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A

ABSTRACT.

The tensor analysing power T20 for the radiative
capture reaction lH(E,Y)3He has been measured in order to
test new threc-body wave functions.- This observable arises
from the D-state of -<He. An effective two-bcdy direct
radiﬁtive capture calculation, which was previously shown to
fit the 2q coefficient of a Legendre polynbmial @xpansion oz
the differential cross-section, )is found to give a good
description of the present data. A range of 5% to 9% is
deduced for the D-state probability in the 3He ground state
wave function. A valge of -0.032 = 0.014 for the asymptotiv
D/S state ratio is extracted f{rom the data althougn it 1is

found to be model dependent.
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Chapter 1: INTRODUCTION ;

Recent theoretical calculations of few-body wave
functions have stimulated inter;st in new measurements on
very light nuclei (GL84, S379). In particular, this thesis
describes a study of the thrée-body 'system through the
15(5,7)3He reaction. Severii related reactions have been

3

used to study the ground state of “He. Among <these are

photo-disintegration (P73, AC83), and electro-disinte-
gration (SAB3) of 3He, radiative capture of protons by
deuterons (MK74, KR83, SW79a), and capture of deuterons by
protons (BB70). These reactions ‘are particularly inte-
resting because the react}on mechanism depends on the

electro-magnetic interaction only. This avoids problems due

to the presence of the nuclear interaction and allows th

"

wave functions to be studied iadependently of the reaction

1

mechanism.

The ag coefficient of a Legendre polynomial exp&nsion
0of the differential cross-section for y-ray emission
following the capture of zrotons by deuterons has been found
sensi$;23/%o the D-state component oi the 3He ground state
wave function (KR83). As pointed ocut by Seyler and Weller,
the tensor analysing powers of the reaction lH(a,Y)SHe are

expected to be more sensitive to D-stuate effects (SW79h).

1



This is because the analysing powers result from the
interference between the S=1/2 and S8=3/2 channels and vanish
1if <the 1latter, which arises £from +the presence of the
D-state, is absént. The S=3/27 qhannel. enters 1into éhe
expression for the differential cross-section only as a
small perturbation. Thege considerations will be developed
further in chapter 2.

This thesis reports measurements of the tensor

analysing power TOO for the reaction lH(ﬁ,y)BHe. The

results are compared with an effective two-body direct

[ L8]

radiative capture model similar to the one used to fit the

cross-section (XRE83). In addition, a value for the asymp-
totic D/S state ratio n is extracted from tﬂe data;

Chapter 2 deals with the theoretical aspects of this
work. It begins with a deta{led description of <the
three-body wave function followed by a discussion of <the
direct radiative capture nodel and the relationship between
the matrix elements generated by this model aad the
analysing powers. The chapter concludes with a discussion
of the asymptotic D/S state ratio.

Chapter 3 deals with the experimental methods used in
this study. Topiés inciude: the detection of_recoil SHe
particles, relativistic Kinematics, polarization in nuclear
physics, and the monitoring of the beam polarization.

The instrumentation necessary for this experiment is

the topic of chapter 4 which begins with a description of

the polarized ion source. This is Iollowed by discussions



of the spectrograph, the targets, the detectors, and the
electronics. The finai section of this chapter deals with
the method used to steer the beam which was of great
importance. .
Chapter 5 presents the dataz analysis and results,
with the gquestions of normalization, corrections for bean
polarization, c¢calibration of the detectors, and resolution
being considered. An error analysis is 2lso done in this

chapter.

A comparison of the results with theoretical predic-
tions is made 1in chapter 6. The dependence of 'Tzo on
several parameters i1s examined. FPFor example, the variations
in the angular distribution of the analysing power with
respect to the order of the electro-magnetic <transition

. considered, the partial waves included 1in the entrance
channel, the choice o©f <the optical potential, and the
D-state probability are studied; 4 parametrizaticn of the
M1 contribution is also included. Theoretical predictions
for the other tensor analysing powers (Tzl and T22) as well
&S for the differential cross-section are shown-  This
chapter concludes with a discussion of the resu}ts in terms

£

of the asymptotic D/S state ratio n.

A summary and conclusions can be found in chapter 7.
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Chapter 2: THEORY

Before attempting to understandlthe radiative capture
process in three-body systems, it 1s useiul to review
briefly our kanowledge of the three-body wave function and
to examine which compornentis of this wave function will be
studied with thé lH(a,y)sﬁe reaction. This is followed by a
description of the effective two-body radiative capture
cﬁlculation used tb obtain the transition matri% clements.
These are then related to the analysing powers. An alter-
native method of analysing the datalusing asymptotic wave
'functions to obtain a value for =, thé asymptotic D/& state

ratio, is described in the final section of this chapter.

2.1 Three-body wave function.

This discussion follows closely the review paper of
Delves (De67); Although 1t deals mainly with 3H, the
conclusions also apply to 3He because the Coulomb inter-
action does pot affect signifrcantly the details of the wave
function, its eifect bYeing limited to the binding energy
(EB(BH)= -8.492 MeV, EB(SHe)= -7.728 MeV) (FG82). In fact,
the gquantum numbers of these nuclei differ only in T3, the
projection of the isospin, which is rel;ted to the charge

(T,CCHe)= +1/2, T3(3H)= -1/2).

fos



Since nuclear forces are non-central and isospin
dependent, the only good quantum numbers of a nucleus are
its total angular momentum J, its projection Jz’ the parity
7, and T3. The wave functions are complicated by the fact
that L, the orbital-angular momentum, and S, the spin, are
not consefved. However, since nog~central forceé are weak,
wave functions with different L are not strongly mixed in
light nuclei. The same is true for the spin. Therefofe5
kwave functiéns with good L and S c¢can be used as 2 basis in
the description of three-body systems. For convenience, the
components of <the wave function ire labelled by their
assocliated L ind S.

The weakness of the noh-central iorces also leads to
the domination of one term in the ground state wave
fuﬁction. This is the term that remains if these forces are
ignore@ and L and 8 become good guantum numbers. The
properties of E and “He should reflect this.

The ground state of SH has J’=l/2+.. This is
determined by 2 measurement of the hyperfine structure of
fritium. An isospin assignment of T=i1/2 is made based on
the absence of 2 bourd state of either the tri-neutron or
3. 3 3 . . i

Li; "H and-"He form an isospin doublet. The dominant tern
in the wave function has L=0 and S=1/2. This {s consistent

3 3

with a study of the magunetic moments, o, of “H and “He. The

orbital angular momentum does not make a4 contribution to u

because L=0 and the stit® is symmetric. For “H, the spin

contribution comes from the proton because the neutrons are



paired to 8=0. The magnetic moment of 3H 1s u(3H)= 2.9788
nuclear magnetons (NM); the proton has up= 2.7927 NM.
Similarly for 3He, oniy the neu;ron contributes to u and
w(PHe)= -2.1274 NM. This is compared to ﬁn= -1.9130 NM for
the neutron. The discrepancy in these numbers is thought to
be dge t0O meson exchange currents. These should have the
same magnitude for both nuclei with only a change in sign.
Hence, taking an average of the magnetic moments will
eliminate exchange effects; we get:
172 (#(°H)+u( He))= 0.4257 NM
1/2 (up+nn)= 0.4399 NM

The variance in these numbers of 3.2% gives a rough estimate
of the contribution of other states (different L and S to
the ground state.

| We now look at the three-nucleon wave function 1in
more detail. 3Since we are dealing with a three-body system,
there are 9 coordinates available for a description 1in
\configuration space. The motion of the center of mass 1s
described by 3 coordinates, leaving only six. These are
‘defined as follows: X=ryaq is the distance from particle 2
to particle 3; similarly Xp=T 4 and Xa=Type X1 X, and Xo
form a triangle. The three remaining coordinates are the
Euler angles (u,s,y} defining the orientatibn of the
‘triangle with respect to an arhitrary set of axes. The wave
{function is written as follows: |

v= S(fl,xg,xs) Y{a,B8,v) Z(El.Ez.EBJ

where 8 is called the internal wave function, Y is the Suler



angle wave function, and Z is the spin-isospin wave
function.

~

The symnetry ofr thg iaternal wave funct;on with
respect to interchange of two pafticles, is given by the
permutation:group of three objects. This group has three
irreducible representations: one symmetric (S), one
anti-syametric (A), and one with mixed symmetry (M). The
corresponding wave functions are:

Fg(1,2,3)= 1/6 (F(123)+F(213)+F(132)+F(321)+F(231)+F(312))
FA(1'2’3)= 1/6 (F(l23)—P(213)—F(132)éf(32l)+F(231)+F(312))
Fuq(1,2,3)= 1/6(2F(123)+2F(213)-F(132)-F(321)-F(231)-F(312))
Fyp(1,2,3)= 1/6(2F(123)-2F(213)+F(132)+F(321)-F(231)-F(312))
where F is sonme funcﬁion of Xy, Xo, and X4 and F and

M1

together span the mixed symmetry representation. The

in
a2

symmetric state (S) is favoured in the ground state for two
reasons. Being symmetric, (S) has fewer nodes than (A) or'
(M), and therefore has a smaller average derivative. it
follows that the kinetic energy of the (S) state is lower
than fer the other states. Furthermore, an attractive
nuclear potential V(r) is maximum for small r. In this
region, the symmetric wav: function 1is larger than the
anti-symmetric function which must go to zero at r=0; the
same 1s true, 1o a lesser degree, for t@q,mixed Symmetry
state. The expectation value < ¢ | V | ¢ > is larger for
the (8) state which therefore as a larger binding energy.
The symmetric state 1is favoured for both potential and

kXinetic energy considerations.



Three spin 1/2 particles can couple either to S=1/2
or $=3/2. Since the ground state hes J=1/2, the choice of L
is limited. The possiblé-States are shown in table 2.1; the
spectroscopic rotation 2S+1LJ is used. The Euler angle wave
functions are giveﬁ by the rotational functions D&H(a,s,y)
(De67). The paritf of these funetions is == (-1)¥. Since
the parity of the ground state }s Qositive, only even values
of u are allowed. Hencé, there is one SFstate:'Dgo(a,s.y)
which is symmetric with respect te interchange of two
particles. Only the u=0 P-state is allowed; it is anti-
symmetric. There are thrée possible D-states: one with p=0,
two with |u]= 2. The first is symmetric while the latter
can be combined into one symmetric and one anti-symmetiric
function.

A classification of the spin-isospin wave functions
has been done by Blatt (8153). The results are given here
for T=1/2:

S=1/2 : one symmetric function. =
one anti-symmetric function.
one set ¢f two mixed symmetry functions.

S5=3/2 : one set of two mixed symmetry functions.

The total wave function must be aanti-symmetric; this
determines the2 internal wave function once the Tuler angle
and spin-isospin wave functions have been chosen.

- The S-state has S=1/2; there are three spin-isospin

functions associated with S=1/2.



Table 2.1

POSSIBLE STATES FOR SHe

Possible combinationg of orbital angular momentum L
and spin 8 for the ground state of th%_three-body system
which has total angular momentum J° = 1/27.

28+1

The notation LJ is used.

S =1/2, 3/2.

f)
+ L =0 S=l/2 HSl/z
. 2
FL=1 S =1/2 Py g
= 4
S = 3/2 Py g .
FL =2 S = 3/2 *h
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-~ The D-state has $=3/2; there is only one spin-isospin
function allowed, but there are three Euler angle
functions associated with the D-state.

-~ The P-state has both é=l/2 aad S=3/2; for S=1/2 there
are three spin-isospin functions, while there is only
one for S=3/2. -

These results are summarized in table 2.2.

AS mentioned above, the main component of the three-
body wave function is the symmetric S—statef it is called
the principal S-state and has a probability of approximately
30%. The Bartlett spin exchange force gives rise to the
mixed symmetry state with a orobability of about 15; this
state is designated by S'. The P-states result from the
spin-orbit force and make up a very small part of the wave
function (<1%); they are usually neglected. As in the
deuteron, the tensor force mixes in the DQState; this makes
up approximately ’8% to 9% of the ground state. It is

W
effects arising from this component of the| wave function
that are the subject of this thesis. The components ¢f the

ground state are summarized in table 2.3.

2.2 Effective two-bodv Radiative Capture Model.

The formalism for direct radiative capture has been
reviewed by Weller and Roberson (¥R80}. The model used here
1s the same one used by Xing et al, to fit the differencial
cross-section data (XR83). The lH(E,y)BHe reaction is the

capture of a deuteron by 2 proton followed DY the, emission
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Table 2.2

POSSIBLE TOTAL WAVE FUNCTIONS FOR 3He

Possible combinations of the three parts of the wave
function (internal, Euler angle, and spin-isospin), with the

symmetry of these conmponents with respect to two particle
interchange. -

Internal Euler Spin-isospin

+ 81/2 S S (u=0) A

1 E -
5: M 6!

2

_* Pl/o S A (u=0) S
A A

M \ M

* 7Dy 4 i S (2=0) {
A S (u=]21]) {

4 A (u=]2]) M

S: Symmetric
A. Anti-symmetric
M: ¥Mixed symmetry



Table 2.3

MAIN COMPONENTS OF THE 3He WAVE FUNCTION

v
]
(e}
=
oft

Principal S-state
Adixed symmetry state S! = 1%
P-state < 1%

D-state _ _ - 8-9%

12
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of a y-ray. The final state of the 3He is a two body d+p
state. Hence, the capture is iﬁdependent 0of the nuclear
interaction and involves only tﬁe electro-magnetic operator.
Since the form of this operator is well-knqwn, this reaction
lends itself well to a study of the final bound state wave
function.
As we have just seen, the ground state has many
components due to non-central terms in the nuclear poten-
tial. The P and S' states will not be included in the
following calculations; only the principal S-state (L=0,
8=1/2) and the D-state (L=2, 8=3/2) will be considered.
This approximation still takes into account more than 98% of

P4
the wave function.

