INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UM! a complete manuscript and

there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9° black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

®

800-521-0600

Application of Technology Insertion to
Particle Accelerator
Modernization and Operations Support

by
PETER CHRISTIAN LIND
B.Sc. (Hon.), M.Sc.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

McMaster University

© Copyright by Peter C. Lind, October 1997

PARTICLE ACCELERATOR MODERNIZATION AND OPERATIONS SUPPORT

DOCTOR OF PHILOSOPHY (1997) MCMASTER UNIVERSITY
(Electrical Engineering) Hamilton. Ontario

TITLE: Application of Technology Insertion to Particle Accelerator Modernization

and Operations Support

AUTHOR: Peter Christian Lind, B.Sc. (Hon.) (Queen’s University), M.Sc. (McMaster
University)

SUPERVISOR: Dr. W.F.S. Poehlman, B.S., B.Sc., M.Sc., Ph.D., P.Eng.

NUMBER OF PAGES: xiv. 220

Thesis Abstract

This thesis discusses a design methodology that can be employed as a framework for
the design of computer-centered performance enhancement systems for technology
insertion into non-computerized human-machine systems. This methodology seeks to
hybridize and exploit the benefits of several diverse areas of electrical and computer
engineering, specifically knowledge-based reasoning, fuzzy logic-based control, real-time

system design, human-machine interaction, computer-human interface, and software

engineering.

The methodology for combining these disciplines is used in the realization of a specific
application: The Particle Accelerator Control Expert System (PACES), an artificial
intelligence-based performance enhancement and control system for a KN-3000 Van de
Graaff particle accelerator. PACES combines knowledge-based reasoning and human
factors concepts to furnish accelerator operators with a computer-centered operations
support facility. Knowledge-based reasoning is coupled with real-time systems concepts to
provide the capability for autonomous accelerator control. Technology insertion.
human-machine interaction and human-computer interface concepts are used to design a
simple, safe, flexible and low-cost operations support system that is accepted by both

veteran and novice operators alike.

This thesis is dedicated

to my parents Veronica and Niels,

together in my heart,

to my wife, Laurel,

always by my side and in my thoughts,

to my daughter. Emily,

the joy of my life and my inspiration.

v

Acknowledgements

A great many people deserve credit for assisting me during the years when [worked

on this thesis. They are listed here in no particular order:

Dr. Poehiman, for his long-lasting guidance, enthusiasm and patience.

Dr. McCrackin and Dr. Qiao, members of my thesis committee, for their helpful participation and
suggestions over the years.

Dr. Wilkinson and Dr. Wesolowsky, members of my examination committee, for not being too
hard on me during my oral defense.

My parents, my brothers and my sister, for their love and encouragement.
My wife and her parents, for their long-time support and generosity.

Mr. Bob McNaught, McMaster Accelerator Lab (retired), for his kind tutelage and assistance
during development of the circuitry, and for his lasting friendship.

Mr. Jim Stark, for his enthusiasm in the PACES project, credit for the initial concept of PACES, and
sagely advice in the black art of accelerator operations.

Mrs. Marg Belec and Mrs. Sandy Trottier, Dept. of Computer Science and Systems, for their years
of courtesy and administrative assistance.

Ms. Cheryl Gies, Dept. of Electrical and Computer Engineering, for her administrative finesse and
cheerfulness.

Mr. Frank Strain, M. Jean-Roch Brisson, Mr. Bernie Hoffarth and Mr. Trevor Jones, of DREO, for
their aid in development and testing of the PACES prototype.

Mr. Dan Trottier and Mr. Chris Bryce, Dept. of Computer Science and Systems, for all the times
they provided help and advice with computer-related problems.

Mr. Gary Mulligan, formerly of the McMaster Accelerator Lab, for the late Friday nights he spent
with me trying to get the accelerator to work properly.

Dr. Brad Rodriguez, my cellmate released early on good behaviour, for his helpful suggestions and
camaraderie in the trenches of accelerator automation.

Mr. Alan Mcliwain, formerly of AECL Whiteshell Labs, for his efforts to help develop the field
version of PACES.

Mr. Sam Hosein, Mr. Terry Reimer, and Mr. Ray Warenko, of AECL Whiteshell Labs, for their
aid, knowledge and expertise as accelerator operators.

My many friends in Pinawa, Manitoba, for their hospitality and companionship during my field
visits to AECL Whiteshell Labs.

Mr. Winston Williams and Mr. John Cave, for their help with the nuts and bolts.
Dr. Tom Cousins, for his role as the PACES project’s scientific authority at DREO.
Dr. Harold Haugen, for his support during his term as director of the McMaster Accelerator Lab.

Dr. Rick McCauley-Newcombe for initial training as an accelerator operator, and help during
knowledge engineering.

Mr. Sam DeMooy for his pioneering work in accelerator simulation software and early work in
knowledge engineering for accelerator control.

Mr. Ernest Siddall for his insight and advice on systems reliability.

All of my teachers, past, present and future, for bestowing the great gift of knowledge.

It’s a “book’ ['ve been working on
Jfor the past four years,
entitled *Impossible Vacation”. ..
due to be published ... two years ago.
1t’s 1900 pages long,
and [think 1t’s just about fimshed. ..

— Spalding Gray, “Monster in a Box™, /992

Table of Contents

1. Introduction

.. 1
I.] ThesisOULHNEttt ittt it i sttt ieeeaaaaasananerannns 6

2. KN-3000 Particle Acceleratoriiiiiniiiiieneeennnsneaoncnnnnsnees 11
2.1 An Overview of Particle Accelerator Operationcc.0emieertnt e, 13

22 TheControl Panelc. ittt et eernasennneenn 19

23 Other Accelerator SIteSot ittt ittt rrreinennanenana e 24
2.3.1 The KN-3000 at McMaster AcceleratorLab 24

2.3.2 The KN-4000 at WhiteshellLabs o0t 25

24 Related Researchttt ittt ittt irianneaacaannaeneessasn 27

3. The Tools for Technology Insertion i, 28
3.1 Real-Time SyStems . ..o i ittt ittt ittt ie it eriiaae st esanaeens 29
3.1.1 Real-Time System Structureo iitiienrer et neeennnn 34

3.1.2 Reliability, Fault Tolerance and Safety v, 36

3.2 Knowledge-based Reasoningiuiuiiniiinnninniiieniennnn 39
32,1 EXPErtSYStems ... vviivi it it i 42

3.2.1.1 Expert System Developmentiniuiniiiiiiiinn, 46

322 FUzzy LOgIC . ..o ottt ittt it st e e e 50

3.3 HUMAN FaCtOFS . oo v v i eiee e ceeeeassansonsorevennnnnnnsosssonsonosens 54
3.3.1 The Computer-HumanInterface o, 57

3.3.2 System Acceptability i s 67

3.4 Software Engineeringottt 69
3.4.1 Macro-scale Software Engineeringottt 73

3.4.2 Micro-scale Software Engineeringccciiiiiiiiiiiiiin, 83

3.4.2.1 RIMS Programming Conceptscovenenrnnnnenennnnnnenns 84

3.4.2.2 Object-oriented Programmingc.otriuieinnninennnnnnns 85

4. Design and Implementation of PACESco.cuitinniiiiiitetnrn s 89
4.1 OVErVIEW OfPACES ... iv ittt ietosnoosonouonnnaesossssssessnoinsannnsns 89
4.1.1 System Organizationand Operationititiniiienennnenn. 90

412 Manual Operationcouievuenecnnnsnsneneeronsronansonnaess 94

4,13 Automated Operationcveeireititiiitiiiiitiiaiea e 95

4.1.4 Miscellaneous Featuresivvitriienreannoesercnnnansannnnns 97

4.1.4.1 Lock-out Facilityc. it iiieeiiiiiineniiiraienenens 98

4142 LOBDOOK . ..vvviiinnnnnnunenecnessroseneasnnnocaceasancans 99

4143 IdleWatchdogcoiviinenineiriiiinieiiiiiatenanns 101

4.2 Aspects of Machine Interfacing and Real-Time Systemsco0cennenne. 101
4.2.1 Multi-processor Environmentciiiiiiiiiiiiiiiiiiie., 101

4.3

44

4.5

Table of Contents (continued)

... 104
4.2.2.1 Enhancements at WhiteshellLabs 108
4.2.3 Non-invasive Machine Interface 109
424 Embedded Controller i, 109
42.5 Real-TimeKernel i e 112
4.2.5.1 Real-time Kernel Housekeeping Tasks, 113
4.2.5.2 Real-time Kernel Remote Procedure Call Mechanism 113
Aspects of Knowledge-based Reasoning, 116
4.3.1 Decision-making Requirements it iieennennnn. 116
4.3.2 Expert System Considerationscitiiirutrtrrinananeen., 19
4.3.2.1 Expert System Requirementscciiiuntiieennnnunnnnn, 120
4.3.2.2 Early Attempts at Choosinga Shell, 121
4.3.2.3 Inference Engine Design i 121
4.3.2.4 wAXKnowledge Base Structure iy 124
4.3.2.5 Decision Explanation Facility 126
4.3.2.6 Algorithmic Control vs. Heuristic Decision Making 127
4.3.2.7 Knowledge Engineering for PACESottt 128
4.3.2.8 Fauit Detectionand Diagnosisccitiiiiiiiiiinennnnn, 129
4.3.3 Knowledge Base for Accelerator Start-up 131
4.3.4 Knowledge Base Subroutinesottt 134
4.3.4.1 Ripple Loop KnowledgeBase 134
4.3.4.2 Voltage-Set-point Pilot KnowledgeBase 135
4.3.5 Knowledge Base for Voltage Conditioning, 137
4.3.6 Knowledge Base for Beam Maintenance i, 138
4.3.6.1 *Auto-Pilot’ Inferencing Threado, 140
4.3.6.2 Corona Current Optimization i, 142
4.3.6.3 Beam Current Optimizationcivriimentieernnnnnnn. 144
4.3.6.4 Sample Power Optimization it eenn.n. 146
4.3.6.5 Gas Optimizationtiniitiitiirinnnnnrnnnnnnensas 147
4.3.7 Fuzzy Logic-based Control Considerationsccoivineinnnnn, 148
4.3.8 Fuzzy Control of Terminal Voltage Set-point oo, 151
Human-Factors ASPECSt iuiunnnonnononsoeroesosononnnnannnnns 156
44.1 PACES UserInterfacec.co it i, 157
4.4.2 Augmentation of Operator Abilities i, 162
4.4.3 Automation of Operator Expertiseccieiiinineinnnnnn., 167
Aspects of Software Engineering i i il iii i 169
4.5.1 The Macro-scale: PACES Development Lifecycle 170
45.1.1 DevelopmentCostcoviiirinnreninnerennensnneronnns 173

Table of Contents (continued)

4.5.2 The Micro-scale: OOP and RIMS Applied to PACES

....................... 174
S.Autonomous Performance e, 179
S.lExpertSystem Performance ittt iinniririnnneenneeennns. 179
S.LTAutomated Start-Upoiiie ittt ittt et e . 180

502 Conditioningottt i e e e, 181

5.1.3 Beam Maintenanceiuirtittrtit it 184

5.3 Auto-Pilot ... e et 184

5.1.3.2 Corona Optimizationccvuieiuunnnnennennneneanann 189

5.1.3.3 GasOptimizationttt e 189

5.1.4 Fuzzy Control of Terminal Voltage Set-pointcooiiivninn.. 191

6. DISCUSSION . ottt ittt it et et e et e e e e 197
T ConCIUSION L. et et e e et e 208
3 L TG 214

.__.._._.
[} L]
J UV N g

NN
W L- o o Lnad

\)l'\) (]
=)

l:)l})l
O 00 3

3-1
32

3-4
3-5
3-6
37

39

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22

List of Figures

Existing human-machine interaction is complex.

................................ 4
Technology insertion of a computer-based system.o ieininnnn.. 4
Three stages of post-insertion development.ccoueiit s 5
TRESIS SCOPE. .« ot tve it aeeie et ta et et 7
Transparent mock-up of a KN-3000.t 12
DREO accelerator site layout.ttt iiinittieennneresnnnnens 13
Schematic of a KN-3000 particle accelerator.o 14
Distribution of particleenergies. ittt 16
Configuration of the DREO particle accelerator with analyzing magnet. 17
Errors in beam energy set-point affect targetcurrent. ool 17
Control panel connections to accelerator and beam lineat DREO. 18
KN-3000 control panel at DREO. oottt 19
Cross-coupling relationship between the accelerator’s four main control points. 23
The jigsaw puzzle of technology insertion for computer-centered modernization. 29
Comparison of timedomains.ottt 30
A typical real-time system. i e 32
Processes are the building blocks of real-timesystems. cooitnvenn, 34
Components of a typical real-timesystem. oo 36
Aspects of dependability.c. oot 39
Comparison of model-free estimators.c.covuininiiiinan e 41
Direct expert control system and supervisory expert control system. 42
Components of a basic expert system.c.ocotnitiniirinranar e 43
The architecture of an eXpert system.coeteereiurnrnnineraranoenns 46
Components of a knowledge base in relation to the user community. 47
Paths of expert system development.cccoiiiiiiiiiiiiiiiiiiiiens 48
Components of @ fuzzy SySteM.ieeneretnn it ineeaanenennenenntane 52
Fuzzy membership sets for temperature.ottt 53
Example of centroid defuzzification.c .ottt 54
The four principal components in a human-machine system.c..0n. 55
Human factors, its sub-domains and associated disciplines. 56
Seven stages Of USET ACHIVILY. vvvvvrinneneoeneennrosnoneeeerensuanannns 58
Examples of five interaction styles.otiiiiiiiiiiiiiiiiiiiiiiann, 64
Task factors as determinants of interaction styles., 65
User skill factors as determinants of interactionstyles.ccciiieeen.n. 65
System acceptability is a balance between cost and the ‘x-abilities’. 67

X

3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32

4-2
4-3

4-4

4-5

4-6

47

4-8

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26

List of Figures (continued)

Excerpt romthe Toronto Star. oot i e 70
The three levels of software engineering. it Al
Partial hierarchy of quality assuranceattributes. i 72
Two related software development lifecyclemodels.ot 74
U.S. Department of Defense standard DoD STD 2167-A software lifecycle model. 75
Yourdon's structured software development lifecyclemodel. 78
Spiral model of the software development lifecycle.t 79
The software lifecycle for implementing evolutionary rapid prototyping. 30
Simplified RUDE software development lifecycle. v nt. 81
ThePouTE lifecyclemodel. i i 82
PACES combines several disciplines into a multi-disciplinary software system. 90
PACES OFganizZation.o ivtiuvnnvnennnnennoneannnenososonasnnsonns 90
PACES graphical userinterface.ottt 92
Components Of PACES.ttt in it iiinereaneatenarnesssnonncennnons 93
Switches used during manual start-up and shut-down. ot 94
Selsyn controflerwindow. i e e 95
Voltage stabilizer mode and Faraday cupcontrols., 95
Automated Operation ControlS.t iiii it e e e 96
Database browser for saved Settings.ttt iv it 96
Settings for Automated Start-up. i e 96
Tolerance interval settings used in beam maintenancemode. 97
PACES t00IS. oo v vttt ee v eeee et a e e 98
Logbook tools.ot it i e e e e 99
Significant events journal Viewer. i i i 99
Accelerator logbooK.ovtiiiin i e e e e 100
Reflex action as envisioned by Descartes.c..ciieiiniiiiiiiennn 103
Processor hierarchy within PACES. it eaee 104
PACES interfacetoaccelerator.ottt 106
Components of PACES accelerator interface.o, 107
Signal acquisition from control panel meters. oottt 107
Signal acquisition from beam currentchannels. it 108
SBCOrganization.ceevemeenneocssosoccennonanesonaoannsnces 110
SBCinput and OULPUE POIES. ..o oo viveeneneeotnooneenenannenasenanaenancncns 11l
SBC connectionstoaccelerator.coiiiiiiiiiieiieiiiiiiiiiinan 11
Embedded controller real-timekernel. i il 112
Real-time kernel main loop and remote procedure call mechanism. 12

427
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54
4-55
4-56
4-57
4-58
4-59

4-61
4-62

List of Figures (continued)

WAX integration intoapplication.ci ittt 1

po)
Decisions explainer window during start-up. 127
Continuum of fault severity.ttt et e i e 130
Diagnosis of ‘nobeam’ problem. i 130
Flowchart for automated acceleratorstart-up.c.cvvurenevnncnnnrnnnnn 133
Flowchart for ripple loop knowledge base subroutine. 135
Flowchart for voltage set-pointpilot.t 136
Flowchart of voltage conditioning. it rvnnns 138
Profileofatypicalspark. i e e e 140
Flowchart of the Auto-Pilot inferencingthread. ot 141
Flowchart of corona current optimizationthread., 144
Flowchart of beam current optimization knowledge basethread. 145
Flowchart of sample power optimization knowledge basethread. 146
Flowchart of the source gas optimizationthread. oo i... 148
Typelcontroltask.outii it ittt eennrnsnnnns 149
Typellcontroltask.0ttt iiiniieieennnennnnnn 150
Compilation of fuzzy source code into a fuzzy associativememory. 151
Block diagram of the single-input belt chargeselsyn FLC. 152
Membership functions for ‘terminal voltage error’ fuzzy input variable. 153
Membership functions for ‘belt charge selsyn adjustment’ fuzzy output variable. 154
Control surface for fuzzy terminal voltage controiler with oneinput. 154
Block diagram of the two-input belt charge selsyn FLC. covnt, 155
Membership functions for ‘rate of change of terminal voltage’ fuzzy input variable. 155
Control surface for fuzzy terminal voltage controller with twoinputs. 156
An early version of the PACES userinterface.cviiiitinieinneeen, 158
Interrelation of PACES with Windows andDOS.ccciiiiiirrnnneennnnnn 160
GUI meter juxtaposed with real control panel meter.ot 163
GUI selsyn juxtaposed with real controf panelselsyn.t 164
Astripchart window. ittt ettt 165
A kiviat graph of acceleratorstate. ittt 166
Operators and eXperimenters.couuvereeeionnoacennonaceaneeonnossos 168
The Parallel-Threaded Prototype (PTP) development lifecyclemodel. 172
Breakdown of PACES developmentcost.ccviiiieieiiinennnenannans 174
Hierarchy of software modules forming PACES.ciitiiiniiinenenns. 175
Module inter-relationships.c. it i i it i i e 176
GUlIobjecthierarchy.ccireiniiiiiiiiiit ittt ieiittrnnareennnnsnns 178

5-9

5-10
5-11
5-12
5-13
5-14
5-15

List of Figures (continued)

An example of automated Start-up.o ei ittt e 180
Portion of a *warm’ terminal voltage conditioning operation. 182
An example of ‘cold’ terminal voltage conditioning. il 183
Example of Auto-Pilot entering ‘cruise-control’ mode.o 184
Example of beam loss and automatic recovery, using sample power signal. 187
Example of beam loss and automatic recovery, using stabilizer balance signal. 188
Comparison of recovery times for six instances of beam loss. 188
Example of corona current optimization.c.otiiiiiiiiiiiiiiana s 189
Example of slow source gas slewrate,ol 190
Example of gas optimization.cc.ietiiiiiiiiiiiiiii e 191
Manual acquisition of 1.OMV during start-up. ...t 192
Acquisition of 1.0MV by expert system's voltage set-point pilot during start-up. 193
Performance of first version belt charge FLC.ot 193
Performance of second version belt charge FLCt 194
Performance of third version belt charge FLC.o 195
Various multiprocessor topologies.ol i 204

3-2
33
34
3-5
3-6

4-1
4-2
4-3
4-4
4-5

List of Tables

Comparison of the accelerators.ooiuiiiiiiein i, 24
Types of artificial reasoning.c.oioiiiiiiiiiii 40
User skill levels for determining a variety of aspects of interaction design. 66
Deficiencies of SOftWare SYStemS. oo v it vt i e onnsmnnenncenronnossnn 71
Nonexhaustive list of desirable software attributes., 72
Excerpts from the IEEE Standurd Glossary of Software Engineering Terminology. 72
Benefits of using a software lifecyclemodel.l 74
Telemetry Packel.o ovvvn i ntn ittt 114
General steps involved in accelerator start-up.t 117
The TKnowledgeBase ObJECL. ...ttt it eini e 124
Example knowledge base. i 126
Source code for single-input FLC. i 153
Summary of results comparing FLCs with manual and expert system control. 195

Xiv

Chapter 1

Introduction

“The modern computer is truly an extension of the human mind.
It has no intellect of its own but it is a tremendously energetic clerical slave
that works tirelessly and uncomplainingly for very low wages.
As a result, it is potentially useful in almost the whole gamut of human activities.”

— Ernest Siddall, ([Sid94], § 2. p. 5)
Today, in this modern era of computerization. there remains an immense establishment
of mature systems' and complex processes’ that are not computerized to any appreciable
degree. A serious quandary facing engineers is the problem of reconciling the
wide-ranging power of modern computers with such systems and processes. This thesis

presents a methodology for computer-based modernization of small-scale, human-tended

complex processes.

Computer-centered modernization has great potential benefits, but it must be
performed sufficiently well that the resulting system functions properly and reliably, and is
accepted by the users. The thesis identifies and explores some important concerns and
details of technology insertion. It suggests a hybridized methodology for computerization
to accomplish performance enhancement and operations support. The methodology serves

to produce reliable and user-friendly systems.

One novel aspect of this research is the systematic hybridization approach that has
been developed and has been demonstrated to work in practice. The result is a framework
that can be applied to design and implement computer-based systems to provide both

autonomous capability and operator performance enhancement for human-tended complex

"l'hetummatureisimcndedtoimplyacomplexptmorsystanwhichhasbeminoperntionfotalongperiodoftimandhas
therefore reached a state of maturity and has been well *debugged’.

3 In the sequel, the terms system, process, complex process and machine will be used interchangeably.
1

process modernization. The autonomous capability is made possible through the

incorporation of artificial intelligence (AI) techniques for real-time control.

The hybridization methodology introduced in this thesis is believed to be novel. It
provides a balance between human operator and complex machine in an effort to ensure
that the operator enjoys increased ability to operate the machine. At the same time the
machine exhibits expanded capability to perform its job. It is the contention of this thesis
that such modemnization is best accomplished by integrating several relevant but distinct
disciplines of computer engineering to yield a hybridized system that bridges the gap

between a mature complex process and its human operator.

The thesis concludes that it is not only possible but readily accomplishable, via
computer-centered technology insertion, to modernize and upgrade mature, human-tended

machines even if they were never intended to be modernized in such a way.

The potential benefits of computerization are many-fold, including such things as
improved process efficiency. operator performance enhancement, operations support, and
reliable automation. Consequently. there is significant impetus for engineers to take
advantage of computerization whenever possible, be it as an integral feature of the original

design of a new system or as a new component retrofitted to an existing system.

In the world at large there is a panoply of mature, complex machines (such as particle
accelerators, nuclear reactors, factory assembly lines, water treatment plants and power

plants) which rely heavily (or entirely) on human control and supervision.

The operation of such a mature ‘human-tended’ machine can be enhanced through
modernization and computerization, extending the machine’s useful lifespan. In an era of
budget-cutting, workforce reduction and limited funds for commissioning of new
machines, any such modernization must be of low cost and high extensibility. Essential to

such technology upgrading is that the modifications must be safe, reliable, flexible,
low-cost and operator-friendly.

Whereas the design and development of new complex systems can (and usually does)
incorporate computerization from the outset, there is difficulty in adding such

computerization a posteriori to existing, non-computerized systems. The latter is a form
of technology insertion, in that it involves the insertion of modern technology into an
existing, mature system which quite likely was never intended or designed to make use of
computerization. Technology insertion, in this context, is a process of modernization, a
challenging undertaking rich in complications and problems, and often multi-disciplinary in
nature. Many of these problems are concerned with ‘interfacing’ the computer system with
both the machine and the humans who operate it. Interfacing with the machine requires
real-time systems and control systems concepts, while interfacing with the human
operators’ involves human factors concepts, primarily in the sub-domains of

human-computer interaction (HCI) and the computer-human interface (CHI).

In the case of machine interfacing, the computer system must minimally control the
machine properly and reliably (that is, respond with timeliness and without error). This
implies that the machine interface (MI) relies on electrical and computer engineering
principles such as control systems concepts, real-time systems concepts and
instrumentation circuitry design. In the case of human interfacing, it is crucial that the
computer system is both accepted and used by the human operators. If either of these
interface requirements fails, the technology insertion exercise, as a whole, fails.
Therefore, both of these interface constraints must be properly addressed for the

technology insertion operation to succeed.

As illustrated in Figure 1-1, a mature human-machine interaction is both highly
complex and highly effective due to the many work-hours that human operators have
interacted with the machine; the human-machine system can be considered ‘well
debugged’ in that the system possesses a high degree of evolution with regard to proper
operation, robustness and reliability. Consequently, any attempt to separate the
human-machine relationship via insertion of a computer-based intermediary would require

great care to prevent loss of overall system effectiveness (Figure 1-2).

3 In the sequel, the terms human, user and operator will be used interchangeably.

Human Machine

Figure 1-1. Existing human-machine interaction is complex.

Performance
Enhancement
erations Comp uter
upport Intermediary
Automation
T~ ra
Technology Insertion
;
l’
Human Machine

Figure 1-2. Technology insertion of a computer-based system.

The technology insertion disrupts the existing system by creating a fechnology
insertion gap between the user and the machine; the intermediary must bridge this gap to
such a degree that neither user nor machine suffers from the insertion. In practice, such
ideal technology insertion is impossible, but it serves as an asymptote to which any

technology insertion operation should approach within the confines of practical limits,

such as time-frame and budget.

Once the computer intermediary is in place, the new composite system enters a state of
post-insertion development, and begins operation as a ‘disparate relation’ between human,
computer system and machine (Figure 1-3a). This stage can be described as a “state of
shock’ in which all three components (but primarily the human) experience disarray due to
the disruption of the original human-machine relation. A crucial first step occurs when (if)
the new computer system is accepted by the human (Figure 1-3b). This occurs when the

human has sufficiently adapted to the new computer system that machine operation can
resume. Hollnagel ([Hol91]) calls this state the ‘embodiment (amplificatory) relation’.
describing it this way:

“[The computer intermediary] transforms the experience [of the machine] and

mediates it to the user. More than that, it also amplifies the experience, e.g., by

highlighting those aspects of it that are germane to the task while simultaneously
reducing or excluding others.”

