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ABSTRACl 

Bellows expansion joints are used in piping systtms to absorb significant axial 

and/or transverse motions. Unfortunately, their flexibility also makes them susceptible to 

vibration. This thesis presents a detailed analysis of the transverse vibrations of single and 

double bellows expansion joints, including the effects of internal fluid. 

A differential equation of motion is developed which treats transverse bellows 

vibrations including the effects of fluid added mass, rotary inertia and internal pressure. 

The added mass is determined from potential flow theory and provided in the form of a 

mode dependent added mass coefficient. The equation of motion is solved for the first four 

transverse modes and comparison with experiments shows excellent agreement. The 

neglect of rotary inertia and the effect of convolution distortion on fluid added mass in the 

EJMA Standard makes the latter's preC:ictions for natural frequency significantly higher 

than those measured , especially for transverse modes above the fundamental. 

The equation of motion is also solved approximately to provide an analytical 

expression for transverse natural frequencies. The results are presenteC: in a form which 

makes hand calcuiations possible for the first four modes of single and double bellows 

expansion joints. Experiments in still fluid as well as flow-induced motion show excellent 

agreement with predicted frequencies. 
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CHAPTER 1 

INTRODUCTION 

Any piping system or a part of it is more or less flexible. In many cases, as in oil or 

gas pipe lines, for example, which are buried under the ground, the elongations or 

contractions are very small due to almost constant inside and outside pipe temperature. In 

these cases the natural flexibility of the piping system itself is completely sufficient to 

accept small elongations. However, in many other cases, such as the piping systems of 

modem fossil or nuclear power plants or in aircraft and space technology, the elongations 

and contractions of the piping system can be very significant and frequent due to changes 

in temperature or to mechanical motions of the separate sections of the structure witli 

respect to each other. Therefore, where the natural flexibility of the piping system itself is 

not adequate, artificial flexible elements, such as expansion loops or expansion joints are 

used. Reciprocating machines, such as compressors, are usually connected to the piping 

system through flexible elements in order to prevent noise and stress propagation over the 

whole piping system. 
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As a flexible element, the metallic bellows has been in use in engineering practice 

since the end of the last century. At first it was applied as a pressure gauge in barometers 

and later, in the piping systems of the modem thermal power plants, where the corrugated 

pipe expansion joints (bellows) began to replace the expansion loops, which were loosing 

too much head and becoming too bulky. 

The most important part of the expansion joint is the bellows, which consists of a 

number of uniform convolutions. The bellows convolutions have appeared in practice in a 

variety of shapes, the most popular of which consists of flat circular rings connected to 

two toroidal half-rings, forming the root and the tip of a convolution. These are called U­

convolutions. This particular shape of convolution is most widely used because it permits 

formation of the complete bellows either mechanically or hydraulically from a single piece 

of light gage cylinder. Practically all other convolution shape bellows are assembled by the 

welding of separately stamped convolution elements, which makes them much more 

costly. Therefore, throughout this thesis only U-shaped bellows are referred to, although 

all the derived formulae or calculation methods used can be equally well applied to the 

other covolution shape bellows. 

Today bellows-type expansion joints have become so widely used in various piping 

systems, that the production of them has developed into a new branch of industry. As a 

result, the Expansion Joints Manufacturers Association (EJMA) was founded in 1955 by a 

group of companies, experienced in the design, fabrication, and application of bellows 

expansion joints. 

On one hand, bellows expansion joints are very compact and very flexible devices 

for accommodation of large axial or transverse displacements, while on the other they are 

very susceptable to vibrations which can 1:,e easily excited either structurally, through the 

fixed ends of the expansion joint, or by the fluid flowing inside the bellows. Practice shows 

that the latter type of excitation is most common and most dangerous. When the flow 

velocity is sufficiently high, significant flow-induced vibrations can develop which usually 

lead to premature fatigue related failure of the bellows. This has been demonstrated by the 

failure of numerous bellows used i11 the Joint European Torus (JET) fusion energy project, 

Weaver and Aisworth ( 1989), for example. 
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Despite a wide variety of universal expansion joint designs, from the structural 

standpoint, practically all of them fall into two categories: expansion joints with and 

without lateral supports. Therefore, in addition to the sing!e bellows expansion joint, these 

two types of universal expansion joints are extensively analyzed throughout this thesis. 

From the beginning, researchers were naturally interested in investigating the static 

strength and, of course, the stability of bellows. Just some twenty five years ago, with the 

increased use of bellows in high technology, the investigations of the dynamical behaviour 

of bellows began. Since the most important and obvious excitation source for the bellows 

expansion joint installed in a straight section of a pipeline is the inside flow, which is nearly 

axisymmetric, researchers paid primary attention to axial vibration of the expansion joinr.s. 

Comparison of numerical and experimental results for axial natural frequencies of bellows 

expansion joints confirm sufficiently high precision of corresponding formulae 

recommended by the EJMA Standard (1980). 

According to the EJMA Standard, an expansion joint can be installed in proximity 

to elbows or any other piece of the fitting. In this case, the flow is no longer subjected to 

the ideal axisymmetric conditions typical of bellows in a straight pipe section. Therefore, 

significant lateral vibrations could be excited in such cases. Comparison of the present 

experimental investigations of lateral vibrations of single and double bellows expansion 

joints with theoretical calculations using EJMA Standard formulae demonstrated up to 

400% difference with respect to experimental data for higher vibration modes. For the 

dynamic evaluation of an expansion joint, the natural frequencies must be known more 

precisely than recommended by the EJMA Standard. This is the primary purpose of this 

thesis. 

In principle, the dynamic calculation of an expansion joint may be divided into the 

following four steps: 

I. Determination of the excitation load, which is probably caused by free shear 

layer instability over the periodic cavities created by the bellows convolutions, 

2. Determination of the frequencies of natural vibrations of the expansion joint 

with fluid inside, 
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3. Determination of the maximum dynamic displacements and stresses in the 

bellows material, 

4. Comparison with the allowable values of the displacements and stresses at the 

given conditions. 

The science of hydrodynamics is concerned with the solution of the first step 

problem. The methods of hydrodynamics and theory of vibrations are to be used for a 

solution of the second step problem. The last two steps are problems addressed by the 

theory of vibration and strength of materials. It is not difficult to understand, that the these 

four steps taken together create a very complex scientific problem, not least because the 

prediction of the excitation force amplitude is extremely difficult. In such cases the most 

reliable method of solving the problem is through experimentation. However, frequently it 

is sufficient to provide a simplified dynamical solution for the system, which consists of the 

first and second steps mentioned above, i.e. by predicting the forcing and natural 

frequencies, and ensuring that frequency coincidence never occurs. This thesis develops 

the theoretical tools to allow the designer to do just that. 

Chapter 2 is a literature review. The history of the problem of hydroelasticity is 

briefly elucidated. Currently existing approaches, methods, and some results of the 

theoretical, numerical, and experimental investigations of transverse vibrations of bellows 

are reviewed. It was found that little attention has been paid up to now to the investigation 

of transverse vibrations of bellows. Moreover, the investigations are very scattered and in 

some cases their results contradictory. On the one hand, this can be explained by the 

complexity of the bellows as an elastic system, the investigation of which different authors 

have undertaken with different combinations of simplified assumptions in mind. On the 

other hand, this uncertainty demonstrates that the investigations of transverse vibrations in 

bellows is still in the initial phase. 

In Chapter 3, the general formulation of the problem of hydroelasticity is given. 

Two methods for solving the problem are presented, and the peculiarities related to the 

transverse bellows vibration problem are discussed in detail. The bending stiffness of 

bellows is expressed through the axial bellows spring rate, which can be calculated using 

already existing formulae. For more precise calculations of the axial spring rate, the shell 
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and the solid of revolution finite element algorithms are provided. Also, the inertial 

properties of fluid in bellows are thoroughly discussed. The original approach of 

calculation of added mass is elaborated in this chapter. 

The bellows is a complex, periodic kind of shell. In the case of transverse vibration 

of bellows, the problem turns into tri-dimensional eigenvalue problem with hundreds or 

even thousands of elements. Such problems must be solved using powerful computers. 

Therefore, previous studies of the transverse vibration of bellows usually reduced the tri­

dimensional shell problem to a beam transverse vibration problem with mixed success. The 

approach taken in this thesis is a similar beam approach. It should be noted, that in order 

to reduce the general bellows shell problem to the beam transverse vibration problem, a 

number of important assumptions have to be made prior to the derivation of the 

differential equation. All the assumptions are extensively discussed, and the differential 

equation is derived in Chapter 4. 

Practicing designers usually prefer to use short explicit formulae rather than 

complex computer codes and numeiical simulations. Keeping this in mind, the Rayleigh 

quotient method was chosen to obtain the natural frequency expressions for expansion 

joints. It should be noted that much higher precision than usual was achieved using as 

admissible functions, not some static deflection curves satisfying given boundary 

conditions as recommended in the vibration textbooks, but the mode functions of the 

simply Bernoulli-Euler differential equation, assuming that the inertia of rotation of the 

cross-section and the pressure inside the bellows affect the modeshape very little. The 

correctness of this assumption was confirmed by the natural frequency results, obtained 

from the experiment. 

In Chapter 5 the natural frequency solution for a single bellows expansion joint is 

given. As an approximate mode function the Bernoulli-Euler differential equation solution 

for fixed-fixed end conditions is taken. Comparison with the exact solution is provided, 

which demonstrates very high precision of the frequency expression obtained from the 

Rayleigh quotient. 

The double bellows expansion joint possesses two distinct vibration mode families: 

so called lateral and rocking. The first attempts to solve this problem showed that the 
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solution resulted in very long and complex mathematical expressions. Therefore, the 

double bellows expansion joint natural vibration problem was divided into two separate 

problems, one for lateral, the other for rocking modes. These two problems are governed 

by the same differential equation, but have two different sets of boundary conditions. Such 

division of one problem into two made possible the essential simplification of the solution 

procedure of the general problem from the mathematical standpoint. For both lateral and 

rocking mode boundary conditions, the Bernoulli-Euler differential equation was solved to 

obtain the approximate mode shapes for substitution into the Rayleigh quotient expression 

of the real double bellows expansion joint system. The exact solutions of the frequency 

equations of these two separate problems compared with the results calculated from the 

Rayleigh quotient expressions exhibited very little error. In Chapters 6 and 7 these two 

separate lateral and rocking mode problems are solved. 

Chapter 8 is devoted to the experimental investigation of the natural vibrations in 

bellows expansion joints. The experiments were conducted with empty bellows to test the 

main assumption of reduction of the bellows as a shell to the bellows as a beam and the 

assumption of the negligibility of the shear. The experiments with stagnant water inside the 

bellows were performed to test the added mass formula, derived in Chapter 3. The effect 

of inside pressure on the frequency was checked by means of experiments. Finally, the 

natural vibration experiments were conducted with the bellows installed in a flow loop to 

test all assumptions combined, including the assumptions about the negligibility of the 

influence of the Coriolis and the ~entrifugal forces exerted on the bellows by the flowing 

fluid. 

Chapter 9 is concerned with flow-induced vibrations in bellows. The experiments 

were conducted with single and double bellows specimens installed in various locations of 

the loop to test the influence of a change in the hydrodynamical exciting force on the 

modes and vibration amplitudes of the bellows. The experiments were set up to allow a 

velocity range from zero up to 10 m/s bulk flow velocity. 

Chapter 10 summarizes the results of the entire investigation and examines the 

capability and limitations of the formulae developed for design purposes. 
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CHAPTER 2 

REVIEW OF INVESTIGATIONS OF TRANSVERSE VIBRATIONS 

IN CORRUGATED PIPE EXPANSION JOINTS 

2.1. General Information about Flow-Induced Vibrations 

Flow-induced vibrations of elastic bodies involve the interaction between the elas­

tic and inertial forces of the elastic body and the fluid. The vibration excitation mecha­

nisms are often not well understood, since flow-induced vibration phenomena are usually 

very complex and diverse. The exact determination of the nature of the interaction be­

tween the structure and fluid and the magnitude of force of the interaction is extremely 

difficult. The flow-induced vibrations appear in tubes, in heat exchangers, and steam gen­

erators, International Symposium on Vibration Problems in Industry (1973), Paidoussis 

(1979), Shin and Wambsganss (1975); in nuclear fuel assemblies, Oldaker et al. (1973); in 
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hydrotechnical components and structures, Weaver (1976), IUTAMIIAHR (1974); in na­

val and space industry, Sainsbury and King (1971), Symposium on Solid-fluid Interaction 

(1963). The wind excitation of buildings and other overground structures is another area 

where the Flow-Induced Vibration science can be applied, Sainsbury and King (1971). 

The list of the published papers in the field of Flow-Induced Vibrations is growing 

rapidly and these publications are spread over a large number of journals because of the 

diversity of the flow-induced vibration phenomena. Naudascher (1967), Toebes (1965) 

and others attempted to classify the flow induced vibration phenomena. However, most of 

the flow-induced vibrations according to Weaver (1989) can be characterized as: 

a) Forced vibrations, 

b) Self-controlled vibrations, 

c) Self-excited vibrations. 

Forced vibrations problems stem from variety of sources. These include the vibra­

tions induced by turbulent flow, vibrations as a response of tall buildings or aircraft struc­

tures to wind gusts, the vibration of ship propeller blades excited by the periodical flow 

caused by the proximity of the ship hull, the response of a pipe conducting some fluid, or 

of a marine vehicle operating at the surface of the water. When the excitation is random, a 

statistical technique is usually used for determining of the exciting force distribution over 

the surface of the structure. Whether these excitations are random or periodic, the neces­

sary feature for this class of response problems is that the motion of the structure has no 

"feed-back" effect on the fluid forces. Therefore, the excitation force can be studied sepa­

rately from the vibration problem using a rigid model. This separation of the whole re­

sponse problem into two independent ones greatly simplifies the solution. 

In self-controlled vibration problems some periodicity exists in the flow even 

in the case of the completely station .. -y structure. When this periodicity coincides with 

some natural frequency of the structure, resonance takes place. The vibration amplitude 

increases until the structural motion starts to control the fluid excitation force by the de­

veloped feed-back mechanism. Under these conditions, over some fluid velocity range, the 

vibration response of the system is controlled not by flow velocity, but by the vibrating 

structure. This fluid velocity range is called the "lock-in" region. A common source of pe-
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riodicity in the flow is vortex shedding. Examples of this class of flow-induced vibrations 

can be the vibrations of smokestacks, high towers, turbine blade vibrations, etc .. Such vi­

brations can be prevented by changing either the stiffhess or the mass of the structure to 

alter the natural frequency or, more effectively, by changing the geometry to alter the fluid 

excitation. 

Self-excited vibrations appear in such systems when the motion of the structure 

itself creates the periodic fluid force which in tum amplifies the vibration of the structure. 

The periodic fluid force doesn't exist in the absence of structural motion, as in the case of 

self-controlled vibrations. This is the main distinction between these two types of flow­

induced vibrations. Examples of self-excited vibrations are bending-torsion vibrations of 

aircraft wings, the oscillation of gate seals, the galloping of frosted wires, and the vibration 

of vertical lift gates. Because of the interaction between fluid and elastic forces, both self. 

controlled and self-excited vibrations are called fluid-elastic vibrations. 

Since it is possible to obtain exact solutions only for a limited number of simplified 

and usually idealized problems, it is often necessary to employ experimental metr.0ds to 

determine the solution of fluid-elastic phenomena encountered in todays modem designs. 

Dimensional analysis and similitude theory are often used to analyze very complex phe­

nomena. The experimental information needed is usually in the form of fluid-dynamic co­

efficients, stability thresholds, pressure distribution, velocity profiles, amplitude, and fre­

quency of oscillation. To study the response of such models wind tunnels and water loops 

are usually used. 

In flow-induced vibration problems related to liquid flows it is very important to 

take into account the inertia of the fluid because this is usually great enough to change vi­

bration frequencies considerably or sometimes even the modes of vibration of a system. 

The motion of any rigid or elastic body in a fluid is accompanied by a flow of fluid around 

the body. Considering the fluid to be perfect and incompressible and its flow as steady and 

irrotational, both drag and lift forces for the body possessing central symmetry, according 

to the paradox of D'Alambert, are equal to ze.ro. The viscosity of the fluid must be taken 

into account to obtain the real drag force. However, if the motion of the body is nonuni­

form, the flow initiated in the perfect fluid is not steady anymore. In this case the flow 
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generates a drag force on the body and this force appears as if the inertia of the body had 

been increased. Since the vibrational motion is nonuniform, the mass of the vibrating body 

appears as if increased by some amount of "additional m?ss" in comparison with its mass 

in vacuum. This phenomenon m?.y be accompanied by a significant drop in the natural fre­

quency of the vibrating body if the fluid density is sufficiently high. It should be noted that 

the term "additional mass" doesn't mean that a certain amount of the fluid really has the 

same acceleration as the vibrating body. 

The British scientist Green (1833) in the nineteenth century understood the phe­

nomena of additional mass. It was ence>untered in practice during the investigations of the 

influence of water on the vibration of dams in seismic regions. The first theoretical solu­

tion of this problem for a solid dam was accomplished by Westergaard (1932). It was de­

termined by him, and later by other authors, that in most cases, the compre~sibility and 

viscosity of the fluid can be neglected completely. The first attempts to take into account 

the inertial properties of the fluid in the shipbuilding industry were made by Lewis (1929) 

and Koch (1933). Various theoretical investigations of the vibration of vertical and hori­

zontal rectangular plates were performed by Sheinin (1967). The first attempts to evaluate 

theoretically the additional mass in bellows were made by Gerlach (1969). 

2.2. The Survey of Flow-Induced Vibrations 
of Corrugated Pipe Expansion Joints 

Corrugated pipes have been used in engineering practice for more than one hun­

dred years. At first they were used mostly as sensitive pressure gauges. After World War 

II, with accelerating technological advance, especially in the piping systems of the modem 

thermal power plants, corrugated pipe expansion joints (bellows) began to replace the 

loop type expansion joints, which were losing too much head and which became too bulky 

in very dense piping systems. Later, bellows found an application in modem airplanes, 

rockets, and space technology. The geometry of a bellows is shown in Fig.2.1. As seen in 

Fig.2.2a and b, two types of expansion joints are being used in engineering practice: single 

and double bellows expansion joints. To reduce the susceptibility to buckling, lateral sup­

ports may be provided as shown in Fig.2.2c. 
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From the beginning, researchers were interested in investigation of the static 

strength and stability of bellows. Only some twenty five years ago, with the increased use 

of bellows in high technology, investigations of the dynamical behaviour of bellows began. 

As seen from Fig.2.1 a, a bellows is an extremely complex kind of shell. Gerlach 

(1969) distinguishes three types of axial vibration modes of a bellows which are shown in 

Fig.2.3a, b, c. In addition to these, in the case of longer bellows, the transverse vibration 

modes (see Fig.2.3 d) are likely to occur. 
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Fig.2.1. The geometry of bellows 
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a) Single bellows expansion joint 

-

-

b) Double bellows universal expansion joint 

Pipe extension to pn:ssure vessel 
~ rigid anchoDge 

Sliding joint allows C)9WISion of the 
connectmg pipe and also small axial 
and lateral movements of the anchorages. 
but resists movement of the conncctii:,g_ 
pipe away from its centre-line in buckling 

Section .of str_aight 
conncctmg pipe 

Corrugate4 s;teel bellows 
expansion JOLnl 

c) Double bellows universal expansion joint with lateral supports 

Fig.2.2. Various types ofexpansionjoints 
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a) Axisymmetric longitudinal mode 

b) Nonsymmetric longitudinal mode 

" : ~ : ~ 
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c) Local convolute bending mode 

d) Bellows bending mode 

Fig.2.3. The kinds of bellows vibration modes 
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Since the most important and obvious excitation source for bellows installed irl a 

straight section of a pipeline is the inside flow which is nearly axisymmetric, researchers 

naturally paid attention primarily to axial vibrations of expansion joints. 

The first detailed study Clf flow induced vibrations in bellows seems to have been 

conducted by Gerlach (1969), who concluded that the source of fluid excitation was vor­

tex shedding from the convolution tips. In a subsequent paper (1972), Gerlach noted from 

the flow visualization studies that the flow structure over the bellows remained turbulent 

in the absence of bellows vibration. Thus, he recognized the fundamental fluid-elastic na­

ture of the phenomenon, but maintained his vi~w that vortex shedding was the excitation 

mechanism. He developed a "stress indicator", based vn the assumptions of linear forced 

vibration theory, to provide an index of the severity of vibrations. Bass and Holster (1972) 

extended the work of Gerlach to bellows with internal cryogenic flows. They found that 

internal cavitation or boiling due to heat transfer and the formation of frost or condensa­

tion on the outside of the bellows convolutions - all had the effect of damping the vibra­

tions. 

Rockwell and Naudascher (1978) suggested that the excitation mechanism was 

probably free shear layer instability over the periodic cavities created by the bellows con­

volutions. These authors also noted that the Strouhal number reported for bellows was 

Jess than one half of that for a rectangular cavity and speculated that the effect of rounded 

corners in the case of bellows was to reduce the predominant oscillation frequency. 

It has been shown by Franke and Carr (1975) that ramping the upstream and 

downstream corners of rectangular cavities is very effective in reducing the free shear 

layer oscillations. 

Weaver and Ainsworth ( 1989) conducted experimental investigations of the flow 

induced vibrations of 20 mm diameter Inconel 600 bellows and found large amplitude 

flow-excited vibrations at velocities exceeding 4.5 mis under ideal upstream flow con­

ditions. These vibrations were clearly adequate to explain the service failures because of 

fatigue of the bellows during the test program. They found that the effect of service up­

stream flow conditions is to produce a high velocity jet across a portion of the bellows cir­

cumference. The result is a reduction in the mean flow velocity through the bellows re-
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quired to excite resonance. According to these authors, it is desirable to avoid such flow 

geometry singularities such as abrupt transitions and elbows immediately upstream of bel­

lows. Weaver and Ainsworth agree with the suggestion of Rockwell and Naudascher 

(1978) that the vibration excitation mechanism would appear to be free shear layer in­

stability. A succession of bellows modes are excited with increasing flow velocity. The 

authors found the Strouhal number corresponding to the peak vibration amplitude in each 

mode based on a convolution pitch equal 0.45. This agrees with the Strouhal number for 

free shear layer instability over a deep cavity. 

The experimental results obtained using flow visualization by Gidi (1993) demon­

strated that the vibration of the convolution and the vortex shedding process are due to an 

instability in the free shear layer. This instability is, in turn, triggered by the motion of a 

convolution. This process leads to a resonant vibrational motion. Therefore, according to 

this author, the vibrations of bellows should be attributed to the class of self-excited vi­

brations. 

2.3. The Survey of Investigations of Axial Stiffness of Bellows 

15 

Considering a bellows shell with its prolonged periodic geometry as a fixed-fixed 

beam, it is necessary to know the effective bending stiffness, El. Calculation of EI for a 

classical beam is a simple problem, but this is not the case for bellows. It is rather im­

possible to calculate the first moment of inertia, I, taking into account just the geometry of 

the cross-section of bellows, as it is usually done in the case of a simple beam. Therefore, 

it seems that the bending stiffness of bellows, EI, can be calculated either numerically 

(using, for example, FEA) or from experiment. An experiment is time consuming and fre­

quently very expensive. On the other hand, FEA is readily accessible, but in the case of the 

calculation of El for bellows, the calculation becomes difficult for two reasons. First, bel­

lows convolution is a very complex shell. Second, despite bellows axial symmetry, the 

problem becomes three-dimensional because oflateral deformation. Just the preparation of 

the input data file for such problem becomes a complex task for designers. Therefore, in-



stead of a direct calculation of the transverse stiffness, EI, it is much easier for bellows 

expansion joints to calculate at first the axial stiffness, EA, and then, from the well known 

relationship, EI= EAr, to determine the transverse stiffness. Since this approach was used 

throughout this thesis, the existing methods for calculation of axial stiffness of bellows are 

briefly reviewed in the section below. 

is: 

where 

According to the EJMA Std. (1980), one convolution axial spring rate of bellows 

dp is the mean diameter of bellows (2Rm in Fig.2.1), 

Eb is the modulus of elasticity, 

(2.1) 

Ip is the bellows material thickness factor, to correct for thinning during forming, 

t =ti p d , 
p 

t is the nominal material thickness, 

w is the convolution depth (h in Fig.2.1), 

q is the bellows pitch (pin Fig.2.1) 

Cr is the factor from the graph in Fig.2.4. 

All parameters in formula (2.1) must be in lb-in-sec system. 

Gerlach and Schroeder (1969) give another formula for calculation of the axial 

stiffness of bellows. Since these authors treat the bellows as an N degree of freedom in 

series connected spring-mass system, they use a so called elemental spring rate for one 

half-convolution, 
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where 

k=2D.,EN,(i)', 

D., is the mean diameter of bellows, 

E is the modulus of elasticity, 

Np is the number of plies, 

t is the thickness of the bellows wall, 

h is the convolution height. 

All parameters in formula (2.1) must be in lb-in-sec unit system. 

(2.2) 

Andreeva (1975) submits the following formula for axial stiffuess of one half-con­

volution of bellows: 

where 

E is the modulus of elasticity, 

Eh3 

k=--2-, 
AR

0
., 

h is the thickness of the bellows wall, 

Rou, is the outer radius of bellows, 

A is the coefficient, dependent on ratio, 
R 

r = ~ , as follows: 
R,. 

R,. is the inner radius of bellows, 

µ is the Poisson's coefficient. 

(2.3) 

According to Haringx (1952), the axial stiffness of bellows per one convolution is: 
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where, 

E is the modulus of elasticity, 

h is the thickness of bellows, 

r. is the outer radius of bellows, 

r, is the inner radius of bellows, 

v is the Poisson's coefficient, 

b is the convolution depth, 

Rm is the me::.n radius of bellows, 

I 
& = --

3 

I'. 
p = .2.. 

r. 

(1+p 2)(1-p)3 

l-p 2+(1+p 2 )lnp' 
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(2.4) 

Although the derivation of formulas (2.1), (2.2), (2.3) and (2.4) are based on the 

same flat ring approach, the numerical results of the axial bellows spring rate obtained 

from these formulas are quite different. This can be explained by the different methods 

used for evaluating of the influence of the rounded roots and tips of the convolutions 

adopted in these four formulas. Therefore, for more precise calculations of the axial stiff­

ness of bellows expansion joints, it is necessary to resort to either experiment or Finite 

Element Analysis. This problem is analyzed in the next chapter in detail. 

2.4. Investigations of Axial Vibrations in Bellows 

Most earlier investigations of natural vibrations in bellows were conducted by 

Gerlach and Schroeder {1969). They found from experiments that three different kinds of 

structural modes can be excited by the flow: axisymmetric, cocking, and convolution 



bending modes. The last ones are the modes of higher order, where the order of the mode 

becomes equal or even higher than the number of convolutions. 

The bellows are treated by these authors as an N degree of freedom in series con­

nected spring-mass system, where N = 2N, - 1, Ne being the number of convolutions. The 

elemental spring rate was given in a previous section by eq. (2.2): 

The expression for the elemental mass is 

where 

Pm is the density of the bellows material, 

R1 is the radius of the convolution tip. 

(2.5} 

(2.6) 

The elemental added mass for the lower frequencies, caused by translational motion of a 

convolution is 

(2.7} 

and the elemental added mass for the higher frequencies is 

(2.8) 

Using (2.5), (2.6), and (2.7), the so called reference frequency with fluid inside is calcu­

lated from 

20 



(2.9) 

The true modal frequency is then detennined by multiplying the reference frequency value 

by the dimensionless frequency taken from Table 2.1, corresponding to the desired mode 

number, n, and the system degree of freedom, N, as follows: 

where 

f.=k.f, 

f,, is the true modal frequency for the nth mode, 

f is the reference frequency, 

k. is the dimensionless frequency parameter for the nth mode. 

(2.10) 

Table 2.1. Dimensionless frequencies parameters for bellows mechanical model, kn , 
Gerlach and Shroeder (1969) 

Mode number, 11 
N 1 2 3 4 5 

1 1.414 
2 1.000 1.732 
3 0.765 1.414 1.845 
4 0.620 1.175 1.620 1.900 
5 0.520 1.000 1.414 1.732 1.930 
6 0.445 0.862 1.247 1.564 1.802 
7 0.390 0.765 1.111 1.414 1.663 
8 0.347 0.684 1.000 1.286 1.532 

9 0.314 0.618 0.908 1.176 1.414 
10 0.285 0.563 0.831 1.082 1.310 
11 0.264 0.518 0.765 1.000 1.217 
12 0.245 0.479 0.709 0.929 1.136 
13 0.226 0.445 0.661 0.868 1.064 
14 0.213 0.416 0.618 0.814 1.000 
15 0.199 0.390 0.583 0.765 0.942 

16 0.185 0.367 0.547 0.722 0.891 

17 0.174 0.347 0.518 0.684 0.845 
18 0.165 0.329 0.491 0.649 0.803 

19 0.157 0.313 0.467 0.618 0.765 

20 0.149 0.298 0.445 0.590 0.731 

21 



It may be seen from the equation (2.5) that the given method of calcul,ition of the 

frequencies of bellows doesn't take into account the double curvature of both the tip and 

the root of a convolution and the axisymmetry of bellows. In addition, the criteria for us­

ing formulas (2. 7) and (2.8) is not clear. For some "transitional" mode, the formulas (2. 7) 

and (2.8) should give equal or at least close results, i.e., the ratio mfl!m12 = 1. In reality, 

the ratio is mfllm12 = 3(2R1 - 1)2 /2}( « 1 for reasonable dimensions of a, t, and h. 

Therefore, the use of the method explained above for higher ratios of Ri! D,., and hi Dm, 

for the modes of higher order as well as in the case of a low number of convolutions be­

comes questionable. 