Since the deuteron has spin 1 and the proton spin
1/2, the only possible vélues fof the spin of the d+p state
are S=l/é and S8=3/2; 8 is called the channel spin. Ini-
tially, only electric multipole transitions are considered
because M1 r@diation gives rise to transitions to the S°'
State which has low probability and because of technical
difficulties explained below. The electric multipole
operator has the form Ei = Yogs rL Yf(e,¢) in the long wave-
length approximation. Qoss is the effective charge which

LY

will be defined later, Yf 15 a spherical harmonic, and t is
thé-order of the transition. It EE\important to notice that
the operator does not depend on spin. | Hence, 1f the
reaction proceeds through the &=3/2 channel, the ¥y <tran-

sition must be to the D-state. One must be careful in

13



’

making this assumption because it is only true if initial
state igteré&t!ons are ignored. A spin dependent potential
in the initial state of the deuteron-proton sSystem may cause
mixing of the S=1/2 and S=3/2 states in the entrance
channel. The resulting state would be free to decay to fhe
S component of the ground state. However, this-is thought
T0 be a small effect for the tensor analysing powers and
almost all of the 8=3/2 channel can be'attributed to the

b ' /
presence o0f the D-state. These considerations are

-

summarized in fig. 2.1.

As will be shown later, the tensor analysing power
Toy 1S due to the interference between the S=3/2 and the
S=1/2 channels.b If there is no 8=3/2 amplitude, Ehe
analysing power is zero. This makes =2 measurement of T20
ideal for studyiang D-state effects in 3He..

Zlectric multipole transitions up to =3 are included
in this calculation although only E1 and E2 transitions are
shown to make a significant contribution. Considering the
selection rules for electro-magnetic transitions and the

3

spin and parity of the ground staté..of “He, it is possible

ior the capture reaction 0 take ;iace in the following
intermediate scattering states:
Bl: 1/27, 3/2
B2: 3727, 5/2
23: 5/27, 7727
Ml: 1727, 5/2+

There are 17 channels through which the reaction can proceed
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transitions are listed.
in the entrance channel,

total a

13

L

Table 2.4

POSSIBLE TRANSITIONS

The reaction

channels for E1,

EZ,

E3, "and W1

ngular momentum of the intermediate state.

s
1/2
3/2

1/2

3/2

1/2

3/2

1/2

3/2

3/2

3/2

J

1/2
3/2%

3/2
1/27
5/2”

3/2

1/27

28+1L2J+1

L is the orbital angular momentum
S is the channel spin, and J is the

EL Mz

M1
E2,M1

El

I3
[9N]



3
if E1,E2, and E3 transitions are considered; they are listed
in table 2.4 where they are labelled by the orpital angular
momentum L, the spin 8, and the total angular momentum J of
the intermediate staté. The notation 2S+1L2J+l is .used.
This should ndt be confused with the states of table.2.l
which refer to the components of the ground state wave func-
“tion. M1 transitions are also included for completeness.

The matrix elements for this reaction are written:
<¢(3He);y | EM | d+p;0> where EM is the electro-magnetic
operator. As seen previously, EM = Er = Qoss r* Yi(e,¢).
qeff,'the effective charge, varieé with the order 2 of the

transition. It is given by (BP77):

4 % £
e A% v (G oz, Al
Qefs =

L
(4, + 4,)

where the subscripts 1 and 2 refer Lo the projectile and the
target. Therefgre, qeff(El)= -0.333, qefc(32)= 0.556, and
qeff(33)= -0.259. |d+p;0> is a two-body wave funetion
represeniing the scattering state of the deuteron and the
proton, plus a vacuum for y-rays. It is calculated using a
distorted wave Born approximation (DWBA) with an optical
potential. As in ref. (Ki83), the optical model parameters
used were those of Guss. These are listed in table 2.5.
The radial matrix elements were evaluated for the inverse
reaction 2H(p,y)3He; these séould be~‘thef§ame as for

lH(d,y)SHe if the energy of the incident particle is chosen



-

Table 2.5

OPTICAL MODEL POTENTIAL

Potential used in the Distorted Wave Born ADDProx-
imation for the entrance channel (Denoted pot.l1).

VO = 90.75 - 0.4871 Ep HeV
r. = 1.153 £fm

Wy = 6.54 - 0.10 Ep MeV (np > 10.MeV)

4.54 + 0.1005 . MeV (E_ < 10 deV)

o P
N 1.104 fm
ad = 0.691 fm
rc = 1.3 fm
V(r) = -VO f(ao, Tys T) +:1 4 24 Wd §/6r (f(ad, Ty r))
+Vc(rc)
f(a,, Ty, ry = [ 1+ exp (r - T Al/sfak) l_l

Note. Ep is the energy of the proton in the inverse

reaction 2H(p,v) He. B = 84/2



to give the same center-of—mass energy in both cases
(E4= 19.8 MevV, Ep= 9.9 MeV). This'ig why the parameters of
table 2.5 are quoted as a2 function of Ep.

'The.three-body wave functions ?(SHe) for the ground
state of SHe were obtained from a Faddeev.type calculation
by Gibson and Lehman (GL84). The two-body 'Sy and Js,-%p,
Separable interactions used in this calculation were chosen

=

to it 'Iwo 1aucleon properties .such as the deuteron
quadrupole moment and tThe low energy S-wave two npucleon
scﬁt;ering parameters. In particular, different 381-301
inté:actions which- lead to a D-state probability in the
deuteron,_PD(d)i of between 1% and 9% were used to generate
a set of 3He wave functions. Since the D-state probabilicty
in the three aucleon system, PD(BHe), is related to PD(d)
(PD(SHe)= (L.31 = 0f02)PD(d) - (0.2 £ 0.1)) (GL84) and since
PD(d) is an input parameter tg the calculation, the 3He wave
. functions will be labelled by the corresponding value of
PD(d). Ve should note that the wave functions oI Cibson and
Lehman are for 3H. However, as stated above, the 3He wave
function should have the same shape as for 3H. the Coulomb
interaction affecting only the binding energy(FG82).

Since we are considering direct radiative capiure, wae
require not ?(SHe), the three-body wave function, but the
two-body d+p component of this funetion. This projection
Was done by Lehman by evaluating the overlap between ?(SH)

and the product of a deuteron and a neutron wave function

(Le84). The functions he provides are in momentum Space.
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They must be converted to configuration space by é Fourier
transformation. This is done using the product:iﬁtegration
technique for Bessel functions of Lehman, Parke, and
Maximon kLPSl). These two-body. d+p wave functions, denoted
¢(3He), are the ones used in the calculation of the matrix
elements. A summary of the D-state properties of these wave
functions is given in tablé'z.s. it is important to note
that’, although there is a large variation in the amount of
D-state in the three-body wave functions pD(3He), the
corresponding D-state probabilify in the projected two-body
wave functions PD(d+p). does not change verf much. The
significance of this point will become clear in chapter &
when the dependence of T2O on PD(d) 15 examined.

The radial matrix elements were calculated using the
program DIRAC (WeB4), which is a direct radiative capture
code. The results were used as input for the program CR
(We84) which does the angular integration and gives the
final values. for the matrix elements. These are related To
the analysing powers by Sevier and Weller (SW79b). As will
be seen in chapter 3, the differential cross-section for a
spin 1 projectile can be written:

o(8)= o, ,(8) (1 + 3/2 Py 3,(8) = 54 Tohgs)

) + 3 2
+ 2 Re(“zl’ T21 + 2 Re(tgz) T22 )
where cun(a) is the unpolarizea cross-scection, py and thu
are moments of the beam, and AV and qu are the analysing

< .
powers wnich are properties of the gaction. The

a1
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Table 2.6
D-STATE PROPERTIES OF THE 3He WAVE FUNCTIONS = -

Corresponding D-state probabilities for the deuteron,
the three-body wave function, and the two~-body projected
wave function.

Ppd) (%) P He) (%) Py (d+p) /Pg(d*D) (%)
1 0.74 0.32
2 2.16 0.72
3 3.65 1.00
4 5.08 1.19 \
5 6.49 1.33
<] 7.83 1.43
7 9.12 1.50
8 10.33 1.55

N
(\



cross-section can also be expressed as a Legendre polynomial
- ES
expansion:

5(8)= x/24 2;( 3Py ¥ By P bo o+ o Py tzg
1
* dy Py Re(Tyy) + ey Py Re(tyy) )

where ¥ is the reduced wavelength of the projectile, Pk and

® are the Legendre and associated Legendre polynomials

Py

(Pk= Pk(cos 8)), and a bk’ Sy dk’ and e, are coeifi-

k 1]
cients. By comparing these two equations for the cross-

secilon, one can determine the apnalysing powers in terms of

the coefficients:

Z T 1
T ey - E %P Loy oo B Ok Pk
0g(8) = A (8) = <
by D ' T
E %k "k \ k2 Tk
% dy Pi ‘E k Pi
Toq(8) = 1 ° - Toe(8) = 1
2 = - 2 s
k %k Py %k Py
Seyler and Weller give éxpressions for the 2, b,_, ¢,_, dk'
) Y ¢t n -

and e coefficients (SW73%b). For example:

D - 2]
7"l ) en L 8262 (20,20 x0)

2, = g%‘ (-1}

W(eb,2'b";sk) (L1,L'-1 kO) W(Lb,L'b";ck) Re aR'
The notation, as well as expressions for the other coeffi-
cients, can be found in ref. SW7Sb. R and R' are the matrix
2lements for zthe interfering channels calculated Dreviously.

- * . .
The coefficients of Re RR' are calculated using the program

(RS
[LS]

LS (WeB4). Expressions for'aO - a%éand“cor—‘c4 are given in

appendix B. all the terms of the equations for the Ck coel

-—
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ficients depend on the S=3/2 channel (ie. at least one ma-

trix element has a éuperscripf 4)?} If this channel has zero

amplitudé, all the S vanish and the tensor analysing power
1s identically zero. The Situation is different for the ak
coefficients, where ?he two channels do not mix. Therefore,
while D-state effects #ppear only as a perturbation.in the

differential cross-section, a D-state component in the 3

He
ground state is required for the analysing power to be

non-zero.

2.3 Asymptotic D/S State Ratio

There 1is an alternative method of analysiang the
lH(E,y)3ﬁ; reaction. As pointed out by Arriaga and Santos,
the low energy tensor analysing powers are sensitive to the
asymptotic region of the bouhd state wave function, and.can
therefore .be used to determine the. asymptotic D/S state
ratio n (4ACS84). Instead of using realistic wave functions
generated from Faddeev equations, asymptoti¢c functions are
used for the final 'state ¢(3He) in the calculation of the
matrix elements. This is justified if the incident energy
is suificientiy low to lead to capture at large r. The
validity of this assumption will be discussed in chapter 5.

The asymptotic forms used are:

£
Il

g = Cg /x/27 exp(-~«¢r) /r D

=
"

.
5 CD /¢ /2% exp(-xr) /r (1 + 3/xr + 3;%342 )



where ¢ is the wave number corresponding to the deuteron

Separation energy in 3

He (x = 0.42 fm~ 1), and Cg and Cp are
the asymptotic normalization constants for the S and D
states respectively. The asymptotic D/S state ratio n is

defined as n = CD/CS. Arriags and Santos find that T2 S

O.i
proportional to n. Therefoge, it should be possible to
obtain a good value of this parameter. This is significant
since n is known only through a determination of the DWBA
parameter D2 for (d,aﬁe) and (d,t) reactions where the
deuteron acts as a spectator picking up a neutron or a
proton in a mechanism similar to captuée (KC79). D2 is
related to n by the following equation: 02 = n/n:2 (ASB4).
The present range for 02 is -0.22 fm2 to -0.037 fmz. This

corresponds to a range for n of -0.039 to -0.065.
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Chapter 3: EXPERIMENTAL METHOD
This chapter deals with exberimental technique only.

A description of the instrumentation is delayed until

chapter 4.

The first section explains_how the choice of beam
energy is related to the excitation function ©f the photo-
disintegration of 3He. The reason for choosing to detect
the recoiling 3He particles instead of the y-rays is
explained in _section two. Section three examines the
Kinematics of the reaction. Siﬁce one of the particles
involved is a y-ray, relativistic kinematics must be used.
Finally, a description of polarization in nuclear physics is

given in section four.

3.1 Excitation Function.

The excitation function up to 40 MeV for the photo-
disiﬁtegration of 3He 1s shown in fig. 3.1. The giant
dipole resanance is the dominant feature of this graph. In
order to take advantage of the largest cross—section
possible, the experiment was done in the 12 MeV range of
gamma-ray energy. As will be seen below, this correspoads

to a beam energy of approximately 20 MeV for the lH(E,y)sHe

reaction.



Q
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Fig. 3.1 Excitation Function. Excitation function for the

photo-disintegration of 3He up to 40 MeV. The cross-section

peaks around 11 or 12 MeV. (ref. KR83)
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3.2 Recoil ‘Method.

