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ABSTRACT

-

We thave investigated the recently proposed Local gsrmi
Momentum Approximation's use in the'contéxﬁ of the‘Hartrée-Fock
model of the nucleus., This suggests the possibility that the
effective nﬁcléar pbtential.could depend on the Local Fermi
Momentum. It is shown that such a potenti;l derives no r ar;
rangement energy from this depeﬂd?nce. Th;s'fact shows why the
Density Matrix Expansion Approximétién treats fhe'reérrangement
energy aécurately. In order to produce a rearrangement‘enerdy,
the effective poiential should be chosen to depend on‘the den-
sity as well as oﬁ the/Local Fermi Momentum. This led to the
development of a modified Skyfme—like force in which the denéity
dependence is replacea by a kinetic-energyjdensity.depeaaence.
This force was adjusted to give good fits to observed‘ground—“‘
state properties of closed-shell nuclei, and of‘infinite nu-

" clear matter. Its use requires that more attention be paid to

the numerical solution of the Hartree-Fock problem than for a

regular Skyfme force.
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CHAPTER I ST

INTRODUCTION

The present work will investigate some aspects of the
Local Fermi Momentum (LFM) recently proposed by Campi and
Bouyssy, (CB 78), as ft applies to the calculation of the sta-
tic properties of nuclei. 1In particular we have considered the
~ LFM approximation as an altgrnative to the Local Densi?y Approxi-
mation (LDA) whiéh has been widely used previously. This prompted
the development of a kinetic-energy-density depeﬁdent effective
nucleon-nucleon interaction which has been ;uccessfully used in-
Hartrée-Fock calculations of doubly-magic spherical nuclei.

In order to set a framework for this exposition, the’re—
mainder of this introduction will be devoted to arreview of the
;elevant facts concerning: (i) the Nuclear Shell Model, (i)

Hartree-Fock calculations, (iii) the Densify Matrix Expansion

(DME) , and (iv) Skyrme's interaction.

"(i) The Nuclear Shell Model:

The shell model of the nucleus (GJ-55), (ST 63) in its
simplest form provides a ready explanation for certain nuclear
properties: the existence of magic numbers;, properties of nu-

clei with one or a few active nucleons; and islands of isomerism.



It is essentially an independent-particle ﬁodei, in
which each nucleo; is assumed to move in the self-éonsistent
fiéld due to all,th; other nucleons.:?he state of the nucleus
is specified by the single-particle states of its constituents. °
these states are described by the notation ntjq, where n ¢ I -
'is'the principle quantum number; £=s,p,d,f,..: represents an
orbital angular momentum quantum number of 0,1,2,3,...; j=.21w%
is the total angular momentum quantum number; and g is the charge
index of the state. .

The ordering of the singlé—particle levels is obtained

from experiment. Of partiéllar importance are levels separated
by large energy gaﬁs. When all levels below a gap afe comglete-
iy filled with neutrons (or protons), ﬁhe nucleus is said to have
neutron number N (6r atomic number 2) "magic". Experimental %
evidence of the magic numbers 2, 8, 20, (28), (40), 50, 82, 126
is abundant and well knowqﬂ(GJ 55),‘(éeg 77y. 1t is worth re-
‘ maﬁking that a spin-orbit (g-g‘ dgpendent) potentiai ig regquired
‘iﬂ the single~paqticle Hamiltonian to explain'these values be-
yond‘2p. .

The self-consistent fiel@ is assumed to Se spherically

symmetric about the nuclear centre of mass, (which is, -however,

not fixed (Fri 71)).

(ii) Hartree-Fock Method:

v

The Hartree-Fock (HF) niethod (Har 28), (Foc 30) provides

a framework for understanding the nuclear shell model. In par-
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ticular it provides the means of calculating the self-consistent
field and single-particle states.

The nuclear wavefunction is taken to be a Slater deter-

minant:

-

DU e g ) = A—l/zdet|¢i(£j)| . :

where A= N+Z is the mass number, {¢i} are the single-particle

states, and ij = (rj,oj,qjl is the coordinate of the j-th nu-

t % is the spin projection and q =

cleon. Here o (—‘f)

M| =

or p(n).
One then requires that the total emergy of the nucleus

Ergp = <¢|H|®> be stationary with respect to the individual va-

»

riations of the ¢i' which are constrained to be normalized. If
one assumes nucleons to interact only by two-body forces deri-

vable from a potential energy ﬁij = v(fij) then the nuclear

Hamiltonian is given by

~ A ~ ~
H= ¥ t, + Z V.. -
= 1]

1

IR PEES
where £i = - ﬁzvf/zmi. This procedure results in the HF equa-~-
tions ‘

h2

- 5= v2¢i(5) +[[ o(g')v(ig—g'l)d3r']¢i({) (1.1)

- J p(g',y)v(lg-g'I)¢i(§')d3r'=‘€i@i(§)

Here the one-body density matrix is defined by



«4’;(5)‘”1(5')' and p(r) = plxr,r) = ):lfct’(:_g)lf2

.isv the local nucleon density at r.

3 ) -
The HF equations are solved by an iterative proceddre:
one begins with a 'reasonable' set {¢i} and from them constructs

ot
‘the density matrix. This allows solution of the 'HF equations
x>

for a new set of ¢i and the corresponding eigenvalues €y The

-

process is repeated until it converges to a self-consistent so-

lution. In egn. (1.1) we identify the local direct and non-local

-]

exchange potential fields.

(iii) Density Matrix Expansion: - . &

If one uses a finite range two-body interaﬁtién, the
exact solution of the (integro~differential) HF equations (1.1)
ié time consuming. Hence, an approximation was devised by
‘Negele and Vautherin, (NV 72), to simplify the numerical prob-
lenms, essentiall& by approximating the exchange, or Fock term. y
This proceeds by deriving an appro&imate form of thé off-diago-
nal density matrix D(E'E') as follows. Define the relative and
center of mass co—-ordinates of two nucleons at r, 5' és §==§-§',

3 = % (§+§'), and also define .

i

p(gag) (R + % s,R - % s) = p(g,g') .

o

Also,; g ote by S(R;g) the anglé-average of the density matrix.

~ . y 4 . ’
p is actua‘iQ a function of R and |s|, being equal to g(R;s)
( N i -7

averaged over the directions Qg of s. Negele and Vautherin have

~

~
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expanded p in powers of s. Their result is the DME

~ l ol ( v V2 2 -
PRis) =g I (4n+3)3, o (skp) [0 ((—2) ) o (R, ,R,)] (1.2)
. ~1 ~2°%
o= (sk 0 (R) + —225 5§, (skp) (3770 (R)-T(R) + £ Kho(R) 1+0(s%).
25k, -

(1.3)

-

Here Qn is defined in terms of the usual Legendre polynomial P
py Qn(zz) = (—l)nP2n+lkig)/(iz), jn‘are spherical Bessel func-

tions, and

e -
i

T(R) = V6% (R) *V9, (R) (1.4)
i - :

is the so-called kinetic-energy-density.
One exploits the fact that the two-body force v(s) ap-

pearing in (1.1) has a short range by keeping only low powers

of s in egn: (1.3).

It bears mentioning(that the parameter kF which has been .

formally introduced in the right-hand side of (1.2) is complete-
ly arbitrary. Howeve;, if the expansion for_B is trunca;ed,
as in (1.3), then the choice of kF influepces the approximatioﬁ
of 8.'

The DMﬁ with'kF given by the LDA, eqn. (2.2) was used
%y Negele and Vautherin to appéoximate the potential energy den-
sity due to the two-body reaction matrix G: Its gpplicability

has been widely discussed, (NV 72) (Spr+ 75) (BS 77).

S o gt s

-
o~

N e S .

o o bl gn

[P

b pe e



(iv) Skyrme's Interaction:

The DME provides a‘satisfactory theoretical derivation
for the form of Skyrme's interaction, because the DME-aéproxi-
mation potential eneig& deﬁéity {s in fact exact for the Skyrme
force.

This model of thé.effective nucleon~nucleon interaction
v(l2) was originally suggested by Skyrme (Sky-56), (Sky 55), and
recently revived by Vautherin and Brink, (VB 72), for the pur-
pose of performing HF calculations. It is zero-range, momentum
dependent, and contains a two-body spin-orbit forceland'a three-
body force which ié intended to describe many body effects

L4

phenomenologically. It can be written as a potential

vV = L V. + z Va s ' —

. . ] . ik .
i,J 1J i,j.k 1J R
i<j i<j<k
where typically: : ' “
Ve = t.(l+x.P )6+ Lt (ak2+k*2a) (1.5)
12~ 0 0" 0o 2 1 :

+ t2k+'6k + iW(o +92)ok*x sk
and .

¥ Viaz T $38(5;,) 805,50 . o 1.8

. . : .
For the purposes of HF calculations, can be replaced by an

_ V123
_ equivalent density-dependent two-body interaction:

(3) _ 1 V
Vi3l =cF g ((Zy+r,)/2) 8 (14P ) . (1.7)

The notation.is defined in Appendix A.