In another connection, the same authors offer to relate both kinds of added mass 

expressed by formulas (2.7) and (2.8) into the single formula as follows: 

where 

2N - l -11 11- I 
e m + m 

2N -2 1' 2N -2 12 ' e e 

Ne is the number of convolutions, 

II is the number of the mode. 

Formula (2.11) is not applicable for Ne= 11 = 1. 

(2.11) 

The other similar approach for the calculation of natural frequencies in bellows is 

given in the EJMA Standard (1980): 

where 

!. = c. ~~, 

K = J; 
SR N. 

e 

f; is one convolution spring rate, given by eq.(2.1), 

C. is the coefficient given in the Table 2.2, 

(2.12) 
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W is the total weight of the bellows. 

Inch-pound-sec unit system must be used in both (2.12} and subsequent formulae. It 

should be noted that W includes the part of the additional mass of fluid which is trapped in 

the convolutions. The other part of the additional mass that is caused by the deformation 

of the convolution is not taken into account in W, which can lead to a significant error, 

especially for higher modes. 

Table 2.2. Values ofC. for first 3 modes, EJMA Std. (1980) 

N. C1 C2 C3 c. 
1 8.84 
2 9.51 17.7 23.1 
3 9.75 18.8 26.5 32.5 
4 9.75 19.1 27.8 35.4 
5 9.81 19.3 28.4 36.8 
6 9.81 19.4 28.7 37.5 
7 9.81 19.5 28.9 38.0 
8 9.81 19.5 29.1 38.2 
9 9.81 19.5 29.1 38.5 
10 9.81 19.6 29.2 38.6 

Morishita, Ikahata, and Kitamura (1989) use the fixed-fixed uniform rod approach 

for the investigation of axial modes in bellows. Therefore, the formula for evaluating the 

natural frequencies of bellows is simple: 

where 

g is the acceleration of gravity, 

KsR is the spring rate of bellows, given in EJMA Std., 

W is the total weight of bellows, as in EJMA Std., 

k is the mode number. 

(2.13) 
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All the methods of calculation of axial vibrations of bellows considered in this sec­

tion have one common insufficiency: they are simplified to an one-dimensional rod-beam 

system and are not reliable when the number of convolutions becomes comparatively small 

or the mode number becomes large. To get more precise results in such cases, the bellows 

must be treated as a shell of revolution. Just such an investigation of axisymmetric vibra­

tions of bellows is presented by Jakubauskas (1991) and by Jakubauskas and Weaver 

(1992). 

A finite element code was developed by these authors to solve the uncoupled hyd­

roelasticity problem for axial bellows vibration. The bellows was modelled using two 

node, three degree of freedom per node axisymmetric constant meridional curvature shell 

elements as given by Ross ( 1983). As the in-plane displacement and rotation are negligible 

compared to the out-of-plane displacement of the shell, the stiffness and mass matrices 

were simplified using Irons' (1965) reduction process. 

z 

Fig.2.5. Finite element discretization of bellows and fluid domains 

The fluid was modelled using three degree of freedom axisymmetric triangular 

elements. The shell and the fluid codes were tested against analytical solutions for some 

simple problems and found to give excellent predictions. They were then specialized for 
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bellows vibration analysis as shown in Fig.2.5. It was found that 16 shell elements and 88 

fluid elements per convolution were adequate for convergence of bellows natural fre­

quencies up to mode numbers exceeding the number of bellows convolutions. The input 

data file for the code was very simple, requiring only the bellows geometry, the physical 

data for the bellows material and fluid, the number of bellows convolutions and the req­

uisite number of natural frequencies. 

The code was used to analyse the free vibrations of a five convolution stainless 

steel bellows with mean radius Rm= 34.6 mm, convolution radius R1=R2=1.25 mm, 

straight portion of convolution height L = 3.2lmm, thickness t = 0.28 mm, modulus of 

elasticity E = 2.07xl011 Pa, Poisson's ratio v= 0.3, and density p = 7860 kg/m3
• 
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The predicted mode shapes are shown in Fig.2. 7 in which vibration nodes are indi­

cated by solid dots. Scrutiny of these mode shapes indicate at least two distinct types of 

convolution behaviour. The first involves nearly parallel motion of the sides of a con­

volution, i.e., in-phase translation with little shape distortion. For such motion, the added 

mass is expected to be reasonably approximated by the mass of fluid contained by a convo­

lution as assumed by Gerlach (1969) and the EJMA Standard (1980). This behaviour is 

best illustrated by the first mode, especially the middle convolution. 

The second type of convolution behaviour involves convolution shape distortion in 

which the sides of a convolution move out of phase with one another. In such a case, the 

fluid motion would be primarily in and out of the convolution and the added mass would 

not be reasonably represented by the mass of fluid contained by the convolution. This be­

haviour is particularly clear for the middle convolution in the second and sixth modes. 

However, convolution shape distortion tends to become dominant over convolution trans­

lation as the mode number increases. Thus, according to the authors, the added mass is 

expected to increase with mode number and not remain constant as assumed in the EJMA 

Standard analysis. 

The computed added mass is plotted against mode number in Fig.2.6. The asso­

ciated in-vacuo and fluid filled bellows natural frequencies are presented in the same fig­

ure. As anticipated by the authors, the added mass increases with mode number from the 



first to the fourth modes. However, the added mass for the fifth mode shows, rather unex­

pectedly, a sharp drop to a value slightly below that for the first mode. 
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The authors explain this by examination of the mode shapes in Fig.2.7. The fifth 

mode has 4 internal vibration nodes at, or near, the convolution roots (internal tips). 
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these roots. This behaviour is clearest for the middle convolution. The fluid inertial effect 

for such a mode is expected to be less than that for a nearly pure translation of the convo­

lution such as observed for the middle convolution in the first mode. It is noteworthy that 

this rocking behaviour and the resulting reduced added mass effect occured for the fifth 

mode of these 5 convolution bellows. Such behaviour is expected for any geometrically 

similar bellows when the mode number is equal to the number of convolutions. The sixth 

mode shape is more complex with some rocking of the end convolutions but considerable 

shape distortion of the middle three convolutions. Thus, there is a substantial increase in 

the added mass and a commensurate drop in the in-fluid natural frequency as compared 

with the fifth mode. 

In order to verify the finite element code and check the above observations, the 

authors conducted experiments on a nine convolution and a five convolution bellows with 

the geometry and material data described above. The results of the experimental analysis 

are summarized in Tables 2.3. and 2.4. The comparison in Table 2.3 shows that the finite 

element predictions for both 5 and 9 convolution bellows in air are extremely good, 

probably within the experimental uncertainty limits. Note that the experimental frequencies 

in air are slightly below the predicted frequencies. The theoretical predictions for both 

bellows in water are also quite good, the largest error being less than 7% 

Mode 
shaoe # 

I 
2 
3 
4 

Table 2.3. Comparison of experimental and FEA results 
for five convolution bellows, Jakubauskas (1991) 

in air 
Error 

in water 
Exo. FEA Exo. FEA 
Hz Hz % Hz Hz 

1600 1602 0.13 1300 1269 
3175 3212 1.17 2400 2350 
4800 4839 0.82 3550 3311 
6400 6524 1.94 - 4227 

Table 2.4. Comparison of experimental and FEA results 
for nine convolution bellows, Jakubauskas (1991) 

Error 

% 

2.38 
2.08 
6.73 
-
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Mode in air Error 
in water 

shaoe# Exn. FEA Exo. FEA Error 

Hz Hz % Hz Hz % 
I 887 891 0.45 737 722 2.04 
2 1762 1793 1.76 1425 1386 2.74 
3 2675 2692 0.64 2000 2010 0.50 
4 3525 3591 1.87 - 2576 -

for the third mode of the shorter bellows. The experimental frequencies in water are all 

slightly above the predicted frequencies. These comparisons suggest that the fluid added 

mass may be slightly overpredicted by the finite element analysis. 

2.5. The Survey oflnvestigations of Transverse 
Vibrations of Corrugated Pipe Expansion Joints 

29 

According to the EJMA Standard (1980), the expansion joint can be installed in 

proximity to elbows as shown in Fig.2.8. In this case the flow no longer corresponds to 

the ideal axisymmetric conditions, typical of bellows in straight pipes. Therefore, signifi­

cant lateral vibrations of bellows may be excited in such cases. Probably, for this reason 

the EJMA Standard. cites just two types of vibration, axial and lateral bending, and pro­

vides corresponding formulas for the calculation of the natural frequencies. The formulas 

for lateral vibrations are: 

a) Single bellows expansion joint, 

!. = c D,.. JKSR 
n n / W • (2.14) 

here 

Mode # I I 2 3 4 5 
" ..... ' ...... -~ ......... ~- ......................... . 

c. [ 24.8 [ 68.2 133 221 330 

b) Dual bellows expansion joint lateral mode, 



f. = 5.42 D. ~KSR . 
I W 

c) Dual bellows expansion joint rocking mode, 

In these formulas, 

f. is the natural frequency in the 1nh mode, (Hz}, 

KsR is the overall bellows axial spring rate, 

(2.15) 

(2.16) 

Wis the overall weight of the bellows including the fluid mass if it is applicable, 

Dm is the bellows mean diameter, 

I is the bellows live length. 

All parameters in the formulas above are in the lb-in-sec unit ~ystem. Comparative 

calculations by the author have shown, that these formulas have been derived from the 

Bernoulli-Euler differential equation for beam vibration and take into account only the 

mass and the bending stiffness of bellows. Therefore, they may not be very accurate, es­

pecially keeping in mind the extreme shortness and very complex geometry of bellows. 

As in the EJMA Standard, Li Ting-Xin et al. (1986) suggest use of the simple 

fixed-fixed Bernoulli-Euler beam solution for the calculation of transverse vibrations of 

single bellows. Therefore, their method of calculation may be expected to lead to signifi­

cant error as well, although the authors claim very good agreement with experiment. 

For the investigation of lateral modes Morishita, Ikahata, and Kitamura (1989) 

used the Timoshenko differential equation for the beam fixed-fixed end conditions. They 

state that the shear effect is negligibly small for bellows and can be ignored. In their opin­

ion, in addition to the Bernoulli-Euler conditions, it is necessary to take into account just 

the 
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Main Anchor 
Guides 

Directional Main Anchor 

Planar Guide Intermediate Anchor 

Fig.2.8. Installation examples of bellows 



rotary inerti& of the bellows cross-section, including the effect of the rotary inertia of the 

fluid trapped between the convolutions. The natural frequency fonnula for a single bellows 