-

E

) . . . 3
determined uniquely from the energy distribution of the “He

particles. An Enge split—p@le magnetic Spectrograph was
used to analyze the recoiling Sﬁe nuclei. More details will
be gived“ in éhaptér 4. _This method of obtaining T-fﬁy
angular distributions avoids the problems'associ&ted'Qith
the high neutron background créated py the deuteron beam in
the Nal detectors..  Time-of-fligptvdiscriminition against
neutrons is insufficient to give 2 clean Yy-ray spectrum.; An
added feature of the recoil method is that the full angular
distribution of the vy~rays canm be collected 2t once.

However, since <he 3He particles are constrained to a cone

‘such that: 0° < 9(3He) s 2.6° , probléms associated with

the beam as well as with small angle scattering from the
beam must be solved.

The recoil method, aithough uncommon, is not new
(BB70,MK74). This experiment was doqe previously wfth an

unpolarized beam by Belt et al. (BB70). We chose to do the

.

~experiment for the same energy, 5.= 19.8 MeV, as was used ‘'in

d
this previous work.

3.3 Kinematics.
The equations in this section are derived in appendix

ta

A. The notation used must be defined. The reaction

The angular distribution of the y-rays can be-



lH(a,Y)SHe'is denoted 2(1,3)4: particle 1 strikes particle
2 resulting in the formation of particles 3 and 4. All
quantities are expressed in units of energy to avoid the
confusion introduced into the equatidns by the velocity of

light ¢. Hence, fbr particle j:

M . . e ; W, =M_+E, = (y2+p2,l/2
i 5P ST i

‘ .
where mj is the rest mass, pj‘is the momentum, Ej is the

Kinetic energy, and Wj is the total energy.

From equations A20 and A21, we have for the energy of

-

the y-ray in the center of mass frame;

2

E (em) = (a/2) ['Mf + M7

£ 2, Qg+ E)) 1742 3.1y

1
into equations (3.1) and (3.2) gives a y-ray energy of 12.07

a=ud v v e ou2 om0 o+ ) (3.2)
1 2 =3 T4 2 1. 1 -

From the midss tables:
Ml = Md = 2.014102 amu = 1876.10 MeV
My =M = 1.007825 amu = 938.77 Hev
33 = MY =0
M, = M(PHe) = 3.01603 amu = 2809.77 MeV
The beam energy is E. = 139.8 MeV. Putting these guantities

MeV. AS previously noted, this corresponds to the peak of
the giant dipole resonance.
The capture reaction can also be written IH(E,sHe)Y.

The indices 3 and 4 can be interchanged in equations A20 .and
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A21 to

obtain an expression for W':

4
42 2+ uZ - ug + 20, W
W' = = 2809.40 MeV (3.
4
2 (M2 + w2 ¢ 24, (B,+ u,) )i/2
1 “2 =2 17 "1
From eq. 423: o
q S
= B, + M, = W.\/y
cos 94 = 4 * 4 (3.4)
: 2 . 1/2
8 ( Ef + 2%, E, )
ey —
y = (1-8%) 1/2 (3.5)
8 = Pl / (Wl + Mz) :i_(eq. AlD) (3.68)
Equation 3.8 can be re-written using:
W= L P2 o y? 2 o (gan? oy
‘2 . 2 3 » ey
3 = (E1 + 2 Ml El)}+V / (E1 + 41 + 42) (3.7)
Substituting numerical values into egs. 3.4, 3.5, and 3.
we obtain:
~ 8 = 0.09641 ; y = 1.00468
. B, + 13.061
cos g, = - - (3.8)
= 2 . _ 1/2
0.09641 (E, - 5618.7. E,)

T .
This gives us a relationship between the scattering angle of

~y
a PHe particle and

-

its energy. Equation A22 relates ¢

3)

he
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angle of the y-ray in the CM frame to the energy of the 3

He

particle in the lab frame:

cos 83 = 1/8W3 [(El My oM, - My =B /v - Wil (3.9)

where W. is ET(cm) of eq. 3.1 and is equal to 12.07 MeV.

-t

Numerical substitution into eg. 9 gives:

cos & (cm) = 11.214 - 0.8532 E( He) (3.10)

- 3 _
blab( He) = 13.143 - 1.172 cos eY

_These equations make the recoil . method possible since they
are linear in E(SHe) and cos eY giving a unique determi-
nation of aY if E(3He) is Xnown. A graph of E(SHe)'versus
e(SHe) is plotted in fig. 3.2. Several y-ray angles are
also shown. Two points of interest experimentally are the

energy and angular ranges of the 3He particles:

12.0 MeV ¢ E(°He) ¢ 14.3 eV
0° ¢ 3¢ He) ¢ 2.6°
The relatively small energy range makes 1t possible Lo
accumulate differential cross-sectio?g f{or many vy-ray ang}es_
at once, and to do so continuously wiéh angle. However, the
angular constraints on the 3He particles. make them difficult _

-to detect because of the presence of the beam.



Fig. 3.2 Xinematics for the 1§L3,7)°He Reaction. This
graph shows the limitations on 3He energy and scattering
angle. A few y-ray angles in the center-of-mass frame are

also shown.
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3.4 Polarization.

¥e turn now to a discussion of polarization in
nuélear physics. Many articles have been written on the
subject (8Si74, Da?O,'InTO, In75, In80, Las53, GoS8, WA32).
Jowever, the treatment by ¥. Simonius is particularly good.
In what follows, wave functions are designated by their spin
only; all other guantum numbers are implied.

Consider a particle ih‘state |#». If the states lu5

form an orthonormal basis in spin space, we can write

led> = § au >, where laulz 1s the probability of finding
the particle in state lu>. Two sets of basis vectors

connected by a rotation only,; are relaged by the Euler

functions:

|“>II = ‘g. Df.u (x,8,7v) lu’>I (3.11)

where (¢,8,y) are the Zuler angles between the bases in sSpin
space. ( Dim'(a’B'Y) = < jm | e”*%, e—lBJy‘e_lTJz [ gm' > )
Therefore, we have:
.&IJ.: = z DS, a I (3.12)
@ o p'u Tu
We define tne density matrix p» as follows:

B *x :
=<a a > 3.13
Puu T : ( )

where the brackets denote an ensemble average over the bean.
An alternate definition is:

i i -
Pt atoa’, (3.14%)

» 1s normalized such that Tr(s) = 1. To understand why p is
useful, we nust consider the exsectation value of A, where A

is a2 hermitian operator acting on the spin part of the wave

function.
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- Y i_ix \
< A >i = < v | A | 7, > = TR 2 <u' AT uw>

Averaging over all particles in the beam, we get:

N by o PN i i* :
CA>=uN Socan =N 2 Seoagan, Cut Ao
<a>= X, o5 a4,

Hu uu Hu
< AD> =Tr (pa) : © (3.15)

All spin observableé can therefo£é be obféined from the
density matrix and the operafor in matrix form. Unfortu-
nately, the density matrix is difficdit to work with because
of its complicated rotational properties involving two D
functions:

oii, = g;, S, " o, | oI, (3.16)

To avoid these difficulties, & transformation to a1 new

representation is made. The irreducible statistical tensors

are defined as follows: . -
T = /T Z - S—l.l ! - 3 > n'. 7
kq S+1 & (=1)". ¢S u' 8§ -¢ | kg P Fa 17
with 0 { kK € 28 ; -k ¢ g € k.
<

The gquantity in brackets is a Clebsch-Gordan coefficient.

If we introduce =< such that:

kq
(tieg)yy = 7257 (-1 ¢S ' S = | kg > (3.18)

then:
tkq T (qu)uu' Pyyr = IF (qu p) = <qu>
qu is a tensor operator with expectation wvalue tkq' The

latter is thus an observable of the heam.
The statistical tensor representation is chosen over

the density matrix because of 1its Simpler rotational
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properties:

II _ 2 .k I

t = v DT T, (3.19
ka g qQ'q kg . b )

A further advantage of this representation is that tensors

of different rank k are not mixed by rotations. This is

important if the beam used in the experiment must have pure
k (ie. pure vector (k=1) or pure tensor (k=2) polarization).
Cartesian tensors are sometimes used instead of

spher%cal tensors (Go58). However, since fheir use 1is
usually restricted to S=1/2 particles, they will not be
discuééed here. “

Since the cross-section isr an observable, we may
write: o = Tr(0(¢) p), where O(¢) is an operator, and hence,

¢ depends linearly on the components of the density matrix.
%

Since the tkq are linearly related to the Pt © is also a

linear function of the Spherical tensor moments, and we may

write:

*

- mm ')
pol un kg “kq ‘kq (3.20)

The coefficients qu of this linear expansion of the
Cross-secction avre called the analyéing powers and are

characterfstic of the reaction. qu is a measure of how the

scatterer affects the t component of the beam. The

kq
following equations from Simonius (Si74) are useful:

__ k—q —_ k Leal * 20
Teq = (-1 Tyg = (=D Tkq (3.21)
= b k .22
TL{O 0 for odd kz ‘ (3 )
- s * ) -
where € = 1 for k even and € = 1 for k odd.
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¥e can therefore write for spin 1 particles:

“po1” “un | Too Too * 1 Typ Re(ityp) + i Ty, Re(ity;)
LTy _p Re(ity ) + Tog Re(tyg) + Ty Re(t,,) (3.24)

TTa-1 Re(Ty p) * Top Re(tyy) + Ty p Re(ty_p) )
TOO =1, tOO = 1, and eq. 3.21 and 3.22 give:

g = % [ L+ 2i Tll Re(itll) + T

pol 20 Re(Taq)

+ 2 Tzl Re(tzl) + 2 T22 Re(tzz) ] (3.23)

If the beam is axially symmetric about the z-axis, tquo iz
q70. This is the case in the polarized ion source since the’
magnetic field defining the $pin quantization axis is
cylindrical with the beam as symmetry ‘axis. Therefore only
the th and t20 components of the beam are aliowed.
However, the_other components can bé creatad by rotating cthe
spin axis. This occurs when the beam travels through the
accelerator and the various magnets oi the beam tfansport
system. This rotition must be corrected as described in
chapter 4.

The reference frame for polarized nuclear physics was
-standardized at an international conference in Madison,
%isconsin (In70). It is aptly named %he Mdadison convention.
Tﬁe reader is referred to fig. 3.3 for a défini:ion of the

bhasis vectors.



L

Fig. 3.3 Jdadison Convention. Diagram of the reference

frame normally used in polarization studies. The angles 5

and ¢ defining the orientation of the spin quantization axis

ZO are shown.

.y
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Expressions for the beam moments tkq as 2 function of
the angles 8 and ¢ as well as tig and t,,, the values of t,,
and t20 at the source, are given in ref.(Da70) on p.532.

From these we can derive the following:

~

Re(ityy) = 1//2 sin 8 cos o g . (3.26)
Re(tzo) = t20 = 1/2 (3 coszs -1) t20 (3.27)
Re(t,;) = /378 sia 28 sin ¢ tog C(3.28)
- . - : :
Re(t22) = -/3/8 sin”“ 3 cos 29 tag (3.29)
It is obvious that if 8 = 0, the only term that is not zero

is tog: and equation 3.25 becomes:

ool = Ty (1 Tog Tog) - (3.30)

Let too for an m=0 (m=1) beam cf deuterons be tO (tl), and
°9 (al) be the cross-section for this substate. 'We have:

g - 0 =

! 0 = %un (31 - T§) Tag (3.31)

-

°1 T %n (1 + tl TZO) - c;/tl = ¢ (l/tl"+ T2O)

un
This, in conjunction with a similar_equation for 94 gives:
91/t) = 99/t = Bun (L/zy - 1/c0) '
Hence: '
Oun = (cl to - 9g tl) / (to - tl) (3.32)
Equations 3.31 and 3.32 combine to give:
0'1 - c’l'
Ton = - .0 (3.33)
20 —_—
CIO tl - 01 to / .



We have:

Q)

F1 7 (Ba) pey

T T (t

=D /

20) m=g = 2 P

—
QAT
i —

N

where P is the fractio of the beam that is polarized.

Finally:

[+ - a :
Too = 170 , (3.34)

P ( /2 g, + ao//i )

s .g._ ot

-~

This is the equation thaE will be used to calculate Too

from
the vields with an m=0 and an n=1 deuteron bean.

It remains to find a method of monitoringz the
polarizatioﬂ P of the beam. This 1s done using a method

developed at McMaster to resolve ambiguities in spin-parizty

assignments (Kd?S). The (E,u) reaction oa an even-even

‘target nucleus populates only unnatural parity states

+
(== (-l)J l) if the a« particles are detected near zero

.degrees and the beam is in the m=0 substate. Furthermore,

and of more interest here, the tensor analysing power T of

20

natural parity states is 1//2 for a 100% polarized bean.

This can be seen by setting 95=0 and P=1 in eq. 3.34. There
1

1s a2 Known natural parity state in ‘OB at 3.392 MeV which is

populated in tae *2c(3,0)'%8 reaction (XKG75). Since the

target contained carbon, this reaction also took place
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during the experiment. A separate counter was used to
monitor the cross-section for this state..-and the

polarization could be found from equation‘3.34:

g

) - g
D = o1 0 =
T°O /2 o, * 00//§ )

g, = © - - .
p= 0 ~(3.35)

oy + 00/2-

In addition, the Quench Ratio {Q) method was used ko check
the polarization (0h70). Q is . -the total cdrrgnt divided by
the fraction of the beam that is unéolarfzed. The method
for measuring Q-will be exﬁ}ained in the next chapter. Thé
. e
polarization of the beam is deduced from the‘guench ratio as
follows: | |
| P=1- i/Q o (3.36)
This equation is exact for the m=1 substate, and approximate
‘for m=0 (6h70). Since the first method described ™o monitor
the polarizatfon'is more accurate than the guench ratio, the

latter was used on-line.to check stability only.
+
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Chapter 4: EXPERIMENTAL SET-UP

This chapter deals with the equipment gnd instru-

1

mentation involved in the study of the. H(E,Y)SHe reaction.