Details concerning the use of Skyrme's force in HF cal-
culations of spherical nuclei are developed in (VB 72) as are
two sets of parameters (to,xo,tl,té,t3,W),aenoted 81, SII. Fur-
ther sets SIII to SVI ‘are developed by M. Beiner et al. (Bei+ '75).

The HF equations for Skyrme's force read

2
-V (

* X

V95) + (U (£)=iW (r)-Vx0)é; = e, .  (1.8)

2m (g)

te]

For an N=% nucleus without Coulomb field the effective mass, po-

tential and spin-orbit form factor are given respectively by

__,__ﬁz fend gz._ — B = 'p__z_ + ____.3tl+5t2 p
2m* T 2m 2m 16

_ 2

U = 3t p/4 + 3t,0°/16 + (3t +5t,)1/16
+h(5t2-9tl)Vzp/32—3WV-J/4

W= 3W90/4 + (t;-t,)I/16

L 4
Equation (1.8) differs from (1.1) in that the momentum dependence

’

of Vio has introduced the position dependent effective mass

m* (r), and terms proportional to 1 and V2p in the potential.
The Skyrme force has many desirable features; ' these in-

-~

clude: ' A

(a) the energy density is an algebraic function of p, T 'and the

spin density

*
J(r) ¢i(r,0,q)\7¢i(r,0',q)><<0|0|c'>‘.
; ig.gr b= . N

131
1
e
[e]



(b)

(c)

(d)

" effective interactions is to be found in (QF 78). .

‘tion.

*

Heq;e the paramaters can be interpreted physically. Some
of their’propertiés are'discussed in (VB 72) and (Bei+ 75).
Because the férce iékzero-range, the Fock exchange poten-
tial is local,'and the HF equations (1.8) are purely'dif—

ferential, thus lending themselves to fast numerical soluy-

-~

.

Calculations with the férce reproduce many nuclear proper-
ties remarkably well over a widg range of nuclei, with
only a few adjustable ﬁarameters. Examples include: bin-~-
ding energies, charge and mass radii, charée density, fis-
sion barriers. ‘ .
The force can be reliably extrapolated(to investigate pro-

perties of nuclear matter.

A review of nuclear self-consistent calculations with

i m bt s

.
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CHAPTER II

LOCAL FERMI. MOMENTUM AND EFFECTIVE
INTERACTIONS

In this chapter we recall how the LFM was introduced,
and then éuggest why it méy be relevant to the subject of effec-
tive interéctions. |

We begin by considering a homogeneous system composed
gqually of neutrons and protons, and occupying an 'infinite'

volume (. (This would be a symmetric form of nuclear matter

—~

in which b, = pp = % p.) In this case the single-particle
states are plane waves ¢k(rf = exp(ik*r)//Q, due to the trans-

lational symmetry. Consequently the one-body density matrix

* T
p(r,r") = L ¢, (r)o,. . (x")
~ ~ k(k }5 ~. l—S ~

is given by (Sla 60):

»

p(r,x') ='p(13:§) = p(R) g%— 3y (skp)
F .

= gal(skF) . (2.1)

where in this infinite system the Fermi momentum kF is related

to the constant nucleon density p by

= o(l})
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If, ipstead, we study a system of finite extent, (i.e.

an atomic nucleus), in the independent-particle approximation,
then

*
p(r,x') =L ¢ (x)¢, (x')
1

where the sum is taken over occupied single-particle states i.
A common approximation (BGW- 58), (Neg 70) - the so-called Sla-
ter approximation - is to use plane waves for ¢i’ with the Fer-

mi momentum given by the Local Density Approximation:

» 32 1/3 '
kp(R) = [Z— p(R)] . o (2.2)

In this case one obta'ins the approximate Slater result

-

p(R,S) X0 (R (skp (R | (2.3)

It can be seen, by inspecting the DME (1.3) that there

are corrections of order‘s2 to tﬁe Slater approximation (2,3).

In any event, the Slater approximation can be regarded as gi-

ving a prescription for mapping p(R;s) from the infinite to

the finite system; namely to retain the same form (2.1) but

‘replace kp by a function of p(R) (2.2).

A more recent suggestion, due to (CB 78) is called the

LFM approximation. This involves retaining the Slater form (2.1)

and replacing kF with the LFM, defined:

T

N 5 1.2 .- 1/2 .
k(R) = [5 (1(R) - 3V P(R))/p(R)] . (2.4)

o L, g N A v

PSR
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This choice causes the second term of (1.3) to vanisl'i7
and can be regarded as a modified DME

o(Ris) = p(R)J (sk(R)) + o(s?) , .5

and has the advantage of being good to order s4. This is an

e e e, co e A

important advantage over the Slater approximation due to the

short but finite range of the nuclear force. Consider for ‘< '
example, the succegsful results obtained by (NV 72) using the ) %
standard DME (eqn. (1.3) with kF chosen by the LDA) which is
also accurate 'to s4. As yet, not as much effort has gone into :
the use of the Campi—Boufssy modified DME (2.5). In the next
chapter we will develop some observations in this connection.

Next, we turn to. the subject of qffective interactions.

In the Brueckner theory of nuclear matter (Day 67), one
describes the th—body ﬁucleon—nucleon interaction by the reac-
tion matrix <5;|Gig,(kF,§,°--)[5>. It is not unusual to re-
place the complicated quantity G with an effective interaction
veff(kF,r) which is meant to’Fepresgnt the two-body interaction
in some éverage sense, (BGW 58) (Neg 70). If correctly construc-
ted it is hoped that VofE will contain enough information to
reproduce the bulk properties of finite systems,\when used with
the appropriate 6alculati0nal technique{ (e.g. HF method).
Exgmples of effective interactions are the density independent
Brink and Boecker force Bl (BB 67), the density dependent force
G-0 of Camp; and Sprung, (CS 72), and Skyrme's interaction.

In this setting the LDA is also extensively used, becaﬁse

the G-matrix is calculated in nuclear matter, and the LDA pro-
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.

vides a prescription for kF in finite systems. Thus, one repla-
‘ces kF dependence in Vess with (local) density dependence. 1In
this way one obtains the re-arrangement energy‘(sée egn. (3.3))
which is crucial (SVE 79) to obtaining sufficient binding in
finite nuclei with single-particle energies which are not too
low. Also, one reproduces saturation properties of finite nu-
clei with the density dependent term phenomenologically accoun-
ting for many-body effects.

Given that the LFM k is a more accurate prescription for
studying finite nuclei than is the LDA kF(g), it seems natural
to ask whether or not it is possible to construct an effective
interaction with dependence upon ﬁ; that is, upon 1 énd Vzp'
as well aé p in a particular combination. That the interaction
might depend on these quantities, in principle, is not unreaso-
nable because they are independent in finite nuclei. In nuclear
matter 1, p and ké are all related (c.f. egn. (5.2)) and V2p= 0,
so that one could not distinguish between dependences on these
various quantities in an infinite system. The investigation of

the properties of a ﬁ—dependent interaction is the subject of

the next chapter.

e o b sopa <o P e 5 2




CHAPTER III

INVESTIGATION OF INTERACTION DEPENDING ON ﬁ

In this section we will consider an interaction of the
Skyrme type, bu; with Vig) modifiéd in that the density-depen-
dence in eq. (1.7) is replaced with dependence on the LFM k
raised to an exponent 28. We intend to show that a force of
this type will have zero rearrangement energy.

However, since the Skyrme force isvmomentum dependent,
it is worthwhile to first investigate the origin of rearrange-
ment energy in this case. We start with some definitions,

which are valid in the case of a true Skyrme force. The to-

tal energy is given by

2 ! N il .
<ilp /2m]1>4-§ 53 <13]v12]13>4-€ igk <13k|v123}13k>
(3.1)

where the tilde denotes &h antisymmetrized matrix element. The

Hartree-Fock energy is defined

[

EHF z 5 § (Eii-ti) . (3.2)

th

. ) ' 4
with €5 the 1 single-particle energy and ti= <ilp2/2mli>.

13
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From these, the rearrangement energy is defined

Epear = Eror ~ EBur - ' - (3.3)

‘We also note the following two facts derived in (VB 72).

~

First of all, for the Skyrme force Via3z = t36(§12)6(§l3) which

implies
2 p <idk|¥,alidk> = = 1 <ij 93 i
LI 123 Foo IV 1)
ijk. ij
=Tt | popop (3.4)
4 73 n'p ’
= H3 .

Secondly it is shown that
_ N . ) ..
€=t § <13|v12|13> + 5 ;k <1]k[v123l13k> .

Adding t, to both sides of this equation, summing over i and

dividing by 2, yields the 'HF energy:

1 e 1 .. . 1 .. ..

Loty =2 b 45 T <ijfvy,lig> + 3 I o<ijk|vy,4lijk> .
b 1] : ijk

Sub%racting this from ETOT (eqn. (3.1)) gives

_ 1 . .
‘Egpar = ~ 13 L <i3k[¥i,5ligke
: . (3.5)
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where (3.4) has been used.
Because the forces we will study are to be defined by

(3)

a modified Vip' (with no corresponding v to be intro-

123
duced), the above meéthod of éalculating the rearrangemenf ener-
gy will not be useful. However, the above serves as an expla-
nation of the origin of rearrangement energy, as well as a
useful check on the following alternate method for obtaining
EREAR'
Consider the single-particle equation (1.8) without the

spin-orbit term:

ﬁZ

.
om0 %y ¥ VIABVGL) + Uid, = 50y -

*
We multiply by ¢i' sum over i, and integrate over space,

(- f,_‘—i 6170, + ¢ V- (BY0) + U, o 1%) = vy 0, 1%
I#tegrating by parts
’g%} =B+ 10 e, l%) =T .
Again, we Add Eiti and divide by 2
géf' + 1 (-Br + pulel?) = Egp

« .
Then using the explicit forms of -B = ﬁ2/2m —‘ﬁz/zm, Ui and

4
ra
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2 3 . ,
H(r) = h t(r)/2m + I Hj%r) from (VB 72) it is not hard to
j=0 -

show that (3. .6) becomes - )

Of b=

(H + = tBDnopp) = EHF

which agrees with (3.%). (Here h., " tj.)
Thus the momentum dependent terms in Skyrme's interac-

tion do not .contribute to EREAR; only the density-dependent

term proportional to t3 does so.

Now one is in a position to look at an interaction de-

pending on the LFM k.- 1In analogy with the Skyrme force we will

choose : .

() 1, o2 \ .
viy = 2 kP ey /2) 6 (0 ) (1 + x P (3.7)

This will produce (see Appendix A) a contribution to the energy
density h, of

_1 . n2B . 2, 2 1.
H3 54 t3k [(1 x3)(on+pp)-+4(l~+2 x3)onop] G o)
) £25X .

Note that,
(3)

since we no longer require the H3 arising from

(k) to agree with that arising from a v,,,, (because no

Via3 has been introdqced for this k force), we have introduced

a new exchange parameter X3, not necessarily equal to 1.

More generally, one need not restrict the k dependence

of Vepg tO be that given by (3.7). However, it suffices to con-

sider this case, because the contribution to EREAR caused by

JR—
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A

the dependence of v on k arises solely from the quantities

eff

* * x* ~
I v2¢i appearing in k. This will be made clear in

i’

P
the following calculation, in which we show that this contribu-
tion vanishes identically.

The HF equations are the Euler-Lagrange equations de-

*
rived by varying the ¢i so that ETOT = f H is minimized. The

modified H3 (egn. (3.8)) will introduce new terms into the HF

e

equations, resulting from

P .

(1) k2% JD& (ordinary term) , i
a9 ¢
1
L
ax2F '
(pi) X 3% (rearrangement terms) t
§
h (o, Vo, vsl} !
- where ; “b ¢ll ¢l’ (pl d N

Hence the single-particle equation reads

op e e

2 JH JH dH
_nt o2 3. 3 2 3 ., .
5m ¥yt -V =+ V 5%+ (Bv¢i)+-ui¢i e 0 (3.9)
3¢, IV, P AVARN I
1 1 1
A ]
where thne termd B and U now arise only from the parameters to,
tl’ t2.
Recalling that
N N q
k2 = é% (vt - % Vzp) = gL ke
P (3.10)
1 . * 2 * 2.%)
- =z .V 2V V. +o. VTP,
3 ; (¢} ¢J ¢J @l ¢J ¢J

i
wiw

L o0
5 "3%
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we can calculate the three terms in (3.9) arising from H

3"
Hence ‘ . {
oH
3. C0p R _ ~2
3¢f - 28 3&% —i XBk2(8 }) 35?
i i 3¢i a¢i
28 3y 5, H30 1 -1.2, - o4 -2
SR gt PR g e TV 7 Te Tey)
i k
2B 0y ol o2 T ~
- k api ¢i X(z V ¢l + 5 ¢l) 5
where X = 58H3/3pk , and p, is p oxr o .
oHy 1
Similarly -V o —= = -V (X 5 Vd.)
OV . 1
i
oH
and v — 3 = - X 9%(x0,)
avz 4 1
5

If we puﬁ these results into (3.9), and perform as usual

*
J zi®i' then these new terms will produce:

IEZB X JD% | ¢ -X1p “p- % z ¢;[xv2¢i+2v-(xv¢i)+ Vz(xwi)ll P
i 1 1

which upon integration by parts becomes

~28 ) 2 » 1 * 20 2 2 *
I [k i Sﬁt 1¢ii -XT+X[- 7 i.(¢iv 5 2!v¢il + ¢, V700 1]
. = | x%f 3 gaL |¢i|2 (3.11)
i %P4

due to (3.10).

g e e e A T . AW s

——— R e o

g
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"19
\ We show below that this final contribution just equais

2 f H3. Thus, the single-particle equation (3.9) has evolved.

into

the first and third terms in the integral arising exactly as
before. Adding Ziti to this last equation, and dividing by

two yields

[ ST¥ o

J H = i (ei+ti), or E = E .

This completes the proof that for a k dependent force the re-

arrangement energy is exactly zero. (To show that (3.11) equals

2*[ H3, it suffices by (3.8), to show that Zi g%L I¢i|2 = 2X;
i
but using the definition (3.8) of x we have
s S PR =E§z(ufx)2 Fa(1+5 x)07) 0,2
i3, %4 24 ¢ 37°P4 7 X3)P17 194
-3
t3 2, 2 1.
= 57 (2(1-x3) (p +pp)+-4(l+-§ x3)(pnpp+opon))
= 2x .)

The fééture of having zero rearrangement energy is
rather undesirable. Its consequence is that, if the force is
able to fepréduce'the binding energies of nucléi, then the
single-particle energies must be very spread out. This phe-

nomenon occurs for forces having a small effective mass,

i
L3
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*
m << m. To understand this qualitatively, one can use the

Fermi~gas model of the nucleus to argue that the Fermi momen-
tum kF is fixed by A particles occuping.a volume (. Then the
average ‘3amiltonian' of a single particle at the Fermi sur-
face can be Written hzkg/Zm* + U. As m* decreases, the ef-
fective kinetic energy increases; but the binding enexgy of

the least bound particle (of momentum-ﬁkF) must be of the or-

der of a few MeV. It follows that U must become deeper. Hence,

-

€5 becomes more negative and the level density decreases as

m”* does. As an example, one interaction which has EREAR =0

is the Skyrme parametrization S-V, in which ty = 0, (Bei+ 75).

It also has a low effective mass mx/m o .38. It is not sur-

A

prising then to find the following relationship between a k

dependent force and S-V, Consider (3.7) in the case f=1 and

x3 ==.5, "Then

DL 523 2,0 o L5, p oLy

1
3513 %3

] Lo

But the energ§ density due to tl and t2 also contains terms
proportional to ptT and pézp (VB 72). Hence in this case the
modified t; term can be absorbed into Hy and H2, and since
there is no density dependehce, this ﬁ force is essentially

the same as the S~V force.

Because the X interaction is lacking in effective mass,
‘ 1

and is similar to the S-V force which has been investigated

elsewhere, we will modify our choice of interaction so that the

rearrangement energy is non-zero. This will be done in the

e

[

W g
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next chapter.

Finally, we can make an observation regarding the usé : ‘
of the Campi-Bouyssy version of the DME(apprOXimation (egn.: ?
(2.5)), as méntioned in the last cha;ter‘. - ' !

Consider, for example the force qf (BB 67). Being i
independent of dénsity, it too has no rearrangement energy

"in an exact HF calculation. If, however, one wishes to.do a

.

HF calculation using the Campi-Bouyssy DME appfoximation, one ..
will obtain é potential energy density V(r,ﬁ) which is a
function of k. 'Now as we have seen, the k dependence gives

rise to no rearrangement energy, so that the Campi-Bouyssy DﬁE
(CB-DME) can be very accurate. —

This is to be compar?d with the standard DME of (NV 72)
with which one obtains V(;,p). In principle then,’one might
expect the standard DME to give rise to a spurious rearrange-
ment energy due to p.

However, since the standard and the éB-DME only differ
in terms of order 54, and the CB-DME gives rise to no rearrange-
ment energy, one should also expect EREAR to be very small for
the standard DME. This provides a theoretical basis to explain
the findings of (Spx+ 75f}ﬂn>obtaiﬁed E N 0 in actﬁal nume-

REAR
rical calculations using the standard DME and the for¢e of

(BB 67). ”'

Alternatively, if the interaction to be used is density

Al

. PHVI P

dependent, this dependence remains when the CB-DME is used, re-

N
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sulting in V(r,p,ﬁ). Consequently such a force will provide

a rearrangement energy, arising from the p dependence only.

In summary, insofar as one can neglect terms of order

4, the use of either the standard- or the CB—S&E approxima-—

s

tions should give rise to no rearrangement energy additional to

that resulting from the interaction with which one is con-
cerned.

FRIPENN
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CHAPTER IV

'CHOICE OF INTERACTION

In Chapter 2 it was suggested that the effective nuclear
interactiop in finite systems could in principle be a function

of quantities such as 1 and Vzp, as Qell as of p. In the pre-

vious chapter we showed that if the interaction depended on
2

kKo (T - 7 Vzp)/p only, then it would lead to zero re-arrange-

ment energy. Hence we suggest that in general one should choose

the interaction to depend both on p and on 22.

Because we would like to’'continue, as much as possible,

to investigate the LFM prescription, we have chosen to develop

a force which depends on

raised to a power 8.

As a model of this kind we use a modified Skyrme force,
in which (1.7) is replaced by

?B(

1 - . : : |
15 =%t (El+§2»9)0(512)(1+-x3Po) . (4.1)

This can be considered as a force having a kinetic-energy-den-

sity dependent saturation term. For the interaction (4.l1l) to

be-meaningful, it is necessary that T be positive if B is non-

integral. Whereas 1 = Eilv¢i|2 is necessarily positive,

23
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2

Y V©p can be negative; in particular it must be so in the nu-

clear exterior. We also note{that the true-kinetic-energy-

. *_2 - 12 o~ 12
density Zi¢iV ¢i T' =1 3 Vo T 7 Vo (for a

spherical or time-reversal invariant system, c.f. egn. (28) of

(VB 72)) is negative in the exterior. These points notwithstan-

ding, in actual numerical calculations T did prove to remain
positive for all 0 < r < », and its sign therefore presented no
difficulty in practice.

It will now be shown that a force with vig) of eqgn.

(4ll) possesses a rearrangement energy. The energy density due

to (4.1) is

1 = 2B _ 2, 2 1
Hy = 57 £371(1 x3)(on+pp)+4(l+2 x3)pnop] (4.2)
E ?BX ,
similar to (3.8). From the previous evaluat%on of EREAR =0

for the k dependent force (3.7), it is clear that due to (4.2):

Boooo=- 3| noetix 2h-vex 2y + v (x 2Ly . (4.3)
REAR 2 171" e 2
20, 24, TN

Here X

i

3H3/a? = B?B'lx = 3H3/¥. The three factors in (4.3)

involviné ; are (from (3.10)):

a1 1.2 T 1 -
99 IV 1 Ao,

Substituting into (4.3) and integrating by parts yields

~

= apu—
e -
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- _ 1 F é 1 * 2 * 2 *
Erear = 7 2 | X2y 77 (0;770,-2V0, 0V, + 9,V )
J
1 f
= -3 (8H3/T)T
J
= - (8/2) | Hy . (4.4)
Consequently E # 0 unless B\= 0 or t, = 0; in either of

REAR 3
these uninteresting cases the interaction is equivalent to S-V.

Thus a modified Skyrme-type force - with t., = 0 and

3
v{g) given by (4.1) was used to perform DME-HF calculations
for doubly closed shell spherical nuclei. It should be noted,
again, that the DME is exact for this type of force. The com-
plete form of the interaction is. defined in Appendix A, along
with some details concerning the method of calculation.
Before presehting the results obtained, some discus—4

sion concerning the choice of parameters of the force is in

order. The available parameters are:

Y

B -  exponent of 1
e} - 1 v
to tl t2 t3 well' strengths
Xy Xy X, X4 - exchange factors
W - spin-orbit strength.

We have in particular investigated the case 8 = 1/10 for the

following reason. There exist séveral successful effective in-
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teractions (CS 72), (KTB 80) with density dependent terms vary-

ing as 01/6- Now in nuclear matter one has T =1~ kg' while ;

Of course in finite nuclei p and 1 are not so simply related,
but this argument serves as a rough guide, insofar as we can con- ;
sider the igterior regions of the nucleus as a portion of nu-
clear matter. One could also appeal to the Thomas-Fermi ap-

proximation for justification. In addition to using B8 = 1/10 .

we have also used B = 1, that is a force without exponent.

The strengths tO’ tl’ t2, t3 were also chosen using nu-
clear matter as a guide. More is said about this in the next
chapter, where the nuclear matter properties of the force are

studied. Generally t. < 0; > 0.

0 f17%3
The spin exchange parameters xi(i= 0,°¢+,3) were intro-

. . (3) . -
duced into the potential Vi + vip' in factors (l-+xiP0) mul

tiplying t,. Consider for instance i==§$ this is a p-wave
interaction term (because its matrix elements are proportional
to |V¢(0)|2) and is repulsive in nuclear matter -if t,> 0 (see

eqn. (5.3)). In (BS 71) several realistic potentials were found

to have bath ’p and P interactions repulsive, the singlet

being stronger. This would occur for the present'force if, when

t2 > 0, 1+x2PO were larger in the singlet case. But PO =

+1,(-1) for triplet, (singlet), so that -1 < x., <70 would be

2

ideal. 1In the various Skyrme parametrizatibns, t., is'actually

2

L e
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found to have either sign, and is always smaller than tl.

The parameter Xq affects A = rn—rp, the difference be-
tween the neutron and proton RMS mass fadii. This can be under-
stood as follows. x, occurs in an s-wave interaction, as
t0(1+'X0Po),= to(l + XO? according as the force acts between
unlike/like nucleons provided the unlike pair are in the anti-
symmetric isospin state. As ty< O this term will be more attrac-
tive between like particles if X < 0. In a nucleus with N> Z,
there are more neutrons to bind with other neutrons, thaﬁ pro-
tons with other protons. It follows that the neutrons will be

more strongly bound than protons if x, << 0. This would cause’

0

r, < rp, contrary to experiment, and places a practical limit on

Xge ‘

The spin orbit strength W in various Skyrme-like forces

is .found to vary from about 90 to 350 MeV fms. For the present
forces, values near the upper end of this range were foqnd to
be necessary in order to adjust tﬁe binding energies of zirco-
nium-90 and lead-208. We did not choose W to fit exactly the
experimental splittings of the p1/2’ p3/2 levels in oxygen-16.

For the cases £=1 and 8=1/10, parameter sets (denoted

TA and TX respectively) were adjusted to obtain good fits to

the experimental binding energies B, and RMS charge radii r.

of the four doubly magic nuclei‘lGO, 40Ca, 90Zr, 208P

hl
b. The

parameter sets are defined in table I, and the results obtained

[N

o Hamgeay

[N .

e e o

[
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with them are given in table II. A more complete discussion

of these two preliminary forces must occur in the next chapter.

e e
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TABLE I 3
FORCE
Parameter _TA - _TX i
B ) 1 0.1
t, (MeV fm -1228.43 -1659.32
t] (Mev fm 917.765 902.823
t, (MeV fm \43.936 29.709
T, (Mev fm>5*3) 2331.93 3698.44
W (MeV fm 162.0 1679
X, .0046 -.0020
Xp1X,0Xg 0. 0

Definition of the parameter sets TA and TB

4

introduced in Chapter 1IV.

v —



Nucleus
16O
40Ca

48Ca

b

90Zr

132Sn

140Ce

208Pb

Reference:

Rearrangement and binding energies (B= -E

8

8

7

30

e = (WB 77)

TABLE Ila
Exp.° TA
B/A B/A
.9760 7.9761
.5515 8.5560
.6669 8.6914
.6430 8.5668
.7102 8.7097
.3540 8.3569
.3764 8.4053
8677 7.8676

0.666

0.854
0.899
0.975
0.993
0.983

0.996

B/A

.9806
.5554
.7016
.5736
.7102
.3678
.3758

.8677

TX

-E

REAR

0.848
0.980
1.007
1.072
1.080
1.069

1.092

) calculated
with TX are compared with experimental bindlng energies.
All values in MeV.
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TABLE IIb
Nucleus Radius Exp TA TX
16, ch 2.73% 2.692 2.713
n 2.630 2.651
p _ 2.651 2.673
404, ch 3.48f 3.479 3.485
n 3.384 3.389
D 3.426 3.433
484, ch 3.48579 3.491 3.488
n 3.663 3.657
. p 3.456 3.454
26yi ch 3,754 3:800 3.790
n 3.697 3.684
P 3.745 3.735
20, ch 4,27 4.298 4.285
n 4.365 4,348
p 4.261 4.247
1325, ch 4.749 4.730
n 5.022 4.997
p 4.711 4.692
1404 ch 4.912 4.900
n 5.060 5.042
p 4.880 4.868
2085, ch 5.50P 5.545 5.522
n 5.765 5.734
p 5.510 5.487
References: a = (SM 70) , b = (Fro+ 77) , ¢ = (Faj+ 71)
d = (Bei+ 75) ,.f = (Sic+ 78) , g = (Woh+ 78)

RMS radii of the charge (ch), neutron (n) and proton (p)
densities calculated with TA, TX, are compared with ex-
perimental RMS charge radii. All values in fm.

- -




CHAPTER V

NUCLEAR MATTER PROPERTIES OF THE INTERACTION

In the two previous chapters, two preliminary parametri-
zations of the ?6 dependent interaction were introduced. In
this chapter we will derive the nuclear matter properties of the
interaction, and use these to develop a preferred parametriza-
tion. To do this we will refer to the results for the energy
density and single-particle equations for this force, which are
developed in appendix A. We begin with some simple, though im-
portant, definitions.

Nuclear matter (NM) is an infinite, homogeneous, three-
dimensional system of nucleons, interacting only through the
nuclear force. 1In general, the neutron and proton densities
p_ and pp need not be equal. However, one usually considers

n

symmetric NM in which on==pp. An exception to this occurs when
calculating the symmetry energy co-efficients, (to be defined
later). '

Along with pn and pp, other useful gquantities are in-
troduced as follows (g = n or‘p):

3 2 3.2
o = K. /3n P po= p_+p_ = 2k,/3n
Fq nop F (5.1)

—~
]

5 2 _ .
qu/Sn , T =+ 1 .

32
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&

Note that 1 # ZkS/Swz if Ph # pp. In the symmetric case

Py = pp = p/2 ' T, =.Tp = 1/2. , an = ka

(5.2)
.5 ,..2 _ 2
T = ZkF/Sn = Bka/S

and the only free parameter is p, or equivalently kF.

| For the ?8 dependent effeétive interaction defined in
appendix A, we will now derive the following three symmetric
NM propertiés:< (i)’average energy per particle ENM’ (ii) com-
pression modulus K, (iii) effective\mass m*/m, and also (iv)
symmetry enerqy co-efficient €y -

- " 4

(i) Calculation of ENM < 0

, As ENM = HNM/p is the average energy per particle, we

use equations (A-4), - (A-5) for the energy density H. In (sym-

metric) NM we set oy = pp, Vzp = 0, e2 = 0, ; = T, g = 0.
Simple algebra then yields
E_ =T 4—$L-(3t'+(5+4x 't )pk2 + Q-EHQ + L t rsp (5.3)
NM 7S 80 1 2772 F 8 0 16 3 *

where Ty = 0.6 ﬁ2k§/2m is the average kinetic energy per par-

ticle.

(1i) Compression modulus K> 0

This is defined by K = kéBzENM/akg evaluated at the

saturation Fermi momen tum k, which satiéfies the saturation coﬂ—
dition aENﬁ/akF==0. Remembering the dependence of Tgqs Py T ON
kF this reads .

0 = 2mg+ T (3t +(5+ax,)t,)0kE+ 3 too+ i g (58+3)1 o . (5.4)

e coce Y bl T e

oy wee, NoE
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while K is given by

_ 3 2,9 1: B
K—-2TS+ , (3tl+(5+4x2)t2)ka+4 top+-16 t3 (5p+3) (5B8+2)T p. (5.5)

Before continuing with m*/m, it is worth remarking that

egns. (5.3), (5.4), (5.5) proved to be useful in searching for

parameters. Specifically, they can be regarded as a system of

three equations in the three quantities 3ty + (5+4x,)t,, t, and

ty. As such they can be inverted to yield:

4(-3(58+1)TS+-5(58+3)ENM4-K)
0 158p

(5.6)
_ 16 (-3Tg + 15E, + K)

3 SBQTB

(58-2)

40((58+1)TS—3(58+3)EN - K)

M

3t +(5+4x.)t, =
! 2" "2 30k2 (56-2)

One can regard ENM’ K, kF to be approximately known

from experiment. Foxr example the semi-empirical mass formula

(MS 74) gives Eg & - 16 MeVv and K x 240 MeV;. giant monopole
resonance frequencies indicate K % 210z 30 MeV, and from extra-
polated central densities of nuclei one finds k% N 1,35%.07

fm at saturation, (Bla 80) (Tre+ 8%). Although K has not yet
been determined unambiguously (FV 81), (Bue+ 81), a value

* considerably below 300 MeV does seem to be in order. ‘

In practice then, one chooses B and usually sets all

exchange parameters X, = 0 to reduce the number of parameters.

With ieasonable values of ENM’ K, kF, (5.6) then yields an

-/

T
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initial set of parameters. If these parameters give undesirable
results for finite nuclei, they can be adjusted by using a new
set of ENM’ K, kF' In this way physical insight can guide the

choice of parameters.

Equation (5.6c) only specifies the combination 3t1+5t2,
(if X, = 0). This raises the question of how to choose a parti-
cular value of tl and t2. The answer lies in the fact that these
parameters have a more pronounced effect on the calculated bin-

ding energy of small nuclei than on larger ones. This can be

understood from (A~5),; whereby for an N= 2 nucleus with no Cou-

lomb field

-

- _ 2
Hy+H, = (3t,+5t,)01/16+ (9t 5t2)|Vp| /64 . (5.7)

.

By (5.6c) the first term is fixed. Now if tl increases, t2 must
decrease, and so thé second term of (5.7) increase;, causing
ETO& to increase. Furthermore, |Vp| is appreciably different
from zero only in the nuclear éurface. Hence for small nuclei,
which are almost all surface, a change in tl has the largest ef-
fectcanTOlﬂ and requiring that four doubly magic nuclei of wide-
ly varying size be properly bound restricfs'the choice of tl'
We now continue with the nuclear matter propertieﬁ.

(iii) Effective mass m*/m

This is obtained from (A-7) by setting-pn==pp, yielding

B S i

gt g g 4
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-1
m® _ om T o B-1
= (1 + > (3tl+(5+4x2)t2+t36pT )] .

(5.8)
8

The effective mass can also be expressed in terms of the other

NM properties by using (5.6) to replace the ti parametexrs in

(5.8). After some straightforward but tedious algebra, one

obtains (using ﬁz/m = 41.47 MeV fmz) in the case f=0.1 the re-

sult.

. .1206 Eg, + .01608 K -1
= (.9 +

) , (5.9)
2
Xp

Bl':':’

»

and in the case f=1:

-1

N .2411 E__ + .008038 K
n - (1.8 - NM ) . (5.10)
m 2

Kp

The effective mass near nuclear.density is suggested by nucleon-
nucleus scattering experiments to be roughly 0.7, (JLM 76).

- (iv) Symmetry energy co-efficient €y

This quantity is defined, by considering non-symmetric

NM, as gollows:
E (o) = E_ (0) + ¢ az + O(a4) (5.11)
NM NM 1 ’ ! '

where a = (pn~pp)/p. Only even powers of o appear in the ex-

pansion (5.11) because neutrons and protons are treated symme-
trically in NM - for example there is no Coulomb force.

The expression for €1 for a Skyrme force is given in

4“

e I TS

Y
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equation (37) of (VB 72). To obtain £y for the present force

one must set their t3= 0 and then inc¢lude the effects of terms

proportional to Xp1 Xy
in appendix B, so that the final result is

v

S L, .1 2,1 £} 2
61-9 TS i to(xoi-z)p 5 xltlka+-6 t2(l+4 xz)ka (5.12)

g

1l = 5
a8 t3 (l+2x3-§ B)pt

This shows that x, should only affect the energy of nuclei with

Il

pp otherwiée. The value of El can be

estimated from the semiempirical mass formula to be about 30%5

‘

0
N# Z, insofar as Ph

MeV.

The NM properties of the two forces TA and TZ developed
in the last chapter are given .in table III. We see that ENM'
kF and € fall into the experimental ranges mentioned above.

However the values of K obtained from these forces are larger

than the experimental upper limit of 240 MeV. It is well known

that for Skyrme forces, values of K below 300 MeV are not con-

sistent with obtaining proper binding, as discugsed in (Bei+ 75).

This is also true for our fB force whgn B =1 > .4. . To see

this, consider equation (5.6b) for E3. One requires t., > 0 and

3
B > 0 for the force to be physically reasonable. But 8 > .4
implies 58-2 > 0, so that for E3 >0, egn. (5.6) requires that

- 3TS + 15 ENM + K > 0. . (5.13)

E3. These new contributions are derived

Se e <l it i, T e e S
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Hence

K. =3T., - 15 E
min S

~ 3(20)-Y5(-16) = 300 MeV
‘? . . .
Alternatively, if B < .4. the sense of the inequality in (5.13)
changes and we see that K < 300 @ev is required. This has
in fact been realized in the force TX. where £=0.1.

For both the forces TA and TX we also find that m*/m
is about .4 and that the re-arrangement energy is small (Table
II). We previously rejected the ﬁz-dependent force (3.7) be-
cause it has EREAR = 0, and consequently a small effective mass
like SV. ’

Fortunately, it is possible to remedy both the large K
and low m*/m problems of the preliminary forces, simultaneous-
ly. From (5.9), which holds for B=0.1, we see that if K de-
creases, then m*/m increases. Also if we fix B=0.1 in (5.6b)
the denominator will be negative, so that as K decreases t

3

increases. This is reasonable because E and |E

rEAR “ E3- REAR |
and m*/m increase together. A similar argument, this time
for the case =1 and using (5.10), shows that as K increases -
m*/m increases.

It was thus desirable to develop three further parame-
ter sets (denoted TB, TY, TZ) which have effective masses lar-

ger than 0.4. These parametrizations are defined in Table IV

and results of HF calculations with them are presentéd in Table
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V. Their NM properties are listed in Table VI.
These forces will be discussed in the next chapter,

where set TY will be chosen as the preferred interaction of the

% type.
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TABLE IIX
NM Property TA TX
-1
kF (fm 7)) 1.290 1.306
2

ENM (MeV) -16.133 ) -16.065
K (MeV) 350.0 283.0
m¥*/m .4086 . .4107
e]  (Mev) 36.42 34.69

The NM praoperties, which are defined in chapter V, of
interactions TA, TX.
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TABLE

TB

1
-1014.18
448.681
-150.485
9829.975

128.6

.24445

IV

FORCE

0.1
-2365.45
603.878
-115.585
10812.45
154.6

.0657

—2844.2§
407.12
-214.33 °
15617.28
144.0
.0917

O—o

Definition of the parameter sets TB, TY, TZ intro-

duced in chapter V, Units are the same as in Table I.

.-
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e B i B s

o

R

g e

N o o A e Gt



42
TABLE Va
Exp. TB TY
Nucleus B/A B/A _EREAR B/A —EREAR
16, 7.9760 7.9754 2.807 7.9757 2.299
40., 8.5515 8.5469 3.449 8.5539 2.740
48., 8.6669 B8.6793 3.639 8.6888 2.873
% .
50y; 8.6430 8.6247 3.881 8.5975 3.060
90, , 8.7102 8.7099 3.940 8.7101 3.098
132
sn 8.3540 8.3403 34957  8.3607 3.113
140
ce 8.3764 8.4345 4.018 8.3446 3.142
208 7.8678 3.198

Pb 7.8677 7.8676 4.070

TZ

B/A  ~Egpar
7.9750 3.213
8.5524 3.907
8.6740 4.144
8.5971 4.435 ,
8§.7056 4.500
8.3563 4;571
8.3224 4.573
7.8695 4.698

Rearrangement and binding energies calculated with TB, TY, TZ are
compared with experimental (WB 77) binding energies. All values

are in MeV.

Lo e s S !




TABLE Vb /
Nucleus Exp TB TY TZ
16
0 2.73 2.651 2.734  2.754
2.589 2.674  2.695
2.608 2.696  2.717
40ca 3.48 3.455 3.490 3.497
3.363 3.394 3.399
3.402 3.483 3,444
48., 3.48 3,485 3.488  3.488
3.643 3.644 3.637
3.451 3.453 3.453
56N 3.75 3.790 3.773 3.761
3.690 3.666 3.653
3.734 3.717 3.705 .
30, 4.27 4.300 4.270  4.261
4.360 4.325  4.307
4.263 N 4.233 4.223
13240 4.769 4.711  4.693
5.012 4.954  4.916
4.731 4.673  4.655
140, 4.923 4.889 4.878
5.048 5.008  4.981
4.891 4.856  4.845
2085, 5.50 5.570 5.497 5.475
5.760 5.680  5.636
5.534 5.461 5.439
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RMS radii of charge-, neutron- and proton-densities {(from
top to bottom) calculated with TB, TY, TZ are compared
with experimental RMS charge radii. All values in fm.
All references same as for table IIb.
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NM Property

-1
kF (fm ™)

EgMm (MeV)
K (MeV)

m*/m

tl (MeV)

44

TABLE VI

1.275

-16.210

480.0

.54061

34.56

= TZ
1.326 1.345
-16.072 -16.102

240.0 207.8
.5020 .5974

30.35 26.77

The NM properties of interactions TB, TY, TZ.
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CHAPTER VI

DISCUSSION OF RESULTS

In the previous chapter parametrizations TB, TY and TZ
of the {B dependent interaction were developed in order to ob-
tain an effective mass considerably larger than .40, and the
consequent increade in rearrangement energy. From table V
we see that these forces indeed have considerable EREAR contri-
‘butions to ETOT‘ This shows that in these forces the effect of
the term of interest (egn. (4.1)) f% very substantial. ,

In the case of TB where 8=1, raising m* required using
K = 480 MeV, which is very large. We see that TB gives the
boorest overall fit to the experimental charge radii of all the
five forces. 1In the case of TZ (8=.1) the more reasonable va-
lue of K = 208 MeV was obtained. Raising m*/m much beyond .60
when p = .1 would require lowering K even further (now going

away from 1its experimental range) and would result in numerical

dirfficulties in the solution of the HF problem. This would oc-

cur because as E3 increases, the contraibution - % v2(3H3/af) to
Uq 1ncreases (see (A-7)). This causes a ‘'feedback' of limited

accuracy into the potential, because this term involves the
fourth derivatives of the single-particle functions @i, which
are calculated on a finite grid by a fourth order Ruﬂge-Kutta

routine which integrates the HF equations (A-9).
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Comparing the B= .1 forces TX and TZ we see that for
TX &he radii of the smaller nuclei are too small, and for the
larger are too large, whereas for TZ the opposite is true. This
motivated th; development of parameter set TY which has values
of K and m*/m intermediate between those of TX, TZ and repro-

duces the experimental r of all the nuclei exceptionally well. -

ch
This also indicates that if one tried to increase m*/m beyond
.60 for this value of B8, that such a force would have discrépan-
cies in Lh of the same type as those of force TZ, but of even
larger magnitude.

Hence, on the basis of 1ts reasonable NM properties, and
its superior fit to the experimental binding energies and RMS
charge radii of finite nuclei, we will refer to the parameter,
set TY as our preferred interaction. We shall now present the
results obtained with this force in greater detail.

In figure 1 the total densities p(r) calculated for 16O,

4oCa, 902r, 208Pb are compared with the force's symmetric NM
density .157 fm_3. In figures 2, 3 the separate neutron and
proton contributions to p(r) for 40Ca and 208Pb respectively,
are graphed. In these figures, there are small oscillations of
the density in the nuclear interior, which are typical of HF
cglculations.

In figures 4, 5 the charge densities of 40Ca, 208Pb
calculated with the preferred interaction TY are compared with

those of Skyrme III and with experiment. All calculated charge
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densities include ¢orrections (Ber+ 72) to account for the pro-
ton and neutron charge form factors, the eleétromagnetic(spin—
orbit force, and the nuclear center of mass motion. The experi-
mental charge densities are accurate to within * 1%. In the

40Ca (fig. 4) the present force is seen to gi&e a bet-

case of
‘ter fit to experiment than S III, particularly in the interior.
In fact scaling the S III distribution to increase its RMS ra-
dius of 3.46 fm to the experimental value 3.48 fm would make |

its fit even poorer. In the case of«208

Pb (fig. 5) the charge
density of force TY is also seen to foilow pﬁe experimental re-
sults more closely than does the chaige density of SIII, except
for the central bump which extends to about 1.5 fm. This bump,
which is associated with the shell structure of 3s protons

(cf. fig. 3), is again typical of all HF calculations, and so
should not be used to distinguiéh between the present force and
S III. 1In this case séaling the S III density to reduce its

RMS radius of 5.56 fm to the experimental value of 5.50 fm would
improve its fit, but it would still be poorer in the surface re-
gion. '

Also of interest are the single-particle energies €s of
the force, which can be roughly compared with the experimental
removal ene;gies of a nucleon‘from the ith level, These guan-
tities are listed in table VII. We see that the orders of le-

vels generally agree, and that the calculated level density is

slightly lower. This is a common failing of HF calculations,
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(Cs 72). By comparison the déepest levels calculated with the
force TZ which has m*/m = .60 lie about 12% higher than those
of force TX. |

The calculated lp levels in 16O are split by a larger
amount than the experimental levels because of the value W =

155 MeV fm5

that was required to fit the binding energies. These

splittings for all five forces are compared in table VIII.
Because the modified (EB) term of our force contributes

to- the effective mass (A-7a), and hence to the nonlocality of

the HF potential, it is worth examining m*/m and U. These quan-

tities as calculated with the preferred interaction for 40Ca

and 208Pb have been graphed in figures 6 and 7. We notice that
m*/m has a strong radial dependence and approaches its nuclear
matter value of .50 in the nuclear interior of lead. Despite
the different nature of the present force, the curves in figs.
6, 7 have shapes very similar to those obtained with Skyrme II
and presented in (VB 72).

Because our interaction depends on ?, it is of interest
to look at the distributions of T, T and Tp. These quantities
as calculated in 40Ca, 208Pb are compared with Skyrme IV in
figures 8,’9. Skyrme IV has approximately the same effective
mass as TY. . The similarity of the curves in these figures is
also evident.

Finally, it is interesting to compare the quantities
p and T which have been used to saturate the Skyrme and the

present forces, Figures 10, 11 (for 40Ca, 208Pb) show T along
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/

o
with T and £(p) = .6 (3m2/2)2/3,5/3
4

nuclear matter, as obtained with force TY.

, which equals 1t and 1 in

In both figures

f(p) has a steeper slope than does T or.1 in the surface re-

gion. We also notice that T is smoother than T in the sur-

face. In the case of the large nucleus 208Pb (fig. 11) the

three curves agree quite closely in the nuclear interior, which
4

they do not do in ?%ca (fig. 10). In fig. 11 the interior

oscillations of 7 and 1 are out of phase with those of p, and

those of T have the smallest magnitude.

The results of the preferred interaction presented in
this chapter show that its properties concerned with, finite

nuclei in the HF approximation are in general not significantly

different from those of the Skyrme forces. The agreement with

experimental quantities is equally good for the two types of

force. In addition we have seen in chapter V that our force

TY possesses reasonable NM properties.

Hence we have successfully achieved the objective of

Chapter IV, of developing an effective nuclear interaction with
dependence on pﬁz T,

,
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Level

1sl
1p3
1pl
145
251

40Ca

Level

1sl
1p3
1pl
145
2sl
143
1£7
2p3
2pl

48Ca

Level

1sl
- 1p3
lpl
1d5
2sl
143
1£7
2p3
2pl
1£7
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TABLE VII
Neutron
Ebe TY
45.0
21.8 23.3
15.7_____ 16:0_
4.14 5.75
3.27 2.37
Neutron
Exgb TY
61.4
42.5
37.6
24,6
18.1 18.5
15.6_____16.5_
8.36 8.78
. 6.2 3.69
1.56
Neutron
Ebe TY
63.5
44.8
41.2
27.0

12.55 20.2
12.52 19.4

—— " — —— o > t

5.14 5.14
3.11 2.89
0.83

e e s St e

Proton
Exp® 'b TY
408 41.3
18.4 19.8
12.1 . 12.7_
0.60 2.67
0.10
Proton
EXEa’b ﬂ_
5011 53.7
34:z6 35.0
34+6 30.2
. 17.6
10.9 11.5
8:3 _______ 9.61
1.4 2.22
/ Proton
a,b
Exp TY
5519 59.7
357 42.4
357 38.4
25.0
15.3 17.6
15.7_______ 17.5_
9.6 8.84
1.9 2.00

(continued next page)
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2085,

Level .

1sl
ip3
1pl
145
143
2sl
1£7
1£5
2p3
2pl
1g9
1g7
285
1hl1l
243
3sl
1h9
2£7
1i13
3p3
2£5
3pl
299
1i11
1515
345
4sl
297
343
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TABLE VII (continued)

Neutron
Exg.b TY
72.6
64.5
63.7
54.8
53.1
50.0
44.2
40.9
37.3
35.8
33.0
27.7
24.9
21.5
22.2
21.6
10.85 14.0
9.72 13.2
9.01 10.4
8.27 9.51
7.95 9.51
_7.38______8.14_
3.94 2.77
3.15 0.79
2,53
2.36 0.33
1.91 0.13
1.45
1.42

Proton
Exg;b TY
61l.1
53.2
52.4
43.6
41.9
38.1
33.1
29.8
25.5:
24.1
15.43 21.9
11.43 16.7
9.70 13.2
9,37 10.6
8.38 10.8
_8.03 _____ 9.72
3.77 3.30
2.87 1.51
2.16 ’
0.95
0.47

(continued next page)



90Zr

Level

1sl

1p3 .

1pl
145
143
2sl
1£7
1£5°
. 1p3
2pl
1g9
25
3sl
243
1g7
lhll

References:

The experimental single~particle removal energies are com-
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TABLE VII (continued)

Neutron
Exp.c TY
71.3
57.0
55.1
41.9
37.5
35.7
27.0
13.5 19.5
13.1 19.7
12.6° 17.1
J12.0 _12.9_
7.2 6.13
5.63 3.79
4.88 2,93
4.46 2.91
2.16
a = (Jam+ 69)
b = (BM 69)
c = (Bas+ 68)

Proton

Exp.2 Y
54+8 60.9
4348 47.9
4318 45.6
27+8 33.7
27+8 29.0
26.8

19.3

11.8

11.0
____________ 8.66
5.38

4

pared with the eigenvalues €; calculated with interaction

TY.

Occupied levels appear

levels are denoted by nft(2j).

above the dotted lines,

The

R
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TABLE VIII

16O lp level splitting (MeV)

Force Neutrons Protons
TA 8.08 7.95
TB . 6.61 6.52
TX 8.20 8.05
TY . 7.30 _ . 7.16
T2 6.59 " 6.48

Experiment . 6.1 6.3

The lp level splitting, €(lp 1/2) - e(lp 3/2), of neutrons
and protons in 160, for all five forces is compared with
the difference in experimental (BM 69) single-particle re-
moval energies.

.w .
o At =

B - T2 T
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LIST OF FIGURES

Total densities p = pn4-pp, as calculated with

force TY, for l6O, 40Ca, 90Zr, 2OBPb.
o, p_, p_ for 40Ca, calculated with TY.

208Pb, calculated with TY.

Charge density Peh of 40Ca as calculated with

the forces TY and Skyrme-III are compared

with experiment, (Sic+ 79).

Same as fig. 4, but for 208Pb, (Fro+ 17).

The neutron and proton effective masses m*/m

and potentials U calculated with TY in 40Ca

The Coulombic contributions to Up are not

includeé.

Same as fig. 6, but for zong. -

The T, e T distributions in %a as cal-

culated with TY and Skyrme-IV are compared.

208P

Same as fig. 8, but for b.

The quantities %, 1, £{(p) = 3.6175 p5/3

that may be used to produce saturation are

compared in'4OCa, as calculated with force

TY’

Same as fig. 10, but for 208Pb.
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CHAPTER VII

/ CONCLUSIONS

In this work we have considered the Campy-Bouyssy
Local Fermi Momentum k of eqn. (2.4) as an alternative pres-
cription to the well-known Local Dénsity Approximation, eqn.
(2.2), for mapping the Fermi momentum deﬁéndence of the nu-
clear reaction matrix from the infinite to the'finite system.
This led to the concept of a ﬁ—dependent effective nuclear
interaction.‘

It was then shown that such a force would derive no
rearrangement energy from its k dependence. One consequence
of this fact is that, insofar as terms of order 34 can be
neglected in the standard Negele-Vautherin.and the Campi-
Bouyssy Density Matrix Expansiéns, either of these two ap-
broximationsﬁshould give rise to no spurious ;earfangement
energy, when used in HF calculations, resulting from their"
potential energy density's'dependence.on p or Kk, respectively.

However, since the rearrangement energy is an essential
feature of a good effe;tive interaction, one can say that in
general the interaction should have dependence on p as well .
as on ﬂ.‘ This amounts to a dependence on guantities suchéas
0, Vzp, T. ’

To show that a dependence on quantities other than p

66
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is in fact feasible, an interaction which depends on T = .6 ﬁzp
was developed, using the Skyrme force as a guide. Care must

be exercised in choosing the numerical methods for solving

the Hartree-Fock problém wheh using a force of this type. Né—
vertheless, a parameterization of thié force, arbitrarily de-
noted TY, was developed, which gave results at least equal in
quality to those of the various Skyrme forces, when used to
calculate static nuclear properties in the HF approximation. It

also possegses reasonable nuclear matter properties.
- 3
Thns, a dependence on quantities other than the density
in the 'saturation term' of an effective nuclear interaction

has been shoﬁn to be feasible.
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APPENDIX A

In this appendix we present some equations relevant to

the ?B dependent force chosen in chapter IV.

The phenomenological Hamiltonian to be used is written

s 343
1l
I~

g+ oz (v, +vi3y (a.)

i=1 Y i3« P30W)

2
1

(S

where ti = - , and typically

2

<
I

12 to(l+xOP0)6 +

N

t 2
tl(l+le0)(k §+38k™) (A.2)

-+

t , +
t2(l+x2PO)§ 55*'1W(91f92) 5 XGE

+ e(qy +-3) (@, + 3)/ (4T, )

and

(3)
V12

1 - A8
¢ B35 (x5, /2) 6 (1ex,P ) (A.3)

Here k = (Vl-VZ)/Zi; P = (1+91'92)/2’~0 is Pauli's spin matrix,

1

§ = 6(r;,) and T:z1- %'Vzp. The terms proportional to t,
ty. t2, ‘W become the Skyrme force with t3= 0 in the case \
X) = X, = 0. The mot;vation for Vig) is givén in chapter 1IV.

4 The energy density H(r), which must satisfy [ H(g)d3£=

ETOT' is given in the HF approximation by:

T N R Y
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H(r) *ﬁ

+
52T (k)

i

I ™ w

. Hi(g) + HLS(E) + HC(E) (A.4)

where the subscript i indicates proportionality to to,'--,E3.
HLS and HC =

densities. The contributions HO' Hl, H2, HLS' HC are all de-

rived in (VB 72), except in that they have included neither Xy

nor x,. The calculation of H3 is exactly analogous to that of

HO’ as is the derivation of (3.8) from (3.7). (Compare (A.3)

with first term of (A.2) and HO with H3 below.)

Listing all the contributions ko H explicitly

U 1 2 _ 1 2 2
Hy = 3 to((l t 5 xo)p (2 + xo)(pn + pp))
_ 1 _3 g2 1,
Hl =3 tl((2pr 5 oVTp) (1 + 5 xl) +
2 3 2
+ (E an Pt T ppV pp~p T, pprp)(1+2x ))
- 1 2 1
Hz = t2((2pr + 5 pVTp) (1 + 5 x2) +
(A.5)
1 2 1 2
+ (3 an Pt T opV pP oo Tt ppwp)(1+2x2))
=L T AB l _ (1 2,2
H3 - 12 ((l + X )D (2 + X )(pn p))
Ho o= -2 W(Ved + 0 Ved + p 7ed )
LS 2 ~ n -n P -~p

_;l_-_ :_1; M gz P | 3|
Hoy = 5 P Vc =3 pp(g) J pp(f )e /(4neo|§ r [)d~r

HCEX

p
- % (3/m) /3.2 4/3/(4ne )

HCD4'HCEX denote the spin-orbit and Coulomb energy
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In the Coulomb exchange term the Slater approximation has been
used. Following (VB 72) a small spin-orbit contribution arising
from the terms of (A.2) proportional to ti\ﬁqe t2 has been ne;
glected.

Varying the §ingle—particle functions ¢i, subject Fo
the constraint of normalization, so tha; ETOT is minimized, pro-

duces the HF equations

2
- B ey 4w miu o) = e,

, . (A.6)
2m 1

in which the effective mass, potential, and spin-orbit form fac-

tor are all position dependent and are given respectively by

2 2 .
;—; m T3 (tl(l + 5 xl) + tz(l t 5 xz))o
m .
q ' ]

1l ~
+ 7 (t2(l+2x2)-tl(l+2xl))pq + ?H3/31 ’
_ 1 - 1 1 C oy 1 1
Uq = to((l + 5 xo)p (x0 + 2)oq) + 3 (tl(l t 5 xl)ftz(l + 5 xz))r

1 1l 1l 2
(t2(l+2x2)—tl(l+2x1))rq -3 (3tl(l + 5 xl)-t2(14-5 xz))V p

o}

+

1 2 1
+ = (3tl(l+2xl)+t2(l+2x2))v oq 5 W(Ved+ VT )

16 ~ ~q
3H oH
(@ D ef 3o mY 3 ume ) + 2 - 192 3 @y
2 c P 0 ap 4
q T
1
W= 5 W(Vp+V
e = 2 (Vo oq)

Here q denotes p(n) or % (= %) acéording to the charge index a3

of the single particle state i. All the terms in (A.7) except

e e
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those proportional to E3 are either derived in (VB 72) or are

straightforward extensions thereof.

We now derive the contributions to (A-~7) arizing from

Hy = gs(r,vzp)-x(pn,pp). In the variation one performs to this
term of H
oH oH dH
3 3 2 3
20 T e ! 2729,
¢ ¢i ¢s

Recalling the expression (3.10) for ?, we evaluate

oH oH., 9p, oH

3 %H3 9py 3 a7 _ %8 1 %H3 o
T ® 7 NSETT by mT Ve
¢i i ¢i T ¢i, i 9T
2 OHy o 5 dHy o an oy 5 3Hy
v 5% Vi (—= ——7*10 = -7 Vo (—= ¢i) '
ovVTe. . a1 V=, 3T
1 1 v
oH oH
-7 3= - v.(_~§ % v¢i) . (A.8)
av¢i 3T

From the first term, we see that 3H3/3pi goes into the potential

Uq as stated in (A.7). Adding the next two contributions (with
X Z IH,/3%) ¢

!
o)

2 2 '
(XV7¢, + V (X¢i))

t
]
R

w2 2
(XV ¢i + V-(XV¢i) + (V X)tbi + VX V¢i)

fl

1 g2
- 3 (79, + 29-(xV9.)) .

The first of these terms completes the potential Uq, and ‘the
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last term, when combined with the idential (A.8), is —V-(XV¢i).

*
This then produces the contribution of 3H3/8? to 4’12/2mq in (A.7).

For spherical nuclei, one then makes the ansatz (i

caym 2 n,l,j,gim)

~

_.~1
%;m =r ua(r)‘&,j’m(ﬁ,O)xq(T?

-

in (A.6). As in (VB 72), the radial wavefunctions u, then

satisfy the following second order differential equations:

2 2 2 !
f—;[— e+ R gy (5*17) u' o+ [Uq+%(—2*1~*-> ¥
mq r mq mq

+ (3(3+41) - 2(2+1) = %)Wq/r]u = eu .

The self-consistent solution can then be found by using

.an,iterative DME-HF computer programme.
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APPENDIX B

In this appendix, we derive the contribution of the

parameters Xy1 Xy E3 to the NM symmetry energy co-efficient

€17 which was defined in chapter V by

Eyy (@) =Eyy (0)
¢, = Lim —H— T (B.1)

o+0 o

Recall that ENM = HNM/Q and o = (pn—pp)/p, so that pn/ =

R P
(0/2) (1% w).

It will be necessary to find t_ (9@ = n,p) in terms of

a. Recalling (5.1) and (5.2), consider

SRS R 3 (3“2)2/302/3

n Fn'n 5 !
and
p2/3 = (9/2)5/3(1+u)‘r’/3
= (9/2)5/3(‘l+-§- a + % o 4 O(a3))
Thus
o= 2 (3n2/2)2/3ps/3(1+-% o+ 2% . 0(ad)) .

Similarly by replacing a with -a one finds

_ 3 1.2,..2/35/3,. _ 5 5 2 3
er = 10 (31°/2) ) (1 e tgoa + 0(a™))

-
T OUPRY
e o
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sO that

2/305/3 5 2

T = % (312/2) (1+3a%+ 0(a3)) . (B.2)

(i) Contribution due to xlz From (A-5) we see éhat the

contribution to ENM due to X, is

= 1 -
HxliNM/o =g Xt (v - 2(p 1 o _T1.)/0)

Exl,NM = nn ' pp /

which vanishes in the event pn==pp, i.e,

Ex1,mm(0) = 0.

Generally

2 2/3 | ‘
3 05/3[2+-lg «? -

=1
(o} = 8 x,t )

3
E 1, NM 1%1 170 (53

5 5 5
(l+-3-a+-§ok\>(l+a)-(l-§-a+
2 2/3 2
e} p(~-10/3)a

»

02)(1-a)]

olt

w

£, = (32

=}-x {
8 171 10

.

1 2 2
—B-xltlkFO Qa .

Hence, by (B-1), the contribution of this term to €1 is

(B-3)

(ii) Contribution due to x2£ Again from (A-5) we see that

ExZ,NM = tzxz(r + 2(pnrn+pptp)/p)

Bl o

t,x

which equals 5

21 when o= 0. Otherwise



e ararl v e

¥

_1 3. 3 5/3 10 2 10 /2,10
Bx2,mu(®) =5 2% 75 (737 (2475 0%+ 2+ a®+ 3 o))
2 2/3 i
1 3,37 50 2
=g ¥y 10 (T e+ FaT)
1 50 2
= e tx, (e + 22 o)

Hence, by (B-=1) the coantribution to €y is

5 2 ‘ e
ﬁtZXZQKF. ) (B-4)

(iii) Contribution due to 23: From (A-5) one has

Lz B el o ke (o2 e o2 )
Etz,nm = 13 t3T (1 +'2 xz)e - (5 + x3) (pp + 0 )/0} (B-5)
.which equals 'ilé' ESTBp when a= 0. Generally we have from
(B-2) that-
. . B
- B (2kF/5w )3(1 + 2 0% .

©jn |t

= (k3 5 /502 B(l + 2 ga? + o(at))

’

and the part of (B-5) in curly parentheses equals

A

pkl +

LS e

xy = (F + 3)—((1+a) 2+ (1-a)?)

Substitutiﬁg these into (B-5) yields.

1 2 B8 5 2, .3 1

2
EE3,NM(°‘)‘ - 24 3 (2kp/5“ (1"'79"'.301 AC e (-é-+x3)a: ) .

Hence, by (B-1) the contribution to e; is

g ‘ v

e =~ — — T — e

e M
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1z 1 o
g t P T (g B - Xy - 5? . (B-6)

The termslin (B~3), (B-4), and (B-6) are just the

desired new contributions appearing in equation (5.12).
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