expansion joint derived by these authors is 

where, 

!. = C Dm ~gK ... 
n n / W , 

c b, "= __ D_2 _(.,..,,l-+-hr~)-
l + 8/"',_ D a, 

1 +-!!!. r 
2 

y = p I _.!!__, 
Pb 4 t Ld 

~~~~.#..L ... 1 ... ..! .... ~ ..... ... ~--··· ..... 4..... 5 
a, = 12.30 = 45.92 98.92 175.6 264.0 

.... ;;;·····-rrs"ss"'. 'iiiii" ·46.29 "iiKs· 282.2 

Pr, pi, are the densities of the fluid and the bellows material respectively, 

t is the wall thickness of bellows, 

Dm is the mean diameter of bellows, 

h is the convolution depth, 

I is the length of the bellows, 

p is the bellows pitch, 

g is the acceleration of gravity, 

KSR is the overall spring rate of bellows, 

W is the overall weight of the bellows. 

(2.17) 
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These authors suggest use of eq. (2.17) to calculate lateral frequencies of bellows with a 

sleeve inside, with slightly different C., and W: 

where 

b, 
d;(l+hy) 

l+ ( d ) a, l 8~ l+ { 11(c)r 

..! ) - I+ &2 
'I\ E - 2 ' I-& 

d 
& = _, 

d' 
p 

d, is the outer diameter of the sleeve. 

I 
2 

The same authors perfom1ed a FE analysis of the vibration of bellows using two­

node six DOF beam elements and got fairly good agreement with experimental and theo­

retical results calculated from the simplified fonnula (2.17). 

Comparative calculations of various natural frequencies using fonnulas (2.14) and 

(2.17) have shown that the frequency result obtained from fonnula (2.17) derived by Mo­

rashita et al. (1989) is approximately 20% lower than the result obtained using EJMA 

Standard (1980) fonnula (2.14). The significant difference between these two frequency 

results shows the importance of the rotary inertia of the cross-section ofa bellows. Taking 

into account the pressurization and added mass related to convolution defonnation effects, 

this difference should increase even more. 



A review of the literature failed to tum up any numerical calculations for the trans­

verse vibrations of bellows as a shell, perhaps because the eigenvalue problem for such 

complex shells as bellows require so much computational effort. 

As seen from Fig.2.1, just a single convolution of a bellows is a very complex shell. 

Therefore, more precise finite element discretisation of a bellows requires a large number 

of finite elements for a single convolution only. In addition to this, as mentioned above, 

such eigenvalue problems require significant computational effort. On the other hand, 

while bellows are very complex as a shell, they possess very clear geometrical periodicity 

along the axis of symmetry, which makes a bellows similar to a deep beam at least. By 

happy coincidence, the longer bellows are, the more complex as a shell they become, but 

at the same time the more they resemble a beam. Therefore, it is convenient from the point 

of view c,; the transverse vibrations to treat a bellows expansion joint as a beam. In the 

following chapters, the beam approach to this problem will be founded in detail. 
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CHAPTER 3 

STIFFNESS AND INERTIAL PROPERTIES IN CASE OF TRANSVERSE 

VIBRATION OF BELLO\VS 

3.1.The Bending Stiffness of Bellows 

When considering a bellows as a fixed-fixed beam it is necessary to know the 

bending stiffness, El. The calculation of El for a classical beam is a simple problem, but 

this is not the case for a bellows. As was mentioned in the previous chapter, it is 

impossible to calculate the first moment of inertia, 1, considering just the cross-section of a 

bellows as is usually done in the case of a beam. The derivation of the bending stiffness, 

El, for bellows is given below. 

Let the axial spring rate per one half convolution be k. On the other hand, the axial 

spring rate for a classical bar, according to Frocht ( 1951 ), is 

where 

E4 
k =-

b I ' 

A is the area of the cross-section, 

I is the length of a bar. 

Now let I = p/2, i.e., the bar length is one half the convolution pitch, p. Then, 

equating k to kb we can express the equivalent cross-sectional area of a bellows, 
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A =kp 
'" 2E' 

where Eis the real value of the Young's modulus of the bellows material. Geometrically, a 

bellows can be approximated by a thin cylinder of mean radius, Rm . Therefore, the radius 

of gyration of a bellows can be written, according to Beer and Johnston (1981), as 

r2 = R;. . 
2 

According to the well known formula from the strength of materials, I= Ar, the 

equivalent second moment of area then becomes 

2 kpR;. 
l,q = A,qr =4£. 

Then, the bending stiffness of bellows is, 

(3.1) 

This is the easiest way for obtaining the bending stiffness of a bellows if the axial 

bellows spring rate per one half convolution, k, is known in advance. The accuracy of this 

method depends completely on the accurat:y of the available axial spring rate value, k. As 

was mentioned in Chapter 2, the various explicit formulas available in the literature for 

calculation of the axial stiffness of a bellows give scattered and therefore not very reliable 

results. For this reason, the following three sections of this chapter are devoted to 

calculation of the axial stiffness of a bellows using Finite Element Analysis. 
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3.2. Bellows as a Shell of Revolution 

The wall thickness of a bellows in comparison with its other dimensions is usually 

a very small quantity. Therefore, a thin shell theory can be applied to describe the stiffness 

of bellows. It was found that, for the bellows under consideration, it was appropriate to 

use the two node axisymmetric constant meridional curvature shell element (ACMC), 

given by Ross (1983), reduced to the straight conical one. 

The element has three degrees of freedom per nodal circle (11, w, and B), making a 

total of six degrees of freedom per element, as shown in Fig. 3. I. The elemental stiffness 

matrix in local coordinates is 

I 

[k,] = 21r J[s]'[D][B]rld.;, (3.2) 
-I 

where 

I v O O 
·············· ·············· ............ . 

[D] _ Et 
- (1-v2

) 

v 
0 ............. 0 12 /12 V/ 2 /}2 ' 

I O O 

.............. .............. ............ . 
0 O vt 2 /12 12 /12 
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[B] = 

R 

1 

0 '----------'------- z 

Fig.3. I. Two node 6 DOF axisymmetric element 
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where, 

1-,; 
0 0 

[N] = 2 : 

O 
j ,;3 -3,;+2 (1+,;=X1-,;=)'1 

4 8 

0 0 
............. 2 ........................................... ···························· 

0 

,; is the normalised local coordinate, 

t is the thickness of the shell, 

v is Poisson's ratio, 

E is Young's modulus, 

R, Z are nodal coordinates. 

-,;3 +3,;+2 -(1-,;)(1+,;)'l 
4 8 

The elemental stiffness matrix in global coordinates is 

[k1°] = [DCt[k,j[DC], (3.3) 

C = cos/3, S = sin /3 . 

The integr2tion was carried out using four Gauss points. The half-convolution 

calculation domain is shown in Fig.3.2. 
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Fig.3.2. Half-convolution domain for shell element 



3.3. Bellows as a Solid of Revolution 

A bellows can be considered as a solid of revolution. Provided a load is 

axisymmetric as well, the circumferential displacement of a bellows becomes equal to zero 

and only a radial cross-section needs to be analyzed, subdivided into some typical 

elements. The cylindrical coordinate system is the most convenient, and when it is used, 

the element stiffness matrix, according to Smith and Griffiths ( 1988), is 

[~,] = JJJ[BJ'[D}[B]rdrdBdz, 
v 

which, integrated over the entire circumferential length, becomes 
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[k] =2ir JJ [BJ'[D}[B]rdrdz, (3.4) 

where 

s 

r, z are the axisymmetric coordinates, 

[BJ is the matrix, 

[ DJ is the material property matrix, 

S is the area of the finite element. 

Since the radial cross-section domain of a bellows has curved boundaries, it is 

convenient to use a solid isoparametric element to describe this elasticity problem. The 

most suitable as a parent element for the bellows domain with curved bundaries is the 

eight-noded square element shown in Fig.3.3a, which can be mapped to the curved 

isoparametric one, Fig.3.3b, by means of the shape functions, N,, of the parent element, 



4(-1,1) 

8• 

1(-1,-1) 

y 

7J 

7 
3( 1.1) 

6 

5 2(1.-1) 

a) parent element 

4 
7 

I 1)= I 
I 

8 I 
', I 

, ........ I 7]=0 

~=-! t------
1 

~=O / ~=I 
1(X 1 ,Y 1 ) / 

I 
I 7)=-1 

5"-._ j 
2 

x 

b) isoparametric element 

6 

Fig.3.3. 8-noded parent and isoparametric elements 
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Here 

8 T 

r = Z:N,r, = {N} {r}, 
i=l 

8 T 

z = Z:N,z, = {N} {z}. 
i=l 

{N}' = (N,,N,, ... ,N,), 
{r}' = (1j,r2 , ••• ,r,), 
{z}' = (z,,z,, ... ,z,), 

where, according to Tong and Rossetos (1977), for an element with Co continuity shown 

in Fig.3 .3a, 

N, = .!.(1+q;,)(1+qq,X;;,+qq,-i), 
4 

N, = f (1-f)(I+qq,), 

N, = f (1-q')(l+qq,), 

The displacements are approximated by 

or 

where 

8 

ll= IN,11,, 
i=I 

• 
V= IN, 11,, 

i=I 

{:}=[N]{o}, 

i = I, 2, 3, 4 , 

i = 5, 7, 

i =6, 8. 

(3.5) 
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According to Smith and Griffiths (1988), the strain-displacement relations for the 

axisvmmetric case are: 

where 

[L] = 

~: 0 
or I 
0 [~ 

J Oz 
o I o , 
-·-oz i or 
.!. : 0 
r : 

{&} = (6, 6, 6,, 6 8 ). 

Substitution of(3.5) into (3.6) gives 

{e} = [B] {8}, 

where 

[B]=[Ll[N], 

or 

[B] = 

(3.6) 

{3.7) 

The derivatives of N, with respect to r, z and i;, s. needed in element matrix calcula­

tions, are related by 
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[
oN] [oN] 
~· = [Jf' ~ . 

where [J] is the so called Jacobian matrix: 

Vi = [~!fl 
Taking the inverted Jacobian matrix as 

the matrix [BJ, given by (3.7), can be rewritten as follows: 

(B]= 

where 

! 11N1, +I12N1, j O . 0 
·····························-:·······························!······························ ····························· . . 

0 j 121 N1, + I,2N1, j . . ·····························-····························································· ............................ . 
121 N1, +I22 N1, ! J11 N1> +/12Nt> ! /11 N8 , +/12 N,, 
············N·············1·······························;······························ ····························· 

-
1 i Q i ••• Q 

r : : 

N=oN1 

, o,; , 

N =0N1 

I 0q ' 

, (3.8) 

The differential area element required for stiffness matrix calculations can be given 

as follows: 

dr dz= det(J]d,;dq. (3.9) 

As shown by Tong and Rossetos (1977), the material property matrix for the axi­

symmetric case is: 
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Fig.3.4. Half-convolution domain for solid element 



1-v v 0 v 
············ ············ ·············:-··········· 

[D]- E 
- (l+v)(1-2v) 

1-v O v 

0 0 
l-2v ! 
--· 0 

............................. 2 ..... 1 .......... . 
(3.10) 

v 

v v 0 1-v 

Substitution of (3.8), (3.9), and (3.10) into (3.4) gives the stiffness matrix for any 

axisymmetric element in the domain. Now the elemental stiffness expression can be 

programmed into some basic finite element program. The mesh of the half-convolution 

domain is shown in Fig.3.4. 

3.4. Peculiarities and Comparison of Results for Calculation 
of Axial Stiffness of Bellows 
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Preliminary calculations showed that the longitudinal stiffness of bellows varies 

from one half-convolution to another, as shown in Table 3. I, where the first half­

convolution is at the fixeci end, and the sixth one is in the middle of the bellows. In this 

table, the axial spring rate for one half-convolution, k , was calculated for the bellows 

expansion joint with the following geometrical and physical parameters: number of 

convolutions, N = 6, mean radius of bellows, Rm= 0.0844 m, convolution radii, 

R1 = 0.003082 m, R2 = 0.002682 m, convolution height, h = 0.01575 m, wall thickness, 

t = 0.0006 m, Young's modulus, E= 2.0 x 1011 N/m2
, and Poisson's ratio, v= 0.3. As 

seen from the table 3. I, the boundary half-convolution is the stiffest due to its fixed end. 

Table 3.1. Distribution of stiffness in bellows 

Number of half· I 2 
convolutions 

3 4 5 6 

k 
4016064 3472222 3628447 3645643 3657644 3679175 

(Nim) 



The stiffness of the next-to-boundary half-convolution abruptly drops, then 

remains approximately constant to the middle of the bellows. Therefore, instead of 

calculating the stiffness for the expansion joint as a unit by creating a large input data file, 

it is sufficient to calculate the Miffness of two types of half-convolutions, one boundary 

and one inner half-convolution taken separately. 

The mesh for one half-convolution as a shell of revolution is shown in Fig.3.2. 

Since conical elements were used in this case, significantly more elements were used in 

such areas, for a good geometrical approximation of the curved portions of the half­

convolution. The boundary conditions for a boundary half-convolution are: 

a) At the fixed end, both the axial and radial displacements, as well as the rotation, 

are set equal to zero. 

b) At the other end, just the rotation is suppressed. 

The boundary conditions for any inner half-convolution are: 

a) At one end, the axial displacement and rotation are set equal to zero. 

b) At the other end, just the rotation is suppressed. 

A IN axial force was used as a load applied at the free end of the half-convolution. 

Then the calculated axial displacement of the point of application of force, !!./, and the 

value of the force, F, were used to calculate the axial spring rate of the one half­

convolution as follows: 

Then, in consideration of the bellows as a series of half-convolutions, the spring rate of the 

whole expansion joint can be calculated from the well known relationship 

where 

1 2 II 
-=-+­
k,o, ko k, , 

k,o, is the total spring rate of the expansion joint, 
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ko is the spring rate of the boundary half-convolution, 

k1 is the spring rate of the inner half-convolution, 

n is the total number of inner half-convolutions. 

Now the mean stiffness of one half-convolution is 

k = k,01 . 
2+n 

In the case of relatively short bellows, when the number of convolutions is less 

than, say, 6, it is more convenient to calculate the spring rate for one half of the bellows, 

kw. ,at once. Then, the total spring rate of the bellows, 

k = k11, 
tot 2 
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The boundary conditions at both ends in this case stay the same as for the 

boundary half-convolution described above. 

The mesh for one half-convolution as a solid of revolution is shown in Fig.3.4. The 

boundary conditions for boundary half-convolutions are: 

a) At the fixed end nodes boih axial and radial displacements are set equal to zero. 

b) At the opposite end nodes just radial displacements are suppressed. 

For any inner half-convolution, just axial displacements at the one of the end nodes have 

to be suppressed. 

To draw some conclusions about the accuracy of the calculations of the bellows 

axial spring rate using different methods, the axial spring rate was calculated for the 

expansion joint with the following parameters: number of convolutions, N = 9, mean 

radius of bellows, Rm = 0.03465 m, bellows pich, p = 0.005 m, convolution depth, h = 

0.0571 m, wall thickness, I = 0.00028 rn, elastic modulus, E = 2.07 x 1011 N/m2
, and 

Poisson's ratio, v = 0.3. The results of the calculation are shown in Table 3.2. As seen 

from the table, both FEA methods give very close results. The result obtained from 

Gerlach's formula (2.2) in comparison with FEA is underestimated by about 8.5% The 



result obtained from EJMA formula (2.1) is overestimated by about 18%. The results of 

Haringx's and Andreeva's formulas, (2.4) and (2.3), are con,iderably overestimated 

(58%). Therefore, this author recommends use of the FEA for more precise calculations 

of the axial spring rate of bellows. 

Table 3.2. Comparison of the calculation results of the axial stiffness of the 
expansion joint using different methods 

Gerlach. FEA FEA. I EJMASt Haringx I Andreeva · 
•· Solid .. f. (2.2) Shell .· f. (2.1) f. (2.4) . f. (2.3) 

k,01 (Nim) 188000 205384 206129 241931 •. 325424 325721 • · 

3.5. Bellows Mass 

The bellows mass per unit length is calculated taking into account the corrugated 

geometry of the bellows, Fig.2.1, 

Here R1 , R2 , R., , and L are geometrical parameters, explained in Section 2.1, Fig.2.1. 

The bellows mass per unit length expressed in terms of bellows pitch, p, convolution 

depth, h, and convolution thickness, t, becomes, 

4,rR ( 
, n1b = --"' h+0.285p) tA. 

p 
(3.12) 

50 



3.6. Additionai Fluid Mass of Bellows 

When the beam concept is being used for the solution of the bellows transverse 

vibration problem, it is necessary to know the added mass per unit length, m1 . If the 

bellows is filled with fluid, m1 becomes a complex quantity and can be considered as 

consisting of the following parts: 

where 

(3.13) 

mJ1 is the added fluid mass per unit length of bellows which appears as a result 

of transverse motion of fluid in bellows, 

m12 is the equivalent added mass of fluid per unit length of bellows which 

appears as a consequence of convolution distortion during bending 

vibration. It is practically equal to zero in the case of a smooth pipe. 

The additional mass, mJl, is uniform if the geometry of the bellows is uniform along the 

whole axial length. It is equal to the amount of fluid contained in one unit of the bellows 

length: 

(3. 14) 

where R;,, can be expressed through other geometrical parameters of the bellows as 

follows (see Fig.2.1): 

However, the additional mass, m12 , being dependent on deformation of the con­

volution, is not uniform despite a uniform geometry of the bellows. It is proportional to 

the absolute value of the curvature of the bellows axis during the bending deformation 

and, as usual, mass, m12(x) is always positive, as shown in Fig.3.5, line 1. Therefore, the 

final expression for the total added mass of the bellows should be noted as follows: 
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(3.15) 

Therefore, the differential equation for bending of a bellows 

o4w [ ]o'w £/--2 + m. +m1, +m12(x) - 2- = O, ax a, 

becomes nonlinear, because the coefficient of the time derivative depends on the coor­

dinate x. Since the added mass m12(x) is always a positive function, this bending differential 

equation can be linearized using the mean value of the m12(x), mf1k (see Fig. 3.5, line 2). 

Then the expression (3 .15) becomes constant with respect to x: 

0.0 
0.5 1.0 x/l 

Fig.3.5. Distribution of added mass, m12(x), 
over the length of fixed-fixed bellows (first mode). 

(3.16) 
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Fig.3.6. Initial and defonned shapes of bellows convolution 
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-x, 

where m1,. depends just on the mode number, k, and can be found from the equality of 

kinetic energies of the added masses as follows. 

Let the relative bellows-fluid interface displ~cement with respect to xi, y1, z1 be 

(3.17) 



where, 

o, is the axial defonnation of the ith half-convolution at the convolution root, 

which can be found as 01 = £\(x,1) - £\(x,o), as shown in Fig. 3.6, 

UnamiI is normalized to unity displacement of the convolution surface, 

T(t) is the time dependent function. 

Now we will determine the relationship between 8,(x) and the mode function of the 

bellows axis, X.(x). For a beam, the bending moment, M, at any cross-section is related to 

its stiffness, El, according to 

The stress at any cross-section point is 

M=El x;{x). 

M 
u=-z 

I I ' 

(3.18) 

(3.19) 

where z1 is the distance of the point of interest from the neutral plane of the beam. 

According to the Hooke's law, 

a= Ee , (3.20) 

where e is the strain. On the basis of the convolution half-pitch, p/2, 

2/j 
&.=-' . . 

p 

Substitution of (3.18) into (3.19), then (3.19) into (3.20) and (3.20) into the e, expression 

above finally gives the convolution root elongation (or contraction) as a function of the 

second derivative of the mode function, x;•(x): 

01 = z1 p X;'(x,). 
2 

For the convolution root (see Fig.2.1), 
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therefore, the expression for 8, can be rewritten as 

This is the relationship between the ith convolution root half-pitch elongation, 8, , and the 

bellows axis deflection, Xk (x}, at the particular cross-section of bellows. Substitution into 

(3 .17} gives 

(3.21) 

This is the relationship between the bellows surface relative displacement, U, and the 

mode fimction, Xk(x}. 

Let the one half-convolution added mass caused by convolution distortion be 2. 

Then, the kinetic energy of the excited cross fluid flow in one half-convolution space is: 

20' 
tt,;12 = ff- dS. 

s 2S 

Using (3.21), the above kinetic energy expression can be rewritten as follows: 

The total bellows kinetic energy becomes 
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where N is the number of convolutions in the bellows. 

According to the definition of the bounded integral, the sum residing in the above 

expression for the kinetic energy can be approximated as, 

I _ f x/(x)dx. 
0 

The calculations conducted within a practical range of bellows geometrical parameters 

(see Fig.2. 1), h = (0.19 ± 0.04) R., and R2 = (0.0316 ± 0.0055) R., + t/2, showed that the 

ratio, 

ff U;., .. 1(x1,y1,z1) dS 
s 

s 

residing in expression for W above is nearly constant, varying between 0.1313-0.1327. 

This occurred because the loaded large mean radius bellows half-convolution behaves 

more like a fixed-fixed beam than a ring with fixed-fixed perimeters. For a real fixed-fixed 

beam, this ratio, regardless of the length of a beam, is constant. Therefore, for this 

comparatively narrow range of parameters h and R2, the ratio was considered constant and 

equal to 0.132. Then the kinetic energy expression, W, becomes: 

(3.22) 

On the other hand, the total kinetic energy caused by convolution distortion is, 
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If 

w, = x,(x) T(t), 

the kinetic energy expression above becomes 

I 

W = m;,. t'(t) J x;(x)dt-, (3.23) 

0 

Equating equations (3.22) and (3.23) gives the uniform added mass along the axis 

of the bellows, 
I 

J ( d;,·)' tit- ' 

O ( h) m12, = 0.066 , R,. - 2 pl, 

J x;(x) tit-

(3.24) 

• 
or 

(3.25) 

where, 

J( d;,·)'dt- ' 
a 1,. =0.066 ° 1 (R .. -~) p. 

J x;(x)dt-

(3.26) 

• 

As seen from expression (3.24), the final calculations for m1/k can be performed 

having the mode function expression and the added mass for one half-convolution, 2 , 

only. The added mass, 2 , can be calculated having solved the velocity-potential of the 

relative cross-flow caused by convolution defonr.1tion during the bending of the bellows. 



Therefore, the following section is devoted to solution of the velocity-potential caused by 

this cross-flow inside of a convolution. 

3.7. FE Formulation of Laplace Equation in 3D Domain 
with Mixed Boundary Conditions 

It is not difficult to imagine that the volume of every convolution (Fig.3.7, volume 

between planes, Pi and P2 ) during the bending of the bellows remains constant since the 

volume increments above and bellow the neutral plane, p3 , are equal and have opposite 

signs. Therefore, despite the nonuniform bending deformation of the bellows along its axis 

(as was shown in the previous section, proportional to X;'(x) ), this crossflow can be 

assumed to be locked inside of one convolution space. Therefore, the planes p1 and Pi can 

be modelled by imaginary impenetrable surfaces with boundary conditions, 

=0. 
011 "·" 

Considering the boundary condition at the convolution surface, let the convo­

lution-fluid interface displacement normalized to unity be 

Unonnl = Unonni(X,Y,Z) T(t). (3.27) 

(Here and in later sections of this chapter, for simplicity, the indices will be dropped and 

the notation x, y, z instead of Xi, yi, z1 and U instead of Unonnl will be used). Let us 

examine the components of U, U,, Uy, and U:. It was shown by Jakubauskas (1991) that in 

the case of axial deformation of the bellows, the axial displacements are considerably 

larger than the radial ones. A similar relationship holds in the case of the bending 

deformation of the bellows as well, if the neutral plane is the x, y plane (see Fig.3.7).Here 

I u,. I « i U, I and I U, I « I U, I . Therefore, in further considerations of the boundary 
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condition on the convolution surface, just Uz will be taken into account and U, and Uy will 

be neglected. In general, the displacement Uz can be obtained by solving the bending 

eigenvalue problem for a fixed-fixed bellows. Since it is a tridimensional shell problem, it 

becomes very time consuming for both the designer and the computer. It is not difficult to 

understand that a single convolution wall is much stiffer than the whole bellows in the 

axial or transverse directions. Therefore, the convolution wall during the bellows vibration 

is almost under kinematic excitation, and for this reason its dynamic displacement field is 

very close to the static bellows bending displacement field. Furthermore, the static 

convolution wall bending displacement field can be approximated from the static a'Cial 

displacement field using the relationship 

where, 

Ux=UxstZ 

z is the distance of the point of the convolution under consideration 

from the neutral plane x,y, Fig.3.7, 

Uzs, is the axisymmetric static displacement field of a convolution wall. 

Then the normal part of U can be written as 

u. = u,,, (XJ',Z) z T(t). 

The boundary condition for the fluid domain on the vibrating boundary becomes 

o(f>I =- au. =-Uz,,(x,y,z)z T(t), 
OJI s 01 

(3.28) 

since the tangential part, U,, in the case of the ideal fluid doesn't affect the flow at all. It 

was shown by Sheinin (1967), provided the solution of the structural motion is (3.27), that 

the velocity potential function of the excited .1::'." may be written as 

<I>= <1>0(x,y,z) T(t), (3.29) 

where 



<1>0 is the amplitude of the velocity potential, 

T(t) is the time hannonic function. 

Now the boundary condition at the convolution surface can be obtained by substitution of 

(3.29) into (3.28), 

bl:l>. I = _ u.,,(x.y.=) =. 
011 s 

z 

(3.30) 

BENDING PLANE 
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NEUTRAL PLANE 

' ' ' ' ' ' ' ' ' ' 

' ' 

' ' ' ' ' 
' ' -;;¥-'-lce=l$=!::=:~~~======1==tt='l-----71L_~y 

Fig.3. 7. Division of the convolution by planes of symmetry 

The areas of fluid above and below the plane, p3 , are geometrically symmetrical 

with respect to this plane. In addition, the absolute values of the boundary condition 

(3.30) at the corresponding locations with respect to the same plane, p3, are equal but 
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have opposite signs. These facts lead to the conclusion that the excited crossflow has 

mirror image symmetry with respect to the plane, /JJ, and therefore, the velocity potential 

on /J3 is equal to zero, Cl>o = 0. 

Since a convolution deforms symmetrically with respect to the plane, p4 , the 

boundary condition (3.30) is symmetric with respect to this plane. Therefore, the excited 

crossflow is symmetric with respect to this plane and cannot be crossed by the flow. For 

this reason the boundary condition on the plane, p4, is known, 

o<I>o = 0. 
011 p, 

Furthermore, the figure plane is the plane of symmetry of the crossflow, too, 

because of the symmetry of the boundary condition (3.30) with respect to the figure plane, 

ps. Therefore, as explained above, the velocity potential boundary condition on this plane 

is, 

ocJ>. = o. 
0/1 P, 

As seen from Fig.3. 7, the three mutually orthogonal planes, p3, p4, and Ps divide 

the whole space of the convolution into eight equal parts with identical boundary 

conditions. Therefore, the above mentioned velocity potential problem can be solved using 

just 1/8 part of the whole convolution with appropriate boundary conditions, as shown in 

Fig.3.8. 

The fluid flow, excited by the convolution motion (and considered to be perfect 

and incompressible) can be described by the tridimensional Laplace equation, 



a<I>o =-U an x 

a<I>o =O 
an 

z 

' 

/ 
x 

Fig.3.8. The Sl,lution domain with boundary conditions 

The variational principle for equations (3.30) and (3.31) is given by 

(3.31) 

J(ct> )= f _!_ [(act>•)
2 

+ (
8ct>·)' + ( 0

ct>0
)

2

]dv - fu ct> dS. (3.32) 0 
2 ox oy oz n ° 

y s 
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Assume finite element approximation for <l>o as 

• 
<l>o = I N,<l>o; = { N}' {<I>. r = {<l>.r { N}, (3.33) 

i=l 

where 

N, are the shape functions, 

<l>o are the nodal values of <l>o, 
II is the number of nodes (and DOF) per element. 

Substitution ofeq.(3.33) into (3.32) yields 

J,(<l>~,)= J.!{<l>~rr o{N}' o{N} + o{N}' o{N} + o{Nr o{N}]{<l>~}dV 
v 2 L ox ox oy oy oz oz 

- Ju.{<l>~r{N}dS. (3.34) 
s 

Let 

J [
o{N}' o{N} + o{N}' o{N} + o{N}' o{N}]dv = [H'] (3Js) 

ox ox oy oy oz cz · 
v 

,. 
Ju.{N}dS= {!'}. (3.36) 
s 

Then eq.(3.34) can be rewritten as 

a/(<l>) = 0 for stationarity then leads to 

[H' ]{<1>~ }- {f'} = {o}, 

where 



{1· r = (1.· .12· .... . 1:). 
The element matrix and the load vector expressions, (3.35) and (3.36), can be rewritten 

as follows, 

{!'}= Jf u.{N}ds, 
s 

the elements of which should be integrated over the curved surface of the bellows con­

voluticn. Therefore, it is desirable to use isopaf::.'!!Ptric elements with curved boundaries. 

The most suitable parent element for the domain shown in Fig.3.8 is the 20-noded cubic 

element, Fig.3.9a, which can be mapped to the curved isoparametric, Fig.3.9b, by means 

of shape functions, N;, of the parent cubic element, 

20 

x= LN;x, = {N}'{x}, 
i=I 

20 

y= IN,y, ={N}'{y}, 
i=I 

(3 .39) 

20 

z = L N,z, = {N}' {z}, 
i=l 

here, 

{N}' = (N1,N2 ,···,N20 ), 

{x}' = (x1,x2 , ···,x20), 

{y }' = (Yt ,Yi,··· ,Ao), 
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b) Isoparametric element 

Fig.3.9. Parent and isoparametric elements 

where, according to Tong and Rossetos (1977), for an element wiih Co continuity shown 

in Fig.3.9, 
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1 
N, =-(l+qq,)(1+1111,)(l+qq,)(qq, +1111, +qq, -2) 

8 

N, =±(1-q2)(1+1111,)(l+qq,) 

N, =±(1-112)(1+qq,)(l+qq1) 

N, =±(1-q2)(l+qq,)(l+qq,) 

i = 1, 2, • • · ,8, 

i=9,ll,17,19, 

i = 10, 12, 18, 20, 

i = 13, 14, 15, 16. 

The derivatives of M with respect to x, y, z and q, 11, t; needed in the element 

formula are related by, 

oN, 
ox 

·aN,· 
oy 

·aN,· 
oz 

where [J] is the familiar Jacobian, 

oN1 

oq 
·aN· _, 
011 

·aN,· 
oq 

The volume element d:,; dy dz needed for this calculation can be given as 

dx dy dz= det[J] dq d11 dt;, 

so that (3 .3 7) becomes 
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[H']= J+' J+' J+' [a{N}' o{N} + o{N}' o{N} + o{NY o{N}]det[J]d,;d77d; (3.40) 
· ox ox oy oy oz oz 

-I -1 -1 

The normal derivative, Un , can be mapped to the parent element corresponding 

surface using the same shape functions: 

U. = {N}' {U.}. 

Substitution of this expression into (3.38) gives 

{!'}' = JJ{N}{N}'{U.}dS, (3.41) 
s 

where dS is the differential element of the tridimensional surface S of the same face of the 

curvilinear finite element shown in Fig.3.9b. To evaluate this surface integral we will use 