.

The operation of the polarized ion source is described in

section one. This is followed by 2 short descriptionrof The

laboratory and the Yeam 1line. The arrangement of the

detectors.in the spectrograph is discussed .in section three.

The choice of position sensitive silicon detectors instead

£

©X a resistive wire gés counter is Justified in section

. ‘ .
four. This is followed by a description of the electronics
and the data acquisition system. Finally, the crucial point

of precision steering is examined.

4.1 Polarized Ion Source.

The Mcdaster polarized ion source is of =zhe Lamb
shift type (Mc76,4L58). It is schematically represented in

fig. 4.1. A standard duoplasmatron source produces ‘a2 beam

[

=

O positive deuterium ions. These undergo a charge exchange

reaction in a caesium vapour canal:

D+

+
+ Cs « D(28) + Cs -
AT 500 ev, approximately 30% of the beam is in the actonmic
28 state of deuterium, the rest Yeing ia the neutral ground

state or remaining in ionic form.



-~

o ' . S . '
Fig. 4.1 Schematic of. the polarized ion source. The

magnetic substate is selected in the spin filter cavity.

(ref. Mc76)
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The beam enters the spin 'filter cavity where - the
nuclear magnétic substate is selected. The 2S and 2P levels
'aré split by the Lamb shift. If -an external magnetic field
is applied, two further degeneracies are lifted. The Yevels-
split according to the?r_atomic magnetic substate my, and
their nuclear magnetic substate My~ This 1is shown in
£ig. 4.2. The 2S-state is.metastable (ty,5= 1/7 s.) since
it cannoz: decay to the ground—state_by one photon emission.
The 2P ieveis, however, have ‘a nggiigible half-life Since

they can decay b? an electric dipole traﬁsition. ) Iﬁ is -
interesting to note thgt the energy of the 2S (mJ= —1/2)‘
levels, labelled 3, is reduced to-the point where they are
degenerate with tﬁe 2P (mJ= +1/2) levels, labelled e, 2t

B = 0.0575 T. A small traansverse DC electric field ET can
couple these states allowing the 8 levels to decay to the
ground—étate,'léaving only the « states. The latter are
coupled to the e levels by an R.F. electric field parallel

to the quantization axis.. For specific values of the
magnetic ?ield,"with ET and the R.F. field constant, a o

~

resonance condition is established leaving particles in only
one substate my; the other two levels are gquenched :o thé
ground-state via the e levels. A graph of beam current
versus magnetic field is plotted in fig. 4.3.

¥e now make a short digression to explain how theﬁ
' quench ratio Q is measured. Q iS the ratio of the tolal
beam .current IT .fo the unpolarized current Iun' IT ls
measured with the magnetic field set on "a resonance. To



Fig. 4.2 Diagram of the 281/2 and'2P1/9~levels of deute-

riun which are split by a magnetic field. The desired
substate is obtained through a resonance condition produced

by an axial magnetic field, a transverse electric field, and

an RF eleciric field along the quantization axis (ref.Mc76).

-
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Fig. 4.3 Spin filter output current as a function of
magnetéc field B. The three substates are well separated at
B = 565 G, 575 G, and 585 G for m = +1, 0, and -1 respeé—
tively. The value of the fiéld when mea;uring the unpo-
larized component of the beanm to de;ermine the quench ratio

Q, is shown on the graphf{IQ). (ref. Mc76)
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Sbtain Iun’ the field 1is lowered tg a point far of f
resonance (fig.4.3). TFor this field, the three sfates are
equally populated ind the unpolarized component of the bean
can be measured. |

An added feature 0% the spin filter is that the
transverse electric field deflectsvthe extraneous charged
bérticles, therefore removing an unpolarized component from
the beam. >

The neutral particles undergo a second charge
exchange reaction in an argon canal:

5 D(2s) + ar - DT(28) + ar’

making them suitable for injection 1into the accelerator.
This reaction occurs at 2 much hizher rate .than the same
reaction for the ground-state D(1S); this alsd contributes
to the suppression of. the unpolarized components of the
beamn. There is a final acceleration stage to 70 keV, as
well as a spin axis re-alignment achieved in a Wien filter.
AS mentioned aboﬁe, thié‘corfection 15 necessary to take
into account the various magnetic fields which deflect the
beam before it reaches the target.

Before calculating this correction, a brief descrip-
tion of the beam transport system is required.

.

4.2 Beam Transport System; .

The beam is accelerated tec 19.8 MeV by a model FN
Tandem Van de Graaff accelerator. This machine was upgraded

in 1982. Spiral inclined field tubes were installed, and

=~

[ )]



the standard belt charging system was replaced by a pellet:
inductive charging system manufactured by National
Electrostatics Corporation. The Pelletron makes the

éharging of the terminal much smoother than with a belt
while thé‘-hew tubes help to preveht sparks by reducing
instabilities in the field gradient. These modifi;étions
are lmportant since it is only with these improvements that
a terminal voltage of 10 MV can be achieved~to obtain a beam

energy of 20 MeV for deuterons. The correct energ§.oflthe

“~

o i .
‘deuterons is determined with a 90° analyzing magnet. A

e

further bend of 42° is produced by & second magnet which
selects the -hagnetic séectrograph beam _iine. This is
summarized in fig. 4.4.

To measure the tensor analysing power T20 of a
reaction, the quantization axis of the deuterons must be
along the beam direction. ' This condition is met in the
source because the field defining the quantization axis in
the argon canal is axial and along the-beam. However, as
seen 1ip fig. 4.4, the beam is deflected three times before

.

it strikes the target. Hence, the guantization axis will

mot have the correct orientation unless it is pre-rotated by

an amount which compensates for these deflections. The
situation is complicated by the fact that the spin axis does
noet rotate by the same amount as the beam; this is due o
Larmor precession. For deuterons, the spin lxis rotates
0.857 times as fast as the beam. This rotation is in the

sane direction for positive ions, and in the opposi:te
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g 4 Spin Axis-Alignment. Because the spin axis and

the beam rotate differently, the spin must be pre-rotated bx'
. LS

62.57° in a ¥ien filter. The angles shown are between the

gquantization axis and the bean.
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- direction for negative ions. From fig. 4.4, we see that the

bean rotates - by _(30°+"90°— 42°)= 78°. -The spin axis
deflects By 0.857 (-30% 90°- 42°y= 15.43°. Therefore, the
quantization axis must be pre-rotated by 62.57° in the Wien

filter. This is also shown in fig. 4.4.

- 4.3 Detector Configuration.

An'Edée'Split—pole magnetic spectrograph was used to

momentum analyze the odtgoing particles in the 1H(a,w)3He

12 10

and C(a,g) 3 reactions. . A charged particle (g= eZ)

travelling with -velocity v in.a magnetic field undergoes a

-

force FM = eZ v x B. If the field is‘perpendi;ular to the
veldcity, FM = eZvB, the tréjectory.is circular since the
force is always az right ‘angles td the velocity. Hence, the-
particle also feels a centrifugal force Fc= mvz/ﬁ. Egquating
P-,'1 and Fc’ we obtain:‘
' P = (eZB) o - IS
where p is the momentum of the particle. TFor known field
and charge, the momentum can be determined by measuring ».
HMore details will be given in chapter 5 in the section on
calibraticn.

The detection system is shown in fig. 4.3. The °He
g

. particles were focusSed at the low radius of curvature {(p)

end of the focal plane while the beam was collectad in a

Faraday cup at the high o end. The 3He detectors are

described bhelow.

The targets used were polyethylene films approxi-




Fig. 4.5 Detector Configuration. Disgram of the pldéement

%

of .the detectors used in the experiment. ' The beam was -

L]

~. . ,
collected at the high o end of the focal plane BY a Faraday

-
-

cup. The 3He particles were focussed at the low p end onto
&£

TWo position sensitive silicon detectors. The 12C(a,a)198
reaction was used to monitor the beam polﬁrization, while

-

the lH(a,d)lH’feaction was used to normalize the runs.
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mately lOO_ug/cm2 th;ckf_ Since this is a hYdrocarbon; it

contains both hydrogen and carbon. Hence thé lzC(E,q)lOB
reaction 65cursisimultaqeoﬁsly with thercaptﬁ;e reaétion.
As expiaiﬁed in chapter 3, this is importaﬁt to determine
The poléfization of the béam. ' The e partlcles from this

reaction were detected on the focal plane between uhe'SHe

&nd the rarada} cup by a position senSLtlve»SLllcon detector

(fig. 4.3).

The'~differen£. runs were normalized using elastic
deuteron scattering from hydroéen, lH(E,d)lH. The deuterons
.Were monitored with & silicon surface barrler detector in
the sc ttering chamber (fig. 4.5). An angle of 21° was
thosen pecause the ténsor analysing power of this reaction
is small and 'doés ot viry much with angle for a= 21°
(Tpp<0.01) (XG80). This eliminated the need to cérrec: for
polarization effects in the monitor. : ;-

As a final note about the spectrograph, the entrance

apertures were left wide open, (V = 1.41 cm, H = 4.23 cm,

corresponding to an angular acceptance of 4.30) to reduce

scattering - and to allow the full aagular “range of SHe

particles to be analyzed.

4.4 Detectors.

To obtain an angular distribution for the capture
y-rays, the energy of the 3He particles must be determined.
'As we have just seen (eg. 4.1), the momentum of these

4

particles is related to their radius of curvature and hence

30



to their position on the focal plane:

P =(eZB) o ~ E = p>/2m = (e2B)%/2m 0% (a.2)

-

Several types of detectors can be used to measure this

‘position. Two of them are described here.

ﬁ

"A resistive wire gas ionization counter was used
initially: | This consists éf a 25 cm long chamber filled
with .a mixture of 90% argon and 10% methane. A thin
nichrome wire, with homogeneous resistance, runs through
this chamber (see f;g.f4.6)._ A voltage of 1 kV is agplied
to this wire. . Particles enter the.counter through a very
thin aluminized mylar window which does not degride the
energy Significantly. They ionize the gas and the resuiting
charge is coilected on the wire. - Since the resistance is
homogeneous,rthe charge collected at each end of the wire is
invérsely proportiopal to the distance. The position is
determined from the fbllowing relation:

C Ay = Qy /(g Q)
yhere dL %s the distance from the end of the counter
corresponqing to low radius of curvature, and QH and QL are
the charges collected at the high p and low ¢ ends respec-
tively (fig. 4.6). The position resolution is approximately
1.5 mm. Many types of p&rticlg enter the detector.
Particle discrimination is achieved by considering the total

energy lost AE in the counter (AE « QH+QL):

51



Fig. 4.6 Resistive Wire Detector. Diagram of the two

chambersvof the gas ionization detector first used for this
experiment. The position and energy loss informgtion is,
derived from QL and Q&é the charZes collected at the lgw A
and high » ends of fbe resistive wire respectively. The
aluminium #bsorber stops all bgt the deuterons and the back

counter is used in anti-coincidence. '
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sE = 22792 = mz%/E  (see Se77)
From eq. 4.2: ' E « 22/m

_Hence: AE « m ) ' (4.3)

Thus we have:

8E(a) / aE(d) « 4.0 ;  E(®He) / AE(d) « 2.25
and the 3He particles are between the deuterons and the =
particles in the AE spectrum. It should be noted that the

inelastic deuteron peak 1is by far thg .largest in the

Spectrum. This is a problem because we require good AE
resolutlon to obtain a clean position spectrum .-for the 3He
particles. The situation can be improved by uhe use of a
second chamber separated from the flrSt by an alumlnlum

¥oil. The thickness of this foil is chosen to stop the 3He

particles but nok the deuterons. This is possible because
the latter loée less energy (eq. 4.3).- They'are deteéted by
a second wire and this signal is used ia anticoincidence
thus discrimgnating ‘against deuterons. The resulting aE
spectrum 1is shown in fig. 4.7. * Although the 3He peak is
quiﬁe visible, the background in the position spectrunm,
caused by the tail of the deuteron peak,'is too high to be
acceptable; A differeﬂt soiution must be found.

| It was decided to use two position sensitive silicon
detectors. As discus§géﬁbe&0wv the main advantage of these

{
detectors is their pﬁrticle dzgcrimination. They produce

N
v



Fig. 4.7 . AE: Resistive Wire. Energy loss spectrum for

the resistive wire detector, showing the 3He peak between the

deuterons and the a-particles.
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Fig. 4.8 E: Position Sensitive Detector. Energy loss .

lb.

