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ABSTRACT

H~rpes Si.pl~x Virus DNA displiYs i number of unusual
(

features which

r--

I
have been the subj~ct of intense scrutiny in a number of laboratories.

The genole is cOlposed of two segments, each of which IS flanked by

inverted repeats. These seglents invert freely with respect to each

other generating equilolir qUintities of faur different isolers. This

phenolenon, called s~g.ent inversion, WiS reput~d to be the result //

site specific recomhinition lechanisl operating on the terlinir-;;peat,

the 'i' cequence, which is part of the inverted repeits flanking each

seglent. The 'a' sequence/was also ilplicated is the cleavage~packaging

signil utilized by the .vlrus to process viral DNA concatelers. The

underlying lechanisl of this pr~cess was believed to be a double strand

break it i sp~ciflc site ~~i!!~~a ho 'a' sequences. The- lodels of. HSV

laturitlon w~r~ deflcl~nt, however, in explaining several phenolena,

nal~ly the tendency of the 'i' sequence to accululate tandem iterations

of Itself, the isy••etric distribution of these tandem iterations to one

end of the geno.e, but not to the other, and the ibility of defective

geno.es, 'which do not have tinde.ly iterited 'a' sequences, at least

"..J

initiilly, to be efficiently packaged. have shown that the "a"

sequence actuilly contains two signals for cleavage/packaging, not one,

that the cleivage occurs it specific distances ~rol these signals, not

In specific sequences, and that the cleavage mechanism results in a

duplicition of the cleavage signal and flinking DNA~ Furthermore, I have

deter.ined that the 'a' sequence is aei i target for site specific

recombination, and thit therp !~ better evidence to support the idea

(Ii i )
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that legment inYer~ion il acco.plilhed by a nu.ber of related, but

independent mechanis.l, including generalized reco.bination.
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INTROOUCT~~/

When Gregor Mendel's brilliant insights emerged from obscurity

at the beginning of this century, bi?logy moved firmly Into the

scientifIc realm. The mechanIsm of heredity could be seen as a process

that obeyed Newtonian-like laws, and could therefore be studIed with

scientific approaches based on experimentation of cause and effect.

The r.pid expansion of knowledge in the field of molecular

biology has produced a set of fairly flexible rules by which most

organisms seem to conduct their inner affairs. say flexible because

for every "rule" there are usually exceptions of one form or another

(Nature is something of an opportunist). Indeed, even Mendel, whose

~"~Manded too perfect by some (Whitehouse, 1977),

apparently fai ed to make observation of one basic' feature of heredIty

•
which may eventually hold the key to an understandIng of larger

experIments

mysterIes such as evolution. That feature is the ordered linkage of

genes within a chromosome. It was discovered by early geneticists

attempting to repeat Mendel's experiments wIth other organisms and

expanded lIbraries of 'characters" or genes. Even after linkage was

established as a general feature of heredity, however, exceptions ~gain

were found toethe new' "rule'. These were discovered to be the result of

a fairly ubi~uitous process, known as recombination, in which alleles

of different genes appeared to move from one chromosome to another.

This ability of genetic material to ~ove around and stIll maintaIn -

_ I
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order has fasCInated genetICIsts for decades. In:- the process of
~.

unravelling the mysterIes of genetIc re.comb.i~ation,,,;jnvestigators have

discovered some amazing tricks devise~Jy natu~e to preserve and expand

genetic inffrmation.

B~SQm~lQ~~i~Q j •

B~sQm~iQ~~iQQ ~~~iQg ~~iQ!i! ~Q~ ~i~Q!i! lQ ~~S~~YQ~~!'