the parametrization of the surface S by shape functions { N} using expressions for co­

ordinates (3.39) which are functions ofu and v. Then, according to Flanders (1985), 

oy: oz 2 

OX I oz -.-
2 ox: oy 2 

dS 011 : OU 
+ OU : OU 

+ 
Oii : Oii 

du dv. (3.42) = 'Jji''i'Ji ·ax .. rJz. ·ax"=·J; 
-:- -:- -:-ov ov ov ov ov ov 

Here u and v denotes either 7/ and s for the faces with ,; = ±I, or ,; and s for the faces 7/ 

= ±1, or,; and 7/ for the faces s= ±1 of the parent element, shown in Fig.3.9. Now we will 

express the normal derivative value, U. , which is the x, y, z function in general. Since the 

displacement vector at the particular convolution location, 

U=U) +U,j +U,k 

and the unit normal vector is 



; j k 

·ax"· ·ai ·ai:" 
OU OU OU 
·ax"· ·ai ·aii 
av av av 

n = -.========~====~==== 

[-i--i~
2 

+[~I;~, ·[i if 
av av~ c,·, av~ av av~ 

the normal U. becomes 

Then the expression (3 .41) becomes 

U, U, U, 

{!' r = ff{ N}{ N}' ·ax" ·ay" ·a::" du dv. 
OU OU 011 

s ·ax'· ·ai ·az 
av av av 
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(3.43) 

(3.44) 



Fig.3.10. Spatial view of3D mesh of 1/8 convolution space 

Now the elemental stiffness and load expressions, (3.40) and (3.44), can be pro­

grammed into some basic finite element program to solve for the velocity potential, <1>0, on 

the vibrating surface of the convolution. 

It should be noted that the manual generation of the input data file for 30 finite 

element problems is very time consuming work and is very difficult to do without making 

mistakes. Therefore, it was decided to generate the input data file automatically, using a 

computer. The easiest way to implemP.nt this idea for an axisymmetric convolution space 

was by using a radially distributed mesh, as shown in Fig. 3. I 0. 
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3.8. Added Fluid Mass, i.. 

This type of added fluid mass is related to the crossflow acceleration of the fluid 

perpendicular to the axis of the bellows excited by the convolution deformation during 

vibration rather than to some discrete fluid mass. 

According to Milne-Thompson (1968), the kinetic energy accumulated by the fluid 

and expressed through the velocity potential, <I>, on the vibrating boundary Sis 

W=-p1 ff<l>o<I>' dS. 
2 011 s 

(3.45) 
s 

Using (3.28) and (3.29), the expression (3.45) may be rewritten as follows: 

W = p; T(t)' ff <1>0(x,y,z)U.(x,y,z)dS. (3.46) 
s 

On the other hand, letting the distribution of the added fluid mass be uniform on the entire 

vibrating surface, S, the kinetic energy of the excited fluid flow becomes 

W ,i;~(t) ff U'(x,y,z)dS, (3.47) 
s 

where Sis the surface area of the convolution. Equating kinetic energies (3.46) and 3.47) 

gives the added mass expression for the three-dimensional flow: 

ff <1>0(x,y,z)U.(x,y,z)dS 

,i = pS-s"-----..------

f f U'(x,y,z)dS 
(3.48) 

s 
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To use the expression for the added mass above it is necessary to know in advance · 

the velocity potential, <l>o, on the vibrating surface of the bellows convolution. Having the 

velocity potential, the formula (3.48) can be used to calculate the added fluid mae.s, A. 

The surface area of the 1/8 convolution is 

This surface area integral can be integrated in two steps. First, it can be integrated over the 

face of the element with boundary condition, U •. The parametrization of S1 by 

i=l 

8 

y= LN('y,={Nf'}'{y}, 
i=I 

8 

z= LN('z, ={Nf'}'{z}, 
1=1 

is used here, as in the case of the calculation of the load vector, and runs over the 

appropriate face of the parent element shown in Fig.3.9 in tht two-dimensional space 

(11,v). Here {N the shape function vector consisting of the functions of the nodes 

which belong to the face under the integration. Using parametrized dS expression (3.42), 

the surface area integral over element, i, can be expressed in a more convenient form for 

programming, as follows, 

[i~ 
2 

+ [ 

ox oz 2 

+ [ 

ox oy 2 

-- --
s, = ff 011 011 011 011 

dudv, ·ax" ""ijz" ax"· ·aji --D, ov ov ov ov 



where u, .,., as was mentioned above, can be any combination of ,;, T/, t;. Now, for the 

second integration step, the simple summation over all the elements adjacent to the vib­

rating boundary gives the area of the whole vibrating surface of the domain, Fig.3.8, 

S=S, +S2 +···+S •. (3.49) 

The integral, JJu2(x,y,z)dS, residing in formula (3.48), can be integrated the 
s 

same way. Using expressions (3.42) and (3.43) we can write for the ilh element: 

I I U 2
(x,y,z) dS = 

s, 

D, 

2 [ " . 
C/X: Oz 

+ .~!..l.0.'. 
iJx ! i}z 
-:-
i}v ! i}v 

Now the overall integral is 

2 [ iJx i i}y 2 

+ .i!.1! . .\.0.1 du dv. 
iJx ! i}y 
-:-
i}v ! i}v 

JJu 2
(x,y,z)dS= ! JJu 2

(x,y,z)dS. 
S i=I s, 

The last integral in formula (3 .48) is 

Jf1>0(x,y,z) U.(x,y,z)dS, 
s 

(3 .50) 

and can be integrated similarly. The parametrization of the velocity potential over the 

particular face of the ith element is: 
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<I>.(x,y,z) = L N/c<I>o, = {Nier {<I>.}. 
i=l 

Now, using expressions (3.43) and (3.51), we can write 

ff <l>o(x,y,z) u.(x,y,z) dS = ff <l>0(x,y,z) 
s, v, 

and the total integral, 

U, j U, U, 

·a:r-Taji· ·ai:' 
-:-
011 I 011 011 
ax·Tai ·az 
av\av av 

(3.51) 

dudv 

ff <I>0(x,y,z) u.(x,y,z) dS = ! ff <l>0(x,y,z) u.(x,y,z) dS. (3.52) 
s l=I ~ 

Finally, substitution of the values of the integrals (3.49), (3.50) and (3.52) into formula 

(3 .48) gives the added mass value for 1/8 of the convolution. 

It is obvious, from explanations above, that the calculatiJns of added mass A 

according to formula (3.48) are practically impossible to perform manually, usi,,g a cal­

culator. Therefore, those calculations were programmed as a Fortran subroutine into a 

single combined program together with calculations of the velocity potential as explained 

in the previous section. 

The added fluid mass for one half-convolution, caused by distortion of the con­

volution walls, may be expressed symbolically as 

(3.53) 

where 

Pf is the density of fluid (kg/m3), 
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Rm, R2, Lare the
0

geometrical parameters (m), see Fig.2.1. 

The dimensional analysis of (3 .53) gives 

(3.54) 

The nondimensional expression on the left side of(3.54) can be called the coefficient of 

flu:d added mass, µ, of a half-convolution, and is defined as 

(3.55) 

As seen from (3.54), the coefficientµ for all geometrically similar convolutions is 

the same. However, the added masses are different because they depend on the mean 

radius of the bellows, R.,: 

(3.56) 

Coefficient µ was calculated using the algorithm described in Sections 3. 7 and 

3.8. The computation results for the most common geometrical parameters of a convo­

lution are plotted in Fig. 3 .11. 

Finally, the total bellows mass per unit length using (3.12), (3.14), (3.16), (3.24), 

and (3.56) may be written as follows: 

(3.57) 
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0.15 0.17 0.19 0.21 

h 
Fig. 3 .11. Added mass µ versu,; 

R,. 

3.9. Mass Moment oflnertia of Bellows Cross-section 

In terms of the classical beam parameters, the diameter of a bellows is usually large 

in comparison with its axial dir.u,;;sion. Therefore, the inertia of the cross-section about 

the axis of the bellows becomes an important factor in its transverse vibration. The total 

mass moment of inertia of the bellows per unit length can be considered as consisting of 

the following three parts. The first is the moment of inertia of dry bellows, Jb. The second 

part is the moment of inertia of the fluid trapped in the convolutions, Jfl, The third part is 

the moment of inertia of the fluid contained in the central portion of the bellows. This part 

of the total moment, at least for fluids with relatively low viscosity, such as water or light 
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fuels, is very small and, according to some authors, Paidoussis et al. (1986), Pramila et al. 

(1991), can be ignored. Therefore, 

It is known from beam theory, that 

where 

I is the second momer.t of area, 

p is the densi:y. 

J=lp, 

Using this we can rewrite the above equation as 

The equivalent bellows thickness can be obtained geometrically as 

(3.58) 

(3.59) 

Here I, p, L, Ri and R1 are the geometric parameters of the bellows as explained in Section 

2.1. The equivalent area of the cross-section of the bellows is, 

(3.60) 

the equivalent second moment of area, 

(3.61) 

Since the radius of gyration for a thin circular cross section is 
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(3.62) 

substitution of (3.59) into (3.60) and subsequently (3.60) and (3.62) into (3.61) finally 

gives 

I _ _ 1Z"_R_!1~(_1Z"R~1_+_1Z"_R,~+_2_L_,_) 
.- 2(R,+R,) 

(3.63) 

It should be noted that this moment of inertia, h, is not the same as l,q obtained in 

Section 3 .1 and it can be used for calculation of the mass moment of inertia of the bellows 

according to formula (3.58) only. 

Now we will calculate the equivalent fluid mass moment of inertia, /fl. One 

convolution volume (see Fig.2.1) is given by: 

1-;,0 • = 21!"R,,, ( L + R, + R,) ( 21?, - I). 
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Since one convolution length is equal to 2R1 + 2R2, the mean cross-sectional area of fluid 

trapped in a convolution is: 

A _ 1Z"Rm (L + R, + R,){21?, -1) 
fl - RI +R, . (3.64 

As before, 

Substitution of(3.62) and (3.64) into the above expression gives 

[ _ 1Z"R~ (L +RI+ R,)(21?, -1) 
fl- 2(Ri+R,) 

(3.65) 



Substitution of(3.63) and (3.65) into (3.58) finally gives the expression for the total mass 

moment of inertia per unit bellows length: 

1rR!t (1rR, + 1rR, + 2L) 1rR:, (L + R, + R,)(2R, -t) 
J = 2(R, +R,) A+ 2(R, +R,) Pr' (3.66) 

or 

(3.67) 

3.10. Mass Moment of Inertia of Connecting Pipe of Universal Expansion Joint 

In the case of vibration of universal expansion joints accompanied by any of the 

rocking modes (see Fig. 3.12), the connecting pipe AO rotates about the middle point of 

the expansion joint, 0. Therefore, it is necessary to know the mass moment of inertia of 

the connecting pi;,e including fluid (if applicable) about the point of rotation, 0. 

According to Paliunas (1982), the mass moment of inertia ofa thin cylindrical shell is 

ma2 mR' 
J,h.(O) = -3- + -2- ' 

where m is the mass of the cylinder OA. Letting mp to be the mass per unit length of the 

pipe, the above formula becomes: 
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Fig. 3.12. Rocking mode of universal expansion joint 

ma' m aR2 

J =-'-+~'--,h.(0) 3 2 

For the fluid cylinder inside the pipe, 

79 

Defining the fluid mass per unit length of the connecting pipe as mp , the above formula 

can be rearranged as follows: 

The total mass moment of inertia of one half of the connecting pipe about the point 

of rotation, 0, including the inertia of rotation of any lateral supports, M•, (if applicable) 

changes to: 
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J,or = J,h (0) + J fl.(O) + Jh (0) 

or 

J.,, 
(m +m )a' (2m, +m1,)a R.2 

2 = , r, + + M.a . 
3 4 

(3.68) 



CHAPTER 4 

ASSUMPTIONS AND 

DIFFERENTIAL EQUATION OF TRANSVERSE VIBRATION OF BELLO\VS 

4.1. The Modes of Natural Transverse Vibration of Bellows Expansion Joints 

As mentioned in Chapter 2, r.:orrugated pipe expansion joints can vibrate according 

to longitudinal, shell, and beam modes. The rest of the Chapters of this thesis will be 

devoted to the last type of joint vibrations, beam vibration modes. 

A bellows expansion joint is usually welded to pipe ends or flanges which are very 

stiff in comparison with the bellows itself. Therefore, it is very reasonable to assume that 

the expansion joint is perfectly fixed at both ends. For this reason, the modes of transverse 

vibration of a single bellows expansion joint (Fig.2.2a) almost exactly coincide with the 

fixed-fixed beam mode shapes. 
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A universal e,;pansion joint (Fig.2.2b, c) h~ in between two bellows ele~ents a 

smooth connecting pipe, which is generally many times stiffer than the bellows. It can be 

assumed, for the sake of simplicity, to be perfectly rigid. Therefore, the system under 

consideration can be represented as a fixPd,fixed system of two elastic beams with a rigid 

section in the middle as shown in Fig.4.1. From the point of view of transverse vibrations, 

Fig.4.1. Universal expansion joint as elastic system 

% 
a,} .. · .. • ·.'·>.·.-·>.· r---

,"/,,=--==-:-:- - - - - - - - - - - - - - - - - - - - - - __ --:_=-t: 

.. · .. : .. - . . . . .:·:·:'. . .: '. 

·':.· .. · .... ------~ 
-~ 

Fig.4.2. Lateral modes: a) first, b) second 

two types of transverse vibration modes can be expected, so called "lateral" modes shown 

in Fig.4.2, and "rocking" modes shown in Fig.4.3. 
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a) 

_________ :~<> :. -------

b) 

Fig.4.3. Rocking modes: a) first, b) second 

Later calculations showed that the frequencies of the second mode shapes in both 

types of modes are much higher than the first mode frequencies. In the case of lateral mo­

des (Fig.4.2), the ratio of first to second mode frequency is greater than I 0. Perhaps for 

this reason, neither the EJMA Standard (1980) nor other authors mention higher modes at 

all. 

In general, the universal expansion joint vibration problem can be modelled by the 

~ystem of two bending differential equations together with eight boundary conditions. But 

if it is split into two separate problems according to the two types of bending modes, the 

solution can be simplified substantially by considering just one half, either left or right, of 

the whole system shown in Fig.4.1. These two problems are described in the following 

chapters in detail. 
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4.2. The Influence of Shear and Inertia of Rotation of Cross-section 
on Vibrating Bellows 

The bellows is a comparatively short and bull..-y struct!.lre. Therefore, for the 

investigation of the transverse vibration of a bellows it seems necessary to use the 

Timoshenko differential equation which takes into account the influence of shear force and 

the rotary inertia of the cross section of the beam. 

Let us look more closely at the ratio of shear to rotary inertia in the case of a bel­

lows. The Timoshenko differential equation is: 

where 

El-- + m -- - I+ --o4
w o'w ( pEIJ o4

w 
ox4 • ot' P Gk' ox' 812 

p 2 l i1 4 w 
+ Gk' ot4 = o, 

E is the modulus of elasticity of the material, 

G is the shear modulus of the beam, 

I is the second moment of area of the cross section, 

"'• is the beam mass per unit length, 

p is the density of the material, 

k' is the cross-section correction coefficient, 

w is the deflection, 

x is the coordinate, 

t is the time. 

(4.1) 

For the circular cross-section of a thin tubular beam, k' is approximately given by 

Paidoussis et al. (1986): 

k'=~~6_(~1+_v~)~(1_+_a~')'~~ 
(7+6v)(l+a 2

)
2 

+(20+12v)a 2
' 

(4.2) 
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where 

v is the Poisson's ratio, 

a is the ratio ofintemal to extenial radius of a tube. 

Let's consider the tulle of radius Rm = 0.03465 m, wall thickness I = 0.00028 m, and 

v = 0.25. Then R,n, = 0.03446 m, Rm,,= 0.03474 m and 

a = R,., = 0.992. 
Rout 

For these data, according to formula ( 4.2), k' = 0.53. Since 

G= E 
2(1+ v)' 

the shear term coefficient in eq.( 4. I) becomes 

pEI = _2 (~I_+ ~v)_I = 2 (I+ 0.25) Ip = 4_72 p I. 
Gk' k' 0.53 

(4.3) 

Since the rotary inertia coefficient in eq ( 4. I) is equal to pl, the ratio of shear to rotary 

inertia is 

pEI / I= 4.72 
Gk' p 

which shows that for the ordinary beam (or tube) the influence of the rotary inertia is 4.72 

time less than the influence of the shear. Therefore, sometimes, in short beam problems the 

rotary inertia can be neglected. 

Now let us look at the bellows as a tube with convoluted surface as shown in Fig.2.1. 

Let us have the same mean radius, Rm= 0.03465 m, and wall thickness, I= 0.00028 m, as 

before in the smooth tube example and, in addition, R1 = R2 = 0.00125 m, and moderate 
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convolution depth, h = 0.00571 m (L = 0.00321 m). The half convolution longitudinal 

stiffness of a bellows can be approximately calculated using, for example, formula (2.2): 

k = 4R,,,E(!_)
3 

= 4x0.03465x2.07x1011
(

0
·
00028

)
3 

= 3.383x106 Nim. 
h 0.00571 

It was shown in the previous chapter, that the bending stiffness of a bellows, EI, 

can be calculated from the axial spring rate, k, according to formula (3 .1) 

EI = ]_ kpR' = -~ x 3.383 x 106 x 0.005 x 0.03465' = 5.078 Nm'. 
4 m 4 

Using formula (4.3) we calculate G = 0.828 x 1011 N/m2 .Therefore, 

pEI 5.078 1 
Gk = p 0.828 x 1011 x 0.53 = p x 11.57 x 10_, kgm. 

According to (3.63), the equivalent second moment of area, 

1rR!t (21rR, + 2L) ,r 0.034653 x 0.00028 (21r x 0.00125 + 2 x 0.00321) I,, = ~"'--'~-'-~-'- = ~~~~~~~--'~~~~~~~~~~ 
4R1 4 x 0.00125 

= 1.045 x 10-1 m• 

Now the ratio shear/rotary inertia becomes 

p x 11.57 x 10-11 

= = 
p x 1.045 x 10-1 

11.072 x 10-4. 
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This ratio shows that for a corrugated pipe (bellows) with moderate convolution depth, 

the influence of the shear coefficient consists of just a very small fraction, 0.00111, of the 

rotary inertia, without taking into account the additional fluid rotary inertia. Therefore, for 



the investigation of the transverse vibration of a bellows, the influence of shear can be 

ignored, and only the rotary inertia must be accounted for. 

Let us now consider the coefficient of the last term in equation (4.1), ~:~ . In the 

above example, El= 5.078 Nm2
• Then I= 5.078/E. Substituting the I value into the co­

efficient expression gives: 

p 2 I 5.07Sp' --=-~-
Gk' EGk' 

The large value of the product EG in the denominator compared to the numerator makes 

thi, coefficient negligibly small in comparison with coefficients of other terms in the 

equation (4.1). Therefore, this term can be ignored too. 

Now we will examine the influence of rotary inertia on the frequency of natural 

vibrations in a bellows. For the sake of simplicity, we will investigate the vibrations of a 

simply supported hypothetical bellows with length, I= 0.0693 m. The differential equation 

for this problem is the same Timoshenko differential equation (4.1), but without the shear 

terms: 

where 

EI o4
w _ J o4

w 
ox4 ox' o/2 

J is the bellows cross-section rotary inertia per unit length, 

m,o, is the total mass of bellows per unit length. 

For simply supported ends, the first mode may be assumed to be defined by 

A . x w = sm,r 1 cos w 11. 

Substitution of(4.5) into the differential equation (4.4) gives 

EI ( ;r- w: J (;) 
2 

- w: m,01 = 0, 

(4.4) 

(4.5) 
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which leads to the frequency expression: 

The coefficient 

I 

I 

I + ...{__ (;r )' 
m'°' I 

I 
2 

=K 
J (;r)' I+- -

n1tot I 

I 

' 

in the above expression takes into account the rotary inertia of the bellows. It is seen that 

for J = 0, K = I and the frequency expression w1 becomes the well known frequency 

solution for the Bernoulli-Euler equation. Let us look at the numerical value of K for the 

bellows dimensions, mentioned above. Using formula (3.66), 

J- ;rR!t(llR 1 +llR,+2L) + llR!(L+R,+R,}(2R,- t) 
- 2(R, +R,) p. 2(R, +R,) Pi 

;. x 0.0034653 x 0.00028 (2;. x 0.00125 + 2 x 0.00321) 
7 = x 500 

2 (0.00125 + 0.00125) 

;. x 0.0034653 (0.00321 + 2 x 0.00125)(2 x 0.00125- 0.00028) 
+ xlOOO 

2 (0.00125 + 0.00125) 

= 0.001153 kgm. 

The total mass, according to (3.12), witho:it taking into account the added mass caused by 

convolution deformation is, 
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mr.or = .nRm (Jl'~ +ll'R, +2L) R2 
~ + R, P. + 1l' mP I 

= 1l' x 0.03465 (21!' x 0.00125 + 2 x 0.00321) 0.00028 x 7860 + Jl' x 0.034652 x 1000 
. 0.00125+0.00125 

= 5.139 kg/rn. 

Substitution of numerical values for J and m,0 , into the expression for K gives 

K= 
1 

( )

2 l 0.001153 Jl' 

+ 5.139 0.0693 

I 
2 

= 0.827. 

This value is less than unity which means that the inertia of rotation of the cross-section 

lowers the natural frequency in comparison with the Bernoulli-Euler solution by 17.3% for 

the simply supported bellows.Something similar is expected fixed-fixed bellows end 

conditions. 

4.3. The Influence of the Coriolis Force on Natural Vibrations of Bellows 

The simplest differential equation describing the vibrations of a pipe conveying 

fluid is 

where 

m/1 is the fluid mass per unit length, 

v is the bulk fluid velocity. 

(4.6) 



The rest of the parameters used in the above equation are the saitie as in equation (4.1). 

The second term represents the inertia force associated with the Coriolis acceleration 

which arises because the fluid is flowing with velocity, v, relative to the pipe: while the 

pipe itself has an a.'1gular velocity o'w / ol ox at any point along its length. It is shown in 

numerous works, for example, Housner ( 1952), that for pipes with both ends supported 

the influence of Coriolis forces is negligible. Now we will check the influence of this type 

of force on the vibrating cylinder which is as short as bellows. For the sake of simplicity, 

we will solve this equation for the hypothetical simply supported bellows and then 

extrapolate the obtained results for a fixed-fixed bellows by comparison of the magnitudes 

of moments exerted by Coriolis forces on a bellows in cases of simply supported and 

fixed-fixed end conditions. 

A simply supported pipe has the normal modes w, satisfying equation (4.6) 

"-' A . 111rx • "-' A . k1rx w, = L. • sm-- smw, I + L. • sm-- cosw, I. 
•=l.l.... I >=2.,.... I 

(4.7) 

The normal mode w, is composed of terms which interact with one another through the 

mixed derivative term 

o'w 2m 11 v-­
ol ax 

The coefficients, A, and the natural frequency,w,, can be determined as follows. When 

expression (4.7) for w, is substituted in equation (4.6), the mixed derivative gives rise to 

• . llliX d k1rx 
terms contammg cos-

1
- an cos-

1
-. These terms may be expanded in Fourier series 

and 

/lliX 
cos-­

/ 
4 II . kliX 

= "-' sm-
L... 1r k'-11' I k=2,4, ... 
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k;rx 
cos-­

/ 
" 4 k . mer = L, - 2 , sm--

•='·'··-;r k -n I 

With these substitutions, all the tenns in equation ( 4. 7) can be collected in two groups 

according to whether they contain 

or 

. n;rx . 
sm--smro. t, 

I • 

. k;rx 
sm-

1
-cosro, t. 

The coefficients of these tenns must then be equated to zero in order to satisfy equation 

(4.6). This gives the following set of algebraic equations for 11 = 1,3,5, ... and k= 2,4,6, ... : 

[ (k;r) 4 l 8m1 ,vro, ~ 11> 
A, El T -m1o,llJ; _, = -~1--~ An 

11
, _ k' · 

n=l,3, .. 

Assume, for example, only the first two tenns, 11 = l, k = 2. Then 

[ (;r)
4 

] 32m1,vro, 
EI I - mro,ro; A, - ~

3
-
1 

- A, = 0, 

8m1,vro, [ (2;r) 4 

'] 

31 
A, + El -

1
- - m,0 ,ro, A, = 0. 

If A I and A, are eliminated from these two equations, we will obtain, as a result, the 

frequency equation whose roots detennine the natural frequencies ro; of the two normal 

modes: 
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w: +[256(m1,v)
2 

3mto,l 
17 ;r 4 EI] , _l 6_1r_'(,_E~I)'-

2 
= O. 

r w;+ , ' 
mio, n1~ I 

(4.8) 

We will solve this diquadratic equation for bellows geometrical parameters given in the 

previous section. In addition to those, we have to know the bellows and fluid masses, mb 

and mr . Let the bellows (steel) and fluid (water) densities be Pb= 7860 kg/m3 and PJ 

= 1000 kg/m3
. From the previous section, m,01 = 5.139 kg/m and 

m1, = 1rR;p1 = a(0.03465)
2 

(1000) = 3.772 kg/m. 

For the given bellows parameters, the first two natural frequenc:ies were determined from 

equation (4.8) for various v and/. The calculation results are compared in Table 4.1 to 

those obtained from the simple Bernoulli-Euler equation (eq.4.6 without the Coriolis 

term). The frequency solution of this simplified equation for a simply supported beam is: 

(i;r)' ~I Cl)= - --
j I m,o, . 
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It is seen from Tables 4.1 and 4.2 that even for the extreme v and I values, the 

Coriolis forces increase the natural frequency for the first mode and decrease it for the 

second mode 0.57 %. Setting the first mode amplitude A1 = 1, either of the two equations 

above determine the second mode amplitude, A2, for each normal mode. For bellows with 

the above data and/= 0.1039 m, the first natural frequency, w1 = 913.286 rad/s. Then 

A2 = 0.00433. It is obvious that both the I and w1 values are not large enough to excite the 

unsymmetrical A2 component appreciably and, therefore, A2 has a negligible effect upon 

the first mode frequency. According to Housner (1952), the strength of the coupling 

betwe1;n modes decreases rapidly, so if A 1, A2, and A3 are retained, the magnitude A3 is 

small compared to that of A2 in the lowest mode of vibration. In general, the dynamic 

coupling is such that in the ith mode of vibration the coefficient A, is the largest and the 



coefficients A,.1, A,.2, ... and A;.1, A~2, ... decrease in magnitude very quickly as the 

subscript value departs from i. 

Table 4.1. Comparison of natural frequencies (1/s) of bellows calculated with 
and without Coriolis term with eq. (4.8) for first mode (without/with/error"/o) 

~ 
0.03465 0.0693 0.1039 

(Rm) (2R..) (3Rm) ) 

8172.30 2043.08 908.034 
2 8172.51 2043.28 908.242 

0.0026 % 0.0098 % 0.023 % 
8172.30 2043.08 908.034 

5 8173.60 2044.38 909.338 
0.016% 0.064% 0.14% 
8172.30 2043.08 908.034 

JO 8177.51 2048.30 913.286 
0.064 % 0.25% 0.57% 

Table 4.2. Comparison of natural frequencies (1/s) of bellows calculated with 
and without Coriolis term with eq. (4.8) for second mode (without/with/error%) 

~-

0.03465 0.0693 0.1039 

(Rm) (2Rm) (3Rm) ) 

32689.22 8172.30 3632.136 
2 32688.38 8171.47 3631.303 

0.0026% 0.0098 % 0.023 % 
32689.22 8172.30 3632.136 

5 32684.01 8167.10 3626.928 
0.016 % 0.064 % 0.14 % 
32689.22 8172.30 3632. 136 

,0 32668.40 8151.46 3611.249 
0.064% 0.25% 0.57% 

These results apply to simply supported bellows only. 

The distribution of the Coriolis force per unit length along the bellows can be ex­

pressed as 
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or the elemental force 

a'w 
CorF(r} = 2(t)vmfl = 2--vm11 ara1 

a'w 
dCorF(r) = 2--vm11 dr. ara1 

(4.9) 

(4.10) 

Since the mode shape of a simply supported pipe conveying fluid can be approximately 

expressed by 

w,mp = sin ,rt T(t), 

CorF(x) -.(-'l)'--­
T t m 11 v 

10 

....._, r i',.._ 

I 
I 

0 

-10 

" ~ \ 
~ 

0.5 ~ 
\ ~ 

__g_ A 

l.0/ 

1 I _,,,,-

" '>(_ '- -

Fig.4.4. Distribution of Coriolis forces for simply 
supported ends - 1, and fixed-fixed ends - 2 

then the distribution of the Coriolis force for the given mode shape, 

x 
l 
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and elemental force 

dCorF,,,.Ax) = 2vm1, ; f(t) cos ~x dx. 

The distribution of the Coriolis force is shown in Fig.4.4. It appears that although the 

integral of the Coriolis force is equal to zero and doesn't perform any work, the integral 

moment of this force is: 

I 

CorM,m, = f xdCorF,m,(x) = 
0 

I 
0 (4.11) 

= 2vm11 ; T(t) f xcos~x dx = -l.27lm11vT(t). 
0 

This moment becomes equal to zero at the extreme positions of the vibrating bellows and 

reaches its maximum at the position of equilibrium ( depends on t(t) ). Therefore, under 

the influence of this moment, the mode shapes become non-classical, which then slightly 

affects the natural frequency of the pipe conveying fluid as was shown in the Tables 4.1 

and 4.2. 

Let us now calculate CorMr« for the fixed-fixed pipe. The approximate first 

vibration mode in this case i~ taken as t\Je mode shape of the fixed-fixed beam, Filipov 

(1965): 

wfe= T(t)[0.62966(cosh4.73004; - cos4.73004;) 

- 0.61865(sinh4.73004; + sin4.73004;)J. 

Substitution of this into (4.9) results in the following expression for the distribution of the 

Coriolis force 
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( ) 2m1,v '( )[ ( . x . x) CorFfix x = -
1
-1 t 2.97833 smh 4.73004

1 
+ sm 4.73004

1 
-2.92622 ( cosh 4.73004; - cos 4.73004 ;) ] 

and substitution of the same mode shape into (4.10) gives the elemental force 

dCorFfix(x) = 
2
m{'v T(t) [ 2.97833 ( sinh 4.73004; + sin 4.73004 ;) 

-2.92622 ( cosh 4.73004; - cos 4.73004 'T)] dx. 

Multiplying this elemental force by x and integrating over the length of the pipe results in 

the total moment of the Coriolis forces for the fixed-fixed bellows conveying fluid: 

I 

CorMfix = f xdCorFfix 
0 

2m1,v f' [ ( x x) = -
1
-T(t) x 2.97833 sinh 4.730041 + sin 4.73004

1 
0 

- 2.92622(cosh4.730047 - cos4.73004
7
)]dx = -l.041m11vT(t). (4.12) 

The comparison of the Coriolis moments for simply supported, ( 4.11 ), and fixed­

fixed, (4.12), bellows shows that the Coriolis moment CorMr., for the fixed-fixed case is 

only 82% of the moment CorM,mp for the simply supported case. This fact can be readily 

seen from the comparison of the graphs for CorF,mp and CorFr., in Fig.4.4. Therefore, we 

can conclude that the influence of the Coriolis forces on the natural frequencies of a 

bellows is even less than shown in Tables 4.1 and 4.2. 
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4.4. The Influence of Inside Pressure and the Centrifugal Force 
of the Flow on Transverse Vibration of Bellows 

Let us derive the differential equation which, in addition to Bernoulli-Euler con­

ditions, takes into account the static inside pressure and the centrifugal force of the inside 

flow. The differential element of such a pipe is shown in Fig.4.5. The moment equation 

with respect to point O is 

t3M 
-d:x: - Qd:x: + P1rR;. dw = 0, 

iJ;c 

from where the shear force Q is 

where 

2 

p A V2 aw dx 
I mm Bx' Q + J_ !}Jl dx 

2 ax 

M- J_ BM d,;i.X~---T 2 ax _ PrrR 2 

- --------..J..-l----4----"m, 

Q-J_ !lfl dx La, i--l. ----==--dx --i.l 

Fig.4.5. Differential element of bellows 

(4.13) 
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Q and Mare the shear force and the moment in the bellows respectively, 

P is the pressure in the bellows. 

The translation differential equation with respect to they direction is 

o2w 2 a2w • oQ m. - 2-dx = -p1 Am1.v --2 ax - -dx a, ax ax 
or 

o2w 2 o2w oQ 
m. - 2- + p1 A..,. v --2 + - = O, a, ox ox 

where Amin is the clear cross-section of the bellows (see Fig. 2.1): 

From beam theory, 

M = El 
02

~. ox 

(4.14) 

(4.15) 

Substitution of(4.15) into (4.13), and subsequent substitution of(4.13) into 4.14) yields 

the desired differential equation for transverse vibration 
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(4.16) 

It is seen from this equation that the effects of both pressurization and centrifugal force on 

the vibrating pipe are similar in that they are both coefficients of the curvature term, 

o2w I ox2
• Therefo,e, the differential equation which takes into account either or both of 

these two factors can be written in general as 



o4
W iJ2w iJ2w 

EI--. + 71-2- + m.-2- = 0, ax iJx iJt 

where T/ in this equation represents either the pressure coefficient, P1rR;, or the centri-

fugal force coefficient, p1 A .... v2
, or both of them taken together. The division of the 

above equation by EI giv(:s 

If 

and 

iJ
4
w + ..!]_ iJ

2
w + m. iJ

2
w = 0. 

ax• EI ax2 EI iJt2 

~2iI = c 

i=a, 
then the differential equation ( 4.17) can be rewritten as 

iJ4w 2 iJ2w 4 iJ2w -- + 2c -- + a -- = 0. ax• ax2 a,2 

Let 

w = X(x) T(t). 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

Then, ifT{lj is some harmonic function, the derivatives of(4.21) needed in eq.(4.20) are 

0 4
W dX4 

ax• = T dx4 ' 
and 

02
w - - 2 XT a,2 - a, . 
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Substitution of the above derivatives into (4.20) gives 

where 

Now let 

Then 

dX4 dX' 
-- + 2c2

-- - 2 4X = 0 dx4 dx' • 

X = Ce"'. 

dX4 
-- = Cs4 e"' dx. 

dX2 
and - Cs'e"' . dx2 -

Substitution of the above derivatives into (4.22) gives the quartic equation 

s4 + 2c2 s' - 2 4 = 0 • 

the roots of which are 

S1,2=±a, 

- +·p S34--l, 

where 

a = ~-c
2 + ~c

4 + A 
4 

P = ~c2 + ~c4 + A• . 

Solution of equation ( 4.22) can be written as 

X - C e"' + C e-•x + C e•Px + C e-•Px 
- 3 4 S 6 · 

By letting 
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(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 
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B+A 
C3 = -2-, c. B-A 

2 

D-iC D+iC 
C, = 

2 
, and C6 = 

2 
=--

equation (4.26) can be rewritten as follows 

X = Asinhax + Bcoshax + Csin/Jx + DcosfJx (4.27) 

and the derivative of which becomes 

':: = Aacoshax + Basinhax + CJJcosJJx - Dj3sinj3x. (4.28) 

Let's consider the fixed-fixed case of the pipe. Then the four required boundary 

conditions are: 

x(o) = dX(o) = x(l) = dX(l) = o. 
dx dx 

Substitution of(4.27) and (4.28) into these four boundary conditions results in a system of 

linear simultaneous equations with respect to A, B, C, and D: 

B + D = 0, 

Aa + CJJ = 0, 

Asinha/ + Bcosha/ + Csin/3/ + Dcos/3/ = O, 

Aacosha/ + Basinha/ + Cj3cosj3/ - Dj3sinj3/ = 0. 

For a non-trivial solution, the determinant formed by the coefficients of this 

equation must be equal to zero: 
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0 1 0 1 
.................... ······················ ........................................ . 

= 0. 
a O p O 

sinh (al) cosh (al) sin (Pl) cos(PI) 
acosh(al) asinh(al) Pcos(PI) -Psin(PI) 

The expansion of the determinant results in the frequency equation for differential 

equation (4.20): 

(! - ;) sinh{al) sin(PI) + 2cosh(al) cos(PI) - 2 = 0. (4.29) 

Now we will investigate the influence of the inside pressure only. Then 

1/ = P,rR~. 

According to EJMA Standard (1980), the critical pressure for bellows, 

p = ,rkp 
"' I' 

and the maximum allowed (design pressure) is just small fraction ofit: 

According to (3.1), 

p = ~ = ,rkp 
m~ 6.666 6.666 J' . 

I 
EI= -kpR~. 

4 

Substitution of ( 4.31) into ( 4.30) and subsequently ( 4.30) into ( 4.18) gives 

,r 
c = 0.5477-. 

I 

(4.30) 

(4.31) 

(4.32) 



103 

For a real bellows length, say, I= 2Rm = 0.0693 m, 

c = 24.831 l/m2
• 

Now, using the numerical value of c and expressions for a ,(4.24), and.P, {4.25), the fre­

quency equation (4.29) can be solved numerically. The computerized solution for the first 

frequency gave At= 65.61205. From (4.23), 

22 
w=-2· 

a 

Substitution the expression ( 4.19) for a and the calculated At value into the above formula 

finally gives the first mode natural frequency of the 0.0693 m length fixed-fixed bellows: 

{TI 
OJ I = 4305.00 v--;;; . (4.33) 

Let us express the natural frequency of the bellows when the inside-outside 

pressure difference is equal to zero. Then the second term in differential equation ( 4.20) 

and the solution of this simplified equation for the first mode of the fixed-fixed beam 

becomes the well known expression, 

OJ = 4.73
2 fl . 

/
2 m b 

Substituting in the bellows length, I= 0.0693 m, gives 

{TI 
OJ = 4658.68 v--;;;. (4.34) 

Comparison of the two frequencies (4.33) and (4.34) shows that taking into account the 

maximum pressure allowed by the EJMA Standard, the natural frequency becomes lower 

by7.6%. 
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Now we will investigate the influence of the centrifugal fluid force on the natural 

frequencies of bellows. We can do this by comparing the two paits of the coefficient of the 

curvature tenn, iJw2/or2, in the differential equation (4.16), PKR~ and p1 A_..v2
• 

Using the same numerical values for geometrical and physical parameters, we can 

calculate the ratio, 

1000(0.003148) (102
) 

= = 0.05. 
6260.48 

This ratio demonstrates that the influence of the centrifugal force is just 5% of the 

influence of the maximum allowed pressure, 7.6%. Thus, the natural frequency is lower by 

just 0.05 x 7.6% = 0.38% even at such high fluid velocities as v = 10 mis. 

4.5. Assumptions and Derivation of Differential Equation of Transverse Vibralion 
of Bellows Using Newtonian Approach. 

As shown in the previous sections, the influence of both Coriolis and centrifugal 

forces of flowing fluid on the natural frequency of bellows is smaller than 1 % even for the 

highest possible fluid velocities in bellows. Furthermore, the effects of these two forces, at 

least for the odd number of vibration modes, oppose each other with respect to their 

effects on the natural frequency of bellows. Therefore, these two forces will be neglected 

in subsequent investigations of the vibration of bellows. As shown in Section 4.2, the 

influence of shear, due to the very high flexibility of bellows, is also negligibly small. 

Therefore, it can be ignored as well. The only remaining effects to be taken into account 

are the inertia of rotation, the pressurization effect, and two types of added fluid mass. 

Considering the assumptions made, the derivation of the differential equation of 

the transverse vibration of the expansion joint is as follows. 

In Fig.4.5 is shown the differential element of bellows with all the forces and 

moments acting on it. The moment differential equation about point O is: 
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o'w 8M 2 
J 

2 
dx = -dx - Qdx + P1rR,.dw, 

t7X cit t7X 

where J is the total mass moment of bellows per bellows unit length. The transverse 

shear force is therefore: 

iJM 2 dw 
Q = - + P1rR - -

t7X '" dx 
iJ'w 

J 2. 
t7X iJt 

For a beam, the moment Mis related to the lateral deflection by 

M = EI02w 
iJx2 . 

Using this relationship, the shear force expression (4.33) can be rewritten as follows: 

Q= El o'w + 
t!Jx' 

iJ'w 
J 2 • 

t7X iJt 

The differential equation for translation with respect to they axis is: 

m iJ2w dx = - 8Q dx 
IOI 0(2 t7X 

or 

t72
W 8Q 

mlol o/2 + t7X = 0. 

Differentiation of equation ( 4.34) with respect to coordinate x gives: 

iJQ 0 4
\V 

-=--+ 
t7X t3x• 

(4.33) 

(4.34) 

(4.35) 

Substitution of the last equation into (4.35) gives the differential equation of the transverse 

vibration of bellows: 
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EI o•w + P~R' o'w _ J o4w o'w O (4_36) 
OX4 " m ox' ox' ot' + mtot ot' = , 

where m,., is given by (3.57), 

and J is given by (3.67), 

J = 1rR;[(2;+os11)1p. + ;(2R,-1)p1 J. 

and the bending stiffness ofbellows is given by (3.1): 



CHAPTER 5 

THEORETICAL INVESTIGATION OF NATURAL TRANSVERSE 

VIBRATIONS OF SINGLE BELLOWS EXPANSION JOINT 

5.1. Solution of Differential Equation 

• 

The differential equation of the transverse vibration of bellows as derived in 

Chapter 4, eq.( 4.36) is as follows: 

(5.1) 

Bellows are usually fixed to much stiffer pipes in comparison with the bellows 

itself. Therefore, with a high degree of confidence, bellows may be considered as being 

fixed at both ends, as shown in Fig.5.1, where boundary conditions are just geometrical: 

107 
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w(O,t) = irw~~,t) = w(l,t) = irw~~,t) = 0. (5.2) 

We employ a separation of variables approach by expressing was the product ofa 

function X(x) and some harmonic function, T(t). Thus, 

w = X(x) T(t) . (5.3) 

w 

x 

I • 
l ·I 

Fig.5.1. Mathematical model of the single bellows with fixed ends 

Substitution of (5.3) into (5.1) and (5.2), and following division by T(t) leads to 

the ordinary differential equation 

(5.4) 
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and boundary conditions 

X(O) = dX(O) = X(l) = dX(l) = 0. 
dx dx 

(5.5) 

Now we multiply both sides of the differential equation (5.4) by X and integrate 

over the domain of the bellows, according to Voltera and Zachmanoglou (1965): 

I I I I 

f d
4

X 2 f d 2
X 2 f d 2

X 2 f 2 _ EI dx• Xdx + P;rR,. dx2 Xdx + J(J) dx2 Xdx - (J) m,01 X dx - 0. 
0 0 0 0 

Integrating the first integral by parts with r~spect to coordinate twice, and the 

second and third just once, we get: 

I I 
2 

I 

+ J(J)
2['! xi -J('!) dx - (J)

2
m,0, fx 2 <1x] = o, 

0 0 0 

or, after substitution of bounds: 

I 2 I 

+ J(J)
2 

[ ix[) X(l) - ~O) X(O) - f ( '!) dx J - alm,01 f X 2dx = 0. 
O O 
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Substitution ofboundaiy conditions (5.5) into the above expression yield~:__ 

Now the Rayleigh quotient for the fixed-fixed single bellows expansion joint can be 

expressed as follows: 

(5.6) 

The above expression is the so called "Rayleigh quotient" applied to the fixed­

fixed bellows as a beam. With the exact eigenfunction X in the quotient, we clearly obtain 

the exact eigenvalue, w . Often, the exact eigenfunction X is not known in advance. 

Therefore, the approximate function X is used, which reasonably resembles the particular 

mode shape and exactly satisfies given boundaiy conditions. Textbooks on vibrations 

usually advise use of the statical deflection curve caused, for example, by a uniformly 

distributed load, as the approximate eigenfunction X . Thus, by using X1 in the Rayleigh 

quotient, we obtain an approximate eigenvalue, iv;. It is shown in Beards (1983) that the 

Rayleigh quotient is a functional that has an extremum with respect to admissible 

functions, X1 satisfying the boundary conditions, the extremal function being the 

eigenfunction, X 1 • This means that using a function, X1 , in the Rayleigh quotient such 

that ( X1 - X1} has a small average value over the beam, will result in an even smaller 

value for (iv; -wn. i.e. a good estimate of the mode shape gives an even better estimate 

of the natural frequency. 
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As an approximation for X, in the Rayleigh quotient a static deflee!ion curve 

satisfying the boundary conditions can be used. A better approximation can be obtained by 

using the solution of the simple Bernoulli-Euler differential equation. Then the precision of 

the eigenvalue, w~, calculated this way must be greater. Therefore, the next section of 

this chapter is concerned with the solution of the eigenfunction of the Bernoulli-Euler 

equation for the boundary conditions identical to those considered in this section. 

5.2. Single Bel!ows Type Expansion Joint Natural Frequencies 

The natural frequency formula for a universal expansion joint can be now easily 

derived from the Rayleigh quotient expression given in the previous section. Let ,; be the 

dimensionless coordinate: 

where 

Upon substitution into (5.6), the natural frequency becomes: 

,,. _ I A1 $!,/ 
Jt - - -, -

2rr I mro, 

I' 
1- A-PrrR' 

"' EI m 

(5.7) 
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A,= 

I , 

s (~;rd; 
A. = -'•-,,--- (5.8) 

f x2d; 
0 

Since, according to (3 .1 ), 

El,. = i kpR;.. 

the final expression for the natural frequency of the transverse vibration of a single 

expansion joint becomes: 

" __ l A,R., J kp 
Jt - ,2 41r m,01 

/2 
1- 41rA,-P 

kp 
(5.9) 

It follows from equation (5.9) that, in order to obtain the final expression for the 

frequency,fi, it is necessary to calculate the nondimensional coefficients A1, (5.8), in which 

the mode function, X. and its first and second derivatives are involved. The values of the 

integrals residing in the coefficients, A1, may be calculated by integrating them 

algebraically or numerically. 

It was explained above that the mode function for bellows (with a high degree of 

precision) can be approximated by the exact solution of the simpler Bernoulli-Euler 

equation with the same boundary conditions (5.5), (see, for example, Filipov (1965)): 

x. = (sinhr• -sinr.)(coshr.;-cosr.~ -(coshr• -cosr.)(sinhr.;-sinr.~. 

For the first four modes, 

r 1 = 4.73004, r 2 = 7.8532045, r3 = 10.9956075, r 4 = 14.1371669. 

Thus, the first mode function can be written as 



X, = l.0178l(coshr,q - cos,;;) - sinhr,q + sinr,q . 

The first and the second derivatives of X1 are 

d;, = r, [1.01781 {sinhr,q + sinr,q} - (coshr,q + cosr,q}), 

d;;, = r,2 [1.01781 (coshr,q + cosr,q} - (sinhr,q - sinr,q}). 

Using the mode functions and their derivatives, the coefficients A; were calculated 

for the first four frequencies as shown in table 5.1. 

Table 5.t. Coefficients A1 for the first four modes of single bellows expansion joint 

Mode# 1 2 3 4 

A, 22.37 61.67 120.9 199.9 

A2 0.02458 0.01211 0.00677 0.00374 

Ai 12.30 46.05 98.91 149.4 
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The total mass, required in equation (5.9), was derived in Chapter 3 and defined by 

equation (3.57): 

an• has been calculated using fonnula (3 .26), 



a,2t = 

or 

0.066 
r 
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The total moment of inertia of the cross-section of a bellows was given by (3.67) as 

follows: 

All geometrical and physical parameters residing in expressions for m,o, and J 

above are listed in Chapter 3 during their derivations. 

5.3. The Exact Solution of Single Bellows Expansion Joint Natural Frequencies 
and its Comparison with Rayleigh Quotient Solution 

The a!)proximate natural frequency formula for a single bellows expansion joint 

was derived in the previous section using the Rayleigh method. Now we will solve the 

same problem exactly, in order to find the error present in the approximate solution (5.9). 

The governing differential equation (5.4) from Section 5.1 is: 



After division by El, 

Setting: 

and 

eq.(5.10) becomes 

d4X P1rr>2 + J(fl d2X m 
--+ '"" - r,l -1E!.. X =0. 
dx4 Ef dx2 Ef 

C= 
P1rR;. + J(J)2 

2EI 

l = Jm,.,(J)2 
El , 

d•X +2c2 d2X -l•X=O. 
t1x• dx2 
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(5.10) 

(5.11) 

(5.12) 

This is the same equation as ( '1.22) in Section 4.4. Since the boundary conditions are the 

same as well, the characteristic equation is given by equation (4.29): 

(! -;) sinha/ sin/3/ + 2cosha/cos/J/ - 2 = 0, (5.13) 

where a and /3 are given by ( 4.24) and ( 4.25): 

a=J-c2 +Jc•+2•, (5.14) 

/3 = J c2 + Jc• + 24 
• (5.15) 

Taking the single bellows with geometrical and physical parameters, bellows 

length, I = 0.0693 m, mass moment of inertia per unit length, J = 0.001153 kgm, 
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EI= 5.078 Nm, and total mass, m,,,. = 5.138 kg/m, according to (4.31), the maximum 

allowed pressure in the bellows is 

p = ;rkp 
fflL'< 6.66612 

As derived in Chapter 3, equation (3.1) gives: 

I 
1 , 

E = -kpRm. 
4 

(5.16) 

(5.17) 

Substitution of (5.16), (5.17) and the numerical values given above into (5.11) and (5.12) 

leads to 

c = J616.49 +0.0001135w 2 (5.18) 

and 

..l. = 1.0029./oi. (5.19) 

Now, using expressions (5.18), (5.19), (5.14) and (5.15), the frequency equation (5.13) 

can be solved with the computer's precision. The first three natural frequencies obtained 

from the computerized solution of (5.13) are given in Table 5.2 as the exact natural 

frequency, Exact w. 

Table 5.2. Comparison of the exact and approximate frequency 
solutions for the single bellows expansion joint 

Mode# Exact w Rayleigh w Error 
(rad/s) (rad/s) (%) 

1 3400.334 3410.76 0.30 
2 6490.355 6927.59 0.54 
3 10401.470 10341.04 0.58 

~ 
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The first three natural frequencies were also calculated for the same bellows data 

using frequency formula (5.9) derived in the previous section from the Rayleigh quotient. 

Both results are compared in Table 5.1. The error of the frequency obtained from the 

Rayleigh quotient is about 0.5% or less at least for the first three modes. Therefore, the 

approximate Rayleigh quotient formula (5.9) is precise enough to use for the natural fre­

quency estimation of single bellows expansion joints. 

5.4. Instability Condition for Single Bellows Expansion Joint 

It is obvious from eq.(5.9) that for a particular combination of the parameters P, p, 

k, and/, the numerator of the expression under the last root can become equal to zero: 

I' 
I - 4ll' A2 - P = 0. 

kp 

From this the instability pressure criteria becomes 

or the first mode critical pressure, 

p = kp 
"' 4ll' A,I' ' 

kp 
P.,, = 3.238/2. (5.20) 
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This is the approximate P., solution, but it is quite close to the stability condition 

obtained from the exact solution, Chen and Lui (1987), of the Bernoulli-Euler equation 

(first mode): 

p = 1rkp 
er /2 



CHAPTER 6 

THEORETICAL INVESTIGATION OF NATURAL VIBRATIONS 

OF UNIVERSAL EXPANSION JOINT LATERAL MODE 

6.1. Derivation of Boundary Conditions for Vibration 
of a Universal Expansion Joint in Lateral Mode 

As seen from Fig.6.1, in the case of the vibration of bellows in lateral modes, the 

connecting pipe performs pure translational motion because of the geometrical and 

physical symmetry of the system, provided the Coriolis forces acting on the bellows from 

the fluid flowing inside are neglected. Therefore, as a mathematical approximation, one 

half of the physical system can be considered with its left end fixed and right end fixed to 

the vertical rollers, as shown in Fig.6.1. 

Since at end A the bellows can be considered as fixed, the first two boundary 

conditions are simply geometrical, 

w(0,1) = 8w(O,t) = 0. 
ax 
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(6.1) 



x ---------------------~ 

~-l--a~ 

a) First mode shape 

x 
..r::_=-::_:--:_=-::_::c_=-=itS:S. - - - - - - -

b) Second mode shape 

x ______ _., 

c) Third mode shape 

Fig.6.1. Mathematical models of universal expansion 
joint for the lateral modes 
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It is not difficult to write the geometrical boundary condition at the erid B. Since it 

doesn't rotate, 

ow(l,t) 
-..>....:..-'- = 0. 

{7X 
(6.2) 

The fourth boundary condition can be derived considering the translational motion of the 

left half of the connecting pipe. The differential equation of the connecting pipe together 

with lateral supports in this case is: 

where 

[ ( ) ] 
0 2w(l,t) = 

M. + m, +m1, a 
01

, 

a is the length of 1/2 of the connecting pipe, 

mp is the connecting pipe mass per unit length, 

Q(l,t) + F,,. 

mp is the fluid mass per unit length in the connecting pipe, 

Q(/,1) is the shear force at the bellows end B, 

Mh is the equivalent lateral support mass, 

F,p is the lateral support transverse stiffness force: 

F,, = -k. w(l,t), 

where kh is the equi,alent spring stiffness of the lateral support. 

Substitution of(4.34) and (6.4) into the expression (6.3) gives 

[ ( ) l J
2w(l,t) o'w(l,t) 2 ow(l,t) 

M.+ mr+m1 , a 2 =-k.w(l,t)+El 
3 

+P,cR,.-~~ 
01 8x 8x 

(6.3) 

(6.4) 

Jo'w(l,t) 
ox 01 2 

• 

Since the connecting pipe doesn't rotate, the last two terms in the above equation are zero, 

and the final expression of the fourth boundary condition becomes 
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o'w(I,t) _ 1 [M ( ) ] o'w(I,t) k. (I ) -ox~'~ - -E-1 • + m, +mi, a ct' + -E-1 w ,I . (6.5) 

6.2. Solution of Differential Equation 

The differential equation for bellows was derived in Chapter 4 and is given by: 

(6.6) 

Using separation of variables by expressing w as the product of a function X(x) and some 

harmonic function, T(t), 

w = X(x) T(t). (6.7) 

Substitution of (6.7) into (6.6), (6.5), (6.2), (6.1) and following division by T(t) leads to 

the ordinary differential equation 

d 4X , d'X , d'X , 
El-4- + P1rRm--, + Jw --, - w m,0,X = 0, (6.8) 

dx dx dx 

and boundary conditions: 

dX(O' 
x(o) = Tx = o, 

dX(l) _ 
---0 

dx ' 

(6.9) 

(6.10) 
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Now we multiply both sides of the differential equation (6.8) by X and integrate 

over the domain of the bellows, Voltera and Zachmanoglou (1965): 

I I I I 

f
d

4

X 2 fd
2

X dx 2 fd
2

X 2 J 2 EI dx• Xdx+P;rR;;, dx2 X +J(i) dx2 Xdx-(i) m,01 X dx = 0. 
0 0 0 0 

Integrating by parts the first integral with respect to the coordinate twice, and the 

second and third just once, we obtain: 

l I 
2 

l 

+ J(i)
2['! xi- J('!) dx - (i)

2
m~, fx'dx] = o, 

0 0 0 

or, after substitution of bounds: 

EI[d'X(/) X(I) _ d'X(O) X(O) _ d'X(I) dX(I) + d
2
X(O) dX(O) 

dx' dx3 dx2 dx dx2 dx 

I 2 I 

+ J(i)
2 

[ ~/) X(I) - ~O) X(O) - f ( '!) dx J - (i) 2m101 J X 2dx = 0. 
O O 

Substitution of boundary conditions {6.9), (6.10), and (6.11) into the above ex­

pression gives: 
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I 2 I 

-Jro
2 J(:) dx - ro 2m~, f X'dx = 0. 

0 0 

Now the Rayleigh quotient for the differential equation (6.6) and boundary condition set 

(6.1), (6.2), and (6.5), expressed from the equation above is 

(6.12) 

This can be solved assuming some admissible function, X(x), as an approximate mode 

function. The natural frequency is therefore: 

I 
J.=-2,r 

I( )' I 2 
El~~ dx - P1rR;, J(:) dx + k.X'(I) 

0 0 
(6.13) 

As explained in Chapter 5, the approximate mode function for bellows (with a high 

degree of precision) can be taken as the solution of the Bernoulli-Euler equation. 

Therefore, the next section is devoted to the solution of the Bernoulli-Euler equation for 

the system shown in Fig.6.1. 
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6.3. Solution of Bernoulli-Euler Equation 

When simplified to the Bernoulli-Euler conditions for the bellows, equation (6.6) 

becomes: 

o4w o2w 
EI-4 + mtot-

2
- = 0. ax 01 

(6.14) 

The boundary conditions were derived in Section 5.1: 

w(O) = 8;~0
) = o, (6.15) 

ow(I) 
--=O ox ' (6.16) 

and 

o'w(l,t) _ Mh +(m, +m1,)a 02w(l,t) kh (I ) 
ox' - EI -a~,,- + -E-I w ,t . (6.17 

As in the previous section, taking w = X(x) T(t), the differential equation (6.14) 

becomes 

d4X , 
EI dx• - w m,0,X = o, 

or 

d•x - k 4 X = o 
dx4 ' (6.18) 

if 

2 
k• = tlJ m,., 

EI 
(6.19) 



Boundary condition (~.17) becomes: 

or 

if 

b = ru
2 (Mh +(mp +mf3)a) _ kh . 

El El 

The remaining boundary conditions, (6.16) and (6.15), become 

dX(l) 
--= 0 

dx ' 

x(o) = dX(o) = o. 
dx 
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(6.20) 

(6.21) 

(6.22) 

(6.23) 

For the case where El and m,0 , are constants, the general solution of the equation ( 6.18), 

according to Babakov (1968), can be taken as follows: 

where, 

(6.25) 

X = AS(x) + BT(x) + CU(x) + DV(x), (6.24) 

A, B, C, D are integration constants, 

l 
S = -(coshkx + coskx), 

2 



T = .!. (sinhkr + sinkr), 
2 

1 
U = -(coshkr - coskr), 

2 

V = .!.(sinhkr - sinkr). 
2 
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The boundary conditions (6.23) give A = B = 0 and the general solution (6.24) may 

be simplified to 

X = CU(x) + DV(x), (6.26) 

the first three derivatives of which are: 

dX 
dx = CkT(x) + DkU(x), 

~~ = Ck2S(x) + Dk 2T(x), 

~ = Ck3V(x) + Dk3 S(x). 

Substitution of(6.26) and its derivatives into (6.20) and (6.22) leads to the system 

oflinear equations with respect to constants C and D: 

C[k3V(l) + bU(i)] + D[k3S(I) + bV(i)] = 0, 

CT(l) + DU(l) = O. (6.27) 

For a nontrivial solution, the determinant formed by the coefficients C and D in the 

above equations must be equal to zero: 
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k'V(l) + bU(l) k3S(l) + bV(l) 
............................... .......•.•.•••••.•••......•.•.. = 0 . 

T(l) U(l) 

The expansion of this detenninant gives 

k3U(l) V(l) + bU2(l) - k3 S(l) T(l) - bV(l) T(l) = 0. 

Substitution of the expressions for S, T, U, V given by (6.25) results in the 

frequency equation, 

coshk/ sink/ + sinhk/ coskl - .!!.., (1 - coshk/ coskl) = 0 
k 

or, after substituting b from (6.21 ), the frequency equation becomes 

coshk/ sink! + sinhk/ coskl 

[

M.+a(m+m,) k 1] 
- P 

I kl - -• - (1 - coshk/ coskl) = 0. 
lm,01 EI ( kl)' 

I' 

Since the transverse stiffness of a fixed-fixed bellows as a beam, according to 

Frocht (1951), is 

k = 12£/ 
• I' ' 

the frequency equation can be rewritten as 

cosh kl sin kl + sinh kl cos kl 

[
M• +a(mP +mfJ) 12k 1 ] - kl - --• - 3 (1 - coshkl coskl) = 0. 

lm,01 k• (kl) 
(6.28) 
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This is the frequency equation for the system shown in Fig.6.1. In the next two sections 

this frequency equation will be applied to find the mode functions of the Bernoulli-Euler 

equation (6.14) which will be used as the approximate mode functions for the approximate 

frequency, (6.13). 

6.4. General Expression for Universal Expansion Joint 
Lateral Modes Natural Frequencies 

The natural frequency formula for a universal expansion joint without lateral sup­

ports can now be easily acquired from the frequency expression (6.13) which. after 

substitution of the dimensionless coordinate ,;= xii becomes: 

or 

where, 

1 
!. = 2;r I I 2 ' 

lm,01 Jx2d,; + 1 J( :) di;+ [M. +(m, +m13}a] X2(1) 
0 0 

f, = _1 ~ ~EI 
21r 12 m,o, 

1- A !....P1rR2 + A k.f3 
"2 El " 3 EI 

I 

Jx 2d,; 
0 

I 2 

J(~~) di; 
A2 = -•----

~(d2X)2 ' 
JI d,;2 d,; 
0 

x 2 (1) 
A3 = -~(d2X.,_,__)2 ' 

JI d,;2 d,; 
0 

(6.29) 



I 2 

K:)dq 
A,=-""-,--- As = ~'(!) 

Since, according to (3.1), 

fxidq 
0 

1 k , EI= - pR· 4 ... 

fx'dq 
0 
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(6.30) 

the final expression for the natural frequency of the transverse vibration of a universal 

expansion joint in its lateral modes become: 

f, = _1 A,~ Jkp 
4,r I m,01 

I' k I' 
1 - 4,rA -P + 4A -'-

-, kp J kpR;., 
(6.31) 

As seen from (6.31), in order to obtain the final expression for the frequency,.!. it 

is necessary to calculate the integrals, residing in (6.30), in which the mode function, X, 

and its first and second derivatives are involved. 

6.5. First Lateral Mode Natural Frequency of a Universal Expansion Joint 
without Lateral Supports 

If there are no supports, then kh = 0, Mh = 0, and the general frequency equation 

( 6.28) becomes 
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a(m, +mn) ( ) 
coshklsinkl+sinhklcoskl- kl 1-coshklcoskl =O. (6.32) 

lmtot 

It is seen from the Fig.2.1 that for moderate convolution depth, 

m, +mil = mror. 

Assume for the moment that the central pipe length a= I. Then the frequency equation 

(6.32) can be simplified to: 

coshkl sin kl + sinhkl cosk/ - kl (1- coshkl cos kl) = 0, 

the first frequency so!ution from which is k1 I = 1.71888. Equation (6.26) can be re­

written as: 

D 
X = U(x) + -V(x). c 

Substitution of the k1 I value into the second of equations (6.27), gives the ratio 

D _ T(I) _ 
C - - U(l) -

sinhk/ + sink/ = -1.218828 . 
coshk/ - cosk/ 

(6.33) 

Substitution of expressions for U(x) and V(x) from (6.25) and the value of the ratio DIC 

into (6.33) gives the exact mode function for the differential equation (6. 14) which can be 

used as the approximate mode fun~tion for the calculation of the coefficients, A, in (6.30). 

This mode function, normalized to unity, becomes: 

X = 
1 

[coshc! - cosc~ - 1218828(sinhc~ - sine~)] (6.34) 
0.9416 I I . I I ' 



where c = 1. 718882. Let 

x 
7 = q. 

Then the mode function (6.34) can be rewritten as 

X = 
1 

(coshcq - coscq - 1.21883 (sinhcq - sine?)], 
0.9416 

the first and the second derivatives of which are: 

dX = c [sinhcq + sincq - 1.21883 (coshcq - cosc?)], 
dx 0.9416 

and 

d 2X c2 

--2 = (coshcq + coscq - 1.21883 {sinhcq + sine?)]. 
dx 0.9416 
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Now values of the integrals in (6.30) can be obtained integrating them, numerically, using 

the computer. The value of X(q) at q= 1 was calculated as X(I) = 1.0. Substitution of 

these values into expressions (6.30) gives: 

A1 = 5.5411, A2=0.10, Ai= 3.1838, Ai =2.646. 

Substitution of these numerical values into (6.29) gives: 

I" __ l 5.6411 ~El 
JI - 2 

21r I m,., 
I+ 3.\838J + 2.646 (m, +m13}a 

I m,., Im,., 

(6.35) 

Let us now consider the case where the connecting pipe is much longer, i.e. a= 2/ 

and, as before, kh = 0 and Mh = 0. In this case the frequency equation (6.32) becomes 
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coshk/ sin kl + sinhk/ cosk/ - 2kl (1- coshk/ cos kl) = 0, 

the first solution of which is k,I = 1.49954, and the mode function obtained in the same 

way is 

X = 
1 

[coshc~ - cosc~ - 1370763(sinhc~ - sincx)]. (6.36) 
0.7303 I I I I 

where c = 1.49954. Calculation of coefficients, A, (6.30), and substitution of their values 

into (6.29) gives the frequency expression, similar to (6.35), 

1-0.1000 ~
2

/ P1rR;, 

x 
1.0 .-------.,--------::::,..., 

0.0 L.c::::_ _____ ..L_ ______ _J 

0.6 
x/l 

1.0 

Fig.6.2. The first mode shapes: for a= I,(!) and for a= 21, (2) 

(6.37) 
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The mode shapes for a= I and a= 2/ are compared in Fig.6.2. As seen from this figure, 

the difference between these two modes is negligible. Let us compare the two frequency 

expressions (6.35), (6.37) derived using these slightly different mode functions obtained 

for a= I and a= 2/ respectively. For this we have to take the same typical bellows for 

which EI= 5.0 Nm2
, J= 1 l.5x10-4 kgm, P1rR; = 6000 N, m,01 =mp+ mp= 5.0 kg/m, 

and a= I= 0.075 m. Substitution of these values into equations (6.35) and (6.37) gives 

f= 46.83 Hz and/= 46.84 Hz respectively. The frequencies for the same data as above, 

except that a= 2/, are found to be /= 35.904 Hz and/= 35.905 Hz. The comparison of 

these two pairs of frequencies shows that the differences between them are very small. 

Thus, while the first natural frequency of lateral motion of a universal expansion joint is ·· 

dependent on the length of the connecting pipe, the frequency equations (6.35) and (6.37) 

give essentialy the same result over the practical range of connecting pipe lengths. 

Averaging the coefficients of equations (6.35) and (6.37) gives a practical design formula. 

f, 
__ l 5.650 ~ EI 

I - ' 2,r /· mto, 3.193J (m, +mn)a 
1 + 2 + 2.656 ~-~~ 

I n1,
0

, I n110 , 

12 ., 
1-0.1- P1rR· 

EI m 

The final expression (6.31} for the natural frequency of the transverse vibration of 

a universal expansion joint according to the first lateral mode without lateral supports be-

comes: 

or, 

1 5.650 
1, = 41r T 

I' 
1-0.4ir- P 

kp 

3.193J (m, +mn)a ' 
1 + 2 + 2.656 · 

m,0 ,l m,.J 



!, __ 1 A,Rm Jkp 
I - /2 471" mro, 

where, 

/2 
1-4JTA,-P 

kp 

A1 = 5.650, A2 = 0.10, A4 = 3.193, and As= 2.656. 

As derived in Chapter 3, equation (3.57), 

a121 was calculated using formula (3.26): 

a12• =0.066 
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(6.38) 

Taking "7 = r;, both integrals in the above formula for the first mode can be rewritten as 

and 

I I 

Jx,2(x)dt = I Jx.2(~)d~. 
0 0 

Substitution of these replacements into the formula for aflk leads to: 
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0.066 
a,21 =r 

Since, according to (6.30), 

J(d;:,rd~ 
O I = A,, 

Jxi(~) d~ 
0 

the final expression for a121 becomes 

A2 ( h)2 a 121 = 0.066 y R,., - 2 p . (6.39) 

Using in the this formula either of the mode functions, (6.34) or (6.36), gives almost iden­

tical results: 

The total moment of inertia of the cross-section of bellows is given by (3.67): 

J = ,rR!,, [(2; + 0.571) IA+ ;(21?, - t)p1 l 
6.6. Second and Third Lateral Modes Natural Frequencies of Universal 

Expansion Joint without Lateral Supports 

As in the case of the first mode, the frequency equation remains the same (6.32), 

a(m +m/3) 
coshkl sink/+ sinhk/ coskl - ' kl(l-coshkl cos kl)= 0. (6.40) 

Im,., 

For moderate convolution depth, 

m, + mfJ = 0.66666 m,o, . 
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The frequency equation (6.40) was solved for three different connecting pipe lengths, 

a= I, a = 1.5 /, a = 2 I . The second mode solutions were obtained as follows: 

Now, substitution of the values of k21 into expression (6.27) for DIC and subsequent use of 

(6.33) gives three slightly different approximate second mode functions for the universal 

expansion joint. These three mode functions, nom1alized to unity, are: 

X2 = 
1 

[coshe; - cose; - 0.989470i(sinhe; - sine;)], 
1.5570 

X2 = --1 
-[coshe; - cose; - 0.9877887 (sinhe; - sine;)], 

1.5644 

X 2 = 
1 

[coshe; - cose; - 0.9867564 (sinhe; - sine;)], 
1.5690 

x 
where e = kl and ; = 1. 

Substitution of these three mode functions and their derivatives into expressions (6.30) 

gives the three sets of coefficients, A 1, A2, A4, As for three different lengths of a, as 

shown in Table 6.1. 

Table 6.1. Comparison of coefficienis A, for the second mode 

a I 1.5 I 2/ 

Ai 26.267 25.316 24.267 

A2 0.025 0.02485 0.0248 

A4 17.27 15.93 15.15 

As 0.222 0.118 0.073 

It can be concluded on the basis of the data in Table 6.1 that the second mode 

coefficient, A2, is practically independent of the connecting pipe length, a. Therefore, A2 

can be considered as a constant, approximately equal to 0.0249. The values of the other 

three coefficients are plotted as functions of all in the Fig.6.3. 
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The final expression for the second lateral mode without lateral supports can be 

rewritten from (6.31) just taking Mh = 0 and kh = 0. Actually, it is the same as (6.38): 

f = _1 A,R,. ~kp 
z 4 ;r 12 m,., 

where 

p 
1-4;rA -P 

2 kp 

J 
l+A4 --, + 

"'tot/ .. 

(m, +mfJ)a ' As -'---'._.;..:;..t.._ 

m,.,l 

(6.41) 

a122 can be calcuiated using formula (6.39), already derived for the first lateral mode: 

A' ( h)' a f2Z = 0.066 y Rm - 2 p. 

A1>< 10-1
, A

4
>< 10-1

, A6>< 10 

6.0 

4.0 

3.0 

2.0 r--... 

1.0 

0.0 
1.0 

A, 

.......... A• - ........ r---. --
"6 

a/l 
2.0 

Fig.6.3. Coefficients A 1, A., A~ for second lateral mode 
natural frequency formula (6.41) 



The three sets of coefficients, A 1, A2, A.i, As for the three different lengths of; a, 

were obtained in a similar way for the third mode as shown in Table 6.2. 

Table 6.2. Comparison of coefficients A, for the third mode 

a I 1.5 / 2/ 

Ai 66.309 65.033 64.306 

Ai 0.0118 0.0119 0.0119 

A4 52.16 50.41 49.44 

As 0.1022 0.0511 0.0305 
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Table 6.2 shows that the coefficient A2 can be considered to be independent of a, as in the 

case of the second mode, and approximately equal to 0.0119. The rest of the coefficients, 

A, were plotted as functions all in Fig.6.4. 

The second mode frequency formula (6.41) and subsequent formulas for m,a, and 

a/22 can be used for third mode frequency calculation. 

A1x 10-1, A
4
x 10- 1, A,,>< lOe 

10.0 

\ 
'\ A6 

' 

"' ' A, 
..... 

A, I'-. 
6.0 

..... 
!'-... 

......... 
I'-. --

o.o a/l 
1.0 1.6 e.o 

Fig.6.4. Coefficients A 1 , A, , As for third lateral mode 
natural frequency formula (6.41) 



6. 7. First Lateral Mode Natural Frequency of Universal 
Expansion Joint with Lateral Supports 
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In this case it is necessary to take into account the transverse stiffness of the 

supports, kh, and their equivalent mass, Mh. In practice, the transverse stiffness of lateral 

supports, kh, varies over the range 

where kb is the fixed-fixed bellows transverse stiffness. 

(6.28), 

Consider the case when 

Let a = 2 /. Then,approximately, the ratio residing in the frequency equation 

Mh +a(m, +mfl) 
--~~-~:2, 

lm,o, 

and this frequency equation simplifies to 

coshk/ sink/+ sinhk/ cosk/-[2k/-_!.;.](1-coshk/ coskl) = 0. 
(kl) 

The computerized solution of the equation above for the first mode frequency gives 

k1 I= 1.7829. From (6.26) we obtain: 

D 
X = U(x) + C V(x) 

Substitution of the above value kif into equation (6.27) gives the ratio 

D 
- = - 118326 c . . 
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Substitution of the expressions for U(x) and V(.r) from (6.25) and this numerical value of 

ratio DIC into the general expression for the mode function above gives the exact function 

for the differential equation (6.14) which can be used as the approximate mode function 

for calculation of the coefficients A in (6.30). Normalized to unity, this mode function 

becomes: 

where c = I. 7829. 

r 
Let 1 = q. Then the mode function can be rewritten as 

X = 
1 

[coshcq - coscq - l.18326(sinhcq - sincq)], (6.42) 
1.0059 

the first and second derivatives of which are 

dX = c [sinhcq + sincq - l.18326(coshcq - coscq)], 
dx l.0059 

and 

d 2X c2 

dx2 = [coshcq + coscq - l.18326(sinhcq + sincq)]. 
1.0059 

Now values of the integrals in (6.30) can be obtained integrating them as before. The 

value of X(q) at q= l was calculated from (6.42) and is X(l) =I.Substitution of these 

integral values into the expressions for A (6.30) gives: 

Ai= 5.636, 

A4 = 3.177, 

A2=0.10, 

As= 2.638. 

Substitution of these coefficients into (6.29) finally gives the frequency expression: 



f. = _I 5.6,36 (II 
2,r i· v;:-

I - 0.1000 I' P1rR;. + 0.0831 k.P 
EI EI 

3.177 J M. +(m, +mfl)a · 
I + , + 2.638 ---'---'--'--.!..... 

J·mtot mtotl 

Let us find now the analogous frequency expression for the case when 

and, as before, a= 21. Then the frequency equation (6.28) becomes 

coshk/ sink/+ sinhk/ coskl - [2k/ -
36,](1 - coshk/ coskl) = 0. 

(kl) 
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(6.43) 

The first frequency solved from this equation is kif= 2.119375 and the mode function 

obtained as in the previous section is: 

X = 
1 

[coshc= - cosc= - 1.04462(sinhc= - sine=)]. (6.44) 
1.3499 I I I I 

where c = 2.119375. Calculation of coefficients, A, (6.30) and substitution of their values 

into (6.29) gives the frequency expression based on the mode function (6.44), which, 

according to the comparison of numerical coefficients, gives a slightly different frequency 

than the frequency given by (6.43): 

f. _ 1 5.605 (II 
I - 2,r -/,- v;:-

1 - 0.0995 _!_ P1rR; + 0.0822 k.f' 
El El 

1+3.!26J +2.584 M.+(m,+mn)a· 
Im.,, m,

0
,l 

(6.45) 
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x 
J.0 ~-------r----------:~ 

o.o i....,:::::.... _____ __J _______ __J x/l 
o.~ 1.0 

Fig.6.5. The mode shapes: 1, for kh =kb, 2, for kh = 3kb, 

The mode shapes for kh = kb and kh = 3kb are compared in Fig.6.3. As seen from 

the figure, the difference between these two modes is quite small. Let us compare the two 

frequency expressions (6.43), (6.45) derived using these slightly different mode functions. 

For this we take the typical bellows with the same dimensions as in the previous section, 

for which EI= 5.0 Nm2 
, J= I l.5xl0-4 kgm, P1rR~ = 6000 N, m,01 = mp+m/3 = 5.0 

kg/m, but a= 2/ = 0.15 m, kh = kb, and Mh = 0. Substitution of these values into 

equations (6.43) and (6.45) gives f = 72.44 Hz and f = 72.48 Hz accordingly. The 

frequencies for same data as above except that kh = 3kb were f = 114.73 Hz and 

f = 114.66 Hz. The comparison of these two pairs of frequencies shows that the 

differences between them are less than 0.1 %. Therefore, in the practical range of the 

connecting pipe lengths, a, and the support stiffness, kh , either of the two frequency 

formulas derived above are equally good, or, even better, a new formula with numerical 

coefficients obtained as the mean values of corresponding numerical coefficients in 

formulas (6.43) and (6.45) can be used: 



f. = _I 5.620 fil 
21r /2 v-;;;;: 

I - 0.0998 /2 P1rR;. + 0.0826 k.f
3 

El El 
3.152 J M. +(m, +m13)a · 1 + , + 2. 611 __ .,__,_ _ _:_;;.,__ 

/·mtot mtotl 
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(6.46) 

The final expression for the natural frequency of the transverse vibration of a 

universal expansion joint according to the first lateral mode with lateral supports becomes: 

f. = _1 5.6
2
20 ~kpR;. 

21r I m,01 3.1521 ,M.+(m,+m13)a' 1 + 
2 

+ 2.61, __ .,__,__-=-,__ 
m,

0
,I m,01 / 

I' k /3 
1- 0.3991r-P + 0.330-•-2 kp kpR,. 

or, following ('5.31) notations, 

where 

/2 k /3 
1- 41r.4i-P + 4A3 -•-2 kp kpR,. f. = _1 A,~,. ~kp 

41r I m,01 J M.+(m,+m13}a' 
1 + A4 --2 + A, --'---'--· 

m,.,I m,.,l 

A1 = 5.62, 

A.=3.152, 

A2 = 0.0998, 

As= 2.611. 

A3 = 0.0826, 

As in the previous section, 

( h ~ [ ( h 2hR,)
2 l] m,., = 41rR,,, p + 0.285) tp. + 1r R,,,- 2+p + a 12, µR,. Pr. 

am can be calculated using formula (6.39): 

A' ( h)2 

af2, = 0.066 y R,. - 2 p. 

(6.47) 
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Using in the above fonnula mode functions (6.41} and (6.44) gave slightly different 

a 121 results: 

( 
h' 2 p 

a/21 = 2.096 R..- 2J r 

and 

( h)2 p 
a 121 = 2.074 R.. - 2 /4 . 

Since the numerical coefficients in the expressions above are very close, the mean 

value can be used to calculate a 121: 

a /21 = 2.085 ( R., - ~r i4 . 

The total moment of inertia of the cross-section of the bellows is given by (3.67): 

It should be noted, that fonnula (6.47) can be used for calculation of the natural 

frequencies of universal expansion joints without supports, almost with the same degree of 

precision as in fonnula (6.38). In this case kh and Mh must be taken equal to zero. 

6.8. The Exact Solution of Universal Expansion Joint Lateral Mode Natural 
Frequency and Its Comparison with the Rayleigh Quotient Solution 

The lateral mode natural frequency formula for universal expansion joints was 

derived in the previous section using the Rayleigh method. This was the approximate 

solution, of course. Now, in order to determine the error inherent in the derived frequency 

fonnula (6.47), the same problem will be solved exactly. 
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Consider the governing differential equation (6.8), derived in Section 6.2: 

d'X , d 2X 2 d 2X 2 El--+ P1r1J"-- + J(J) -- - (J) m X = 0 
dx4 • .... dx2 dx2 "" 

From here, 

d
4
X + P1rR; + J(J)

2 
d

2
X _ (J) 2 m,01 X = 0 . 

dx4 El dx2 El 
(6.48) 

If 

c = 
2El 

(6.49) 

and 

,l. = 
El 

(6.50) 

Then equation (6.48) becomes 

dX
4 

2 dX2 
4 - + 2c - - ,l. X = 0. 

dx4 dx' 

This is the same equation as (4.22) in Section 4.3. As derived there, the general 

solution of this equation is 

X = Asinhax + Bcoshax + Csinf]x + Dcosf]x, (6.51) 

the first and the third derivatives of which are 

':: = A a cash ax + Ba sinh ax + Cf] cosf]x - Df] sin f]x, 

~ = Aa' coshax + Ba' sinhax - Cf]' cosf]x + D/J 3 sinf]x, 

where 

(6.52) 



147 

(6.53) 

and A, B, C, Dare the arbitrary constants. 

The boundary conditions remain the same as in previous sections of this chapter, 

or 

d3 X(I) = - bX(I) 
dx3 , 

if 

b = w2 [M. +(mp +m13)a) - k• . 
EI El 

The rest of the boundary conditions are the same as given by (6.9) and (6.10): 

dX(l) 
--=O dx , 

x(o) = dX(o) = o. 
dx 

(6.54) 

(6.55) 

(6.56) 

(6.57) 

Substitution of the general solution (6.51) and its derivatives into boundary condition 

expressions (6.54), (6.56), and (6.57) gives us the set of linear equations with respect to 

A, B, C, and D: 

B+D=O, 

aA +.PC=O, 

A acoshal + Basinha/ + C.PcosjJ/ - D.PsirifJI = 0, 

[ a3cosha/ + bsinha/] A + [a3sinha/ + bcosha/] B 

- ff cos.Pl- bsirifJ/] C + r.fsirifJ/ + bcosjJI] D = 0. 
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For a nontrivial solution the determinant formed by the coefficients of this system 

of algebraic equations must be equal to zero: 

where, 

0 1 0 1 
··················~······························································· 

0 0 
................ , .. { ............................................................... . 

acoshal ' asinal l3cosl3l -l3sinl3l 
···················································································· 

c1 = a3 cosha/ + bsinhal, 

c2 = a3sinha/ + bcoshal, 

C3 = ;f cosjJI - bsinjJI, 

C4 = JrsinjJI + bcosjJI. 

c, -C3 C4 

= 0, 

The expansion of the above determinant results in the frequency equation for the system 

shown in Fig.6.1: 

b[2ajJ + cl-sinjJ/ sinha/ -jJ2sinjJ/ sinha/ - 2ajJcosjJ/ cosha/] 

- a]J4sinjJI cosha/ - a4;3cosjJ/ sinha/ - cl-Jf cosjJ/ sinha/ 

- a3 jJ2sinjJ/ cosha/ = 0, 

(6.58) 

where b, a, and JJ are given by (6.55), (6.52), and (6.53). It should be noted that when 

c = 0, then a= J3 = A.. Here, as must be the case, the frequency equation (6.58) simplifies 

to the frequency equation (6.28) as derived in Section 6.3. 

Let us take the universal expansion joint with defined geometrical and physical 

parameters: bellows length, I= 0.0693 m, mass moment of inertia per unit length, 

J = 0.001153 kgm, El= 5.078 Nm2
, total bellows mass, m,o, = 5.138 kg/m, total 

connecting pipe mass, mp+ mp= 5.0 kg/m, a= 1.5/, and no lateral supports. According 

to (4.31), the maximum allowable pressure in bellows is, 



According to (3 .1 ), 

;rkp 
P.,.. = 6.66612 • 

EI = }_kpR~. 
4 
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(6.59) 

(6.60) 

Substitution of (6.59), (6.60) and the numerical values given above into (6.49) and (6.50) 

leads to 

c = J616.49+0.0001135ro 2
• (6.61) 

and 

1.. = J1.0029 ro . (6.62) 

From (6.55), 

b = 0.10235al . (6.63) 

Now, using expressions (6.61), (6.62), (6.63), (6.52) and (6.53), the f.-equency equation 

(6.58) can be solved at the computer precision level. The first natural frequency obtained 

from a computerized solution of(6.58) is given in Table 6.3. 

The same frequency was calculated for the same bellows data using frequency for­

mula ( 6.4 7) derived in the previous section from the Rayleigh quotient. Both results are 

compared in Table 6.3. 

Table 6.3. Comparison of the exact and approximate frequency 
solutions for the universal expansion joint first lateral mode 

Mode# Exact liJ Rayleigh liJ Error 

(rad/s) (rad/s) (%) 

1 331.167 333.17 0.60 

2 3500.822 
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As seen from the comparison in Table 6.1, the error of the first frequency obtained from 

the Rayleigh quotient is comparatively small. Therefore, formula (6.47) (.; adequate for 

estimating the first lateral natural frequency of a universal expansion joint. 

6.7. lnst:ibility Condition for Universal Expansion Joint Lateral Mode 

Ic may be seen from equ'ltion (6.47) that using the particular combination of 

parameters P, p, k, and /, the numerator of the expression under the last root becomes 

equal to zero: 

/
2 k /3 

I - 0.399,r-P + 0.33-• -, = 0. 
kp kpR· 

From here the critical pressure is, 

kp /3 

Per = 0.798-2 + 0.263kh - 2 • 
I Rm 

For bellows without lateral supports kh = 0, and the above expression simplifies to 

kp 
Per= 0.798 f (6.54) 

It should be noted that formula (6.54) gives the same result as formula (5.20) 

derived for a single bellows, provided that in (5.20) the bellows length is taken as 2/. This 

occurs because the presence of the connecting pipe doesn't play any role in the stability of 

the first lateral mode. 



CHAPTER 7 

THEORETICAL INVESTIGATION OF NATURAL VIBRATIONS OF 

UNIVERSAL EXPANSION JOINT ROCKING MODE 

7.1. Derivation of Boundary Conditions fer Vibration 
of Universal Expansion Joint Rocking Mode 

It is easily seen that, in the case of the vibration of the bellows in any rocking 

mode, (Fig. 4.3) the middle point of the connecting pipe does not translate because of the 

geometrical and physical symmetry of the system (Fig. 4.1) with respect to the imaginary 

middle vertical axis, provided the Coriolis forces acting on the bellows from the fluid 

flowing inside are neglected. Therefore, as a mathematical approximation, one half of the 

physical system can be taken with its left end fixed and right end simply supported in the 

middle of the connecting pipe, as shown in Fig. 7 .1. Since at the end A the bellows is fixed, 

the boundary conditions at this end are simply geometrical, i.e., 

(7.1) 
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Fig. 7. I. Mathematical models for the rocking modes 
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It is not difficult to derive the geometrical boundary condition at the end B. As 

seen from the Fig.7.1, 

sina -
w(l,t) 

a 

· · On the other hand, 

a= 
ow(l,t) 

ox 
From here, 

. ow(l,t) w(l,t) 
Slfl = ox a 

For small a., 

. ow(l,t) _ ow(l,t) 
Slfl = . ox ox 

Substitution of the last approximation into (7 .2) gives the third boundary condition: 

ow(l,t) = _ _!. w(l,t). 
ox a 

(7.2) 

(7.3) 

The minus sign is conventional in expression (7.3). Expressions (7.1) and (7.3) are three 

of the four necessary boundary conditions. The fourth boundary condition can be derived 

from t!te rotation differential equation written for the connecting pipe OA (Fig.7.1): 

where 

J.,,& = M(l,t) + Q(!,t")a + F,,a (7.4) 

J,o, is the mass moment of inertia with respect to O of the connecting pipe, 

including the fluid inside, 

& is the angular acceleration of the connecting pipe, 

M(l,t) and Q(/,t) are the moment and the shear force at the end A of the bellows, 

F,, is the spring force. 

The total mass moment of inertia, according to (3.68), is 

_ (m, +m13 )a3 (zm, +m13 )a R' 
J,o, -

3 
+ 

4 
+ Mh a 2 (7.5) 



where 

and 

where 

Since 

mp is the connecting pipe mass, 

mp is the fluid mass contained in the connecting pipe, 

Mh is the mass of the lateral support, 

R is the mean radius of the connecting pipe, 

_ o'w(l,t) I 
&- -

ot' a' 

F,, = - kh w(l,t), 

kh is the spring stiffness of the lateral support. 

M = El a'w 
ox' ' 

substitution of expressions (4.33), (7.5), (7.6), (7.7) and (7.8) into (7.4) gives: 

J,01 o'w(l,t) = El o'w(l,t) + El o3w(l,t) a 
a ot' ox' ox3 

+ P1rR;a ir,v(l,t) - Ja 
173w(l'!) - kh w(l,t) a. 

ax oxot 

From this the fourth boundary condition becomes: 

o3w(l,t) 
ox3 

o'w(l,t) _!_ _ P,rR; ir,v(l,t) 
ax' a El ox 

kh (I ) J 8 3w(l,1) J,01 a'w(l,1) 
+-w t +- +-- . 

El ' El ox ot' Ela' ot' 
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(7.6) 

(7.7) 

(7.8) 

(7.9) 



7.2. Derivation of Differential Equation and Boundary Conditions 
Using Hamilton's Principle 
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Since the rocking mode of bellows vibration is rather complex, the:-differential 

equation derived in Chapter 4 and the boundary conditions obtained above using the 

Newtonian approach will be checked in this section by deriving them using Hamilton's 

principle. The most convenient form of this principle for a tube conveying fluid is the so 

called Extended Hamilton's principle which was derived by Benjamin (1961), Mciver 

(1973), and Laithier and Paidoussis (1981). Since we disregard the Coriolis and 

centrifugal forces acting on the tube for reasons explained in Chapter 4, we will use here 

the Hamilton's principle written in its usual form, given, for example, in Humar (1990): 

,, 
iJ J(T-V)dt = 0 (7.10) 

,, 

where, 

T is the kinetic energy of the pipe plus the fluid therein, 

V is the potential energy of the pipe (fluid is considered incompressible). 

The kinetic energy of the system shown in Fig.7.1 including the fluid flowing inside 

can be expressed as follows: 

where 

Since 

T=J;+T,, 

Ti is the kinetic energy of the bellows with fluid inside, 

T2 is the kinetic energy of the connecting pipe with the fluid inside, including 

lateral supports. 

T, = J[! m,01 ( :) 

2 

+ ! J(.:;,) 
2

] dx, 

where, according to (3.57), 



Since the connecting pipe rotates, the kinetic energy, including lateral supports, is: 

where 

Since 

Jtot is given by (7 .5), 

T.. - J.,ta/ 
2 -

2 

ro is the angular velocity of the connecting pipe. 

the kinetic energy T2 becomes: 

( )

2 

T.. = }._ J b'w .!. 
2 :Ot 

2 0/ l,=I G 

The total kinetic energy of the whole system: 

T= 
I ow 1 0 2

W 1 ow 1 
-m - +-J-- dx+-J - -I [ ( )2 ( )2 ] ( )2 f 2 r,,t 0( 2 OX Of 2 tot Of x=l Q 

Potential energy of the system is 

where 

Vi is the bending strain energy of the bellows, 

Vi is the buckling strain energy in the bellows caused by the pressure inside, 

Vi is the lateral support stiffness energy. 
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(7.11) 
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It is well known that 

1 a2w 
I ( )' v; = J 2 £/ ax' dx • 

0 

and 

Therefore, the potential energy is: 

V= I ( 2 I ( )' 1 a2w 1 iJw 1 

J
-EI -,) dx-J-P1rR;. - dx+ -kh w

2(t}, 
2 ax 2 ax 2 

(7.12) 

0 0 

where 

P is the inside pressure, 

Rm is the mean radius of the bellows. 

Substitution of (7 .11) and (7 .12) into (7 .10) gives: 

Variation of this leads to the following expression: 
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J,, JI ( mrot 0\11 8 0\11 + J b''w 8 b''w) dx dt + s'• J "': b'w I 8 (7\Y I dt 
Q/ Q/ 17XOI 17XOI a· Q/ z=I 01 r-1 

~ 0 ~ 

or 

'ii '11 '2 

Jfm 0\11 OOW dxdt + JJJ 0
2
W b'

2
0W dxdt + J Jtot (71Y(/) b'ow(/) dt 

tot b't b't b'xb't b'xb't a2 b't b't 
r1 o ,1 o t1 

~ I ~ I ~ 

- JJEI o': o'o: dxdt + JJP1rR';, ow oow dxdt - Jk.w(l)ow(l) dt = 0. 
ox ox b'x b'x 

~ 0 ~ 0 ~ 

Integrating by parts the 1st and 3rd terms with respect to time, the 5th term with respect 

to coordinate x, the 2nd term with respect to time and coordinate x, the 4th term with 

respect to the coordinate x twice, we obtain: 

J
1 

(ow '1• f o'w ) m - ow - j' -- owdt dx 
tot 01 01' 

0 ,, '• 

[ f
l o'w (ow) t,, ft, o 3w II Jt, fl o4w ] 

+ J oxol o iJx dx - oxot' ow di + ' ox' ot' owdxdt 
0 '• ,, 0 ,.o 
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~ I l · ~ 

+ P1rR;. J(Z owl - f ~~ owdr)dt - k. fw(l)ow(l) dt = o. 
t, 0 0 ,, 

Noting that ow= o ( :J = 0 at times t1 and '2, ~e then obtain on regrouping terms and 

substituting bounds in the above equation: 

11 I -

f f ( a•w 2 b'
2w b'4w 0 2wJ - EI-4 + P1rR;,,-2 - J 2 2 + mro,-2 owdrdt 

i);c i);c iJx b't b't 
,, 0 

+ f
11

[EI o'w~l) ow(!) - EI 
02

w~l) o[ow(I)] + P1rR;. ow(!) ow(!) - k. w(I) ow(!) 
i);c ' i);c i);c iJx 

~ . 

- J o'w(I) ow(!) - J,., o2w(I) ow(!)] dt 
i);c a,2 a2 a,2 

-J[ EI 
0;~o) ow(o) - EI 

0;~o) o[~0)J + P1rR;. ow~o) ow(o) 
,, 

o'w(o) , 
-J 2 ow(o)j dt = o. 

iJxb't 

Taking into account the relationship (7.3), the last equation can be rewritten as follows: 

f''s' ( b'
4
w 2 b'

2

w b'
4

w b'
2wJ - EI-4 + P1rR;. - 2 - J 2 2 + mro,-2 owdrdt 

b'x ox ox a, a, 
,, 0 

+ s''{EI o'w(l) + EI b'2w(l) .!. + P1r p2 ow(/) - k w(I) - J o'w(I) ox' i);c2 a ,.,,. i);c h i);c a,2 ,, 
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- J''[EI 83w(o). + P1r1)2 cw(o) - J 83w(o)] 8w(o) dt ox' • ... ax ax iJt, 
' . 

According to boundary conditions (7.1), the above functional is equal to zero if 

EI 8
4
w + P1r1)2 82w _ J 84w 8

2
w ax• .... ax2 ax, a,, + m,., a,, = o (7.13) 

and 

EI t3lw(l) + EI 82w(l) ]._ + P1rR2 olv(l) - k w(l)- J t33iv(l) - J,., 8,w(l) = 0 
OX3 OX2 

Q m OX h OX o/ 2 a2 81 2 , 

or 

0 3w(I) = _ t32w(I) 1 _ P1rR; olv(I) +.s_w(l) + __{__ o'w(l) 
ox3 ox2 a El iJ.r El El iJxot2 

J,
0

, t3 2w(I) _ 
-- -0 
Ela2 81 2 

• 

(7.14) 

Eq.(7.13) and (7.14) are the differential equation and the fourth boundary condition which 

are the same as those derived in the previous section. 

7.3. Solution of the Differential Equation 

We employ a separation of·;ariables approach by expressing was the product of a 

function X(x) and some harmonic function, T(t). Thus 

w = X(x) T(t). (7.15) 

Substitution of (7.15) into (7.13), (7.1), (7.3), (7.14) and following division by 7(1) leads 

to the ordinary differential equation 
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and boundary conditions 

x(o) = ~o) = o, (7.17) 

d' X(I) 
dx' -

dX(I) X(I) --=---
dx a 

d2 X(I) 1 _ P1rR;, dX(I) _ Joi dX(I) 
dx2 a EI dx EI dx 

- oi2 J,.,, X(I) + .!s_ X(l). 
EJa· EI 

(7.18) 

(7.19) 

Now we multiply both sides of the differential equation (7.16) by X and integrate over the 

domain of the bellows, Voltera and Zachmanoglou (1965): 

I I I I 

f d
4X 2 fd 2X 2 f d2X 2 f 2 EI dx4 X dx + P1rRm dx2 X dx + J(J) dx2 X dx - (J) m,01 X dx = 0. 

0 0 0 0 

Integrating by parts the first integral with respect to the coordinate twice, and the second 

and third just once, we obtain: 

[ d'X '1 d
2

X dX 1' J' (d2X) 2 

J [dX 1' s' (dX) 2 

J EI dx' X - dx2 dx + dx2 dx + P1rR; dx X - dx dx 
0 0 o O o 

I I l I 

+ J(J)
2 [!xl- f(!) dx]- ro

2
m101 f X 2

dx = o, 
0 0 0 
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or, after substitution of bounds, 

EI[d3X(I) X(l) ~ d3X(O) x(o) _ d'X(I) dX(l) + d'X(o) dX(o) 
dx3 dx3 dx' cfx dx' cfx 

+ J( ~:r dx J + P1rR~ [ ~/) X(I) - d,10) X(O) 
0 

-](':!)' dx J + Jw 2 [ ~/) X(I) - ~o) x(o) 
0 

I 2 I 

-J(:) dx ]- w
1
mw, Jx 2

dx = O. 
0 0 

Substituting boundary conditions (7.17), (7 .18), and (7 .19) into the above expres­

sion gives: 

- EI d1X(I) 1 X(I) - P1rR2 dX(I) X(I) - Jw2 dX(I) X'I) 
dx2 a m dx dx \ 

-a/;;' + k.X(l) + X2(l) + El d;2(l) ! X(l) + El J( i)2 

dx 
0 

+ Jw 2 
~/) X(I) - Jw 2 j ( :) 2 

dx - w 2m101 j X'dx = 0. 

0 0 

After cancellation of similar terms in the expression above, the squared natural frequency 

for the universal expansion joint rocking mode can ,Je expressed as follows: 
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(7.20) 

0 0 

The expression (7 .20) is the same as found in previous chapters - the Rayleigh 

quotient derived from differential equation (7.13) and the associated boundary conditions 

to it. Now the expressed frequency is: 

I 
!, = 2ir 

EI J(:-;)
2dx -PirR~ j(:rdx + k• X'(l) 

0 0 
I I 

2 

m,01 f X 2

dx + J f ('!) dx + ~;· x 2 (t) 
0 0 

7.4. Solution of the Bernoulli-Euler Equation 

(7.21) 

Equation (7.13) and the boundary condition (7.14) simplified to the Bemoulli­

Euler conditions for the same system shown in Fig.7.1 become: 

0 4
W 8 2w 

EI - 4- + m,01 --, = 0, (7.22) ax a1 

o'w(t) = _ o'w(I) ..!_ + _1 J,01 o'w(!) + .!s_w(t) (
7

_23) 
ox' ox' a El a' ot' EI . 

The kinematic boundary conditions remain the same as before: 



ow(!} w(I} --=--ax a 

w(O} = ow(O} = O. 
8x 
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(7.24) 

(7.25) 

As in the previous sectiot1, taking w = X( x} T(t}, provided T(t) is a hannonic function, 

the above differential equation becomes 

or 

if 

d'X 2 
El dx' - w m101 X = 0, 

d'X - k'X = 0 
dx' • 

2 
k4 ::: (J) mrot 

El 

Boundary condition (7.23) becomes 

d'X(I) = _ d'X(l) .!_ _ !!!_ J,0 , X(l) + 5_ X(l) 
dx' dx' a El a 2 EI 

or 

a d' X(I} = _ d'X(I) _ b X(l) 
dx' dx2 

if 

b = ola J,0 , _ k,a 
EI a' EI . 

The rest of the boundary conditions are 

(7.26) 

(7.27) 

(7.28) 

(7.29) 



.. 
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dX(I) = _ X(I) 
dx a 

(7.30) 

x(o) = dX(o) = o 
dx . (7.31) 

For the case where El, m1o, and m, + m1, are constants, the general solution of the 

equation (7.26), according to Babakov {1989), is provided as follows: 

X = AS\x) + BT(x) + CU(x) + DV(x), (7.32) 

where 

A, B, C, D are integration constants, 

I 
S = -(coshkx + coskx), 

2 

T = ..!. (sinhkx + sinkx), 
2 

I 
U = -(coshkx - coskx), 

2 

V = ..!. (sinhkx - sinkx). 
2 

(7.33) 

Taking into account the boundary conditions (7.31), the general solution (7.32) may be 

simplified to 

X = CU(x) + DV(x), (7.34) 

the first three derivatives of which are: 

dX 
dx =CkT(x)+DkU(x), 

~'; = Ck2 S(x) + Dk' T(x), 



'7, = Ck'V(x) + Dk' S(x). 

Substitution of(7.34) and its derivatives into (7.28) and (7.30) leads to the system of 

linear equations with respect to constants C and D: 

C[k2S(l)+ak3V(l)+bU(1)] + D[k2T(l)+ak'S(l)+bV(i)] = 0, 
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C[U(l)+akT(l)] + D[V(l)+akU(l)] = 0. (7.35) 

For a nontrivial solution, the determinant formed by the coefficients C and D in the 

above equations must be equal to zero: 

k2 S(l) + ak'V(l) + bU(l) \ k2T(l) + ak'V(l) + bV(l) 
= 0. 

U(l) + akT(l) V(l) + akU(!) 

The expansion of the above determinant gives 

kS(l) V(l)- kU(l) T(l)- ak 2 T'(l) + ak2V2(1) - a 2 k' S(l) T(l) 

+ a2k'U(l)V(l)+abU2(l)-abV(l) T(l) = 0. 

Substitution of the expressions for S, T, U, V given by (7.33) results in the frequency 

equation 

[1+(ak)2]coshk/ sink/ - [1-(ak)2]sinhk/ coskl 

+ 2ak sinhk/ sink/ - a: (1-coghkl coskl) = 0, 

or, after substitution of b from (7.29), the frequency equation becomes 



+ 2f k/sinhk/ sink/ 

-[ J'°' (
0

)

2 

(k /)
3 

_ .5_ ( 0
)

2 

_!_] (1-coshk/ coskl) = 0. 
m /a2 I El I kl 

IOI -

13 

Since the transverse stiffness of a fixed-fixed bellows as a beam according to 

Frocht (1951) is 

k = 12£/ 
b 13 ' 

and J,01 is given by (7.5), the frequency equation can be rewritten as 

+ 2!!..k/sinhk/ sink/ 
I 

- --• - - (1-coshk/ coskl) = 0 12k (a) 2 

1 l 
kb I k I . 
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(7.36) 

This is the final expression of the frequency equation for the system shown in Fig. 7 .1. In 

the following two sections this frequency equation wilt be applied to find the mode func­

tions of the Bernoulli-Euler equation (7.22) as the approximate mode functions for the 

Rayleigh quotient (7.21). 



7.5. General Expression for Universal Expansion Joint 
Rocking Modes Natural Frequencies· 
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The natural frequency formula for a universal expansion joint wi•hout lateral sup­

ports can now be easily derived from the frequency expression (7 .21 ), derived in Section 

7.3. From there the frequency is, 

or 

where 

I !. =-
21T 

I 

!, _ I A1 J!EI I---, -
2,r /· m,01 

fx'd; 
0 

I 2 

J(~) dq 
A. = ...c.•--,-,---

J x'dq 
0 

I A _.:!__ A J,., 
+. 

1
,+s 2 

m,ot m,o,la 

_X_'.o..( I)'­
As = 1 

Jx'd; 
0 

(7.37) 

(7.38) 
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Since, according to (3.1), 

EI,. = 1 kp.R.;, 

the final expression for the natural frequency of transverse rocking mode vibration of a 

universal expansion joint, similar to the case of lateral modes described in Chapter 6, 

becomes: 

= _1 A.Rm ~kp 
J.. 4 Jr 12 mro, l+A_{__+A J,01 

• 12 ~ I 2 m,ot m,ot a 

(7.39) 

As seen from (7.39), in order to obtain the final expression for the frequency,/, it 

is necessary to calculate the integrals, residing in (7.38), in which the mode function, X, 

and its first and second derivatives are involved. 

7.6. First Rocking Mode Natural Frequency of Universal 
Expansion Joint without Lateral Supports 

Now the approximate mode function for the first rocking mode of the universal 

expansion joint will be derived. If there are no lateral supports, then kh and Mh are equal 

to zero and the general frequency equation (7.36) becomes 

a (m + mn) (a) 3 
3 + 2- k I sinhk/ sink/ - ' - (kl) (1-coshk/ cosk/) = 0. 

I 3m101 I 
(7.40) 

It can be seen from the Fig.2.1 that for the moderate convolution depth, 



m, + m13 = m.,,. 

Assume to begin with that a=/. Then the frequency equation (7.40) simplifies to 

[1+(k1t]coshk/ sink/ -[1-(k!}2]sinhk/ cosk/ 

+ 2kisinhk/ sink/ - ; (k/)
3 

(1-coshk/ coskl) = 0. 

The computerized solution of the above frequency equation for the first mode gives 

k1l = 2.404155. From (7.34) we get: 

D 
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X = U(x) + - v(x). c (7.41) 

From equation (7.35) the ratio DIC is 

c 
coshk/ - coskl + ~kl(sinhkl + sink/) 

I = -1.056106, 
sinhkl - sink/+ 7"k/ (coshk/ - cosk/) 

U(l) + ak T(l) _ 
-= -

V(l) + akU(l) -
D 

for kl = kl= 2.404155. Substitution of expressions for U(x) and V(x) and the value of 

the ratio DIC into (7.41) gives the exact mode function for differential equation (7.22) 

which can be used as the approximate mode function for ~alculation of the coefficients, A, 

in (7.38). This mode function, normalized to unity, becomes: 

X = 
1 

[coshc.:. - cosc.:. - 1.0561 (sinhc.:. - sine.:.)], (7.42) 
1.3135 I I ' I 

where c=2.404 l 55. 

Let 

Then the mode function (7.42) can be rewritten as 
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X = 
1 

[cosheq - coseq - 1.05611 (sinheq - sine;)], (7.43) 
1.3135. 

the first and the second derivatives of which are: 

dX = e [sinheq + sine; - 1.05611 (cosheq - cose;)], 
dx 1.3135 

and 

d 2X e2 

--
2 

= [cosheq + coseq - 1.05611(sinheq + sine;)]. 
dx 1.3135 

Now , 1lues of the integrals in (7.38) can be obtained by numerical integration. Sub­

stitution of these values into expressions (7.38) gives: 

A1 = 7.390, A,= 3.0994, As= 1.904. 

The value of X(,;) at q= 1 was calculated from (7.43) and is X(I) = 0.9384624. Sub­

stitution of all these numerical values into (7 .3 7) gives 

J. _ l 7.390 {II 
I - 21!' -,-2 - v-;c 

1- 0.0568 ;
2

1 
PtrR~ 

l+ 3.02994J + 1.904 J,012 

I m,01 m,0,la 

(7.44) 

Let us now determine how the mass ratio, residing in the frequency equation 

(7.40), affects the mode function and subsequently the frequency expression. To do this, 

we take, for example, 

I 
m, + mr, = 2mro, · 

Now the frequency equation (7.40) becomes 

[1+(k1}2jcoshk/ sink/ -[1-(k1}2jsinhk/ cosk/ 



+ 2k/sinhk/ sink/ - .!..(kl}3 (1-coshk/ coskl) = 0, 
6 
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the first solution of which, k:1 = 2.536511, and the mode function, obtained in the same 

way as above, is 

X = 
1 

[coshc~ - case~ - l.02618(sinhc~ - sincx)]. 
1.4125 I I I I 

(7.45) 

where c = 2.536511. Calculation of coefficients (7.38) and substitution of their values into 

(7.37) gives the familiar frequency expression, 

f, _ 1 7.370 {II 
I - 27! -,-, - v-;;:; 

1 - 0.0570 !__ P,rR; 
EI 

1 + 3.~934J + 1.866 J,.1, 
I m,01 m,0,l a 

(7.46) 

Let us compare the two frequency expressions (7.44) and (7.46) using numerical 

values of a typical bellows, El= 5.0 Nm2 
, J= 1 l.5x10 kgm, P1rR~ = 6000 N, 

mp+ m/3 = m,o, = 5.0 kg/m, and a= I= 0.075 m. Substitution of these values into 

equations (7.44) and (7.46) gives accordingly, 123.71 Hz and 123.69 Hz. 

As is seen, the difference is very small. Even the mode shapes on which the 

derivation of the formulas (7.44) and (7.46) wa3 based show a very small difference (sec 

Fig.7.2). Therefore, we can conclude that the ratio of the connecting pipe mass to the 

bellows mass, as in the case of the first lateral vibration mode of the universal expansion 

joint, plays an insignificar1t role in the derivation of the approximate mode shape as well as 

in the subsequent derivation of the frequency expression of the first rocking mode. 

Let us now consider the case when the connecting pipe is much longer, a= 2/, 

and, as before, 

In this case the frequency equation (7.41) becomes 



x 

{i.r, f------,'-t--------, 

a.a L..:::~-----L----------' x/l 
O,fJ 1.0 

Fig.7.2. Mode shapes: I~ eq.(7.43), 2 ~ eq.(7.45) 

[I+ 4(kt)2]coshk/ sink/ - [ l-4(kt}2]sinhk/ coskl 

+ 2k/sinhk/sink/ - : (kt)3 (I-coshklcoskl) = 0, 
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the first solution of which is kif= 2.038264, and the mode function obtained in same way 

as above is 

X = 
1 

[coshc-= - cosc.= - 1.13304 (sinhc.= - sine x)], (7.47) 
1.1104 I I I I 

where c = 2.038264. Calculation of coefficients (7.38) and substitution of their values into 

(7 .3 7) gives the frequency expression, similar to (7.46), 

I, _ l 6.578 {II 
I - 2,r -,2- v;: 

l - 0.0709 !__ P1rR~ 
El 

l + 3.~693J + 2.260 J,,, 2 

I m,0 , m,.,I a 

(7.48) 
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Comparison offonnulas (7.44) and (7.48) shows that the corresponding numerical 

coefficients in these fonnulas differ noticeably. This occurs because, for the rocking mode 

of bellows vibrations, unlike for the lateral mode described in previous chapter, the mode 

function depends significantly on the length of the connecting pipe, a, which resides in the 

boundary condition (7.18). The mode shapes are compared in Fig.7.3. It wouldn't be 

reasonable in this case to take the mean values of these coefficients for the whole range of 

connecting pipe lengths, as was done in Chapter 6. Therefore, these coefficients were 

calculated for the set of values of connecting pipe lengths in the range 

x 

0.0 '"""::::.._ _____ __, _______ _, 

0.5 1.0 
x/l 

Fig. 7.3. Mode shapes: I --+ eq. (7.43), 2--+ eq. (7.44) 

I< a< 2/ and plotted in the graphs in Fig.7.4 except coefficient A4 , which appeared to 

be practically independent of a and equal to 3.08. Finally, the frequency expression (7.39), 

applied to the first rocking mode without lateral supports, becomes: 

f, = _l A1 Rm (EE" 
I 4,r /2 v;;:; 

I' 
1 - 4nA, - P 

kp 

1 3.081 A J,0 , 

+ 2 + S 2 
I m,01 m,)a 

(7.49) 
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where, as it was derived in Chapter 3, eq.(3.57), 

As in previous chapters, a 12, was calculated using formula (3.26): 

a121 = 0.066 
f

1

(d2X )2 

. 17 dx ( ~- ~rp. 
f x;(x)dx 
0 

x 
Taking 1 = ~, both integrals in the above formula can be rewritten as 

and 

I I 

f X1
2(x) dx =If Xi(~) d~. 

0 0 

Substitution of these replacements into the formula for a 121 leads to: 

0.066 
af21=r 

Since, according to (7.37), 



I f x,' di; 
0 

the final expression for a 1,. becomes 

where Ai can be taken from the graph in Fig.7.4. 

10.0 

-
5.0 

0.0 
1.0 

A1 

A2 -

As 

1.5 
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(7.50) 

~ 

a/l 
2.0 

Fig.7.4. Coefficients A1, A2, anci As for the first rocking mode without lateral supports 



,: 

The total moment ofinertia o!"the cross-section of bellows is given by (3.67): 

J = 1rR;. [(2; +os11) 'A+; (2R,-t)p1 J. 

Provided Mh is equal to zero, the second moment of inertia of the connecting pipe, J,,,,, 

given by (3.68), becomes: 

_ (m, +mf3)a3 2m, +m13 , 

J,,,, - 3 + 4 a R . 

7.7. Second and Third Rocking Mode Natural Frequency 
of Universal Expansion Joint without Lateral Supports 
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For the second mode, the frequency equation remains the same as for the first 

rocking mode, (7.40), 

a (m +m/3) (a)' 3 + 2-k/sinhk/ sink/- ' - (kl) (t-coshk/ coskl) = 0. 
I 3m.,, I 

(7.51) 

It can be seen from Fig.2.1 that for the moderate convolution depth, 

m, +m13 = 0.66666m,0 ,. 

The frequency equation (7.51) was solved for three different connecting pipe lengths, 

a=/, a= 1.5/, a=2/. The second solution of(7.51) for these three different a values 

gave: 

kzfr = 5.300058, k2l1.s1 = 5.159754, k2l21 = 5.076394 . 
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Substitution of these three values into expression (7.35) for DIC and subsequent' use of 

(7.34) gives three slightly different approximate second rocking mode functions for the 

universal expansion joint. These three mode functions, normalized to unity, are: 

X2 = 
1 

[coshe,; - cose,; - 0.99542 (sinhe,; - sine,;)], 
1.5314 

X, = 1 
[coshe,; - cose,; - 0.99340 (sinhe,; - sine,;)], 

1.5400 

X, = 
1 

[coshe,; - cose,; - 0.99189 (sinhe,; - sine,;)], (7.52} 
1.5465 

where 
x 

e=kl and ,;= 1. 
Substitution of these three mode functions anc! their derivatives into expressions (7.38) 

gives the three sets of coefficients, A 1 , A2 , A4 , As for three different lengths of a as 

shown in Table 7.1. 

Table 7.1. Comparison of coefficients A for the second rocking mode 

a I 1.5/ 2/ 

A1 30.910 29.320 28.200 

A, 0.0237 0.0243 0.0245 

A4 22.63 20.85 19.48 

As 0.9499 0.6377 0.4469 

Since these coefficients vary noticeably with respect to a, they are plotted in Fig.7.5. The 

frequency expression remains the same as in (7.39): 

J; = _1 A,~m {Ii 
4,r I 1j;::: 

I' 
1-4,rA,-P 

kp 

l+A-1-+~ 1101 ' 
• /' ''s I 2 mio, .. m'°' a 

(7.53) 



where, as derived in Chapter 3, eq.(3.57), 

a 1 ,, can be calculated using formula (7.50) for the first rocking mode: 

A•x 10 
A4xlo-1 

A2X 10
2 

..4
1 
x 10-1 

10.0 

rs... 

••• 

a.a 
1.0 

. Ai' ( h)' af,, = 0.066 r R,,,-2 p. 

.......... Ao 
~ 

'-..... 
....._ 

'-
...... .......... 

A, 
A2 

A, 

, .. 

r----... 

a/I 
2.0 

Fig.7.5. Coefficients Ai, Ai, A4, As for the second 
rocking mode without lateral supports 

Thi: total moment of inertia of the cross-section of bellows is given by (3.67): 

Provided Mh is equal to zero, the second moment of inertia of the connecting pipe, J,01, 

given by (3.68) in Chapter 3, becomes: 
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(m, +m13)a' 2m, +m13 2 J = + aR. 
~ 3 4 

The second mode frequency formula (7.53) and subsequent formulas for m,or and 

a 122 can be used for third mode frequency calculation. The coefficients A 1 , Ai , A, , As 

mu:;t be taken from Fig.7.6. 

A0 xJO 
A.>< 10-• 
A2> 10

2 

A
1
><10- 1 

10.0 

r-,...... 
6.0 

0.0 ,.o 

A, 

A, 

r-,...... 

A, 

,A, 
......... 

"' -r---
a/l 

u, 2.0 

Fig.7.6. CoefficientsA1, Ai, A., As for the third 
rocking mode without lateral supports 

7.8. First Rocking Mode Natural Frequency of Universal 
Expansion Joint with Lateral Supports 
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It is necessary in this case to take into a.ccount the transverse stiffness of the lateral 

supports, kh , and their equivalent mass, Mh. In practice the transverse stiffness of lateral 

supports, k;. , varies over the range: 
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Since the transverse stiffuess of laternl supports in the given nnge doesn't affect 

the mode shape of the bellows appreciably, an average value is taken 

kh = 1.5kb, 

where kb is the fixed-fixed bellows transverse stiffiless. 

Approximately, 

and 

mp + m13 = m,o1 . 

For the first case, assume 

a=/. 

Since the radius of the connecting pipe, R, is significantly smaller than pipe length, a, a 

simple analysis of the ratio, residing in the brackets of the frequency equation (7 .36) 

shows, that 

and the frequency equation (7.36) simplifies to 

[1+(k1}2]coshk/ sink/ - [1-(k1}2]sinhk/ cosk/ 

+ 2klsinhk/ sink/ -[~(kif- ~J {l-coshk/ cosk/) = 0. 
3 kl 

A computerized solution of the equation above for the first mode frequency gives 

kif= 2.50138. 

From (7.34) we obtain the general expression of the mode function: 

D X = U(x) + C V(x). 

Substitution of the obtained value kif into (7.35) produces the ratio 
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D 
C = - 1.03349. 

Substitution of expressions for U(x) and V(x) fbm (7.33) and the above numerical 

value of DIC into the general expression of the mode function above gives the exact 

solution for differential equ .. tion (7.22) which can be used as the approximate mode 

function for the calculation of coefficients A in (7.38). Normalized to unity, this mode 

function becomes: 

X = 
1 

[coshc.:. - cosc.:. - 1.03349 (sinhc.:. - sine.:.)]. (7.51) 
1.3870 I I I I 

Let -y = q. Then the mode function (7.42) can be rewritten as 

X = -
1
-(coshcq - coscq - l.03349(sinhcq - sincq)], 

1.387 

the first and the second derivatives of which are: 

dX = _c_ (sinhcq + sincq - 1.03349 ( coshcq - coscq)], 
dx 1.387 

and 

d 2X c2 

--2 = --[coshcq + coscq - 1.03349 (sinhcq + sincq)]. 
dx 1.387 

Now values of the integrals in (7.38) can be obtained by numerical integration. Sub­

stitution of these values into expressions (7.38) gives: 

Ai= 7.372, Ai= 0.0569, A3 = 0.0345, A4 = 3.094, As= 1.877. 

The value X(l) = 0.9361 was calculated from the mode function expressionX(q) 

given above. 

Substitution of all these numerical values into (7.37) gives the frequency expres-

s1on, 



J. _ 1 7.372 flZ 
I - 2:,r -/2- v;: 

Let us now take 

' k' I' 
1-0.0569 ~ P:,rR~ + 0.0345 __;___ 

El EI 
. J J 

1 + 3.094 --, + 1.877 "" , 
m.,,l· m..,/a· 

a=2/ 
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(7.52) 

while the rest of the parameters remain the same. Then the frequency equation (7.36) 

becomes 

[1 +4(k1)2]coshk/ sink/ - [1-4(kt)2]sinhk/ coskl 

+ 4k/ sinhkl sink/ - [
16 

(kl)' -
12

] (1-coshk/ coskl) = 0. 
3 kl 

A computerized solution of the equation above for the first mode frequency gives 

kil = 2.1385. Normalized to unity the mode function, obtained as in the previous section, 

is: 

X = 
1 

[coshc~ - cosc-= - l.09572(sinhc~ - sine~)], (7.53) 
1.2012 I I I I 

where c = 2.1385. Calculation of coefficients (7.38) using the mode function (7.53) with 

its first and second derivatives and substituting their values into (7 .3 7) gives the frequency 

expression: 

J. _ I 6.563 fil 
I - 2:,r -,-2 - v-;:; 

1-0.0710.£_ P:,rR~ + 0.0521 k;l' 
El EI 

1 + 3.058 __!__, + 2.242 J,., 2 

m'°,l m'°,I a 

(7.54) 
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Cornpaiison offonnulas (7.52) and (7.54) shows that the corresponding numer:cal 

coefficients, as in the previous section, are appreciably different. This occurs because, for 

the rocking mode of bellows vibrations, unlike the lateral mode described in the previous 

chapter, the mode function depends significantly on the length of the connecting pipe, a, 

which resides in the boundary condition (7.18). The mode shapes are compared in Fig.7. 7. 

It wouldn't be reasonable in this case to take the mean valu~s of these coefficients for the 

whole range of connecting pipe lengths, as was done in Chapter 6, except A4, which 

appeared to be practically independent of a and equal to -3.073. 

x 
1.0 r------------,,--------::7'.;:;:>"'""='c;:i 

0.5 
x/l 

1.0 

Fig. 7. 7. The mode shapes: 1 ~fora=/, 2 ~ for a= 2/ 

Therefore, these coefficients were calculated for the set of values of connecting pipe 

lengths in the range I< a< 2/ and plotted in Fig.7.8 as functions of the connecting pipe 

length, a. 

The final expression for the natural frequency of the transverse vibration of a 

universal expansion joint in its rocking mode with lateral supports becomes, using (7.39): 



A• 
..4:,x 10• 
A2x 102 

A, 
10.0 

-
••• 

-
0.0 

1.0 

..;1 

A2 
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185 

A:, L.--

Ao 

a./1 
1.• ... 

Fig.7.8. Coefficients A1 , A2 , A3, and As for the rocking mode with lateral supports 

= _l A,Rm fii. 
;; 4;r /2 v;: 

I + 3.073 ___:!_, + A, 1101 

2 m,) m,o,la 

(7.56) 

/
2 k I' 

1 - 41rA, - P + 4A -• -
kp ' kpR; 

where, as it was derived in Chapter 3, equation (3.57), 

As in previous sections, a 121 can be calculated using formula (7.50), derived 

earlier in this chapter: 
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The total moment ofinertia of the cross-section of bellows is given by (3.67): 

J = ,rR![(2; +0571) IA+; (2R,-t)p1 l 
According to (3.68), 

(m, +mf3)a3 2m, +m13 2 2 J,,,, = + aR +Mha. 
3 4 

7.9. The Exact Solution of Universal Expansion Joint Rocking Mode Natural 
Frequency and Its Comparison with Rayleigh Quotient Solution 

The rocking mode natural frequency formulae for universal expansion joints were 

derived in previous sections using the Rayleigh method. These were approximate solu­

tions, of course. Here, as in Chapter 6, we will solve the same problem exactly, in order to 

define the error inherent in the approximate frequency formula (7.49). 

Let's take the differential equation (7.16) already given in Section 7.3, 

(7.57) 

From here, 

_d_
4
X_ + _P_H_R~;~+_J,_a,_

2 
d

2 x - ai2 m,01 x = 0 . 
dx4 EI dx2 EI 

If 

P,rR2 + Ja,2 
C = .,--~m~--

2EI 
(7.58) 

and 

(7.59) 



then equation (7.57) becomes 

d•x 2 l dlX , •x ·c- 0 --+ c---,,, = dx4 dxl . 
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This is the same equation as (4.22) in Section 4.3. As was derived there, the general solu­

tion of this equation is 

X = Asinhax + Bcoshax + Csinpx + DcosPx, (7.60) 

first, second and third derivatives :if which are 

where 

':: = Aa coshax + Ba sinh ax + C/j cospx - DP sinpx, 

~'; = Aal sinhax + Bal coshax - cpl sinpx - Dpl cospx, 

d
3I = Aa3 coshax + Ba3 sinhax - CP; cospx + DP3 sinPx, 

dx 

a= J-c2 +Jc• +24
, 

p = J c2 + Jc• + 24 
• 

and A, B, C, D are the arbitrary constants. 

The boundary conditions are the same as in previous sections of this chapter, 

d 3 X(I) d2 X(l) J _ P,r~ dX(l) _ Jal dX(I) 
dx3 = - dx2 a EI dx El dx 

- ai ~ X(l) + !.E_ X(l). 
Eia2 EI 

or 

(7.61) 

(7.62) 

(7.19) 



d
3 
X(l) = _ .!_ d

2 
X(l) _ 2c2 dX(l) _ b X(l) 

dx3 a dx2 dx · 

if 

b = al Jro, - k. 
Ela2 EI 

and c is given by (7.58). 

The rest of the boundary conditions are the same as given by (7. i 8) and (7 .17): 

cl¥(!) X(I) 
-- = ---

dx a 

X(O) = dX(O) = 0, 
dx 

188 

(7.63) 

(7.64) 

(7.65) 

(7.66) 

Substitution of the general solution (7.60) and its derivatives into boundary condition 

expressions (7.63), (7.65), and (7.66) gives the set of linear equations with respect to A, 

B, C, andD: 

B + D = 0, 

aA+PC=O, 

(aacosha/ + sinhal)A + (aasinhal + coshal)B 

+ (pacospl + sinPl)C - (PasinPI - cosPl)D = 0, 

(a
3
cosha/ + :

2 

sinha/ + 2c2acoshal + bsinha/) A 

+ ( a 3 
sinha/ + :

2 

cosha/ + 2c2asinhal + bcoshal) B 

- (P
3 cosPI + !2 

sinpa/ - 2c2PcosPI - bsinP/) C 

+ (.83 sin,8/ - !2 

cos.Bal - 2c2,8sinpl + bcospl) D = 0. 
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For a nontrivial solution, the detenninant formed by the coefficients of this system 

of algebraic equations must be equal to zero: 

where, 

0 I 0 I 
························:-·······················:········ ...................................... . . . . . a : 0 : p 0 

= 0, · · ·a:"acosii.ai · · r ·-a~-sinii ·ai · · ·r· "p-;;; cosiijji. ·r·::.·ciia siii 'ft,· 
·--~-5.i_~~-ll! ..... _L -~ _c_°.s~-~I ___ .L ~-~in_h_ f! ! ..... j_ -~- ~?sfl__l) ...... _ . . . . . . -c, c •. 

2 

c1 = a'coshal + .!:.. sinha/ + 2c2acosha/ + bsinhal, 
a 

2 

c2 = a' sinha/ + .!:.. cosha/ + 2c'asinha/ + bcosha/ 
a 

c3 = P'cospl + p' sinpal - 2c'pcosPI - bsinpl, 
a 

c.; = P'sinpl - P' cospal- 2c'psinPI + bcospl. 
a 

Expansion of the above detenninant results in the frequency equation for the 

system shown in Fig. 7.1: 

where: 

(ab, - pa2 - apab1 + apaa1)(l - cospl coshal) 

- (aa2 - Pb, - P2aa1 + a 2ab1) sinPI sinha/ 

- (ab1 + aa1 + P'aa, + apabi) sinPI coshal 

+ (Pa1 + Pb1 - a 2ab2 - apaa2) cospl sinha/ = 0, 

a and .P are given by (7.61) and (7.62), 

a2 
a 1 = - + b, 

a 

a2 = cl + 2c2a, 

(7.67) 



p2 
h1=--b, 

a 
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It should be noted that when c = 0, a= ft = A. Here, as must be the case, the frequency 

equation (7.67) 3implifies to the frequency equation (7.36) derived in Section 7.4. 

Let us tak.: the universal expansion joint with the following geometrical and 

physical parameters: bellows length, I= 0.0693 m, mass moment of inertia per unit 

length, J= 0.001153 kgm, El= 5.078 Nm2
, total bellows mass, m101 = 5.138 kg/m, 

total connecting pipe mass, mp+ mp = 5.0 kg/m, a=/, and no lateral supports. Ac­

co~ding to (4.31), the maximum allowable pressure in bellows is, 

According to (3.1), 

p = ;rkp . 
m~ 6.666/2 

1 
EI= -kpR;,. 

4 

(7.68) 

(7.69) 

Substitution of(7.68), (7.69) and the numerical values given above into (7.58) and 

(7.59) leads to 

c = ~616.49 + 0.0001135@ 2 (7.70) 

and 

..t = 1.0029 Joi . (7.71) 

From (7.64), providing kh = 0, 

b = 0.0227 oi. (7.72) 

Now, using expressions (7.76), (7.71), (7.72), (7.61) and (7.62), the frequency equation 

(7.67) can be solved at the computer precision level. The first and the second natural 

frequency obtained from computerized solution of(7.67) arc given in Table 7.2. 
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The same frequency was calculated for the same bellows data using frequency for­

mula (7.49) derived in the previous section from the Rayleigh quotient. Both results are 

compared in Table 7.2. 

Table 7.2. Comparison of the exact and approximate frequency 
solutions for the universal expansion joint first rocking mode 

Mode# Exact@ Rayleigh @ Error 
(rad/s) (rad/s) (%) 

1 935.686 938.93 0.35 
2 3855.928 

As seen from the comparison in Table 7 .2, the error of the frequency obtained from the 

Rayleigh quotient is comparatively small. Therefore, formula (7.49) is sufficiently accurate 

for estimation of the first rocking mode frequency of a univt.;sal expansion joint. 

7.10. Instability Condition for Universal Expansion Joint Rocking Mode 

It may be seen' from equation (7.56) that with the particular combination of the 

parameters P, p, k, and I the numerator of the expression under the last root can become 

equal to zero: 

/2 k /3 

I - 47rA2 kp P + 4A4 -•-2 = 0. 
kpR:, 

From here the critical pressure is, 

kp 
P,, = 47l" ,, A, 

k.l A. + . 
,r R;A, 
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The last equation shows that the presence of lateral S!!pports increases the critical 

pressure, P., , and makes an expansion joint less susceptable to buckling. For the 

expansion joint without lateral supports, kh = 0, and the above expression simplifies to 

p = kp 
"' 4,r /2 A

2 

All parameters residing in the above formulas were listed earlier in this Chapter. 



CHAPTER 8 

EXPERIMENTAL INVESTIGATION OF NATURAL TRANSVERSE 

VIBRATIONS OF BELLOWS EXPANSION JOINT 

8.1. Apparatus for Investigation of Natural Transverse Vibrations 
of Fixed-Fixed Bellows 

An experimental investigation of the frequencies of natural transverse vibrations of 

bellows was conducted using the apparatus shown in Fig.8. !. The apparatus is made up of 

the left and right flanges 1 and 3 rigidly fixed to each other by four bolts 4. To maintain 

the appropriate distance between the two flanges, spacers, 2, were used around the bolts, 

4. The length of the spacers was chosen such that the test piece of the bellows, 9, was 

almost in a strain free state. Bellows flanges were fixed to the frame flanges 1 and 3 using 

eight bolts, 6. Later experiments showed that the frequency results didn't depend on the 

degree of tightening of the bolts, 6, exept in the case where they were almost loose. The 

pressure inside the bellows was controlled by means of the valves, 5, 8 and the pressure 

gauge, 7. 

193 
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1 

CAUCE 2 

Fig.8.1. The principle scheme of the test apparatus 
for investigation of natural transverse vibration of bellows expansion joint 
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.,, .. ____ --- ' ~· 

Fig.8.2. General view of mounted bellows 

It is comparatively difficult to assure a perfectly fixed boundary condition 

because any body to which an experimental specimen is fixed is not absolutely rigid. It 

was especially important in this case that both flanges of the frame be fixed with respect 

to each other. Therefore, the frame was designed to have its first axial natural frequency 

as high as possible in comparison with the first transverse natural frequency of the bel­

lows expansion joint to be mounted inside of it. For this purpose, the end flanges of the 

frame were made of comparatively light aluminum while the bolts and spacers were 

made from more rigid steel. 
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This structure, from the point of view of axial vibrations, was treated as a rod (four bolts 

with spacers) carrying two concentrated masses at the ends (flanges).The first natural fre­

quency was calculated using a formula taken from Voltera, Zachmanoglou (1965): 

where 

1 
=-

1 
I. = 211" 

EQ 
L(m +pLQ/3) 

2.07 x 1011 x 0.002556 = 
2561 

Hz 
0.112 x (11 so+ 7860.o x 0.112 x 0.002556 I 3.o) ' 

E is the modulus of elasticity of bolts in Pa, 

Q is the cross-sectional area of the bolts in m2
, 

L is one half the distance between the centroidal planes of flanges in m, 

p is the density of the bolt material in kg/m3 
, 

m is the mass of a flange, kg. 

The above calculated first frequency of the frame (2561 Hz) is more than 20 times 

higher than the first natural frequency of the fixed-fixed single bellows expansion joint 

(124 Hz). Such a large difference between the natural frequencies of the bellows and the 

frame permits the neglect of any dynamical interaction between them till at least 800 Hz, 

i.e., up to the fourth natural frequency of the specimen of an expansion joint used. For a 

double bellows expansion joint test or for experiments with water inside, the natural 

frequences of the bellows were even lower. Therefore, the frame described above was 

considered as a reliable apparatus for the implementation of the "fixed-fixed" boundary 

condition for testing the bellows. 

According to beam bending theory, the deformation of a beam is proportional to 

the second derivative of the mode function. The analysis of the mode functions of the 

single and double bellows expansion joints demonstrated that the extreme values of the 

second derivatives are at the fixed ends of a bellows. Furthermore, as it was shown by 

Jakubauskas (1991), the most flexible areas ofa convolution are the very outermost and 
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the very innennost zones of the flat surface of a convolution. Therefore, strain gauges 

were glued in the outennost zone of a flat surface of one of the end convolutions (Figure 

8.1 ). Because of the small geometry of a convolution, the strain gauges used were as small 

as possible, type MM EA-06-03 IEG-350. 

8.2. The Method and Results of Experimental Investigation 
of Natural Vibrations of Bellows Expansion Joint 

Three broadly different test procedures are currently used for the experimental in­

vestigation of vibrations. These techniques are called swept sine, random and impulsive 

excitation procedures. Each of theri1 has certain inherent advantages and disadvantages. 

Two types of excitation may be used for all three above mentioned test procedures: base 

excitation and direct excitation of the vibrating body itself. The excitation can be 

implemented as a concentrated force applied at one or a few stations or as a distributed 

force using, for example, magnetic or acoustic excitation. Which kind of test procedures 

or excitation type is to be used, depends on the instrumentation available and on the nature 

of the test body itself. 

- -
~ j, 

- ._ _________ 
'-

- --·-------- -
2 3 • 1 

( j, 

Fig.SJ. Shock excitation diagram 
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Since the shock excitation technique is the most simple, and is both fast and 

accurate enough in determiPJng the natural frequencies, it was decided to use this method 

for the investigation of the natural frequencies of the transverse vibration of the expansion 

joints. A schematic diagram of the experiment is shown in Fig.8.3. The signal from the 

strain gauge, 1, glued on the surface of the bellows was transmitted through the bridge, 2, 

to the amplifier, 3, and then to the FFT analyzer 4. Each time the bellows frame was 

impacted with the same body,the signal was captured by the FFT analyzer. 

Naturally, the one gauge experiment registers the natural frequencies of all possible 

mode shapes, Jakubauskas ( 1991 ). Therefore, when using just one gauge, the frequency 

spectra obtained from the FFT analyzer is very dense (see Fig.8.4), and identification of 

the resonant frequencies of the bending modes by comparison with the calculated 

frequencies using the derived formulas becomes unreliable. In order to eliminate the 

unwanted axisymmetric frequencies, a system of two gauges was used, glued on opposite 

sides of the bellows (Figure 8.1) and connected in the two arms of a bridge as shown in 

Fig.8.5. The same polarity signals from the axisymmetric modes cancelled each other, at 

least in the lower frequency band, while the opposite polarity signals from the bending 

modes were additive and provided a signal of double strength. The frequency spectra 

obtained in this way for the first four bending modes of single and double bellows 

expansion joints are shown in Fig.8.5 and Fig.8.8. 

Fig.8.6 shows the frequency spP-ctra for the same bellows in the case of its axial 

vibration. It is easy to notice that the general frequency spectra shown in Fig.8.4 can be 

obtained by simple summation of the transverse (Fig.8.5) and axial (Fig.8.6) frequency 

spectra. 

In principle, it is possible to ei.1end the frequency spectra range by using the four 

or even eight strain gauges technique. This would strengthen the useful signal of the ben­

ding modes and help to eliminate the frequency peaks of the axisymmetric modes as well. 

The transverse vibration frequency spectra with water inside the bellows is shown 

in Fig.8. 7. It is readily noticeable that the same resonant peaks moved significantly 

towards the lower frequency range. 
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Similar frequency spectra were obtained at the pressure P = 200 kPa with the 

frequency peaks slightly moved to the lower frequency side. 

Fig.8.8 shows the transverse frequency spectrum for a double bellows expansion 

joint at P = 0 kPa. One can see the pairs of the lateral and rocking modes frequency peaks 

in this picture. In Fig.8.9 the general frequency spectra is shown for the same double 

bellows expansion joint specimen obtained from the single gauge experiment. The 

comparison of these graphs shows the axial frequency peaks in Fig.8.9 in addition to the 

transverse ones shown in Fig.8.8. Fig.8.10 shows the transverse frequency spectrum with 

water inside at P = 0 kPa. As in the case of a single bellows expansion joint, here all the 

peaks are considerably moved towards the lower frequency range, as well. Similar 

frequency spectra were obtained at the pressure P = 200 kPa. 

It was important for the impulsive testing to match the duration of the impulsive 

force input to the band of the frequencies to be analyzed. This requires proper selection of 

the nature of the materials of both colliding bodies, the hammer and the structure. The 

exciting shock was applied directly to the bellows. Different materials were used as a 

hammer: pieces of wood, small aluminum or steel bars. The application of the impulse 

using different materials resulted in different durations of shock. The duration of the shock 

may also be shortened using low level energy impacts. However, low energy impacts 

excited vibrations with amplitudes too small to be registered by the instrumentation, 

especially for the higher modes. Even more important for the impulsive testing is the 

selection of the location of the application of the impulsive force. The shocks applied in 

the middle of the bellows, because of its higher flexibility, caused longer shock durations 

and, subsequently, the very first lowest vibration modes were excited. On the other hand, 

the application of the shocks close to the fixed end of bellows, because of its lower 

flexibility, caused shorter duration impacts and, therefore, higher frequency modes to be 

excited. So, control of the shock duration allowed different natural frequencies to be 

excited, which can be seen from the heights of the peaks in Fig.8.4-8.10. 
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Figures 8.4 - 8.10 show the frequency spectra for tests of the single and double 

bellows expansion joints with the following data: Rm= 0.0842 m, h = 0.0157 m, 

R1 = 0.00353 m, R2 = 0.00248 m, I= 0.1555 m, t = 0.0004 m for single bellows and 

Rm= 0.0844 m, h = 0.0158 m, R1 = 0.00308 m, R2 = 0.00268 m, I= 0.1517 m, t = 0.0006 

m, a= 0.1502 m for double bellows expansion joints. 

As mentioned in previous chapters, the theoretical investigations of bellows 

expansion joint natural frequencies were based on many assumptions and simplifications. 

Shear and damping were neglected. Perfectly fixed bellows end boundary conditions were 

assumed. 

Mode 
shape# 

l 

2 

3 

4 

Mode 
shape# 

l 

2 

3 

4 

Table 8.t. Comparison of experimental and theoretical solution results 
for single bellows expansion joint at P = 0 kPa 

with air with water 

Experimenta Theoretical 
Error 

Experimenla Theoretical 

I I 

Hz Hz % Hz Hz 
202 199 -1.6 112 ! 11 

336 329 -2.2 210 208 

476 455 -4.3 289 286 

606 579 -4.4 363 345 

Table 8.2. Comparison of experimental and theoretical solution results 
for single bellows expansion joint at P = 200 kPa · 

with air with water 

Experimenta Theoretical 
Error 

Experimenta Theoretical 

I I 

Hz Hz % Hz Hz 
188 187 -0.3 106 105 

328 320 -2.6 206 202 

466 449 -3.7 287 282 

596 574 -3.7 360 342 

Error 

% 
-0.6 

-0.9 

-1. l 

-4.9 

Error 

% 
-0.9 

-1.8 

-1.7 

-5.0 



Mode 
shape# 

lat1 

roc1 

lat2 

roc2 

lat3 

roc3 

Mode 
shape# 

lat1 

roc1 

lat2 

roc2 

lat3 

roc3 

Table 8.3. Comparison of experimental and theoretical solution results 
for double bellows expansion joint at P = 0 kPa 

with air with water 
Error 

Experimenta Theoretical Experimenta Theoretical 

I I 

Hz Hz % Hz Hz 
78.8 81.2 3.1 34.8 36.0 

119 121 1.8 62.7 62.3 

284 294 3.4 181 194 

305 311 1.8 196 208 

458 475 3.8 - 343 

482 487 I. I - 352 

Table 8.4. Comparison of experimental and theoretical solution results 
for double bellows expansion joint at P = 200 kPa 

with air with water 
Error 

Experimenta Theoretical Experimenta Theoretical 

I I 

Hz Hz % Hz Hz 
72.5 75.5 4.1 32.3 33.5 

111 116 5.3 59.0 59.9 

278 289 3.8 180 191 

296 306 3.2 197 205 

456 471 3.4 - 340 

480 484 0.8 - 349 

208 

Error 

% 
3.6 

-0.7 

7.2 

6.3 

-
-

Error 

% 
3.8 

1.5 

6.0 

4.1 

-

-
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The mode shapes of the bellows with and without fluid were assumed to be identical. 

Furthermore, the boundary condition for calculation of the half-convolution added mass 

caused by convolution deformation, A., was derived from the axial static deformation of 

bellows, although static and dynamic deformations of bellows convolution may differ 

slightly. Moreover, this boundary condition was considered to be the same for all of the 

bellows convolutions which in reality may not be exactly true. The bellows was assumed 

to behave like a beam rather than a shell. Additionaly, the Young's modulus value used in 

calculations was a nominal value for stainless steel, T-321 S/S, from which the expansion 

joint specimens were made, although it is known that Young's modulus can vary slightly 

from one steel shipment to another. 

Finally, the geometry of bellows specimens wasn't perfect. The gradual increase of 

the inside pressure from O to 200 kPa caused a somewhat nonlinear decrease in the natural 

frequency of the bellows. This might be explained by the somewhat imperfect geometry, 

which could cause a nonlinear shape change of the bellows under increasing pressure. 

Any of the these assumptions, simplifications, and imperfections or some 

combination of them could be the cause of the differences between the frequencies 

obtained theoretically and from the experiments, as shown in Tables 8.1 - 8.2. However, it 

must be said that the agreement between theory and experiment is generaly excellent, 

especially for the lowest few modes. This agreement justifies the various assumptions and 

simplifications made in both the modeling of the bellows and the determination of the 

added mass. It also suggests that the lowest natural frequencies of bellows, at best, are 

rather insensitive to geometric imperfections in the manufacturing of bellows expansion 

joints. 

The small negative error obtained for single bellows expansion joint with respect to 

the experimental results suggests that the actual stiffness may be slightly greater than that 

calculated. The analysis apparently begins to deteriorate by about the fourth mode. On the 

other hand, the positive error for the double bellows expansion joint, evidenced 

throughout Tables 8.3 - 8.4, may reflect the effect of the bending flexibility of the 

connecting pipe between the sets of convolutions. The theoretical calculations assumed 
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Fig.8.11. The single bellows expansion joint specimen 
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Fig.8.12. The double bellows e.xpansionjoint specimen 
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flexibility is expected to be less. In the case of the lateral modes, the bending moment 

throughout the length of the connecting pipe is relatively high (see Fig.6.1). In the case of 

the rocking modes, the connecting pipe freely rotates about its centre (Fig.7.1). Therefore, 

the bending moment acting on the rotating pipe becomes less significant and the 

assumption ofits being rigid produces less error in the theoretical predictions. 

In Tables 8.5 - 8.8 the experimental natural frequency results for a single bellows 

expansion joint specimen are compared with theoretical predictions obtained in four 

different ways: (I) the current method using differential equation (4.36), 

EI a•w + 
ax• 

P;rR' o2
w _ J o4

w 
"' ax2 ax2 a,2 

o2w 
+ mtor -,- = 0, ar 

(2) from the Bernoulli-Euler differential equation with added mass, m/2, (3) without m/2, 

0 4
W o2w 

EI--4 + m,01 - 2- = 0, ax a, 

and ( 4) using the method given in the EJMA Standard (1980). One can notice 

comparatively good agreement between the experimental and the present theoretical 

results. The EJMA results, especially for higher modes, are significantly higher than the 

experimental ones. The agreement between the EJMA method results and Bernoulli-Euler 

approach is reasonably go;:id. This suggests that the EJMA Std. method is based on 

Bernoulli-Euler approach which is clearly not adequate for precise frequency calculations. 

The comparison of the two Bernoulli-Euler solution results, with and without added mass, 

m/2 , demonstrates the great influence of this type of added mass, especially for higher 

modes. 

Similar relationships between frequencies calculated using different methods can 

also be seen for a double bellows expansion joint specimen in Tables 8.9 - 8.12. The 

influence of m/2 is lower because the double bellows expansion joint specimen live length 
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was twice as long as the single bellows specimen length, and the added mass m12 is the 

reciprocal of the fourth degree of the live bellows length. 

Mode# 

1 

2 

3 

4 

Table 8.5. Comparison of frequency calculation results (Hz) for single 
bellows expansion joint without fluid at P = 0 kPa 

Mode# Experimental Theoretical Bernoulli-Euler EJMA Standard 

1 202 199 344 345 

2 337 329 919 923 

3 475 455 1792 1810 

4 606 579 2977 2992 

Table 8.6. Comparison of frequency calculation results (Hz) for single 
bellows expansion joint with water at P = 0 kPa 

E,q,erimental Theoretical Bernoulli-Euler Bernoulli-Euler EJMA Standard 
{with m.fl) {without 111.fl) 

112 111 137 141 140 

210 208 323 388 386 

289 286 461 761 753 

363 345 515 1258 1252 

Table 8.7. Comparison of frequency calculation results (Hz) for single 
bellows expansion joint without fluid at P = 200 kPa 

Mode# Experimental Theoretical Bernoulli-Euler EJMA Standard 

I 188 187 334 345 

2 328 320 919 923 

3 466 449 1792 1810 

4 596 574 2977 2992 



Mode# 

1 

2 

3 

4 

Table 8.8. Comparison of frequency calculation results (Hz) for single 
bellows expansion joint with water at P = 200 kPa 

Experimental Theoretical Bernoulli·Euler Bernoulli-Euler EJMA Standard 
(\\ithmp) (without mp) 

106 105 137 141 141 

206 202 323 388 386 

287 282 461 761 753 

360 342 515 1258 1252 

Table 8.9. Comparison of frequency calculation results (Hz) for double 
bellows expansion joint without fluid at P = 0 kPa 

Mode# Experimental Theoretical Bernoulli-Euler EJMA Standard 

lat1 78.8 81.2 91.8 91.8 

roc1 119 121. 143 158 

lat2 284 294 550 -
roc2 305 311 629 -

lat3 458 ·. 475 1411 -
fOC3 482 488 1512 -

Table 8.10. Comparison of frequency calculation results (Hz) for double 
bellows expansion joint with water at P = 0 kPa 

Mode# Expcrimcnlal Theoretical Bcrnoulli·Euler Bernoulli-Euler EJMA Slandard 
(withm12) (without m12) 

lat1 34.8 36.0 37.2 37.2 51.0 

roc1 62.7 62.3 65.9 66.0 89.1 

lat2 181 194 262 270 -
roc2 196 208 293 304 -
lat3 - 343 581 707 -
rOC3 - 352 617 745 -
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Table 8.11. Comparison of frequency calculation results (Hz) for double 
bellows expansion joint without fluid at P = 200 kPa 

Mode# Experimental Theoretical Bernoulli-Euler EJMA Standard 

lat1 72.5 75.5 91.8 91.6 

roc1 lll 116 143 158 

lat2 278 289 550 -
roc2 296 306 629 -
lat3 456 471 1411 -
rOC3 480 484 1512 -

Table 8.12. Comparison of frequency calculation results (Hz) for double 
bellows expansion joint with water at P = 200 kPa 

Mode# E,q,erimental Theoretical Bernoulli-Euler Bernoulli-Euler EJMA Standard 
(withm.r.) (without n'fl) 

lat1 32.3 33.5 37.2 37.2 51.0 

roc1 59.0 59.9 65.9 66.0 89.1 

lat2 180 191 262 270 -

roc2 197 205 293 304 -
lat3 - 340 581 707 -
rOC3 - 349 617 745 -
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CHAPTER9 

INVESTIGATION OF FLOW INDUCED VIBRATIONS 

IN BELLOWS EXPANSION JOINTS 

9.1. General Information about Water/Wind Tunnels 

A water/wind tunnel is a device designed for passing a stream of fluid with pre­

scribed spatial and temporal variations over a model or full-size structure which is placed 

in its working section. The rest of the components are used to generate this stream. 

Tunnels are conventionally divided into low-speed and high-speed tunnels. In low-speed 

tunnels the predominant factors are inertia and viscosity while the influence of com­

pressibility is negligible. This type of tunnel usually provides good Reynolds number 

similarity. In high-speed tunnels the forces due to inertia and compressibility are of major 

importance and usually provide good Mach number similarity. Two different types of 

tunnels are generally used: 

a) the closed-circuit tunnel, in which the same fluid is recirculated and, 

b) the open-circuit tunnel in which all the working fluid is discharged to the at­

mosphere at the one end, while fresh fluid is drawn in at the other end. 
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Fig.9.3. Assembled loop 
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Since it was desired to design a general purpose low-speed tunnel using water as 

the working fluid, the first approach was selected. The design principles, limitations, and 

description of the experimental facility are given below. 

9.2. Water Tunnel Design 

The existing water loop is shown in Fig.9.1. The loop is equipped with the 

horizontal 6" by-pass line, which could be the ideal place for installing of 6" bellows 

expansion joint specimen. It was soon realised that the expansion joint installed in the 

horizontal position would create a serious convolution deaeration problem, since there 

would bt: nc way either to check the presence of air or to remove it from the upper 

sections of the bellows convolutions. The presence of air in the bellows could significantly 

impair the entire experiment. On the other hand, as is seen from Fig.9.1, there was not 

enough space in the plane of the loop to install the bellows expansion joint vertically. 

Therefore, it was decided to design an additional 6" loop driven by the same pump an·.· 

branching from the beginning of the 6" by-pass line of the existing loop, as shown in 

Fig.9.1. The assembly drawing of the new design is presented in Fig.9.2. It is 

geometrically more complex since it is out of the plane of the existing loop. It also has a 

comparatively long vertical span, which gives more freedom to manipulate the flow 

excitation force by installing the bellows either closer to or further from the adjacent 

upstream elbow. As seen from Fig.9.2, the expansion joint specimen was installed in the 

loop together with the frame, which was used in the free vibration experiments. This frame 

provided alignment of the pipes upstream and downstream of the bellows and essentially 

decoupled the bellows vibrations from relative pipe movement. The assembled loop is 

shown in the photo in Fig. 9.3. 

The pumping system consists of the motor, the clutch, the brake, and the pump. 

The motor is a three-phase 200 hp motor running at constant speed. The clutch is 

hydraulic and provides the mechanical coupling between the motor and the pump through 

the friction force produced by water between the two concentric cylinders. The gap 

between cylinders is controlled by a magnetic field generated by an electric current. To 

dissipate the heat produced by the friction, the clutch has a water cooling system. The 
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pump is a double suction Babcock & Wilcox centrifugal pump with a maximum capacity 

of22.7 m
3 

/min (20.79 mis through 6" diameter pipe) at 33.5 m of head. Since the motor 

is able to produce high power, flow stabilization becomes difficu·., t.o achieve when the 

loop is running at low speeds. The motor can transmit power to the pump even when the 

clutch is completely disengaged. To cope with this problem, the drive system was 

connected to an elecrically controlled brake, which was installed between the pump and 

the clutch. The brake absorbs power from the shaft and can be set in a range of 0% to 

100%. With this device, better control of the pump speed can be obtained , especially at 

low speeds. 

The 6" diameter piping system shown in Fig.9.2 consists of a 6.03 m straight pipe, 

six 90° elbows of mean radius 0.236 m, one gate valve, and one T junction. Simple 

hydraulic calculations, Simon (1981), showed that the total head loss in the 6" portion of 

the loop at 10 mis mean flow velocity was 20.22 m. A comparison of the pump capacity 

data with this head ioss in the 6" piping system demonstrated that there was adequate 

power to run the flow at velocities even greater than 10 mis. Let us now look at the flow 

velocity requirements necessary to generate the resonant vibrations according to the 

measured natural frequencies of the single and double bellows expansion joints already 

described in Chapter 8. Tables 8.1-4 show that all the measured natural frequencies, of the 

water filled expansion joint, are within the range of 30 to 360 Hz. The required 

experimental velocity, V , which will excite resonance at a frequency, f, can be obtained 

according to Weaver and Ainsworth (1989) by using a Strouhal number value 

fl 
S = V = 0.45, 

p 

(9.1) 

where, 

I is the convolution pitch, 

f is the resonant response frequency, 

Vp is the mean flow velocity through the bellows at the 

peak resonant response amplitude. 

This velocity range corresponding to the natural frequency range was calculated to be 

between 0.77 and 9.56 mis. Here the maximum velocity roughly corresponds to the 

maximum design loop velocity mentioned earlier - more than 10 mis. It should be noted 
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that Strauhal number value, 0.45, was obtained by Weaver and Ainsworth (1989) for axial 

vibrations of bellows. 

The flow velocity was measured using a Pitot-static probe, ASME(1971), 

connected to a differential manometer filled with mercury as the working fluid. The 

velocity profile was determined upstream of the bellows by two orthogonal traverses of 

the probe at the same cross-section. The static pressure in the bellows was measured using 

a low range pressure gauge. The vibration response was measured using the strain gauge 

system described in Chapter 8 amplified and fed into an FFT analyser. The amplitudes 

were averaged from 60 measurements. The frequency and averaged amplitude were then 

recorded and the velocity incremented. The average velocity, V..., was calculated from the 

measured maximum velocity at the centreline of the pipe, V"""' , using the empirical 

formula taken from Fox and McDonald (1985): 

v.. 2112 

-=-----
v""" (11+ 1)(211+ I)' 

where II depends on the Reynolds number of flow. 

9.3 Experimental Results 

The first tests on the bellows in the loop were conducted with nearly ideal 

upstream flow conditions, so that the flow in the bellows was fully developed and the 

velocity profile was relatively flat. The Reynolds number based on convolution pitch at 

maximum flow rates was of the order of 106 
• 

The pump was started with the gate valve closed, so the flow rate at these 

conditions remained equal to zero and the bellows response observed. Then the gate valve 

was gradually opened to increment the flow from zero and the response measurements 

repeated. When the gate valve was fully opened and the flow could no longer be controled 

in this way, the hydraulic clutch was engaged to continue the increments of the flow. The 

maximum bulk flow velocity was reached approximately at 8 mis. It was found that the 
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maximum bulk flow velocity depended slightly on expansion joint type (single or double 

bellows) and on the location ofthe installation of the joint in the loop. 

Installation of the joint in the vicinity of the upstream elbow, lowered the 

maximum flow velocity by - 8% in comparison with the case when the joint was installed 

in a more distant location downstream of the elbow. This can be explained by the 

increased loss of the pressure head in the joint due to velocity profile distortion by the 

elbow. On the other hand, the effect on maximum bulk flow velocity of the type of the 

joint (single or double) was insignificant. 

It should be noted that the flow rate increment sequence from zero to about 8 mis, 

took approximately one hour time during which the temperature of the water in the loop 

increased above the ambient temperature by - 7° C. However, no significant Strauhal 

number changes related to this temperature rise were observed. This means that the 

influence of the viscosity on the Strauhal number is negligibly small, at least over the range 

of parameters in these experiments. 

Two types of excitation of the bellows were found. First, structural excitation was 

encountered after starting the pump with the gate valve closed, when flow velocity was 

equal to zero (see Fig. 9.4). This type of excitation continued throughout the entire range 

of flow velocities, up to 8 mis, and appeared to be random in character. This broad band 

excitation is considered to be generated by the hydraulic clutch and pump, modified and 

transmitted through the piping system of the loop, and by the turbulence of the flow. Small 

frequency peaks due to this excitation can ·be seen throughout the entire velocity range, 

(see Fig.9.4 through 9.14). According to the widely accepted classification of the flow 

induced vibration types, Weaver ( 1989), these are forced vibrations. 

Second, and most important, another type of vibration was observed in the 

bellows, very distinct from those considered above. This type of vibration appeared very 

suddenly, and was very strong, reaching maximum amplitudes 40 - 60 times higher than 

the amplitudes of the forced vibrations( compare small and high peaks in Fig. 9 .4 through 

9.14). These vibrations were so strong that they ,excited the entire piping system of the 
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Fig.9.4. Single bellows expan­
sion joint. frequency spectrum 
generated by flow at V av = 0 

Fig.9.5. Single bellows expan­
sion joint frequency spectrum 
generated by flow at 
V av= 1.83 mis 
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Fig.9. 7. Single bellows 
expansion joint frequency 
spectrum generated by flow at 
V =3.83 mis 
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Fig.9.8. Single bellows 
expansion joint frequency 
spectrum generated by flow at 
V =5.71 mis 

Fig.9.9. Single bellows 
expansion joint frequency 
spectrum generated by flow at 
V =7.59 mis 
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Fig.9.11. Double bellows 
expansion joint frequency 
spectrum generated by flow at 
V = 3.39 mis 
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loop. The vibration amplitudes were sufficiently large that it was possible, for 1he lower 

vibration modes, to see the nodes and the maximum amplitude locations (antinodes) on 

the bellows with the naked eye. Indeed, there was a real danger that the bellows could 

fail by fatigue before the end of the experiments, as happened in the experiments 

conducted by Weaver and Ainsworth {1989). It was obvious that these were neither 

structurally excited bellows vibrations nor dynamic response due to turbulent flow 

excitation. Rather, the bellows vibrations coupled with the flow over a particular flow 

velocity range, through a "feed-back" mechanism. The existence of a "lock-in" flow 

velocity region indicates that these bellows vibrations can be classified as self controlled 

vibrations. 

The peak outputs of the strain gauges on the bellows convolutions arc plotted 

against the bulk flow velocity through the bellows, Fig.9.15 through 9.18. A comparison 

of these outputs for single and double bellows expansion joints with frequency spectra 

obtained using shock excitation (Fig.9.19 through 9.22) shows that some natural 

frquencies were not excited by flow. This can be explaned by the fact that, at the low na-
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tural frequencies (for example, 35, 53, and 61 Hz for double bellows joint) the 

corresponding resonant flow velocities do not have sufficient energy to ovecome the 

system damping. As a result, no self-excitation mechanism develops. In the case of the 

single bellows expansion joint, some higher frquency transverse vibrations were not 

observed, for example, 207 Hz. Possibly because they were overwhelmed by the strong 

coupling two adjacent axial frequencies 176 and 254 Hz (see Fig.9.15 and 9.16). 
-

Flow induced vibration responses for single bellows are shown in Fig.9.15 and 

9 .16. These two graphs are identical with respect to generated frequencies, but noticeably 

differ with respect to calculated Strauhal numbers according to formula (9.1). Another 

difference in these graphs is that the peeks in Fig.9.16 are shifted towards higher velocities 

with respect to the same frequency peeks shown in Fig. 9 .15, when the expansion joint was 

placed at the elbow. '!"he same phenomenon was encountered in the experiments by 

Weaver and Ainsworth (1989) when they installed flow distribution distorting elements 

upstream of the bellows. Generally, similar remarks can be made for the response peaks of 

double bellows expansion joint shown in Fig.9.17 and 9.18. The calculated Strauhal 

numbers for each peek are shown in Tables 9.1. and 9.2. It is seen from these tables that, 

in the case of nearly ideal upstream flow conditions (expansion joint installed away from 

the upstream elbow) the Strauhal numbers agree well with those obtained by Weaver and 

Ainsworth (1989), S = 0.45, but they noticeably disagree when the expansion joint is 

installed right at the upstream elbow. This can be explained by the flow velocity profile 

distortion caused by the upstream elbow. A much higher velocity exists at the outside of 

the elbow then at the inside on the downstream end. 

Table 9.1. Strauhal numbers for single bellows expansion joint 

~ 91 112 176 254 323 
n 

At elbow 0.59 0.59 0.55 0.63 0.51 

Away from elbow 0.46 0.44 0.43 0.44 0.45 
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Table 9.2. Strouhal numbers for double bellows expansion joint 

~ L 
136 186 206 264 319 338 

At elbow 0.56 0.63 0.54 0.60 0.61 0.53 

Away from elbow 0.46 - 0.46 0.44 0.47 0.46 

The excelent agreement between the frequency values generated by shock and 

those produced by flow shows that no significant non-linearity in frequency exists, even at 

the extremely large vibration amplitudes generated by the flow. This means that the natural 

frequencies calculated using the approach developed for still fluid in this thesis can be used 

with confidence to predict the flow-induced vibrations of bellows expansion joints. 



CHAPTER 10 

SUMMARY AND CONCLUSIONS 

It is very important to know the natural frequencies for predicting the dynamical 

response of a system. In the framework of this thesis the system under consideration were 

bellows expansion joints. Several types of bellows expansion joints are used in practice: 

single, double, or multiple. Theoretical models for the investigation of the transverse 

vibration in single and double bellows were developed in this thesis. The differential 

equation with necessary boundary conditions was derived and solved exactly. The effects 

of liquid added mass were determined using a finite element &nalysis and established in the 

form of added mass coefficients for use in the dynamic analysis of the bellows. 

Approximate solutions in the form of the explicit frequency formulas were also obtained 

using the Rayleigh quotient method for quick use by means of the scientific calculator 

during the expansion joint design process. The approximate solutions were compared 

quantitatively with the exact solution to verify their accuracy. In order to simplify the 

double bellows expansion joint problem it was devided into two separate problems for 

lateral and rocking modes. These two problems were governed by the same differential 

equation, but with two different boundary condition sets. 
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For the comprehensive evaluation of the theoretical frequency formulas, free 

vibration experiments with and without fluid and under static pressure were conducted. 

The existence of transverse vibrations in bellows was shown by means of flow induced 

bellows vibration experiments. 

The flow-induced vibration experiments exibited the vibrations of bellows 

expansion joints in some of the transverse vibration modes, even for nearly ideal upstream 

flow conditions. The presence of the transverse vibrations, which were as strong as the 

axial ones, suggests that they are excited by a similar fluid-structure feed-back mechanism 

as previously studied for axia! vibrations. Thus, this flow excitation mechanism is even 

more complex than previously thought. 

The investigations reported in this thesis demonstrate that the formulas currently 

used for the calculation of natural frequencies of transverse vibrations in bellows 

expansion joints are not adequate for reasonable predictions in design practice. 

Comparison of these calculated natural frequencies with experiments showed very 

significant differences, especially for the higher vibration modes. This can be explained by 

the simplistic approach, based on the Bernoulli-Euler differential equation, used 

throughout all previous investigations of the natural transverse vibrations of bellows 

expansion joints. 

The analysis provided in this thesis demonstrated that, even for as short and stubby 

a "beam" as a bellows expansion joint, the shear influence is negligible because of the 

transverse flexibility of a bellows. On the other hand, the inertia of rotation of the bellows 

cross-section including the fluid trapped in the convolutions, remains an important factor 

for the natural transverse frequencies of bellows, as does the internal pressure. 

It was found that the added fluid mass, caused by convolution deformation during 

bellows bending, which has been ignored by previous authors, varies inversely as the 

fourth power of the bellows live length. In addition, this type of added mass depends very 

strongly on the vibration mode of bellows. Therefore, for typical bellows, this type of the 

added mass is very significant , especially for the higher vibration modes. 

On the other hand, some simple calculations demonstrated that the Coriolis forces 

exerted by the flow inside bellows has a negligible effect on the natural frequencies of 
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bellows, less than - 0.5% for the highest practical fluid velocities. Therefore, the influence 

of the Coriolis forces in the theoretical investigations of the natural transverse vibrations in 

bellows was ignored. It was also found that the influence of the centrifugal forces of the 

flowing fluid was negligible and, therefore, assumed equal to zero in the analysis. 

Based on these assumptions, a reasonable model for transverse vibrations of 

bellows was shown to be the Bernoulli-Euler differential equation for an appropriate beam 

with additional terms to account for internal pressure and the inertia of rotation of a cross­

section including added mass. 

The bellows transverse natural frequencies calculated using the formulas derived 

from the Rayleigh quotient and from the frequency equations derived from the differential 

equation agreed very well. This indicated that the mode shape functions solved from the 

Bernoulli-Euler differential equation were precise enough to use as the approximate mode 

shape functions in the Rayleigh quotient expression obtained from the derived differential 

equation. The natural frequency results determined from the experiments compared with 

those obtained from the formulas derived in this work exhibited an error of less than 2% 

for the lower vibration modes. For higher modes calculated, this error was within 5%. 

The excelent agreemer,t between the natural frequencies of the bellows obtained 

from the still fluid experiments using the shock excitation and the resonant frequencies 

obtained from the flow induced vibration experiments showed that, despite the very large 

amplitudes, the bellows response remained linear. Also, the agreement of these two 

frequencies indicated that the effect of energy dissipation of energy on the natural 

frequencies of bellows is negligible and can be ignored. Additionaly, this agreement of the 

two frequencies confirmed the preliminary theoretical conclusions regarding the 

negligibility of the Coriolis and the centrifugal forces of the inside flow exerted on 

bellows. Therefore, bellows expansion joint frequency calculations using the formulas 

derived in this work, provide much more accurate prediction formulas than formulas 

already available in the current literature. 

It should be noted that all the formulas available in the literature for calculation of 

axial bellows spring rate are not sufficiently accurate for precise calculations of natural 
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frequencies. Therefore, a finite element analysis is recommended for calculation of the 

bellows axial spring rate used for the calculation of transverse natural frequencies. 

The comparison of the results obtained from the free and flow-induced vibration 

experiments demonstrated that the lowest modes are not always the first modes to be 

excited by the flow. It appears that, in certain cases for which the lowest mode frequencies 

are quite low, the available dynamic head is not sufficient to overcome the system 

damping. Thus, the first mode to develop self-controled, potentially damaging, vibrations 

cannot be confidently predicted using current knowledge. The determination of the 

criterion for the excitation of the particular frequencies by the inside flow goes beyond of 

the scope of this thesis. Therefore, for the establishment of such a criterion as well as for a 

better understanding of self-controled bellows vibrations, further studies on the vibration 

excitation mechanism are recommended. Practicaly useful would be research on the effects 

of non-uniform velocity distribution. 
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