spectrum for the position sensitive silicon detectors

o e
showing a well resolved SHe peak. ' -
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two signals. The first is proportional to the energy
deposited by the particles, while the second is proportional
to the product of energy and position. The latter signal is

taken off the back ‘'surface &f the detector which works in

much the same'way as the resistive wire counter, except that

.one end is grounded and the signal is taken off the other.:
The position and energy resolution of these counters are
0.5 mm and 55 keV respectively although our resolution was
worse due to target effects. The dimensions of the active
volume for both detectors are: 45-§m x 8 mm x 100 u. They

are thick enough to stop all the particles prodﬁced in the

experiment except protons which do not'deposit enough energy

to be a problem. Referring to equation 4.2, we have:
mE / 22 = constant

for a given radius of curvature. Therefore:
E(a) / B(d) =2 ; ECHe) / E(d) = 8/3

Unlige_for {ﬁé'resistive wire counter, the SHe particles
have the higheét energy in the spectrum which is shown in
fig. 4.8. They are well resolved from the deuterons and «
particles resulting in a much cleaner position sSpectrum.
The onlg drawback to these detectors is theirllength. The
distr;bution of the 3He particles is calculated to be
approximately 10 cm along the focal plane. However, the

solid-state counters are only 4.5 ecm long and it is not

56
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Fig. 4.9  Counter Positions. Diagrém showing the placement

of ;he pPosition sensitive’detectors with respect to the 3He

distribution alongz the focal plane. The scale is for D in
cm. The experiment was done in two bights in order to

collect the full range of the “He particles. The sensitive

A -

area of the detectors is denoted by the line in each Béxg
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4

possible to detect the full range at once. The experiment

'was done in two stages, with the detectors positioned as in.

fig. 4.9. The numbers shown are values of-D, the distance

“along the focal plane from the high o end. Rather <than

i

.varying the magnetic field in the spectrograph, the

bl ~

detectors &ére physically moved in order not to change the

parameters affecting the “He distribution.

b
-~

4.5 Electronics.

»
Schematics of the electronics used 10 - brocess the

-

signals from the solid-state detectors are shown in

-figs. 4.10 and 4.11. Sepagate coincidencq circuits are
required for each position sensitive detector. The two

logic signals are "ORed" rtogether and gate the first four
analog to digital- converters (ADC) which are read

LI

'simultaheousiy by the computer (channel 8). ADC's 4 and 5
are ﬁsed ior the“monitor and the polarizatiorn monitor and
are multfpleied into Ehannel A. The software detects which
ADC has fired by looking at the to‘p four bits of the event
word. The ADC - computer interface 1is done through an
in-house ADC controller and a CAaMAC crate. The computer

used for both on-line data-acquisition and off-line analvsis

was 2 VaAX 11—750.-‘The_data'acquisition software was written

in  EVAL (Event  Analysiss-Language). A spectrum for the
.&:" .
total enerzy loss. (E) is accumulated directly.. The ExP

“ value is divided by Z to obtain a positien spectirum. A two-

dimensional E Vs P . spectrum is also provided.

£ ...
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Fig. 4.10

Electronics  for the

\

is as follows:

The output of the LSD is used to gate ADC's 0, 1

-

AMP - Amplifier.

3He detectors.

'

The notation

LGS - Linear Gate and Stretcher.

TSCa = Timing Single Channel 4nalvser.

COINC - Coincidence Unict.

GDC - Gate and Delay Generator.
LSD . - Logic Shaper anﬁ Delay.

ADC - Analog tolDigigal Converter.

, 2, and 3

which are read simultaneously by the computer on channel B.
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Fie. 4.11 Monitor Electronics. The monitors are
[=J

ADC's 4 and 5 which are multiplexed into channel

computer interface.

input to

A of the
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Furthermore, gates can be set on both energy and E vs P to
obta%n position spectra for a specific particle type.
Finally, all events were recorded on magnetic'tape to allow
for off-line analysis where the eﬁefgy gates d;uld ve set

precisely.

4.6 Beam Steering.

Sihce the particies wvere being detected near zero
degrees, it was Iimportant to‘have a well focussed beam to
minimi;e multiple -small angle ela§$ic and inelastic
scattering which might have been enouéh to mask the OSHe

-
distribution. To this end, the beam line was fe—aligned and
beam monitbrs &ere installed. Although these helped during
diagnosg}c Tuns, a quartiz viewer was more useful dur;ng The
experimént proper.

Drawing on previous .experience with scattering
problems in (a;a) reactions near zero degrees, it was
decided to remove, the Enge target chaﬁber siits. A 1.5 mm
by 3 mm aperture was placed in the target ladder and the
current on it was minimized (¢ 1na). It was then removed.
AS a final étep\ the signals from the position sensitive
detectors were observed oa an oscilloscope while making
small adjustments to the bean focussing.- The count rate,
determined by the intensity of the trace and due mostly to

scaitered deuterons, was minimized. This procedure gave a

well resolved Sﬁe peak and resulted in a low background in

the position spectrum.
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Chapter 5: DATA ANALYSIS AND RESULTS.

\.a

This chapter explains in detail how values of T

20
were extracted from the data. Section one gives experi-
mental details. Sections two and three deal with the .

-~

monitors and questions Qf normalization and bean polari-

zation. ' This is followed by a description of the cali-

bration procedure for the position sensitive detectors in
section four and a study of the resolution in section five.

The formula for calculating the error in Too_is derived in

section six. Results for Tog are given L@ the final §
. B
section. -

-

5.1 Experimental Details. .

v

Two separate experiments were done four months apart
and gave the same results. The values of T20 were averaged,
thereby reducing the error. - .

In the first experiment, six pairs of runs wére done
in the m=0 and @m=1 substates of the beam with the detectors
in position one, while seven pairs were done for position
two.--Tbe average duration of eacﬁ run was 1 1/2 hours o

avoid problems associated with long <term drifting in the

.

1]

tel

polarized ion source. The beam current was approxima
x .

L ¥y



k)

30 nd at the beginnfng of the experiment dropping to about
20 nA at the end. |

in‘the second ?xperiment, four pairs of runé wvere
carried out for position one and three pairs for position
two. Due to the stability of the source in the first
experiment, the duration of tﬂe runs was increased to 2 1/2
hours. The average beam current was 27 nA. - B

A | N

~/
5.2 Monitor Detector.

A spectrum for the monitor detector is plotted in
fig. 5.1. The lOB peaks cone from the 120(3,a)108 reacéion.
As mentibned earlier, elastically scatteredudeuterons from
hydrogen were used to normalize the ‘different runs. The

correction factors thus determined agreed with the norma-

lization using the Faraday cup to integrate the beam current

(less than 1% difference).

LY
5.3 Polarization Monitor.

It was found that it is unnecessary to use i position
sensitive detector to monitor the.polarization because only
*- nt e i - 10 .~.~' v
the 2 excited state of 3 was present in the sgéctrunm.
Only <the energy signal was used, thereby’ simplifyinz the

electronics and the data acquisition programs.

Recalling equation 3-35, we have:
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Fizg. 5.1 donitor Spectrum. Spectrum from the surface

/
barrié; detector mounted in .the target chamber. The peak

from the lH(a,d)lH reaction was used to normalize the runs.

12

The peaXk marked C is from the elastic scattering of

deuterons from carbon, while the '120(3,3)108 peaks are

/

denoted 19B.
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where: 9y aﬁd Sn are normalized to monitor counts. If

R = cojcl, this can be written:

_ l1-R | (5.1)
1 + R/2

¥

This is the equation used to calculate the polarization of

the beam. -
e now calculate the error in P.
2 2 2
R = Uo/c . (AR) _ (Aco) + (Acl)
! R
- 70l 71
If we consider purely statistical errors, a9, = /?1 and
Ly ]
(aAR/R)™ = l/co + l/cl
from which we can derive: -
' 2 _ ' 3 = o
(aR)~° = co(co + cl) / ay go._)
Now :
p= *+-FR
1 + R/2
The error in P is: =
5 2
(a?)2 = (sp/sR)2 (am)2
Calculating this derivative, we get: v
' 2 : 2
_ 9 (aR) (5.3)

4 (1 + g/2yd



-
Substituting for (ARjz in equation 5.3, we obtain an
expression for the error in the polarization as 2 function

of the c¢ross-section:

JL/2 -2
4 (_GO + c:l) °q

AP 1+ (5.4)

o)

3
1 1

~

g

The average value of P was 0.58 “for the first
experiment and 0.56 for the seéond. The quencﬁ ratio method
gave borresponding values of Of70 and 6.65. Previous expe-
riencelhas shown that the quench ratio over-estimates the

polarization by as much as 0.10.

BEquation 5.4 gives ‘2 negligible error for the pola-
rization of each individual run (<0.01). However, P varied
by as much as 0.05 from the beginning of the experiment to
the end, the quality of the beam deteriorating with time.
ance, as will be shown later, the error in the polarization
makes only a -small contributien Yo the errbr “in Tzc,
taking Hnto account all the uncertainties just mentioned, AP

and

was over-estimated to ensure that the true value of P was
included in the range of error. A value of P = 0.6 = 0.1

was used in the calculations.

5.4 Calibration.

' N i
We now consider the problem of calibrating the

position sensitive detectors. What we reguire is an
~

equation relating the energy of the 3He particles to channel



-

number in- the position spectrum. A 228Th source was used to

produce a-particles Wlth an energy of 8.785 MeV. The source
was placed in the target position and the a particles were
focussed onto the detectors. The numbers used here E}e for
the second experiment.
Recalling equation 4.2, we have:
E = (ZeBo)> / 2m .- By = (/2m / Ze) /E
Putting in ‘the mass and charge of the ¢ particle, we get:
B (Gauss) » (cm) = 1.44 x 10° /B (Me¥V) . (5.5)

The magnetic field was measured with an NMR probe for éhich

-

the following equation holds: B (G) = 234.9 £ (MHz).

Sﬁbstituting for B in equation 5.5, we get:
o(aj-= 613.11 /E / £ | (5.6)

where o is ia cm, E in MeV, and £ in MHz. The field was
varied and the position of the ¢ peak was noted for several
points along each counter. Using equation 5.6, a plot of
p Vs chaanel number (ch) can be made (fig. 5.2). An
equation for p 2$ a function of channel number can be found
from these graphs:
B ¢
detector 1: p (cm) = 2.2454 x 1073 ch + 44,99 (5.7)

2.1410 x 10-3 ch +.46.98

detector 2: p (cm)

. -

These equations depend 0aly on the geometry of the detection

system and the gain of the amplifiers. Therefore, they do

&
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.
Fig. 5.2 Calibration. Calibratiom curves for both

detectors in position 2. The response 1is linear in p which®

is proportional to /%.




RHO

RHO -

48.5
48.3
48.1
47.9
47.7
47.5
47.3

45.8
45.6
45.4
45.2
45.0
\ 44.8

detector 1 :

3

¢=.2.245x10 " ch #

+ 54,221

N h *
detector 2 :

p= 2.141x10°° ch #

+&46.983

68



69

not change for different particle types. An  equation

similar to equation 5.5 can be derived for 3He particles:

o(3He) = 532.21 /F /£ (5.8)

-

The NMR frequency remained coanstant throughout <the

experiment at f= 42.271 MHz. Therefore:
o(3He) = 12.59 /& ' (5.9)

Combining equations 5.7 and 5.9, we obtain:

- i
detector 1: E (MeV) = ( 1.7835 x 10™% ch + 3.512 )2

(5.10)

detector 2: T (MeV) = ( 1.7005 x 10~% ch + 3.739 32

o Since the calibration was done with the detectors in
position 2, these equations are not applicable to posi-
tion 1. For the low p, end of the focal plane, the following
equation holds: |

p = 88.4127 -~ 0.387575 D
where D is the distance from the high o end. The difference
in the position of the detectors is Xnown to be D= + 3.5 cm
(fig. 4.9), which corresponds to a difference in p of

-1.357 cn. Making this change to equations 5.7, we can

obtain the analog of equations 5.10 for position 1:



detector 1: E (MeV) = ( 1.7835 x 10™% ch + 3.405 )2 (5.11)

4

detector 2: B (MeV)

( 1.7005 x 107F cn + 3.624 )2

Given the limiting channel aumbers, the energy range

for each detector can be determined (see figs. 5.5-5.8):

Position 1: . -det. 1: 11.99 < E ¢ 12.58 MeV
—det. 2: 13.36 ¢ E ¢ 14.10 MeV
Position 2: —det. 1: 12.47 ¢ E ¢ 13.34 eV

-det. 2: 14.16 < B < 14.37 MeV

One can see that the full K range of 3He particles was

detected (12.0-14.3 MeV).

5.5 Resolution.

We must now select the size of the intervals over
which the 3He "spectrum is to be integrated.. This ‘is
determined by the resolution. The response function.of the
detectors can be determined by looking at the calibration
spectra (figs. 5.3-5.4). These peaks are roughly 12 chan-
nels FWHM, with detector 1 being wider at the base of the
peak (=220 ch). Therefore, a bin width of 25 channels should
be we}l within resolution constraints. This would
correspond to §6 bins across the 3He distribution. This is
many more data points than are necessary and it was decided

to divide the angular range into thirty 8 degree intervals.



Fig. 5.3 Resolution for Detector 1. The width of the peak

is = 12 ch. FWHM, and = 20 ch. at the base.
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= 12 ch. FwWHM.

- 5.4 Resolution for Detector 2. The width

of

the peak

e,

s
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Since the correspondence'bf 8(y) to channel number is not

linear (see fig. 3.2), problems arise for small and large

. angles, where the bin width was increased.

" 5.6 Error in T, ..

20+ ‘

Before calculating the analysing . powers, an
expression for the error 1in Tog LS derived. Recalling
equation 3:34, we have:

c - g
- 17 % -,
T20 (5.12)

P (/? oy + CO//E)

where 5 and o, are the vields for the m=0 and the m=1
[

substates_respectively. and P is the polarization of the

beam.

The error in TOb wWas calcuiated as follows:

3

5 ’ 0 0
(aT54) %= (GTQO) (Aco)z‘+ (§r20) (acﬁ 2. (5T2 ) (ap)z

8P
600 601

where oy = /?B , bay = /?1 , and AP = 0.1. The derivative
with respect to P depends on 7,=9,, while the other <two
derivatives are proportional to %4 and Tq- - Since the yields
are large (300 <g< €000) and the differences are small
(20 <cl—co< 300), the error in P dges not c&ntribute
significantly to the total error. .The contribution from

aP

is.estimated to 'be less than 8%.