That is. the user perceives the computer as a fool for using (accessing, operating) the

machine: the computer is perceived as an entity separate from the machine through which

the user and machine interact.

g Computer T™
(a) Human . Machine
<< Intermediaryg |
Disparate relation
Acceflance
(b) Human Machine
Embodiment (amplificatory) relation
Evolution
T Computer
(c) Human [nt:nnid'e Machine
<— g o
Hermeneutical (interpretative) relation

Figure 1-3. Three stages of post-insertion development. Adapred from [Hol91]

Gradually, as the user becomes better attuned to the computer intermediary, there is an
evolutionary shift towards a different relation (Figure 1-3c), the hermeneutical®
(interpretative) relation. Thde, cited by Hollnagel (/bid), describes this relation as one in

* Hermeneutic is an obscure word meaning interpretive.

which the user’s “experiential terminus is with the [computer]”. Hollnagel (/bid) writes
further:

“The user has moved from an experience through the [computer] to an experience
of the [computer]. It is thus the state of the [underlying machine] as represented by
the [computer] which in itself becomes important. In the extreme case there

actually is no experience of the [underlying machine] except that provided by the
[computer].”

In this case. the user begins to perceive the computer as part of the machine, the
frontispiece through which the user interacts with the machine. During this evolutionary
phase, users begin to realize the potential of the computer intermediary, and often offer
suggestions as to how the computer system can be expanded or extended in its role. This
state can be viewed as the final (and most valuable) stage of ‘acceptance’ because the
users are sufficiently comfortable with the computer system that they are suggesting how

it can be improved to suit their perceived needs.

In summary. technology insertion as a means of modernizing and computerizing an
existing human-machine system must embrace two forms of interfacing: both
computer-machine and computer-human interfacing must be addressed. There are. in a
sense, two ‘faces’ to the interface problem, and the resulting system will only succeed if

both types of interfacing are accomplished successfully.

1.1 Thesis Outline

It is clear that upgrading a non-computerized, human-tended system cannot be soived
simply by installing a computerized controller. In addition, it is necessary to ‘upgrade’ the
human operators as well, by taking care to develop a human-computer interface that is
both accepted and usable by the operators. Consequently, a hydridized approach to
complex machine modernization is required. It is essential that researchers and engineers
seeking to perform such modernization are able to draw upon several pertinent fields,
including real-time control systems, artificial intelligence, human-machine interaction and

computer-human interface.

Since such hybridization introduces a high level of complexity and complication, it is
imperative that system designers are aware of potential conflicts between these fields, such

as, for example, the problem of reconciling the slowness of artificial intelligence reasoning
with the necessity for real-time control responses, or the problem of striking a balance

between ease of learning (for novice users) and ease of use (for experienced users).

The technology insertion problem can be approached by using concepts taken from the
areas of real-time systems, artificial intelligence, and human factors. as shown in
Figure 1-4. These three fields are united within the technology insertion exercise through

judicious use of software engineering principles and techniques.

Technology Insertion

Software Engineering
Human Factors Artifical Intelligence Real-TimT Systems
- Data Acquisitio
Human-Computer Interaction Kncl){:al;gﬁ?ngased Processq C'o‘nir(‘,‘i

Computer-Human Interface Expert Systems Process Interfacing
FuzzyI Logic I
| |

Operator (User) Operations Expertise Complex Process

0 A A1

fechnology Insertion Gap

Figure 1-4. Thesis scope: The technology insertion operation employs software
engineering principles to combine elements of real-time systems, artificial
intelligence and human factors to form a multi-disciplinary, hybridized
computer system for modernization of complex process operation and
automation.

This thesis presents a framework for a general methodology underlying the design of
computer-based performance enhancement and operations support systems for
modernization of small-scale, human-tended complex processes. In this context, the term
small-scale is used to describe systems that are small in terms of complexity (compared

to, for example, a nuclear reactor), small in terms of number of control variables, and

small in size of operator pool. Technology insertion for such a small-scale system need
only involve a few workers (e.g. control engineer, electrical engineer, process engineer.
software engineer. human factors engineer, computer scientist, domain experts, and
machine operators), and can be accomplished under a relatively small budget and in a
relatively short timeframe. In contrast, technology insertion for larger-scale systems would

be expected to require a considerably greater workforce, larger monetary expenditure and

longer development time.

The methodology for small-scale technology insertion is illustrated through a
case-study application concerning the design and development of the Particle Accelerator
Control Expert System (PACES). This research took part under the auspices of the
Department of National Defence and the Defence Research Establishment Ottawa
(DREO). PACES was consigned to provide operators with a computer-centered means of
modernizing a particle accelerator site to improve operational expertise and performance.
Three versions of PACES were developed during the project: First, a proof-of-concept
prototype was implemented for the KN-3000 at the McMaster Accelerator Lab.
McMaster University. Next, a field version was customized for the KN-3000 at DREO.
Finally, PACES was upgraded and customized as a second field version® for the KN-4000
at the Whiteshell Labs of Atomic Energy of Canada Ltd (AECL). Consequently, a large
portion of PACES development involved implementing a generic control system which was

tailorable to individual accelerator sites and specific operating regimens.

One novel aspect of this research is the hybridization approach that has been followed.
and the net result is a framework methodology that can be applied to the design and
implementation of computer-based systems to provide both autonomous capability and
operator performance enhancement for human-tended complex process modernization.
The autonomous capability is made possible through the incorporation of artificial
intelligence (AI) techniques for real-time control, specifically knowledge-based systems
and fuzzy logic concepts. The operator performance enhancement stems from the
utilization of human-computer interaction and computer-human interface concepts in

system design. These diverse areas are united into a cohesive system using principles of

3 This field version was named the “Particle Accelerator Control and Operations Support System™ (PACOSS). For clarity, the acronym
PACES will be used throughout this thesis to represent both the prototype and field versions.

software engineering, such as modularity, information hiding and the software

development life-cycle.

The hybridization approach explored in this thesis seeks to strike a balance between
human operator and complex machine, ensuring that: ® The operator enjoys increased
ability to operate the machine (e.g. the computer system helps streamline the operator’s
job by providing automated decision support and control assistance); and. @ The machine
exhibits expanded capability to perform its job (e.g. the computer svstem performs
automatic optimization, fault detection, diagnosis and recovery). It is the contention of
this thesis that such modernization is best accomplished through the marrying of several
different but relevant facets of computer engineering to yield a hybridized system that

bridges the gap between human operators and mature complex process.

®* % »
This chapter has introduced the notion of employing computer-centered technology
insertion as a means of upgrading and modernizing non-computerized complex

human-machine systems in order to prolong their useful lifespan and to enhance and

extend their utility in ways not previously possible.

Chapter 2 introduces the PACES case study by describing the three specific particle
accelerator research facilities and how the accelerators are operated. This background

information serves to set the stage for the following chapters that describe the design,

development and performance of the control system.

Chapter 3 presents pertinent background information on the four fields that are applied

to the technology insertion problem: real-time systems, artificial intelligence, human
factors and software engineering.

Chapter 4 elaborates on the design and development of PACES, illustrating how this
specific technology insertion exercise uses a hybridization of concepts and techniques
borrowed from artificial intelligence, human-computer interaction, computer-human
interface, real-time systems and software engineering. This hybrized approach is used to
facilitate the dual task of performance enhancement and operations support, including:

10

® Employment of real-time systems and process interface concepts for connecting PACES
with the particle accelerator for data acquisition and control; @ Use of artificial
intelligence techniques, such as knowledge-based inferencing and fuzzy logic-based
reasoning, for autonomous accelerator operation; and, @ Application of human-computer

interaction and computer-human interface principles to the design, implementation and

evolution of the PACES graphical user interface.

Chapter 5 extends the information presented in the preceding chapter by analyzing the
performance of the system’s artificial intelligence-based controllers, illustrating how

PACES is able to start up the accelerator and maintain particle beam stability.

Chapter 6 presents a general discussion, suggesting how the approach followed during
PACES design and development can be extrapolated to technology insertion operations in

general for the modernization of small-scale non-computerized human-machine systems.

Finally, Chapter 7 summarizes the main tenets of this thesis and proposes some

avenues of study for future work.

Chapter 2
The KN-3000 Particle Accelerator

The KN-3000 particle accelerator of the Nuclear Effects Division. Defence Research
Establishment Ottawa (DREO), is an elderly workhorse in the field of particle physics. In
active service since the 1950s, this machine has provided many years of good research.
and promises to continue to do so for several more years to come. Two key problems
have arisen in recent years, relating to availability of operator expertise and the gradual
ageing of the accelerator. First, the long-time operators have reached mandatory
retirement age, resulting in an acute decrease in on-site operator expertise; simultaneously.
due to budgetary constraints, there is little prospect of hiring new operators with sufficient
expertise to replace that lost due to retirement. Second, as the accelerator ages. it suffers
increasingly from failure due to wear and tear of its components; simultaneously. the same
budgetary issues limit the amount of refurbishment or upgrading that can be performed,
and in most cases the machine can only be restored to operation, without significant
financing for modernization or improvement of components. In essence. these two
problems mean that the accelerator facility is operating in a preservative mode’ or
‘holding pattern’: there is only sufficient funding to ensure the facility continues to operate
at its present level of machine utilization and operations expertise. Yet, there is a desire to

extend the usability and capability of the machine within the limits set by the site’s
operating budget.

To this end, it was decided that computer-based enhancement of the accelerator
promised a high degree of benefit for a reasonable cost. A computer-centered, artificial
intelligence-based control system was commissioned to address the key problems of

expertise loss and cost-effective machine management. The first problem could be solved

11

by capturing operations expertise in the form of a knowledge-based artificial intelligence
system for accelerator automation. The second problem could be remedied by using the
computer system as an aid for both operators and site managers in order to monitor and
organize machine maintenance. Additionally, the computer system could be designed to
‘piggy-back’ the existing accelerator control system, allowing for simple. flexible and
cost-effective modernization. Of pivotal concern was that the computer system should not

replace the operators, but rather aid them in their job and improve their performance and

productivity.

The Particle Accelerator Control Expert System (PACES) was conceived to meet the
demands of the accelerator site at DREO. It was designed not only to provide assistance
for new operators, but also to reduce the operator time required for accelerator start-up,
shut-down. and for particle beam maintenance during accelerator runs. allowing operators
to perform other, more valuable tasks concurrently with automated accelerator operation

([DeM91}, [Lin91], [Lin92a], [Lin92b], [Lin93a], [Lin93b], [Lin94}).

Figure 2-1. Transparent mock-up of a KN-3000. igh rosage Engineersng Corp.

13

2.1 An Overview of Particle Accelerator Operation

The KN-3000 is a Van de Graaff particle accelerator that uses the generation of static
electric charge to provide particle energies up to 3MeV (mega-electron volts).” Figure 2-1
shows a transparent mock-up of the accelerator, and Figure 2-2 illustrates the
configuration of the accelerator and its beam line at DREO. As is the case for similar
accelerator facilities in general, the DREO accelerator facility consists of a Van de Graaff
accelerator for producing accelerated charged particles. a beam line for conveying these
particles to a target area, and various ancillary devices (such as analyzing magnets.

Faraday cups. and quadrupoles) used for altering characteristics of the particle beam. such

as steering, shaping, filtering and focusing.

o R

_J

Control Accelerator

Figure 2-2. DREO accelerator site layout.

The accelerator produces a significant level of ionizing radiation, principally in the
form of x-rays. This radiation is termed "non-persistent’” because it quickly vanishes when
the machine is shut-down. While the machine is running, however, precaution must be
taken to minimize or prevent operator exposure. For this reason. the accelerator tank is
isolated from its control panel in a separate room with thick, shielded walls. The beam line
runs from the accelerator tank into another shielded room, the target area, where
experimental apparatus is located. Typical operating procedure requires that an operator is

present at the control panel at all times, while the experimenter moves between target area

and control room as needed.

7 One electron volt (1 eV) is the work (energy) required to move an electron across a voltage gradient of one voit (1 V).

14

As shown in Figure 2-3, the Van de Graaff generator (VDG, @) employs a moving
belt to transport electrical charge from a power supply to the terminal (®) where charge
accumulates to build up a high voltage. This high volitage is applied to a series of resistors
in the accelerating column (@) to form a voltage gradient which determines the kinetic
energy of accelerated particles.® Gas flowing into the ionizing chamber (@) is ionized to
form a plasma stream of charged particles which is drawn into the accelerating column.
The initial generation of this plasma is called a strike.’ The particle beam is accelerated
along the voltage gradient and conveyed downstream into the beam line (@), where it is

focused, shaped and steered to the target area where experiments occur.

Van de Graaff
Corona gearﬁeraetorr / Belt charge power supply
Tank points 4) \ <— Belt charge selsyn
o :
. \ W, Accelerating
High O o () column
voltage Faraday cup '
terminal © z Particle
o o ;l beam

Extraﬁm 9 I (] ooc—>
selsyn "

lonizing X = \ Beam line

chamber 50 \Eggglsy POWEr \Aperture

Gas bottle” Gas selsyn “MFocus selsyn

Figure 2-3. Schematic of a KN-3000 particle accelerator.
The corona points (®) are used for terminal voltage stabilization. Their position can
be varied to increase or decrease their proximity to the high-voltage terminal. Coronal
discharge from the terminal causes some charge to leak away as current through the

corona points. This current can be monitored and controlled for terminal voltage
stabilization.

Usual operation of the accelerator (a run) begins with the operator carrying out a
prescribed start-up procedure which may call for re-establishment of a previous run’s
operating conditions. When the accelerator is to be operated at voltages near its upper

limit, start-up may also require voltage conditioning to be performed, during which the

* For example, a terminal voltage of | MV accelerates singly-charged particles to an energy of | MeV.

* The term frike is used because the plasma stream typically first announces its presence by striking the Faraday cup and causing a flow of
beam current.

15

terminal voltage is increased in gradual steps towards the target level in order to improve
the accelerator’s voltage stability. Start-up culminates in the generation of a stable particle
beam. Thereafter, beam maintenance operations are performed as needed to maintain or
alter the characteristics of the particle beam. The accelerator is run in this beam
maintenance mode for some length of time, typically several hours. At completion of the
accelerator run, the machine is deactivated using a prescribed shut-down procedure. Aside
from daily variations in operating conditions and particle beam requirements, start-up is
essentially the same process each time. The shut-down procedure seldom varies. Beam
maintenance operation, however, depends largely on the nature of the run’s experiment(s)
as well as on the dynamic behaviour of the machine itself, such as changes in behaviour
due to heating, age and condition of components. It may be necessary during beam

maintenance operation to perform small parameter changes, such as altering particle

energy, beam current or ion species.

In the accelerator at DREO. hydrogen gas (H,) is ionized to produce protons (H')
which are accelerated onto a target. A nuclear reaction occurs at the target, producing
neutrons that are used for calibration of radiation detectors. The energy of the neutrons is
determined by the energy of the incident protons. Hence, to produce neutrons of a specific

energy, the operator must set and maintain the accelerator’s terminal voltage to a specific

value.

Two major problems are associated with this method of generating precise particle
energies. First, electromechanical and thermal noise in the accelerator causes fluctuation in
particle energy, so built-in control circuitry is used to stabilize the energy level; the control
system software must be aware of and be able to direct this closed-loop subsystem.
Second, the accelerated particles (Figure 2-4) will not have equal energy (will not be
monochromatic); most will be of approximately the correct energy, but some will have

excessive or insufficient energy (will be polychromatic), and it is necessary to screen out

these undesired particle energies.

16

<
2
5
=
=
o
0.95 1.0 1.05
Energy (MeV)

Figure 2-4. Distribution of particle energies (polychromatic). The shaded area
contains particles of desired energy to within some margin of error
(monochromatic); unshaded areas contain particles of undesired energies.

One useful property of a magnetic field is that it can be used to alter the trajectory of a
charged particle. If the strength of the magnetic field is known, one can determine the
resulting deflection for a particle of arbitrary momentum.'® The accelerator therefore uses
a magnetic spectrograph (an electromagnet, also referred to as an analyzing magnet) to

focus charged particles of identical momentum and disperses particles of different
momenta. ([Eng67]).

During an accelerator run. the operator adjusts the analyzing magnet’s power supply
output current to isolate particles of a desired energy and to maximize beam current
(number of particles reaching the target per unit time). Since magnetic field strength
cannot be measured directly, a nuclear magnetic resonance (NMR) technique is employed:
The hydrogen atoms of water molecules in the NMR’s sensor probe will resonate at a
specific frequency determined by the magnet field strength, and by measuring this
frequency, the magnetic field strength can be calculated precisely.

The accelerator’s beam line, which is usually straight, makes a precise bend at the
analyzing magnet (Figure 2-5). When the magnet is set to select a specific particle energy,
only those particles of correct energy will be deflected properly to negotiate the turn and
reach the target (to be measured as farger current). Particles with excess energy will not
be sufficiently deflected, and will eventually collide with the outer wall of the beam line.

Likewise, low-energy particles will be deflected too much, and eventually collide with the
inner beam line wall.

' Momentum is the product of rest mass and kinetic energy. In the sequel, the terms momentum and energy will be used interchangeably,
since only one particle type is used at DREQ (i.e. rest mass is constant).

17

Polychromatic
Particle
Beam
— Analyzing
—p] Magnet
Low High
Accelerator Energy Engergy
Slit (—|— Slit
Monochromatic
Particle
Beam EI-\: Target
Neutrons

Figure 2-5. Configuration of the DREO particle accelerator with analyzing magnet.

These collisions are used for stabilization and target current optimization by employing
the energy slits (see Figure 2-5). Particles of proper energy (within some margin of error)
will pass between the slits and continue unimpeded down the beam line. Particles of
improper energy will strike either the high energy slit or low energy slit. causing current
flow. This current flow is measured, and the difference between high and low slit currents
indicates the amount of energy imbalance. If the low energy slit current is greater
(Figure 2-6a), terminal voltage should be increased to increase average particle energy
(and increase target current). Slit balance (Figure 2-6b) implies the majority of particles
posseses the proper energy. Yet. if the high energy slit current is greater (Figure 2-6¢).

terminal voltage should be decreased to decrease beam energy (and increase target

current)."'
: , |
2 | |
g | | |
£ | ! |
& ~ |
i
085~ 10 1.05MeV 095710 1.05MeV 085 10 1.05MeV
(a) Insufficient Energy (b) Proper Energy (c) Excessive Energy

Figure 2-6. Errors in beam energy set-point affect target current.

Figure 2-7 shows how signals from the accelerator and beam line are conveyed to the
control panel at DREO. Protons (H') emerging from the accelerator’s aperture into the
beam line possess a wide range of energies (as illustrated in Figure 2-4). The analyzing

magnet (@) bends the particle beam through a fixed angle, dispersing particles of different
" It is also possible to adjust the magnetic field strength, but this would alter the average energy of particles reaching the target.

18

energies. The strength of this magnet’s field determines the energy of the *analyzed beam’
increasing the field bends higher particle energies onto target; decreasing the field bends
lower particle energies onto target. The field strength is linearly proportional to the
amount of electrical current flowing through the magnet’s coils.” The energy slits (@)
screen and measure particles of improper energy. The voltage stabilizer (@) is a
self-contained hardware module which controls terminal voltage to maintain proper
analyzed beam energy. The voltage stabilizer can monitor either the energy slits or the
accelerator’s generating voltmeter (GVM, @) to determine beam energy (accelerating
potential, terminal voltage). Error between the analyzed beam energy and the beam energy
set-point is used for corona current adjustment (@) to fine tune the terminal voltage (and
thereby fine tune the analyzed beam energy); increasing corona discharge decreases

terminal voltage, and decreasing corona current increases terminal voltage.

? (2 Corona Current
Y Focus Analyzing
na
C Point NMR Magnet
orona Poin ﬁ Straight-through beam line
oGVM o /_ I N
Y, Chamber Current+" \Z\ Faraday Cup
Accelerator '~ Slits i
Magnet Power Supply {eovlar Ring
N
o Currents Target
> o < g
Voltage Stabilizer
P—-— Connection to control panel

Figure 2-7. Control pane! connections to accelerator and beam line at DREO.
* L *
This section has outlined the basic theory and operation of the particle accelerator and
its subsystems. As will be discussed in Chapter 4, the expert system software is
responsible for presiding over this collection of subsystems, monitoring and controlling

them during automated accelerator operation.

The next section describes how the accelerator’s control panel is used during

accelerator operation.

2 For example, a specific model of analyzing magnet might produce 2 kG when supplied with 3 A.

19

2.2 The Control Panel

The accelerator control panel (Figure 2-8) is the arena of human-machine interaction,
a window through which operator and accelerator interact. It comprises analog meters and

indicator lights for monitoring the state of the accelerator, and selsyns and switches for

control.

There are five main switches on the control panel, three used during start-up and
shut-down. and two used during the duration of an accelerator run for positioning the
corona points. The control power switch is a keylock that must be turned on to activate
the control panel’s power. The drive motor switch is used to start or stop the van de Graff
belt’s drive motor. The belt charge switch is used to turn on or off the belt charge power
supply. The latter two switches consist of two pushbuttons connected to high-capacity
switching relays: one pushbutton energizes and latches the relays, the other de-energizes
the relays. The final two switches are for changing the position of the corona points
relative to the high voltage terminal: The corona extend pushbutton moves the corona

points closer to the terminal, and the corona retract pushbutton retracts the points.

Figure 2-8. KN-3000 control panel at DREO. courresy pRED.

20

The control panel’s meters are used for monitoring the state of the accelerator. The
vacuum meter measures the beam line vacuum level. The terminal voltage meter indicates
the accelerating potential being applied from the high voltage terminal to the accelerating
column. The belt charge meter displays the amount of charge being deposited onto the
VDG's belt by the belt charge power supply. The column current meter shows the amount
of current flowing through the accelerating column from the high voltage terminal to
ground. The current flowing off the high voltage terminal through the corona points is
reported by the corona load meter, and the proximity of the corona points to the high
voltage terminal is indicated on the corona position meter. Finally, the particle beam
current is displayed on the beam current meter, whose signal can be taken from several

Faraday cups in the beam line, or from the target chamber.

The selsyns are pairs of electrically-coupled dynamos. one mounted on the control
panel and the other located inside the accelerator tank. The latter is usually connected to a
rheostat so that turning the control-panel selsyn causes the tank-mounted “partner’ selsyn
to turn the rheostat. The accelerator has four selsyns: The belr charge selsyn controls the
amount of electrical charge that is deposited onto the VDG’s belt and carried to the high
voltage terminal. The gas selsyn adjusts the flow of source gas into the ionizing chamber.
The extraction selsyn varies the voltage of the ionizing chamber’s anode, determining flow

rate of ions from the chamber. The focus selsyn is used to focus the particle beam as it
emerges into the beam line.

The analyzing magnet is a sub-system whose control is straightfoward. Given a
required beam energy, it is simple to determine the necessary magnetic field strength using
a standard formula."* Magnet field strength is directly related to the electric current
supplied to the analyzing magnet, and the operator can adjust the magnet’s field strength
by varying the current output from the magnet’s power supply. As mentioned previously,
a nuclear magnetic resonance (NMR) magnetometer is employed to measure and display
the magpet’s field strength, enabling the operator to set the magnet precisely as required
to select the desired beam energy. Typically, once the magnet is properly configured, it

does not need to be readjusted unless a different beam energy is desired; it is possible,

U The magnet field strength b required to bend a beamn of protons of energy £, is determined by the formula: b = (E/e,)*/ I, where e, and I,
are constants specific for protons.

21

however, for the magnet’s field strength to drift slightly during the course of an
accelerator run, but this can usually be rectified by the operator without significant

disruption of the beam energy.

As explained in Section 2.1, the voltage stabilizer is responsible for maintaining the
terminal voltage (and therefore the beam energy). The voltage stabilizer is a commercial
product whose control panel consists of two analog meters (stabilizer balance and corona
current), and several indicators and controls. The principal control is the stabilizer mode

control, which enables or disables the voltage stabilizer. It has five modes of operation:

- Off: No voltage control is performed.
- Standby: Voltage set-point is registered, but no control is performed.

- GVM: The stabilizer attempts to maintain terminal voltage set-point using
feedback from the accelerator’s generating voltmeter.

. slit: The stabilizer attempts to maintain terminal voltage set-point using feedback
from the beam line’s energy slits.

- Automatic: The stabilizer runs primarily in Slit mode, but switches temporarily to
GVM mode when large fluctuations in voltage make slit-based control untenable.

Typically, the operator performs the following steps to enable the voltage stabilizer:

1. The accelerator is started, and a certain terminal voltage is established
while the stabilizer is Off. This step may involve belt charge selsyn
adjustments, positioning of the corona points, and possibly conditioning.

2. When the voltage appears stable, the stabilizer is set to Standby so that the
unit can acquire the voltage set-point.

3. The stabilizer is next switched to GVM, at which time it assumes active
control of the terminal voltage. If the accelerator is to be run without using
the analyzing magnet, no further action is required.

4. If the accelerator is to be run in conjunction with the analyzing magnet, the
analyzing magnet is now configured as required to ‘bend’ the beam onto
target. This step involves determining the analyzing magnet field strength
required to select particles of the desired energy.

5. When the analyzing magnet is configured, the voltage stabilizer is switched
to Slit, and assumes energy slit-based terminal voltage control.

When the voltage stabilizer is enabled, it attempts to maintain the terminal voltage
set-point by adjusting corona discharge current in response to fluctuations in the terminal
voltage (as indicated by the balance signal read as the difference between the high and low
energy slit currents). Such adjustment is usually sufficient to maintain energy stability, and

22

therefore maintain the beam on target with the proper energy. Occasionally, however. a
large terminal voltage fluctuation occurs (typically in the form of a spark) which is too
severe for the voltage stabilizer to compensate. When this happens, the beam gets ‘lost’
from the target." Usually, the voltage fluctuation is transient, and the voltage quickly
(within a few seconds) returns to its set-point without the need for any control

adjustments; but. other times, the spark precipitates a period of extreme terminal voltage

instability which may require conditioning. "

When the beam gets lost, the voltage stabilizer is frequently able to recover the beam
after the terminal voltage has returned to its set-point. Sometimes, however, the voitage
stabilizer is unable to restore the beam without operator intervention: the operator is
obliged to switch the voltage stabilizer to Off, recover the beam manually, and then
re-enable the voltage stabilizer. As will be presented in Chapter 4. this method of

operating the voltage stabilizer is ideal for automation using knowledge-based reasoning.

During normal accelerator operation, the operator watches the control panel’s meters
to observe accelerator behaviour and adjusts some or all of the selsyns to alter this
behaviour to a more suitable state. Several noteworthy details of manual control are
discussed below. Some of these details are elaborated upon in Section 4.4.1 to illustrate
how computerization has affected (both improved and hindered) regular manual operation.

Meters: The control panel's analog meters provide good qualitative indication of
accelerator parameters, but only limited quantitative indication. Exact meter readings
must, in most cases, be interpolated from a meter’s scale. Generally, operators are more
concerned with the qualitative indication because it allows them to assess quickly the state

of the accelerator based on their expertise; seldom are they concerned with exact numbers

for meter readings.

A common problem with the meters is that they sometimes stick (that is, the needles
become frozen in place), and operators have learned to tap a meter’s faceplate if its needle

is suspected to be sticking. This implies that meter readings are not always reliable, and it

* That is, the terminal voitage is no longer controlled at set-point, so the beam either is bent too much by the analyzing magnet, or not bent

enough, and fails to strike the target. If the voltage has deviated to a large degree, the beam may not even strike the energy slits. making
further slit-based control impossible without remediation.

