), and then all body-points change from plastic

deformation to elaftic deformation due to unloading. This agrees well with the results

obtained by Lee et al ¥97-99] and Yamada et al. [106] using the updated Lagrangian

.

formulation.
The Eulerian .ﬁ.\:cd finite element mesh technigue has been incorp;)rutcd into a;
speeial purpose programme for” two-dimensional metal-extrusion pr(‘);:cs::cs. The analysis
- starts with the part of the billet inside the fixed region being ida eresé;-frE'c't;-l condition. Then,
the solution prgc'eedcd with the following steps in cach’inecrement.
l. Compute the stiffness matrices as discussed above.

Tl

w2, Implement the boundary conditions (a$ discussed in the sub-séction IV.3.2).

Y ..
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Figure (IV.2) Finite element mesh-for the extrusion problem.
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Figure (IV.4) The stress-strain relation for the aluminum which is used in the analysis.
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3. Apply a uniform displacement increment for all nodes inTontact with the fictitious .
~
‘ e : R T
piston, . _ ' ¢
4. Solve for the mcremental dISpIacements using the Frontal solution techmque
5. ~ Caleulate t.hc increment of the stram Lensor at each mt.egrat.ton pomt. via eqn, -

(IV.24), and then calculate the increment of the stress t‘ensor;atl the same pqim.s by

»

using Jaumann strgss rate given in eqﬁ. (III.TS). . .

" B. The stress tensor of the dlsplaced body-points after the mcremental step (see Fxgure

»

B
{IV. 5)) are calculated usmg eqn. (IV.38), where the first Lerm on the right-hund side

is determined by interpolating the known stgess tensors from the previous .
’/ - . .
increment. o.

-

~ e ’ O
The—above steps were repeated until steady-siate condition was obtaiped as

indicated by the constant state of stress over the entire work’-piece, and by constant

displacement increments of the extrudate dtqchdrged by the process i&_t,he outlet houndary lor

constint incremental displacements imposed b\ Lhe fictitious pu,ton -

[v.32 Boundary Conditions for Fixed Mesh Metal-Extrusion Analvsis

. Referring to Figure {IV.2), we first consider ‘the bounda.ry condit‘i_onsl imposed by
the f:i.C‘f.il.iOUS piston. [t was assumed that we i;av'c specially fixed boundary and the material
cross this boundary. In c':tch increment, Lhe'ﬁctiti.o‘us piston pu';hes Lhe billet with a .uniform
displucement inc.‘rements pilra!lcl to the axis of symmetry with zero luteral ﬁudal forces for all
nodes in contact with the piston.New material is heing continuously convected to the fixed
region with preseribed state of stress. 'l‘his_cor.'z:e:prnds to a long billet stressed elastically

from zero stress to the state of stress required to derive the procesSs with rigid guide plates

which prevent lateral strain. In the numerical computations, the prescribed stute of stress

was taken s the state of the stress acting on the piston.
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Along thc axis of sy mmetry, t.he normal d1splacements and the shear forces vanish,

The same type of boundarv conditions are also applied to the gutde plate and the die.

However on the dte these boundar) cond:t:bns are applied to the coordmate axes aligned with

the. surface of the die and the normal to this surface. Therefore the stiffness submatnceb of

the refevant elements and the nodal forces corresponding to the nodal points along the surface

of the die are Lransformed to the iocal axes. Hence in the -solution, -all disp!accment'
increments are referred to thé global axes except the dmplacemcnt mcrements of the
rebtramed nodes which u:ll be automatically computed in the local d1rect:on> The

displacement increments :mthhe resctions in the local directions are then tranbformed back

to the global axes x, and x,,. ¥
. The latera!l surface of the exr.rurjatc is free {rom surface traction. Therefore, the

corre-_-,pondmg nodal forces ai'e zero: Elastic recovery of the c.\:trudate at‘tef' leaving the die

nvolves an mcreabe :n its th:cl\ncbs by less than 1% (97,98, 86] Such bulgmg could be taken

.‘ -

into account in the analysis by adjusting the nodal COO!’dlndth on t.he free burface However,

& r

since the bulging is u:,uall\. quite small, this proccdure may be an gnnecessary compl:catlon. .

Therefore, in the present analysis this was assumed to be the case, and the boundary
conditions- were imposed on a fixed laterai surface. It is fourd that the lateral incremental

0 .
displi:-c‘ements of the nodes on the free surface of the extrudate are nu'mcricajll_v very smail
talmost negligible} compared to the longitudinal incremental displacements which assess the
assumption employed in the analysis,

For the extrudate dischargzed from the process, bofmdary conditions are in;posed on
a specially fixed cross-section sui'ﬁ.ci‘cm.l_v removed from the die to generate stcad_\:—-statc of

residual stresses. On this cross-section, the shear forces are zero, There will also be no -

change in elastic er.J.ms in the mdLerm] traversing the fixed boundary 186,97 .99,106] and |

.
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hence uniform displacement increments over the cross-section are imposed and chosen such
_ that the resultant of the nodal forces over the cross-section is zero. o e

1V.3.3  Interpolation Technique

As previously discussed in the fixed mesh finite element analysis, it is necessary to

r

determine the state of stress of the body-points momentarily occupying the integration points

in the keginning of each@ficremental step for the'calculatiops\of the components of the

[N

v

mate_.riai tensor ,_,D:;kl 'I-‘he.displa‘éem(;nts of the body-points which occupy the.nodal points
should also be known for the comput,at.'ions of the Lotai stiffness matrix and the increments of
;he strain tensor, For this purpose, we utiiize an imaginary finite element mesh. Consit;ier a,
part of the mesh, for example, as illustrated in Figure {IV.5): Next, assume that the bod_v—.
points occupying the integ’ra_tion points have moved within t;;e ir:_gren;éntal step. The state of
the displaced body-points A", B, C’, .., can then bé ldg_fermined by knowing the displace_r_nent”
increments. Now, to obtain the state of the bod.'y-poiri“t)é- occupying the integration points A, B/
C, ... uf't;:r the incremental step, an imagi'nar_v finite element mesh is utilized through the
displaced'body.poims as shown in Figtlzre. (IV.5% Inthis case',.'th‘e isoparametric 4-node plane- -
strain element is employed, First., it is determined to which elen.{ent each body-point (A, B, )
belongs. Then, the local coordinates r and s of the body-poim: are computed b\ knowing the
global coordinates. The state oflthe stress of th-e body-point presently at the integration point,
for example point B, can be calculated as follows:

sS4

- 20 N h_('“,;) ) - (IV 40
€10 |

where hH(r.s] are the interpolation finctions of the isoparametric 4-node plane strain element

[5-7.9]and (25)}{ is the stress tensor at nodal point K.
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From the numerical point of view, the above computational procedures are very

Y

expensive. On the other hand, owing to the nature of {low of the material in the extrusion

process and also assuming small input incremental displacements imposed by*the fictitious

piston, we can assume, for example, that the point F lies on the-side B'F". This assumption

L

tesults in s = 1.0, and easier computation of r. Therefore, the stress state of the body-point

presently occupying the integration point F is given by

, = 1 .= 1 = _ . avan
{O)F—2(1-—r](0)g,75(1-.-r)(q]l;..- .
In a similar prbcedurc, the displacements of the quy—point.§ occupying the nodal

-

points in the beginning of each incremental step are computed.

1V.3.4 ' Incompressibility Constraint

In problems of this class, where there are regions involving active plastic strains,
the material can be considered approximately incompressible because.in these regions the
deformation is almost volume conserving {isochoric deformation}. In what follows, a brief

discussion of the difficulties’ and the methods .of treating the incompressibility in metal-

forming processes is presented, rather than, a compehensive survey of this particular topic.

For further details see [39,41.51,’122-1255‘ The numerical difficulties :i'n LreaLix}g _r};early--

- . ) . . ’ . B . . N . -
incompressible materials, i.e. materials for which Potsson’s ratio v approaches one-half, are

due to the existence of a singularity in the constitutive equations of such materials. In the

fimite €lement analysis the above point means that the approximation characteristics of the

element ‘can be entirely lost and the condition of the numerical calculation of stiffness

matrices may deteriorate indefinitely. There are three main approaches to deal with the

probiem ofin%ressibility. o




(1) Direct Imposition of [ncompressibitity on Lhc'Displacement Field <

Apparently, the mbs_t Iogica:l method for incorporating the incompressib.ility
consgraint is to directly restrict the displacement field to be an incompressible one. .\"ag'té-g.ga:!
ot al._[1221, Nayler [123], Fried [126), a'nd others show t;1at finite element formulatidr{s;, in
which the incompressibility constraint is directly inipoééd on the "(ifishﬁTacem;ént -f;x.eld. aré
sensitive to the type of element, element arrangement, total d'eérees of freedom, and its
relation to fotal number of constraints as well as to other .i-'.acr.ors. Nagtegaal et al. [122]
present a s{mplc analytical discussion of the idea of "mesh looking” or "looking of degree of
freedom"” by direct imposition of the incompressibility constraint on the displacement field. It
is shown that such limitation in some cases enforces a uniform strain state ovér all_tﬁe body
regardless of the boundary conditions, and also imposes u‘nrealistic constraints; on the
kinematics of the body. As a result of the study given in [122], it is recommended to use:
I)constant--strain triangular e.lement with specific mesh arrangement in which each four
triangles form a quadrilaterga.l and its diagonals; 2} 6-node linear strain t.rianglc.'clement:
3) perhaps the isoparametric 8-node plane elemcrlxt.

Owing to the difficulties mentioned above in imposing the incom;;ressibilits.'
constraint on the displacement field within the element, .\'age,tcgaal et al, [122] propose an
alternative of using a mixed variational principle which includes the dilational strain as an
auxiliary field. [tis, however, :;igniﬁcant to notice that the treatment given in[122] is carried .

out for specific element types with specific forms of interpolating functions for the auxiliary

field. i

-
7

ha

(i1) Lagrangian Multiplier or Multi-Field Principle
The incompressibility constraint can be incorporated by the Lagrangian multiplier

method {39.41.124,125). In this case, the mean stress (or the hydrostatic pressure) is uged as a

o




e

Lagrangian multiplier to account for the compressibility constraint. The advantage of using

- - .

i .
-

whien using single-field -;::rinc'iple.-_,However, in this case, the number of the unknowns are

the Lagrangian multiplier, or-the multi-field principle, in the numerical dnai)'sis of:

incompressible materials, is the elimination of the difficulties discussed above which appear

increased owing to the introduction of the nodal hydrostatic pressures, or the. nodal

4

b = - R
- generalized pressures as additional unknowns. Furthermore, the positive definiteness of the

resulting global stiffness matrix of the continuum is no longer guaranteed even though if is

. .

- for the original compressible material. This may cause difficulties in the numerical solution.

. (iiii"-"l Reduceci-Selective Intcération Technique

’f‘he'reduced;_seletfive integraﬁion technique is an effective approach for treating
the incompressibility constraint. Naylor [123] pr_;zscnts .aﬁ*y]‘,i{f numerical experiments in

which ke uses numerical integration in evaluating the stiffness of the parabolic isoparametric

. hy

Camhe

elements for the analysis of incompressible materials. In these experiments, Nayler finds

that using the isoparametric 8-node with the exdct integration of order 3x3 Gaussian points
gives futile results when compared with the-result of the reduccd integration of order 2x2

Gaussian points. It was also found that when the r?ducéd int.egratiori 1- used, the results are
completely ;{ndependent of F;oisson's ratio over Lh(j* range 0.49 to 0.495999. In [127]
‘ iienkiewici' et 31‘.. utilize the reduced integration scheme for calculating the dilatation
contribution-to Lh-e clement stiffness matrix. Wertheimer [118] examines the use of c_iif"ferent

isoparametric elements in plane strain and axisymmetric analysis. Based on this study, it

swas determined that the three elements-isoparametric 4-node, S-node with exact integration

order, and 8-node’ with reduced integration order - could be used successfully in-an elasto-

e

,'t

.plastic analysis. However, the isoparametric 4-node element does not handle large stress

-

~



_cqua_l to 0.495.

118

.g;adlents and in the casc of 8- node element with the exact mtegratlon order, the stiffness

matnx will be overestimated, and it may give large oscleatxons in the solution.

Hughes [128] and Malkus {129] demonstrate an equivaleace between the results of

the multi-field variational principle and the single-field principle employing the reduced-

selective integration technique.

3 ]

Incompressibility Constraint in Metai-Extrusion Process

Based on the above discussion, we will examine the use of the above techniques to

v

incorporate the incompressibility c_onst:"aint in the metal-extrusion process.. When the dis-

placement field is restricted to be an incon'ipressible_: one, only one reliable possibility exists

which 1s used by Lee et al. {97-99] and Yamada et al. [106]: constant-strain ‘tri;m'gular

element with specific mesh arrangement. As discussed above, this may impose unrealistic

_constraints on the kinematic of the body. The Lagrangian m’ltiplier method, or the multi-

field principle is effective only in the regibﬁ of active plastic deformation, usually a smali

region in the metal-extrusion process. However, the deformat.ion of the billet away from the

_dxc dnd the un!oadmg of the ettrudate a:acharged by thc proccsb 15 ehsr.pc Hence the

'
Wt

_analysis becomes more comphcated 1fthe Lagrangmn multiplier method is u:.ed As alread\

. <
discussed above, the reduced-selective integration technique can be used for its computational

effectiveness: therefore, it is employed in this study. The isoparametric 8-node p[ane strain

.
.

clemcnt with the reduced mt.egrduon oforder ‘7~:7 Gaussian pomt:, is uaed with Poisson’s ratio

——

Numerical experiments (using the lincar constitltive equations given by eqn.

(IV.37), Jaumann stress rate given by eqn (IIL.75), and changing the,input incremental

4

displacements imposed by the fictitious piston) showed that the inclusion of ‘the stiffness

matrix :;2K(‘B‘2’,'which correspands to the initial displacement or_tk}aeinitial rotation stiffness

~
-
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matrix, makes the structure unrealistically stiff and the co:‘r_espﬁnding response deviates con-
siderably from the é pected result (the results Sresepted by Lee et al. [97-99] an& Yamada et;
al. {106] using the(u‘pdated Lagrangian formulation). Therefore, although this stiffness ma- |
trix and the corresponding terms in the increment of the strain tensor given by eqn. {Iv.24)

exist from the consistent formulation, they have been omitted in the numerical analysis.

IV.3.5 .ig_merical Results

Figures (IV.6-1V.8) give the steady-state distribution of the longitudinai, the shear,
and the normal stresses respectively.. With the centre-line of the billet taken to be the X-a:'cis:,
each curve in the above Figures represents the stress variations for the Body-points whici‘j .
pass through the cen_tre-iine of each row of the mesh. The steady-state is reached in 165 e.qual‘

increments each of (2_x10_“"aJ'3). \;vhe::e a is half the thickness of the original sﬁcet, It can be
. seen from the results that large.yariation for all stresses occur along the die. Figures (IV.6- |
IV.8) also sho“.' that t.he longitudinal, the shear, and the normal stresses of the ext_rudaie
away from the die exit reach :—constanr. value for each curve. This represents the residual
stress distribution for the steady-s&;;é*éé'nditi';an of the process. From Figure (IV.8) one
observes that th‘e ma:fimum tensile stress appears near the surface just outsicie the die which
represent the primary pc.otential 501..1rc'e of cr:ick initiation and growth. The obtained results
have the same trend similartd the results given by Yamada et al. [106], Figures (IV.9-1V.11),
ané- by. Lee et al. [99], Figures (-i\'.12-IV'.13). In the results of Lee et al., the centre-line of the
billet is -.taken to be the x axis, and each curve shows the distribution of the stresses of body-
points which initially had the same rclaL.ive ordinate in the billet. The lateral -stat.ion
dimensions indicalteci in Figures (IV.12-1V. 13} are these ordinate divided by the half-width of
the billet, a. In the results of Yamada et al. and Lée et al. the shear stresses at the {ree end of
the extrudate are required to transform the longitudinal residual stresses to zero’ surface

-




traction since finite billet is used in their analysxs In the present work, this is not the case

smce we assume a very.long billet. 'In the present analysis, however, a dxfferent element and

'.

a different techmque for mcorporatmg the mcompresmb“‘htv _constraint . are used.

. Furthermore the ﬁmte element mesh used is rather coarse. In ’! amada et al. [106] analysis,

it is not clear physically why elements on the outer row should have tensﬁe stresses before

entering the die. "Such results are not the case in the present analysis. 'Other available Stress -

analyses for the extrusion process are based on the rigid-plastic material behaviour.

It is not our intention to claim.that our results are more accurate than other

= . ) . &

results. The use of finer mesh and.smaller incremental displacements would give more

precise results. On the other hand, the analysis will be considerably more expensive.

-

o . . o e
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CHAPTER V '-\_.
CONCLUSIONS

-

Akcfit.ical discussion of-_fhelformulation methods for-the finite element analysis of

nonlinear problems is given in this work. It is shown that many authors describe the relative

or the updated Lagrangian formulation under the name of the Fulerian formulation. Hence,

little effort has been devoted to the development of a consistent or detailed Eulerian

formulation. Moreover, the attempts at Bulerian formulation include basic assumptions

N

.

which impose a referential nature on the formulation.
Starting from the continuum mechanics principles, a consistent Ldurangian and

updated Lagrangian formulations are derived in this work ia explicit forms. The developed

formulations are hased on the virtual work principle expressed in the current configuration,

e

and 't.ﬁen transformed to the proper reference conliguration In the Lagrangian formu}uLion
the initial configuration is taken 35- the reference configuration whereas, in the upduu;d
Lagrangian f'or{nulation the reference c'onf".l.gumtion corrcsp.nnds to the present (the last -
ca‘lc'ul;_xtcd) conﬁgurat.ion. [t 15 shown that the most general approach n deriving the
formulations is to consider complete nonlinear kinematic relations within a lincar increment

This leads to three stiffness matrices contributing to the total nonlinear stiffness matrix of

* -

the element: namely the usual $mall displucement or the incremental stiffness mafirix, the

initial stress or the geometric stiffness matrix, and the initial displacement or the initial

<

rotation stiffTness matrix. . o

. A consistent transformation of the virtuzl work principle from the current

configuration to hoth the Lagrangian and the updated Lagrangian configuration is provided.

Such transformation climinates the need for Intuitive arguments for the development of the
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load vector expression and provides a consistent development of the load-correction matrix.

This matrix should be included for al[ types -of loading. ln the expressions of the Ioad vector

increment, it is found that the deﬁnitiom'f‘on the follower [load increment rcsultcd in a

-

consistent formulation.

A consistent Bulerian-formulation is derived on the basis of the virtual work

i -

principle expressed in the current configuration. In Lhe formulation the exprcssion for the

mcrement of the load vector is independent of the deformatlon gradlent tcnsor Th:s is not the

case in both the Lagrangian and the upddted Lagrdngmh formul.;tlon The form of the load

vector expression in the Eulerian formulation efiminates the existence of the load-correction

matrix in comparison with the two Lagrangian formulations. T 7

n

[n the Ealeriun formulation only two stiffness matrices contribute to the total

stiffness matrix of the clement, The use of the Cauchy stress tensor and the: deformation
. : . . : v

tensor as the conjugate pair of variables eliminates the existence of the initial stress or the _
geometric stilfness matrix in the Eulerian formulation. . A strict comparison between the

Eulertan formulationiand the two Lagrangian formulatigns may not be logical owiag to the
spectfic nature of euch. However, an anu[dgv between different formulations based on @

- .

comparison between lincar a.nd nunlmcdr partx m Lhc expressions of the stress and the strain
may be made. When such analogy is carried nuL the two st:ffnt_\\ matrices in Lhe [ L:lcrmn

formulation correspond to the usual small displacement or the incremental stifTness matrix,

and to the initial displucement or the initial rotation stiffness matrix of the two Lagrangian

formulations. .

T

; In mumerical appliciations, it is found that the inclusion of the ldad correction -
matrix in the developed Lagrangian formulation reduces, the computational time by better
. ‘ ' ’ < .

than 35 percent. -However, it should be gbserved that the effect of the load-correction martrix,

+

‘on the computational time is dependgnt on the nature 6f the particular application.




- a3

[n the updated Lagrangian formulation, it is found that the ‘predicted resuits_ :

. deviate considerably.from the results obtained using the Lagrangian formulation. Ilqwever,

invertible transformation between the two Lagrangxan formulat:ons ought to exist, When

%uch t.mnsformat.:on 18 carried out it is found t.hat the two terms in the mcrement of the'strain

-

tensor which include the initial dxsplacement cf'fects do not conf'orm with t.he transformation,
’I‘herefore although t.heSe terms and the correspondmg stiffness matrix (m:tnul displacement
st:ﬁ'ness matgx) come from the consistent formulat:on the) are omttted in thc present.

upd.;Lcd Lagranglan formulation. Inthe ht.erature. these terms have heen discarded owing to

» ‘ -

imposition of certain assumptions on the Kifematic relations or to restrictions on the
disp[agr:ent field. Some analysts used’ various stress-rates to deseribe the material

1

- behaviour within the increment to overcome such difftculty. The updated. Lagrangian with

L

r

omission of the initial displacement efTects has the sume computational cﬂﬁcibncy as that of

the present Lagrargian formulafion. However, including the loud- corfection matrix in the

-

-analysis reduces the computational time by almost 10 percent. The effect of the load-

LI

correction matrix onhe computational time is dependent on the nature of the application,

The choice between the Lagrangian and the updﬁtcd Lagrangian formulation is decided

merely by their relative numerical efféctiveness. .

The nature of the Eulerian formulation is suitable for the study of flow problems.
Therefere, the dhd[\‘wl\ of metai-forming processes’ which operate under steady-state
condition such as extrusion, wire drawing, and rolling is then facilitated by the use of

Eulerian fixed mesh finite element analysis based o the developed formulation It has

-

obvious advantages when compared with ‘the upd;:Lc:d Lagremgian formulation In the
extrusion an.;.ly:,:s however, it is found l'hdl. the smfnc\.s matrix which corrcspundb Lo the

mma] dlxplacemcnt stiffness matrix makes the structure unrealistically at:ff and the

. .

corresponding results deviate considembl_\; from the results of the updated d.agrangian
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4

o

- e

formulation. When this stiffness matrix and the corresponding two terms in the increment of

thé strain tensor. were omitted in the 'f'ormulation, it is found that the numerical results

Fl

obtained us{n'g' the Eulerian f‘or/mulation compare well with that obtained using the updated

i Lagrangian formulation. .

Finally, it is believed that the existence of the stiffness matrix which corresponds to

‘the initial displacement stiffness matrix in the Eulerian -formulation requires more
investigation.. This will be assessed by examining more numerical applications.

»,
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APPENDIX A - _ : -
‘ TRANSFORMATION OF THE VIRTUAL WORK PRINCIPLE ’
) The virtual work p;inc‘tp!e in the current (lit':ﬁ)rr'fncld state is: )
. 9T 5=, g o= - -"-. ) - o ‘-)—" o= g— o= a=" ' i
S J To:8TedV - [ “pfu-ﬁ"ud‘V:J “pTh 57w + [ d*A %o 870 (AY -
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‘where all individual terms are defined in Chapter [ The transforimation of the virtual work

-

. . 2 ~ R \
principle from the current configuration  to the reference configuration can be curried out

‘ S . .
term by term as follows = - -
* Strain energy,

) 2= 9 F
o [ “0:8%TedV -
. 2\'

_after substituting Lhe transformations
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. From the definition of double-dot product of two sccond-order Lensors, it can be proven that

. = =, = = = = =r = . - A
B:C=(B Crl =(B-C»xri1.- : '

where B and C are general second orderfcnsors and 1 is the identity tensor., Considering eqn.

(A 3) aad utilizing the symmetry of & 2e, we obtain
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. *Surface Traction,. . ) s . .
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- where 0"’? is the first Piola-KirchhofT stress tensor, since '
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Substituting eqns. (A 4-A.7) into eqn. (A 1}, the virtual work principle referred to the initial

(undeformed) configuration is:
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SHAPE FUNCTIONS AND SHAPE FUNCTION DERIVATIVES OF THE

eqn. (I11.82), the components of the dis!:‘v!acement vector ‘ui may be expréséed in the form

where

." " APPENDIXB

* ISOPARAMETRIC 8-NODE PLANE ELEMENT

L

-

-

|4 _
¥ = Wi
‘ 1 By
. {
q';tq = ! 0

-

.

0

by

" . fornode K

-

3

i=12

are the shape funcﬁons, hK are the intérpglatiori function, and

is the fiodal displacements vector.:”

The displacement derivatives corresponding’

obtained as

where

-t

for nod.e K

e
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fugt™ = (o, ™, K=1,2,3, 0,8

[ o,
IO \-:?_..
! ar
1
]

I

: dh
10 —
] S

LI
for node K
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(B.1

(B.2)

" (B.3)
to the globa} axes *x, and 'x,, may be

- (B.4)

Starting-_with@_e expression of the displacement vector of a point in the. elerﬁelnr.;- L
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are the shape function .derivatives, and Y{J I;[ is the inverse of the Jacobian matrix. The

Ja&{ian matrix relates the global derivatives to the local (natural) derivatives, and is
. .- . - .

defined as follows
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APPENDIXC

THE RE LATION BETWEEN HOOKEAN TENSOR AND

.

STRESS-STRAIN MATRIX

. In this Appendix, the consti;‘.utive equations and the stress-str‘ain relations are
cons1dered in general form wh:ch can be app] ied i in both the Lagranguan formulation and the

Eulerian formulatxon As dascussed tn Sect:on III 1.4, the conbt:tutwe equations may be -

s

written in the form . o -

[l
- -« . v -

= = = (C.n
Ao =1D:A € T

-~ where A "o and A € represent the increment of Cauchy stress and Euler strain tensors

whereas, in both Lagrangian formulations A 1? will be replaced by the increment of‘ the -
seco"nd Piola-Kirchhoff stress tensor and A ! E will be the increment of the Green- Lagrdnge

strain tenbor Equation (C.1) has the components

- 1 . ‘ .
. 3o Dukl.ﬁ € | (C.2)

It should be observed that the tensor :D is symmetric in the following sense:

-

1D = (D

ijk! D =,D

. ke = Yk T Yk _ 1

; Making use of this symmetry r;esults in only 36 distinct values for the fourth order tensor, 15, '
see, for exam{:le, .refegcncc [3]. Qn the o.Lhe[- hand: for elastic_ and hyperelastic material, Lhe.

‘ stress-strain relation may be expressed as follows

. {Alg) CI{A €} (C.3)

or
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where C is the matrix- re‘f:r((thc str(:ss vector {A a} to Lhe str.nn vLcLor {A G} Comp.xrmp:

eqn.: (C.2) with eqn. (C.4), we obLam.a relauonship between J1')”.kl and C”. for example
T . ) L e A - .
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-

utilizing the symmetry of btk the Hookean tensor t-[) and the'strain tensor A IEH, the above

relation gives

and so on.

Finally, owing to the symnetry of the matrix CIJ

constants in the Hookeun tensor,

- ELASTO-PLASTIC ANALYSIS

4

[ is further reduced W 21 only

the number of the independent

In this section, the basic laws governing elasto plastic material behaviour are briefly

discussed, for more details see, for example |8,56,111,112].

In the f'nllm-.mg Lhc von Mises

yield eriterion and the associated flow .rule have been emploved. ()n(:L agatn, the equations

presented in this section are applied to the Lagrangian, the updated Lagrangian, and the

Eulerian formulation, According to the von Mises yield criterion, yiclding hegins when the

cffective stress o exceeds the vield point, that is
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(C.5)

12

3
g = l = gt Ic.t.l.)
—~ 2 i) 1)

N

! are the deviatoric stresses.
(C.6m

i
partly plastic. During any incremental step, the resulting strain {A ¢}, can be linearly

“where lqi.
‘ In general, after initial yielding the material behaviour will be partly elastic and

decomposed into elastic strain {A.l€ }. and plastic strain {A '€ by s
, (alep=i{ate) +atey
~ Since the elastic pért of the -t(.).tal stra‘;m is.the only strain that can be associated with cﬁange

in stresses, the increment of the stress vector is given by
{80} = [CH{A Le}, = (CI(A 'eb-ia te} )
(C.8)

i
(C.9).

-

The flow rule or the Prandtl-Reuss relations state that
{alelp = l 2 s
3 ic:'i TP

where A€ 0 is the effective plastic strain increment.
The von Mises yield eriterion can be written in its incremental form as

SR -
Ao = {A o}
' ~ 3lo. I
]
By multiplying eqn. (C.7) by (30/3 lolj)'r and using eqns. (C.8, C.9), we obtain an
expression for the ¢ffeelive plastic strain increment A€
a T
N
30 )
Ag. = - (ateh= (Wit {aley (C.10)
~ P -fag |T .| %
H+ {—— [C] l —1'-’—[ )
: d'o. . tdo
t )
where H is the strain-hardening modutus and is defined as
E .
He 32 = F (C.11)
d € E-E
T ~Pp . t

in which E, is the tangent  modulus. |
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Substituting for the equivélent. plastic strain, eqn. (C.10), into eqn. (C.8) and the

result into eqn. (C.7), an incremental stress-strain relation may be obtained as
. e 1 . R
{a'o} = (lpl ~[CI {-—;—g— } _{'W}T){A fe} = [crcn{a ley {C.12)
. de¢. ! ¢ :
1] M

where [CI{__p is the elasto-plastic complinncé matrix which can bewsed beyond the proportional

limit,




APPENDIX D

" SHAPE FUNCTIONS AND SHAPE FUNCTION DERIVATIVES
OF THE ISOPARAMETRIC 3-NODE BEAM ELEMENT
Gt Start.ing. with the ex'pression‘of"the displacement vector of a point in the beam

element; eqn (I1.95), the cox-'nponerlts of the displacement vector lui may be put in the form

.

... | ' ' L lui ='q!ic.| tl‘l..q - i.;: 1, 2, 3 : (D.1)
where
1 B
| h (1 0 0 0 Q, -Q)
I ) 1
J i
I 1 .
. W= | 1R 1 0 . -Q 0 Q;?: . (D.2)
] | -
E hK(O 0 1 Q2 —Ql 1)) :-
fornode K
are the shape functions;
-3 K., L. ouk .
Qj ) Ix Ov:;j - 2 bh‘._ Vt_]
and :
T = (Rt K "t K QR oK gy . K=123 {D.4)
l_lc Tt u‘;’ u3 1 2 3 = L. -

is the nodal displacements vector.
To calculate the global shape function derivatives, i.e., the derivatives
corresponding to the global axes Oxl %%, and oxs, these derivatives are first obtained referred

to the natural coordinates r, 5, and ¢
Q]



¢ tui | 3 hK 0 K 0 K. 0 K - P’u:{-
£l Sl e %) |
T leK v
3 "u. ,;_ 1 -{D.4)
i = Gn K . 04 K . K
=—-—-._h(o EAA - “[g:)
3s K =1 K tl 12 . 13 "BK
. 2 .
. .
3, N (0 Gz K g4I K o6z K )
at K gll g:’ gl3 ] _teé\
where
Mgt =g 4 Ag It =123 - D
- 2 K K]
0 Ovs:i _OV:.'Z
. . 1 ; - . ’
S S K K (D.B)
Q[gu] =5 % _0\«53 0 0\451 . |
o, & 0, K !
L vs‘z - v:;l 0 _
and
_ <. <
0 0\‘::3 "Ov:z .
- .. 1 : -
0 K _ 2 0., & K 4 (D.7)
[gljl =3 bK -V, 0 u
K . .
R Vi
L. 12 tl J

The displacement derivatives ccirres'ponding to the axesoxl.ox.; and %

X5, are now obtained

using the Jacobian transformation:

F&i ) a hK K o K o K K
o (0 % et eS|
) ta K
3 tui 3 . N . 81 {D.8)
0 = z OIJ]- hi\ (0 'n[gnllh O[§:2Jh O'[é::i]h)
d xz K=1 LBK
2
d tul T K K -
- hh(o g 0 Tg 0[3‘311‘) gk
d X3 i

or . -
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V ‘ _—_
. du 4 W . U
. . B = u . " ; .
. . R . .9 0.’(. 3 Ox. __u . 3
. . C * ] R N
where ’ _ \—/ N .
' o : s .
. ) Ia hK - 0' K 0 'K o K [
: s (1 &, 18;o) (85! )}
. l l
} | - o
Oz K O K ~ K
Sy = Oyt : hx(o, (8;,! (g, O,Igia.l ): (D.9
- aoﬁ { ) L
i o K o5 K 0 K|
} hK(O Tg, N g, (g )I
=t 1d

fornode K
are the shape function derivatives. _ ] A
g -, ﬁ
Starting with
2 §e \ t %
tRat T tat K 2N t+at K oK d 1+A8Ty by,
T2 Ry M R 3y ¢ Vi~ Vit 9 L By By ¢ Vi \’u)
K=l K=1" . K=1 :
and following procedures simiiar to the above, we obtain i
.—.] [
C "k K K K :
- L L 1
' (1 ig,,! fg, ] g, 1* )!
' T
t !
3 . . A 1Y A K, A K | .
Y. - I[ hK(O l‘[gl‘ll 'Tgi:,.] . ‘Igisl : (D.10)
d txj ‘ ', . :
e - K K oK) !
x ; hh(O tg ) 1g ) (g ] )Il
fornode K
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~ APPENDIX E
. TRANSFORMATION OF THE SHAPE FUNGTION DERIVATIVES
' FROM THE GLOBAL AXES TO THE LOCAL AXES
/S G .
- 62 _
g3
X
T3

Figure (E.1)

LT Ct)__;\_si_der the two sets of axes - the global and the local axes x and n {i - 1,2, 3)-at

any integration point us shown in Figure (E.1). A general vector ¢ can be referced to the two

orthonormal bases as follows:

LA

- - - (E.1)
r=x.¢ =n g

and

- - N E2
L Salsre) | ij=1,23 =

The local derivatives can be expressed as
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[+7]

X.

3 4
e ij=1,2,3 (E.3)
N 1, n, 9% .
from eqn. (E.2), we have
' - (E.4)
i '
L9 ‘
Therefore, the local derivatives become: . . .
g - - .3 ' :
__.=(gj.ei) - (E.5)
d 7, 9 x, -
Considering the invariance of the displacement vector:
~ | \1 - ui e; = uqt g’1
then - R \
b . ’ . = - . o y 1= 2 . -
: S un\‘ (g, .eJ.}uj i,j=1.2,3
Therefore, the local diépl,acemqnt vector derivatives can be written as
) d ul’]‘. - _ _ _ d uc e [ 4
i =(g.-e){(g.-e)
k ¢
3n j b0k

kijk€=1,23
In asimilar'procedure, the local shape function derivatives can be expressed as
¢ lpiu -

=(g.-e)
én, LIRS

. d
- - *Teg
(g, ¢) 3

*k

It should be noticed that this trinsformation must be performed at each integration -
. point. In the Lagrangian formulation, the direction cosines of the unit vectors g; with respect

to the unit vector e, are calculated in each integration point around the circumference,

N

whereas, in the updated Lagrangian formulation besides the transformation around the

- .
circ;umference. there is also a transformation due to the bend of the'pipe element.