3
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The expression used to calculate the error is:

2_\'" 9 + ’ m 2 )
(8Tp) 2 = %y 99 (9 * ) + _*20  (aP)? (5.13)
2 p?( oo/ /2 + /2 o ® p? -

5.7 Resulzts.

| As mentioned at the veginning of this chapter, the
magnetic sudbstate of the deuteron was alternated every itwo
hours on the average. The spectira for m=0 and m=1 were
édded separately and the results ﬁormalized to the monitor
counts. This produced- eight spectra: one for each of two
detectors, for each of two substates, for each of tTwo posi-
tions.. The results for m=1 are plotted in figures 5.5 zto
5.8. The m=0 spectra are not shown since they are similar

to m=1 and the difference is so small that it cannot be seen

LR
[

ﬁﬁless the plots are superimposed on a light table. The “He

position spectra were integrated for the bins described on
page 70 to obtain the vields % and 9, . The angles defining
these intervals were determined from the energies using

equations 5.10 and 5.11. Values of g and 9, were then

substituted into eqs. 5.12 and 5.13 to obtain T20 * Afgo.
The results for experiments one and two are listed in :ables
5.1 and 5.2-respectively. The angle quoted is the angle
corresponding to the middle of the interval. An avefaging
over :3° is assumed ia the data, and no error is quoted for

the angle. The two experiments were averaged giving a

. -

reduction in the errors by a factor of /2. The finat\values

-~

&



. -

Figs. 5.5 to 5.8 Position Spectra. Total 3He position

Specira summed over 211 the runs and normalized to monitor
counts. Spectra are shown for both counters in both

positions for an m = 1 beam.
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Table 5.1

VALUES OF TZO(S) FOR _THE FIRST EXPERIMENT

15.6
21.4
27.2
33.2
39.2
45.2
57.4
63.4
62.4
8l.4
- 91.4
99.4
105.0
111.0
117.0
123.0
129.0
135.0
141.0
145.8
153.0
158.9
169.5

20

-0.05¢2

0.017
-0.093
-0.083
-0.126
-0.061
-0.062
-0.098
-0.062
-0.036
-0.052
-0.055
-0.060
-0.074
-0.039
-0.070
-0.044
-0.073
-0.037
-0.033
-0.007
-0.052
-0.010

AT20 *

0.065°
0.047
0.030
0.025
0.023
0.021
0.019
0.018
0.015
0.013
0.021
0.014
0.013
0.013
0.013
0.014
0.014
0.015
0.014
0.013
0.019
0.024
0.026
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Table 5.2

VALUES OF Tzo(e) FOR THE SECOND EXPERIMENT

8 T2O AT20
15.6 0.044 0.071
21.4 -0.047 0.048
27.2 -0.047 0.036
33.2 -0.048 0.027
39.2 -0.068 0.024

. 45.2 -0.072 0.021
51.3 ~0.069 0.019 .
37.3 -0.072 0.018
63.4 -0.099 0.020
£9.4 -0.071 0.018
75.5 -0.034 0.016
81.4 -0.090 0.016
90.5 -0.051 0.010
88.0 -0.063 0.018

105.0 -0.072 0.014

111.0 -0.051 0.014

117.0 -0.067 0.014

123.0 -0.035 0.014

129.0 -0.056 0.014

135.0 -0.048 0.015

142.0 -0.064 0.015

153.0 -0.081 0.023

170.8 -0.039 0.027

¢
'



RESULTS FOR Tzo(e) AVERAGED OVER THE TWO RUNS

15.6
21.4
27.2
33.2
39.2
45.2
51.3

. 57.3

63.4
69.4
75.5
81.4
91.4
99.4
105.0
111.0
117.0
123.0
1292.0
135.0
141.0
145.8
153.0
159.0
169.5

Table 5.3

20

-0.012
-0.014
-0.074
-0.067
-0.098
-0.067
-0.069
-0.067
-0.098
-0.066
-0.034
-0.057
-0.051
-0.058
-0.066
-0.063

-0.052

-0.053
-0.050
-0.061
-0.050
-0.033
-0.037
-0.052

=0.024

AT20

0.048
0.034
0.023
0.018
0.017
0.015
0.019
0.013
0.013
0.012
0.0186
0.010
0.009
0.011
0.010
0.010
0.010
0.010
0.010
0.011
0.010
0.012
0.015
0.024
0.019
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Fig. 5.8 Experimental Results. Graph of the angzular
‘jiﬁ;ffsﬁx%on of Tzo. It is fairly flat with an ;verage
Y, .

value of between -0.06 and -0.07. -
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of Tzo(e.) are quoted in table 5.3 and plotted in fig

~~

5.9.
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Chapter 6: COMPARISON WITH THEORY.

-

-

In this chapter, the results for Tzo(a) are compared
with the calculation described in chapter 2. The wave
functions which were used zre shown in section one.  There
follows a description of how the calculation depends on the
order of the electric mubtipole transitions, on which
partial waves are inciuded in the entrance channel, on the

<
optical potential used, and on the percentage D-state in the
deuteron which is related to PD(SHe). A correction for the
M1 transitions is described in‘gection Seven, Ihedretidal
predictions for the anzular distributions of other analysing

powers are shown in section eight. Finally, the question of

the asymptotic D/S state ratio is considered in the last

section. %ﬁ

a

6.1 Wave Functions.

As mentioned previously, the 3He wave functions are
labelled®by the amount of D-state present in the deuteron
(PD(d)). This is because PD(d) determines the interaction
which generates fhe three-body wave functions. Furthermore,
there exists a linear relationship between PD(d) andy

P, (°He): Pp(3He) = (1.31 £ 0.02) Py(d) - (0.2 + 0.1).




Fig. 6.1 S-States. . Comparisomn of S-state two-body

projected wave functions. In the peak region the sequence

is, from top to bottom: PD(d) = 2%, 4%, 7%, and 9%, while it

is reversed in the tail.
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Fig. 6.2 D-States. Comparison of D-state two-body

projected wave functions. The sequence is, from bottom to

Top: Py(d) = 2%, 4%, 7%, and 9%.
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The wave Zfunctfons for the .S and D states corres—

ponding to Py(d) = 2%, 4%, 7%, and 9% are plotted in figures

6.1 and 6.2 respectively. They are normalized such that:

usfr)z + uD(r)2 = 1, and must be divided by r to obtain the

true wave functions fS and fD‘

Unless otherwise stated, the following calculations -

were done with the PD(d) = 7% wave function.

6.2 Dependence on the Order of the Transition.

For a beam of energy 19.8 MeV, we have seen that the
reaction occurs at the peak of the giant dipole resonance
(GDR). Hence, we expect the domihant‘transitions to be
electric dipole (E1). However, the angular distributiqn for
Tzo(e) is not symmetric about g0°. This indicates that
electric quadrupole transitions (E2) must be included. For

completeness, a calculation was done adding the contribution

from electric octupole transitions (E3). The results of
these calculations are plotted in figure 6.3. It is obvious
that Bl and E2 transitions are important. The inclusion of

E3, however, does not change the angular distribution

significantly, its effect showing up only as a thickening of
the El + E2 curve. E3 transitions are therefore ignored in

the remaining calculations.

6.3 Dependence on Partial Waves.

Partial waves up to L=4 (L=3 for E3) were considered

in the entrance channel. Table 2.4 shows that odd



Fig. 6.3 Transition Dependence. Depéndencel of Tzo(a) on
tﬁe order of the electro-magnetic transition. The dashed
curve is for El only, the solid ‘curve is for El + E2, aad
the inclusion of E£3 shows up only as 2 thickening of this

line.
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Fig. 6.4 Partial Wave Dependence. Tzo(e) for different

partial waves in the entrance channel. The lower dashed
curve is for P-waves only¥. The lower solid curve is for P+D

waves . The uppef dashed curve is for S+P+D+F waves, and the

upper solid curve is for S+P+D+F+G waves. -
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partial waves are associated with El transitions, whilé even
partial waves correspond to E2. This is to conserve parity
in the reaction.

'The following notation is used: S-wave (L=0), P-wave
(L=1), D-wave (L=2), F-wave (L=3), G-wave (L=4). Calcula-
tions were done for the following combinations of partial
waves: P, P+D, S+P+D, S+P+D+F, and S+DP+D+F+G. The results
are plotted in fig. 6.4. The S-wave is not important and
the P+D and S+P+D éurve are identical. The inclusion of F
and G waves is obviously important; the F-wave to obtain the
correct magnitude, and the G-wave to re-gain the asymmetry
about 90° lost with the inclusion of the F-wave. i semi-
classical argument for this can be made. Let the deuteron
approach the proton with momentum P at an impact parameter

R. The orbital angular momentum is [, = 5 x R. Since p and

B are perpendicular, p x & = pR, and L2 - 'szz.
Substituting for p2 from E = p2/2m, we obtain: L2= 2mE82.
From quantum mechanics, L2= L{L+1) hz. Combining thesez two
equations, we get: L{L+1) h2 = 2mER?. Multiplying both

sides by c2 and putting in numerical values:
mge = 1876.1 MeV, E = 19.8 MeV, hc = 197 MeV-fm
we obtain:
L(L+ 1) =1.914 8%* (R in fnm) -

S—wave: L=0 - R > 0.00 fm

¥

P-wave: L=1 R > 1.02 fm

D—wave: L=2 E > 1.82 fm

+
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F-wave: L=3 =+ R > 2.50 £m
G-wave: L=4 + R > 3.23 fnm
It will be shown that 70% of the El transition amplitude is

between 2.5 fm and 6.0 fm. Hence, most of the capture

occurs in the tail of the wave funection, and it is not

surprising that F and G waves are important.

6.4 Dependence on the Optical Potential.

As previoquxfmenfioned, the initial state wave
function was calculated from the Distorted Wave Born
Approximation (DWBA). The optical potential parameters are
listed in table 2.5 (pot.l). A second potential, pot.2,
taken from reference (KiSB)J was also used to see if the
calculation is sensitive to the optical parameters. The
results are plotted in fig. 6.5 and one can see that. there
1s not much difference between the two potentials. The
third curve on this graph was obtained by setting the
optical potential parameters to Zero, fhereby mimicking a
plane wave (PW) in the entrance channel. Again, not nuch

difference is observed, even in this extreme approximation.

6.5 Depeandence on P:gdg.

With these preliminary calculations done, we can now
study the dependence of the angular distribution of TBO on
the D-state probability. Taking into account the results of
the previous sections, potential one was used with partial

vaves up to L=4 and El and E2 transitions included. Curves

"
1
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Fig. 6.5 Potential Dependence. Too(a) for different

optical potentials. The solid curve is for potential i,
while the dashed curve is for potential 2. The dotted curve

corresponds to a plane wave approximation.
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for P,(d) = 2%, 4%, 7%, and 9% are shown in fig. 6.6. The
disagreement for large and small angles will be discussed in
section eight. °~ Contrary- to what was expected, _tpe
calculation does not show nuch sensitivity to the D-state
probability. To understand this one must 1o§k at the Qave
funﬁtions and the matrix.elements; If the radial integral
is broken into éections, the following'cﬁn be deduced for
the E1 P-wave transifiﬁg ampii;udé:

- =70% of it is'betweén 2.5 fm and 6.0 fm

- =20% is inside 2.5 fm

- =10% is inside 2.0 fm
The wave functions are not much different in the interval
from 2.5 fm to 6.0 fm (see figs. 6.1, 6.2). This is true
for both the S and D states. Most of the variation occurs
inside 2.5 f£m. The observed deviation in the calculated
angular distributions therefore arises f:om small
differences in the tail of the wave functions, with only a
small cont;ibution from the interior. The seﬁsitivity to
PD(d) is also reduced by the use of Two-body projected wave
functions. Table 2.6 shows that although a variation in
Py(d) from 2% to 9% results in a P (*He) of between 2.16%
and 11.52%, the difference in the D-state probabilicy for
the two-body wave fuuactions is only 0.72% to 1.58%.
Comparing fhe v;lues of PD for the 4% and 7% wave functions,
we get: -

P7(d) / P4(d) = 1.75

~

P?(3He) / P,(°He) = 1.80
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Fig. 6.6 P,(d) Dependence. 'Tzo(a) for different D-siate

probabilities.” The solid curves are for Pn(d) = 4% (upber)
and PD(d)'= 7% (lower). The dashed curve corresponds to

PD(d) = 2%, while the dotted curve is for PD(d) = 9%.
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P, (d+p) / P,(d*p) = 1.25

Although the sensitivity to the D-state is not as
large as expected, a range for PB can be inferred by the
data. It is clear that the curves for the 4% and 7% wave
functions fit the data better than the curves for 2%’And 9%.
A plot‘of the analysing power at 90° as a functionﬁof Pny(d)
is éhown in fig. 6.7. The horizontal line is one standard
deviation from the experimentai value of Tzo(%?o)‘ Taging

into account these two figures, the rahge of PD(d) deduced

is:
0.04 ¢ PD(d) £ 0.07

6.6 Second Calculatidn.

A calculation using a different wave function was
done by F. Santos (Sa84). The model used is described in
(4384). The wave function of Sasakawa and Sawada (SS79) was
used in the calculation and the results are shown in fig.6.8
where they afe compared to the best fit for our c¢alculation
with Gibson and Lehman's wave funciions. Santos generates
only one curve corresponding to a D-state probabilicy of

8.02% in the three-body wave function.

6.7 M1 correction.

As mentioned above, the agreemen: of the calculation
with the data breaks down badly at large and small angles

(8 ¢ 25°% r 5 155%°). This is thought to be due to the

96
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Fig. 6.8 Comparison to Santos. Comparison of the best fit

for the . present model to the calculation of Arriaga and

Santos (dot-dashed curve) which uses the wave function of

Sasakawa and Sawada.

.-



.05

-20

- Comparison

to *Santos




. omission of M1 transitions (AD81). The M1 matrix elements
are difficult to calculate because the initial and final
states are not orthogonal. This is. because they are

obtained from two separate calculations using different

Hamiltonians: a DWBA model for the initial state and Faddeev

% .

eqﬁations for the bound state. This leads to spurrious ﬁl
strength: T;e situation is not as serious for the electric
m&ltipoles because the. et -term in the‘ operator allows
transitions between radially orthiogonal states and the
spurrious stfength from tﬁe non-orthogonality _is only a
Jberturbation. Before a calculation including Ml terms.cag
be done, ;he vave functions must be orthogonalized. This is
not a trivial qperatioh with numerical functions.

Instead of attempting this tedious calculation, the
M1 matrix elehents were treated as parametérs and were
fitted to the data. A standard least-sguares fitting
program was unable to cbnverge in'a.reasonable time. The
following procedure was used to obtain the best values for

the amplitudes and relative phases of the M! matrix

‘elements. ) )

.

Table 2.4 shows the possible Ml.transitions; of which
thére are five. If Qe restrict ourselves to S-wave capture,
only the zsé and 4S4 matrix elements remain. Thesé will be
degoted'A and B respectiQely. The ak and Ck coefficients

gilven in appendix B are modified as follows:

Jﬁ'ﬁ,

ay = ag(old) + 0.333 a° + 0.667 B2
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a, = 2,(old) - 0.667 2p_4 -0.471 %P8 + 0.667 ®p,a
C -~ 1.401 “p,3
2, = a,(old) - 1.155 2D, 4 -1.155 *D.B + 1.155 2p_a
2 = 2 4 4 s
- - 2.160 “p,B
ag = a3(old)
ay = aé(old)
Cq = co(old)
¢ = ¢, (old) = 0.471 2§23 - 0.667 4P2A + 0.333 4928
+ 0.471 ?p,B - 0.211 *p 4 - 0.843 *p,3
+ 0.632 4F4A - 0.632 °r,3
©3 = p(old) + 0.471 4B + 0.236 3° - 0.816 D3 + 0.315 ‘s 4
~ 0.816 4343'3'0.816404A + 0.816 Zp 3
- 0.436 Dga - 1.091 *p B + 1.069 G a
- 1.069 %8
Cq = c3(old)
c4 = cé(?ld).

where the phases'have been omitted as in appendix B

(r.e. 0.867 2P2A = 0.867 “PZA coS (¢(2P9) - (). Fgr the

best fit without Ml'(PD(d)= %), the matrix elements are

listed in table 6.1. Putting these values into the above

equations, and using cos (ea=3) = cos a coOs 8 + sin « sin 3,

we get:

’ : 2 )
o = 25(0ld) + 0.333 A% + 0.667 37

a =
?1 = al(olq)
ag = az(old)
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Table 6.1-

MATRIX ELEMENTS FOR PD(d) = 7%

. Amplitudes and relative phases of
obtiined from the Pb(d) = 7% wave functio

Matrix Element

a

3 <%
G 1=

4g

W a
(9] [1a8 Jisy

N

Amplitude

0.98836
0.98836
0.12421
0.03928
0.04659
0.09628
0.09628
0.00502
0.00681
0.00364
0.00370

the matrix elements
n. :

Relative phase

208.94
208.94
31.54
211.54
185.60
5.59
5.59
128.04
185.81
5.81

6.01
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a, = aé(old)
2, = a4(old)'
cb = cg(old)
.c-'=_cl(old) - 0.09285 A cos ¢A - 0.04187 A sin @
+.0'09277 B cos R

a
0.04183 B sin ¢B

+

2
cy = cz(old) +,0.471 A8 cos'(eA ¢B) + 0.236 B

+ 0.00536 A cos ¢A + 0.00406 A sin ¢A
- 0.00536 B cos éB - 0.00406 B sin °g
c3 = c3(old)

c, = 04(old)

The values of 1, (old) and ¢ (01d) for P (d)=7% dre listed in
table 6.2. .

The equation for 2, is ignored since aq affects only
the total cross—sectiOn‘anﬁ therefore is simply an overall

normalization. Tge following constraints are made on T

20°
Tp(0%) =0 g =0 - o+, = 0.05401
Tyo(180%) = 0« hk (=) ¢ =0 = ¢y~ e, = 0.04129
These give: | A i
c, = 0.00636
. —Cg = 0.04765
Tnerefgre, we have two equations and ﬁduf unknowns. To

reduce the number of variables, we consider the shape of the

Legendre polynomials involved:

n

Pl(cos g) cos 8

1/2 (3 cos?s - 1)

Pz(cos‘s)

P2 is symmetric about 90° and large for extreme angles,



Table 6.2

&, AND c, COEFFICIENTS FOR Pp = 7%

1.0000

o
o
I

a, = -0.9631
'a3 = 0.3023
a, = -0.0265
¢, = 0.00683
c2 =  0.04400
¢y = -0.00636
c, = -0.00005



while Pl is anti- symmetrlc about 90° If we wish to change

iQ3

the values of Tzo(e) for small and large angles bﬁt‘not the

shape of the curve between 25° and 1550, we must have ac 0

l=
and‘Aco & maximum. Taking the derivative of the expression

for cl with respect to ¢A and ¢B equal to zero, we get:

~

L4

¢y = -65.73° or 114.27° ; 45 = -65.71° or 114.27°
We choose the combination of these which maximizes aco for a
given amplltude of the matrix elements. As a final approxi-
mation, let B = 4/10 which is consistent with the ratio of
the amplitudes of the S= 3/2 ‘to S= 1/2 channel in all
previous calculations. Taking all this into account, we
choose: = 0, = o = 114.28° |
Ac, = 0.04946 4% + 0.00135 a

For dc, = 0.04765 - 0.044 = 0.00365, we get A = 0.2584. It
was found +that these 'parameters do not give symmetric
angular distfibutions at extreme angles where the

contributions of M1 are now large. A further iteration on

the phase angles was done and the following equations were

used To generate Too(a) curves:

5y = ¢y = 113° ;. B = a/10
¢, = 0.00683 - 0.002036 4
¢, = 0.044 + 0.001479 4 + 0.04946 A2

Plots of Too(a) for different values of A are shown 1in

fig. 6.9. One can see that A4 = 0.30 is sufficient to remove,

the disagreement at extreme angles.



s

Fig. 6.9 M1 Correpfion. The M1 matrix elements are treated
a8 ‘parameters. fhe curvég correspond to (from_ top to
bottom): A =.0.30: 0.25, 0.20, and 0.0. A contribution tp
the total .cros§~section of 3% kA= '0.30) by -the M1

transitions is sufficient to account for the extreme angle

discrepancies.
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Finally, we calculate what Mljstrength corresponds to

A = 0.30. To do so, we consider the 2, coefficient:

2,2 4.2 2,2 4.2

ag = 0.333 “P; + 0.333 “P] + 0.667 202 + 0.667 %p?
+ 0.687 4F§ + 0.667 202 + 0.687 432
4.2 2.2 4.2 4.2
+ 0.667 “pg + “pZ + *pZ + %62
2 2

e ‘ + 0.333 A + 0.667 B

where the P and F.matfix elements are El1, the S, D, and G
elements are E2, and the A and B elements are Ml. The value
of the matrix elements can be found in table 6.1, wich
A = 0.3 and B = 0.03. We get:

2g = 0.984474 (BE1) + 0.01554 (E2) + 0.0306 (f1) = 1.0308 °
Re-normalizing the matrix elements by /ITE§6€, we getf
. 2y = 0.95525 (E1) + 0.01207 (E2) + 0.02969 (M1) = 1.00

and hence the relative strengths of the transitions are:

El : 95.5%
) E2 1.5%
M1 3.0%

Although this calculation has many approximations, it
does show that it is possible for M1 <transitions with a
total strength of only 3% to remove the disdagreement between

theory and experiment at extrenme angles.
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6.8 Ty, Too, 0(8).

-The matrix elements for El and E2 transitiogs with

PD(d)? 7% were used to calculate the other tensor analysing
powers TOl and T22, and the‘differenti&l cross-section a(9).

The vector analysihg power AY (or iTll) was not calculated

»

106

because spin-orbit effects in the entrance channel should be

important in this case. Results for. T2I are shown 1in
fig. 6.10,. whilg T22 is plotted in fig. 6.11. Attempts were
made to extract the differential cross-section from the
data. Thé correction that must be made due to the entrance
slits of the spectrograph is described by 3Belt (BeT70).

Problems were encountered because of a contamination of the

spectrum near 90O by the 1

60(&,3He)15N reaction. This is
also why‘twq data.points in this angular fegion were ignored
in tﬁe TEO ﬁnalysis. The ;ngular distribution of the
differential cross-section is therefore distorted. Since
the cross-section has beenqwell studied (BB70), it was not
deemed necessary to pursue this g%int. Nevertheless, a

calculation of the cross-section was done and 18 snown in

fig. 6.12. This agrees with the calculation of Xing and the

"reader is referred to XKR83 for a detailed discussion of the

differential cross-section.

6.9 Asymptotic D/S State Ratio.

As described ia chapter 2, it should be possible to
extract a value for the asymptotic D/S state ratio 7. The

asymptotic wave functions are given on page 23. The above
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Fig; 6.10 Calculated T,
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The P_(d) =
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> PR

* Fig. 6.12 Calculated differential cross-section. This

Agrees withuthe‘calculﬁtion of King et ai.(KRSS).
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calculation is repeated using these functions instead_oi

reallstlc wave functlons. A comparison of the S- states is .

shown in flg. 6.13. The two curves are almost ldentlcal_

[

outside 2.5 fm. This is reasonable since the tail of the .

wave function  should be .exponentially decaying. | As seen
above, only 10% of +the El, P-wave 'traneition anplitude

occurs laside 2. O fm for realistic wave {unctlons whether

tran51tlons t0o the S—state or the D-state are conSLdered._

The corresponding percentages with the asymptotic wave
functions are 153% for transrtlons to the S stdte and 43% for
the D- state.> | Although the S—state tranSLtlons are
reasonebly well represented using esymptotlc wave functlons
the D state transitions cre.erossly over—estlmﬂted in the
interior leadlng to-a value of T20 that is too large. Th}s
is due to  the l/r“ and l/r terms in the Dﬁstate wave
function. Hence, even thougn the_radidtire capture oc¢curs

in the tail of the wave function, the reaction is not purely

asymptotic and it is difficult to obtain 2 model independent

value of n. However, since most of the capture amplitude is
outside 2.0 fm, and_since the ianterior contributes almost
equally to the S=1/2 and S=3/2 channels with realistic wave
functions-(reﬁember we are ceoncerned with the ratio of these
channels) the asymptotic wave functions were- cut off at

r= 2.0 fm, and Tzo(e) was calculated " for different n.

Results for =n= -0.02, -0.03, and -0.04 are plotted in

fig. €6.14. As found by Arriaga and Santos (AS84), T,y is

proportional to n. A4 wvalue of 1= -0.032 : 0.008 is



Fig. 6.13 Asymptotic Wave Function. Comparison of the

.~

shape of the realistic .and asymptotic S-state wave

functions. - )
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«

Fig. 6.14 n Dependence. T5o(8) for different values of the
asymptotic D/S state ratio n with T.ye = 2-0 fm. From top to

‘bottom , the curves correspond to a= -0.02, —0;03, and -0.04

respectively.
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_extraéted from this graph. This is consistent with the
result of (AS84).

To studf the effect o0f <the cup—off radius Lout’
~calculations were done vgr}ing this parameter while keeping'
n fixed. The resuits fof n = -0.03 and Toqt™ 1-5, 2.0, and
2.5 fm are shown in fig. 6.15. We can see that changing
Tout by one half of one fermi is equivalent to a variation

of 0.01 in . Hence, the error in r introduces an

cut
‘additional uncertainty of 0.0l in the asymptotic D/S state

ratio. The final value we obtain is:
‘n = -0.032 * 0.014

‘This’ result is useful since the pPrevious range for n as
determined from the D, parameter of DWBA (see chap. 2) is:
-0.065 & n ¢ -0.039, and we can therefore set a new upper

limit on the magnitude of n(In] & 0.046).




F}g. 6.1 Tout Dependence. Tzo(e) for different value§_o;

[

the cut-off radius with n = -0.03. From bottom to top, the
curves correspond to r = 1.5, 2.0, and 2.5 fm

regpectively.
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Chapter 7: CONCLUSION.

In conclusmon we wiil examine what has beeﬁ leerned
in thﬂs study and what work‘ is necessary to ettend our
.Anowledge of the three-body nuelear problem even further.

The first point to'be made'concerns'the_data
theﬁselves. The detection of thHe recoiling ;ﬁe particles’
has allowed high'quality data to be collected which was not
possible with other techniques. The quali?} of these data
.1s determined both by their statistical accuracy and by the
-number of pointe obfained in thée angular distribution. This

distribution is fairly flat with an average value for the

analysing power of:

‘The data were fitted to 2 two-body direct radiative
capture model using wave functions generited from Faddeev
equations. These wave functions covered a range of 0.74% to
11.52% for the D-state probability in the three-body gzround

state. Although the sensitivity of the calculation was not

as good as expected, a range for PD could be determined:
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ED(3He) is a prooerty of the 1nterlor of the nucleus.
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Indeed, flg._e 2 shows - that the wvariation in the D-state‘

wave functions occurs mainly 1n51de 2.5 fn. The beam energy
obtainable at the Mcﬁaster Tandem Accelerator allows us to

probe only the edge of this region, and thlS is why tne

sen51t1v1ty of this measurement to PD is ‘reduced.
The data were also analysed in terms of asymptotic
wave functions in order to determine zthe asymptotic D/S

state ratio n. A value of: : _ : _ . ——

n-= -0.032 = 0.014
was found. However, this determinetron is model dependent

because the value of n‘whioh gives .the best.fit to the
angular distribution of TZO depends_on the choice of Teut
the radius at which the asymptotic wave functions are cut

off. Nevertheless, this measurement is an improvement over
earlier results 31nce it sets a new upper limit, and it 1s
the first direct determination of a, the previous range
having been derived from the 02 parameter in {(d4d,t) and
(d,BHe) reactions. ' ’ o L

| An immediate extension of the present work is to
measure T20 for a somewhat higher-beam energy to probe
deeper into the nucleus. It is-hoped that'this will improve
the sensitivity to PD(BHe):; Furtherdore, 2 measurement at
lower energy may remove the dependence of g on The value of

rd

the cut-off radius, ello&ing a mnodel independent



determination df this quantity.
| Flgures 6.10 and 6.11 show calculations for 121 and
' T22; Measurements of 'I‘21 were attempted but it was hot

deemed fruitful to continue since they are difficult and T21

does -not show more sensitivity to the D—state probablllty

117

than T20 The small value of T22 makes a measurement of-

this quantlty nearlv me0531b1e because the statistics

required would ake the experlmenu prohlbltlvely long.

A

A more prom131ng etperlment is to compare the vector
P g

analysing power AY {or ll_).for the H(d,v),He and

2H(5,y)3He reactions. It has been calculated that the ratio .

of these quantities should.be sensitive to fhe chanﬁel spin
(S=1/2..0r $=372) (KR84). " - Since the $=3/2 channel is related
o the D- state orobablllty, thlS study would be useful. The
first part of this . .comparison hﬁs been done a; McMaster
-uSLBg the recoxl method and the seconq experiment is planned
for the near futire. - ',

©As mentioned in~éhapter 2, initial state interactions
betweeg the deuteron ;nd the proton were ignored in the
calculation. Theéé could lead to mixiﬁg df the S=1/2 and
S=3/2 channels.‘"Hencé, an ob?ious improvement to the theory
would be #‘ full thrée—body cal¥ulation im the entrance

channel which would take into account these‘effects.

-

‘In conclusién, we mention that radiative capture has

also beer found useful in the study of other few body
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systems. In particular, the use of polarized beams has

improved our ability to study small components of the wave

function. E ' -



Appendix A
RELATIVISTIC KINEMATICS.

The eéuations introduced inlchapfer 3 wiil be derived
-in this-appendi# which i@ an extension of ref. (Mo060). A
good treatment of tﬁe_kinemapics of nuclear reactions can be
found in ref. (BGE1).  Conmsider the inelastic collision
5(1,3)4, where particle 1 strikes particle 2, which is
stationary, resulting in the éjeéction of particles 3 and’ 4
in the directions (Q3,¢é) and (84,%4) respectively. TO.
avoid lengthy expfessioné inovolving the velocity of-lighi <,
all quantities are given in .energy units. Hende,. for
particle j, we have: |

2 i - 2- 2
=m, ¢ ; P.=p.c W, =E.+ M, =(."+ P 2)1/“

M. ; . . M. .
J J J J J J J J J
where mj is the rest mass, pj is the momentum, Wj is the

-

total energy, and Ej is the kinetic energy. In what follows,
primed quantities refer to the relativistic center-of-mass
frame (CM) in which the total linear momentum vanishes.

Momentum and total energy must be conserved in the

-
—

reaction; therefore:

il
ki

+ .
el

- . E - -
Py ® Py =Py + By (&-1)
R A AN ) (A.2)
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Using the facf~that partiqle 2 is at rest leads to:

| _ B, = By + §.4' ce L (A.3)
N ‘ N ‘ - Wl +.M2 = WS + w4. T (ALY
Decomposing the momenta into <their cemponents in the QY
 frame, we get:
Py = P’ sin(e') cos(s')
p! = p' sin(6') sin(e') (A.5)
oo b ) : . _
P, = B’ cos(e')
e the total momentum venishes in the CM frame: - )
P3.51n(eé) ggs(¢é) + Pé s;n(eé).cos(¢é) =0 (A.6)
) P3 sin(as) sin(¢3) + P4 sin(eé).sin(¢4) =0 (A.7)
Pé cos(sé) + Pé cos(ei) =0 (a.8)
Dividing eq. A.6 by eg. A.7, we have:
cotan(eg) = cotansey) = sy - ¢i| = = (A.9)
which gives:
cos(¢4) = —cos(¢3) and Vsin(¢4) = —sin(¢3) ‘(A.}O)
Using A.10 in equations A.85 to- A.8, we get:
[~
'D' 'L' 3 = ] . T - -, - T - - 3-. 1
Pa 31d(93) P4 51n(eé)}_ uan(BS) -t “(94)
98 cos(8L) = —P4 cos(aé) ~
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- sia(eé) = siq&aé)
pos(eé) = -cos(eé) _
- aé +'eé =7 _ (A.11) -
i 3T P Az

'Equatidns 4.9, A.li, and A.12 are the familYar result that
the proaucts of the réactioﬁ recoll from each otherAin a
straight line- and have the S§me momentum: [P|] in the CM

kf:ame.

Since momentum and energy fprm a four-vector, their

components in the lab and CM frames are related by a Lorentz

transformation:
Py =Py 5 Py =Dy, - (4-13)
‘ P, =y (p, - BW) ; W' =y (¥ - Bp,)
where: 8 =v/e , y = (1 - 52)_1/2 ~ | (A.14)

and v is the velocity of the CM frame in the 1lab frame.
.From the definition of the CM frame with respect to the

-initial particles, we have:

PleBy=0 - Bl v, =0

hd Y (Plcos(el) - BWl) + Y (P2¢OS(‘32) - 8w2)= 0

1
Py -8 (W, +Wy) =0 = "3

Since 8, = 0 and P, = O:

By o/ (W + W)
8 =P/ (W + M) (4.15)

-

\\/

4



The groundwork is set to calculate the quantities of
interest, Idr the study of the lH(a,y)sHe,feaqtion, namely
the energies and directions of the outgoing particles.

First we cglbulate the energy in the CM frame of particle 3.

=

[
..I.
=
It

4 vy ( WS - 8 P3 cos(es) + W4 -8 P4 cos(eé) )

T LWy ¥, -8 g§3 cos(8,) + P, c95(e4)).] (A.16)

From A.8 and A.13, we have:

gl

pzS * pz4 .
y ( P3 cos(aa? — 3 WS Yy oy ( P4 cos(e4) - 8W, =20

= Q

- P3 cos(83) + P4 coS(eé) = 8 (Hs f Hé) (A.17)
e .
Combining A.16 and A.17,we obtain: ) . )
[ - 2, T = 7 .
W+ Wy = v (1 -89 (W + W,) 1/yl(w3 W) (4.18)

b]

~

-

Let us now express 1l/y in terms of masses and energies:

Vr = =-sHY2 1o 2w v uy?y g2

where equation A.15 was used for s.

T .- - 2:. | 2. 1 2

~Recalling that Pl = Jl - Al'
2 w 2 1

/v = (Ml + 42 + 2 M2 Wl)

,» We gan write for 1/vy:
/2, e o '
/ (Hl + Az)

Substituting into equation 4.18 and recalling that w3 + Wé =

Wy o+ Mz;-we get:

Wioe W o= 0,0 s 2 s 2 w2 (a1e
3 7 Wy = QLT T s 2, W) (4.19)

122
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. : . . | - ‘2 t |2 1/2
and finally: W4 = (WB - M3 + M4 ) .

Putting this into A.19 and solving for W!, we obtain the
"final expression for the energy of p&rticle 3 in the CH

frame:

—_

Wy = a/2’( 42+ w2y Wy yL/2 ' . {A.20)

2 2
PR \‘24. 2 2 3
where a = Al + Az : MS - M4 + 2 12 ¥

1 {a.21)

We now calculate the angle eé at which particle 3 is
ejected in the 'CM. frame as a function of E4, the kinetic
energy of particle 4 in the lab frﬁme. Since this relates

3He particle,

the angle of the Y-rayrto the energy of the
this makes the recoil method possible. Eq. A.13 gives:

Py cos(8}) = v (Py cos(8g) - 8W4)

Wé = vy (W3 - 8 P3 cos(93))
Solving for P3 cos(ss) in the second equ&tioﬁ and substi-

tuting into the first, we have:
/

~ . . § o~
P3 ;03(93) = v ¥ w3/5 - WB/BY - BMS )
o

= v L - 8Dwg/s - wy/sy )

=1/8 ( Wy/y - Wi")
where we have used y (1 - 32) = 1l/y. Since particle 3 is =a
y-ray, it has zero méss and Wé = Pé. Therefore:'_

cos(eB) = l/s‘.\'3 ( WSfY --w3 )

- A - = M - . ¥ M ; S =
Recal% eq. A.l4: WS Wl + 42 N4 Ye have seen Fha
E

j = E; + Mj. Therefore NS = E, + Hl + 12.— E4 -M,, and

5
(

»
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finallf:'

cos(83)= 1/8Wy [ 1/y (By + M, + M, - M, - Ey) - Wy j (4.22)

where W, is known from eq. A.20. Hence, we have a rela-

tionship between 8! and E(3He).

%

The final point to study is the angular distribution

" of the SHe particles. From eq. A.13, we have:

Wé = v (W4 - 8 P4 cos(e4))

- cos(e,) = 1/3P4 (W, - Wé)?)

e 5 2 _ w2 .2 v v2 g2 _ o2 . -
.bU.L.- P4 = W4 - }414 = (E4 +‘ u14) - :.\14 - = E4 + 2 {4 E4
and: W4 = Eé'+ M4.
Therefore:
Fo
- 3 - - 2 A — 1 2 . .
cos(8y) = (Ey + Uy - Wy/y) T8 (8,2 + 24, 5,)% (4.23)

A

oI



appendix 3

1]
COEFFICIENTS a, AND i

This dppengix gives.expressions for the 2y and Sy
coefficients used to calculate Tzo ia the following

equation:

. ,E ¢, P (cos(e))
- T (8) .= k k *k T
1 20 =4

2

by .
< ak Pk(cos(u))

The equations defining these coefficiénts can be found in
ref. (SY¥79b). The notation used for'the matrix elements is
defined in chapter 2. The relative phase_facpor has been
omitted from these expressions and is assumed included:

2, 2 - oz 24 2
'Pz D4 = 1.155

Note that only El and E2 transitions are included here..

. -~ ' )
ie. 1.135 P,%D, cos(+(*Py) —-2(%D,)).

2

- ' 2 4. 2 . 22 a4l 2
2g = 0.333 “P,” +.0.333 Pz» + q.667 P,~ + 0.68N P,”
4_ 2 2.2 4.2 4. 2
+ 0.667 “F,° + 0.667/°D . + 0.887 °§ + 0.667 D
4 ( 4 4 4
2. 2 4.2 4. 2°
+ D6 + D6 + . GG.



fo
=Y

1.155 2P

-

+

~ 0.667 P2 P

- 2.286

2_ 4 ) ;
0.867 "P,°P, - 0.236 P, - 0.422 “p “p

-~

+

+

126

2. 4., 4 4, 4
5 D4 - 0.816 "P,°S, + 0.818 P2

25, 2 2, 2 4, 4
0.231 P4 D4 + 2.078 7P D6 + 0.516 P4 84.‘

+ 0.310 4F44

Dy

0.413 “P, "D D4

2
0.248 F4 D

2. 2 4 4 4_ 4

-0.333 %p,% « 0.267 %p,2 + 0.400 %p %F

4 Tq
“r,% + 0.333 ?p,>2 ®p,,ng

4 4
5 + 0.382 D4 06.
4 2 4 4
- 0.300 D6 G6

153

X
158

0.267

+ 0.286

- 0.667 *s,%p, + 0.535 %s,%

W

¥

0.571 ®p% + 0.204

+ 0.676 Ip

R

4., 4 4
- 0.826 F4 D4 + 0.662 F4.D

20 20 L 1 man 4o 4 o 4
DDy + 1.746 “s %G5 + 1.222 D
. 4. 4 .2

- 1.247 "p,%6, - 0.571 “D.° + 0.653
. r) N
- 0.387 466“

2

2, 4 4,2, 4 4

P *F, + 0.377 *»,% + 0.566 ‘s . |
R o

0.377 *r,* + 0.043 % %D, - 0.943 %s,%p =

4 Dy

2 a o *
0.943 ¥s *p _ 0.755 2 °p %
4

1.265

4 74
'0.505
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. 2 4 2. 4 4. 2 -
¢y = - 0.816 “P,"s, + 0.816 Py D, + 1.155 “Pgp,

+ 0.577 %p_4%g -.0.577-4P24D4 - 0.163 °p 45
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