1 Sometimes the spark can even cause physical damage to the accelerator which may require shut-down and repair.

23

is possible that novice operators might be unaware of the sticking problem or how to

correct it.

Finally, the meters have built-in integration, implying that high frequency signals are
lost. Prior to the advent of digital signal acquisition, operators had to rely solely on the
integrated meters, and therefore were not exposed to many subtle. short-duration
transients exhibited during accelerator operation. Operators were able to form hypotheses

or hunches about what was really happening inside the accelerator but were unable to

observe such behaviour at the control panel.

Selsyns: The control panel’s four selsyns are cross-coupled non-linear control points.
so altering the set-point of one can affect the set-point of another (Figure 2-9). For
example, when the accelerator is started. the operator turns the belt charge selsyn to
establish a specific terminal voltage. Next, the extraction selsyn is turned to increase beam
current, but this causes a drop in terminal voltage. so the belt charge selsyn must be
re-adjusted.'® Similarly, as the gas selsyn is varied, beam current can change, perhaps
requiring a re-adjustment of the extraction selsyn. Finally, the amount of focus required

depends on the accelerating potential, so varying the terminal voltage can necessitate
focus selsyn compensation.

Figure 2-9. Cross-coupling relationship between the accelerator’s four main control
points (selsyns).

Since the selsyns possess such cross-coupling, operators frequently need to make
adjustments to two or more selsyns simultaneously. Without the presence of automatic

control, a single operator is never able to adjust more than two selsyns concurrently.

' The operator may also initially set the terminal voltage slightly higher than required so that when establishment of the particle beam
causes the terminal voltage to drop, the terminal voltage reaches the desired level, and no belt charge selsyn compensation is needed.

24

There are two important characteristics of the selsyns. First, they provide tactile
feedback to the operator, in the form of counter-torque, enabling the operator to sense
when the associated rheostat has reached its upper or lower limit. Second, a control-panel
selsyn can ‘slip’ when its tank-mounted counterpart fails to track it properly; this can lead

to occasions when the setting indicated on the control panel selsyn is ambiguous.

2.3 Other Accelerator Sites

As mentioned in Chapter 1, two other accelerator sites were used during development
of PACES: The KN-3000 at McMaster Accelerator Lab, McMaster University was used as
a testbed for the implementation of the proof-of-concept prototype. The KN-3000 at
DREO was then used for the first field version of PACES. Finally, the KN-4000 at the
Whiteshell Labs of Atomic Energy of Canada Ltd. (AECL) was used as the platform for a
second. updated field version of PACES. Table 2-1 summarizes the differences between

these three accelerators. The following sections describe how the two ancillary accelerator

facilities differ from the DREO accelerator site.

DREO McMaster Whiteshell
Model KN-3000 KN-3000 KN-4000
Maximum voltage (MV) 3 3 4.7
Source gas Hy/ D2 H:/ 'He / "Het+*He H:
Tank gas COs+N. / SF, SF, SF,
Analyzing magnets 1 2 1
Beam Lines 1 3 2
Faraday cups None 3 3
Quadrupoles None 6 2
Steerers None 4 1
Table2-1. Comparison of the accelerators at DREO, McMaster University and
AECL Whiteshell Labs.

2.3.1 The KN-3000 at McMaster Accelerator Lab

A twin sister of the DREO KN-3000, the McMaster KN-3000 is of approximately the
same age, and although the two machines are functionally equivalent, their beam lines
differ significantly, and their operating regimens differ drastically. Whereas the DREO
accelerator is used almost exclusively as a neutron generator whose operating parameters

hardly differ from run to run, the McMaster accelerator exists in an academic institution

25

and has experienced a long and diversified career. During its lifetime. the McMaster
accelerator has seen countless researchers, students and technicians using it for a wide
range of experiments, including such things as Rutherford backscattering, gamma ray

spectroscopy, neutron irradiation studies and various medical science experiments.

Since the McMaster accelerator was used as a testbed for PACES early in its
development, much of the hardware that distinguishes the McMaster accelerator from its
DREO counterpart was irrelevant; the main control points (the selsyns and switches) are

identical on the two machines, enabling much of the early development to be performed at
McMaster.

2.3.2 The KN-4000 at Whiteshell Labs
Whiteshell Labs is a research facility of Atomic Energy Canada Ltd. (AECL), situated

near the town of Pinawa in eastern Manitoba. A KN-4000 particle accelerator is operated
there by the Reactor Materials Research section to generate proton beams at up to 4 MeV
which are used for “various types of radiation damage studies to measure the effects of

prolonged irradiation on [nuclear] reactor materials™, ([McI96]).

The KN-4000 accelerator is a newer. enhanced version of the KN-3000 which is able
to generate higher accelerating voltages (up to 4.75MeV as opposed to 3MeV). The
principles of operation remain the same, as do the basic control mechanisms and operating
procedures. [n the case of the Whiteshell Labs KN-4000, however, voltage conditioning is
regularly employed to stabilize the accelerating potential at 4 MeV and higher: without
conditioning, the accelerating potential is unstable and prone to sparking. Conditioning is
performed after the machine’s tank has been opened for maintenance, whenever the
accelerator exhibits periods of voltage instability, and always after the machine has been
idle for more than a few days (such as after holidays).

A large number of the experiments currently carried out involve irradiation of
zirconium alloy samples to simulate conditions inside CANDU nuclear reactors. The
samples are typically heated to approximately 300C by supplying them with dc power. A
standalone control unit is used to maintain the temperature set-point. When the samples

are irradiated by the accelerator’s particle beam, less dc power is required to maintain the

26

sample temperature (due to heating caused by the particle beam). It is a simple matter to
monitor the dc power output of the control unit (the sample power) to determine whether
the beam is on target. Without the availability of this passive (indirect) method of
detecting presence of the beam on target, active ‘beam sampling’ must be performed
periodically to determine whether the beam has been lost from the target. Beam sampling
requires insertion of a Faraday cup (or other monitoring device) into the particle beam.
which diverts the beam from target. During some experiments, it is desirable to minimize
such disruption of the beam, or eliminate it altogether. Monitoring the sample power
avoids the need for such beam sampling: a sudden, pronounced rise in sample power
indicates the beam has been lost from the target. This capability is of great use to the beam

maintenance knowledge base described in Chapter 4.

Another feature of the Whiteshell Labs KN-4000 is the tank ripple signal. which
indicates the first-order time derivative of terminal voltage. This signal is available as an
oscilloscope trace on the control panel, and is used by the operators to determine terminal

voltage stability visually. It is likewise used by the expert system to infer instability (see
Chapter 4).

Of minor importance is the fact that various controls and indicators on the control
panel have names different from those used at DREO. For example, the extraction selsyn
is referred to as the “beam bias selsyn”, and the belt charge selsyn is called simply the
“charge selsyn”. In the sequel, the DREO-site terms extraction selsyn and belt charge
selsyn will be used in preference to their Whiteshell-site alternatives.

The Whiteshell Labs accelerator facility differs further from the DREO and McMaster
sites in that the KN-4000 is generally run continuously, around the clock, five days a
week. Consequently, as reported in [McI96], “[a]n automated, or partially automated
[accelerator control] system would allow experimenters more freedom to do other work in
the area during the day, and would eventually allow periods of unattended operation, if
necessary. This could reduce operating costs in the future.” To this end, AECL became
interested in acquiring a customized version of PACES which would pave the way to

automation of the Whiteshell Labs’ accelerator facility.

27

2.4 Related Research

The area of computer-based particle accelerator control is currently blossoming. A
large number of research projects have recently been reported concerning various aspects
of computer-based control for particle accelerators and other related machines (such as
linear accelerators, cyclotrons and storage rings). Some documentation of general
accelerator control can be found in [Bar95], [Dic95], [Epa95], [Lin88], [Riv95], [Sil88],
[Sta95]. [Wan94]. [Wu95]. [Yo0s95] and [Zha95]. Research on applying several forms of
artificial intelligence to accelerator control is published in [Jen94], [Jen96]. [Lew95].
[Mej95], [Rod97], [Ryb95], [Sak95], [Tan95] and [Wes95]. Some projects investigating
the development of object-oriented class libraries and toolkits are reported in [Bir95],
[Che95], [DiIM95] and [Kuz95].

* * »

This chapter has introduced the KN-3000 and KN-4000 particle accelerators and
described how they function and are operated. As discussed in Chapter 1, the intention is
to perform a computer-centered technology insertion exercise as a means of modernizing
the operation of this type of particle accelerator. In the next chapter, four important areas
of electrical and computer engineering are surveyed in order to set the stage for a

presentation in Chapters 4 and 5 of how PACES was designed and implemented to

accomplish this modernization task.

Chapter 3
The Tools for Technology Insertion

As mentioned in Chapter 1, the computer-centered technology insertion exercise
described in this thesis is based upon the hybridization of four distinct areas of computer
and electrical engineering. This exercise can be thought of as a jigsaw puzzle (Figure 3-1)
which relies on these four diverse areas to accomplish a seamless interface between
computer and machine, and between computer and human. At the ‘low end’. principles of
real-time systems and instrumentation interfacing are applied to connect the computer
system to the machine to effect data acquisition and control. At the "high end’, principles
of human factors, primarily in the sub-domains of human-computer interaction and
computer-human interface, are used to ‘connect’ the computer system with the human
operator. Between these two ends of the interface, artificial intelligence is used for
problem solving and decision making in order to: ® Automate machine operation by
mimicking the skills of expert human operators; and @ Assist in machine operation by
augmenting the skills of novice human operators. Within this jigsaw puzzle analogy.
software engineering can be thought of as the ‘glue’ that holds the pieces of the puzzie
together; without such principles as modularity, information hiding and object-oriented

structuring, it would be an extremely difficult task to meld the different pieces into a
working system.

In the following sections, each of these areas is introduced and delimited within the
scope of this thesis. Literature reviews serve as background material that will be cast
appropriately to form a framework for the following chapters.

28

29

Computer-centered System (Hardware, Software)

Software Engineering
Real-time Anrtificial b Human
Systems G Q Intelligence Factors

X— Electrical Engineering { : E

Q Jj Computer-Human Imedbcrﬂ L

Machine Human

IOTRANTY,

ATy

Figure 3-1. The jigsaw puzzle of technology insertion for computer-centered modernization.
3.1 Real-Time Systems

During the industrial revolution that swept Europe in the 19th century, specialized
machines were successfully used for controlling and automating a variety of manufacturing
plants and factories. For example, a machine developed in France could control the pattern
of textiles woven on a loom: the machine would read a series of punched cards and
interpret the arrangement of holes to alter the pattern being woven. Many similar schemes
were conceived for controlling a wide range of tasks, such as wood lathing, cannon boring
and sawmilling. Such automation was even used for entertainment, in, for example, the
player piano that played music recorded as patterns of holes on a roll of paper. More
recently, during the early years of the computer revolution, it was realized that electronic
computers were well suited for controlling and automating many kinds of processes and
systems; they offered many of the benefits of older, mechanical automation systems, but
also promised increased speed, accuracy, flexibility, and reliability.

A difficulty arises, however, when attempting to reconcile the different time domains
of computers and real-world machines. Computers are digital in nature, and perform their
duties in discrete steps, changing from one state to another in a prescribed.
time-determinate way. That is, a computer requires a specific amount of time, its sample

rate, (t) to change from one state to another, and cannot instantaneously change states.

30

This means that any external information that changes during the interval between times ¢
and t+t cannot be measured directly.'” In contrast, real-world processes generally operate
continuously in time with no notion of time-determinate steps. For example, a real-world
variable may change dynamically and continuously as shown in Figure 3-2a, but a
computer with a sample rate of t will only "see’ (be able to sample) the variable at discrete

times, resulting in approximation and loss of information (Figure 3-2b).

h,\f/\rl_d_.—f

> 0T 2t 3T 4% 5t 61
(a) (b)

Figure 3-2. Comparison of time domains. Waveform (b) is a discrete-time
approximation of the continuous-time waveform (a).

The disparity between the continuous and discrete time domains causes problems
when a discrete-time computer is required to monitor and/or control a continuous-time
process. These problems arise because it is necessary to transform information that is
interchanged between the process and the computer. Process state information transferred
from the process to the computer must be discretized (digitized). Likewise, control
information transterred from the computer to the process must be transformed from the
discrete-time digital domain to the continuous-time domain. Because the discrete-time
(digital) domain is a subset of the continuous-time (analog) domain. there is
approximation (information loss) in moving from continuous to discrete, and lack of
specificity (precision) in moving from discrete to continuous. This means that measured
information input to the computer is inexact, and generated information output from the
computer is lacking in complete coverage of range. Such inexactness can occur in the
value or time components of measured process state information and generated control
information. The time component of measured process state information is the time at
which the measurement was taken, whereas the time component of generated control
information is the time at which the control action should be performed. In either case,

transformation between time domains results in problems in both accuracy and timing.

" [t is possible, of course, to employ instead some device whose sample rate ¢ is less than the © of the computer, but clearly there exists a
time interval [¢,++1°] in which changes cannot be measured as t* approaches 0.

31

Computer systems that are interfaced with real-world processes and that address these
problems of accuracy and timing are called real-time systems. Several definitions of
real-time systems have been presented in the literature. Four representative definitions are
given below, and the reader should note that although they may seem similar, they are
subtly different and offer alternative viewpoints as to the definition of a real-time system.

For example, the Oxford Dictionary of Computing (as cited in [Bur90], p. 2) supplies this
definition:

“Real-time system: Any system in which the time at which output is produced is
significant. This is usually because the input corresponds to some movement in the
physical world, and the output has to relate to the same movement. The lag from
input time to output time must be sufficiently small for acceptable timeliness.”

In contrast, Lawson ([Law92], p. 2) defines a real-time system as follows:
“By real-time system we mean a system that assures that controlled activities

*progress’ and that stability is maintained and further, that the values of outputs

and the time at which the outputs are produced are important to the proper
functioning of the system.”

Similarly, Young ([You82]) defines a real-time system as:
“Any information processing activity or system which has to respond to
externally-generated input stimuli within a finite and specified period.”

Finally, the German industry standard DIN 44300 (cited in [Hal92]) defines ‘real-time

operation’ as:

“The operating mode of a computer system in which the programs for the
processing of data arriving from the outside are permanently ready, so that their
results will be available within predetermined periods of time; the arrival times of

data can be randomly distributed or be already a priori determined depending on
different applications.”

As described by Halang ([Hal92]), real-time computer systems are “associated with
external processes. The program processing must be temporally synchronised with events
occurring in external processes and must keep pace with them”. Figure 3-3 captures the
basic structure of a real-time system, showing how the system interacts with the real world

process using sensors and actuators, and perhaps interacting with a human operator.

32

Real-world

<-- > viperator

Actuators

Figure 3-3. A typical real-time system.
Real-time systems generally fall into two classes of real-time environments: hard and
soft. The former environment requires that the real-time system must “respond in time and
cannot cease operation even for a moment”, ([Hal92]). In contrast, a soft real-time
environment requires that the “computer should on average respond quickly. but
occasional delays are acceptable”, ([Hal92]). Lawson ([Law92], p. 2) gives a similar
definition of the two classes:
“In soft real-time systems, the provision of a satisfactory degree of service is
central and, while important, catastrophes will not result if the service is
temporarily degraded. On the other hand, in the more restrictive hard real-time
system, if a correct output is not available by a specific deadline, a significant,

perhaps catastrophic result(s) may occur. In hard real-time systems
predictability becomes the essential issue.”

A special sub-class of real-time systems are those in which the computer system is
physically incorporated into the real-world process, such as computer-controlled
automobile ignition and anti-lock braking systems, videotape machines, and aircraft
avionics. Lawson ([Law92], p. 3) describes these embedded systems as follows:

“In many of the real-time system environments (particularly hard environments),

there is an increasing trend to incorporate sophisticated processing directly into
products (that is, embedded systems).”

Burns and Wellings ([Bur90], pp. 7-13) identify several basic characteristics of

real-time systems in general:

- Largeness and complexity: Real-time systems tend to be large and complex
because they need to deal with a wide variety of real-world events that are also
complex and continuously changing.

33

- Extreme reliability and safety: Real-time systems need to possess a high degree
of reliability and safety because they can affect real-world objects, including such
things as expensive property and equipment, and human lives. Due to their
inherent complexity, such real-time systems are highly vulnerable to software
bugs that can result in damaging failure, or even catastrophe.

- Concurrent control of separate system components: A real-time system
comprises a complex and simultaneous interaction between computers and
real-world objects. Since the real-world objects naturally co-exist concurrently,
the computers are also required to operate concurrently, calling for an
implementation language that supports a high level of parallel processing.

- Real-time response: Because response time is a crucial requirement of real-time
systems, they must be designed and implemented to produce the appropriate
outputs at the appropriate times, no matter what the conditions.

- Real-time control: The real-time system’s implementation language and run-time
software are required to permit several important real-time control actions. The
system must be able to perform and complete specified actions at specified
times. Moreover. the system should respond properly when timing requirements
change dynamically or cannot be met completely.

- Manipulation of real numbers: The implementation language should provide
support for manipulation of floating-point (real) numbers because control
algorithms can be mathematically complex and require high precision.

- Interaction with hardware interfaces: Because real-time systems are intimately
coupled with real-world objects, they need to employ sensors for monitoring,

and actuators for controlling, the real-world objects with which they are
connected.

- Efficient implementation: The points listed above, especially that of real-time

response, imply that the real-time system needs to be implemented, and perform
its duties, in a highly efficient manner.

Real-time systems, in general, deal directly with real-world applications such as
industrial process control and manufacturing, signal, image and graphics processing, and
the so-called ‘command., communication and control’ (C3) applications, including
computer operating systems. As such, these systems can involve such things as expensive
equipment and property, or hazardous materials and environments, and they can therefore
directly and profoundly affect human lives. Consequently, to be successful, real-time
systems must rely heavily on the attributes of efficiency, timeliness, predictability,
reliability, fault tolerance and safety, as will be discussed in the sequel.

34

3.1.1 Real-Time System Structure

The basic building blocks of real-time systems are processes (Figure 3-4a), which can
either be physical real-world entities (hardware) or programmed mechanisms (software).
The real-time system is formed as a collection of interconnected processes (Figure 3-4b),
one or more levels of software built upon and interacting with the underlying hardware
level. As mentioned previously, the concurrent nature of real-world processes requires that
the real-time system also function concurrently, executing several different activities in
parallel to accomplish the overall real-time task. These activities are performed by the
software processes,® which are executed by the processors (computers). A real-time
system, therefore, contains a collection of one or more processors that perform multiproc-
essing to execute the concurrent processes of the real-time application. If the system has
only one processor, it must provide a multi-tasking scheduler to execute concurrent
processes in time-shared parallelism. If the system has multiple processors, it must have
mechanisms for inter-processor communication, process-to-processor allocation and
processor load balancing. Additionally, the real time system must have mechanisms for

inter-process synchronization and communication.

(a) lnputs< _) Process T)>Outputs

Real-time System

Software Processes

>Physical Layer
Hardware Processes
L .
C J External Environment
Real world

(b) > Program Levels

Figure 3-4. Processes are the building blocks of real-time systems. (a) A process

generates outputs in response to inputs. (b) Software and hardware
processes are interconnected to form a real-time system. per Laws2/. p. 15

According to Lawson ([Law92], pp. 34-35), processes have several different

properties. In general, a process possesses a deadline requiring that a certain operation (or

™ The word process in this context is a computer science term not to be confused with the altemative use in this thesis of the word process

used in such terms as pracess management, complex process, and real-world process. In the remainder of this section, process should be
interpreted as sofiware process.

35

set of operations) is completed (or started) at a certain point in time. Processes (and their
deadlines) can have importance relative to one another: A critical process must meet its
deadline or else possibly cause catastrophe; an essential process has a deadline important
for system operation which will not cause a catastrophe if missed; finally, a nonessential
process has a deadline which, if missed, does not affect the system’s short-term operation,
but may affect the system’s long-term operation. Additionally, a process can be periodic,
meaning that it is executed repeatedly at regular points in time, or it can be aperiodic,
being executed at zero or more arbitrary points in time. Furthermore, a static process is
one that is created when the system is started and exists for the duration of the system’s

execution; a dynamic process is created or destroyed as needed during system execution.

A real-time system as a whole should exhibit several qualities important for proper
real-time performance, ([Law92], pp. 36-37). It must be predictable, meaning that
processing time lies within maximum time limits in the worst case. The system may also be
required to be deterministic, meaning that, under all possible situations. its behaviour is
exactly predictable. Determinism. however, is in practice usually too difficult or costly to
implement. In addition to predictability, the execution of system processes must be timely
to ensure that processes are executed at the proper times. This subsumes efficient and
effective multiprocessing that is free from such problems as process starvation (denial of
execution) and deadlock (inter-process resource contention). Finally, the system may need
to provide mechanisms for inter-process synchronization and communication to facilitate

cooperative information flow and parallelism.

Figure 3-5 shows the components of a typical real-time system, both internal and
external to the computer. A real-time clock is used for timekeeping and synchronization of
events. A database may be generated and queried by the computer. External display
devices, the operator’s console, and perhaps a remote monitoring system are used for
communicating and interacting with operators. The computer system and real-world
process are connected through a real-time monitoring and controlling interface. Inside the
computer system, different software modules are responsible for coordinating the external

components and exchanging information between them. In this sense, the external

36

components can be thought of as resources that the computer system must utilize and

manage effectively to accomplish its real-time duties.

Algorithms for
digital control

- Remote
Ve Data logging <"L) monitoring

< $ system

<—+t+—>»| Interface | €>» Real-world

Real-time |\ L3 process

clock

Data retrieval | __| 3 Display

ks and display devices
Operator’s Operator
console |€T»| interface

Real-time Computer

Figure 3-5. Components of a typical real-time system. jhurvos.p -

In the past. real-time systems have been traditionally implemented in assembly
language because assembly language easily facilitates the desirable properties of
predictability, determinism and timeliness. System developers found assembly language
convenient for analysis to prove system compliance to timing specifications. therefore
proving predictability. determinism and timeliness. As real-time applications became larger
and more complex, however, developers were forced to turn to higher-level languages to
accommodate the demands placed by these more complex applications. Several languages
have been specifically designed for real-time system implementation, such as Coral 66 and
RTL/2, ([Ben88], pp. 315-318). Other higher-level languages. such as occam ([ElI91]),
Modula-2 ([Ben88], pp. 318-337), and Ada (lbid, pp. 337-338), incorporate features

suitable for concurrent programming and embedded computer system development.

3.1.2 Reliability, Fault Tolerance and Safety

Over a nineteen month period in 1992-93, six patients undergoing radiation exposure
for cancer treatment were inadvertently exposed to dangerously high radiation levels from

Therac-25 radiation therapy machines. At least two of these people died as a direct result

37

of this over-exposure, and it is entirely likely that the lifespans of the other victims,
although all were terminally ill, may have been needlessly shortened and their quality of life
reduced. It was subsequently discovered, ([Lev93]), that the cause of the over-exposure
was a programming error which rendered the machine’s computer control system
unreliable under certain rare and obscure circumstances. The problem was not recognized
during system development because the computer programmer was unaware of salient
mechanical engineering details of the machine’s radiation exposure mechanism. The
problem was not detected during routine testing because it could only arise through a
specific sequence of actions by the machine operator which involved a data entry error.
The unfortunate consequences of this design flaw were human sutfering and loss of life.
The Therac-25 accident is, therefore, a sad reminder of the extreme importance of

requiring and ensuring that systems are engineered to be reliable, fault tolerant and safe.

Burns and Wellings define the reliability of a real-time system to be: “A measure of
the success with which the system conforms to some authoritative specification of its
behaviour”, ([Bur90], p. 93). They also define failure to be: “When the behaviour of the
system deviates from that which is specified for it, this is called a failure”, (/bid). Failures,
they write, are the external manifestations of internal problems, called errors. which are
caused by algorithmic or mechanical faults. Three types of faults can be characterized: A
transient fault occurs at a particlular time, existing for a period of time before
disappearing; a permanent fault occurs at a particular time and exists until remedied; an
intermittent fault occurs aperiodically from time to time. Clearly, it is imperative that all
three types of faults must be prevented from causing errors and system failure. Two

approaches are commonly used for preventing errors and failures: fault prevention and

fault tolerance.

Fault prevention entails two stages. First, fault avoidance is used during system
development to limit inclusion of potentially faulty components. Second, fault removal is

pursued, in which formal methods are applied for finding and then eliminating causes of
error, ([Bur90], p. 95).

38

Despite the efforts of fault avoidance and removal, components of the system will
eventually fail. That is, mechanical components wear down, and software systems
frequently contain elusive bugs which eventually manifest themselves. Fault prevention,
therefore, will not be successful if repair and maintenance efforts are irregular or
insufficient. Consequently, system reliability relies largely on fault tolerance, the ability of
a system to continue operation regardless of fauits. Burns and Wellings ([Bur90], p. 96)
list three general levels of fault tolerance that a system may employ, possibly in
combination: With full fault tolerance, also called fail operational, “the system continues
to operate in the presence of faults, albeit for a limited period, with no significant loss of
functionality or performance™. A system using graceful degradation (or failsoft) fault
tolerance “continues to operate in the presence of errors, accepting a partial degradation
of functionality or performance during recovery or repair”. Finally, a failsafe system
“maintains its integrity while accepting a temporary halt in its operation”™. The
requirements. nature and application of a specific system will dictate which combination of

fault tolerance levels should be implemented.

The notion of system reliability is closely related to the general concept of safety.,
which Leveson ([Lev86]) defines as: “Freedom from those conditions that can cause
death, injury, occupational illness, damage to (or loss of) equipment (or property), or
environmental harm”. Within the domain of software systems, Leveson further defines a
mishap as “an unplanned event or series of events that can result in death, injury,

occupational illness, damage to (or loss of) equipment (or property), or environmental
harm”.

Burns and Wellings ([Bur90], p. 120) contrast the possibly conflicting concepts of
safety and reliability as follows:

“Reliability has been defined as a measure of the success with which a system
conforms to some authoritative specification of its behaviour. This is usually
expressed in terms of probability. Safety, however, is the probability that

conditions that can lead to mishaps do not occur whether or not the intended
function is performed.”

In practice, safety and reliability are actually two aspects of system dependability, which
Laprie ([Lap85]) defines as follows:

39

“The dependability of a system is that property of the system which allows
reliance to be justifiably placed on the service it delivers™.

As illustrated in Figure 3-6, the notion of dependability encompasses the system qualities

of reliability, safety and security. All three aspects should be addressed in the design and

implementation of a real-time system.

DEPENDABILITY
]
| 1
Non-occurrence Protection against
Continuity of catastrophic intentional faults
of service failures (e.g. sabotage)
RELIABILITY SAFETY SECURITY

Figure 3-6. Aspects of dependability. ssurvoy.p. 120

L4 L] [J

This section has presented an overview of real-time systems and outlined the principal
considerations that must be taken during their design and implementation. The next
section introduces two forms of artificial intelligence that are suitable for use as reasoning

and decision-making engines within real-time systems.

3.2 Knowledge-based Reasoning

Complex systems such as aircraft. nuclear reactors. and particle accelerators are
difficult to control using conventional (*dumb’) controllers because such controllers are
not accommodating to large bodies of operational knowledge (human expertise).
Although conventional controllers may be used to automate various subsystems, they are
not well suited for overall control of complex systems. Historically, such systems have
been supervised by human operators, yet increasingly larger subsystems have been
relinquished to automatic control. As systems have become more complex, humans have
become increasingly less able to maintain fast, error-free and all-encompassing
supervision. This has led to the incorporation of computers into control systems to
improve response time and reduce errors. But computers have lacked the human
characteristics of knowledge-based reasoning, adaptive learning and experience. Only

during the past 15-20 years have computer systems been given ‘knowledge’ to aid in their

40

control tasks. Such efforts have included techniques in expert systems, neural networks.

and fuzzy logic.

Kosko ([Ko0s92]) has illustrated how these three types of ‘artificial reasoning’ are
related within the framework of artificial intelligence (Table 3-1). All three paradigms are
model-free estimators in that they are able to estimate a function without relying on a
mathematical model of how the function’s outputs depend on its inputs. Moreover, they

are adaptive because they can ‘learn’ from experience.

Symbolic Numeric
Structured Expert Systems | Fuzzy Systems

Unstructured Neural Systems
Table 3-1. Types of artificial reasoning. /xawz/

Fuzzy and neural systems are inherently numeric in nature, meaning that they use
numeric operations to manipulate information stored as numbers. Expert systems,
contrarily, are symbolic in nature, using logical operations to manipulate information
consisting of symbols rather than numbers. On conventional computers, numeric systems
typically execute faster. and sometimes more accurately, than symbolic systems. but the
latter are sometimes more convenient to use for storing and processing the factual
relationships that comprise complex information and abstract concepts. Expert and fuzzy
systems share the feature of using structured knowledge, meaning that the ‘knowledge’
they possess is rigidly structured and delineated. It is possible, therefore. to use the term
knowledge-based system (KBS) to encompass both expert and fuzzy systems. In contrast,
neural systems use unstructured knowledge that is not required to hold any well-defined
form, and thus neural systems need not be considered knowledge-based systems. A
corollary of this distinction is that knowledge-based systems are inherently more amenable
to inspection than neural systems. That is, it is easier to ‘look inside’ knowledge-based
systems to see what information they store and how it is being processed. Neural systems
have been likened to ‘black box’ functions that map inputs to outputs in a way not readily
evident to inspection, (Figure 3-7a). A knowledge-based system, in contrast, can be
analogized as a ‘glass house’ in that its internal information structure and processing are
quite evident and inspectable, (Figure 3-7b). This property of ‘transparency’ is an

41

important one, and has great influence on the choice of which Al-reasoning paradigm to
use for a given task. There are applications for which it is necessary that the
decision-making process be available for observation and explanation at all times. In such
applications, neural systems lack the needed transparency. [t is for this reason that,
although widespread success has been reported in using neural systems for control
applications, they have not been employed in the present particle accelerator control
system. Consequently, neural systems are outside the scope of this thesis, and will not be
discussed further. The remainder of this section presents background material on

knowledge-based systems for process control, namely expert and fuzzy systems.

)FAEE 2 Outputs
/ *

Decisions,
ULES Conclusions,
Suggestions

Figure 3-7. Comparison of model-free estimators. (a) The “black box’ neural system.
(b) The “glass house” knowledge-based system.

Since the infancy of Al, many research projects have investigated the prospects of
using Al-based decision making for solving process control problems. A survey paper
([Tau89] cited in [Dri93], p. 14-17) reports on several experimental Al systems that
demonstrate the applicability of knowledge-based systems to four major areas of process
control: process monitoring, fault diagnosis, planning and scheduling, and supervisory
control. Other papers report success in using knowledge-based systems for a variety of
control problems, such as cement kiln operation ([Lar81], [Umb81}), high-speed subway
train operation ([Yas85]), integrated circuit manufacturing, robot manipulator control,

mobile robot navigation, and computer disk drive control ([IEE92]).

A general definition of knowledge-based systems applied to closed-loop control
problems is taken from [Dri93], p. 1:

42

“A KBS for closed-loop control is a control system which enhances the
performance, reliability, and robustness of control by incorporating knowledge
which cannot be accommodated in the analytic model upon which the design of a
control algorithm is based, and that is usually taken care of by manual modes of
operation, or by other safety and ancillary logic mechanisms.™

Knowledge-based systems used in process control can be classified into four
categories relating to their area of intended use: manual control assistance, plant-wide
tuning, quality control, and expert control. A KBS used for expert control is called a
knowledge-based controller (KBC), and is detined as “a highly specialized KBS designed
for performing a specific task during a particular phase of the lifecycle of'a process control
system”, ([Dri93], p. 17). The role of a KBC in applications for expert control of complex,
human-tended processes is twofold: First, knowledge-based reasoning can be employed
for control per se. be it open- or closed-loop; this type of system, shown in Figure 3-8a, is
termed a direct expert control system (DECS). Alternatively, the KBS can be a
supervisory expert control system (SECS), presiding over and directing a conventional

controller in a supervisory capacity (Figure 3-8b).

—>) —>| Process —>
—>(®) —>| Process |—T—>
Conventional
Controller
DECS |<— L
SECS |€
(a) (b)

Figure 3-8. (a) Direct expert control system. (b) Supervisory expert control system. pnvs. p. is-20.
The following sections describe the two types of knowledge-based systems, the expert
system and fuzzy logic system. As will be discussed in subsequent chapters, both of these
forms of KBS have been employed in the particle accelerator technology insertion exercise

for different aspects of the overall control task.

3.2.1 Expert Systems

An expert system has been defined as “a computer program that relies on knowledge
and reasoning to perform a difficult task usually undertaken only by a human expert”,
([Par88]). In essence, expert systems “enable computers to assist people in analyzing and

43

solving complex problems that can often be stated only in verbal terms”, ([Har88], p. 3).
Some researchers use the term intelligent knowledge-based system (IKBS) instead of
expert system. Bader and Edwards ([Bad91], p. 383) prefer the more general term
knowledge-based system because “it does not use the imprecise term intelligence and does

not imply that KBSs possess human-intelligent capabilities”. For the sake of brevity, the
term expert system will be used in the sequel.

Expert systems have been studied since the early 1970s. Two of the first expert
systems were MYCIN and XCON. The former was developed at Stanford University as a
proof-of-concept system used by physicians for diagnosis of bacterial infections,
([Sho76]). The latter was developed at Carnegie-Mellon University and used at Digital
Equipment Corporation for configuration of newly purchased computer systems,
([Bac84]). Since their initial debut, expert systems have diversified widely. proving
successful at many types of tasks, including: diagnosis (problem analysis), consultation
(advising), monitoring (on-line, off-line). configuration, designing, planning, scheduling,
management, ([Har88]).

In essence, an expert system consists of two parts (as shown in Figure 3-9): a
knowledge base and an inference engine. The knowledge base (sometimes called a rule
base) is used to store “information’, typically of two types: © Facts are stored pieces of
information that are to be processed; @ Rules are used to combine anfecedent facts to

produce other, conclusion facts.

|

v

Fact

Base |T—>
Input —>» [Enfel_'er;ce —LP Output
Facts ngm Conclusions

SDlégcgo_stxons
Rule 11 1sions
Base
Knowledge Base

Figure 3-9. Components of a basic expert system.

Rules have a form resembling logical implications such as IF A THEN B, and associate
consequent actions B with antecedent conditions A. The inference engine is used to
process the rules in a prescribed manner to make decisions: Rules combine input facts with
stored facts to produce output facts and new stored facts. For example, rules in an expert
system used for control would combine input sensor data with stored state variables to
produce output control commands and new state variables. Thus, ““an expert system is an
application program that includes both information about a particular problem and

information about how to manipulate that information”, ([Har88], p. 31).

The general structure depicted in Figure 3-9 benefits from three important principles:
knowledge representation, inferencing with heuristic search, and separation of knowledge

from inference and control, ([Har88], p. 7). These principles are elaborated upon in the
following.

Knowledge Representation. The knowledge in a KBS is “a body of information about
a particular topic that is organized to be useful”, ([Har88], p. 7). This knowledge is
usually stored symbolically, using words or symbols, rather than numerically.
Knowledge-based systems attempt to mimic human decision-making processes in ways
that make knowledge-based system development straightforward and transparent. It is the
job of the knowledge engineer to collect, organize, structure and codify the KBS's

"knowledge’. Some of the basic concepts of knowledge engineering are summarized in
Section 3.2.1.2.

Inferencing with Heuristic Search. Inference is the process of deriving new facts from
established facts. In an expert system. the inference engine performs the inferencing,
systematically deriving new facts from existing facts. Two forms of inferencing are
typically used: Forward chaining combines input antecedents to determine output
consequents. The rules are evaluated in a ‘forward’ manner. Forward chaining can be
regarded as the data-driven generation of conclusions from evidence, and in this sense
forward chaining can be thought of as asking the question ‘what if?’. In contrast,

backward chaining is the reverse (or goal-driven) process, in which input consequents are

45

used to derive output antecedents. Backward chaining forms hypotheses based on

observations, and thus asks the question *why?".

An expert system’s rule base is a multi-node acyclic graph, and inferencing, whether
forward or backward, reduces to path enumeration. Therefore, complexity (time to
perform inferencing) increases non-linearly with the number of rules. This means that
inferencing can become combinatorially prohibitive for large rule sets. The remedy to this
problem is to employ search heuristics (rules-of-thumb) or approximate reasoning
strategies (metarules) for reducing the search space. Since both heuristics and metarules
are not required to be exact in all cases, their use implies that the expert system will not

always generate the correct result, but has a high certainity of producing a good result

most of the time.

Separation_of Knowledge from Inference and Control. In conventional computer

programs, the information (program variables) is intermixed with the control engine
(program instructions) so that the two are inseparable. Consequently, the information is
not readily interpretable by anyone other than a computer programmer. Within the domain
of expert systems, great effort has been expended to separate knowledge and information
from the inference and control mechanisms, so that the knowledge engineer need not be
concerned with the details of programming. Typically, an expert system starts out as an
existing, proven inference engine combined with an empty knowledge base to which the
knowledge engineer is able to add knowledge in a liguistic or symbolic manner without
needing to understand how the expert system as a whole is programmed. This concept
effectively frees expert system developers from having to be computer programmers.
enabling nonprogramming domain experts to become directly involved in expert system
development. It has been claimed that “the separation of knowledge from inference and

control is probably the most important concept to come out of Al research”, ([Har88],
p. 8).

The basic expert system structure shown in Figure 3-9 does not capture the true
structural extent of most expert systems. A more detailed architecture is captured in

Figure 3-10, showing some of the important ancillary components of a conventional

46

expert system. The grey rectangle in Figure 3-10 outlines the basic components shown in
Figure 3-9. There are four ancillary components added to Figure 3-10: a knowledge
acquisition subsystem, an explanation subsystem, a user interface, and a collection of
special interfaces. The knowledge acquisition subsystem is used initially to build the
knowledge base and thereafter to maintain, update and expand the knowledge base. In
some expert systems, this subsystem is automated, but in others it must be performed by
humans. The explanation subsystem is employed by both the knowledge engineer and
end-user to explain how the expert system applies its knowledge base to make decisions.
Finally, the user interface is necessary for enabling the expert system to interact with the
human user, and the collection of special interfaces are charged with “connecting’ the
expert system to ‘real world’ devices such as sensors and actuators. Any or all of these

ancillary components may be present (or absent) in a given expert system.

»| Knowledge Base

{

Inference Engine |<€—>» l;‘:fc;:is <> Real World
Knowled L
owlecee x lananon User
L) Acquisition | €—> Sﬁb system <> Interface
Subsystem
Expert or User

Knowledge Engineer

Figure 3-10. The architecture of an expert system. /Huraa. p. 4.

3.2.1.1 Expert System Development
A knowledge base is constructed, modified and used within a ‘user community’

(Figure 3-11), which is comprised of experts, knowledge engineers and users, ([Gaidl],
pp. 211-213). The experts are sources of the knowledge that is incorporated into the
expert system’s knowledge base. Experts are involved in acquistion, display and
explanation of the knowledge base. Since experts are not necessarily knowledgeable of

47

computer systems and programming, the knowledge engineers cooperate with the experts
to codify and transfer expertise to the knowledge base. Knowledge engineers participate in
display, editing and validation of the knowledge base. Finally, the users (sometimes called
the end-users) are the individuals with which the system is ultimately built to interact.

Users take part in validation, explanation and application of the knowledge base.

User Community

Figure 3-11. Components of a knowledge base in relation to the user community. Adspre
from [(au¥i]. p. 212

There are two aspects to development of an expert system. The first involves
programming the mechanisms of the expert system, that is the inference and knowledge
base manipulation mechanisms which are collectively called the shell. The other aspect is

concerned with the *information programming’, the knowledge engineering.

As illustrated in Figure 3-12, these two paths can be performed consecutively or
concurrently. In Figure 3-12a, development of the expert system’s mechanisms is
performed prior to knowledge engineering, with perhaps a large timespan separating the
two phases, and possibly different groups of people involved in each phase. This would be
the case, for example, when using a commercial expert system shell developed elsewhere.
There is a large number of commerical and public-domain expert system shells available,
with many different characteristics such as cost, inferencing speed, target computer
platform, knowledge base capacity, etc. Such shells are usually quite powerful and
straightforward to use, but typically have limited flexibility because they are generic.

48

Mechanisms

Knowledge Engineering

(a)

Mechanisms

Knowledge Engineering

Figure 3-12. Paths of expert system development: (a) Consecutive, (b) Concurrent.

Alternatively, the concurrent approach of Figure 3-12b can be followed. in which all
aspects of the expert system are developed in parallel. This would be the case with
fabrication of so-called “in-house’ expert system applications. Here, the development team
designs and implements the inference and knowledge manipulation mechanisms as well as
performing the knowledge engineering. The programming can either be done from scratch,
or by employing subroutines from existing expert system software libraries (foolkits). The
developers also need to decide what programming language is to be used, and whether a
numeric or symbolic language is warranted. Historically, expert systems have been written
in Al-oriented languages such as LISP or PROLOG, but more recently systems have been

implemented in C/C++, Pascal and other high-level numeric languages.

In any case, there are good reasons for choosing either one of these approaches. and
the pros and cons of each should be weighed against the development team’s abilities and
resources, and against project constraints such as budget and timeframe. Harmon writes.
“the question facing managers considering developing an expert system is whether they
want to use a symbolic language or a tool written in a symbolic language, or whether they
should stick with a conventional language they already know”, ([Har88], p. 33). For some
applications, use of a general purpose, off-the-shelf shell can yield a finished expert system
rapidly and effectively, while in other cases a general-purpose shell may prove too rigid to
suit the needs at hand; in these cases it may be more productive to follow the concurrent

development strategy to accommodate the needed flexibility.

49

Once the expert system’s shell is in place (whether built from scratch or “taken off the
shelf’), the next step is to imbue the expert system with its *knowledge’. The process of
knowledge engineering involves first acquiring knowledge and then rendering it in a form
usable by the KBS. The knowledge originally exists in the form of expertise possessed by
one or more experts. This expertise is sometimes available as well-defined information
held in operating manuals, theory texts or procedural handbooks. But. most of the time,
this expertise resides amorphously in the expert’s mind, and may not easily be quantified in
words or equations. For example, consider a veteran process controller who has amassed
a large amount of operational expertise. This expertise is based upon training manuals and
operating guides. but also arises from expertise passed on from trainer to trainee and from
the expertise acquired through years of firsthand experience. In many cases, it is the latter
form, experiential knowledge, which proves the most valuable and most difficult to
express quantitatively. In the words of Harmon ([Har88], p. 31):

“Inside the expert’s head are facts, rules-of-thumb (heuristics), and various

problem-solving strategies the expert uses when faced with a particular problem.
To create an expert system [one] must transfer this knowledge to the computer...”

The process of transferring knowledge from expert to computer is called knowledge
acquisition, which Harmon ([Har88], p. 266) defines as:
“The process of locating, collecting, and refining knowledge. This may require
interviews with experts, research in a library, or introspection. The person

undertaking the knowledge acquisition must convert the acquired knowledge into a

form that can be used by a computer program. Knowledge is derived from current
sources, especially from experts.”

Knowledge acquisition is performed by the knowledge engineer, whom Harmon (Ibid)
defines as:

“An individual whose specialty is assessing problems, acquiring knowledge, and
building knowledge systems. Ordinarily this implies training in cognitive science,
computer science and artificial intelligence. It also suggests experience in the
actual development of one or more expert systems.”

Knowledge engineering is a complex discipline, and training an effective and efficient
knowledge engineer can take several years. The knowledge engineer must act as a liaison
between the domain experts and the expert system builders. The domain experts are not

likely to be skilled programmers; likewise, the expert system builders are not necessarily

50

experts in the domain of the expert system application. Therefore, the knowledge engineer
serves as a bridge between these two groups, facilitating and organizing the flow of

information between them to produce a functioning expert system.

3.2.2 Fuzzy Logic

The artificial intelligence paradigm of fuzzy logic was first developed during the 1960s
by Zadeh ([Zad65], [Zad73]), who also outlined how fuzzy logic could be used in the
analysis of complex systems. Fuzzy logic-based control seeks to combine the accuracy of
numerical control with the flexibility and simplicity of heuristics (rules) based on natural
language. Although such systems have found success in controlling a variety of processes.
they have proved particularly advantageous for control of non-linear, dynamic processes
which are difficult to model numerically. It has been reported that “a representation
theorem, mainly due to Kosko ([K0s92]), states that any continuous, nonlinear function
can be approximated as exactly as needed with a finite set of fuzzy variables, values and
rules”, ([Dri%4], p. 3).

Driankov, Hellendoorn and Reinfrank ([Dri93], p. 2) define a tuzzy control system
(FCS) as:

* .. a real-time expert system implementing part of @ human operator’s or process
engineer’s expertise which does not lend itself to being easily expressed in
PID-parameters or differential equations but rather in situation/action rules.”

Alternatively, fuzzy control systems can be thought of as “a heuristic and modular way for
defining nonlinear, table-based control systems”, ([Dri93], p. 3). Daugherity ([Dau92])
notes that fuzzy controllers have three advantages compared to conventional techniques
such as PID control: ® They are cheaper to develop (with equivalent performance);
@ They cover a wider range of operating conditions (i.e. are more robust); and @ They
are more readily customizable in natural language terms. Similarly, Driankov et al.
([Dri93], p. 4) claim three general advantages associated with employing fuzzy control:
® Implementation of expert knowledge for a high degree of automation; @ Robust
nonlinear control; and ® Reduction of development and maintenance time. In terms of

deciding when to try using a fuzzy system for a specific problem, Driankov et al. ([Dri93],
p. 8) suggest the following three steps:

51

I. If a similar fuzzy-based solution already exists, using a fuzzy controller is
justified.

2. If there already exists a good PID-solution with good system performance,

development and maintenance costs and market policy, then the
PID-solution should be kept.

3. If the existing solution is unsatisfactory with respect to the criteria of (2)
above, or there does not yet exist a solution, then a fuzzy system may be
warranted if knowledge is available about the system or process that could
be used to improve the solution but that is hard to encode in terms of
conventional control such as differential equations of PID-parameters.

An early application of fuzzy logic to control ([Mam81la], [Mam81b]) involved a
collection of fuzzy logic rules used to control the throttle speed and boiler heat input ot a
model steam engine. Subsequent research included fuzzy control of a full scale industrial
process, specifically a rotary cement kiln, ([Lar81], [Umb81]). A review of recent
literature on control systems indicates a sudden increase in the popularity of using fuzzy
logic for control problems. For example, the 1992 [EEE Conference on Fuzzy Systems
([IEE92]) was host to a variety of researchers experimenting with fuzzy control systems.
Areas of research described in [IEE92] include such problems as: control of a

semiconductor manufacturing process, control of a gas-fired water heater, and motion

control of a robot.

The diversity of current research in fuzzy control systems indicates that researchers are
actively seeking control problems that are amenable to efficient, reliable and cost-effective

hardware realizations of fuzzy logic-based controllers.

Fuzzy logic is based on fuzzy set theory. It has been shown that conventional
(Boolean) set theory is a special case of fuzzy set theory, ([Kos92]). Whereas
conventional set theory stipulates that an object x either is or is not a member of a set,
fuzzy set theory defines a degree of membership for an object x in a fuzzy set. The
characteristic function . for a conventional set 4 and object x is expressed as
14(x) € {0,1}, implying that x can only be either a member or non-member of A. The
characteristic (membership) function u, for a fuzzy set is p(x) € [0,1], meaning that x can
be a member of A to any degree in the continuous range 0 to 1. Thus, any object in the

universe of discourse is a member of a fuzzy set to some degree.

52

A fuzzy system (Figure 3-13) can be thought of as a combination of three
‘mappings™: ® A ‘fuzzification’ mapping of numeric inputs to linguistic terms (fuzzy input
variables): @ An inferential mapping of linguistic antecedents (‘if* clauses) of fuzzy input
variables to linguistic consequents (‘then’ clauses) of fuzzy output variables; and @ A
‘defuzzification’ mapping from linguistic terms (fuzzy output variables) to numeric (crisp)
outputs. This arrangement provides a means of gaining numerical precision from

descriptive, linguistic heuristics.

Fuzzy variables

System||System
Inputs ||Outputs
Fuzzy types

Input Membership 5 ‘Output
(l)[Fuzziﬁcation]E Functions | Defuzzification))

v

Fuzzy rules| Rule Base

Degrees of Rule Output
Membership Evaluation Strengths
2)

Figure 3-13. Components of a fuzzy system.
A fuzzy logic system contains a collection of fuzzy variables, each variable belonging
to a specific fuzzy type. A fuzzy type is defined by a set of membership functions
(characteristic functions) which span the range of possible values for the fuzzy type (see
Figure 3-14). The set of membership functions serves to map a ‘real world’ (crisp) value
into a fuzzy value (set of membership function fit values). For example ([Vio93}). the
fuzzy type Temperature (Figure 3-14) may have fuzzy values Cold, Cool, Warm and Hot;
each value is described by a membership function. A crisp temperature value of 63 °F,
when fuzzified, is interpreted as Coid to degree 0, Cool to degree .8, Warm to degree .2,
and Hot to degree 0. The fuzzy value v for a crisp value x can be written as a fit vector
v=[0,.2,.8,0], where v,= u(x).

53

Cold Cool Warm Hot

50 60 | 70 80 90

Temperature (°F)

Figure 3-14. Fuzzy membership sets for temperature. [Vio93/

Fuzzy variables are combined in fuzzy rules to perform fuzzy inferencing. For
example, a rule for controlling a household furnace might be of the form:

if RoomTemp is Cold und ThermostatSetting is High
then Fumace is OnHigh

The rule is inferenced as follows: Each antecedent is evaluated, using membership
functions, to yield a ‘fit value’ in [0,1]. The fit values for the antecedents are then
combined to calculate the *fit value’ for the consequent. If the rule uses an ‘and” operator.
the minimum antecedent fit value becomes the fit value of the consequent. For an “or’ rule,
the maximum antecedent fit value is used. (Other methods of combining antecedents
exist, [Kos92].) For example, given that RoomTemp is Cold has fit value .56, and
ThermostatSetting is High has fit value .32, the fit value for Fumace is OnHigh would be .32.

Generally, a fuzzy system will have multiple rules which may have conflicting
consequents (e.g. Fumace is OnHigh and Fumace is OnMedium). A common conflict
resolution strategy uses an elementwise weighted sum of the rules’ consequent fit vectors

as the overall fuzzy value of the output variable, ([Kos92]).

The overall fit vector is a fuzzy value which must then be converted to a crisp output
value using ‘defuzzification’. Among a number of documented defuzzification methods,
centroid defuzzification is commonly used. This method determines the area-wise centroid
of the fuzzy fit vector as the crisp value, ([K0s92]). An example is shown in Figure 3-15,
where Fumace is OnHigh has a value of .25, Fumace is OnMedium has a value .5, and the
resultant furnace setting is calculated as the centroid of the shaded areas (59).

54

OnLow OnMedium OnHigh

25 50 59 75

Furnace Power Setting

Figure 3-15. Example of centroid defuzzification.
Thus, the fuzzy system is “executed’ in a three-step process: @ Input variables are
fuzzified; @ Fuzzy rules are evaluated: @ Output variables are defuzzitied. In a control
application, the input variables hold sensor data or state information, and the output

variables hold control actions. The fuzzy system is repeatedly -executed’ to yield

continuous control.

L [4 []

This section has served to furnish background information on two aspects of artificial
intelligence suitable for real-time control applications, namely expert and fuzzy systems.

The following section investigates aspects of human factors that are useful in forging an

effective interface between software systems and human users.

3.3 Human Factors

During the second world war, so called ‘pilot error’ caused accidents in several
thousand airplanes of the U.S. Air Force, directly as a result of design flaws. During a two
year period, for example, some 2000 planes were involved in similar accidents because
their flap and landing gear levers were “identical in appearance and located side by side™,
([Sma94]). Airmen were confused by the location and appearance of the two levers,
resulting in pilot error and perhaps even catastrophe and death. [t became evident to
aircraft engineers, and to systems designers in general, that any machine or system
developed to interact intimately with humans would require careful consideration of
‘human factors’, those aspects of systems design specifically related to human
characteristics such as physical ability, cognition, perception and emotion. Thus, the study

55

of the field of Human Factors gained prominence, seeking to study and solve the myriad

problems manifest in the interaction of machines and humans.

Human factors (or Ergonomics'®) is defined by Shackel and Richardson ([Sha91a],
p. 3) as “the study of the relation between [humans] and [their] occupation, equipment and
environment, and particularly the application of anatomical, physiological and
psychological knowledge to the problems arising therefrom”. Humans and machines form
what Shackel and Richardson ([Sha91a). p. 6) call “a ‘*socio-technical system’ in which

[humans and machines] must be complementary components working to a common goal”.

Ergonomics is concerned with the optimization of human-machine systems operation
with respect to operator efficiency, safety, comfort and satisfaction, as gauged by the
performance and opinion of actual human users. As illustrated in Figure 3-16. a
human-machine system may be conceptualized as a composition of four components, the
user, task, tool and environment. Within this conceptual framework. optimization of
operation can be accomplished in two different forms. In “fitting the system to the user’,
aspects of the task, tool and environment are improved, such as safety, usability and
reliability. Additionally, in *fitting the user to the system’, personnel are improved through

selection, training and adaptation to environmental and working conditions, ([Sha91a].
p. 4).

Environment ——

Figure 3-16. The four principal components in a human-machine system. ssw9rs/. . 21
Human factors researchers often lament that the value and importance of ergonomics
is frequently downplayed, side-stepped and underestimated during system development, its
principles being improperly considered by system designers as nothing more than common

sense, ([Mil94]). On the contrary, ergonomics has been claimed by Shackel and

¥ The terms Ergonomics and Human Factors are synonymous in the literature, the former used predominatly in Great Britain and Europe,
and the latter used in North America. The terms will be used interchangeably in this text.

56

Richardson ([Sha91a], pp. 4-5) to be essential to modern industry for several important
reasons, including: ® The increasing complexity and sophistication of modern industrial
technology places increasing demands on human operators, but also inhibits proper
learning and utilization of human factors concepts by systems designers because they lack
the proper training or are overburdened with technical problems; @ The increasing
complexity of systems also creates a separation in time and space between designer and
user, hampering the valuable feedback that facilitates design improvement; in this case. an
ergonomics specialist (ergonomist) can remedy the problem by acting as an intermediary

and promoting a “preventive and predictive feedback channel” between users and

designers.

The field of human factors is mutlidisciplinary, stemming from several associated
areas, as shown in Figure 3-17. Within its broad-ranging scope, however, two
sub-domains of human factors are directly relevant to this thesis, namely the study of the
human-computer interaction (HCI), and a subsection of HCI involving the design of the

computer-human interface (CHI).

 Design

—Social Sciences
—Occupational Psychology
~——Work Physiology
Cognitive Psychology
Software Engineering

v
Ergonomics / Human Factors

l—>l-{uman-System Interaction (HSI)
|—>Human-Computer Interaction (HCI)

Computer-Human Interface (CHI)
Figure 3-17. Human factors, its sub-domains and associated disciplines. .tdupred from (snaviy. p 2

The field of HCI involves studying how humans interact with computer systems to

accomplish tasks. Shackel and Richardson ([Sha9la}, p. 1) define HCI as follows:

“Human-computer interaction deals with all aspects of the human use of computers,

usually in the context of interactive informatics systems”. HCI emphasizes usability of the

computer system to facilitate efficient task performance. That is, in order to justify using a

computer system to perform a given task, the computer system must be used effectively,

57

which in turn requires that the system be usable by humans. As Nickerson ([Nic86]. p. 89)
argues:

“The challenge for human-factors people ... is to assure that ouput from the
computer constitutes suitable input for the person, and, conversely, that input to
the computer is something that is convenient for the human to put out.”

HCI represents an extensive body of research, ranging from task analysis and
ergonomic design of input/output devices to design of human-computer dialogues and the
computer-human interface. An important issue in HCI relates to the input-output
bandwidth of a human-computer system., what Nickerson ([Nic86]. p. 106) calls the
“impedance mismatch between computers and users”. The computer can input and output
information far faster than the user can produce or assimilate it, but the computer is not
yet well capable of accepting information from the user in the way that people usually
convey information to each other. Thus, a primary goal of HCI is to develop ways in
which humans and computers can exchange information with speed, accuracy and
convenience for both the user and the computer. This effort involves exploring physical
methods of information exchange (computer input/output hardware) and cognitive
methods (forms and content of information). These physical and cognitive aspects of HCI
are embodied in the computer-human interface, the *window’ through which the human
and computer interact. The following section elaborates on some of the issues of concern

in the design, implementation and user acceptance of the computer-human interface.

3.3.1 The Computer-Human Interface

The computer-human interface (CHI) is the locus of interaction between the computer
system and the human, frequently referred to as the user interface. In defining the term
interface, Nickerson ([Nic86], p. 89) supplies the Webster's New Collegiate dictionary
definition: “The place at which independent systems meet and act on or communicate with
each other”. The computer-human interface, therefore, consists of such things as, for
example, the computer’s video display, keyboard, mouse and printer, and the human'’s
eyes, ears and hands. Nickerson ([Nic86], pp. 89-90) refers to two aspects of the
computer-human interface. The physical interface involves the mechanisms of the

human-computer interaction, the computer’s input/output devices and the human’s

58

sensory-motor system. The cognitive interface is concerned with the form and content of
the information transferred between human and computer. Licklider ([Lic65]) prefers the
term intermedium to interface because he feels that the latter term is insufficient to
capture the intricacies of the human-computer interaction. Nevertheless, the term inferface

has gained widespread acceptance and will be used in the sequel despite its descriptive

shortcomings.

Ziegler ([Zie91], p. 186) also describes two ditferent -views’ of the CHI. The
psychological view considers the CHI to be the “set of all physical, perceptual or
conceptual elements structuring and mediating the user’s interaction with the system”. The
psychological view of the CHI is based upon cognitive models of human thinking and
problem solving, (cf. [Car83], [Bar87]). Cognitive models are used to “provide a basis for
representing and understanding the cognitive consequences of particular [CHI] designs™,

([Bar91], p. 169). For example. a cognitive model presented by Norman ([Nor86]) is

shown in Figure 3-18.

<« s
~— “Expectation” €———
y t

Action -
Specification Interpretation

¢ Mental Activity

Physical Activity

Figure 3-18. Seven stages of user activity. Adaped rom Norss)

Norman’s model consists of seven approximate stages of mental activity that occur
during physical interaction with, for example, a computer system. Activity begins when the
user forms a goal and an intention to act, causing specification of an action sequence

followed by execution of the action sequence (e.g. typing on a keyboard or moving a

59

mouse). The effect of the action sequence is subsequently perceived, interpreted and
evaluated.

The computer science view of the CHI is dramatically different from the psychological
view in that it deals with how the CHI is designed and implemented. Ziegler ([Zie91],

p. 186) characterizes the computer science view as:

“all the components of a system which either map the physical user input ... onto
internal data and functions of a so-called application component, or ... map

changes in the internal representation of the application onto output operations
perceivable by the user.”

Whereas the psychological view is usually taken by the evaluator of the system, the
computer-science view is usually taken by the system developer. In essence, the
psychological view concerns how the users of the system view the CHI. while the
computer-science view concerns how the implementors of the system design and build the
CHL. Ziegler ([Zie91], p. 186) writes that “an integration of these two views in a common

representation would be desirable but so far has not been achieved”.

The computer-human interface has evolved greatly since the first days of computing.
The earliest computers, such as ENIAC ([Dor77]). offered the user only banks of toggle
switches and rows of indicator lights as a primitive user interface. Gradually, as computer
systems became more advanced, new and valuable forms of user interface were developed,
eventually producing the keyboard, mouse, high-resolution video display, laser printer and
so-called *windows’ graphical user interfaces that are commonplace today. In the past,
computer systems were scarce, highly specialized machines used by a few highly trained
individuals; now, many computer systems are so affordable and usable that they are

becoming integrated into many aspects of everyday life.

As computers have shifted from rare and specialized to common and generalized, the
requirements of their user interfaces have changed. At one time it was more cost effective
to “fit the user to the computer’, requiring the user to conform to the machine without
much regard for such humanocentric concepts as comfort, usability or efficiency. In
contrast, many contemporary computer systems can only be cost-effective if their user

interfaces are “fit to the user’ by applying an ergonomically-oriented process of designing

60

the computer system to possess such characteristics as user comfort, ease of learning and

ease of use.

Thus. an increasingly greater emphasis is placed on the user interface, and
consequently an increasingly larger proportion of computer system design and

development needs to be invested in the user interface, and indeed system-wide

ergonomics in a general sense.

With regard to system development, Nickerson {[Nic86], p. 221) writes that it is a
popular misconception that products of engineering come into existence by means of a
sequence of clearly demarcated phases, beginning with design™. Instead. he suggests that it
is more typical that the design phase occurs in parallel and in cycle with the
implementation phase: design leads to implementation and testing, which may lead to

re-design, re-implementation and re-testing. Nickerson ([Nic86], p. 231) summarizes this

concept as follows:

“System development is often thought of as requiring two qualitatively different
tasks: design and implementation. When the functions the system is to serve are
well structured and clearly understood, these tasks can be performed seriatim. and
it may make sense to insist that the design be finished before the implementation
begins. As the complexity of the system increases, however, it is more and more
often the case that what is required of it cannot be entirely specified in advance but
is best determined by a process in which the developer and user together explore
various possibilities in an effort to converge on something useful.”

Such cyclic development implies employing users to evaluate the system. Since the
system is ultimately intended for the users, their involvement in its development is crucial,
as are their needs of the system. Some researchers (cited in [Nic86], p. 222) claim that
system design should, above all, begin with the users, but others ([Wri82]) report that it
may be better to force the user to fit the system than to fit the system to the user.

Nevertheless, users will have some a priori perception of their needs, the properties of
the system that they would deem desirable or necessary. Yet, it is not necessarily true that
users’ needs will remain static over time, ([Cav67], [She82]), and users ignorant of system
design and development cannot be expected to say they need features or capabilities that
they cannot predict as being necessary. Sheil ([She83]) has argued that “any attempt to

obtain an exact specification from the client is bound to fail because ... the client does not

61

know and cannot anticipate exactly what is required”. Moreover, as users gain experience
with a system, they may suggest additional features that are needed or might prove useful,
features they were unable to consider earlier due to ignorance. At the same time, users
may eventually come to rely on system features that they otherwise might not have

thought of as necessities. Obviously, both the users’ needs and their perception of those

needs change over time.

The problem, therefore, is that designers and users may not be standing on level
ground. Whereas designers know what and how system features can be implemented. they
may not know what is needed by the users. Alternatively, users have some idea of what
they need, but do not usually know how such things are implemented. or the limits of what
can be implemented. Consequently, it seems prudent to include prospective users on the
design team, but it is cautioned ([Nic86], p. 224, [Nic77]) that “users who get involved in
system development may not be representative of the average prospective user. simply by
virtue of their involvement in the development process”. This conundrum is difficult to
resolve. and researchers are still evaluating methods of involving users in design and

development without corrupting their capability to assess system usability.

Gould and Lewis ([Gou83], p. 50) have advocated four basic principles that should be

followed in CHI design to produce systems that are useful, easy to learn, and pleasant and

easy to use:

- “Designers must understand who the users will be.

- A panel of expected users should work closely with the design team during the
early formulation stages.

- Early in the development process, intended users should actually use simulations

and prototypes to carry out real work, and their performance and reactions
should be measured.

- When problems are found in user testing, as they will be, they must be fixed.
This means design must be iterative: there must be a cycle of design, test and
measure, and redesign, repeated as often as necessary.”
The above list of principles may seem obvious common sense, but Gould and Lewis
report that system developers do not apply such principles liberally. In six surveys of over
400 system designers, “only 2 per cent of the respondents mentioned all four principles, 35

per cent mentioned only one, and 26 per cent mentioned none of them”, ([Nic86], p. 227).

62

Needless to say, the ‘mentioning’ of a design principle says nothing of whether the

principle was actually employed.

The problem with applying the principles of Gould and Lewis — that is, involving
users in design and testing — is that, in some applications, there may not exist a large
enough community of users from which to choose. Moreover, such user involvement must
obviously take place on or near the location of the user community. Given that a user pool
is readily available. the problem remains that different users do not necessarily exhibit
equal appreciation of, or benefit from, the same user interface features. That is,

impressions of system acceptability vary amongst users, making it difficult to assess user

acceptance of a system in a general sense.

User acceptance is confounded by the fact reported by Walther and O’Neil ([Wal74])
that people with negative attitudes towards computers learn how to use them less
efficiently than people with positive attitudes. Likewise, Zoltan and Chapanis ([Zol82])
report that many people’s attitudes may present obstacles hindering them from becoming
effective users. Another problem involved in system acceptance is the threat to job
security, imagined or real, that some people may feel the computer system generates. For
example, skill-oriented seniority can be threatened or devalued by introduction of
computerized skill that can be used by less-skilled operators, ([Nic86], pp. 240-241). It is
evident. therefore, that in addition to system-specific qualities, user acceptance or

rejection of a system may also be influenced by positive or negative attitude towards

computer systems in general.

The user community represents a continuum of user skill levels, ranging from novices
to experts. Novice system users need a high level of instruction and guidance while
learning to use the system. They prefer simplicity, but as they gain experience, they should
eventually become experts. Experts require no instruction, and possibly are able to supply
instruction to new novices. As novices evolve into experts, they demand the addition of
greater system functionality. An increase in functionality implies an increase in complexity,
which in turn implies increased difficulty for novice users. Thus, systems that are used by
such a continuum of skilled users suffer from conflict between simplicity and functionality,

63

and it is difficult to provide both effectively. One approach is to partition the skill level
continuum into several groups and provide different forms of system behaviour for
different skill levels. This method relies on proper partitioning of the skill continuum, and
may oversimplify the problem to the detriment of all skill levels, ([Nic86], p. 255).

Birnbaum ([Bir82]) suggests a remedy to such varying acceptability by users with
differing attitudes and skill levels. He suggests that the user interface might benefit from
individualized design. in which individual users are able to tailor and adapt the
user-interface to suit their personal preferences. This feature would alleviate some of the
problems arising from differing individual user preferences. but complicates system
implementation. Similarly. Wixon, Whiteside, Good and Jones ([Wix83]) promote two
principles for user interface design: ® “An interface should be built based on the behavior

of actual users”, and @ “An interface should be evolved iteratively based on continued

testing™.

Regardless of whether users are involved in system development, the CHI
implementors need to decide how the user interface is to behave and what features and
capabilities it should provide. There are five primary styles of interaction for conveying

information between computer and user, ([Shn91], p. 326-335). These styles, and their

advantages and disadvantages, are summarized below:

- Menu selection: The user selects items from a list displayed by the computer
(e.g. Figure 3-19a). Menu selection can shorten training time, reduce number of
keystrokes, promote structured decision-making, enable use of dialog
management tools, and offer easy support for error handling. Menu selection
may, however, slow frequent users, require screen space and a fast display rate,
and tend to become complicated if many menus are needed.

+ Form fill-in: The user supplies information by ‘filling in’ a set of labelled fields
comprising a ‘form’ (e.g. Figure 3-19b). This style simplifies data entry, requires
modest training, provides convenient assistance and context for activity, permits
use of form management tools, and enables built-in automatic data validation
and error handling mechanisms. In contrast, forms consume screen space and
require typing skills.

- Command language: The user specifies commands using a well-structured
syntactical formalism, permitting flexibility and speed, and encouraging user
initiative. A command language is appealing to experienced users who are able
to formulate command sequences mentally with little reliance on the visual

64

feedback associated with menus or forms. To their disadvantage, command
languages require substantial training and memorization, may be difficult to
remember, and can suffer from poor error handling mechanisms.

* Natural language: The user communicates with the computer using the user’s
natural language, thereby relieving some of the burdens associated with
formalized command languages. Natural language for computer interaction

suffers from ambiguity necessitating clarification, and may require more typing
than command languages.

* Direct manipulation: The user interacts with the computer system in a highly
visual manner, employing a graphics screen and pointing device (such as a
mouse, light pen or touch-sensitive screen). Instead of typing in information or
specifying commands, the user selects and manipulates objects to perform tasks
(e.g. Figure 3-19c¢). In this interaction style, the task can be visually represented,
making it easy to learn and retain system operation, encouraging user
exploration, and reducing errors. Direct manipulation, however, requires

specialized hardware such as graphics screens and pointing devices, and a high
level of programming.

Edit Yiew Help
o SO DI i1 MRSV [3.14159265359 |
,&TV:'.’:‘;;::’;_',“; - Name: [| L ¢) cE || Back| I—]
Den- | | ndarens: []| (e GGG e
o | e EENEN CHENE)
Eat | Fa] (Gt s (OG0
e (OC)CIC
@) (b) (e
List all subdirectories
C:\> dir /w/ad >files.dat and output results to file
named files.dat
() (d)

Figure 3-19. Examples of five interaction styles: (a) Menu, (b) Form fill-in,
(c) Command language, (d) Natural language, (e) Direct manipulation.

It is important to choose the appropriate interaction style for a given task, and Norman
([Nor83]) posits that there are no straightforward, clear-cut solutions to the question of
interface style, only trade-offs. For example, in a trade-off between menu size (number of
items) and display speed, it has been found, contrary to intuition, that users prefer either
large menu size or high display speed, but not a compromise between the two, ([Nor83]).
Experimental results indicate that “trade-off functions are often concave upward

65

(U-shaped), suggesting that satisfaction — if it is a linear combination of the satisfaction
with respect to both features — is maximized by an all-or-none solution™, ([Nic86],
p. 224). Moreover, the question of user satisfaction is confounded by the fact that
satisfaction varies from user to user and from task to task. Although further research is
needed, it appears that user satisfaction is an important issue to consider during user
interface design; the problem remains as how best to measure user satisfaction and derive

design principles therefrom.

Along this line, Shneiderman ([Shn91]) has developed a set of guidelines to aid system
developers in selecting suitable interaction styles, which are reported as a set of three rule
bases. The first rule base indicates which interaction style should be chosen based on
task-related factors (Figure 3-20), and the second rule base infers interaction style based
on user skill level (Figure 3-21). The third rule base determines a variety of aspects of
interaction design based on user skill level (Table 3-2). Shneiderman writes that these rule
bases are preliminary in nature and that further refinement may be warranted.
Nevertheless. they serve to illustrate that systems developers should be able to make
design and implementation decisions about the user interface depending on important

factors such as user skill level and task requirements.

High degree of data entry Menu selection
Paper forms exist
Familiar notation exists Form fill-in
Natural visual representation exists or
modest no. objects/actions can be represented Command language

_Multiple decisions required or
selection from large unfamiliar space

Poor keyboard skills
Exploration and intuition important goals

Natural language

Direct manipulation

Figure 3-20. Task factors as determinants of interaction styles. Adspre fom (Shas1]. p. 339

Menu selection

Novice
Form fill-in
Modest knowledge of task domain
with some computer skills Command language
Intermittent knowledgeable Natural language

Frequent user

Direct manipulation

Figure 3-21. User skill factors as determinants of interaction styles. Adspred from [Shnv1]. p. 340.

66

Novice Knowledgeable Intermittent Frequent User
Informative feedback |High density | Modest Short, sparse or none
Pace |Slower Moderate Faster
Introductory | Online help. Online reference with
tutorial/demo. |Chance to move up to more |elaborate search mechanisms.
Other | Limited subset |powerful actions, but Abbreviations, shortcuts,
of actions and |protection from danger. user-defined macros, access to
functionality. system internals.

Table 3-2. User skill levels for determining a variety of aspects of interaction design.
Adapted from [Shno1], p. 341

The term friendliness™ is used by Nickerson ([Nic86], p. 149) to describe features of
the computer system that “improve the quality of the interaction {with the user], reduce
the probability of catastrophic mistakes, and make it easier for users to get the help from
the system that they need”. Nickerson ([Nic86], pp. 149-151) lists several features and

capabilities that tend to promote computer system *friendliness’ as perceived by users:

- Command confirmation: Commands that have high-impact or widespread effect
should cause the system to prompt the user for confirmation before proceeding.
The user should be able to continue or abort the command, and possibly also ask
for clarification or help. Examples are actions that cause irrevocable results,

impose excessive time delays before completion, or cause some dangerous
real-world action to occur.

‘Undo’' commands: Commands that cause a change in the state of the system
should have an "undo’ feature to reverse their effects.

‘Your turn’ signal: The user should be given a clear indication of when the
computer is busy or expecting user response.

‘Forget it' command: The user should be able to abort a command action,
possibly undoing changes that have already been made.

‘Enough’ command: The user should be able to halt a lengthy output operation
and gain control.

‘Help' facility: The system should be able to respond to user requests for

supplemental information on diverse system aspects such as commands or states
of operation.

Although this list is not exhaustive, it is interesting to note that many of these features
are already commonplace among modern computer systems, and most do not require a
great amount of effort to implement. The ‘undo’ command, however, can be difficult to

implement effectively in complex real-time or distributed systems because changes may be

3 The term more frequently used is “user-friendliness’.

67

wide-ranging or irreversible. Moreover, in order to properly implement the ‘help’

command on some systems, an inordinate amount of work may need to be done to provide

good, comprehensive on-line documentation or advice.

Nickerson indicates that there is no formal standardization of such ‘user-friendly’
features. He observes that there does seem to be general consensus among system
developers as to the types of capabilities that elicit system ‘friendliness’, but argues that
system developers are the wrong kind of people to evaluate system usability because of
the bias that their knowledge and experience impose. Developers tend to underestimate
the difficulty that novice users will encounter. Consequently. researchers advocate that
“clean separation of the user interface from the rest of the system should be an
architectural objective ... to facilitate the making of improvements to the interface without

requiring major revision of the underlying system”, ([Nic86], p. 152).

3.3.2 System Acceptability

Ultimately, as Shackel writes, the system design must “start with the end users and be
user-centred around them. Therefore, the human factors aspects become paramount™,
([Sha91a], p. 8). Indeed, a human-computer system is only as successful as it is acceptable
by the humans involved. Acceptability of a system is a balance (Figure 3-22) between the
system’s cost and its three benefits (sometimes called the “x-abilities”): utility, usability and
likability, ([Sha91b], p. 22). A system has utility if, functionally, it does what it is required
to do. The system has usability if users are actually able to work the system successfully.
Usability, in turn, has two facets: how easily and effectively humans can use a system.
Finally, the system has likability if the users feel that the system is suitable.

Acceptability
A
[R

Utility
e Cost
Usability 11y iy eqbility

Easy Effective

Figure 3-22. System acceptability is a balance between cost and the ‘x-abilities’.

68

It is obvious that utility is a simple quality to assess: the system either does or does not
fulfill its functional requirements. Usability, however, is somewhat more difficult to
evaluate, and involves measuring actual human performance, ranging from novices
learning to use the system to experts using the system at the edge of its capability. In
contrast, likability is quite difficult to gauge because it is concerned with human emotion,
whether or not users like the system, are willing to use it and find it worthwhile to use.

This exemplifies the close relation that ergonomics shares with psychology.

Shackel ([Sha81]) defines usability as follows:

“The usability of a computer is measured by how easily and how effectively the
computer can be used by a specific set of users, given particular kinds of support,
to carry out a fixed set of tasks, in a defined set of environments.”

This definition implies the use of experimental evaluation of a computer system by a group
of users. and establishes a goal to which the software developers should strive.
Unfortunately, as Willis and Miller ([Wil84], p. 30) point out, usability is sorely lacking
from many existing computer systems:

“Virtually every computer on the market today is advertised as a user-friendly

computer, and many programs are sold as user-friendly products... Probably 50 to

80 per cent of the programs and computers claim to be user friendly but are not.

Many of them are user surly or user hostile... The main problem is that many
computer models and programs are not easy to use, no matter what the ads claim.”

Chapanis ([Cha91], p. 359) wonders why computers, computer programs ot manuals
often turn out to be hard to use despite the deliberate efforts their designers have made to
make them easy to use. He suggests three possible explanations: “Designers either
(a) make no attempt to evaluate usability, (b) make an attempt to evaluate usability but
don’t do a good job of it, or (c) evaluate usability but don’t think it is important enough to
correct features that the evaluation shows are hard to use.” He suggests that all new
computer systems should be evaluated for usability because “every new computer system
is, in some respects, novel. It may involve new technology or new combinations of old
technology and one cannot always find principles and guidelines to cover these situations”,

([Cha91], p. 360). That is, there does not exist a set of principles and guidelines that

69

would enable system developers to determine a priori the usability of a finished system.

Since there is a lack of analytic methods, system usability must be evaluated empirically.

Clearly, the issue of computer system acceptability should be paramount in system
design and implementation. System developers need to be aware of this necessity, and
should endeavour to provide software that the end-users will find acceptable, in that the

software possesses utility, likability and usability.

[L4 L 4

This section has introduced the broad field of ergonomics/human factors and
highlighted some of the concepts and issues that make it a valuable and necessary
component of systems design. The following section presents an overview of the discipline
of software engineering, whose principles can be applied to facilitate integration ot aspects

of real-time systems, knowledge-based systems and human factors into computer-centered

technology insertion operations.

3.4 Software Engineering

A recent article (Figure 3-23) published in The Toronto Star ([Swa94]) reported that a
new. multi-million dollar, computer-aided ambulance dispatch system has been
malfunctioning to such a degree that some patients have had to wait up to 25 minutes for
an ambulance to arrive. The article claims that the system has “lost’ calls, and that one of
the these lost calls “involved a man who subsequently died, although it’s not known
whether [the lost call] contributed to his death”. The system has also apparently been
generating ‘ghost calls’ which dispatch ambulances to “locations where ambulances had
responded exactly one year earlier”. It remains to be seen whether this software system is
actually malfunctioning as alleged, and whether its problems are due to poor software
design. Nevertheless, this case illustrates the importance that software engineering plays in
software design. The bottom line is that poor use of established software engineering
principles and practices can result in software systems that have profoundly adverse and

wide-sweeping effects on human lives, and society in general.

70

Ambulance system
‘unacceptable’

services and whn-*
New computer “"‘"’mm T Vi fores ot ”.%;;:,,3’
cndangers lives, Metw smbulsnce saff and the these
o

s hlic about the custom-de-
Fotinos says Hignsa compuren-eided dispeich
system and a new call ~
By Gait SWAINSON protocol.
Mt TRO NALL BUREAL m w

Mectro has wasted millions of ®A ~
dollars on a new ambulance

Figure 3-23. Excerpt from the Toronto Star, {Swa94].

Software engineering is a pragmatic discipline that, in the words of Boehm ([Boe76]),
involves “the practical application of scientific knowledge to the design and construction
of computer programs and the associated documentation required to develop. operate,
and maintain them.” Similarly, Fairley ([Fai85], p. 2) supplies the definition:

“Software engineering is the technological and managerial discipline concerned

with systematic production and maintenance of software products that are
developed and modified on time and within cost estimates.”

Moreover, Fairley (/bid) describes the roots of software engineering as follows:
“Software engineering is a new technological discipline distinct from. but based on

the foundations of. computer science, management science, economics,
communication skills, and the engineering approach to problem solving.”

Sage ([Sag90]) prefers the term software systems engineering,” and describes the field
as encompassing three levels of activity, as shown in Figure 3-24. On a macro scale’.
software engineering activities involve systems management and systems methodology and
design, dealing with teams of individuals, and large-scale goals and objectives. In contrast,
the ‘micro scale’ level of software engineering is concerned with software productivity

methods and tools, and deals with the work of individual people, the programmers.

 For the sake of brevity, the term software engineering will be used hereafter.

n

Systems

Management
£ \ System% I\Sgstbodology
an ign

\ Software Productivity
Methods and Tools

S— /
—

Macro-scale

Micro-scale

Figure 3-24. The three levels of software engineering. /sugsor.p. :

It is important to note that software engineering is a sub-branch of the more general
discipline of systems engineering, which involves the engineering of both hardware and
software system components. Much of the material presented below on macro-scale

software engineering is applicable to systems engineering in general.

As summarized by Sage ([Sag90]. p. 8). studies of software productivity have
indicated that many software systems are deficient in various ways, (Table 3-3), and it is
generally the case that a large percentage of the overall system cost is expended on the

software. Therefore, methods of improving quality and reducing the cost are valuable to

software systems developers.

Software is expensive. Software products often cannot be integrated.

Software deliveries are often quite late. Software performance is often unreliable.
Software capability is less than promised and Software is often cumbersome to use and system
expected design for human interaction is lacking.

Software cost over runs often occur and are

Software often cannot be transitioned to a new
generally large.

environment or modified to meet evolving needs.

Software maintenance is complex and Software does not perform according too
error-prone. specifications.

Software documentation is inappropriate and System and software requirements often do not
inadequate. adequately capture user needs.

Table 3-3. Deficiencies of software systems. /sugvo/. p. 8
Simultaneously, it is necessary for systems developers (or prospective buyers or
end-users) to be able to measure the success of a software product. As indicated by
Table 3-4, there are many different qualitative characteristics that a system developer (or

others) might wish to use as gauges to determine whether the software meets its

requirements.

Acceptable Complete Flexible Precise Timely

Accessible Consistent Generalizable Reliable Transferable
Accountable Correct Interoperable Repairable Understandable
Accurate Documentable Maintainable Reusable Usable
Adaptable Documented Manageable Robust User-friendly
Appropriate Effective Modifiable Secure Valid
Assurable Efficient Modular Self-contained Verifiable
Available Error-tolerant Operable Survivable

Clear Expandable Portable Testable

Table 3-4. Nonexhaustive list of desirable software attributes. jsusos. p. 15

These attributes can be loosely organized into a ‘software quality metric’ hierarchy
(Figure 3-25). The challenge, as pointed out by Sage ([Sag90]. p. 17). is in being able to
measure these software characteristics in a quantifiable manner. Some of these

characteristics have been well defined and standardized ([IEE83]); a few examples are

shown in Table 3-95.

Software Quality Metric
Functionality
[]

Modifiability Operability Transferability
Adaptability Reliability Reusability
Testability Efficiency Interoperability
Reusability Integrity Portability
Repairability Correctness

' Assurability |

Figure 3-25. Partial hierarchy of quality assurance attributes. /sasor.p. 1v

Accuracy: ® A qualitative assessment of freedom from error. @ A quantitative measure of
the magnitude of error, preferably expressed as a function of the relative error.

Correctness: ® The extent to which software is free from design defects and from coding
defects; that is, fault-free. @ The extent to which software meets its specified
requirements. @ The extent to which software meets user expectations.

Efficiency: The extent to which software performs its intended functions with a minimum
consumption of computing resources.

Portability: The ease with which software can be transferred from one computer system or
environment to another.

Reliability: The ability of a program to perform a required function under stated conditions
for a stated period of time.

Robustness: The extent to which software can continue to operate correctly despite the
introduction of invalid inputs.

Table 3-5. Excerpts from the [EEE Standard Glossary of Software Engineering
Terminology. adpied from {IEEB3] cuted n (FaidS]. p. 35

73

3.4.1 Macro-scale Software Engineering

Macro-scale software engineering is essentially the practice of applying management
and design principles to software development projects involving groups of people. When
computer programming was in its infancy, decades ago, software engineering was
unnecessary because computer software was sufficiently uncomplicated that one or two
programmers could accomplish the design and implementation singlehandedly. Yet, as
increasingly larger and more complex software systems were called for, it became evident
that the days of *lone star’ programmers were coming to an end. Instead, it was realized,
software systems required foresight and planning, the application of sound design
principles, and cohesive strategies for efficient implementation, comprehensive testing.

on-time and on-cost delivery, and effective post-delivery maintenance.

The skeleton upon which macro-scale software engineering is based is the software
development lifecycle model, a framework used for guiding and co-ordinating a software
project. Fairley ([Fai85], p. 37) describes the software lifecycle model as encompassing
“all the activities required to define, develop, test, deliver, operate and maintain a software
product”. Use of a software lifecycle model “enhances the productivity, quality and
functionality of software through identification of a number of development phases that
enable efficient and effective systems management of the software development process”,
([Sag90], p. 48). Additionally, “a software lifecycle model that is understood and accepted
by all concerned parties improves project communication and enhances project

manageability, resource allocation, cost control, and product quality”, ([Fai85], p. 37).

Table 3-6 summarizes how the use of a software lifecycle model affects a software
development project. Although there is a diversity of software lifecycle models in the
literature, it is important to note that “no single life-cycle model is appropriate for all
software products”, (/bid). Sage ([Sag90], p. 55) notes that “each software development
firm tailors the specific software development lifecycle process to meet the particular
characteristics of the personnel of the firm, the needs of users for the software to be

developed, and economic, legal, and time for development concerns”.

74

- Enhances our ability to establish requirements to - Provides cost information.

be satisfied by the proposed development. - Lends itself to assignment of personnel.

- Identifies and highlights potentially difficuit - Lends itself to enforcement of standards.

problem areas. - Encourages the use of support tools.

+ Permits the synthesis and evaluation of alternative =+ Aids in the preparation of a quality product
solutions to difficult issues associated with each of that is delivercd on time and within
the phases in the lifecycle. budget.

- Enables selection of appropriate activities for each - Lends itself to management control.
of the phases.

Table 3-6. Benefits of using a software lifecycle model. /sug90/. . 50
The original software lifecycle model is credited to Royce ([Roy70]). who introduced
the "waterfall’ model shown in Figure 3-26a. Boehm ([Boe76]) subsequently refined the
original model into that shown in Figure 3-26b. The waterfall model is so widely accepted
that a form of it has become a standard in the U.S. Department of Defense, guiding

projects that combine both hardware and software in defense-related systems

(Figure 3-27).

Systems
ch/\l:,;fm's Requirements 1
= W Software
Requi
Specifications 1 Sl 1
Preliminary Design
. K’
Design
1 Detailed Design
Implementation ——* w
Code and Debug
- v
Test and Preoperations
Maintenance —+
Operations and
Maintenance

Figure 3-26. Two related software development lifecycle models. (a) Original waterfall
model due to Royce, /awy7e. (b) Modified waterfall model due to Boehm
(after Royce), /Boere;.

The basic idea of the waterfall model is that system development consists of several
well-defined phases arranged in chronologically linear order, in the tradition of
conventional ‘top down’ design. Generally, activities in one phase do not begin until all
activities in the preceding phase have been completed. Ideally, in this way, it is reasoned,

75

problems or difficulties can be identified and corrected early in the development process.
In practice, however, there is usually iteration and interaction between the phases, due to
oversight or unexpected problems that become evident in phases subsequent to the phase
in which they should have been taken into account. In fact, Sage ([Sag90], p. 56) indicates
that iteration and interaction between phases is good, and suggests that “‘disadvantages
associated with use of a lifecycle model include problems that occur if there is no iteration
and feedback among phases.” In a similar voice, Fairley ([Fai85], p. 41) writes:
“Software development never proceeds in a smooth progression of activities as

indicated in the waterfall chart. There is more overlap and interaction between
phases than can be indicated in a simple two-dimensional representation.”

In some cases, the iteration and interaction may become intense if software developers
opt to ‘fast-track’ a project, usually due to tight time constraints. Fast-tracking involves
deliberately accelerating or bypassing phases of the software lifecycle so that actual
implementation (coding) can be pertormed quickly, sometimes even before the project’s
detailed design requirements are completely formalized. Fast-tracking is an inherently risky
undertaking, and can lead to major complications if problems or errors are identified late
in the development process that force the project to backtrack. Nevertheless, many
developers feel that the potential benefits of fast-tracking (such as time and cost savings.

and early delivery bonuses) outweigh the risks.

Hardware (HWCI) Development

Testing

Detailed Fabncaton

Hardware | Prefimmary | Destgn
Requirements
Analyuis
Sysiem System System Testing &
Requirements/ In & 8 uction &
A:‘hym - T:‘%;m Evaluation l:)ephnﬂmmml
e,
jen' "
st | Degn | Demied | eoge unin
Design | Yy & CSC

I : CSCI

\Twm
Software (CSCI) Development

Figure 3-27. U.S. Department of Defense standard DoD STD 2167-A software lifecycle
model. 1kpred from (sugsoy. p. 53

76

A concept related to fast-tracking is prototyping, in which preliminary versions of the
software product are released to the prospective users for evaluation. Typically, the
prototypes provide limited subsets of full product functionality, but still enable the users to
acquire hands-on exposure to the developing product. The concept of a prototype is aptly
expressed by Sage ([Sag90], p. 75):

*... A prototype is viewed as an initial and possibly immature, incomplete model
of the system that has been proposed for construction. The purposes of building a
prototype are to enable identification of requirements specifications for a system:;
determine the feasibility of the overall project; explore particularly difficult tasks,
such as designing a new algorithm; explore variations in requirements; or examine

different requirements for impact assessment; or examine alternative strategies and
approaches to solve problems.”™

Similarly, Jacobson ([Jac92], p. 27) writes:
“A specific advantage of a prototype is that it can serve as a means of
communication between the developer and customer. It is much easier to express a
view about something that can be demonstrated and used. if only partially, than to

express an opinion about a specification. A specification cannot capture the
dynamics of the system in the same way as a working prototype.”

Prototyping for small-scale projects is a relatively straightforward and cost-effective
means of furnishing users with evaluational mock-ups, and can help to alleviate design
problems early in development. Unfortunately, however, prototyping of large-scale

software systems can become prohibitively expensive with relatively little pay-off to justify
the expenditure.

Fast-tracking and prototyping are, therefore, two useful methods for accelerating and
improving software development that can be integrated easily into the conventional
lifecycle model if circumstances warrant. As mentioned previously, different software

development groups will employ different lifecycle strategies and variations depending on
the needs at hand.

Since its conception in the early 1970s, the basic waterfall model and its many
variations have gained widespread acceptance. Software developers have discovered that
the advantages of applying a waterfall model concern the organization and control of the
software development project. Sage ([Sag90], p. 50) writes that “the use of the
conventional (waterfall) lifecycle has demonstrated that better software will result from

)

the careful and systematic approaches that are called for through the careful use of a
software development lifecycle”. Additionally, he claims (/bid, p. 56) that “the single most
important methodological need associated with use of the waterfall lifecycle model is that
of effective identification of user requirements”. This notion ties in well with the previous

section on human factors which stressed the importance of including the prospective user

in the development of a software project.

The conventional waterfall model. however. is not without its problems. For example,
rectification of problems and errors can be seriously impaired if no iteration or feedback
occurs between the phases. At the other extreme, too much iteration and feedback can
lead to expensive cost and time overruns. Additionally, the waterfall model may facilitate
the ‘second system syndrome’ of building a system twice using iterative prototyping
capability to correct problems resulting from oversight or bad planning during the initial or
previous development cycles. Finally, it is possible that the rigidity of the waterfall model
reduces the potential for individual creativity amongst programmers, perhaps leading to

lack of inspiration and poor quality in the finished product.

Various researchers have attempted to improve upon the basic waterfall model. or
replace it altogether. For example, McCracken and Jackson ([McC82]), and Gladden
([Gla82]), have suggested that the classical waterfall model should be scrapped and
replaced. Along a similar line, Sage ([Sag90], p. 73) reports that:

“It has been estimated that shortcomings in the application of the waterfall
software development lifecycle model, such as, proceeding step-by-step through

the design and development process without iterative feedback, have led to more

than half the total life cost of a software product being expended in the
‘maintenance’ phase.”

Sage (Ibid, p. 57) writes also that such attempts at revising the waterfall model usually
include one or more of three general approaches. First, most newer models formally
include feedback mechanisms between the phases to decrease the compartmentalization
and isolation of the separate phases. Second, some models may involve the use of various
computer-aided software engineering (CASE) tools designed to automate and streamline
aspects of the software engineering lifecycle. Finally, some models are conceived to

78

introduce increased flexibility into the lifecycle to aid in development of large scale

systems.

In the sequel, four different lifecycle models are described, illustrating how such
models can simultaneously share common elements while seeking to emphasize and

improve upon different facets of the overall software development process.

One such alternative is Yourdon's structured software development lifecycle model
([You82]). presented in Figure 3-28. The principal intention of this model is to facilitate
the employment of structured development tools and techniques into software projects to
improve organization and the development process. The structured software development
lifecycle is essentially the classical waterfall model augmented with structured tools, such
as data flow diagrams, data dictionaries, structure charts, and structured English.
Yourdon’s model offers advantages primarily in terms of the structured tools that it

provides. To its detriment, however. this model suffers from the same disadvantages as the

classical waterfall model.

User ivi
- Activity flow
1 —7 —> Information flow
Survey |&— 7]
%
Analysis é/’-"—7 \
3
Design [}
Database
5 4 Conversion
Procedural Implementation g
Description S
6
Acezpanc >| quliy
Generation Assuance

9
Installation

Figure 3-28. Yourdon's structured software development lifecycle model. jrous2

Another alternative model is the spiral model (Figure 3-29) developed by Boehm
([Boe86]). In contrast to the classical waterfall model, which is a ‘specifications-driven’
model, the spiral model is intended to “introduce a risk-driven approach into the
development of software products”, ([Sag90], p. 67). Iterative prototyping is an inherent

aspect of the spiral model. Each iteration of the spiral involves a ‘version’ of the software

79

product which progresses through six phases of development (as shown in Figure 3-29).
At the end of each cycle, the prototype is assessed in terms of various risk factors (such as
cost, hardware requirements, and performance), and a decision is made whether to declare
the project finished, continue development, or seek an alternative development path. The
spiral model, therefore, combines the chronologically linear phases of the waterfall model
with cyclic iteration and “many [other] modifications that have been introduced to the

software development lifecycle during the past 25 years, including risk analysis”. ([Sag90],
p- 68).

Analysis

Requirements

Desi
esign Specification

Implementation .
and Unit Test Version

Ready

Integration

Figure 3-29. Spiral model of the software development lifecycle. wuv21.p. ~3. ater fhoensi

The evolutionary model (Figure 3-30), based on the work of McCracken and Jackson
([McC82]), and Gladden ([Gla82]), was developed to address the drawbacks of the
waterfall-like class of lifecycle models. The evolutionary model is based upon prototyping
as a means of providing prospective users with preliminary, hands-on software systems
that the users can evaluate to provide developers better with timely, accurate requirements
specifications. This method is iterative in nature: an initial, tentative set of system
requirements gives rise to a first prototype, which is evaluated by the users to refine and
elaborate upon the initial specifications, resulting in a second prototype, and so on until
the users are satisfied with the software product. Clearly, this approach is of value when

the users have vague or unclear a priori system requirements, or do not know what can be

accomplished.

80

Note:

. In the evolutiommry prototyping
Evolving safiware development bifecycie
System Level > 3;‘1::’ level rrggcr:ﬁn;"vmm
Requirements detashed dexign and finally into
Specifications u maturing sofiware <t

ready for installation and operativn.

Software
Requirements —3» / Requirements
Specifications Specifications and

Detailed Design

?lmnon of + P

ncreasng totype

Sofiware P .

Functionabty Detailed Design —3» /' for Produc(t;ion ot’mn
Maturing Software

Product for Operation

Ly

Figure 3-30. The software lifecycle for implementing evolutionary rapid prototyping. /rugsr. p. *s

The evolutionary model, like any other, has both advantages and disadvantages. To its
benefit. the evolutionary model can improve system development through dividing the
project into smaller, more manageable segments (modules) to make implementation and

testing easier. Sage ([Sag90], p. 75) summarizes these advantages as follows:

. “Potential of bringing reality to the development process by building segments
of the project and testing these for application fit.

- Working on particularly difficult issues, such as input/output (1/O) interfaces or

algorithms through building and testing these portions of a system in small
manageable parts.

. Better control of resource management, verification and validation.

- Increasing overall communications and productivity of the design process.

- Coupling which occurs between user group management and the development
team through their direct involvement in the specification effort.”

The disadvantages of the evolutionary model are common to any model based on
incremental development, ([Sag90], p. 76). These include: ® Undetected errors can
continue to propagate through the prototypes, making this model an expensive way to
develop requirements specifications; and @ Production of prototypes may cause a

significant increase in project management overhead, making resource allocation and

estimation difficult.

A final software lifecycle model worthy of consideration concerns software
engineering for knowledge-based systems (KBSs). Bader and Edwards ([Bad91], p. 384)
claim that “despite some reported successes ([dAg87], [Pro87]), KBS technology is still
thought by many in commercial computing to lack engineering credibility”. They suggest

81

that “a software system’s perceived credibility is based to a significant extent on the
degree to which a [software development lifecycle] has been used in its development™, and
therefore, that “if KBSs are to gain widespread commercial and industrial acceptance,
their development will also have to be based on a sound engineering method”. Moreover,
they write (/bid, p. 384) that many purportedly successful knowledge-based systems are
“relatively small, stand-alone systems which do not interact with other conventional

systemns”, and these KBSs have been developed using unstructured, ad hoc approaches.

As a remedy to this problem, Bader and Edwards advocate a formal development
model which they claim is “suitable for the construction of hybrid systems, containing both
heuristic and conventional components, since it is unlikely that KBSs for commercial or

industrial exploitation will solely contain heuristic elements”, (/bid, p. 385).

Bader and Edwards state (/bid, p. 391) that “several authors characterise the
prevailing Al methodology [for KBS development] as RUDE: Run-Understand-Debug-
Edit”. This general KBS development model is shown in Figure 3-31, and accentuates the
fact that many KBS development lifecycles follow a highly iterative, prototyping path
which lacks both a method for implementing the initial prototype and a method of
controlling the iteration. Consequently, such RUDE models can cause problems in the

system’s documentation, maintenance and testing, and perhaps result in a poorly

engineered and unsuccessful KBS.

version: n
v EXPERT
version: n /
UNDERSTAND
\
version: n OWLEDG
e T
DEBUG ENGINEER
\ 4
version: n
EDIT
version: o+l

Figure 3-31. Simplified RUDE software development lifecycle. /aawis.p. 91

82

The solution proposed by Bader and Edwards is the POLITE (Produce Objectives —
Logical/physical design — Implement — Test — Edit) software development lifecycle model
for engineering knowledge-based systems (Figure 3-32). The model is an extension of the
classical waterfall model, as evidenced by the classical waterfall activities in the left half of
its development phases, which are used to develop the conventional components
(non-heuristic parts) of the system. In addition to the classical activities, the model adds

parallel activities for development of the knowledge-based system components.

Feasability and
Requirements
Definition

Prototype
Costs
Objectives

Costs

Analysis
Data | Tasks

Design
Logical Files Knowledge
and Processes rimy Procedures

l!:Ill\zsieal Files ! Enviro t

Implementation
Programs Knowledge Bases
Files Inferencing
TESTING
< Acceptance Validation

MAINTENANCE

Bug Fixing Updating Knowledge Bases
Adding Functionality Increasing Scope

Figure 3-32. The POUTE lifecycle model. jgawis. p. 192

Bader and Edwards ([Bad91], p. 405) summarize their conclusions about the POLITE
model as follows:

. “KBSs must be engineered using a [software development lifecycle] if
commercial and industrial standards of reliability and maintainability are to be
met.

- Operational KBSs are likely to contain both conventional and heuristic
components, necessitating the use of a hybrid development life-cycle.

- The RUDE Al methodology can be made POLITE by adapting the conventional
waterfall model.

+ The POLITE life-cycle, and accompanying standards, must be proved by using
the model on commercial and industrial KBS development projects.”

83

It is evident from the above that researchers have recognized that knowledge-based
system development has been lacking in the application of accepted and proven methods
for conventional software engineering, and further that it is likely possible that standard,
conventional software development lifecycle models can be extended to incorporate

development pathways for knowledge-based systems components.

L 4 * L g

This section has served to introduce the broad field of macro-scale software
engineering by describing several different software development lifecycle models, the
essential backbones of macro-scale software development projects. It must be stressed
that macro-scale software engineering involves much more than mere lifecycle models, but
that much of this field, due to its immensity. is beyond the scope of this thesis. In the next

section, a brief synopsis of micro-scale software engineering concepts is presented.

3.4.2 Micro-scale Software Engineering

Micro-scale software engineering is concerned more with programming than with
project management. There is a wide range of concepts that fall into this category.
including: @ Software tools for aiding and automating software development (CASE
tools); @ A collection of programming techniques that can be referred to as RIMS: Reuse

of code, Information hiding, Modularity and Specification; and @ Object-oriented

programming.

The realm of CASE tools is vast, and cannot be adequately covered in this thesis.
Suffice it to say that many different types of CASE tools exist, including facilities for:
managing source code files and monitoring revision tracking; automating source code
generation from specifications; automating and rigourizing testing; aiding in user interface

design; and generation of consistent documentation.

CASE tools research and development is currently a burgeoning field as software
projects become increasingly larger in scope while developers seek to avoid the
commensurate increases in workforce size. This enthusiasm in CASE tool development is
a trend towards what Jacobson ([Jac92], p. 37) describes as the “industrialization” of
software engineering. Jacobson (Ibid, p. 39) writes that CASE tools “can lead to massive

|

84

productivity improvements, but they are only part of a greater whole. The choice of a
development technique has its roots in the basic philosophy chosen to govern the overall
system structure of the designed systems, namely the architecture. To this base then is

added a method, a process and, finally, computer-aided tools.™

3.4.2.1 RIMS Programming Concepts
RIMS is an acronym coined by the author for a collection of valuable programming

practices that are considered important aids for effective micro-scale software engineering:
Reuse of code, Information hiding, Modularity and Specification. For the sake of

conceptual clarity, these practices will be summarized in an order different from their

enumeration in the RIMS acronym.

The term modularity and specification refers to the practice of designing and
implementing a software product as a series of interconnected modules.”” Sage and Palmer
([Sag90], p. 197) explain that “in most programming languages. a module is an entity in
itself and operates on data in the way determined by the larger program of which it is
part”. The design of a modular program involves specification of how the modules should
be organized, what information they should contain, how they should behave, and how
they should interact. Interestingly, a proper specification does not indicate how the
module's internal workings should be coded, that is, what algorithms are to be used
internally; this detail is left to the discretion of the module’s developer, with only the
requirement that the module meets its specification. The specification formalizes the
software design, enabling separate groups of software developers to code separate
modules independently. The programmers are required to conform to the specification (to
ensure that the pieces ‘fit together’ properly), but are free to choose how the module’s
inner workings are implemented. Furthermore, at a later time, the programmers are free to
change the internal workings without necessarily being concerned that the rest of the
program will cease to function, provided that the original specification is still followed.

Modularity lends itself to reuse of code by increasing software granularity. Proper
modularization of a software product enables the implementation of generic or

general-purpose software modules (libraries) which can be repeatedly used in other

2 The literature uses several different words for a module, including unit, library, monitor, and package.

85

programs. Sage and Palmer ([Sag90], p. 330) write that “software reusability concerns the
use of already constructed software ‘parts’, perhaps even ‘conceptual parts’, that are
available from other software development programs, in new software development

situations.” Code reusability can significantly reduce the amount of effort and investment

expended in re-creation of program code.

In addition to promoting reuse of code, modularity facilitates information hiding.
According to Sage and Palmer ([Sag90]. p. 193-194). information hiding is “the ability to
conceal the existence of certain pieces of information and deny access to it except under
direction of specific rules that have been predefined”. Information hiding can endow
software modules with localization of change by limiting the extent to which changes need
to be made to program code. Typically, the module is coded so that only special,
privileged subroutines are able to access or alter the information. By isolating (hiding)
pieces of information in modules, and then tightly controlling and limiting access to only
those modules for which the information is essential, the disruption is minimized
(localized) when the pieces of information, or their manipulation subroutines, are changed.
Hence, “most of the data and procedures are hidden from other parts of the software and

the introduction of inadvertent errors is not likely to propagate to other locations in the
software”, (/bid).

Together, the RIMS concepts, if applied properly, offer great benefit to software
development by formalizing program design through the use of specification, and
promoting efficient software implementation and maintenance through the use of

modularity, reuse of code and information hiding.

3.4.2.2 Object-oriented Programming
Object-oriented”® programming (OOP) has its roots in the SmaliTalk programming

environment, which has been in ongoing development at the Palo Alto Research Center of
Xerox since 1976, ([Gol83]). The concept, which is a radical departure from the so-called
‘conventional’ realm of computer language design, is based on the premise that data
objects take an active role in computing. Whereas regular procedural languages deal with

B The term object-orientation is sometimes used in this context, perhaps improperly, to describe the condition of something being
object-oriented. Use of this aversive term is avoided in this thesis.

86

active procedures affecting passive data objects, object-oriented languages use data

objects which affect themselves and possibly other data objects.

As a comparison, consider the general case action print the value of x. A procedural
language would use a statement such as print(x) in which print() is an active
procedure which is passed the passive data object x and prints it. An object-oriented
language employs a statement which is almost an inversion of the print (x) statement,
«:print, which says, essentially, ‘Hev. x! Print yourself!’. That is. the object x is sent the
message :print which it recognizes as the name of one of its methods (actions that it
knows how to perform). The contrast between these two different approaches to the same

task is an important one, forming the waypoint from which object-oriented programming

departs the road of conventionality.

The usefulness of OOP is something which can well be appreciated. In the past there
was a pervasive semantic gap between problems or issues in the real world and their
analogous computerized models. A large amount of effort was expended in order to
simulate real events and objects using numerical processing engines. With the advent of
OOP, however, the task of modelling the real world becomes a mere projection process
from the concrete to the abstract. A data object in the computer is defined as an image or
facsimile or a real object. possessing simulated characteristics and properties of the real
object as the programmer sees fit. [n such a way, the programmer discards the procedural
approach of defining passive data structures, and active procedures that provide the

modelling, in favour of data objects which are able to model their concrete counterparts in

an active, participative manner.

It has been argued by Pascoe ([Pas86]) that a programming language requires four
properties in order to be classified as object-oriented, and these properties, as described by
Pascoe, neatly parallel the RIMS practices described previously. The first property is that
of information hiding, which ensures both software reliability and modifiability by
modularizing the software and minimizing inter-module dependencies and influences.
Information hiding represents the application of a ‘black box’ approach to software
development in which the internal details of modules are free to change without affecting

87

the functionality of the whole. Second is the property of data abstraction. the utilization
of information hiding to design classes or types of data objects that possess informative
attributes and inherent behaviours. Data abstraction offers the first step towards
procedureless programming by offering a primitive form of ‘objectism’. Third, the
property of dynamic binding is required. Dynamic binding enhances programming by
offering polymorphism to data classes; operations (behaviours) in different classes may be
identified by the same names and the onus is placed on the data objects themselves to
resolve the contlicting references at run time instead of compile time. This highly desirable
property encourages semantic simplification of programs because operations from
different classes which behave intuitively in a similar manner may be referenced by the
same name, thereby reducing the complexity of the program as a whole. Finally, an
object-oriented language must provide a mechanism of inheritance: classes of objects
must be able to share operations in common. I[nheritance permits the definition of
sub-classes which are more-specific versions of their parent class (or parent classes) but
still share (inherit) properties from the parent class(es). The property of inheritance
represents the zenith of OOP by providing the highest level of real-world modelling.
Inheritance facilitates code reusability and eliminates code redundancy since classes that
share common characteristics may be enclosed under a parent class which holds their
common qualities for all to use. Together, these four properties form the minimum
requirements for an object-oriented language. The all-important properties of inheritance
and dynamic binding rely on those of data abstraction and information hiding, so all are
necessary qualities of an OOP language.

The issue of usefulness of object-oriented computing ultimately reduces to two
significant benefits: ® The transition from the concrete to the abstract is simplified since
object-oriented languages are procedureless and, therefore, are simpler, more accurate
models of real-world events. This implies that the software developer should experience
increased productivity and greater understanding of how the model achieves its required
analogy to the real-world event; @ The reusability of software components through
inheritance promotes a greater software life expectancy: code fragments may be used and

reused as often as needed but only need to be developed once.

88

* ® »

This chapter has introduced four areas of electrical and computer engineering that are
relevant to the computer-centered technology insertion operation. Each of these areas is
so large that a brief introspective does not do them proper justice. Nevertheless, the
concepts presented in this chapter pave the way for the subsequent chapters, which
explore the design and implementation of the Particle Accelerator Control Expert System,
and suggest how its design and implementation principles can be applied to

computer-centered technology insertion operations in general.

Chapter 4
Design and Implementation of PACES

This chapter introduces the reader to the Particle Accelerator Control Expert System
(PACES), describing what it does, and how it is designed and implemented. Within the
context of this thesis, PACES serves as a case study illustrating the advocated

methodology for computer-centered technology insertion.

This chapter is divided into five sections: The first provides an overview of PACES.
including its organization and operation. The second section describes how aspects of
real-time systems design are utilized in PACES. The third section discusses principles of
artificial intelligence which are used in PACES, particularly knowledge-based reasoning. In
the fourth section, the incorporation of human factors concepts into PACES is presented.
The fifth section deals with how software engineering principles have been applied in
PACES design and implementation to integrate these different modalities into a working
control system. As will be argued in Chapter 6, many of the decisions made during design

and implementation of PACES can be applied to other computer-centered technology

insertion operations.

4.1 Overview of PACES

PACES is a large, multi-module computer program which runs in part on one or more
embedded controllers and part on a host computer (PC). With respect to the technology
insertion problem described in Chapter |, PACES incorporates aspects of three broad areas
of computer science and computer engineering: real-time systems, artificial intelligence
and human factors. As depicted in Figure 4-1, practices borrowed from these
multi-disciplinary fields are combined in the present work into a cohesive hybrid system by

employing principles of software engineering that promote modularity and integration of
89

90

program source code. Simultaneously, electrical engineering principles are used for
interfacing with the accelerator. and computer-human interface principles serve to

*‘connect’ PACES with the operator.

Human

Operator
Particle RTS kBs \ Knowledge-based
Accelerator Decision-making

Figure 4-1. PACES comprises concepts from human factors (HF), real-time systems
(RTS) and knowledge-based systems (KBS). Software engineering (SE) is
used to meld these disciplines into a multi-disciplinary software system.

4.1.1 System Organization and Operation

PACES is a complex, distributed control program that runs on two or more
hierarchically organized computers (Figure 4-2). The overall control task is divided

between the processors to yield fast response times to both the operator and accelerator.

([Poe91)).
Host PC D e
° Embedded

Controller(s
Remote PC KT — ©)

(— "g
{

m@|@s <> | unuunl

00 |00 000oo
Interface
Circuitry

Accelerator Control Panel

Figure 4-2. PACES organization.

91

The PC is connected to one or more single-board-computer (SBC) embedded
controllers (see Figure 4-2), which are linked to the accelerator via interface circuitry. The
SBCs are data acquisition and control systems. Presently, only one Intel 8051-based SBC
is used, but PACES has been designed to accommodate other embedded processors as the
system is expanded. The single SBC is responsible for acquiring and conditioning
(filtering) accelerator operating parameters and relaying them to the PC. It also carries out
accelerator control actions as directed by the PC, employing a tuzzy logic inference engine
for low-level decision-making. As will be discussed in Section 4.2.1, additional SBCs can
be added to the system as required to extend the capacity of the accelerator interface. such

as, for example, inclusion of control over downstream beam line components.

The top level (host) computer is a PC with an 80486 or Pentium™ processor. A high
resolution colour graphics monitor displays a facsimile control panel** (Figure 4-3). This
graphical user interface (GUI) mimics the real control panel as closely as possible.
Graphical meters, indicator lights and other visual aids popular in current GUTIs display the
accelerator’s state. The operator uses the computer’s keyboard and mouse to actuate the

accelerator’s controls (selsyns and switches). The PC incorporates a knowledge-based

expert system for automated operation and fault handling.

Control of the accelerator must be performed in real-time, with response times of no
more than one or two seconds. The control problem is complicated by the fact that both
high resolution graphics (for the user interface) and knowledge-based reasoning (for
automated operation) are computationally intensive. Since it is inappropriate to overload a
single processor with such a tall order, the control problem is best solved in a parallel
fashion by employing more than one processor. Thus, PACES divides the overall control
problem to facilitate fast response time to both the accelerator and the user. Although such
a parallel approach is well known, the novelty of the present solution centers on the use of
knowledge-based reasoning for accelerator control. In this instance, the PC performs ‘high
level’ tasks such as generating the user interface and performing rule-based reasoning,
while the embedded controller performs ‘low level’ tasks such as data acquisition and

direct control. An important issue is the partitioning of the overall control task to provide,

3 Note that since the GUI for the AECL version of PACES is shown, the extraction selsyn is labelled as beam bias (cf. § 2.3.2).

92

-a0BpeUI Jasn (BojydesB S3ovd €-v 2inbid

93

simultaneously, fast response time and a high degree of ‘intelligence’ in the form of

expert-based knowledge.

The host computer may also be connected to one or more remote consoles. typically
[BM-style PCs. The remote consoles are connected to the host via RS-232 serial links.
and may use modems for communication over telephone lines. The remote consoles act as
functional extensions of the host computer’s user interface, enabling the accelerator
operator to monitor and control the machine from locations other than the main control
room. This is useful during experiments when the experimenters spend most of their time
in the target area but still wish to have control over the accelerator without having to
travel to the control room. Additionally, the use of a modem over telephone lines enables a
person at another location, perhaps many miles away, to operate the accelerator remotely

for expert diagnosis or troubleshooting purposes.

System Manager

¥

Control Interface [%tﬁrg‘g]‘ge

<>

3 {

SBCs

¢
G

Figure 4-4. Components of PACES.

Operator

The overall system can be conceptually divided into five parts (Figure 4-4). The system
manager is the top level of the program that oversees and co-ordinates the other parts.
The user interface is the system’s link with the operator. The control interface is
responsible for uploading telemetric data from the SBCs and sending them control

commands. Finally, the inference engine and knowledge base are used for making
heuristic decisions.

94

The most substantial portion of PACES runs on the host computer (PC). The PC
program is a Microsoft Windows? application® written in Borland Pascal for Windows™
(BPW). It is concerned with maintaining the graphical user interface (GUI) and performing
high-level reasoning for controlling the accelerator. PACES is written in a highly modular,
object-oriented manner to promote software engineering (as will be discussed in
Section 4.4). The heart of the program is the ‘control panel’ (cf. Figure 4-3), a graphical
facsimile of the real accelerator control panel through which the user interacts to operate

the accelerator manually or to initiate automated operation.

4.1.2 Manual Operation

PACES provides the capability for the operator to run the accelerator manually in a
fashion that closely mimics manual operation using the real control panel. The operator is
free to follow the prescribed start-up and shut-down procedures, and to perform whatever
control actions are warranted during the accelerator run. During start-up (or shut-down).

the operator uses the mouse to turn on (or off) the control power, drive motor and belt

charge switches (Figure 4-3).

Cuntol Fusae
On

@

Figure 4-5. Switches used during manual start-up and shut-down.

During start-up, the operator next turns the four selsyns to settings appropriate for the
day’s run. This can be accomplished using the selsyn controller window (Figure 4-6). The
controls of this window allow the operator to select a selsyn and turn it up or down by a
specific amount, or to command a selsyn to turn to a specific position. The selsyns can
also be manipulated, without using the selsyn controller, from the main control panel
window by placing the mouse over the desired selsyn and using the left or right mouse
button to decrease or increase the selsyn’s position, respectively. The operator is also able
to control the voltage stabilizer’s mode and Faraday cups (Figure 4-7).

3 Microsft Corp.. Redmond, WA.

3 The term application refers to the overall program in a general sense; PACES is one instance of an application.
7 Borland International, Scotts Valley, CA.

95

Voitage Stabilizer

$D6 e

_ Reverse motor rotation

“Clm

Figure 4-6. Selsyn controller window. Figure 4-7. Voltage stabilizer mode and
Faraday cup controls.

4.1.3 Automated Operation

The manual mode of operation is augmented by automated operation which the
operator can to choose to invoke during start-up, shut-down or beam maintenance modes.
The buttons shown in Figure 4-8 are the main controls for invoking automated operation.
The Start Up button is used to begin automated start-up, and automated shut-down is
initiated using the Shut Down button. The Control Mode button is used during beam
maintenance operation to switch between automatic and manual beam maintenance.
Collectively, these buttons control the PACES knowledge bases responsible for automated
operation. The Start Up and Shut Down buttons trigger knowledge-based decision making
that mimics the established start-up and shut-down procedures, while the Control Mode

button activates (or deactivates) knowledge-based control loops that optimize and

stabilize the accelerator during beam maintenance mode.

96

Figure 4-8. Automated operation controls.

When automatic start-up is initiated, the operator is given the opportunity to select the
accelerator’s initial settings from a database of past settings (Figure 4-9), or to specify
target settings for the start-up procedure (Figure 4-10). In either case, these settings are
used by PACES to establish set-points for controls and target values for machine
parameters such as terminal voltage and beam current. Furthermore, the operator is able

to specify tolerance intervals (upper and lower limits) for these target parameters
(Figure 4-11).

Automated accelerator operation is discussed further in Section 4.3.

mmﬁzJ rooJ
- oo] o0]
g eu:ﬁﬂﬂ [os0]

] @]

Flgure 4-10. Settings for Automated Start-up.

97

§ com‘gmm Default Conﬂguraﬂon B] d""’ i
| TerminalVottagewvi [400 | [010 | v Auto ld‘:
i Beam Current at
Faraday Cop oAy [590_] [050_] o Ao ‘
CondtonngMode
Startat (MV): (3.00_| Condition up to (MVE |ﬁ: J Eoud 4]
Vacuum (x 10°6): |7.50 6.50 9.00 v Auto
Corona Current(uAr [50.00 30.00 80.00 v Auto
Sample Power (W | 10.00 [5.00 15.00 oo | o]
Stablitzer Balance: 4.00 2.00 v Auto
Beft Charge: |3oo.oo | 10000] e Auto
. Beamwillbe.. o Beam Current Samping
‘ stralghtthrough (Acup) Do not sampie beam.
+ Bent (Band Ccups) + Sampie beam periodically: 31
Period (minutes); {10 o)
Mo CuTentioraSYe. _ purgton secandsf. |10
| 005 | uA Sample beam as needed. x| |
t)

Figure 4-11. Tolerance interval settings used in beam maintenance mode.

4.1.4 Miscellaneous Features
This section briefly summarizes some of the additional features of PACES to illustrate
how the program can be used to aid users in accelerator operation. These features are

referred to as tools (shown in Figure 4-12). The tools not described in this section are

detailed in the sequel.

The selsyn controller tool (Figure 4-12a) was mentioned in Section 4.1.2. The data
logger tool (Figure 4-12b) is used to turn on or off the program’s data logging facility,
which writes time-stamped accelerator telemetry data records to a disk file. The stepper
motor power tool (Figure 4-12d) enables the user to turn off power to the selsyn stepper
motors so that the selsyns can be turned manually. The decisions explainer tool
(Figure 4-12¢) opens a window that displays knowledge-based decisions as they are made
(cf. § 4.3.2.5). The SBC reset tool (Figure 4-12f) can be used to reset the embedded
controller manually. The voltage conditioner tool (Figure 4-12g) is used to initiate

98

terminal voltage conditioning manually if the operator decides that the accelerator is
unstable. The audible warning control tool (Figure 4-12i) turns on (or off) the audible
warning sounds of the ‘spark’ and ‘beam lost’ alarms. The SBC settings update tool
(Figure 4-12j) is used to alter the SBC’s record of seisyn positions after any selsyn has
been adjusted manually without using the software.”® The beam maintenance settings tool
(Figure 4-12k) is used to change beam maintenance settings when needed
(cf. Figure 4-11). The kiviat graph tool (Figure 4-121) opens/closes the accelerator kiviat
graph (described in § 4.4.2). The analyzing magnet controller tool (Figure 4-120) gives
the user control over the analyzing magnet. Finally, the remote operation tool
(Figure 4-12p) controls remote operation of the accelerator: the user can activate this tool

on either the control room console or remote console to switch accelerator control

between the two locations.

OB

@ ©® © (@ @ 6O 9

33

0|2.n
Mgt Ara %gl

g&':,%: Log Book Aréa
(k) (1) (m) (n) (0) (P)

Figure 4-12. PACES tools: (a) Selsyn controller. (b) Data logger. (c) Lock-out facility.
(d) Stepper motor power. (e) Decisions explainer. (f) SBC reset.
(g) Voltage conditioner. (h) Cruise control configuration. (i) Audible
warning control. (j) SBC settings update. (k) Automatic beam
maintenance settings. (1) Kiviat graph. (m) Idle watchdog. (n) Logbook.
(o) Analyzing magnet controller. (p) Remote operation control.

4.1.4.1 Lock-out Facility
The lock-out facility (Figure 4-12¢) is a safety mechanism for the accelerator control

room’s exit door which is used during unattended operation to detect unauthorized entry
to the control room. If the exit door is opened during unattended operation, the

accelerator is placed in safe mode unless the proper password is entered before a time limit

expires.

3 This is necessary because PACES has o sensors to detect when a selsyn has been adjusted manually.

99

4.1.4.2 Logbook
The logbook tool (Figure 4-12n) is an electronic version of the operators’ logbook

that is kept on hand at the control panel (cf. Section 2.5). This tool consists of five
sub-tools as shown in Figure 4-13. The Save Settings tool is used to save the current
accelerator state variables in the settings database for future use during start-up for
restoration of accelerator state. The Browse tool opens the accelerator settings database
(cf. Figure 4-9) for selecting past run settings for replication during start-up. The
Operator Notes tool accesses a free-form, text-based memo pad that the operator can use
to make notes about the accelerator. run or experiment in progress. The Service Memo
button is used to issue service requests to be processed by maintenance personnel. Finally,
the Journal button permits viewing of PACES’ significant event journal (see Figure 4-14),
a database which stores descriptions of events occurring during accelerator operation

which are worthy of logging for future reference.

Log Bok

Operator | Service
N Memo

Figure 4-13. Logbook tools.

When the user activates the Save Settings tool, a logbook database entry form is
presented that closely resembles the format of the regular logbook (Figure 4-15). PACES
flls in all the fields it is able to, and the user is expected to complete the remaining

information before committing the entry to the database.

Date Time Event

13.11.1996 [16:18:11 | Operator Hosein, Sam signed in. 2
13.11.1996 | 16:21:81 | actuation of Faraday Cup C failed.

13.11.1996 | 16:27:46 | Link with embedded controller lost and reset has failed.
13.11.1996 | 16:38:52 | Shutdoun procedure initiated.

13.11.1996 | 16:55:32 | Operator Hosein, Sam signed out.

Figure 4-14. Significant events journal viewer.

100

‘yooqBo| Jojesaiadoy ‘GL- aInbid

-ajqels ureag ‘jlam bujuuna 101RI3RIIV quawpadxd IPIO | HuSNno:

Avrl) Lo weog vez] 4%6) sezkian Bamsion
fv) 2 peno sjouben ovor| Bumes s8O.
qv) Lpenp Slodiupend 00'G1 | Buiios seig weey
fv) usund 05 L€ | Bunteg smoo4 . -
ubep atod
1o pioud ® “t0dd 16-29 | fvifaudand Btaseg -
woddn G1'ES ge&h&ﬁ!&
d pupes:
LaMO] ©J-dus) . Er122 §o§§
Aw.e—xg..g 00'r | {AoW) 86eMOX -
% (A%) sBumag 4019318 000] A% dau. uonost
% sbumeg Jouuedg xuol £09 ggﬁ&m*ﬁh
12°11°96 | 332Q r 3 Jowdy AR
60:2Z:C1 | ‘Bl T Moy 1313d |t

%%uut\.e!hv

101

4.1.4.3 Idle Watchdog
The ‘idle watchdog’ is a simple safety feature intended to protect both the accelerator

and personnel during automated accelerator operation. The idle watchdog monitors
operator activity (keyboard and mouse) to determine whether an operator is present at the
computer console while PACES is operating the accelerator, and will invoke safing action
if user inactivity exceeds a programmed time limit. Consequently. this feature forces an
operator to interact periodically with the computer, and it is assumed that such interaction
involves periodic monitoring and supervision of the control system and accelerator. [f the
idle watchdog detects operator inactivity, it assumes that the accelerator is running

unsupervised and initiates safing action or shut-down for safety.

4.2 Aspects of Machine Interfacing and Real-Time Systems

As mentioned previously, the "low end’ of the interface problem is concerned with
effectively connecting the computer system with the accelerator. This involves two steps.
First, the physical link between computer and accelerator must be realized in the form of
data acquisition and control hardware. Then. built upon the physical interface layer. the
conceptual link for information interchange (using software) is implemented. Construction
of the physical layer relies upon established electrical engineering techniques. Likewise.

the conceptual layer is developed using real-time systems concepts.

The following subsections deal with some of the issues prevalent in the design and

implementation of both the physical and ‘informational’ levels of the accelerator interface.

4.2.1 Multi-processor Environment

As described in the section on real-time systems in Chapter 3, real world processes are
inherently concurrent, with multiple aspects existing and operating simultaneously.
Consequently, a real-time system built to interact with a real-world process typically
mirrors this real-world parallelism in the form of multiple (software) processes, possibly
operating on multiple processors. This principle of parallelism has been applied to PACES
in the interests of promoting fast response time to both the user and accelerator. The
overall control task is partitioned between two or more processors of two basic types. The

so-called ‘high level’ tasks of user interaction and knowledge-based reasoning are

102

performed by the host PC, while the ‘low level’ tasks of data acquisition and accelerator

interfacing are performed by one or more embedded controllers.

The PC is a (relatively) expensive, high performance, general purpose computer with
input devices (keyboard and mouse) and an output device (high resolution colour graphics
monitor); it stores the bulk of the PACES software and knowledge base. In this way. it can

be likened to a human’s head which comprises a brain, an assemblage of input devices

(eves, ears, nose). and an output device (mouth).

The embedded controllers are, in comparison, simple and cheap single-board
computers with limited memory and processing ability. They do not communicate directly
with the user. and thus do not possess "conventional’ input/output devices. Instead. they
communicate with and are controlled by the PC, which presides over them as a
higher-level co-ordinator; and, on behalf of the PC, they acquire data from the accelerator
and perform direct control actions on the accelerator. In this sense. therefore. the SBCs

can be compared to the human body's sensory/motor system (sense of touch and motor

muscles).

The embedded controllers are imbued with limited ability to make control decisions
within limited bounds set by the PC. Situations that the embedded controllers are unable
to handle are relegated to the PC. This approach serves to shift some of the system’s
overall duties from the PC to the embedded controllers, thereby relieving the PC of some
of the workload. Continuing the body analogy, it is possible to imagine the processor
hierarchy within PACES as being similar to the organization of reflex arcs in the body’s
nervous system. Gleitman ([Gle81], p. 28) describes a reflex arc as:

«_..the reflex pathway that leads from stimulus to response. Some reflexes
represent a chain of only two components, as in the case of an afferent neuron
which contacts a motoneuron directly. More typically the chain is longer, and one

or more interneurons are interposed between the afferent and efferent ends. We

can also ask whether the reflex arc also involves the brain (and if so, which
part)...””

Figure 4-16 illustrates an old conceptualization of reflex arcs: When a person’s limb
strays too close to an open flame, a reflex arc pulls the limb away. The ‘decision’ to pull

B The term efferent nerve can be interpreted to mean *motor’ (output) nerve, and afferent nerve to mean “sensory” (input) nerve.

103

the limb away is made outside the brain by a flexion reflex which is formed by a chain of
neurons. The chain originates at the thermal sensors in the limb’s skin, travels to the spinal
cord. and then back to the muscles of the arm. The “decision’ to retract the arm is an
involuntary reflex made in this reflex arc, without any assistance being needed from the
brain. Indeed, by the time the sensation of pain reaches the brain. the flexion reflex has
already acted and pulled the limb away. The involuntary reflex system is paralleled by the

voluntary action system, in which muscle action is caused by ‘voluntary’ motivation from

the brain instead of from a reflex action.

Figure 4-16. Reflex action as envisioned by Descartes. /peso:/ auedin ket p. 1o
The nervous system of the human body, and higher-order animals in general, is
organized in this manner because there is a propagation delay imposed in sending signals
from sensory nerves up through the spinal column to the brain and then back down to the
motor nerves. This delay would cause poor response time (and perhaps injury or death)
were it not for the presence of reflex arcs, which serve to provide the body with localized,
fast (but limited) decision-making capability. In essence, therefore, reflex arcs improve

system response time by adding an element of local parallelism.

The PACES processor hierarchy is organized in a similar fashion (Figure 4-17). Some
(simple) decisions can be made by the SBCs without intervention by the PC, while other
(more complicated) decisions require the PC’s more-sophisticated decision-making. Such
distribution of the workload serves to decrease response time to the accelerator by shifting
some of the workload to the embedded controllers, and freeing the PC from some of this

104

burden, thereby improving response time to the user. The issue of workload partitioning is

explored further in Section 4.3.

Voluntary Involuntary ‘Smarts’ Complexity Speed
Action Path Reflex Path]
Mouvation o Hi gh: High Low
n Rule-based
/[expert system
],
A
‘ l v v A ‘
[sBC] | \‘H(J] \‘p,(- | Low: Low Medium

Algorithmic,
Fuzzy-logic

g D L
Digital
,00000 | finite-state

/ automata

Figure 4-17. Processor hierarchy within PACES.

[ooooo ‘ gag

aoooo § | DUDD None: Low High
v
Achon Stimulus Response

)

It is worth noting that the accelerator interface circuitry can be considered to have a
rudimentary level of decision-making capability in the form of digital finite-state automata
(DFSAs). There are presently two DFSAs in the interface circuitry: one is responsible for
counting motor steps and stopping a selsyn stepper motor after a specified number of
steps; the other is incorporated into the analog-to-digital converters, which use successive
approximation to convert their analog inputs into digital outputs. Both of these DFSAs are
‘mindless’ in terms of artificial intelligence, but do possess some simple decision-making
capability, and are able to function autonomously to some degree. Thus. the DFSAs can

be thought of as lower-order aspects of the system’s sensory/motor reflex arc structure.

4.2.2 Accelerator Interface

The hardware underlying the PACES accelerator interface is designed with several key
principles in mind. Above all, simplicity is the main issue: The circuitry should be simple in
design to facilitate rapid prototyping and construction, and to promote ease of

understanding and troubleshooting by people other than the system designers. This maxim

105

is merely a form of Occam’s razor: Entities are not to be multiplied without necessity.
([Pea64], p. J32). Other important principles involved include:

- Frugality: The hardware design and implementation should be low-cost, making
use of existing interface circuitry whenever possible .

- Modularity: The hardware should be modular to permit straightforward
reconfiguration, extension and repair.

- Flexibility: The hardware should be flexible in its ability to be extended and

modified, in response to both changes in the accelerator site and in the higher
levels of PACES software.

« Utility: The hardware should, where appropriate, perform its duties

autonomously without the need for constant direction by the embedded
controller.

- Passivity: The hardware should minimally disrupt normal (manual) accelerator
operation, in order to maintain accelerator operability during PACES
development and during times when PACES is not functioning.

The accelerator interface is performed in a non-invasive, ‘piggy-back’ manner to
permit easy installation and removal, and to minimize disruption of regular accelerator
operation. Since the McMaster accelerator was used as a testbed for PACES early in its
development, much of the hardware that distinguishes the McMaster accelerator from its
DREO counterpart was irrelevant; the main control points (the selsyns and switches) are
identical on the two machines, enabling much of the early development to be performed at
McMaster. The accelerator interface circuitry was designed to be portable bewteen these
two KN-3000 accelerators with minimal reconfiguration. (The field version of PACES
later developed for the Whiteshell Labs KN-4000 incorporated several improvements over

the original accelerator interface circuitry; some of these enhancements are described
hereafter.)

At its lowest level, PACES is connected to the accelerator’s control panel via custom
data acquisition and control circuitry operated by one or more single-board computer
(SBC) embedded controllers. A block diagram of these connections is shown in
Figure 4-18a. The inputs to the control system are the signals from several analog meters
on the control panel, and a series of digital inputs for sensing the states of control panel
switches and indicators (such as the control power, drive motor on/off, states of Faraday

cups, and voltage stabilizer mode switch). The outputs from the control system actuate

106

switches (using relays) or turn selsyns on the control panel (using stepper motors).
Figure 4-18b shows how the accelerator fits into the PACES system as a whole: The
outputs of the accelerator are fed back into PACES to facilitate closed-loop control. This
scheme represents a non-linear, multi-variable control system that is impractical to model,

and, therefore. the achievement of stable control is intractable using conventional control
methods, ([Sin83}).

Punel Meters

Terminal voltage Switches
Belt charge —
Corona load —> —>» Control power on/off
Corona position — —> Drive motor on
Column current —» —> Drive motor off
(a) Vacuum —> —> Belt charge on
Beam current—> —> Belt Charge off
Stabilizer balance—> —>» Corona increase
Tank ripple—> —>» Corona decrease

Sample power —> —> Voltage stabilizer mode
Voltage stabilizer mode—> PACES

Digital inputs Selsyns
Faraday cup positions —
Drive motor on/off —» —> Belt chz}rge
—>» Extraction
Belt charge on/off —> 3 Gas
Control power on/off —> S Focus
Accelerator ready to start —>

Accelerator in operation —>

\luln-vanare Feed-back

Bt-d:recuonal
Serial Link

[Multi-variate Control

KN

Figure 4-18. PACES interface to accelerator.

Figure 4-19 shows how the SBC is connected, through a memory-mapped
input/output (I/O) space to subsystems for data acquisition and control point actuation.

The system uses two 10-bit analog-to-digital converters (ADCs) for data acquisition.
Each ADC receives its analog input from an 8-to-1 analog multiplexer (AMUX).
Computer control is used to select each ADC’s input channel and also to start its

conversion cycle. A ready signal is output from each ADC when its conversion cycle is

complete.

107

SBC

Memory-mapped
| /O space
[(16 bytes)

Opto-isolators converters On/off Contortc?lll.ers Analog
T O, Amps. relTys Converters

| v
Digital [nputs Analog inputs Switche Analyzin

i
S5 0 55

Figure 4-19. Components of PACES accelerator interface.

The first ADC samples eight voltage channels connected to control panel meters
(Figure 4-20). These meter signals are amplified using three stages of linear operational
amplifiers (unity-gain differencer, unity-gain filter, and adjustable-gain amplifier) before
being fed to the AMUX.

Unity-gain differencer
Panel Meter

Unity-gain filter
m Variable-gain amplifier

Select Siart
! l Wy

¥

[T

%IIIII

Figure 4-20. Signal acquisition from control panel meters.
The second ADC samples up to eight beam current channels, such as from the Faraday
cup, target chamber or analyzing magnet chamber (cf. Figure 2-5). The beam current

signals are amplified using logarithmic amplifiers so that the signal can range over several
decades from nA to mA (Figure 4-21).

108

Beam Select Start

Current v

L
Logarithmic

[L]

FaCr%%ay Amplifier

T

Figure 4-21. Signal acquisition from beam current channels.

Active control of the accelerator is accomplished using relays to actuate switches.
stepper motors to turn selsyns, and digital-to-analog converters for controlling the
analyzing magnet's power supply (cf. Figure 4-19). The relays are controlled by simple
gating circuitry, and are connected to the control panel wiring to mimic manual switch
activation: that is, when the control system is inactive, the control panel switches function
as normal. Moreover, the control power switch is never bypassed, so manual intervention
is always required to activate the accelerator’s control power, and the entire system can

always be manually deactivated at any time simply by turning off the main key switch.

Special circuitry is used to drive the four stepper motors which are mechanically
connected to the control panel’s selsyns. When the stepper motors are de-energized, the
selsyns can be turned manually as normal.® The circuitry can be commanded to turn a
specific motor an exact number of steps clockwise or counterclockwise, one step being
1/100" of a complete turn of 360°. Once a motor is turning, the circuitry is able to start
another motor turning, enabling simultaneous manipulation of multiple selsyns.
Additionally, the circuitry counts the number of steps applied to a turning motor. and
stops a motor when its prescribed number of steps has been reached.

4.2.2.1 Enhancements at Whiteshell Labs
The accelerator interface circuitry installed on the Whiteshell Labs KN-4000 has

several enhancements over the prototype circuitry installed at DREQO. The analog inputs
employ opto-isolation amplifiers to improve noise filtering and protect the circuitry from
high voltage transients which sometimes propagate through the control panel. Also, since

® As explained in Section 4.4.2, the seisyns behave slightly differently when the motors are connected.

109

the beam current signals do not generally span 6 decades of range as they do at DREO.
logarithmic amplifiers are not needed; consequently, the second ADC is not dedicated to
sampling beam currents, and operates the same as the first ADC. The two ADCs are
driven in parallel, so that two analog signals (out of 16) are sampled simultaneously.

One additional enhancement is the addition of 16 opto-isolated digital inputs which
are used for sensing such things as the presence of control panel power, *accelerator ready
to start’ indicator. "accelerator in operation’ indicator, state of the drive motor (on or off),

state of the belt charge power supply (on or off), positions of the three Faraday cups (in,

out or in transition), and the exit door interlocks (cf. § 4.1.4.1).

4.2.3 Non-invasive Machine Interface

As mentioned. interface to the accelerator is non-invasive. This is important and
desirable for several reasons. The control system must be easy to connect and disconnect
from the accelerator because the accelerator cannot suffer from long periods of down-time
during system development. The system must not involve any alteration of existing
mechanical. electrical or safety systems that would render the accelerator manually
inoperable at any time. It is crucial that the operator is able to assume immediate.
complete manual control of the accelerator whenever needed while using the computer
system. Details of this "piggy-back’ approach to machine interfacing are published in
[Lin91] and [Lin93b]. In essence, care is taken in PACES to ensure that run-away control

conditions are avoided and that the operator can quickly assume complete. direct manual

control at any time.

4.2.4 Embedded Controller

The embedded controller (Figure 4-22) used by PACES is a small, uniprocessor
single-board computer” (SBC) built around an Intel 8051 CPU. The SBC communicates
with the PC via an RS-232 serial link. The PC sends the SBC commands similar to remote
procedure calls for requesting accelerator data or ordering control actions. The SBC
presides over an ensemble of sub-systems that collectively form the data acquisition and

control circuitry of the accelerator interface.

" HiTech Equipment Corporation, San Diego, CA.

110

Address/Data
Built-in Bus Sub-systems
Serial]
4____)[‘“‘1(< PES
. <>
SBC <>
Debugging
Console Addr [/O Ports
ﬁ ‘
v
D D

Port

Host L
Second l ROM RAM
° <—>»| Serial
[—+

|/ m—

Figure 4-22. SBC organization.

The SBC possesses 8 kb of ROM which holds the firmware bootstrap monitor.” and

32 kb of RAM which is used for the PACES embedded controller real-time kernel (RTK).

The SBC has two serial ports: one built into the CPU which is connected to a debugging

terminal for feedback from the RTK during debugging. and another memory-mapped
serial port which is used for the command/data link with the PC.

The CPU has four 8-bit ‘multi-purpose’ parallel [/O ports, but two of these are
required for accessing the SBC’s ROM and RAM. Of the two remaining ports (16 bits),
10 bits have special functions, leaving just 6 bits for general use. Since this renders the
built-in /O ports effectively useless, the accelerator interface is implemented using

memory-mapped [/O channels (Figure 4-23).

Each sub-system of the accelerator interface is connected to the SBC’s address/data
bus, has a unique range of addresses, and includes decoding logic for detecting when the
sub-system is being addressed by the SBC. Data sent to/from the sub-systems are passed
from/to the data bus via tri-state latches. Conventional memory accesses (reads and
writes) are used to input data from or output data to the sub-systems, respectively. This
method makes it easy to code SBC software since /O devices can be treated as memory

" HiTech Equipment Corp., San Diego, CA.

111

variables in the program source code. Moreover, this method provides for easy addition of
sub-systems: an available range of memory addresses is simply allocated for the new
sub-system to use, without need for concern about addressing conflicts. Figure 4-24

shows how the SBC’s subsystems are connected to the accelerator for data acquisition

and control.

SBC
AD A ALE WRRD
=1 il
Address Read/write
Eata decoder[] L 1 decoder
us

vy
[E_Eort selector

g g
|, s— —
Y, m—

Output Ports

Input Ports

Figure 4-23. SBC input and output ports.

/ Voltage Stabilizer Mode
Belt Charge
s8c ___4 Extraction
Terminal Voltage —\—"“‘) Gas
-
ARAAAAAAAA Focus
Stabilizer Balance —* ..
T Corona Position
Voltage Stabilizer Balance
: Gain
Corona Position
DA «—{-—t 1 Balance
Corona Current Anal
Charsber
Faraday Cup| | |Current High
Current \ Energy
Current
Corona
Points Magnet %ow
b
[} 3 Current
Accelerator E‘ Lé-
Target
NMR NMR < Current
Magnetometer Probe ~—

Figure 4-24. SBC connections to accelerator.

112

4.2.5 Real-Time Kernel
The RTK running on the SBC (Figure 4-25) is written in C and assembler code. It is

responsible for receiving host commands, interpreting them and performing the requested
actions. The kernel is also charged with several ‘housekeeping’ tasks, such as data
acquisition and filtering, and stepper motor control. The RTK is held in object code
format on the PC and downloaded into the SBC’s RAM during system initialization.”

—

__Host

Serial Link

Commandsl TDala

Interpreter | € Housekeeping

A A
vV VYV VYV VY

Subroutines

" Accelerator Interface

Figure 4-25. Embedded controller real-time kernel.

The main execution loop of the RTK is shown in Figure 4-26. The RTK loops
continuously, polling the PC serial link for incoming commands (®). These commands
resemble remote procedure calls (RPCs), consisting of an opcode (remote procedure [D)
and zero or more parameters. If no RPC has been received, the RTK performs its

housekeeping tasks before polling the serial link again (@).

Host RTK
@ Housekeeping }
@ Send RPC
= T~
8 T
3 @ Receive RPC
v .
& * . Subroutine
o E .?E' O Dispatch RPC ® Receive Parameters
§ ® Execute RPC
[S
© Receive Result @ Send Result

>/

Figure 4-26. Real-time kernel main loop and remote procedure call mech

anism.

”LatctversionsoftthBCwﬂlhavetthTKplacedinpmmmROMsothatdownloadingisnotmry.

113

4.2.5.1 Real-time Kernel Housekeeping Tasks
There are several housekeeping tasks performed by the RTK. In the ‘data acquisition’

task, the RTK samples its digitized inputs from the accelerator, computes first-order

differences and accumulates running averages. These data are transmitted to the PC in the

form of a telemetry packet (see below).

For purposes of motor position feedback to the PC, motor turn commands are carried
out as a sequence of 32-step stages. In the ‘motor compliance checking’ housekeeping
task. the RTK determines whether a motor has completed its most recent 32-step turn
command. When this happens, the RTK updates its internal record of the motor’s position

and starts the motor turning again if more stages are required to complete the turn

command.

Corona points positioning adjustments are also carried out in a sequence of steps as a
safeguard measure to prevent the points from being extended or retracted too far. Any
active corona points position adjustment is automatically terminated if the RTK does not
receive confirmation from the host PC within a certain period of time. This prevents the
occurrence of a run-away condition in the event that the host PC crashes during corona
points adjustment (cf. Section 4.3.4.3). Likewise, adjustments to the analyzing magnet
set-point are performed in a stepwise fashion to prevent run-away and accommodate for

hysteresis and slew rate in the analyzing magnet’s power supply.

Another important task carried out by the RTK is the failsafe command loss watchdog
mechanism, which automatically initiates accelerator safing action if a preset period of
time passes without reception of a command from the host PC. This mechanism
safeguards against the possibility of PACES crashing while the accelerator is running

unattended and leaving the accelerator in an uncontrolled state.*

4.2.5.2 Real-time Kernel Remote Procedure Call Mechanism
As shown previously in Figure 4-26, when the PC sends an RPC (@), the RTK

receives an RPC opcode (®), housekeeping is suspended, and the appropriate subroutine

is called (®). The subroutine in turn receives its expected parameters from the serial link

* The embedded controller’s CPU also has a built-in watchdog timer which resets (reboots) the CPU if the software being executed crashes
or becomes stuck in an endless loop.

114

(®), performs its function (®), and perhaps sends a result back to the PC (@).

Meanwhile, the PC may either continue execution using parallel code threads (@) or block
(©) until the result is received (@).

One of the most frequently used RPCs is responsible for uploading accelerator
parametric data to the PC. When the PC sends a telemetry request RPC, the RTK forms a
telemetry packet from the information shown in Table 4-1. The PC requests telemetry
packets from the SBC every 200ms, using a Windows event timer as the timebase. When
the timer expires, a telemetry request RPC is sent to the SBC, and PACES blocks until the
packet is received completely or a time-out occurs. In the event of a time-out, any partial
packet received is discarded, another telemetry request RPC is sent, and a telemetry failure
event is counted: after a certain number of telemetry failures. the SBC is rebooted. Ifa
complete telemetry packet is received within the time-out period, its leader and trailer
fields are validated. These fields should contain specific values, and the packet is discarded
if they are incorrect, or if the exclusive-OR checksum is incorrect. Once the packet is
validated, it is unpacked and its fields are used to update the selsyn positions and meter
values. If data logging is active, the packet is time-stamped and written to disk. If a

remote console is currently logged in, the packet is also forwarded along a separate serial

link to the remote console.

Packet Header

Status Flags

Error Flags

Active Motor Flags

Idle Count

Selsyn Positions (4)

Switch Positions (16)
Averaged Meter Readings (16)
pigital Inputs (16)
Exclusive-OR checksum
Packet Trailer

Table 4-1. Telemetry packet.

The PC is able to program the RTK to monitor accelerator performance data and
notify the host via a service request if certain operating parameters exceed prescribed
limits (termed a breach). As the SBC is repeatedly sampling the analog signals from the
control panel, it is able to compare each value to a pair of limits. The SBC can be

instructed to watch for any combination of the following types excessive values:

1o

- Time-averaged: To avoid noisy data and unimportant transients, this type is used
to detect lasting deviations.

- Integrated. The SBC watches for an excessive integrated measurement (i.e. total
measured value over a specific time interval).

. Instantaneous: Certain types of faults (e.g. sparks) are characterized by sharp.
momentary changes that exceed the limits.

- Differential: The SBC monitors the rate of change of a certain value.

Upon detection of a breach, the SBC immediately notifies the PC, indicating the exact
nature of the event. In response to the service request, the PC shifts its chain of reasoning
to determine the nature of the breach. and perhaps initiate fault detection. diagnosis and
recovery. This facility is analogous to a thermostat in 2 house that is set by an “expert’ (the
human) to operate the furnace within a certain temperature range, and generating an event

(turning the furnace on of off) when the temperature drops below. or rises above this

range, respectively.

It is sometimes necessary for the PC to be able to gain control of the SBC. mainly
during PACES initialization when the program needs to be sure that the RTK is
functioning properly. To accomplish this, the serial link’s DTR line (data transmit ready
signal) is used as a reset strobe. The PC can pulse this line high to reset the SBC. When a
reset occurs. the SBC responds by starting execution from a fixed program address, and
the RTK reboots. Since resetting the SBC causes some of the SBC’s CPU registers to lose
their data. the PC will only reset the SBC if necessary. The PC first "pings’ the SBC by
sending it a ‘ping’ RPC and a random 16-bit value. If the RTK is functioning properly, it
will respond to the "ping’ command by returning the ones-complement of the random
value received from the PC. If the PC does not receive the expected value, or a time-out
occurs, the PC assumes the RTK is not running, and resets the SBC. Once the reset
occurs, the PC again pings the SBC. If the ping again fails, the PC assumes that the SBC
does not have valid copy of the RTK, and forces the RTK to be downloaded onto the
SBC and started. Such downloading is typically only necessary when the SBC is powered
up or when the RTK has changed and the new version needs to be placed on the SBC.

116

* > *

This section has presented the ‘low level’ of PACES, consisting of the accelerator
interface and embedded processor. In the following section, the use of knowledge-based

reasoning in PACES is explored, illustrating how artificial intelligence reasoning techniques
can be used to perform “high level’ decision making.

4.3 Aspects of Knowledge-based Reasoning

Knowledge-based reasoning forms the “brain’ of PACES. that part of the program
responsible for making decisions about how to control the accelerator. There are two
levels of decision making in PACES. The “high level’ decision maker is the expert system
running on the PC. The "low level’ decision maker takes the form of algorithmic and fuzzy
control systems running on the embedded controller. The expert system presides over the

fuzzy controllers, deciding when they should be used, and how they should be configured.

4.3.1 Decision-making Requirements

Four key areas of accelerator control rely on knowledge-based inferencing. As
described below, these areas pose ditferent requirements on the decision-making system.
and require that this system has capability for at least three types of ‘reasoning’: the

heuristic forward chaining and backward chaining methods. and the deterministic,
algorithmic (temporal) method.

Start-up: During start-up, the decision-making system is used to start the accelerator
and produce a stable particle beam with specified physical characteristics. The established
start-up procedure followed by the operators is used as a template for rule-based
inferencing, implying that the decision-making process is algorithmic. Yet, the start-up
procedure also requires a degree of heuristic decision making. Consider an abridged

version of the procedure used to start-up the accelerator from a ‘cold’ state. shown in
Table 4-2.

117

1. Turn on control power. 9. Pull out Faraday cup. (Beam now passes

2. Insert Faraday cup. through analyzing magnet to target.)

3. Set gas and focus selsyns to previous settings. 10.Look for target current.

4. Increase terminal voltage to reach desired | 1.Monitor high/low slits, balance and annular

energy. ring current. If annular ring shows current,

5. Wait for “strike” (current on Faraday cup). beam is out of focus. If balance signal is non-
. . o zero, adjust terminal voltage to shift balance

6. Adjust extraction and gas selsyns to maximize

toward zero. As balance reaches zero, increase
balance gain to measure smaller balance errors.
7. Set magnet field strength using NMR. 12. When beam is stabilized. switch to built-in

8. Set balance gain to minimum. stabilization.

beam current on Faraday cup.

Table 4-2. General steps involved in accelerator start-up.

Despite the fact that this procedure appears at first glance to be quite deterministic, it
is important to note that this algorithm excludes almost all of the "expert knowledge’ that
the operator draws on while executing the procedure; the operator is monitoring the
control panel at every step, intent on detecting any problems as they arise. At any stage,
the operator may have to alter the procedure using some heuristic. To this end. the above
algorithm captures only the skeleton of the start-up procedure, and the decision-making
system must be able to rely on a large pool of knowledge in order to complete the start-up

procedure successfully with an acceptable level of reliability. The shut-down procedure is

similarly confounded, but to a lesser degree.

Shut-down: Shut-down involves the accelerator being deactivated in an expedient
manner. As described in Section 4.3.2.8 (p. 41), the decision-making system may be called
upon to perform any of the following: ® Normal shut-down; @ Rapid safing (in order to
recover from a possibly dangerous anomaly); or @ Panic shut-down (in event of a
catastrophic fault). Here again, the established shut-down procedure followed by the

operators is used as a skeleton template for knowledge-based inferencing.

Beam Maintenance: A more complicated duty of the decision-making system is that of
beam maintenance during the period after start-up and before shut-down, when the
accelerator must remain in some ‘steady state’ (that is, maintain beam stability on target
and maintain certain accelerator operating parameters within specific tolerance margins).

This mode of automated operation is called cruise control mode.

118

The accelerator is a tool used for conducting scientific experiments, and, as such, must
be reliable, accurate and stable in its behaviour. Therefore, beam maintenance requires that
the particle beam be maintained within specified operating limits. The conditions under
which the accelerator is to produce a particle beam vary from experiment to experiment
and from run to run. In a given experiment, however, it may be necessary to maintain the
beam current with a maximum deviation of only a few nano-amperes, or perhaps keep the
beam aimed at a specific location in the target area to within a few millimetres. At other
times, the operator may need to draw on expert knowledge several different times during a
run to alter particle beam characteristics. This implies that the concept of beam stability is
ill-defined and transient, and therefore difficult to incorporate into a conventional
knowledge-based system. Nevertheless, the decision-making system is charged with
maximizing beam stability while affording the operator some capability to alter the

accelerator’s behaviour as required.

The approach being taken is to partition the control problem in such a way that those
aspects that can be handled without much *higher level’ reasoning are isolated from the
high-level expert system and attended to at a lower level. The SBCs (and their fuzzy-logic
controllers*) are responsible for what amounts to stupid, narrow-minded fine-tuning. This
low level of the system can be “programmed’ by the higher level expert system to consider
the ‘stable state’ to be defined by a certain set of parameters, as determined by the
required beam characteristics. The expert system determines the acceptable range for these

parameters and transmits them to the embedded controller(s) where they are interpreted as
the (new) definition of a ‘stable’ beam.

Fault Detection. Diagnosis and Recovery: The decision-making system is used to
detect, diagnose, and perhaps recover from accelerator faults. Detection involves
heuristics to determine that the accelerator is exhibiting a fault. Diagnosis involves
deciding, based on accelerator operating parameters, what type of fault or aberration is
occurring (or has occurred). Recovery involves selection of appropriate means to

overcome the problem, be it a simple control adjustment, immediate shut-down, or request

for operator intervention.

¥ See Section 4.3.3.

119

Perhaps the most difficult and important aspect of the entire expert system is its ability
to detect on-line faults dynamically from the accelerator’s behaviour and respond to them
in a timely, effective fashion. A substantial portion of the knowledge base needs to deal
with detection of faults based on telemetric performance data uploaded from the
embedded controllers. Moreover, the knowledge base must include a diagnostic facility
that the user can invoke when the accelerator is perceived by the operator to be
functioning anomalously. That is, as the non-expert user’s expertise increases, the user
becomes more intuitively attuned to the quirks and peculiarities of the accelerator and may
wish to diagnose anomalies that do not necessarily constitute faults and, therefore. are not
directly detectable by the knowledge-based system. This facility represents a compromise
between the difficult-to-attain “ideal” knowledge base and an adequate but incomplete
knowledge base: the expert system will evolve over time to match the abilities and

expertise of seasoned operators so as 10 provide an overall benefit for the operator

community.

Fault diagnosis involves periodic analysis of logged accelerator performance data as
well as relying on the SBCs’ ability to detect breaches of operating limits quickly and
notify the PC. The former, analysis of logged data, is performed to detect gradually
developing (chronic) and/or intermittent anomalies (e.g. loss of beam line vacuum due to
leakage), and requires both a large expenditure of computation and the utilization of the
expert system’s knowledge base. The latter, response to limit breaches, also involves use
of the knowledge base to make rapid assessments of abnormal operating data, detect acute
anomalies (e.g. sparks) and effect immediate remedial action. A related issue is that of
periodic verification of the accelerator’s safety interlock network: violations of safety

interlocks must result in immediate ‘safing’ of the accelerator to prevent machine damage
or personnel injury.

4.3.2 Expert System Considerations
The expert system is the highest level of decision-making capability in PACES. The
following sections describe the requirements for, and design and implementation of the

expert system. As will be explained, the requirements of PACES’ decision-making

120

capability lead to a specialized and distributed hybrid knowledge-based system. which

functions in a manner analogous to the reflex arcs described in Section 4.2.1.

4.3.2.1 Expert System Requirements
Given the decision making requirements outlined above, the ‘expert system’

component of PACES is, consequently, required to possess several important
characteristics. First, the accelerator control system requires a tiered organization
(cf. Figure 4-4) in which the system co-ordinator oversees the inference engine, deciding
when knowledge-based reasoning should be employed and how it should proceed. Thus,
the expert system must not be a stand-alone top-level shell. but rather be embedded in the
control program as a whole. Due to the real-time nature of the control system. it is
necessary to relegate the expert system to a subservient level; the expert system is invoked
by the system manager when needed. but never assumes complete control. The expert

system is periodically called upon to detect operating faults or anomalies and to perform

heuristic decision making.

Second. the expert system must provide both forward and backward chaining. During
start-up and shut-down, data-driven forward chaining is utilized to achieve the goal of a
stable particle beam or deactivated accelerator, respectively. Fault diagnosis. conversely.
requires goal-driven backward chaining to reach diagnostic conclusions based on
accelerator performance data. Finally, beam maintenance mode operation involves both
forward and backward chaining, depending on how the accelerator is performing and how
the operator wishes to alter the accelerator's behaviour. Clearly, PACES must be able to
switch freely between goal- and data-driven inferencing as events warrant. This

requirement leads to the need for a flexible inference engine that allows for external

control.

Finally, the expert system must be amenable to ‘stop and start’ inferencing. The
real-time nature of the control problem requires that the inference engine be able to
suspend its current reasoning path in order to follow some other reasoning path as events

warrant. Typically, this situation arises when the operator decides to alter the accelerator’s

121

state, which could happen at any time during the expert system’s decision-making process.

or when an anomaly occurs in the accelerator’s behaviour.

4.3.2.2 Early Attempts at Choosing a Shell
Two early attempts were made at integrating an off-the-shelf expert system shell with

PACES, and both met with disappointing results. The Personal Consuitant Plus (PC+)*
expert system shell was considered first, but was found to be almost impossible to embed
into a larger application, ([DeM91], [Lin91]). Its slow inferencing speed. high demand on
system resources and complicated external language interface mechanism made it
unwieldy as an "on line” real-time embedded inference engine. Kappa-PC*¥ was also briefly
evaluated since it offers many features that PC+ lacks. Kappa-PC is designed as a Microsoft
Windows-based extensible expert system shell. Although Kappa-PC was, in many ways,
ideal for the requirements at hand ([Lin91], [Lin92b]), it was initially only extensible using
Microsoft C, which was found to possess a somewhat hostile user interface aversive to
rapid software prototyping. A desirable form of Kappa-PC would be that of a
Windows-format dynamic link library (DLL) that could easily be integrated into the control

system regardless of the programming language used for development.*®

4.3.2.3 Inference Engine Design
It was finally decided that the best approach was to use a custom-made expert system

shell that would be designed from the outset to possess the desired qualities, ([Lin92a],
[Lin92b]). This shell, the Windows Application eXpert system (WAX) shell, is designed to

be embedded in a larger software package, and provides several important features:

+ Object-oriented programming: Knowledge base objects (such as inputs, outputs
and intermediate conclusions) can be linked to program objects (such as

graphical elements displayed on the user-interface, or control/sense points that
are directly connected to external devices).

+ Global information registry: A blackboard-like repository for shared knowledge
is available, and knowledge base objects can be tied to this information registry

as producers or consumers, facilitating real-time information flow into and out
of the knowledge base.

- Two-way inferencing: The knowledge base can be inferenced using forward- or
backward-chaining as desired. This ability is of great utility during accelerator

* Texas Instruments, Austin, TX.
" Intellicorp, Mountain View, CA.

3 The newest version of Kapea-PC does indeed possess this capability, but became available too late in PACES development to be used.

122

beam maintenance control, when forward chaining is used while the beam is in a
quasi-stable state and backward chaining is used during fault recovery or beam
alteration directed by the operator.

- Demand-based inferencing: The inference engine and knowledge base are
re-entrant to allow for on-demand re-focusing of the inferencing process. This is
useful for handling situations such as, for example, when a fault occurs during
the start-up procedure. The inferencing process used for start-up must be

suspended (temporarily or permanently) while the fault is diagnosed and
corrected.

- Source-code level compatibility: The knowledge base structure is completely
compatible with the implementation language (BPW - Borland Pascal for
Windows). so that the knowledge base can be combined with the rest of the
software package at a source code level.

The WAX shell is written as a collection of objects in a BPW unit (separately compiled
module). Figure 4-27 shows how WAX is integrated into the application as a whole. The
WAX unit does not contain any “knowledge’, but only the mechanisms for manipulating
(inferencing) knowledge. The ‘knowledge bases’ are stored in separate units. and

dynamically linked to the inference engine at run-time.

Application |€&—> WAX

T ObjectA ?

—>| || objectx

A
| v

Rulel

RuieN

:’r

Knowledge
Bases

Figure 4-27. WAX integration into application.

The principal WAX object is the inference engine used to evaluate rules. Rules are
passed to the inference engine in prioritized rule sets that represent domains of knowledge.
The inference engine is re-entrant so that it can be interrupted while inferencing one rule

set in order to inference a different rule set. Rules are able to change the course of

123

inferencing by calling WAX subroutines that start, suspend or stop inferencing chains, or
alter the membership of rule sets.

WAX knowledge base units, which achieve the useful software engineering property of
information hiding, contain rules (heuristics) and information objects (object-oriented
data structures). In developing knowledge objects. the knowledge engineer (programmer)
is free to use as much of BPW’s extensible OOP capability as desired. The knowledge base
rules are written by the knowledge engineer to process the information objects to derive
new information objects or cause side effects in the application. (Examples of side effects
include a pop-up message prompt asking the user to input a piece of information. or the

assertion of a control action which causes actuation of an external device.)

WAX knowledge bases are inferenced in parallel using a multi-threaded execution
object called the rhread sequencer. