INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overiaps.

Photographs included in the origynal manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UM! directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

®

800-521-0600

NEUROCONTROL OF ROBOTIC MANIPULATORS

by
Pramod Gupta, M.Eng.

A Thesis
Submitted to the School of Graduate Studies
In Partial Fulfilment of the Requirements
For the Degree

Doctor of Philosophy

McMaster University

© Copyright 1997 Pramod Gupta, October 1997

NEUROCONTROL OF ROBOTIC MANIPULATOR

DEDICATED
to

my parents and my wife

DOCTOR OF PHILOSOPHY (1997) McMASTER UNIVERSITY

(Electrical Engineering) Hamilton, Ontario
TITLE: Neurocontrol of Robotic Manipulators
AUTHOR: Pramod Gupta

M .Eng. (McGill University, Montreal, Canada)

SUPERVISORS: Dr. Naresh K. Sinha
Professor Emeritus
Ph.D. (Manchester)

Dr. M. A. Elbestawi

Professor (Mechanical Engineering Department)
Ph.D. (McMaster University)

NUMBER OF PAGES: xiii, 144

ABSTRACT

The thesis is devoted to investigating neurocontrol of nonlinear systems with uncertain
and unknown dynamic models. The aim of my research in the neural network area is to search
for fast learning algorithm with reduced computation burden. Novel theoretical synthesis and
analysis of neurocontrol systems have been conducted and applied to control a robotic
manipulator. Modified back propagation learning algorithm making use of the changeable
shape of the nonlinear function of node is introduced. The resulting algorithm results in a
better accuracy and faster convergence. Neural network based control scheme is used to
control the motion of a manipulator. The neural network plays the role of an approximate
inverse model of a robot and are then used in conjunction with a conventional proportional
plus derivative (PD) controller. To demonstrate the feasibility of the proposed algorithm and
neurocontrol scheme, intensive computer simulations were conducted. Different types of
adaptive tracking problems and regulation problems are considered. The proposed scheme
possesses robustness to systems model uncertainty and changing conditions of operations.
Simulation results are quite promising, It is concluded that neural networks, by virtue of their
natural ability to learn from data, are well suited for dynamic reconstruction,, bringing the
world of nonlinear dynamics closer to practical use.

To demonstrate the practicability of the proposed scheme, experiments were

i

conducted on an existing two-link manipulator and a single link manipulator. Results confirm
the practicability of the proposed scheme.

The thesis concludes that the neurocontrol approach is capable of learning the tasks
of reasonable complexity and it should be possible to train a system for a variety of operations

using a neural network of practical size.

iii

ACKNOWLEDGEMENTS

I wish to thank many people who contributed in various ways in the completion of my
work. My principal thesis advisor; Prof. Naresh K. Sinha, deserves special thanks for this
technical guidance and wisdom. It is my pleasure to have Prof. Sinha as an advisor at
McMaster. I would also like to thank Professors Simon Haykin, M.A. Elbestawi and Dr. Mike
Liu, members of my supervisory committee for their continuing interest and support.

Special thanks are extended to Dr. Gary Bone and Mr. Rafael Bravo of Mechanical
Engineering Department who helped me in carrying out the experiments. Many thanks are due
to friends and colleagues for their advice and encouragement. I would like to extend my
sincere thanks to Ms. Cheryl Gies and Ms. Barbara McDonald of Department of Electrical
and Computer Engineering for helping me during my course of stay.

I would like to thank my family especially my parents for always encouraging,
supporting and helping me in my studies. Words cannot express my gratitude to them for
many sacrifices they have made over the years for my sake. Finally, I am deeply grateful and
most indebted to my wife, Shaloo, for her love, patience and support during the course of my

study.

iv

TABLE OF CONTENTS

DESCRIPTIVE NOTE ..ottt s e i
ABSTRACT ...ttt ettt e e et e e sie s s s bbb s et e e e e b et s st eiebe e ii
ACKNOWLEDGEMENTSoooiiiiiiiie ettt ere s et e iv
TABLE OF CONTENTS ..ottt s v
LISTOF FIGURESooooiiiieeee ettt e ix
LISTOF TABLES ..ottt s e s xiii

Chapter 1 INTRODUCTION

1.1 Neural Networksccccceevvvuiveneniininiiii e 1
1.2 NeuroCONtrolccccoooieviiriiie et 6
1.3 RODOtCONIOLoviieieiecee e e 8
1.4 Motivation for Neurocontrolcccoooviininiiniinienen 12
1.4.1 Challenges in Robotic Control ..o 12
1.4.2 The Potential of Neurocontrolcccocoviinininininnienenenn 13
1.5 Objectives and Scope of tie Thesis e e ettt b b eaeene 15
1.6 Organization of the Thesiscoooneniiiie, 16

Chapter 2
21
22

23

24

Chapter 3
3.1
3.2
33

34

LITERATURE REVIEW

INtrOdUCHIONoooviiiiieii e 18
An overview 0f RODOLICScocevverviiiiiriniiice v 18
Literature Review on Neurocontrolccoveviinniiininnn 22
2.3.1 Indirect Inverse Neurocontrolccceeviiiniiininininiininnnns 23
2.3.2 Direct Inverse Neurocontrolcc.coccoiviiiiininniniininninnn, 23
2.3.3 Specialized Inverse Neurocontrolccooveviiiiiiiinennnn, 24
2.3.4 Robust Neurocontrol Schemecccoccooiiviniiinin 27
Neurocontrol of Robotic Manipulatorsccccoeeiiiiiiniiinenn, 29
2.4.1 Neural Networks and Kinematics of Robots 30
2.4.2 Neural Networks and Dynamicsccocooeeiiiininnnniincnnn, 33
2.4.3. Inverse Dynamic Robotic Controlccccooviiiiiiiins 33
2.4.4 Modelling Uncertaintycocceoeniiiinienniiieneieecies 36
2.4.5 Hyt 1id Intelligent Robotic Controlcccoovevieiiiiinnns 37
2.4.6 Teacher-replacing Neurocontrollercoooeiininnnin, 38
2.4 7 Needs for Researchccccevveviernenniieiiincccencee, 39

A MODIFICATION OF BACKPROPAGATION ALGORITHM

INEFOAUCEION ...ttt e b 41
A Basic Backpropagation Learning Algorithm ... 42
Proposed Modification to Backpropagation Algorithm 46
Results of SIMulAtion............cccceeveerereeniininiiieieeens e 52

3.5
Chapter 4

4.1

42

43

4.4

45
Chapter 5

5.1

52

5.3

54
Chapter 6
6.1

6.2

CONCIUSIONS. ... eeee ettt s s ss e avsnrns s sesenaeaeesannesensensnen 57

MODELLING ROBOT DYNAMICS USING NEURAL NETWORKS

INEPOUCHION ...ttt b 59
Identification with Neural Networksc....ccooviiviinninniiniees 64
Modelling Inverse Dynamics of a Manipulator.................c.ccccooovneinine, 72
4.3.1 Problem Definitioncccoceeevvininiiiiiiii s 73
43.2Model Learningcoccoevevenviviininiiiniciie s 75
Results of SImulationccoceoneeeniiiii 77
4.4.1 Simulation of a Two-Link Manipulatorccoc 77
4.4.2 Simulation of a Three-Link Manipulatorccceeei. 81
CONCIUSIONSoovviveiieiieiieie ettt st b e e e 83

MOTION CONTROL OF ROBOTIC MANIPULATOR

INtrOQUCHIONovviiciire et 85
Neural Network Based Control Schemes ..o, 88
Results of SIMulationccoooveniciiniiii e 93
5.3.1 Simulation of a Two-Link Manipulatorc..coocnvinvninnn. 94
5.3.2 Simulation of a Three-Link Manipulatorc.ccccoiiinin 101

CONCIUSIONScovvviiiiireiieeeereesreeriee et saeres bt be e be b e e s s benn e esanes 104
EXPERIMENTAL RESULTS

INEFOAUCTION ..ottt ettt et b e s s 106
Experimental Set up of a FLEXRODcooooiimmcniiiiniiinnn. 107

vii

6.2.1 Experimental Resultsccccoovinmii, 111

6.3 Experimental Results on a Single Link manipulator 114
6.3.1 Results on a Single Link Manipulatorccccoeviininnnnn 115

6.4 CONCIUSIONSoooviieiriiirieeicee e 119

Chapter 7 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER
WORK

7.1 Summary of Contributionscccccoceeriviniiniiniiiin e 122

7.2 Suggestions for Further Research.....................cooin 127
BIBLIOGRAPHYcoooiiiiiiiiieiette ettt st eb e 129

Fig. 1.1:

Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5

Fig. 4.6

LIST OF FIGURES
A typical Neural Network
Indirect Learning Architecture
Learning Scheme of an Inverse Dynamical Model
Specialized Learning Architecture
Block Diagram of Robust Neurocontrol
Basic Control Diagram for Robot Manipulator
General Control System Diagram
Feedback Error Learning Scheme for Robot Control
A Feedforward Multi-layer Neural Network
Sigmoidal Function
Learning Curves
Learning Curve (Standard Back-propagation)

Learning Curve (Delta-bar-Delta Rule)

Learning Curve (Delta-bar-Delta Rule with Adaptive Gain)

Formulation of System Idertification
Inverse Dynamics

Generalized Learning

Specialized Learning

Model Learning

Two-Link Manipulator

24

25

25

27

29

34

35

43

48

54

55

55

62

74

75

76

17

79

Fig. 4.7

Fig. 4.8

Fig. 4.9

Fig. 4.10

Fig. 4.11

Fig. 5.1

Fig. 5.2

Fig. 5.3

Fig. 5.4

Fig. 5.5

Fig. 5.6

Fig. 5.7

Fig. 5.8

Fig. 5.9

Comparison of the desired and the predicted torque for link 1
Comparison of the desired and the predicted torque for link 2
Comparison of the desired and the predicted torque for link 1
Comparison of the desired and the predicted torque for link 2
Comparison of the desired and the predicted torque for link 3

Neural Network Based Control Scheme

Comparison of the desired and the predicted time histories of the joint
angle 1

Comparison of the desired and the predicted time histories of the joint
angle 2

Comparison of the desired and the predicted time histories of the joint
angle 1 with 10% payload variation

Comparison of the desired and the predicted time histories of the joint
angle 2 with 10% payload variation

Comparison of the desired and the predicted time histories of the joint
angle 1 with 50% payload variation

Comparison of the desired and the predicted time histories of the joint
angle 2 with 50% payload variation

Comparison of the desired and the predicted time histories of the joint
angle 1

Comparison of the desired and the predicted time histories of the joint

X

80

80

82

82

83

92

95

95

96

97

98

98

99

99

angle 2

Fig. 5.10 Comparison of the desired and the predicted time histories of the joint 100
angle 1

Fig. 5.11 Comparison of the desired and the predicted time histories of the joint 101
angle 2

Fig. 5.12 Comparison of the desired and the predicted time histories of the joint 102
angle 1

Fig. 5.13 Comparison of the desired and the predicted time histories of the joint 103
angle 2

Fig. 5.14 Comparison of the desired and the predicted time histories of the joint 103

angle 3
Fig. 6.1 Mechanical Arm in Home Position 108
Fig. 6.2 Arm after the Movement 108
Fig. 6.3 Controller-Amplifier and PC Interface 109
Fig. 6.4 Time History of the Joint angle 1 112
Fig. 6.5 Tine History of the Joint angle 2 112
Fig. 6.6 Time History of the joint angle 1 113
Fig. 6.7 Time History of Joint angle 2 113
Fig. 6.8 Experimental Setup of a single-link manipulator 114
Fig. 6.9 Time History of the Joint angle with PD Controller 116
Fig. 6.10 Time History of the Joint Angle with Neural Controller 117

xi

Fig. 6.11
Fig. 6.12
Fig. 6.13

Fig. 6.14

Time History of the Joint angle with PD Controller with payload 117
Time History of the Joint Angle with Neural Controller with Payload 118
Time History of the Joint angle with PD Controller 118

Time History of the Joint Angle with Neural Controller 119

xii

LIST OF TABLES

Table 3.1 Comparison of run time

Table 6.1 Parameters of two-link manipulator

xiii

CHAPTER 1

INTRODUCTION

This chapter gives a brief introduction to neural networks and neurocontrol, and forms
the motivation of the thesis. Section 1.1 presents a brief overview of neural networks and
their applications. Section 1.2 presents the definition of neurocontrol, Section 1.3 discusses
the control of robotic manipulators. Section 1.4 presents the motivation of the thesis. Based
on the literature reviews, the objectives and the scope of the thesis are defined in section 1.5.
In Section 1.6 organization of the thesis is over viewed.

1.1 NEURAL NETWORKS

In recent years there has been an increasing interest in studying the mechanisms and
structure of the human brain. This has led to the development of new computational tools
known as neural networks, for solving complex problems which are difficult to solve.
Neural networks are both numerical model-free estimators and dynamical systems. They have
the ability to improve the intelligence of systems working in an uncertain, imprecise and noisy
environment. The applications where neural networks have the most promise are those with
a real-world flavour, such as, speech recognition, image processing, fast information

processing and control of nonlinear systems. In 1986 the parallel distributed processing (PDP)

1

2

group in MIT published a series of results and algorithms (Rumelhart and PDP research group
1986). This work gave a strong impetus to the area and provided the catalyst for much of the
subsequent research in this field. For a fine collection of key papers in the development of
models of neural networks see Neurocomputing: Foundations of Research (Anderson and
Rosenfeld 1988). Since the work of the PDP group several well-defined architectures have
been proposed to tackle a variety of problems. Many examples of real-world applications
ranging from finance to aerospace are currently being explored (Hecht-Nielsen 1988). The
present work concentrates on the application of neural networks to the modeling and control
of nonlinear systems.

A neural network is an information processing system that is nonalgorithmic,
nondigital, and massively parallel. A neural network is a adaptable dynamical system
whose leaming, noise-tolerance, and generalization abilities grow out of its connectionist
structure, dynamics, and distributed data representation. A neural network is a statistical
associative model. A typical network model shown in Figure 1.1 has a set of input patterns
and a set of output patterns. The role of the network is to perform a function that
associates each input pattern with an output pattern. A leamning algorithm uses the
statistical properties of a set of input/output pairs - called the training set - to generalize.
With this model, statistical inference can be developed which has some distinct advantages
over rule-based inference. Statistical inference allows for exception and randomness in the

association between two variables, whereas rules are deterministic. In a neural network

3
model, the history of the system - that is, what training it has seen - decides the system's
response to a new stimulus, but rule-based systems are often nonadaptive, i.e., they do not
respond to observed changes in the stimulus environment. Rule-based systems can be made
adaptive as well, at the expense of making the rules more complex. It is particularly
difficult to develop specific rules for assessing the required time for mastery by each
student. A neural network can be defined as (Haykin 1994):

A neural network is a massively parallel distributed processor that has a natural propensity
Jor storing experiential knowledge and making it available for use. It resembles the brain
in two respects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as weights are used to store the

knowledge.

=Y |

Y 2

Figure 1.1 A Typical Neural Network with » inputs and m outputs

4

The network architecture is defined by the processing elements and the way in which
they are connected. The basic processing element of the neural network architecture is often
called a neuron by analogy with neurophysiology, but other names such as perceptron
(Rosenblatt 1958) or ADALINE (Adaptive Linear Element) is also used. The neurons by
themselves are not very powerful in terms of computation or representation but their
interconnection allows them to encode relations between the different variables giving
powerful processing capabilities. There are many different paradigms available in the literature
by which a network may be connected and trained. The important forms of interconnections
are:
. Multilayer Feedforward Perceptrons
. Radial Basis Function (RBF) networks
. Associative memory networks
. Cerebellar Model Articulation Controller (CMAC) networks
. Recurrent networks
. Fuzzy neural networks

After initialization, a neural network contains no information reflecting the system
it is to approximate. Therefore, at each time instant when new observations are made
available, it is desirable to incorporate the additional information into the current
parameter estimate. Neural networks learn to solve a problem; they are not programmed
to do so. Learning and training are thus fundamental to nearly all neural networks.

Training is the procedure by which the network leams; learning is the end result of that

5
procedure. Training is a procedure external to the network; learning is an internal process
or activity. Learning is achieved not by modifying the neurons in the network, but by
adjustment of the synaptic weights of the neurons in the network. The procedure for
adjustment of the weights is called the leamning rule. To start with, when the weights are
not calibrated, the network may perform badly at its task. However, after a series of
learning processes that the network goes through, the weights are adjusted and the network
should perform at a desired level. Typically the learning rules do not change, only the
weights do. After the learning period, the weights are usually not changed any further,
unless there is a change in the operating environment. Generally in the implementation of
a neural retwork, two regimes can be distinguished: the knowledge acquisition (or
training) phase and the knowledge diagnosis (or examination) phase.

Training a neural network may be supervised or unsupervised. With supervised
training, the network is provided with an input stimulus pattern along with the
corresponding desired output pattern. The learning rule for such networks typically
computes an error - that is, how far from the desired output the network's actual output
really is. The error is then used to modify the synaptic weights. Unsupervised training
involves presenting the data to the network until the network has discovered the emergent
collective properties of the data by itself.

Details of various architectures and of various learning algorithms have not been given

as they can be found in the references (Albus 1975a, 1975b, Haykin 1994, Hopfield 1982,

Rumelhart ef al. 1986, Waibel et al. 1989).
The distinguishing features of the neural networks which are important from modeling
and control point of view are:
1. Distributed Nonlinearity
2. Ability to learn from experience: They can leam to do tasks based on training data or initial
experience, and can adapt to environmental changes
3. Parallel distributed processing: They can perform fast information processing
4. Arbitrary function approximators: They can be applied to modeling and classification
problems
5. Generalizing the performance over inputs for which no training has been received
6. Model-free estimators: Neural networks are model-free estimators and dynamical systems.
It is clear that a modeling paradigm which has all of the above features has great
promise. From modeling and control point of view the ability of neural networks to deal with
nonlinear systems is perhaps the most significant.
1.2 NEUROCONTROL
Neurocontrol is defined as the use or study of well-specified neural networks as
controllers, as devices that output a vector of control signals as a function of time. A
neurocontroller performs a special form of adaptive control, with the controller taking the
form of a nonlinear multilayer network and the adaptable parameters being the strengths of
the interconnections between the neurons. The corresponding neurocontrollers can be

implemented on computers or neural net chips. A neurocontroller and the controlled plant

7

form a neurocontrol system. A neural network makes use of nonlinearity, learning, parallel
processing, and generalization capabilities for application to intelligent control. Werbos
outlines the five major methods such as supervised control, inverse control, neural adaptive
control, backpropagation through time and adaptive critic methods. All of these basic
methods have valid applications, reviewed in more detail elsewhere (Werbos, 1992). Most of
the approaches to neurocontrol can be considered to belong to one of these five. These
methods can be applied, in principle, to any network made up of differentiable functions, they
are not restricted to the case of a neural network as such. These approaches can also be used
in combination thereby increasing suitability for the control of complex systems.

In supervised control, a neural network learns the mapping from sensor inputs to
desired actions adapting to a training set of examples of what it should do. In inverse control,
a neural network learns the inverse dynamics of a system. This neural network is used in the
control loop. Inverse control has application in the control of a robotic manipulator. In this
case, the neural network learns the mapping from the position of a robot arm or something
similar, back to the actuator signals which would move the arm to that position. The neural
network is then used to make the arm follow a desired trajectory or reach a desired target
point.

In neural adaptive control, neural networks are substituted for the mappings used in
conventional adaptive control. Conventional adaptive control includes designs like the Seif-
Tuning Regulator and Model-Reference Adaptive Control. These designs, like inverse

control, try to achieve a prespecified target.

8

In backpropagation through time, the user specifies a utility function or performance
measure to be maximized and a model of the external environment. The backpropagation
through time is often used to train the recurrent net. Backpropagation is used to calculate the
derivative of utility summed across all future times with respect to current actions. These
derivatives are then used to adapt the neural network which outputs the actions, or to adapt
a schedule of actions.

In adaptive critic methods, the user supplies a function or measure to be maximized.
The long term optimization problem is solved by adapting an additional neural network called
a critic network, which evaluates the progress that the system is making. In other words, the
output of the critic may be seen as a kind of secondary utility function (or its derivatives) that
somehow represents the sum of the original utility function across all future time. The
network which outputs the actions is adapted to maximize this secondary utility function in
the immediate future.

There are three main levels of analysis in neurocontrol. At the lowest level, people try
to build supervised learning systems (SLSs). An SLS is any system that learns a nonlinear
function or static mapping from a vector X to a vector Y. At the middle level, in neurocontrol
proper, one builds a complex systems made up of SLS components, and other similar
components; one tries to develop general purpose designs to perform the tasks of tracking
or dynamic optimization. Finally, in applications research, one uses neurocontrol systems in
combination with other systems to build complex systems for specific applications. The

books Neural Network for Control (Miller et al. 1990) and Neural Network Applications in

Control (Irwin et al. 1995) provide a broad overview of the field.
1.3 ROBOT CONTROL

Robotics is a relatively new field of modern technology and is becoming increasingly
important in the field of flexible manufacturing. Understanding the complexity of robots and
their applications require knowledge of electrical engineering, mechanical engineering,
industrial engineering, computer engineering, economics and mathematics. Robotics is the
science and engineering dealing with the design and application of reprogrammable multi
functional manipulators to move objects through variable programmed motions for the
performance of a variety of tasks. Robotics constitutes the study of a finite number of rigid
mechanical links which represent a multivariable nonlinear coupled system. A robot
manipulator is typically modeled as a serial chain of » rigid bodies. In general, one end of the
chain is fixed to some reference surface while the other end is free, thus forming an open
kinematic chain of moving rigid bodies. Dynamics of manipulators involves nonlinear mapping
between joint torques applied and the robot and the joint positions, velocities and
accelerations. Dynamics of a robotic manipulator consists of a set of second-order, nonlinear
and highly coupled differential equations with uncertainty as a robot may work under
unknown and changing environments and execute different tasks.

The common control tasks involved in robot manipulators are: Position and
orientation control, trajectory control, force/moment control, constrained motion control. A
position control problem is the problem of determining the time history of joint inputs

required to cause the end-effector to execute a commanded motion. If the motion of the end-

10
effector is constrained, for example, to move along the surface of a table, then the motion is
referred to as constrained motion. The motion of the manipulator must comply with the
_ environmental constraints. Often the compliant motion is associated with a task such as an
assembly requiring fine motion control. The design of a controller for a given manipulator is
based on the design objectives and a dynamical model. The objective in designing a controller
for free or constrained motion is to make the center point and the orientation of the end-
effector follow the desired trajectory. For controlling the motion of the manipulator along a
desired path, the actuator torque functions have to be calculated from the equations of
motion. This is a difficult task as it requires incorporating effects of inertia, coupling between
joints (Coriolis and centrifugal forces), gravity loading and backlash, gear friction and the
dynamics of the control devices. Inverse dynamic approach is particularly important for
control, since it allows to compensate for highly coupled and nonlinear arm dynamics. As
stated before, the dynamic model of a manipulator is described by nonlinear coupled
differential equations. It is difficult to determine the precise dynamical model of the robot.

Many strategies have been developed for controlling its motion. The particular control
method chosen as well as the manner in which it is implemented can have a significant impact
on the performance of the manipulator and consequently on the range of its possible
applications. For example, continuous path tracking requires a different implementation in
terms of the hardware and software of the computer interface than does point-to-point
control. In addition, the mechanical design itself will influence the type of control scheme

needed. For example, the control problems encountered with a Cartesian manipulator are

11

fundamentally different from those enccuntered with an elbow type manipulator. Existing
robotic manipulators use simple Proportional - Integral - Derivative (PID) controllers whose
gains are tuned to make the manipulator critically damped. Controllers with fixed gains suffer
from the need to retune the gains periodically. Even if the optimum gains are initially selected,
changes in the process dynamics warrant constant retuning. This can result in a poor part
quality and frequent shutdown. The inability to achieve and maintain an accurate linear
approximation of the true nonlinear process dynamics prevents accurate and efficient control.
There are advanced modern approaches to design controllers for robot motion control. They
include computed torque control, robust control, model based adaptive control and variable
structure control. However, model based adaptive control is too complicated and expensive
for industry to use. A heavy computational burden impedes it for real-time control
applications. On the other hand, the computed torque method needs an accurate dynamic
model which is not always available especially when the robot is performing under different
operating conditions. Moreover, variations of payload and low precision of manipulator
parameters restrict the usefulness of the computed torque method. Adaptive approaches
have been proposed to overcome this problem (Craig et al. 1987, Slotine and Li 1987).
These adaptive methods have the advantage that, in general, they require no a priori
knowledge of robot dynamics. A general drawback for the adaptive controller is that the
computational requirements for real time parameter estimation are high and sensitivities to
numerical precision and measurement noise creates problems. In summary we can say that

conventional control methods for manipulators suffer from two difficulties. First we must

12

have detailed a priori knowledge of individual manipulators. Secondly, the computational
load is very heavy when advanced control methods such as computed torque and adaptive
control are used to achieve good performance. Thus, there is a need to develop a controller
that can “learn” to control a robotic manipulator.
1.4 MOTIVATION FOR NEUROCONTROL
1.4.1 Challenges in Robotic Control

A general trend in designing robotic manipulators is to make them lightweight relative
to their payloads, able to work at higher speed with high precision, adaptable to different
tasks, and efficient in applications. The dynamics of these advanced manipulators cannot e
simply modeled as rigid bodies. The dynamic modeling errors due to neglecting the structural
flexibility of various components in mechanical manipulators have a significant effect on the
performance of robot systems, and sometimes even lead to system instability if they are not
taken into account in the controller design. It has been observed that joint flexibility plays a
significant role in determining the end deflection of robot arms. The actuators themselves also
exhibit some flexibility. Another difficulty is structural and parametric uncertainty. Parametric
uncertainty may arise from irregular shapes of the robotic components, nonuniform materials,
non-symmetric motor or transmission installation, part wear-out and pay-load changes.
Structural uncertainty may result from neglected actuator dynamics, internal moving parts,
friction and backlash, and external disturbances. Friction is present at the joint and difficult
to model. Sudden control action may excite unmodelled high frequency characteristics, such

as link flexibility. Non-symmetric motor axes, for example, result in coupling between link

13
dynamics and motor dynamics. Finally, the desired motion is usually specified in terms of the
Cartesian space coordinates, whereas the torques needed for the motion are applied by
actuators at the joint level. Thus, a transformation from Cartesian space to joint space is
required. This is computationally intensive.

1.4.2 The Potential of Neurocontrol

Neural network computing systems with capabilities for supervised learning, matching,
and generalization are being developed and explored in a variety of simulated and
experimental contexts. Robotic systems offer a promising domain for this exploration since
the practical application of complex robotic systems may require adaptive and learning
behaviour in order to achieve their desired functionality. Technical issues which must be
addressed in order to expand the capabilities of robotics and automation technology are
grouped into four separate areas: mechanisms, control, representation and planning, and
architecture and implementation. While the mechanisms themselves are not directly related
to the implementation of adaptive and learning systems, it is clear that improvements in
sensing technology, motor technology, and new mechanisms such as flexible arms and
sophisticated hands, will place increasingly stronger demands on the corresponding control
and planning systems to incorporate adaptive capabilities for utilization in specific tasks.
There are important opportunities in the development of more robust controllers by utilizing
learning systems to more accurately identify robot kinematics and dynamics, to more
efficiently adapt dynamic control parameters to particular tasks, and to more effectively

integrate sensory information into the control process. The capability to adapt to an inherently

14

uncertain representation or model of the task, is the key to the improved reliability of these
systems. An automated system for leaming of accurate kinematic or dynamic parameters of
current robot arms, would have immediate impact interims of the potential performance of
these arms. Newer systems that incorporate lightweight, flexible arms or multi arm
interactions will also require such on-line identification in order to function effectively. Thus,
there is a need for an intelligent controller that can learn how to control a dynamic system.
Recently, there has been considerable progress in the field of intelligent control systems.
Recent innovations in learning control using neural networks display much potential for
nonlinear dynamic processes. Neural networks can adapt to nonlinear and changing processes,
can integrate sensory information, and are robust in the presence of noise. These and other
strengths may enable neural networks to address the need of existing and future
manufacturing systems.

Advances in nonlinear function approximation methods (e.g., neural networks) and
the application of these methods to robotics systems may yield substantial payoffs in more
accurate and adaptable control of engineering systems. Neural network-based function
approximation techniques are capable of learning complex nonlinear control mappings, may
be robust in the presence of noise, and behave smoothly to ensure process stability. Neural
networks can be used to model the quantitative relationships of process parameters and, when
combined with the qualitative knowledge of the process engineer, can be used to develop
adaptive nonlinear process control systems. The implementation of efficient on-line learning

techniques that may achieve stable operation of an unmodelled nonlinear process, with noisy

15

feedback, in a relatively short span and at reasonable computational expense, will make
simple, adaptive, accurate, and cost-effective control of complex processes possible. On-line
learning provides the flexibility to learn the control of an unknown, dynamically changing,
multivariate processes with arbitrary inputs and feedback data. The rigid constraints imposed
by real-time learning strongly favour the use of a neural network paradigm that converge very
quickly and require a minimal amount of computational overhead. Off-line learning may be
used to pretune a learning control system to reduce the start up oscillations.

The main advantages of neurocontrol approach are: (i) ability to deal with difficulties
arising from uncertainty, and noise; (ii) model-free estimator and dynamical system, i.e.,
quantitative system models are not required to design a neurocontroller; (iii) ability to model
the controlled system itself, (iv) it is easy to incorporate any a priori information about
controlled systems into neurocontroller designs; (v) controllers are based on learning from
input-output measurements and not on parametric model-based dynamics. In robotics, e.g.,
it may be possible to implement a complete inverse dynamics model of the robot without any
need of parametric model-based dynamics. In fact there is no need to estimate the parameters
of the system as in the case of direct and indirect adaptive controls

Based on the existing problems of nonlinear control, the potentials of neurocontrol,
and incapability of the existing approaches, this thesis proposes to study neurocontrol and
apply it to control a robotic manipulator.
1.5 OBJECTIVES AND SCOPE OF THE THESIS

The objectives of my thesis are: (1) to develop an algorithm which has faster rate of

16
convergence with better learning performance, and (2) to apply the neural network-based
scheme to the trajectory control of a robotic manipulator.

Based on the above objectives, the scope of the thesis is defined as follows.
1) Modification of Backpropagation Learning Algorithm

Conventional backpropagation lezrning algorithm suffers from a slow rate of
convergence. A modified backpropagation algorithm based on the use of an independent,
adaptive learning rate parameter for each synaptic weight with adaptable nonlinear function
has been introduced.
2) to develop a robust neurocontrol scheme for the control of a robotic manipulator

Due to the existence of modelling errors, most conventional control schemes for
robotic manipulators’ result in limited control precision. A neurocontrol scheme used in the
thesis suggests that neural network-based scheme is quite robust to the changing conditions
of operation. Simulation results suggest that the neural network-based scheme is quite
promising.
3) to test the real-time features of a neurocontrol scheme by an experiment

For the validation of the results obtained by simulations, experiments were conducted
using an available two-link manipulator and a single motor.
1.6 ORGANIZATION OF THE THESIS

The remaining chapters of the thesis are organized as follows. Chapter 2 presents
literature review on neurocontrol and its application to robotic control. Based on the review,

the objectives and scope of the thesis are proposed and defined.

17

Chapter 3 presents a modification to the conventional backpropagation learning
algorithm. The new algorithm results in the fast rate of convergence and reduced
computation. Also, different training strategies are fully investigated and compared. Based
on these, a training method is selected, which is most suitable for applications in this thesis.

Chapter 4 presents modeling of dynamics of robotic manipulators. Simulation results
show the effectiveness of the method.

In Chapter 5, motion control of robotic manipulators is studied using a neurocontrol
scheme based on backpropagation. The employed neural network is trained as an approximate
model of the robot. The learning, process gradually transfers the control action from a
feedback PD controller to the neural controller. The control performance is improved greatly.
Simulation results show that the suggested method is promising.

Experimental tests are performed on a two-link manipulator to evaluate the real-time
performance of the neurocontroller. The results are presented in Chapter 6.

The thesis concludes with Chapter 7, where a summary of contributions and

suggestions for future work are given.

CHAPTER 2

LITERATURE OVERVIEW

2.1 INTRODUCTION

Neural network computing methods provide one approach to the development of
adaptive and leamning behaviour of robotic systems. Neural networks are capable of learning
to control an unknown plant by extracting the necessary information from the plant. This
chapter provides an overview of the current research in the application of neural networks to
the control of robotic manipulators. Applications of some neural network architectures in
robot control are surveyed. The chapter discusses several approaches, indicating distinctive
features and successful demonstrations. The chapter is organized as follows: A brief overview
of robotics is provided in Section 2.2. Section 2.3 deals with the neurocontrol and Section
2.4 provides the review of the neurocontrol of robotic manipulators.
2.2 AN OVERVIEW OF ROBOTICS

Robotics is a relatively new field of modern technology and is becoming increasingly
important in the field of automated manufacturing, including flexible automation. It
constitutes the study of a finite number of rigid mechanical links which represent a

multivariable nonlinear coupled system. Major problem areas in robotics include trajectory

18

19

planning, kinematics, dynamics, and control. Details of the issues in robotics can be found
in (Craig 1986, Fu et al. 1987, Spong and Vidyasagar 1989). The purpose of robot arm
control is to maintain the dynamic response of the manipulator in accordance with some
prespecified performance criterion. The solution of this problem is difficult because this
requires the solution of nonlinear coupled differential equations which are complex functions
of joint variables. Although our main interest is in control, the knowledge of some aspects of
kinematics and dynamics of robots is essential for our purpose.

Kinematics is the study of motion without regard to the forces or torque which cause
the motion. Kinematics of manipulators refers to all of the geometrical and time-based
properties of motion. Two subproblems are distinguished: the forward kinematics problem
and the inverse kinematics problem. The forward kinematics problem can be stated as: Given
the joint variables of the robot, determine the position and orientation of the end-effector. The
joint variables are the angles between the links in the case of revolute or rotational joints, and
the link’s extension in the case of prismatic or sliding joints. It involves a nonlinear mapping
from joint space of the robot to Cartesian space and can be represented as

x = fi6) (1)
where @ is the vector of individual joint variables, and x is the end-effector location in
Cartesian space. The function f is nonlinear and consists of some trigonometric functions as
well as matrix multiplications. The computation is relatively straightforward. On the other
hand, an inverse problem is somewhat difficult. The inverse kinematics problem can be stated

as follows: Given a desired position and orientation for the end-effector of the robot,

20

determine a set of joint variables that achieve the desired position and orientation, that is:
Given x, find O such that f{6) =x

Since the kinematic equations are nonlinear, the problem does not have a unique solution.
This is a mathematically ill-posed problem,; since the forward kinematic mapping f(6) is many-
to-one, f “/(x) will not be unique. The inverse kinematics problem may be solved either
explicitly, by directly computing a closed-form regularized inverse mapping f “(x), or
implicitly (i.e., numerically), by, for example, the use of differential methods. A solution can
be obtained in a closed form using the spatial geometry of the manipulator, or by solving the
matrix algebraic Eq. (1). Because of the complex nature of Eq. (1), there are cases wherein
a closed from solution does not exist. For nonredundant manipulators which do not have
closed form solution, or for those manipulators which have redundant degrees of freedom,
numerical methods are commonly used. Due to their iterative nature, numerical solutions are
generally much slower than the corresponding closed-form solution.

Dynamical models of a manipulator specify the equations of motion relative to a
chosen coordinate system. In many applications, the motion of the end-effector is of primary
interest. The center of the end-effector traces a path in the world coordinate system when the
manipulator is moved by the actuators. Controlling this path is called the gross motion
control. It can be determined based on the dynamical model of the manipulator. Robot arm
dynamics deals with the mathematical formulations of the equations of robot arm motion. The
dynamic equations of motion of a manipulator are a set of mathematical equations describing

the dynamic behaviour of the manipulator. Such equations of motion are useful for computer

21
simulation of the robot arm motion, the design of suitable control equations of a robot arm,
and the evaluation of the kinematic design and structure of a robot arm.

The actual dynamic model of a robot can be obtained from known physical laws such
as the laws of Newtonian mechanics and Lagrangian mechanics. This leads to the
development of the dynamic equations of motion for the various articulated joints of the
manipulator in terms of specified geometric and inertial parameters of the links. Conventional
approaches like the Lagrange-Euler and Newton-Euler formulations could then be applied
systematically to develop the actual robot arm motion equations. Euler-Lagrange’s equations
of motion are obtained on the basis of Lagrange’s energy function. The resulting differential
equations describe the motion in terms of the joint variables and the structural parameters of
the manipulator. An alternative approach to the modelling of the manipulator dynamics is to
consider each link as a free body and obtain the equations of motion for each link in
succession on the basis of Newton’s and Euler’s laws. Thus, the recursive differential
equations of motion can be determined for the entire manipulator with serial links. The
general form of the dynamic equations of a robotic system can be written as:

() = M(g)4 () +CQ, 4N +Glah) @
where t(¢) is a n x 1 vector of joint torques

q(?) is a n x 1 vector containing the joint angles

M(q(?)) is the inertia matrix of the manipulator

C(q(0),4(0))is the contribution of the Coriolis and centrifugal forces and

G(q(?)) is the gravitational torque due to the gravity.

22

Both formulations are based on fundamental physical laws of dynamics and provide
the designer insight in the dynamical behaviour of the system. This is an important aspect in
the engineering, analysis and design. When Lagrange’s formulation is used, the designer has
the dynamical model for the whole robot system. Therefore, the interactions between the
variables and the couplings between the dynamical equations of the joints are quite apparent.
When Newton-Euler’s formulation is used, the effects of external and internal forces and
torques on the single link are transparent to the designer. In many cases, however, it is
difficult to visualize the interrelationships between different parts of the entire robot system,
because they don’t appear in the model explicitly. The choice of the model used in a study is
usually dependent on the specific application and task to be performed by the robot
manipulator system.

For controlling the motion of the manipulator along a desired path, the actuator
torque functions have to be calculated from the equations of motion. The equations of motion
obtained for a manipulator can be used to solve the problem of inverse dynamics, i.e., to
determine the generalized joint torques when the desired positions, velocities, and the
accelerations of the joints are specified. It is difficult as it requires incorporating effects of
inertia, coupling between joints (Coriolis and centrifugal forces), gravity loading and backlash,
gear friction and the dynamics of the control devices. The inverse dynamic approach is
particularly important for control, since it allows to compensate for highly coupled and
nonlinear arm dynamics Solution of equations of motion requires large numbers of

trigonometric and nonlinear functions of the joint coordinated, velocities and accelerations.

23

Hence, it is considerably more complex than the kinematic problem.
2.3 LITERATURE REVIEW ON NEUROCONTROL

Models of dynamic systems and their inverses have immediate utility for control.
Direct inverse control utilizes an inverse system model. The inverse model is simply cascaded
with the system to be controlled in order that the whole system results in an identity mapping
between desired response (i.e., the network input) and the controlled system output. Thus,
the network acts directly as the controller in such a configuration. A neural network is trained
to minimize some error function. Since the desired action is unknown, it is not possible to
determine the error signal required to train the network by back propagation algorithm.
Hence, appropriate training schemes need to be developed for the use of neural networks for
direct control. Psaltis et al. (1987, 1988) proposed learning architectures for training the
neural network inverse dynamic controller to provide the appropriate inputs to the plants so
that the desired output is obtained. The schemes are shown in Figures 2.1 to 2.3.
2.3.1 Indirect Inverse Neurocontrol

Figure 2.1 shows the feedforward controller implemented as neural network
architecture, with its output driving the plant. The real plant output is used as input to a copy
of the neural network. The difference between the two networks’ outputs is a measure of the
controller’s error and is used to adapt weights of both networks so that this difference is
minimized. This learning architecture is called indirect learning. The main feature of this
scheme is that the network is trained only in the region of interest since we start with the

desired response and all other signals are generated from it.

24

Network

Neural
| Network

1

Figure 2.1 Indirect Learning Architecture

2.3.2 Direct Inverse Neurocontrol

Another type of learning architecture is based on an explicit learning stage while the
controller uses a neural network as a simulator in order to learn its behaviour. The controller
knows what should have been the output values of the plant and uses the difference to adapt
itself. This method is known as general learning. The scheme is shown in Figure 2.2. The
success of this method depends on the ability of the neural network to generalize correctly
so that it may respond to inputs for which it has not been trained. Thus, the training samples
will have to cover the entire input space of the plant. Evidently this procedure is not efficient
since the network will have to learn the responses of the plant over a wider range than what
may be actually necessary. The other disadvantages of this scheme are (1) the controller is
not operational during the learning stage, (2) the plant is assumed to be a static physical
process and (3) if the nonlinear system mapping is not one-to-one then an incorrect inverse

can be obtained. These drawbacks can be avoided by using the specialized learning approach

25

shown in Figure 2.3.

T Trajeclory

Plant)

Neural (______

Network
N

Figure 2.2 Leamning Scheme of an Inverse Dynamical Model

Tn

2.3.3 Specialized Inverse Neurocontrol

In this approach the network inverse model precedes the system and receives as input
a training signal which spans the desired operational output space of the controlled system
(i.e., it corresponds to the system reference or command signal). In this case, the controller
learns by directly evaluating the accuracy of the network. The error between the actual and
desired output of the plant is used to change the weights of the network. The controller learns
continuously and therefore it is able to control plants with time varying characteristics. Psaltis
et al. (1988) proposed that the plant can be viewed as an additional and not modifiable layer
of the neural controller. This method, however, requires the knowledge of the plant Jacobian

since the error has to be back propagated through the plant before it can be used to update

26

—_—> Neural R
Network Plant

¥

Figure 2.3 Specialized Learning Architecture

the weights. The plant Jacobian can be obtained in a neural network form (Jagannathan and

Lewis 1996, Jin et al. 1993). This architecture can specifically learn in the region of interest,

and it may be trained to fine-tune itself on-line while actually performing useful tasks. In

comparison with generalized learning the specialized learning approach has the following
features:

e The procedure is a goal directed since it is based on the error between desired system
outputs and actual outputs. In other words, the system receives inputs during training
which correspond to the actual operational inputs it will subsequently receive.

® In cases where the system forward mapping is not one-to-one a particular inverse suitable
to the particular application will be found. Jordan and Rumelhart (1992) discuss ways in
which learning can be biased to find particular inverse models with desired properties.

Psaltis et al. (1988) recommended that a hybrid approach where a general learning is
first performed to learn the approximate behaviour of the plant, and then specialized learning

is performed to fine tune the network in the operating regime of the system. General training

27
will have a tendency to create better initial weights for specialized training. Thus, starting with
general training can speed the learning process by reducing the number of iterations of
ensuing specialized iraining.

Narendra and Parthasarthy (1990) analysed in details neural network-based models
for both identification and control. They proposed four different neural network models for
discrete nonlinear systems. These generalized neural network models result from a unified
treatment of multilayer and recurrent neural network models. They show that neural networks
can be used effectively in the identification and control of nonlinear dynamic systems.
2.3.4 Robust Neuorcontrol Scheme

Model-based neurocontrol optimization is a nominal control design procedure without
an on-line adaptive component, it does not allow for plant drifts or other factors that could
adversely affect the performance of the control system. In fact, a controller that is highly
optimized for a specific process cannot be expected to tolerate deviations from the nominal
process gracefully. However, model-based neurocontroller design can incorporate robustness.
This approach combines conventional robust control schemes with neural network models.
Neurocontrollers can be optimized for robust performance. The scheme is shown in Figure
24,

Raibert (1978) proposed a model of the central nervous system that is capable of
learning the dominant dynamic parameters of a limb while performing a specific
movement. He uses the idea of a state vector addressable memory to store this parametric

data during leaming. This data was then accessed as a look-up table to generate parameters

28

Inputs + Outputs

plant

Fig. 2.4 The Block diagram of robust neurocontrol

necessary to compute joint torques for the desired movements. Albus (1975a, 1975b)
generalized this approach in his cerebellar model articulation controller (CMAC) to store
parametric data in locally overlapping regions so that each table entry is influenced by
neighbouring data points during leaning. Atkeson and Reinkensmeyer (1988) used an
alternate approach in which the parametric data is stored locally during learning but the
parameter value obtained during recall is averaged over neighbouring entries. All of these
techniques essentially store parametric data in a lzrge look-up table

Jacobs and Jordan (1993) described a multi-network, or modular, neural network
architecture that uses a piecewise control strategy to perform control tasks. The
architecture’s network competes to learn the training patterns. As a result, the parameter
space of the plant is adaptively partitioned into a number of regions, and a different
network learns a control law in each region. The main advantage of modular networks is

that they can be structured more easily then fully connected networks. Simulation results

29
show that the modular architecture performs quite well on a multi-payload robot motion
control task.

There is also reinforcement neurocontrol, adaptive critic neurocontrol, fuzzy
neurocontrol hybrid and hierarchical neurocontrol etc. The structures of these neurocontrol
systems are similar to the above schemes. However, their learning algorithms may have great
differences. The learning strategies can be classified into pure on-line learning, pure off-line
learning, and hybrid on-line and off-line learning. In pure off-line trained neurocontrollers, the
system performance is dependent on the generalization property of the neurocontroller. Pure
on-line trained neurocontrollers have bad initial control performance. Hybrid on-line and off-
line trained neurocontrollers share the merits and demerits of both.

2.4 NEUROCONTROL OF ROBOTIC MANIPULATORS

One goal in robotic research is to develop classes of robots capable of duplicating
human performance in uncertain situations. This requires the ability to adapt to variations in
various parameters throughout the operation. The mechanism responsible for this ability is
the control system. A basic control block diagram for a robot manipulator is shown in Figure
2.5.

Control of manipulators involves solving coupled nonlinear differential equation.. As
more degrees of freedom and nonlinearities are introduced these become less and less
tractable. The manipulation tasks performed by living organisms seem to suggest that solving
differential equation is a very inefficient way of controlling the manipulator. Connectionist

approaches to robot control are grounded in thesc observations of biological systems. The

30

Disturbances

;l'*‘?“"y —» Controller —P» Robot Eaviroament
Seasors aad
estimstons

Fig. 2.5 Basic Control diagram for a robot manipulator

emphasis is on leaming the mapping between the various variables without an accurate
knowledge of the system parameters or the equations governing the system. Neural networks,
which are not model based, have become recognized as viable alternatives to traditional
identification and control of robotic manipulators. The most promising property of neural
networks is their ability to adaptively learn complex mappings. One of the advantages of this
property is that it allows us to avoid deriving some closed form analytic function by hand. But
more importantly, the system could learn mappings which are mathematically intractable. In
addition, the system would be portable since it adapts to the robot to which it is applied.
Moreover, as neural networks have the ability to learn, they can be trained to emulate human
skills, utilize qualitative control rules, and adapt to environmental and system internal
changes. Therefore, they offer an exciting alternative for solving the robot control problem
by just learning from examples of the robot’s behaviour.

Neural network models have some features particularly useful in a robotic setting:

they can be trained 1) to handle the inverse and forward kinematics; 2) to represent any

31

complex relationship between inputs and outputs of n-joint robot arms; i.e., dynamics of a
robot can be modelled; and 3) to design any trajectory for a robot as a model refererce. Much
research effort has been put into the design of neural network applications for manipulator
control. All these results showed that neural networks do have the potential to overcome the
difficulties in manipulator control experienced by classical control theory.
2.4.1 Neural Networks and Kinematics of Robots

The problem of finding the joint variables from a specification of the desired end
effector’s position and orientation is called the inverse kinematic problem. It is difficult
because it is computationally intensive and has multiple solutions. Moreover, it becomes more
complex as the degree of freedom of the manipulator increases. Also, the robot kinematic
parameters need to be known accurately. Neural networks offer an exciting alternative for
kinematic control of a manipulator. There has been a growing interest in this area for some
time. Attempts have been made to train neural networks for learning inverse kinematics based
on the capability of neural networks to store input-output associations or to approximate
input-output mapping.

Elsley (1988) reported the use of neural networks in the solution of an inverse
kinematic problem. He reported that the average number of steps required for the manipulator
to reach the desired position and the average error were more for the analytically calculated
exact inverse Jacobian method of control. This is due to the fact that the inverse Jacobian is
optimum for small motions, but not for large ones. The neural network learns the Jacobian

for large motion.

32

Guo and Cherkassky (1989) presented a solution algorithm, using a neural
computational scheme to implement the Jacobian control technique in real time as often
required in practical control problems. They have used the neural computation scheme of
Hopfield and Tank to implement the Jacobian control technique. Their method has an
advantage over numerical iterative algorithms in that the solution time is independent of the
number of degrees of freedom.

Guez and Ahmed (1989) presented a hybrid approach using a multi-layered
feedforward network (MFN) to the iterative solution of robotic manipulators which resulted
in accelerated convergence in the inverse kinematics. They showed that by employing a three
layered a neural network; the inverse kinematic problem can be solved by learning. Neural
network solution is used as an initial guess to the iterative procedure (Newton-Raphson or
Gradient descent method) which provides the final solution. An MFN was trained in a
supervised manner using back propagation algorithm. They carried out a test on PUMA 560.
The proposed method combines the advantages of neural networks and iterative methods.
The method is independent of the type of manipulator and simple to implement. The
proposed method is also computationally efficient.

Lee and Kil (1994) proposed a method for inverse kinematic solution based on the
iterative update of joint vectors. The proposed method is based on the Jacobian transpose that
uses pseudo inverse of the gradient of a Lyapunov function in joint space to update the joint
vector. The proposed neural network consists of a feedforward network and a feedback

network forming a recurrent loop. The feedforward network computes the forward kinematic.

33

The feedback network is derived from the feedforward network and computes joint vector
updates. The proposed scheme has advantages over conventional neural networks for IKP
in that it provides an accurate computation of forward and inverse kinematic solution with
very simple training. Simulation results demonstrate that the proposed method is effective for
real-time kinematic control of a redundant arm, as well as for real-time generation of
collision-free joint trajectories.

A neural network theory is applied to theoretical robot kinematics to learn accurate
transformation between joint variables and the Cartesian coordinates of position. The network
is trained on accuracy data that characterize the actual robot kinematics. The network learns
the differences in the joint variables to improve the accuracy between an endpoint from
theoretically calculated joint variables and the desired endpoints. Results show that a neural
network, as discussed here, can increase both the accuracy and the positional repeatability of
robots. In summary, these results confirm that neural networks can solve coordinate
transformation problems and arbitrary input-output mapping problems.

2.4.2 Neural Networks and Dynamics

The nonlinear mapping property of neural networks is ideal for learning robot
dynamics. The basic idea is that the neural network leams the inverse dynamical relationship
of the robot directly so as to map the nonlinear ielationship between the robot joint torques
and joint variables (position and speed). Thus, it can be used as an inverse dynamics
controller. A general diagram for a control system is shown in Figure 2.6. The feedback and

feedforward controllers and the filter can all be implemented as multilayered neural networks.

34

The learning process gradually tunes the synaptic weights of the neural network so that the
crror between the desired and actual plant responses is minimized. Since the error signal is
the input to the feedback controller, the training of the network will lead to a gradual

switching from feedback to the feedforward action as the error signal becomes small.

gcnlmllet
Additiona!
measured
+ outputs
. + Foodback
—> Planning Cantroller Plant
Error + Inputs
Desired | - Output
respansc

Figure 2.6 General Control System Diagram

2.4.3 Inverse Dynamic Robotic Control

Kawato er al. (1988) proposed a hierarchical neural network model based on
physiological models. It contains intemal neural models of dynamics and inverse-
dynamics of the musculoskeletal system as essential learning parts. To check the efficacy
of the proposed neural network model to learn control of an cbject with highly nonlinear
coupled dynamics with multiple degrees of freedom they chose an industrial robotic
manipulator with two degrees of freedom. They show that once the neural network model
learns some movement, it could control quite different and faster movements also. The

reason for this success is that the proposed model learns the dynamics as well as the

35

inverse dynamics of a control object instead of a specific command or a movement pattern.
The model can adapt to sudden changes in the dynamics of the controlled system.
Miyamoto ef al. (1988) have successfully applied the proposed method to control
an industrial manipulator (Kawasaki-Unimate PUMA 260) with the neural network model
in a microcomputer (Hewlett-Packard 9000-300-320). Their neural network-based scheme
is shown in Figure 2.7. The total torque T, (t) applied to an actuator of the manipulator is
a sum of the feedforward torque T;(t) generated by the inverse dynamic model, and the
feedback torque T(t). The desired trajectory is input to the model. The feedback torque

T(t) can be considered an indication of the inaccuracy of the inverse model. This signal

qQ®

-l 0) -
h— Manipulator

Figure 2.7 Feedback Error Learning Scheme for Robot Control
is used as an error signal for training the inverse model. It is expected that the feedback
signal will approach to zero as learning proceeds. This learning scheme is called feedback

error leaming, emphasizing the importance of using the feedback torque as the error signal

36
of the hetero-synaptic learning.

Miller et al. (1987) reported on using a CMAC neural network in a computed
torque controller. The robot dynamic model required by the computed torque controller
is provided by the neural network. The CMAC network is used to predict the feedforward
torques required for the desired trajectory, which is used in parallel with a fixed gain linear
feedback controller. The scheme was implemented for the control of a GE P-5 five axis
robot using a VAX-11/730 minicomputer with a TMS32010 auxiliary processor.

Karakagoglu et al. (1993) proposed a neural network structure which includes
dynamical nodes in the hidden layer of network for trajectory tracking of a manipulator. A
supervised learning scheme that employs a simple distributed updating rule is used for the on-
line identification and decentralized adaptive control. Although they used the specific example
of robot trajectory tracking for the illustration of the proposed scheme, they point out that
the controller design procedure is general and can be used for the adaptive control of other
complex dynamical systems.

2.4.4 Modelling Uncertainty

When there is uncertainty in a robotic system, a neural network can be applied to
model it and used to compensate for such uncertainty. Leahy, Johnson and Rogers (1991)
modified the inverse dynamics control scheme for robots under unknown payload
conditions by using neural networks to estimate the dynamic parameters of an unknown

load and to compensate for the uncertainty. The estimate of the payload adapts the

37
feedforward compensator to unmodelled system dynamics and payload variations.

Kuperstein et al. (1990) described a neural controller that learns to accurately move
and position a single joint link carrying a payload. The neural controller can move a link
carrying an unforeseen payload from any starting angle to any ending joint angle without
oscillations of an end point. The learning does not require practice with different payloads.

Yegerlehner (1993) developed a neurocontroller for a two-link manipulator subject
to changes in the payload. The control architecture is based on the computed torque
method, but uses a feedforward neural network in place of the system model to generate
the inverse dynamics. A second neural network is used to estimate the payload mass,
which is used as an additional input to the inverse dynamics neural network.

2.4.5 Hybrid Intelligent Robotic Control

Handelman er al. (1989) tried to integrate knowledge-based systems and neural
networks for autonomous robots. They discussed the possibility of robot intelligence and
some schemes to realize it.

Rabelo and Avula (1991) proposed a hierarchial neurocontroller architecture
consisting of two neural network systems for the manipulation of a robotic arm. The
higher level neural system participated in the coordinates transformation and motion
decision making. The lower one provided the control action sequence.

Fukuda and Shibata (1991) gave a concept and strategy of hierarchical intelligent

control of robots. Basically, they regarded the hierarchical intelligent control system as a

38
hybrid system of neural networks, fuzzy logic, and Al, and divided the system into three
levels: learning level, skill level and adaptation level. The adaptation level is realized by
a neuromorphic controller in an uncertain environment. The skill level consists of trained
fuzzy neural networks which emulate the human operation skills. The fuzzy logic works
as the intermediate connecting neural networks and symbolic reasoning systems. The
learning level recognizes the environment and the manipulated objects and makes decisions
based on the sensed information.

2.4.6 Teacher-replacing Neurocontroller

Asada and Liu (1991) proposed a teacher-replacing scheme to transfer the skill of
human operators into a neural network and use the generalization ability of the network
to build the skill-based controller. This scheme can find wide applications in industrial
manufacturing.

This chapter discusses various approaches of neural networks to the robotic control.
These studies establish the efficacy of using a neural network-based controller for
controlling the vosiplex dynamics of manipulators. These controllers are based on learning
from input output measurements and not on parametric model-based dynamics. The results
permit reaching goals with arbitrarily low errcr even though the inverse dynamics, which
was learned by the neural network is only an approximation. A neural network is used for
the estimation of the inverse dynamics without any reed of parametric model-based

dynamics. In fact, there is no need to estimate the parameters of the system as in the case

39
of direct and indirect adaptive controls. The network takes into account the whole
dynamics in addition to possible perturbations. In robotics, e.g., it may be possible to
implement a complete inverse dynamics model of the robot which could possibly
incorporate dynamics of the control device, backlash, and gear friction. This model would
be computed without the need for analytic modeling.

Studies show that the neurocontroller maintains a very good trajectory tracking
performance even in the presence of large parameter uncertainties and external
disturbance. Neurocontroller achieves the desired control of the manipulators. The
controller can learn to generate accurate movements of robot links without information
about link mass, link length, and with indirect, uncalibrated information about payload and
actuator limits.

The design concept for the neurocontroller is generic because it does not require
knowledge of the physical plant or actuator characteristics and is designed to be extended
to an arbitrarily large number of joints. Each new joint in the robot system will require
adding new neural input and weight maps to the architecture.

2.4.7 Needs for Research

Autonomous robots, which achieve tasks without human operators, are required in
many field. The autonomous robots carry out tasks in various environments by themselves
like human beings. They have to be intelligent to determine their own motions in unknown

environments based on sensory information. Neural networks show great potential for

40
controlling such systems.

Conventional control schemes require the knowledge of the mathematical model of
the manipulator. In practice, this information is seldom available. When robots’ task is
changed, control algorithm adjustment and related tedious planning are required to make the
robot execute the new task. Control engineers have attempted to solve this problem by
developing techniques for system identification, but this usually requires a great deal of
computation. On the other hand, a human controller can learn how to control a system
without knowing its mathematical model. Therefore, it is evident that we need an intelligent
controller which can learn how to control a dynamic system. Instead of basing the control
algorithm on a known model, the neural network can configure itself with appropriate
connection weights in order to learn a control scheme that generates desired system
performance. The theories of neural network-based modelling and control are still under
development. The main problems are the slow learning convergence of neural networks. Most

existing neurocontrol schemes are difficult to implement in real-time due to their complexity.

CHAPTER 3

A MODIFICATION OF BACKPROPAGATION LEARNING

ALGORITHM

3.1 INTRODUCTION

The ability of neural networks to realize some complex nonlinear functions makes
them attractive for system identification. In the recent past, neural networks trained with
the back-propagation learning algorithm have gained attention for the identification and
control of nonlinear dynamic systems. However, the conventional back-propagation
algorithm suffers from a slow rate of convergence. In this chapter, we present an
improvement to the back-propagation algorithm based on the use of an independent,
adaptive learning rate parameter for each weight with adaptable nonlinear function. The
usefulness of including the adaptive slope of the nonlinearity of the nodes in the delta-bar-
delta rule (Jacobs 1988) is studied. In the present scheme, the hyperbolic tangent activation
function with changeable shape has been used. As a result, the sigmoid function attains
flexibility, in contrast to all of the former studies in which neural networks have a fixed

sigmoid function. Our modified updating rule, a variation on that originally proposed by

41

42

Jacobs (1988), allows adaptable independent learning rates for individual weights in the
algorithm together with the updates of the slopes of the nonlinearities. After discussing
the learning algorithm, a runtime comparison of the algorithms is made. This includes an
estimation of the 'optimal’ parameters of standard back-propagation and the comparison
of this optimal standard algorithm with other back-propagation variations. It is shown that
the learning speed is increased significantly by making the slope of the nonlinearity
adaptive since it amplifies those directions in weight space that are successfully chosen by
gradient descent. Comparison of algorithms showing the error convergence with the
number of epochs is presented. The results demonstrate that the suggested method gives
better error minimization and faster convergence. The chapter is organized as follows:
Section 3.2 presents a brief introduction of backpropagation learning algorithm. Section
3.3 deals with the description of the proposed algorithm. Section 3.4 presents results of
simulation and finally results are discussed.
3.2 A BASIC BACKPROPAGATION LEARNING ALGORITHM

A neural network is a computational structure inspired by knowledge from
neuroscience. It represents an alternative computational paradigm to the programmed
instruction sequence paradigm of Von Neumann. Although there are various types of
neural networks available, feedforward neural networks are most commonly used for
identification and control. Either a feedforward neural network or a multilayer neural

network consisting of layers of neurons with weighted links connecting the outputs of

43

neurons in one layer to the inputs of neurons in the next layer is very popular and is used
in identification and control. A typical multilayer neural network is shown in Fig. 3.1. It
can be considered as static mapping from an input vector space X < R to an output vector
space Y < R™. The input layer of a neural network will be denoted as the 1st layer and
each subsequent layer will be referred to as the (/+1)th layer. A given layer, I, consists
of a set of weights’ w;/ (k) {j = 1 ton',i =1ton*'} where n'is the number of neurons
in the Ith layer and n'! is the number of neurons in (I-1)th layer. Each, w],.'(k) , is an
adjustable parameter that propagates and scales the output of the ith neuron in the previous

layer to the jth neuron in the /th layer. The summation of these weighted inputs for a

X =1
X4 I 3 £ > vy
X2 b3 I f '—’72
Xn 3 b1 f > ¥m

Figure 3.1 A Feedforward Neural Network
particular neuron is the activation level v,-’ (k) that is transformed through a nonlinear

activation function f* R~ R to generate the output:

44

¥, (k) = f[E LT = fIv/®)] (1)

where fis the sigmoidal nonlinearity.

The input signal propagates through the network in the forward direction, on a
layer by - layer basis. The network is trained in a supervised manner with a back-
propagation algorithm. This algorithm is based on an error-correction learning rule. The
error signal is propagated backward through the network. Weights of the network are
adjusted until the desired result is obtained.

The details of the derivation of the back propagation algorithm are well known in
the literature and have not been included here. The reader is referred to (Haykin 1994,
Rumelhart er al. 1986) for details. A review of the important steps of the algorithm is
presented here. The function to be minimized is the sum of the squared error of the output

vector

1 N
Z, = ﬁZS’(n) (2)

where N is the number of the data points and &(n) is the sum of squared errors at all nodes

in the output layer, i.e.,

B/
) = %212 d@m)-ymy (3)

For an optimum weight configuration, &(n) is minimized with respect to the synaptic

weight w, so that for each data set,

45

o&(n) _
T (4)
ow;
The weights of the network are updated using the relationship
I I o&(n)
n+1) = . - ——_—L
Wﬂ () Wj, (n) L] awﬂ (n) (5)

where 1 is a constant that determines the rate of learning; it is called the learning rate
parameter of a back-propagation algorithm. Using back-propagation, partial derivatives
can be found and update equation (5) can be written as

w, (k1) = w,(k) +n8ky" k) (6)

where ; is the local gradient of node j. For the output layer

8n) = ¢/ f v () (7)
while for other layers
ORSAVOD L) (8)

Hence, the partial derivatives of equation (5) are implicitly calculated in eqs. (7) and (8)
as part of a recursive error propagation algorithm.

These procedures have some well known drawbacks. The first, and the simplest,
is just the difficulty in the choice of the value of n. The learning parameter should be
chosen small to provide minimization of the total error function &. However, for a small
n the leamning process becomes slow. On the other hand, a large value of 7 corresponds

to rapid learning, but leads to oscillations that prevent the algorithm from converging to

46
the desired solution. The choice of the best value is especially hard when the problem
being addressed is very large, involving perhaps a few hours of simulation for a single
sweep through the whole training set.

Another, more important drawback, is the slowness when the hypersurface that
represents the cost function being minimized, presents deep and narrow valleys (ravines).
One of the earliest methods to be proposed for overcoming this limitation, was the use of
the momentum term, which corresponds in fact to recursive lowpass filtering of the
gradient of the cost function. The resulting update formula is

w,i(k+1) = w,(B)+n8 (k) (k) +alw,(k-1) (9)
where « is the momentum constant that determines the relative contribution of the current
and past partial derivatives to the current weight changes.

The third term in equation (9) is the so-called momentum term which may improve
the convergence rate and the steady state performance of the algorithm. This term
determines the relative contribution of the past partial derivatives to the current weight
updates. It has the effect of attenuating “high frequency” oscillation across the ravine,
and/or amplifying the “DC” component of the gradient along the bottom of the ravine.
3.3 PROPOSED MODIFICATIONS TO THE LEARNING ALGORITHM

In this section, an approach which led to an improved rate of convergence of the
back-propagation algorithm is discussed. The appealing properties of the back-propagation

algorithm are its simplicity and its ability to generalize to novel inputs. The slowness of

47
this algorithm is elucidated by examining the update law in eq.(6) which modifies the
previous weight estimate on the basis of the current observation alone, ignoring all
possibly relevant historical information. Various combinatorial learning methods exist that
modify equation (5) in different ways (Baldi 1995, Battiti 1992, Eaton and Olivier 1992,
Jacobs 1988, Kruschke and Movellen 1991). In this section we discuss the effect of the
shape of nonlinearity of the node on the speed of convergence of the learning algorithm.

The general form of the hyperbolic tangent function is expressed as

=X

o) = l1-e

10
1+e” (20

X

This function is monotonically increasing with asymptotes to +1, as the x~ +«=, and
is useful when bipolar outputs are required. We use the sigmoid function as hyperbolic

tangent function type with an additional parameter which is given by

-yx

foy) = 125

1+e 71*

(11)

This function can be made to have different shapes by changing the parameter vy,
known as the gain of the nonlinearity of the node. The effect of different values of y on
the shape of the function is shown in Fig. 3.2. Another property of this function is that it
becomes almost linear as Y~ 0, ana is nonlinear for large values of y. The saturation
region of the sigmoid function can be controlled by the parameter y. This means that the
nonlinearity of the sigmoid function can be controlled by this parameter.

Because the unsaturated range of the nonlinearity (dynamic range) is predetermined

48

and kept fixed throughout (generally y is made equal to 1); in the classical version of the
back-propagation algorithm it is very common that the initial set of weights causes the
nonlinearities to saturate and therefore the derivative of the nonlinearities becomes so small
that the weights update very slowly, if at all. This causes the algorithm to fail to converge,
or to converge after a relatively large number of iterations. On the other hand, if the slope

is made very small so as to have all the inputs to nonlinearity fall in the dynamic range,

o8 //
R T
04 [i]]

tanh(yx)
S
N

04— y
06 —<] - I
e VIl
e,
0 8 & 4 2 0 2 4 & 8 10

X

Figure 3.2 Sigmoidal Function

the inputs might be so small that it would take a relatively large number of iterations for

49

the actual outputs to move out from the dynamic range and fall in the correct saturated
regions. Therefore, there must be an optimal value for the slope of the nonlinearity for
different initial weights. Since there is no way to determine the optimal slope, it would be
desirable to modify the back-propagation algorithm such that the slopes of the
nonlinearities used in the net are made adaptive as well. The delta-bar-delta learning rule,
proposed by Jacobs (1988), based on four heuristics achieved faster rate of convergence
of algorithm while adhering to the locality constraint. These heuristics suggest that every
synaptic weight of a network should be given its own learning rate and that these rates
should be allowed to vary over time. Additionally, the heuristics suggest how the learning
rates should be adjusted. The delta-bar-delta learning rule uses the fixed slope/gain of the
nonlinearity of the neuron. We introduce adaptive gain into the delta-bar-delta rule and
show that it can yield additional benefits for the learning speed and generalization. The
learning rule for gains is easily incorporated into the delta-bar-delta learning rule as all the
quantities appearing in the formula for update of gain are locally available to the affected
gains. The modified algorithm consists of a weight update rule, a learning rate update rule
and a gain update rule.
Learning the synaptic weights:

Following the same approach as in the standard back-propagation the weight update

rule can be written

w,(n+1) =w,(n) +n,(n+)8y (1) + 2w {(n-1) (12)

50

In this case the only difference is in the formula for J, which is given by
8(n) = e, () '(v,/(m)) (13)
The formula (13) for &, for output nodes is the same as in the standard back-propagation
(7) except for the appearance of parameter y. Similarly, the formula for J; for hidden
nodes also gets modified by parameter y.
The Learning Rate update:
Following Jacob’s heuristics, the learning rate update rule is:
k¥ Sm-DDm>0

An(n+1) = { -Bn, () if S,(r-1)D,(m)<0 (14)

0 otherwise

where D;(n) and S;(n) are defined as, respectively

o0&
D,(n)= 'a—w:f("T)) (15)
and
S:,-,'(n) = (l -C)Dﬂ(n) + ch,'(n_ 1) (16)

where { is a positive corstant. The quantity Dy(n) is the current value of the partial
derivative of the error surface with respect to the wy(n). The quantity § (n) is an
exponentially weighted sum of the current and past derivatives of the error surface with
respect to wy(n), and { as the base and iteration number 7 as the exponent.

The learning rate parameters are updated based on both the partial derivatives of

51
the error with respect to the parameters and on an estimate of the curvatures of the error
surface at the current point in parameter space along each parameter dimension unlike the
traditional delta rule that performs steepest descent on the local error surface, the error
gradient vector &, (n) and the weight update vector Aw; have different directions. This
learning rule assures that the learning rate 7, will be incremented by constant number
if the error derivatives of the consecutive epochs have the same sign, which generally
means a smooth local error surface. On the other hand, if the error derivatives keep on
changing signs, the algorithm decreases the learning rates. The learning rate parameter is
incremented linearly but decremented exponentially. A linear increase prevents the
leaming rate parameter from growing too fast, whereas an exponential decrease means that
the learning rate parameter remains positive and that it is reduced rapidly.

Learning the sigmoid function parameter: Now, we need to find parameters y’s in the
sigmoid function to minimize €. By employing the gradient descent algorithm, the
increment of y,’ denoted by A v,/ can be obtained as

0&(n)
J !

AY/(n) = -n
ay,

(17)

where n, >0 is a learning rate given by a small positive number. Using the chain rule,

it is easy to show that

11
I nvbfvf

AY = ! n7>0 (18)
Y;

J

52

The learning rule for parameter the vy is easily incorporated into the standard back-
propagation program. In particular, all the quantities that appear in (18) are easily locally
available.
Summary of the training procedure

The following steps summarize the procedure to be adopted while training the
neural network.
1. Start with a reasonable network configuration, and set all the synaptic weights and
threshold levels of the network to small random numbers that are uniformly distributed.
2. Present the network with input vectors and output vectors of the system.
3. For each example in the set ordered in some fashion, perform the forward and
backward computations using the algorithm described above.
4. Iterate the computation by presenting new set of training examples to the network
until the free parameters of the network stabilize their values and the average squared error
&, computed over the entire training set is at a minimum or acceptable small value.
3.4 RESULTS OF SIMULATION

To evaluate the performance of the algorithm, we report results of simulation of
identification of a suitable model of a nonlinear system. In this type of identifier, the
output of the neural network almost coincides with the output of the plant after learning
and the model of the plant is composed in the neural network. The following algorithms

were simulated: A gradient descent algorithm (standard back-propagation), delta-bar-delta

53
procedure and delta-bar-delta with adaptive gain of the neurons. In the example considered

here, the plant is assumed to be of the form:

(k1) = fly (k=1),y,(k-2), u(k), u(k-1),u(k-2)]
In the identification model, a three-layer neural network with 5 input nodes, 20 nodes in

the first hidden layer, 10 nodes in second hidden layer and 1 node in the output layer, was
used. The hidden neurons are nonlinear whereas the output neuron acts as a linear
combiner. Since the initial values of the weights may affect convergence, all the
simulations have been performed with the same initial weights. The input to the model and
plant consists of uniformly distributed random numbers in the interval [-1, 1].
A) Gradient Descent Algorithm (Standard back-propagation)

The gradient descent algorithm was applied with a constant step size, n, of 0.2 in
each layer. Initially the weights were set uniformly distributed in the interval [-0.5, 0.5].
Convergence to a mean squared error over an epoch versus the number of epochs is shown
in Fig. 3.4. From Figure 3.4 it is observed that the speed of convergence is fast initially
but after few iterations it is very slow and it takes long to converge to the desired
tolerance.
B) Delta-bar-Delta Rule

A delta-bar-delta rule back-propagation algorithm was employed with n = 0.2, a

=0.9,x =0.01, = 0.1 and { = 0.7. Initially the weights were uniformly distributed

Mean-Squared Error over Epoch

0.08 —
_ ___ Stndard BP
- Delta-bar-Delta Rule
0.04 — - — - — Delta-bar-Delta Ruls with Adaptive Slope
0.00 20.00 40.00 60.00
Number of Epochs
Figure 3.3 Leaming Curves
0.12 —
:
s 0.08 —
S
§ -
E
g 0.04 —
L
0.00
| I | I T 1
0.00 20.00 40.00 60.00
Number of Epochs

Figure 3.4 Learning Curve (Standard Back-propagation)

55

0.03
T

0.02 —

0.01 —

Mean-Squared Esror Over Epoch
1

0.00 T | T | ! |
0.00 20.00 40.00 60.00
Number of Epochs
Figure 3.5 Learning Curve (Delta-bar-Delta Rule)
in the interval [-0.5 0.5]. Although the initial rate of convergence was rapid, as shown in

Figure 3.5, the algorithm did not achieve a final error as low as the other algorithm or it

took long to achieve the desired error tolerance.
C) Proposed Delta-bar-Delta Rule with Adaptive Gain
The delta-bar-delta rule with adaptive gain of the neurons was implemented with
the same value of the parameters as the delta-bar delta rule. Initially the gain of neurons
was set to 1.0. The results from delta-bar-delta rule with adaptive gain, shown in Fig. 3.6,
demonstrate an improved rate of convergence over the existing algorithms. From the
figure it is observed that the convergence is comparable to other algorithms initially but

after few iterations it is very fast and converges to the prespecified tolerance in about 10

56

0.02 —
o=
g
‘s 0.01 —
S
Q
E |
i
g 001 —
3
b3
0.00 4.00 8.00 12.00

Number of Epochs
Figure 3.6 Learning Curves (Delta-bar-Delta rule with Adaptive Gain)

epochs. This improvement in the rate of convergence can be attributed to the adaptive gain
of the neurons which has a catalytic effect in the learning process by modifying the
magnitude of the weight change.
(D) Comparison

Figs. 3.3 to 3.6 show the learning curves with mean squared average error over
an epoch &, plotted as a function of the number of epochs using various approaches
discussed above. Table 3.1 shows the learning time required by various algorithms to

converge to the preset value of the error, i.e., tolerance. From the learning curves it may

57
be observed that the algorithm based on delta-bar-delta rule with adaptive gain of the node
shows significant improvement in the learning speed as compared to the other algorithms.

In the case of standard back-propagation, we see from Figure 3.4 that the learning is

TABLE 3.1
Type of Back-propagation Number of epochs
Std. Back-propagation 52
Delta-bar-delta rule 46
Delta-bar-delta rule with adaptive gain 10

comparable and after a few iterations it is very slow. In sharp contrast, learning in case
of the proposed delta-bar-delta rule with adaptive gain of the node shown in Figure 3.6 is
quite fast. It takes about 50 epochs to converge to the prespecified tolerance with the
standard back-propagation whereas with the proposed algorithm it takes about 10 epochs
to converge. Simulations confirmed that adaptive gain significantly accelerated a back-
propagation algorithm.
3.5 CONCLUSIONS

The chapter has presented a method for improving the learning ability of neural
networks by using an activation function with changeable shape. The proposed updating
laws, involving the adaptive selection of the step size n and adaptive gain Y, have been
shown to learn much more efficiently the dynamics of a nonlinear system. Results of

simulation suggest that the proposed delta-bar-delta rule with adaptive gain of the node

58

significantly improves the convergence behavior when compared with conventional back-
propagation, making the proposed algorithm less computationally intensive. Because of the
fast convergence of the learning algorithm, it is possible to use a neural network for

modeling nonlinear dynamic systems in real-time.

CHAPTER 4

MODELING ROBOT DYNAMICS USING NEURAL NETWORKS

4.1 INTRODUCTION

During the past 40 years, great advances have been made in control theory and many
of these have now been applied in developing controllers for industrial robots. All of these
approaches, however, require the knowledge of a suitable mathematical model of the process
to be controlled. In most practical cases, the system is also subject to random noise in the
form of errors in sensor measurements, disturbances and parameters variations. Some types
of stochastic models are needed in these cases for developing a suitable controller.

In view of the above, in this chapter we will discuss various methods that have been
developed for modelling robot dynamics, and in particular how neural networks can be
employed to perform this task efficiently.

The problem of system modelling and identification has attracted considerable
attention during the past four decades mostly because of a large number of applications in
diverse fields like chemical processes, biomedical systems, ecology, econometrics, and social
sciences. In each of these cases, a model consists basically of mathematical equations which

can be used for understanding the behaviour of the system, and wherever possible, for

59

60
prediction and control. Most processes encountered in the real world are nonlinear to some
extent, and in many practical applications nonlinear models may be required to achieve an
acceptable predictive accuracy. The choice of model is vitally important since it influences its
usefulness in prediction and control. Practical applicat'ons have shown that nonlinear models
cannot only provide a better fits to the data but can also reveal rich behaviour such as limit
cycles and bifurcations, which cannot be captured by linear models.

Two basic types of modelling problems arise. In the first type one can associate with
each physical phenomenon, a small number measurable causes (inputs) and a small number
of measurable effects (outputs). The outputs and the inputs can generally be related through
a set of mathematical equation, in most cases nonlinear partial differential equations. The
determination of these equations is the problem of modelling in such cases. These can be
obtained by using either a set of equilibrium equations based on mass and energy balance and
other physical laws, or one may use the “black box” approach which consists of determining
the equations from the past records of the inputs and the outputs. Modelling problems of this
type appear quite often in engineering practice. This type of problem is referred as system
identification.

When formulating and solving an identification problem, it is important to have the
purpose of the identification in mind. The interest in this subject has different roots, e.g,,
(i) Definite needs by engineers in process industries to obtain a better knowledge about their

plants for improved control (This holds not only for the chemical but also for the mechanical

and other production industries).

61
(i) The task of studying high performance aero and space vehicles, as well as the dynamics
of more down-to-earth objects like railway carriages and hydrofoils.
(iii) Study of a human being in tracking action and in other types of control.

In control problems the final goal is often to design control strategies for a particular
system. There are, however, also situations where the primary interest is to analyse the
properties of a system. Even if the purpose of the identification is to design a control system,
the character of the problem might vary widely depending on the nature of the control
problem. A few examples are given below:

Design a stable regulator

Design a control program for optimal transition from one state to another.

Design a regulator which minimizes the variations in process variables due to
disturbances.

In the first case it might be sufficient to have a fairly crude model of the system
dynamics. The second control problem might require a fairly accurate model of the system
dynamics. In the third problem it is also necessary to have a model of the environment of the
system. Assuming that the ultimate aim of the identification is to design a control strategy for
a system, what would constitute a satisfactory solution from a practical point of view?

The identification problem is defined by Zadeh (1962) as “the determination, on the
basis of input and output, of a system within a specified class of systems, to which the system
under a test is equivalent.” Using Zadeh’s formulation it is necessary to specify a class of

systems, a class of input signals, and the meaning of equivalence. The problem can also be

62

represented diagrammatically as Figure 4.1.

w(t)l a(t)

+
u(t) | System y(t
(Unknown) + L

Figure 4.1 Formulation of system identification
where
u(t) is the input
w(t) is the input observation noise
n(t) is the observation noise
y(t) is the output.
Thus, roughly speaking, the problem of system identification is the determination of the
system model from records of input u(t) and the output y(t).

A system identification problem consists of three steps: structure determination,
parameter estimation and model validation (Box and Jenkins 1970; Sinha and Kuszta 1983).
In the first step one tries to find the order of the model (discrete or continuous) by which the
system can be closely represented. The second step is the application of a suitable algorithm

to estimate the parameters of the model as accurately as possible. The last step is the

63

application of some criterion (e.g., the Akaike information criterion) to check how closely the
fitted model represents the system under consideration.

A number of methods have been proposed in the literature during the past few
decades. These methods can be classified in several different ways, for instance, continuous
time type or discrete time type; on-line methods or off line methods; parametric methods or
non-parametric methods etc. (Sinha and Kuszta 1983). In the past three decades major
advances have been made in adaptive identification and control for identifying and controlling
linear time-invariant plants with unknown parameters. The choice of the identifier and
controller structures is based on well established results in linear system theory. Stable
adaptive laws for the adjustment of parameters in these cases which assure the global stability
of the relevant overall systems are also based on properties of linear systems as well as
stability results that are well known for such systems (Narendra and Annaswamy 1989). The
theory of identification and control of linear systems is well established but very few results
exist in nonlinear systems theory which can be directly applied. Considerable care has to be
exercised in the statement of the problems, the choice of the identifier and controller
structures as well as the generation of adaptive laws for the adjustments of the parameters.
In short some of the problems in system identification using conventional methods are:

(i) determining the order of the system
(i) selection of a suitable criterion for determining the “accuracy” of the model

(iii) designing an input signal which will maximize the accuracy of the estimates of the

parameters of the model.

64

The capability of trained neural networks for approximating arbitrary input-output
mappings can find an important application in devising simple procedures for the identification
of unknown dynamical plants in order to control them. This chapter is concerned with
modelling the complex nonlinear dynamics of a robotic system using neural networks. A
neural network-based scheme has been used for the identification of inverse dynamics of a
manipulator. A learning scheme using a model of known dynamics of manipulators is used.
A modified form of the back propagation learning algorithm introduced in the previous
chapter has been used. To demonstrate the validity of the proposed method, we apply it to
identify the inverse dynamics of a two-link manipulator and a three-link manipulator. The
simulation results confirm that this modelling can be satisfactorily achieved. The chapter is
organized as follows: Section 4.2 deals with the identification using neural networks. In
Section 4.3 modelling of inverse dynamics of manipulator using a neural network is discussed.
Simulation results are presented in Section 4.4 and finally results are discussed.

4.2 IDENTIFICATION WITH NEURAL NETWORKS

One of the main objectives of modelling a process is to learn something about it,
perhaps by identifying the key parameters that influence it. Another is for control, either as
an on-line monitor or for use in a feedback controller. In computerized control systems the
control algorithm often assumes the form of a set of control rules specifying the relationship
between measured parameters of the system or the environment vs. control action taken. The
rules are derived as a result of the analysis of the model. In many applications however, the

model is either not available or too complex to be useful, e.g., biological processes, robotics,

65

etc. are difficult to model accurately to obtain satisfactory control algorithms.

It has been observed that trained human operators, after some practice, achieves very
good results in controlling complex systems. They know what control actions are to be taken
under different conditions, but typically they are unable to formalize their knowledge in
control logic that can be used to control the system automatically. One way to capture the
control logic of the system operators are the accumulation and analysis of the operational
data. The data, represented in a form of a table of measurement vectors sampled at specific
intervals, reflect the states of the system, environment and control action taken. The objective
of the analysis of data is to identify and describe the real relationship between the measured
variables and the actions taken and to derive the control logic as an optimized expression.
Models can be developed by utilizing either first principles such as material and energy
balances, or process input and output information. The advantages of first principle models
include the ability to incorporate the scientist’s view of the process into the model, the
capacity to describe the internal dynamics of the process, and the capability to explain the
behaviour of the process. Their disadvantages are the high cost of model development, the
bias that may have because of the model developer’s choices, and the limitations in including
the details due to lack of information about specific model parameters. As details are added
to the model, it may become complex and too large to run the model on the computer within
an acceptable amount of time. However, this constraint has a moving upper limit, since new
developments in computer hardware and software technologies permit faster execution times.

Often, some physical, chemical or transport parameters are computed by using empirical

66

relations, or they are derived from experimental data. In either case, there is some uncertainty
about the actual value of the parameter.

An input-output model is a means of describing the input-output relationship of a
system and an important question regarding the model is how to relate the input to the output
in some straightforward way that will provide an adequate approximation to a large class of
systems for a reasonable computational cost. For linear systems, it is well known that a linear
difference equation model exists that involves only a fixed and finite number of calculations
at each stage. Once the model is decided and verified to be correct, it can be used to aid in
understanding the nature of some unknown disturbances, forecast future values of the time
series, derive unknown transfer functions, or to design optimal control strategies. On the
other hand most systems encountered in the real world are nonlinear to some extent and in
many practical applications nonlinear models may be required to achieve an acceptable
prediction accuracy.

The nonlinear autoregressive moving average (NARMAX) model (Leontaritis and
Billings 1985, Chen and Billings 1989a) provides a unified representation for a wide class of
discrete-time nonlinear systems. In an NARMAX description the system is modelled in terms
of a nonlinear functional expansion of lagged inputs, outputs and prediction errors. Two
considerations are of practical importance for the application of the NARMAX approach. The
function describing a real-world system can be very complex and the explicit form of this
function is usually unknown, so that any practical modelling of a real-world process must be

based upon a chosen model set of known functions. Obviously this model set should be

67

capable of approximating the underlying process within an acceptable accuracy. Secondly, an
efficient identification procedure must be developed for the selection of a parsimonious model
structure, because the dimension of a nonlinear model can easily become extremely large.
Without efficient subset selection, the identification would entail excessive computation and
the resulting model would have little practical value. Previous research (Chen et al. 1989b)
has investigated the polynomial NARMAX model and several identification procedures based
upon this model have been developed (Chen and Billings 1989a). Because the derivation of
the NARMAX model was independent of the form of the nonlinear functional, other choices
of expansion can easily be investigated within this framework and neural networks offer an
exciting alternative.

In recent years, neural networks, which are not model based, have become recognized
as viable alternatives to traditional identification and control in many applications. This is
particularly true for complex, large order, or highly nonlinear systems which pose significant
challenges to mathematical modelling and model-based control. The nonlinear functional
mapping properties of neural networks are central to their use in control and identification.
Training a neural network using input-cutput data from a nonlinear plant can be considered
as a nonlinear functional approximation problem.

As discussed in the previous section system identification usually consists of two
stages - model selection, and parameter estimation. In case of neural network-based
identification, the selection of the number of hidden nodes corresponds to the model

selection stage. The backpropagation algorithm utilizes gradient descent to determine the

68

weights of the network and thus corresponds to the parameter estimation stage. Thus we
see that in case of the identification using neural networks we do not need to know the
model structure especially important with nonlinear systems like robotic manipulators.
Neural networks are trained to approximate relations between variables regardless of their
analytical dependency, they are usually referred to as model-free estimatcrs. The main
properties of the neural networks are:

(1) Ability to learn from experience.

(2) Generalization for untrained inputs.

(3) Capability to approximate to arbitrary specified accuracy given sufficient number of
neurons.

Neural networks have become of interest because of these properties and have been
used in several applications for performing various mappings. The properties outlined
above are the same as those of interest to researchers in the area of system identification.

Neural networks are trained to minimize the error energy function. Neural
networks, trained to minimize squared error energy function between neural network
output and a plant output. In this type of identifier, the neural network output converges
with the plant output after leamning and the direct/forward transfer function is composed
in the neural network. The other type of neural network identifier is trained to minimize the
squared error between the neural network output and the plant input. In this type of identifier,

the neural network output converges with the plant input after learning and the inverse

69
transfer function of the plant is composed in the neural network. If we can get the inverse
model of the system by neural network, the neural networx can be used as a feedforward
controller. In almost cases, to get the input which realizes a desired output of the system is
impossible, so that we cannot get learning patterns of the neural network for inverse
modelling of the system. We can get only the error between the output of the system and the
desired output which is used as the input value of the neural network. We must calculate the
error between the output of the neural network and input of the system for the desired output,
using the error between the output of the system and the desired output for learning in inverse
modelling. The most important application of the identified inverse model result is in the
direct controller. In robotics, e.g., it may be possible to implement a complete inverse
dynamics model of the robot which could possibly incorporate dynamics of the control device,
backlash, and gear friction. This model would be computed without the need for analytic
modelling.

There are different neural networks used in the identification. Some of them are

J Feedforward multilayer neural networks
. Radial basis function networks
o Recurrent neural networks

Multilayer networks have been applied successfully to solve some difficult and diverse
problems by training them in a supervised manner with a highly popular algorithm know as
the Back-propagation algorithm. The structure of a multilayer neural network has been

described in (Haykin 1994 and Rumelhart ef al. 1986). A multilayer neural network is

70

composed of hierarchy of processing units organized in a series of two or more mutually
exclusive sets of neurons or layers. The first layer acts as a receiving site for the values
applied to the network. At the last layer, the results of the computation are read off. Between
these two layers lie one or more layers of hidden units. The function of the hidden neurons
is to intervene between the external input and the network output. The number of layers in
the network, and the number of neurons in each layer, are important parameters of the
network. Once these have been selected, only the adjustable weights have to be determined
to specify the network completely. These weights are generally adjusted to minimize the error
between the output of the network and some desired output according to some criterion. Due
to the presence of the nonlinear function in the network, it follows that the output of the
network depends nonlinearly on the parameters. This, in turn, implies that the parameters
have to be adjusted using some gradient-type method such as backpropagation. Another
important feature of the multilayer networks is that the networks contain only the linear
operations of multiplication by a scalar constant and summation in addition to the single
nonlinear function which is known. This makes it mathematically attractive for the
approximation of functions and consequently for the modelling of systems nonlinear
differential equations.

A viable alternative to multilayer neural network is the radial basis function network
(RBFN). The RBFN can be considered as a two-layer network in which the hidden layer
performs a fixed nonlinear transformation with no adjustable parameters, so that the input

space is mapped into a new space. The output layer then combines the outputs in the latter

71

space linearly. The details of the network can be found in (Haykin 1994 and Rumelhart ez al.
1986). When the radial functions are specified, the only adjustable parameters of the network
are the weights. Since these are linearly related to the output and the output error, they can
be adjusted using a straightforward least square approach. This, in turn, has made radial basis
networks attractive in signal processing, identification, and control.

Multilayer neural network has been considered as providing a nonlinear mapping
between an input vector and a corresponding output vector. Most of the work in this area has
been devoted to obtaining this nonlinear mapping in a static setting. Many practical problems
may be modelled by static models, e.g., pattern recognition. On the other hand, many real-life
problems such as time series prediction, vision, speech recognition, and motor control require
dynamic modelling, i.e., the current output depends on previous inputs and outputs. There
have been number of attempts to extend the multilayer networks to encompass this class of
problems (Lapedes and Farber 1987, Narendra and Prathasarthy 1990). Waiebel ef al. (1989)
used a time delay neural network architecture that involves successive delayed inputs to each
neuron. All these attempts use only feedforward architecture, i.e., no feedback from latter
layers to previous layers. There are other approaches that involve feedback from either the
hidden layer or the output layer to the input layer. These define the class of recurrent
networks. Recurrent or feedback networks allow information to flow from the output to the
input field, so that the previous state of the network can be fed back to the input. The current
input, therefore, can be processed based upon past as well as future inputs. Recurrent

networks share the following distinctive features: (i) nonlinear computing units; (ii) symmetric

72

synaptic connections; and (iii) abundant use of feedback. Details can be found in (Williams
and Zipser 1990, Hopfield 1982, 1984).
4.3 MODELLING INVERSE DYNAMICS OF A MANIPULATOR

Model-based robot control schemes require the inclusion of the dynamical model of
the robot arm in the control law. Hence, it is necessary for robot dynamics to be modelled
accurately. However, the dynamics consists of a set of second-order, nonlinear, and highly
coupled partial differential equations. The dynamics are time variant, and undergo changes
such as variations in payloads, changes in the friction coefficients of the joints etc. These facts
have always posed a major problem in the implementation of dynamic-based controllers.
Many algorithms have been developed for the computation of the dynamics in the last decade,
and this can be seen in the literature on the subject (Koivo 1989, Fu et al. 1987).

The reliance of most model-based control algorithms on the accurate derivation of the
arm dynamics is barely practical when operating in real-time because of the time-varying
nature of the robot arm. This is due to several reasons, for example, the nonuniform mass
distribution of the different links, the high degree of coupling among links, and the effects of
handling loads. These issues need to be addressed and solutions incorporated during the
model development stage. Robot dynamic models are usually defined using two kinds of
parameters. The first is kinematic parameters, which define homogenous transformations
between successive links. The second kind is the dynamic or inertial parameters consisting of
mass, centre of mass and the inertial parameters of each link. The measurement of the

dynamic parameters involves excessive computations due to the large number of

73
multiplications and additions involved. The computation of the dynamics must be made fast,
efficient, and viable in terms of cost to enable real-time implementations. Several techniques
for the measurements of these properties can be found in the literature (Khosla 1988,
Atkeson 1988). However, most of these techniques incur a heavy computational load which
hinders real time applications. Application of neural networks to dynamical modelling has
created a lot of interest in the past decade. What makes neural networks a viable tool is the
fact that autonomous systems, such as robot manipulators, require a high degree of flexibility
to deal with significant variations in the environment. These variations are, often,
unpredictable and difficult to formulate with traditional mathematical tools.

4.3.1 Problem Definition

In the case of a robot system, the dynamics are complex and nonlinear. The general
form of the dynamic equations of a robotic system can be written as:

() = M@@1)§(® +Cg(®,4(0)®) +G(g(1) 1)

where t(f) is a n x 1 vector of joint torques

q(1) is a n x 1 vector containing the joint angles

M(q(0)) is the inertia matrix of the manipulator

C(q(9),4(p) is the contribution of the Coriolis and centrifugal forces and

G(q(p)) is the gravitational torque due to the gravity.
Concerning the system represented by equation (1), the following two problems are
encountered:

(i) The forward dynamics problem: Given the torque vector t(f), obtain the output vector g(f)

74

and 4(7). This is equivalent to the problem of modelling the dynamical system of eq. (1).

(ii) The inverse dynamic problem: Given the vectors of the joint angles g(7), joint velocities
4(?), and accelerations §(f), calculate the vector of torque inputs t(f). An inverse problem
is important to control problems since it allows one to find the appropriate inputs necessary

for producing the desired outputs.

ne,... 10 Arm linkage Q... a0

> dynamics \

A S q 4 ERC)
10
v
100
9.
T:e TmTe
1w, - 10 Q0. q(0)

- Inverse dynamics

Figure 4.2 Inverse Dynamic
The recent resurgence of research and application of artificial neural networks to
diverse range of disciplines makes it possible to seek out solutions of robotic problems by
employing neural networks. Application of neural networks to the inverse dynamics problem

has created a lot of interest recently (Kawato ef al. 1987, Miyamoto ef al. 1988). The basic

75

idea is that the neural network learns the inverse dynamical relationship of the robot directly
s0 as to map the nonlinear relationship between the robot torques and joint variables. Once
the inverse dynamic model of the manipulator is known, it can be used as a feedforward
controller.
4.3.2 Model Learning

Psaltis ef al. (1988) proposed a two-stage learning procedure. The first stage is called
generalized learning with its configuration shown in Fig. 4.3, and the second stage is called
specialized learning with a different configuration shown in Fig. 4.4. For generalized learning,
the robotic manipulator should be actually operated, and operating data should be recorded.
Then, the neural network receives the obtained trajectories and is trained to yield the desired
torque command. This training can be fulfilled off line. After the neural network is well
trained, the neural network is installed in the feedforward loop of the manipulator controller,
and specialized leaming is used to fine tune the neural network on line. This procedure is
inefficient in generalized learning because of the following:
1) For recording the learning data, the robotic manipulator should actually be operated. This
is time consuming.
2) It is difficult to obtain data that are uniformly distributed over the working space of the
endpoint of the manipulator.

As far as robotic manipulators are concerned, we can obtain approximate dynamical
models to a certain extent from either the operating data or the design specifications. The

neural network learning consists of two steps. Step 1 consists of generalized learning of the

76

Desired Actual
Motor Command ————— — Trajectory
Maaipulator >

Neural
Network [€—
Figure 4.3 Generalized Learning
Actual
Desired Trajectory
ject
Traje_ oy | Neural —————>»{ Manipulator >
l Network [€—

Figure 4.4 Specialized Learning
neural networks from the obtained dynamical model. The scheme is shown in Fig. 4.5. Since
no actual operation of the manipulator is necessary in generalized learning, model learning is
efficient. In step 2 the neural network can be trained to learn structured/unstructured
uncertainties by actually operating the manipulator on line.
Once the neural network finishes learning, it produces an approximate inverse dynamic model,

described as

77

t,, = Mg)d,+Cg,d)+Ga)

where A;!(qd), C:‘(qd, 4)and G(q ;) are the estimated values of the various parameters of the

equation (1).

Desired Actual
Trajectory _ | Manipulator Trajectory
Model
X +
3 Neural
Netw\ork -
Figure 4.5 Model Learning

Thus, a neural network learns the following nonlinear function
T = S G29090%:Y)

where w and y are the synaptic weights between nodes and sigmoid function parameter
respectively.
4.4 Results of Simulation

This section presents the modeling of the nonlinear robot dynamics of eq. (1) by using
a neural network. A three-link and a two-link manipulators have been simulated.
4.4.1 Two-Link manipulator

The simulated two-link manipulator is shown in Figure 4.S. For this manipulator the

terms appearing in the dynamical equation (1) are given as

78

m, = mllcz, +m2(l,2 +l:2 +21,1 cos(qy)) +1, +1,
m,=m,, = mz(lczz +1.1 ,c0s(q,)) +1,
2
My =myl.,+1,
g,=mgl_cos(q,) + mgl cos(q,) + m.gl_cos(q, +q,)

8, =mygl_cos(q, +q,)
h= -mzlllczsin(qz)

with

hi, hq,+hq
o | hayha,
-hg, O

The details of the derivation of equations can be found in any good book on robotics
(for example see Spong and Vidyasagar 1989).

Link 1 was moved from 15 degrees to 75 degrees and link 2 was moved from 20
degrees to 80 degrees in 3 seconds. Cubic trajectories are specified between the various goal
points according to standard trajectory planning schemes (Craig 1986). The desired

trajectories of are expressed as

d
7,/(0)| 115.0+20.0r2-4.441
gi@| [20.0+20.0r*-4.448

A three-layered neural network has been used. The network consisted of 6 nodes in
the input layer, 25 nodes in the first hidden layer, 35 nodes in the second hidden layer and 2

nodes in the output layer. The number of nodes in the input and the output layer are

79

determined from the problem at hand.

—>

Figure 4.5 Two-Link Manipulator

Structure of the training set

The training set for the network consisted of
Inputs: desired position, desired velocity and the desired acceleration of the two joints, and
Target outputs: required torque at the two joints.

The output of the neural network and the output of the plant are given in Figures 4.7
and 4.8. Figure 4.7 shows the time history of the torque of the motor shaft 1 and figure 4.8
shows the time history of torque for link 2. The dotted line shows the control torque
generated by the inverse dynamic controller and the solid line depicts the torque learned by
the neural network. The two lines are almost the same showing that the desired and actual

torques follow each other quite closely and the training results are very good.

Torque for Link 1

2.00 —

1.00 —

Torque for Link 2

0.00 —1

-2.00 —

-4.00 —

-6.00

e Desired Torque

// ___Actual Torque

T 7
50.00 100.00 150.00
Number of Samples

Figure 4.7 Comparison of the desired and the predicted torque for link1

ey

-

_~= Desired Torque
—— Actual Torque

' I ‘ I

50.00 100.00 150.00

Number of Samples

Figure 4.8 Comparison of the desired and predicted torque for link 2

81

4.4.2 Three-link Manipulator

A three-link manipulator is used for the simulation. The first three links (waist,
shoulder, and elbow) are considered for the sake of simplicity. The remaining three links
(wrist assembly) do not contribute significantly to the dynamics of the arm, but would add
considerable computational complexity. Link 2 and 3 have dimensions 0.457%(.102x0.0127
m, and mass 0.9 kg. Link 1 is cylindrical with height 0.5 m, and diameter and mass of 0.1
m and 10.6 kg respectively. Various components of the equations of motion are not included
as they can be found in any good book on robotics. Link 1 was moved from 0 to 90 degrees,
link 2 was moved from 15 to 75 degrees and link 3 was moved from 20 to 80 degrees in 3

seconds. The desired trajectory of the robot is expressed as

d,

Y 30.0¢2-6.66¢°

0| = [15.0+20.0r2-4.44
2_ 3

o] 20042004441

After the neural network learns the inverse dynamic model of the manipulator, the output of
the neural network and plant is shown in Figs. 4.9 to 4.11. It is observed that t!.: estimated
torque (network output) is almost equal to the desired torque. As a result of the learning, the

actual responses converge to the desired trajectories.

Torque for link 1

A
0.20 —
—-- Desired Torque
| ___Actual Torque
0.00 —
-0.20 u T ! I
0.00 100.00 200.00

) Number of Samples
Figure 4.9 Comparison of the desired and predicted torque for link 1

« ___Actual Torque
\\ ---- Desired Torque

Torque for Link 2
]

0.00 —

-4.00 T I [|

0.00 100.00 200.00
Number of Samples

Figure 4.10 Comparison of the desired and predicted torque for link 2

82

83

8.00 —

4.00
___Actual Torque

- Desired Torque

Torque for Link 3

0.00

-4.00 T l T l

0.00 100.00 200.00
Number of Samples

Figure 4.11 Comparison of the desired and predicted torque for link 3

4.5 Conclusions

This chapter presented a procedure to solve the problem of computing the complex
nonlinear dynamics of a robotic system using a neural network. The neural network was used
to estimate the torque, i.e., input to the robot, therefore, avoiding the computationally tedious
task of using parameters’ estimators. Simulation results show that modelling can be
satisfactorily achieved. They also confirm that neural network identifier can represent
nonlinear system characteristic very well. Because of its ability to identify nonlinear
relationships and because it is fundamentally a parallel technique, a backpropagation algorithm

is a particularly promising neural algorithm for application in robotics. A model learning

84

scheme was also proposed. The elementary training of the neural network using an obtained
model can be fulfilled off line to give an approximate model and needs no data recording of
actual manipulator operation. After the model learning is finished, the neural network learns
structured/unstructured uncertainties on line. This leaming procedure is effective and efficient
in learning the manipulator dynamics, and an error convergence rate is fast, making the
learning less computationally intensive. In summary we can say that neural networks are

powerful-tool in modelling and identification of unknown dynamical systems.

CHAPTER §

MOTION CONTROL OF ROBOTIC MANIPULATORS

5.1 INTRODUCTION

In control system design, solutions to problems encountered generally involve
derivations of dynamic equations of system under study and design of real-time control
algorithms to meet certain system specifications. To be more specific, the solutions involve
modelling of the system based on physical laws or system identification based on control
inputs applied to the system. Typically, the system to be controlled is described by a set of
linear or nonlinear differential equations. Implementation of controllers can be carried out
either in hardware or software.

Robotic manipulators have become increasingly important in the field of flexible
automation. The dynamic behaviour of robotic manipulators is defined by coupled nonlinear
differential equations. One of the important and fundamental tasks of the robot manipulators
is position control. Present day industrial robots operate with very simple controllers, which
do not yet take full advantage of the inexpensive computer power that has become available.
The result is that these fairly expensive mechanisms are not being utilized to their full potential

in terms of the speed and precision of their movement. With a more powerful control

85

86

computer it is possible to use a dynamic model of the manipulators the heart of a sophisticated
control algorithm. This dynamic model allows the control algorithm to know how to control
the manipulator’s actuators in order to compensate for the complicated effects of inertial,
centrifugal, Coriolis, gravity, and friction forces when the robot is in motion. The result is that
the manipulator can be made to follow a desired trajectory through space with smaller
tracking errors, or perhaps move faster while maintaining good tracking.

Through the years, considerable research efforts have been made in control of the
robotic manipulator. In order to achieve accurate trajectory tracking and good control
performance, a number of different control schemes have been developed. Computed torque
control is one of the most intuitive schemes, which relies on the exact cancellation of the
nonlinear dynamics of the manipulator system. Such a scheme has the disadvantage that the
exact dynamic model is required. Furthermore, the inertia properties and gravitational loads
of the robot manipulator vary during operation and are dependent on its payload, which may
not be necessarily known in advance. To overcome this problem, adaptive control strategies
for robot manipulators have been developed, and have attracted the interests of many
researchers (Craig 1988, Slotine and Li 1988). These adaptive control methods have the
advantage that, in general, they require no a priori knowledge of unknown parameters such
as the mass of the payload. These techniques are based on using the known model form to
construct a control law with unknown parameters and then using the system data to estimate
these parameters. Although adaptive control procedures have been applied in the robot

control, they are limited by the need to assume that the forms of the system equations are

87
known. For a complex process, however, the forms of the system equations may be unknown,
making it impossible to determine the required control law for use in existing adaptive control
procedures. This problem provides the motivation for considering the use of neural networks
in adaptive control.

Neural networks have recently attracted much attention for their potential to address
a number of difficult problems in modelling. One of the areas receiving a significant portion
of the attention is the use of neural networks for controlling and regulating nonlinear dynamic
systems. Traditionally, developing controllers for nonlinear dynamic systems has been
difficult, even in deterministic settings where the equations governing the system dynamics
are fully known. Neural networks however, offer potential for addressing control problems
even broader than this, including the control of stochastic systems with unknown nonlinear
dynamics. The basic idea of this sort of control strategy is to combine humans’ experience and
knowledge of the control system in order to learn, adapt and make decisions to meet the
desired performance criterion. Neural network control design is done in two steps. First a
neural network is used to approximate the dynamic model for the system. This approximation
is usually carried out off-line and then when sufficiently an accurate approximation is
obtained, an appropriate control strategy using this approximation can be constructed.

A neural network-based scheme for the control of a robotic manipulator is
investigated. The main idea is that by using a neural network to leamn the characteristics of
the robot system (or specifically its inverse dynamics) accurate trajectory following and good

performance results are obtained. The intention is to demonstrate the potential of a neural

88

network in conjunction with a linear compensator to perform such a function. A neural
network is used in a feedforward loop with a conventional feedback proportional plus
derivative (PD) controller. As learning went on, the feedforward/feedback compensation
tended to move to a feedforward path with little feedback compensation. A linear
compensator (PD) is unable to control a robotic manipulator under different conditions of
operation. A neural network can be trained to produce the large portion of the control
input; however, a hybrid combination of the neural network and the linear compensator
gives the best results. Furthermore, we demonstrate that such a hybrid system can tolerate
changes in the operating conditions. Finally, we demonstrate generalization within the
training domain through accurately predicting a case that was absent in the training
domain. The modified backpropagation learning algorithm introduced in chapter 3 is used
to train the neural network. The suggested method is applied to the control of a two-link
manipulator and a three-link manipulator. The results demonstrate that the proposed
method gives better error minimization and faster convergence. The resulting controller
is sufficiently robust with respect to the changing conditions.
5.2 NEURAL NETWORK-BASED CONTRCLLER

Dynamics of a manipulator involves nonlinear mapping between applied joint torques
and the joint positions, velocities and accelerations. These relationships can be described by
a set of second-order, nonlinear and highly coupled differential equations with uncertainty as

a robct may work under unknown and changing environments and execute different tasks.

89

The equations of motion for a manipulator can be written as

M(q)§ +C(q.9)+G =t (1)
where T € R"is the joint actuator torque and g € R" is the generalized joint angles, and M(q)
is a matrix, usually referred to as the manipulator mass matrix containing the kinetic energy
functions of the manipulator. C(q,4) represents forces arising from Coriolis and centrifugal
forces and G is the force due to gravitation. Generally equation (1) is very complicated for
all but the simplest manipulator configurations.

The manipulator control problem is a problem in which the end-effector is made to
track the reference values representing the desired value. The inputs to the manipulator
system can be chosen as the generalized torques produced by the joint actuators, and the
outputs to be controlled are the positions. The actual positions and velccities of the joints in
a manipulator can be measured by encoders and tachometers, respectively. The values of the
accelerations can be calculated by hardware or software programming. These variables can
then be compared with their desired values using feedback loops to from the position,
velocity, and acceleration errors for driving the plant.

For controlling the motion of the manipulator along a desired path, the actuator
torque functions have to be calculated from the equations of motion. This requires
incorporating the effects of inertia, coupling between joints (Coriolis and centrifugal forces),
gravity loading, gear friction and backlash, and the dynamics of the control devices. The
inverse dynamic approach is particularly important for control of robots, and can be used to

compensate for highly coupled and nonlinear arm dynamics.

90

To make the end-effector of a manipulator track the desired nominal trajectory, the
generalized torques applied to the system should have the appropriate (nominal) values that
result in the desired motion under ideal conditions. The controller generating these values can
be referred to as the primary controller. Thus, it compensates for the nonlinear effects. Since
the mathematical model used is usually not exact, and since the system is subject to
disturbances, undesirable deviations (errors) of the actual motion from the nominal trajectory
can be corrected by means of an additional controller called a secondary controller. Many
strategies have been developed for controiling the motion of a robot. These require the
knowledge of the mathematical model of the robot manipulator to be controlled. Considerable
effort has been devoted in the past for developing dynamical models of the from given by (1)
for different kinds of manipulators, which are in turn used for designing appropriate control
strategies for executing desired motions. Due to the highly nonlinear functions and the
existing coupling between the joint motions, evaluation of the model parameters is not a
simple task, however. Several schemes have been devised which incorporate the full dynamic
model of the arm in the controller design (Craig 1988). Adaptive techniques are essential for
the stable and robust performance of the manipulator. This is due to the fact that manipulators
are systems of nonlinear and time-varying nature. In general, the aim of a model-based
adaptive control algorithm is to estimate the parameters of the model, and then use the
estimates to compute the control scheme by an appropriate design method. The literature on
adaptive control is vast and several techniques were proposed by researchers in the last few

years (Narendra and Annaswamy 1989, Slotine and Li 1988). Adaptive control techniques

91
are divided into two approaches, namely, (1) direct adaptive control and (2) indirect adaptive
control. In the former approach, the parameters of the controller are directly adjusted to
reduce some norm of the output error. While in the latter one, the parameters of the plant are
estimated and accordingly, the controller is updated so thzt to minimize the error between the
model and the plant. These techniques are based on nonlinear laws which make them difficult
to derive. For implementing an adaptive control that can deliver satisfactory performance in
the face of variations in plant parameters and external dynamics, parameters’ estimation
followed by updating of control is needed at each adaptation step which further compounds
the complexities. Furthermore, their complexity grows geometrically with the number of
unknown parameters which makes them non-robust. In addition, all these techniques incur
a heavy computational load which hinders their real-time applicability. Several researchers
have presented learning control schemes for improving the performance in trajectory
following tasks over successive attempts at following the same trajectory (Arimoto et al.
1984, Atkeson and McIntyre 1986). Typically, control torques for each time instant in the
trajectory are adjusted iteratively based on observed trajectory errors at similar times during
previous attempts. In the results presented by these researchers, the trajectories followed
consistently converged on the ideal trajectories over several repetitions. A drawback to such
control techniques is that they are only applicable to operations which are repetitive.

Recently there has been considerable interest in learning in the form of simple models
of networks of neurons. The recent resurgence of neural networks makes it possible to seek

solutions for robotic problems. The basic theme is that of using the network to learn the

92

characteristics of the robot/sensor system, rather than having to specify explicit robotic
models. We will be discussing neural network based control scheme for the motion control
of a robotic manipulator. The block diagram of the control system is shown in Fig. 1. No
parameter estimation is required as the control law does not depend on the parameter
estimates. The control signals are the outputs of a neural network where the network’s
parameters (synaptic weights) are adjusted by an error signal that quantifies the amount of

deviation between the model and the system. In addition, the neural network is also robust.

Neural
»| Network

Feedforward

Robot

Feedback

‘ Figure S.1 Neural network based control scheme
In this scheme neural network controller acts as a primary controller and PD
controller is used as a secondary controller. It will be seen that most of the system input, i.e.,
torque is provided by the neural network controller. The fixed-gain PD controller ensures
adequate performance prior to convergence of the network weights and provides the training

signal to the network for the purpose of adapting the weights. It also reduces steady-state

93

output errors due to disturbance inputs. As can be seen from the figure 1, the sum of the
outputs of the neural network and the feedback controller will be the actual input torque to
the robotic manipulator. This can be expressed as
T =Tt T ¥))

where t,, is the output of the neural network and t,, is the output of feedback (PD)
controller. The feedback controller plays a role in making the whole system stable. The
neural network has been trained off-line to approximate the inverse dynamic model of the
manipulator. The learning scheme to get the inverse dynamic model of the manipulator has
been discussed in the last chapter. Once the neural network finishes learning, it produces an
approximate inverse dynamic model, described as

Ty = D9)d,+C404D + G 3)
where D(q,), C(g,4,)and G(q,) are the estimated values of the various parameters of the
equation (1). Thus, a neural network learns the following nonlinear relations

T = S@p9090W:Y)

where w and y are the synaptic weights between nodes and sigmoid function parameter
respectively. The total torque to the manipulator is given by

Tt tpd = ﬁ(qd)qd + é(qasqd) + G +Kp(qd-q) +Kd(qd—q) (4)

Writing the equation for the closed loop system, we have
E+KE+KE = D(g,) '[(D@)-Dg) +(C@.d) -Ca,4) +(G-G)] ()
If the model were exact then the right-hand side of (5) would be zero and the errors

would disappear. When the model is not exact, the mismatch between the actual and modeled

94
parameters will produce these error signals that can be utilised to train the neural network on-
line so that the errors go to zero.

5.3 RESULTS OF SIMULATION

Simulations were done to verify the neural controller compensating unstructured
uncertainties. The proposed scheme has been applied to a two-link manipulator and a three-
link manipulator.
5.3.1 Two-link Manipulator

Various components of equation (1) for a two-link manipulator are given in the
previous chapter. The desired trajectory of the robot is expressed as

d
()| [15.0+20.01*-4.441
o] [20.0+20.0r2-4.44¢

The number of input and output nodes is determined from the problem at hand
whereas the numbers of nodes in the hidden layers are flexible. The neural network employed
in the simulation consists of an input layer with six nodes, the first hidden layer with 25 nodes,
the second hidden layer with 35 nodes and an output layer with 2 nodes. This is symbolized
as N 55, 35, »- Learning the dynamics of manipulator has been discussed in chapter 4.

Comparisons of the desired angular position with that produced by the neurocontroller
with linear compensation are shown in Figs. 5.2 and 5.3. The figures show the time history
of the shaft angle. It is observed that the predicted trajectory and the desired trajectory are
coinciding and the results are almost indistinguishable. This clearly shows that a combination

of a neural wetwork with a linear compensator is more than capable of controlling the motion

95
of a robotic manipulator.

14

-
T 17

4

Joint angle 1 (rad.)

0 0s 1 15 2 25 3
Time (sec.)

Figure 5.2 Comparison of the desired and predicted time histories of the joint angle 1

14

12 ‘ /
7

‘ / *
/

08 /

/

Joint angle 2 (rad.)

06 ~

e

Time (sec.)
Figure 5.3 Comparison of the desired and predicted time histories of the joint angle 2

96
Robustness of Control Strategy

Robustness of the model was tested without retuning the neural network. Although
most industrial robots perform repetitive tasks, often robotic systems are subject to the
payload variations. This may arise from the fact that the standard articles handled by the
robot may have slightly different masses due to the variations in the manufacturing process.
Thus, it is important to determine how the controller deals with these uncertainties. As
expected, simulations have shown that the proposed neural network controller has better
robustness and is less sensitive to the payload variations. Figs. 5.4 and 5.5 show the results

of simulation with about 10% variation from standard payload used in the training process.

%
\

-
N

[-d

: /
1
+ //

L~

Joint angle 1 (rad.)

on 05 1 15 2 25 3
Time (sec.)

Figure 5.4 Comparison of the desired and predicted time histories of the joint angle I with

10% payload variation

97

Joint angle 2 (rad.)

1

oz‘f 05 1 15 2 25 3
Time (sec.)

Figure 5.5 Comparison of the desired and predicted time histories of the joint angle 2 with

10% payload variation

In Figs 5.6 and 5.7 describe the simulation results with about 50% variation from the
standard payload. It is observed that even in this case the desired and predicted results are
almost indistinguishable. In most cases, a robot will be performing the same task, i.e., it will
be following the same trajectory. Simulations have shown that even if the trajectory is
different from the one used in training, the proposed scheme is very robust. The results are

shown in Figs. 5.8 and Figs. 5.9.

98

.

~

g

—t LY
.a .

8

b
5
=

% 05 1 15 2 25 3
Time (sec.)

Figure 5.6 Comparison of the desired and predicted time histories of the joint angle 1with
50% payload variation

12 /} >
a
% /
_a)
8 /
g o 4
R /

0.4 _/’

o.z° 05 \ 15 2 2s 3
. Time (sec.)

Figure 5.7 Comparison of the desired and predicted time histories of the joint angle 2 with

50% payload variation

/

)

AN [
BLALLL AL
£ IN

2
2~
N

\

[} 0.5 1 1.5 2

25 3

Time (sec.)

Figure 5.8 Comparison of the desired and predicted time histories of the joint angle 1

38 4 (%]

$

N

AN

/

99

\[
\

Joint angle 2 (rad.)
[-]

\|/

\

(4
)

Y

V
J
]

\

0.
° 05 1 S

2 23

3 35 4

Time (sec.)

45

S

Figure 5.9 Comparison of the desired and predicted time histories of the joint angle 2

100

To see the effect of dynamics changing fast i.e., when the manipulator is moved fast

or the same task is required to be completed in less time. Simulation were performed and the

results are shown in figures 5.10 and 5.11. Even in this case the proposed controller has better

robustness.

q.

Joint angle 1 (rad.)

04

e

0 02 04

Figure 5.10 Comparison of the desired and predicted time histories of the joint angle 1

[+1] 1 1.2
Time (sec.)

14

18

2

101

1.4 “‘
~, v
g /
3 4
e 7 |
g, /

Pra
o.‘

0% 02 oe« o6 o8 1 12 1« 16 18 2
Tene

Figure 5.11 Comparison of the desired and predicted time historics of ihe joint angle 2
5.3.2 Three-Link Manipulator
A three-link manipulator shown in figure 1 is used for the simulation. The first three links
(waist, shoulder, and elbow) are considered for the sake of simplicity. The remaining three
links (wrist assembly) do not contribute significantly to the dynamics of the arm, but would
add considerable computational complexity. Various components of the equations of motion
are not included. The value of the various parameters used in the simulation has been given
in section .

Link 1 was moved from 0 to 90 degrees, link 2 was moved from 15 to 75 degrees and

link 3 was moved from 20 to 80 degrees in 3 seconds. The desired trajectory of the robot is

expressed as

102

L
7., () 30.0¢2-6.661°
a0 = 15.0+20.0r2-4.443
2_ k)
2500 20.0+20.0¢2-4.44¢

The tracking responses of the proposed scheme are shown in Figs. 5.12t0 5.14 . As
a result of the learning, the actual responses converge to the desired trajectories. In most of
the cases, a manipulator will be performing the same task repeatedly, i.e., it will be following
the same trajectory. Simulations have shown that even if the trajectory is different from the
one used in training, the proposed scheme behaves well. The excellent correlation between
the desired trajectory and that produced by the combination of the network and the linear
compensator is quite evident. Producing the correct results suggest that the network has

learned to generalize.

AN

Joint angle 1 (rad)
T
N

:

0.4
02
2 / 7
0 0S) 1 15 2 25 3

Time (sec.)

Figure 5.12 Comparison of the desired and predicted time histories of the joint angle 1

103

N

-
N,

/

Joint angle 2 (rad.)
[-4
B

/

06} V4
04 //
_/
*% oS 1 2 25 3

15
Time(sec.)
Figure 5.13 Comparison of the desired and predicted time histories of the joint angle 2

/

Joint angle 3 (rad.)

S

0.4 <
—/
02
-] 0S 1 1.5 2 25 3

Time(sec.)
Figure 5.14 Comparison of the desired and predicted time histories of the joint angle 3

104

5.4 CONCLUSIONS
The feasibility of developing a controller based on neural networks for nonlinear
dynamical plants has also been demonstrated. A case study of a two-link robot and a three-
link manipulator has demonstrated that the proposed scheme is very promising, which
achieved satisfactory performance. The inverse model with neural network structure found
to possess the good performance. After the neural network has compensated perfectly or
partially for the nonlinearity of the controlled object through learning, the responses of the
controlled object follow the desired responses supplied by inverse reference model
implemented in the conventional feedback controller. The combination of the neural network
and linear compensator proved to be very valuable in controlling the manipulator. In most
cases, corrections provided by this scheme resulted in exact reproduction of the desired
results. Generalization was shown through reproduction of a case that was absent from the
training set. The results permit reaching goals with arbitrarily low error even though the
inverse dynamics, which was learned by the neural network is only an approximation. The
inverse model with neural network structure gave better performance. After the neural
network has compensated perfectly or partially for the nonlinearity of the controlled object
through learning, the responses of the controlled object follow the desired responses supplied
by the inverse reference model implemented in the conventional feedback controller. In most
cases, corrections provided by this scheme resulted in exact reproduction of the desired
results. The advantage of the proposed controller is that there is no need of on-line training

as the neural network is trained off-line. Thus, this avoids the problem of heavy on-line

105

computation required by adaptive controllers and robust controllers. Furthermore, the
proposed controller has the potential to handle the effect of changes in the payload and
variations in the operating conditions. As a result, the adaptive capabilities of the neural

network controller to the unstructured effects are clarified.

CHAPTER 6

EXPERIMENTAL RESULTS

6.1 INTRODUCTION

The purpose of conducting experiments was to test the real-time features, and
numerical characteristics of the proposed neurocontrol scheme. While there seems to be a
widespread interest in the robotic control problem within the neural network and robotics
communities, little has been reported in the nature of actual robot control experiments. This
is due, at least in part, to the computational speed and stability problems encountered when
using typical neural models in networks of sufficient complexity to be useful for a realistic
robot control problem. This chapter presents the results of real-time experiments which
involved learning the dynamics of a manipulator. Experiments were conducted using
FLEXROD, an experimental two-link revolute joint manipulator and a single motor fixed with
a multi-degree of freedom gripper designed and built in the Mechanical Engineering
Department of McMaster University. Also, there are many uncertain factors in a real time
setup than found in simulation models, which often present challenges to model-based control
approaches.

The general procedure of control systems development involves the following steps:

106

107
(i) control task definition; (ii) control system hardware setups; (iii) modeling, parametric
identification; (iv) control scheme selection and simulation tests; (v) real-time control code
programming and implementation; and (vi) system testing.

Since FLEXROD and single link robot have been set up already and a neurocontrol
scheme has been developed and tested by simulation, only steps (v) and (vi) remain to be
done.

6.2 Experimental Set up of a FLEXROD

Figures 6.1 to 6.3 show the FLEXROD. It consists of three main parts:

(1) The mechanical arm, complete with DC motors, encoders, transmission gears

and a light weight aluminium structure.

(2) The controller-amplifier package, composed of a three processor parallel

computer controller and a Pulse width modulated amplifier unit

(3) The personal computer interface, that allows for communication and

programming of the controller.

The mechanical arm is a two-link elbow arm made of aluminum, and is actuated by
two permanent magnet DC motors installed on the shoulder, as shown in Figure 6.1. One of
the motors drives the first link, through a harmonic drive speed reducer, while the second
motor remotely drives the second link through a harmonic drive and a pulley and a timing
belt. Each motor has a built-in differential encoder, to provide the motor’s position. The

parameters of the arm are shown in table 6.1:

108

igure 6.1 Mechanical Arm in Home Position

F

Figure 6.2 Arm in Final Position

109

Figure 6.3 Controller-Ampliier and PC Interface

Table 6.1

Parameter | Mass | Centroidal | Length | Position of the | Actuator | Gear

(Kg) | Inertia (kg- (m) Centre of Mass Inertia | ratio

m’) (m) (kg-m’)
Link 1 48 |0.025 0.305 |0.145 9.532x10* | 100
Link 2 48 |0.025 0.585 |0.220 9.532x10°* | 100

More information about the experimental set up can be found in (Carrara 1995). In the

110
control law joint angles in radians and joint velocities in radians per second are required. Both
can be determined from the readings of the encoder. The joint angles in radians from the

encoder readings are found using the following relations:

2r
N E,
E

r

q, =

9, n E

r

-4 21"15
2

where E is the encoder resolution (lines/rev) and E, and E, are encoder readings of motor 1
and motor 2 respectively. The joint velocities have to be determined by numerical
differentiation of the joint angles. Since numerical differentiation is inherently noisy, this
estimate is smoothed out by using a lowpass digital filter, with a cutoff frequency of 100 Hz.
A fourth order Butterworth filter is used for this purpose. Another issue related to the
implementation of the control law is the conversion of the output torque, T, received from the
control routine into a digital command signal which in turn is converted into a voltage signal
which is sent to the PWM amplifier. This involves using the digital to analog gain (D/A,,,,)
of the controller, the voltage to current gain (V/C,,,) of the amplifier, and the torque
constant K; (current to torque gain) of the DC motors, and the transmission ration 1 of the
harmonic drives. This is done according to the following formula:

DIA x(VIC
DCS = (KDSC1)=(corm) fn amp)

xK
T

The value of the gain Kpgc = 11.4285 Digital Units/Nm.

111

6.2.1 Experimental Results
For the experimental verification of the neurocontrol strategy, the previously
developed control law routines are adapted and implemented into the controller code, using
the same parameters used in the simulation phase. The neurocontroller was first trained using
the nominal model of the manipulator. Then the off-line learned weights were used in the
control algorithm. Different trajectories were used to test the robustness of the neurocontrol.
The link 1 and 2 were moved were O to 45 degrees and back to the home position. Cubic
trajectories are specified between the various goal points according to standard trajectory
planning schemes (Craig 1989). Fig. 6.4 and 6.5 show the desired and actual angular positions
of the link 1 and 2. It is observed that the qualitative behaviour is very close to that obtained
in the simulation. Excellent agreement between the actual values of the joint positions and
those given by the neural control scheme is quite evident from these figures. Figures 6.6 and
6.7 shows an intermediate case, absent in the training set. Another experiment was performed
in which links were moved from 0 to 45 degrees and back home and this was repeated. The
results are shown in the figures 6.6 and 6.7. Again, excellent correlation between the desired
angular position of the joint and that given by the combination of a neural network and the
linear compensator is quite evident. Producing the correct results for this interpolative case
suggests that the network has learned to generalize. A more rigorous demonstration would
require presentation of many cases. This clearly shows that a combination of a neural network
with a linear compensator is capable of controlling the motion of a robotic manipulator. In

summary, the control precision of experiments is quite acceptable.

link2 position (degrees)

tinkt position (degrees)

g

8

-
(=)

\

0.5

1

Figure 6 4 Time History of the Joint Angle !

1.5
time (secs.)

2

-]

/

\

=

-
(=]

\

\

0.5

Figure 6.5 Time History of the Joint Angle 2

1

1.5
time (secs)

2

25

112

link 1 position (degrees)

5 8 8 ¢
/

113

8 8 8
~
|~
™~
1

2 o _©o
N

//
o ——
]
7

&
e
1N

1 2 3 4 5 6 7
time (secs.)

Figure 6.6 Time History of the Joint Angle |

N\ A

\

8 8 8
\

-
o

link 2 position (degrees)
(=)

A\
-10
20
30
40
% 1 2 3 4 5 6 7

time (secs.)
Figure 6.6 Time History of the Joint Angle 2

114

6.3 Results on a Single Link manipulator

Experiments were performed on a single mc:or fitted with a multi-degree of freedom

gripper. Experimental set up is shown in Fig. 6.8.

Figure 6.8 Experimental Set up of a Single-link Manipulator

115

6.3.1 Experimental Results
It was hypothesized that the neural network would produce the largest part of the
control input with linear compensator generating small corrections. This scheme proved to
be effective. However, the possibility of the linear compensator alone being able to correct
the changes in the operating conditions raised some questions about the necessity of having
an artificial network as the main controller. To explore the limits of the linear compensator,
the neural network was removed from the system and the manipulator was controller only
with PD controller. The motor was moved from O to 90 degrees. The task was completed in
1 second. Experiments were performed using a PD controller and neurocontroller. The results
are shown in figures 6.9 and 6.10. Fig 6.9 shows the angular position with PD controller and
Fig. 6.10 shows the results using neurocontroller-based scheme. It is observed that
neurocontroller gives smooth results as compared to PD controller. There are fewer
oscillations as compared to PD controller. This shows that neural network-based scheme can
handle unmodelled factors better than PD controller. Another experiment was performed to
see the effect of payload variations. The variation may arise from the fact that the standard
articles handled by the robot may have slightly different masses due to the variations in the
manufacturing process. Thus, it is important to determine how the controller deals with these
uncertainties. As expected, neural network controller has better robustness and is less
sensitive to the payload variations. Figs. 6.11 and 6.12 show the results with the payload
variation. It is observed that the neurocontrol is robust to dynamic or load change of the

robot. The performance of the robot which uses conventional controller (PD controller)

116

deteriorates greatly when subject to such a load change. Another experiment was carried out
to see the effect of doing the same task faster, i.e., the dynamics of the manipulator was

changing fast. In this case also the proposed controller has better robustness (Figs. 6.13 and
6.14).

16

14

Joint Position (rad.)

e b s — - -
- t

0 0.1 0.2 0.3 04 0S5 0.6 0.7 08 0.9 1
Time (sec.)

Figure 6.9 Time History of the Joint Angle with PD Controller

Joint Position (red.)

Figure 6.11 Time History of the Joint Angle with PD Controller with Payload

0.2

16

14

12

-l

T

o
o

o
a

©
[

BN
b

N\

N\

-
(-

0.5 06
Time (sec.)

07

(+X] 09

Figure 6.10 Time History of the Joint Angle

-
n

-
N

-

o
[

$oint Position (rad.)
o
o

[
>

0.2 -

0.5 06
Time (sec.)

07

08 09

117

118

16 T
14 —
!
12 / \.. - A
1 i

Joint Position (rad.)

03 04 0S 06 o7 08 09 1
Time(sec.)

Figure 6.12 Time History of the Joint Angle with Payload

_ l
1 LS

N

) \
1L/ \
A N

0 0.1 0.2 03 04 05 0.6 07 08 0.9 1
time

position
[=]
(o2
A
Z

Figure 6.13 Time History of the Joint Angie with PD controller

1.2
1 / N
08 //
§ 06 / \
ﬁ / \
04 \
02 / \
i l
% o1 02 03 o04 05 06 07 08 09
time
Figure 6.14 Time History of the Joint Angle
6.4 CONCLUSIONS

119

Compared with the approaches based on model of the system, a neurocontrol scheme

requires the least a priori information about the system dynamics. A neurocontrol is able to

improve its performance and approach the best results. If there are uncertainties and/or time

varying factors (which are difficult to model) conventional schemes usually deteriorate. The

results presented clearly indicate that the learning controller converges to a low error. This

observation is consistent with the results of previous simulations. While good performance

was generally possible with the carefully adjusted fixed-gain controller, control system

performance without leaming was highiy sensitive to the changes in the operating conditions.

In contrast, control system performance with learning was relatively insensitive to parameter

120

selection, resulting in control errors lower than or comparable to the fixed-gain controller,
even for severe changes in the parameters. The learning controller presented here is well
suited for practical application to the control of industrial robotic manipulators. The learning
algorithm structure is simple and can be easily extended to any manipulator. This makes
adaptation of the control software to accommodate system changes unnecessary or relatively
easy, and makes it possible to transport large portions of the control software from one robot
to another. In summary

. Robotic manipulators can be controlled by learning.

. The control strategy developed is tested experimentally. A reasonable agreement can
be found between theory and simulations.

. PD controller alone does nct provide proper control.

. The combination of neural network and PD controller proved to be very valuable in
controlling the motion of the manipulator. It is seen that corrections provided by this
scheme resulted in exact reproduction of the desired motion. The errors resulting from
the use of the combination of the neural network and PD controller were very
acceptable.

. Since the dynamics of the manipulator itself is used for learning, the dynamics of the
system Can be identified accurately to improve the control performance.

. Generalization was shown through the reproduction of a case that was absent from
the training set.

Through experimental testing, it was found that the neurocontrol approach can be

121

used to control a system without detailed modelling and parameter identification of the system

dynamics.

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

Almost all real world systems are nonlinear. It is often quite difficult, if not impossible
to obtain an accurate dynamic model of such systems. Robotic manipulators belong to the
class of highly coupled nonlinear dynamic systems, and linear control approaches usually
produce poor control performance. There are only a few nonlinear control design approaches
available to date and most of these can only be applied to feedback linearizable nonlinear
systems. The neurocontrol approach opens a new area that may present general solutions to
nonlinear control systems. In this thesis, effort has been made toward obtaining the robust
control of robotic manipulators. The major emphasis has been on studying the effects of
changing conditions of operation of manipulators and the introduction of new combination
of backpropagation learning algorithm. The work is significant to the development of
advanced industrial robots, where high speed and high control precision are required.

7.1 SUMMARY OF CONTRIBUTIONS

In chapter 3, modification of the conventional backpropagation learning algorithm has

been introduced. The proposed delta-bar-delta rule with adaptive gain of the node

significantly improves the convergence behavior when compared with the conventional

122

123
back-propagation, making the proposed algorithm less computationally intensive. The
proposed updating laws, involving the adaptive selection of the step size 1 and adaptive
gain y, have been shown to learn much more efficiently the dynamics of a nonlinear
system. This benefit is tremendous for complex high order nonlinear systems, especially real-
time control applications.

Model learning scheme is introduced in chapter 4. The elementary training of the
neural network using an obtained dynamic model can be fulfilled off-line. After the model
learning is finished, the neural network learns structured/unstructured uncertainties on-line.
The learning procedure is effective and efficient in learning the manipulator dynamics, and the
error convergence rate with an untrained trajectory is fast.

The feasibility of developing a controller based on neural networks for nonlinear
dynamical plants has been demonstrated in chapter 5. A control architecture based on the
combination of a neural network and a linear compensator has been presented. It has been
hypothesized that a neural network can be trained to produce the large nonlinear portion of
the required system control input. A linear compensator (PD controller) can be used to
provide the necessary corrections to these control inputs. The combination of the neural
network and linear compensator proved to be very valuable in controlling the manipulator.
In most cases, corrections provided by this scheme resulted in exact reproduction of the
desired results. In most cases, the errors resulting from the use of the combination of the
neural network and the linear compensator were very acceptable. Generalization was shown

through reproduction of a case that was absent from the training set. A case studies have

124

demonstrated that the proposed scheme is very promising, which achieved satisfactory
performance. The results permit reaching goals with arbitrarily low error even though the
inverse dynamics, which was learned by the neural network is only an approximation. The
inverse model with neural network structure found to possess the good performance. After
the neural network has compensated perfectly or partially for the nonlinearity of the
controlled object through learning, the responses of the controlled object follow the desired
responses supplied by inverse reference model implemented in the conventional feedback
controller. The advantage of the proposed controller is that there is no need of on-line training
as the neural network is trained off-line. Thus, this avoids the problem of heavy on-line
computation required by adaptive controllers and robust controllers. Furthermore, the
proposed controller has the potential to handle the effect of changes in the payload and the
variation in the operating conditions. As a result, the adaptive capabilities of the neural
network controller to the unstructured effects are clarified. The neural controller has been
designed in such a way that it can be extended to an arbitrarily large number of joints. Each
new joint in the robot system will require adding new neural input and weight maps to the
architecture. The number of neurons in each neural weight map is arbitrary and increasing the
number should increase the resolution of performance. Furthermore, the neural controller is
a parallel mechanism which can be highly optimized with parallel hardware. It is expected that
an optimized hardware will result in dynamic control which is faster than the mechanical
reaction time of the robot for an arbitrary number of joints.

It is well known that most industrial robots perform repetitive tasks. The drawbacks

125

are that the tracking errors are also repeated. An intelligent robot should have the capability

to learn from previous operations and improve performance by itself. The research in this

thesis ensures that a robot has this desirable feature.

Through experimental testing presented in chapter 6, it was found that the
neurocontrol approach can be used to control a system without detailed modeling and
parameter identification of the system dynamics. Compared with the approaches based on
model of the system, a neurocontrol scheme requires the least a priori information about the
system dynamics. A neurocontrol is able to improve its performance and approach the best
results. If there are uncertainties and/or time varying factors (which are difficult to model)
conventional schemes usually deteriorate. In summary
. PD controller alone doesn’t provide proper control.

. The combination of neural network and PD controller proved to be very valuable in
controlling the motion of the manipulator. It is seen that corrections provided by this
scheme resulted in exact reproduction of the desired motion. The errors resulting from
the use of the combination of the neural network and PD controller were very
acceptable.

. The present method requires neither an accurate model nor parameter estimation. It
possesses a great ability to generalize.

. After the neural network has compensated perfectly or partially for the nonlinearity
of the controlled object through leaming, the responses of the controlled object follow

the desired responses supplied by inverse reference model implemented in the

126
conventional feedback controller.
The control strategy developed is tested experimentally. A reasonable agreement can
be found between theory and simulations.
Generalization is shown through the reproduction of a case th:t was absent from the
training set.
Neurocontroller is generalized to accurately move an unforeseen payload to arbitrary
targets without endpoint oscillations.
The present model can be easily implemented in a parallel distributed processing
machine, since both the nonlinear transformations in subsystems and the synaptic
modifications are essentially parallel.
Neurocontroller reduces the computational power, the robot calibration time,
maintenance cost and engineering time when developing controllers of new robots by
virtue of its firmly established emergent generalization, fault tolerant and self
organization properties.

The author acknowledges that neural network is an exploding research area and

advances very quickly. It is not surprising that the approaches proposed here may not be the

best with the latest results. However, the neural network employed in this research work is

simple yet quite effective. Also, emphasis of this work is laid on the application of neural

networks to control of a robot, rather than on research in the theory of neural networks. A

neural network here provides an alternative approach to the existing controllers of robots.

While the focus of this research was the dynamic control of industrial manipulators,

127

the technique described is applicable to a wide range of robotic control problems which will
be increasingly important in the future. For example, the use of low-mass materials in the
construction of robots, for applications in space, will almost certainly require the use of high-
performance learning controllers, since the control characteristics will be highly payload/task
dependent.

The research outlined in this thesis should not be taken as the final word in the
application of neural networks to robotics. Instead much of this work should be considered
as proof of principle that a neural network can solve some interesting problem in robotics.

Generally, this work has fulfilled the author’s originally proposed research plans and
achieved satisfactory results. The answer to some important, yet unresolved problems are
given in this thesis, but not all. Here, the author wants to point out some unresolved
remaining issues and give suggestions for the further research.

7.2 SUGGESTIONS FOR FURTHER RESEARCH

Most of the work done so far can be considered to be experimental in nature. It lacks
a firm theoretical foundation. The convergence of a neural network is still an open problem.

Although the author’s modification of the back-propagation algorithm is quite
effective, yet a strict mathematical proof is not given. Also, some partial results are reported
recently, but they provide little help for practical training of the neural networks. In the
author’s view much research is needed before the potential of neural networks is fully utilized.

Most of the results in this thesis ap} ly to deterministic dynamic systems. Further study

should consider stochastic dynamic systems, since there is always measurement noise in the

128
feedback signals.

The various neura! network approaches need to be compared to conventionai
approaches and it needs to be determined if neural networks provide any cost and/or
performance benefits.

As more complex problems are attempted to be solved using neural networks, a better
understanding of the network’s function is necessary. A relationship needs to be established
between the system under study (i.e., the nonlinear function to be approximated) and the
structure of a suitable network.

These problems can be attributed to the fact that the neural network field is in its
developing stages and has not been understood fully. It is expected that most of the above-
mentioned problems would disappear once more is known about how the neural networks
work.

In this thesis, most of the work carried out relates to the trajectory control of robotic
manipulators. Further extensions to force control and constrained motion control are another
interesting topic for research and can be investigated.

Due to the powerful mapping ability of neural networks, the proposed neural network-
based control scheme can be enhanced with neural networks performing computer vision-to-

task space position and orientation mapping and collision avoidance tasks.

[1]

[2]

3]

[4]

(5]

(6]

(7]

BIBLIOGRAPHY

Albus, 1.S., Data Storage in the Cerebellar Model Articulation Controller
(CMAC), Transactions of ASME, Journal of Dynamic Systems, Measurement, and
Control, vol. 97, no. 3, pp. 228-233, 1975a.

Albus, J.S., A New Approach to Manipulator Control: The Cerebellar Model
Controller (CMAC), Transactions of ASME, Journal of Dynamic Systems,
Measurement, and Control, vol. 97, no. 3, pp. 220-227, 1975b.

Annaswamy, A.M. and Yu, S.H. Yu, 0 - Adaptive Neural Networks: A New
Approach to parameter Estimation, IEEE Transactions on Neural Networks, vol.
7, no. 4, pp. 907-518, 1996.

Anderson, J.A. and Rosenfeld, E., Neurocomputing: Foundations of Research,
Cambridge, MA: MIT Press, 1988.

Arimoto, S., Kawamura, S., and Miyazaki, F., Bettering Operation of Robots by
Learning, Journal of Robotic Systems, pp. 123-140, 1984

Asada, H. and Liu, S., Transfer of Human Skills to Neural Net Robot, Proc. IEEE
Int’l Conf. on Robotics and Automation, Sacramento, CA, pp. 2442-2448, 1991

Atkeson, C.G. and McIntyre, J., Robot Trajectory Learning Through Practice,

129

[8]

[9]

[10]

[11]

[12]

130
Proceedings of the IEEE Conference on Robotics and Automation, San Francisco,
1986.
Atkeson, C.G. and Reinkensmeyer, D.J., Using Associative Content-Addressable
Memories to Control Rsbots, Proceeding of the IEEE Conference on Decision and
Control, pp. 792-797, 1988.
Back, A.D., and Tsoi, A.C., FIR and IIR Synapses, a new neural network
architecture for time series modelling, Neural Computation, vol. 3, pp. 375-385,
1991.
Baldi, P.F. and Homik, K., Learning in Linear Neural Networks - A Survey,
IEEE Transactions on Neural Networks, vol. 6, no. 4, pp. 837-858, 1995.
Barron, A.R., Neural net approximation, Proc. of the 7th Yale Workshop on
Adaptive and Learning Systems, New Haven, CT: Yale University, pp. 69-72,
1992.
Barto, A.G., Sutton, R.S. and Anderson, W.Ch., Neuron like Adaptive Element
That can Solve Difficult Learning Control Problems. IEEE Transactions on

System, Man, and Cybernetics, SMC-13, pp. 834-846, 1983.

[13] Billings, S. A., Jamaluddin, H.B. and Chen, S., Properties of neural networks with

applications to modelling nonlinear dynamical systems. International Journal of

Control, vol. 1, pp. 193-224, 1992.

[14] Bolt, G.R., Fault Tolerance in Artificial Neural Networks, D. Phil. Thesis, York

131

University, Ontario, 1992.

[15] Box, George, E.P and Jenkins, Gwilym M., Time Series Analysis: Forecasting and
Control, San Francisco, Holden-Day Inc., 1970.

[16] Carrara, A.R.D.S., Dynamics, Control and Simulation of Flexible Robotic Systems,
Ph.D. Thesis, McMaster University, 1995.

[17] Churchland, P.S. and Sejnowski, T.J., The Computational Brain, Cambridge, MA:
MIT Press, 1992.

[18] Chen, S. And Billings, S.A., Representation of Non-linear Systems: the NARMAX
Model, International Journal of Control, pp. 1013-1032, 1989a.

[19] Chen, S. And Billings, S.A.,, Modeling and Analysis of Non-linear Time Series,
International Journal of Control, vol. 50, pp. 2151-2171, 1989b.

[20] Craig, J.J., Imtroduction to Robotics: Mechanics and Control, Reading, MA:
Addison-Wesley Publishing Company, 1986.

[21] Craig, J.J., Adaptive Control of Mechanical Manipulators, Reading, MA: Addison-
Wesley Publishing Company, 1988.

[22] Cybenko, G., Approximations by superpositions of a sigmoidal Function.
Math.Control Signal Systems, vol. 2, pp. 303 - 314, 1989.

[23] Elsley, R., A learning architecture for control based on back-propagation neural
networks, IEEE Conference on Neural Networks, vol. 2, pp. 584-587, 1988.

[24] Foslien, W., Konar, A.F. and Samad, T., Optimization with neural memory for

132
process parameter estimation, Applications of Artificial Neural Networks 111, S K.
Rogers (Ed.), Proc. SPIE 1709.

[25] Fu, K.S., Ganzalez, R.C., and Lee, C.S.G., Robotics: Control, Sensing, Vision,
Intelligence, New York, McGraw-Hill Inc., 1987.

[26] Fukuta, T. and Shibata, T., Adaptation and Learning for Hierarchical Intelligent
Control, Proc. IJCNN’91, Baltimore, MD, pp. 269-274, 1991.

[27] Funahasi, K., On the approximate realisation of continuous mappings by neural
networks, Neural Networks, vol. 2, pp. 183-192, 1989.

[28] Guez, A. and Ahmad, Z., Accelerated Convergence in the Inverse Kinematics Via
Multilayer Feedforward Networks, IEEE International Joint Conference on Neural
Nerworks, Washington, D.C.,pp. 341-344, 1989,

[29] Guez, A., Elibert, J.L. and Kam, M., Neural Network architecture for Control.
IEEE Control System Magazine, vol. 8, no. 3, pp. 22-25, 1988.

[30] Guez, A. and Selinsky, J.W., A Neurocontroller with Guaranteed Performance for
Rigid Robots, IEEE Int’l Joint Conf. on Neural Networks, Washington, DC, pp. 511-
514, 1990.

[31] Gomi, H. and Kawato, M., Neural Network Control for a Closed-Loop System
Using Feedback-Error-Leaming. Neural Networks, vol. 6, pp. 933-946, 1993.

[32] Gupta, Madan M. and Sinha, Naresh K. (Eds.), Intelligent Control Systems: Theory

and Applications, IEEE Press, 1996.

133

[33] Gupta, Pramod and Sinha, Naresh K.,Control of Robotic Manipulators Using Neural
Networks - A Survey, in Methods and Applications of Intelligent Control, S. Tzafestas
(Ed.), Kluwer Academic Publishers, The Netherlands, pp. 103-133, 1997.

[34] Gupta, Pramod and Sinha, Naresh K., Intelligent Control of Robotic Manipulator- A
Neural Network Approach, accepted for publication in International Journal of Systems
Science, 1997.

[35] Gupta Pramod, Sinha, Naresh K., Elbestawi, M.A. and Bone, G., Intelligent Control of
Industrial Robots For Manufacturing Applications, IPMM’97, Australasia-Pacific forum
on Intelligent Processing and Manufacturing of Materials, Gold Coast, Australia, July,
1997.

[36] Gupta, Pramod and Sinha, Naresh K., Modeling Robot Dynamics Using Dynamic
Neural Networks, SYSID ‘97 11th IFAC Symposium on System Identification,
Fukuoka, Japan, pp. 783-788, July, 1997, (Invited Paper).

[37] Gupta, Pramod and Sinha, Naresh K., Intelligent Control of Robotic Manipulator
Using Neural Networks, IFAC SYSID ‘97 11th IFAC Symposium on System
Identification, Fukuoka, Japan, pp. 889-894, July, 1997, (Invited Paper).

[38] Gupta, Pramod, Sinha, Naresh K. and Elbestawi, Mohammed A., Identification of
Industrial Robots Using Neural Networks, in Proceedings of Canadian Society for
Mechanical Engineering (CSME) Forum, Hamilton (Canada), May 7-9, 1996, pp. 275-
278.

[39] Gupta, Pramod and Sinha, Naresh K., A New Algorithm for Efficient Identification of

134
Nonlinear Systems Using Neural Networks, in Proceedings of TIMA-96, International
Conference on Trends in Industrial Measurements and Automation, Madras (India), pp.
195-199, Jan. 96.

[40] Gupta, Pramod and Sinha, Naresh K., Fast Identification of Nonlinear Systems Using
Neural Networks, in Proceedings of International Conference on Automation
‘95, ICAUTO 95, held in India Dec. 95, pp. 141-144.

[41] Guo, J. and Cherkassky, V., A Solution to the inverse Kinematic Problem in
Robotics Using Neural Network Processing, IEEE International Joint Conference on
Neural Networks, Washington, D.C., PP 299-304, 1989.

[42] Handelman, D.A., Lane, S.H. and Gelfand, J.J., Integration of Knowledge-Based
System and Neural Network Techniques for Automation Learning Machines, Proc.
IJCNN’89, Washington, D.C., pp. 683-688, 1989

[43] Haykin, S., Neural Networks, A Comprehensive Foundation, Toronto, Maxwell
Macmillan, 1994.

[44] Hecht-Nielsen, R., Neurocomputer applications, In R. Eckmiller and Ch. V. D.
Malsburg (Eds.), Neural Computers, Springer-Verlag, Berlin, pp. 445-453, 1988.

[45] Hopfield, J.J., Neural Networks and Physical Systems with Emergent Collective
Computation Abilities, Proceedings of the National Academy of Science USA, pp.
2554-2558, 1982.

[46] Hopfield, J.J., Neurons with Graded Response have Collective Computational

135

Properties like Those of Two-State Neurons, Proceedings of the National Academy
of Science USA, pp. 3088-3092, 1984,

[47] Homik, K., Stinchombe, M. and White, H., Multilayer Feedforward Networks are
Universal Approximators, Neural Networks, vol. 2, pp. 359-366, 1989.

[48) Hunt, K.J., Sbarbaro, D., Zbikowski, R. and Gawthrop, P.J., Neural Networks for
Control Systems - A Survey, Automatica, vol. 28, pp. 1083-1112, 1992.

[49] IEEE, Special Issue on Neural Networks, IEEE Control System Magazine, vol. 8, no.
2, 1988.

[50] IEEE, Sp:cial Issue on Neural Networks, IEEE Control System Magazine, vol. 9,
no. 3, 1989,

[51] IEEE, Special Issue on Neural Networks, IEEE Control System Magazine, vol. 10,
no. 3, 1990.

[52] Irwin, G.W., Warwick, K. and Hunt, K.J. (editors), Neural Nerwork Applications
in Control, IEE Control Engineering Series, London, 1995.

[53] Jacobs, R.A. and Jordan, M.I., Learning Piecewise Control Strategies in a Modular
Neural Network Architecture, IEEE Transactions on Systems, Man and Cybernetics,
vol. 23, pp. 337-345, 1993.

[54] Jagannaihan, S. and Lewis, F.L.,Multilayer Discrete-Time Neural Net Controller
With Guaranteed Perfromance, JEEE Transactions on Neural Networks, vol. 7, no.1,

pp. 107-130, 1996

136

[55] Jin, Y., Pipe, T. and Winfield, A., Stable Neural Network Control for Manipulator,
Proc. IJCNN, pp. 2775-2778, 1993.

[56] Jin, L. and Gupta, M.M., Globally Asymptotical Stability of Discrete-Time Analog
neural Networks, IEEE Transactions on Neural Networks, vol. 7, no. 4, pp. 1024-
1031, 1996

[57) Johnson, M.A. and Leahy, M.B., Adaptive Model-Based Neural Network Control,
Proc. IEEE Int’l Conference on Robotics and Automation, Cincinnati, OH, pp.
1704-1709, 1990.

[58] Jordan, M. I., Supervised Learning and Systems with Excess Degrees of Freedom.
Technical Reports 88-27, University of Massachusetts, Amherst, MA, 1988.

[59] Jordan, M. I. and Rumelhart, D.E., Forward Models: Supervised Learning with a
Distal Teacher, Cognitive Science, vol. 16, pp. 307-354, 1992.

[60] Jacobs, R.A. and Jordan, M.I., Learning Piecewise Control Strategies in a Modular
Neural Network Architecture, IEEE Transactions on Systems, Man, and Cybernetics,
vol. 23, pp. 337-345, 1993.

[61] Karakasoglu, A., Sudharsanan, S.I. and Sudharsanan, M., Identification and
Decentralized Adaptive Control Using Dynamical Neural Networks with Application
to Robotic Manipulators, IEEE Transactions on Neural Networks, vol. 4, pp. 919-
930, 1993.

[62] Kawato, M., Uno, Y., Isobe, M. and Suzuki, R.,Hierarchical Neural Network

137

Model for Voluntary Movement with Applications to Robotics, IEEE Control System
Magazine, vol. 8, pp. 8-16, 1988.

[63] Khosla, P.K., Estimation of Robot Dynamic Parameters: Theory and Application,
International Journal of Robotics and Awsomation, vol. 3, pp. 35-41, 1988

[64] Kohonen, T., Self-Organization and Associative Memory, Berlin, Springer-Verlag,
1987.

[65] Konar, A.F., Samad, T. and Foslien, W., Hybrid Neural Network/Algorithmic
Approaches to System Identification, Preprints of the IFAC Symposium on DYCORD
92, College Park, MD, 1992.

[66] Kosmatopoulos, E.B., Polycorpou, M.M., Christodoulo, M. A. and Ioannou, P.A.,
High-Order Neural Network Structures for Identification of Dynamical Systems,
IEEE Transactions on Neural Networks, vol. 6, no. 4, pp. 422-431, 1995.

[67) Kraft, L.G. and Campagna, D.P., A Comparison Between CMAC Neural Network
Control and Two Traditional Adaptive Control Systems, /EEE Control Systems
Magazine, vol. 10, no. 3, pp. 36-43, 1990.

[68]) Kuperstein, M. and Wang, J., Neural Controller for Adaptive Movements with
unforseen payloads, IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 137-
142, 1990.

[69] Lapedes, A. and Farber, R., Nonlinear signal processing using neural networks:

prediction and system modeling, Report LA-UR-87-2662, Los Alamos National

138
Laboratory, 1987.

[70] Leahy, M.B., Johnson, M.A. and Rogers, S.K., Neural Network Payload Estimation
for Adaptive Robot Control, /EEE Transactions on Neural Networks, vol. 2, no. 1,
pp- 93-100, 1991.

[71] Lee, S. and Kil, Rhee M., Redundant Arm Kinematic Control with Recurrent Loop,
Neural Networks, vol. 7, pp. 643-659, 1994.

[72] Leontaritis, I.J. and Billings, S.A., Input-Output Parametric Models for Nonlinear
Systems, International Journal of Control, vol. 41, pp. 303-344, 1985.

[73] Levin, A.U. and Narendra, K.S., Control of Nonlinear Dynamical Systems Using
Neural Networks - Part II: Observability, Identification and Control, IEEE
Transactions on Neural Networks, vol. 7, no. 2, pp. 30-42, 1996.

[74] Levin, A.U. and Narendra, K.S., Recursive Identification Using Feedforward Neural
Networks, International Journal of Control, vol. 61, pp. 533-547, 1995.

[75] Lewis, F.L., Liu, K. and Yesildirek, A., Neural Net Robot Controller with
Guaranteed Tracking Performance, IEEE Transactions on Neural Networks, vol. 6,
no. 4, pp. 703-715, 1995.

[76] Lewis, F.L., Yesildirek, A. and Liu, K.,Multilayer Neural Net Robot Controller
with Guaranteed Tracking Performance, JEEE Transactions on Neural Networks, vol.
7, no. 2, pp. 388-399, 1996.

[77] Li, C. James and Kim, T., A New Feedforward Neural Network Structural Learning

139

Algorithm - Augmentation by Training with Residuals, ASME Transactions on
Dynamic Systems, Measurement and Control, vol. 117, no. 3, pp. 411-414, 1995.

[78] Liu, C.J. and Lin, C.T., Reinforcement Learning for an ART-Based Fuzzy Adaptive
Learning Control Network, IEEE Transactions on Neural Networks, vol. 7, no. 2,
pp. 709-731, 1996.

[79] Liu, C.S. and Kim, H., Selection of Learning Parameters for CMAC-Based Aadptive
Critic Learning, IEEE Transactions on Neural Networks, vol. 6, no. 4, pp. 642-647,
1995.

[80] Miller, W.T., Glanz, F.H. and Kraft, L.G., Application of a General Learning
Algorithm to the Control of Robotic Manipulator, International Journal of Robotic
Research, vol. 6, no. 2, pp. 84-98, 1987.

[81] Miller, W.T., Hewes, Robert P., Glahz, F.H. and Kraft, L.G., Real-Time Dynamic
Control of an Industrial Manipulator Using a Neural-Network-Based Learning
Controller, IEEE Transactions on Robotics and Automation, vol. 6, no. 1, pp.1-9,
1990.

[82] Miller, W.T., Glanz, F.H. and Kraft, L.G., CMAC: An Associative Neural
Network Alternative to Backpropagation, IEEE Proceedings, vol. 78, pp. 1561-1567,
1990.

[83] Miller, W.T., Sutton, R.S. and Werbos, P.J. (Eds.), Neural Networks for Control,

Cambridge, MA: MIT Press,1990.

140

[84] Mistry, S.I., Chang, S.L. and Nair, S.S., Indirect Control of a Class of Nonlinear
Dynamic Systems, IEEE Transactions on Neural Networks, vol. 7, no. 4, pp. 1015-
1023, 1996.

[85] Miyamoto, H., Kawato, M, Setoyama, T. and Suzuki, R., Feedaback-Error-Learning
Neural Network for Trajectory Control of a Robotic Manipulator, Neural Networks,
vol. 1, pp. 251-265, 1988.

[86] Moody, J.O. and Antsaklis, P.J., The Dependence Identification Neural Network
Construction Algorithm, IEEE Transactions on Neural Networks, vol. 7, no. 2, pp.
3-15, 1996.

[87] Mukhopsdhyay, S. and Narendra, K.S., Intelligent Control Using Neural Networks,
In Madan M. Gupta and Naresh K. Sinha (Eds.) Inzelligent Control Systems: Theory
and Applications,, IEEE Press, 1995.

[88] Narendra, K.S. and Parthasarthy, K., Identification and Control of dynamical
Systems using Neural Networks, JEEE Transactions on Neural Networks, vol. 1, pp.
4-27, 1990.

[89] Narendra, K.S. and Annaswamy, A.M., Stable Adaptive Systems, Prentice-Hall,
Englewood, NJ, 1989.

[90] Nguyen, D.H. and Widrow, B., Neural Networks for Self-Learning Control
Systems, IEEE Control System Magazine, vol. 10, no. 3, pp. 18-23, 1990.

[91] Nordgren, R.E. and Meckl, Peter H., An Analytical Comparison of a Neural

141

Network and a Model-Based Adaptive Controller, /EEE Transactions on Neural
Networks, vol. 4, pp. 685-694, 1993.

[92] Nowlan, Steven J., Gain Variation in Recurrent Error Propagation Networks,
Complex Systems, vol. 2, pp. 305-320, 1988.

[93] Psaltis, D., Sideris, A., and Yamamura, A.A., Neural Controllers, Proc. IEEE Int’l
Conference on Neural Networks, San Diego, CA, vol. 4, pp. 551- 558, 1987.

[94] Psaltis, D., Sideris, A. and Yamamura, A.A., A Multilayered Neural Network
Controller, IEEE Control System Magazine, vol. 8, pp. 17-21, 1988.

f95] Rabelo, L.C. and Avula Xavier, J.R., Hierarchical Neurocontroller Architecture for
Robotic Manipulation, Proc. IEEE Int’l Conf. on Robotics and Automation,
Sacramento, CA, , pp. 2656-2661, 1991.

[96] Raibert, M.H., Analytical equations vs. Table look-up for Manipulation: A unifying
Concept, Proceedings of the IEEE Conference on Decision and Control, pp. 576-
579, 19717.

[97] Raibert, M.H., A Model for Sensorimotor Control and Learning, Biological
Cybernetics, vol. 29, pp. 29-36, 1978.

[98] Rosenblatt, F., The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain, Psychological Review, vol. 65, pp. 386-408, 1958.

[99] Rumelhart, McClelland and the PDP Research Group, Parallel Distributed

Processing, Explorations in the Microstructure of Cognition, vol. 1: Foundations,

142
Cambridge MA, MIT Press, 1986.

[100]Sanner, R.M. and Slotine, J.-J.E., Stable Adaptive Control of Robot Manipulators
Using Neural Networks, Neural Computation, vol. 7, no. 4, pp. 753-790, 1995.

[101] Sekiguchi, M., Sugasaka, T. and Nagata, S., Control of a Multivariable System
by Neural Network, Proceedings IEEE Int’'l Conference on Robotics and
Automation, Sacramento, CA, pp. 2644-2649, 1991.

[102] Sinha, N.K. and Kuszta, B., Modeling and Identifictaion of Dynamic Systems, New
York, Van Nostrand Reinhold Company Inc., 1983.

[103] Slotine, J.-J.E. and Li, W., Adaptive Manipulator Control: A Case Study, /EEE
Transactions on Automatic Control, vol. 33, no. 11, pp. 995-1003, 1988.

[104]) Spong, M. and Vidyasagar, M., Robot Dynamics and Control, New York, John
Wiley & Sons, 1989.

[105] Tanak, K., An Approach to Stability Criteria of Neural Network Control Systems,
IEEE Transactions on Neural Networks, vol. 7, no. 3, pp. 629-642, 1996.

[106] Tank, D. and Hopfield, J., Neural Computation of Decisions in Optimization
Problems, Biological Cybernetics, vol. 52, pp. 141-152, 1985.

[107] Tsoi, Ah. C. and Back, A.D., Locally Recurrent Globally Feedforward Networks:
A critical Review of Architectures, IEEE Trans. on Neural Networks, vol. S, pp.
229-239, 1994,

[108) Waibel, A., Hanazawa, T., Hinton, G.S., Shikano, G. and Lang, K.., Phonemic

143

recognition using time delay neural networks, IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 37, pp. 328-339, 1989.

[109] Wang, Q. and Broome, D.R., A Novel Neural Adaptive Controller for Robots,
Proceedings IEE Int’l Conference cn Control’94, Coventry, UK, pp. 486-491,
1994.

[110] Werbes, P.J., Neurocontrol and Supervised Learmning: An Overview and Evaluation,
In D.A. White and D.A. Sofge (Eds.), Handbook of Intelligent Control, Neural,
Fuzzy, and Adaptive approaches, Van Nostrand Reinhold, pp. 65-89, 1992.

[111] Werbos, P.J., Overview of Designs and Capabilities, In W.T. Miller, R.S. Sutton
and P.J. Werbos (Eds.), Neural Networks for Control, Cambridge MA, MIT Press,
pp. 59-65, 1990.

[112] Werbos, P.J., Neurocontrol and Related Techniques, A. Maren (Ed.), In Handbook
of Neural Computing Applications, New York: Acade nic Press, 1990.

[113] White, D.A. and Sofge, D.A. (Eds.), Handbook of Intelligent Control, Neural
Fuzzy, and Adaptive approaches, Van Nostrand Reinhold, 1992.

[114] Widrow, B. and Lehr, M.A., 30 Years of Adaptive Neural Networks: Perceptron,
Medaline, and Backpropagation, Proc. of the IEEE, vol. 78, 1415-1441, 1990.

[115] Williams, R.J. and Zipser, D., A learning algorithm for continually running fully
recurrent neural networks, Neural Computation, vol. 1, pp. 270-280, 1989.

[116] Yabuta, T. and Yamada, T., Possibility of Neural Networks Controller for Robot

144

Manipulators, Proceedings of International Conference on Robotics and
Automation, Cincinnati, OH, pp. 1686-1691, 1990.

[117] Yamada, T. and Yabuta, T., Dynamic System Identification Using Neural
Networks, JEEE Transactions on Systems, Man, and Cybernetics, vol. 23, pp. 204-
211, 1993.

[118] Yegerlehner, James D., Experimental Implementation of Neural Network Controller
for Robot Undergoing Large Payload Changes, Proceedings of IEEE International

Conference on Robotics and Automation, Atlanta, GA, USA, pp. 744-749, 1993.