Mendel '5 experf;ents measured the random assortment of unl inked

genes during sexual reproductio~. Later work showed that the fre~uency

of co-segregation of two lInked markers reflected (inversely) the

distance between them; close markers frequently segregated together,

while distant markers segregated separately. This property allowed

geneticists to order, or map, different genes along a chromosome. Thus,

recombination became a tool as well as a phenomenon:

Sexually reproducing org~nisms recombine their chromosomes

during meiosis. This allows even greater mi.ing of genetic material

than that afforded by rando. assort~ent of chromosomes, presumably to

ensure variation within the population as a hedge against genetic

catastrophe. Recombination is believed to occur at an early stage of

meiosis, after DNA replication. The chromosomes form a structure called

a "synaptonemal complex" characterized by the synapsis of homologous

chromosomes along a po'lymeric protein backb9ne. Shortly after it .is

formed, chiasmata can be observed at various sites along the paIred

chromosomes. Chiasmata have been positively correlated WIth chromosome

cross-overs and with recombination frequency. For example, male

Drosophila and the anthers of Frltillaria Japonlca do not exhIbit

,
1



chlasmata during melOSlS and do not recombIne theIr genes ICatcheslde,

1977; Henderson, 1970).

Nature has klndby supplied geneticists with wonderful tools to

study recombination in the form of fungi and yeasts. These organisms

retain the property of independent growth of both haploid and diploId

forms, although in some fungi the diploid stage is s~rt and highly

specialized. Moreover, in some fungi, the meiotic products (the spores)

_are conveniently ordered in the ascus according to the planes of

division of the original precursor cell. Many fungi undergo a

post-meiotic mitosis, yielding 8 spores from-a. single diploid cell. The

eight spores are thus analogous to the eight strands of DNA within the

interacting chromosomes at the diplotene stage of meiosis during which

chiasmata form, and, by deductive re~soning, .durlng which recombInation

takes place. ThlS allows the Investigator to follow the fate of all the

participating chromatids during meiosis (reviewed in Catcheside, 1977;

St ah 1 , 1979). This is an important concept in the study "of

recombination because it ensures an "unbiased" sampling of the

population. Analysis of ascospores, referred to in the trade as tetrad

analysis, has provided biology with some basic ground rules of the

behaviour ·of recombining chromosomes. First, distant markers almost

always recombine reciprocally, ie. there is no net loss of genetic

material during recombination, only rearrangement. Second, this rule

does not apply to very close markers. Tetrad analysis of ordered asci

from Neurospora crassa and Sordaria fimicola occasionally yields

ascospores with asymmetrically distributed genes. These are referred to

as 116:2 11
" "5:3", and lla.berrant 4:4" tetrads, and were originally
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dIscovered durIng tetrad analySIS of spores produced by a cross of two

different straIns of Neurospora which dIffered at a locus defining

spore colour. Most ascospores contained 4 coloured (wild type - wt):4

colourless (mutant - m) spores, indicating that no rearrangement of the

spore colour gene with respect to the centromere occurred. Some con-

tal ned 2 wt:2 m:2 wt:2m spores, indicating that the spore colour gene

had been exchanged between the two internal chromatids. The beauty of

ordered asci is that the products reflect exchanges between individual

chromatids within the division plane. Thus, a 2:4:2 arrangement

reflects recombination between non-adjacent chromatids withIn the

division plane. Rare ascopores with' 6:2 (or 2:6) and 5:3 (or 3.5)

arrangements were also detected. These asci were interpreted as the

result of nonreciprocal exchange of genetIc informatIon within the

spore colour locus. The best mechanistic explanation of the phenomenon

so far is the repair of mismatched heterodupleles formed during r~eom-

bination, or, gene conversion.

The observation

patterns exhibited by

of gene

~fferent

conversion

organisms,

durIng meiosIs, and the

allowed investigators to

inf~r mechanisms of recombination which encompassed this unusual, trait.

All of these models begin with the assumptIon that gene conversion is a

consequence of the mechanism employed by the cell to recombine its

chromosomes. This interpretation is based on the observation that

approximately 50X of the time conversion is assoc~ated with recombin

ation of £~~Q~iQg ~~~~~~§.

Models of recombination are themselves subject to evolution, as

data from different organisms becomes avaIlable. The first widely known




















































































































































































































































































































































































































































































































































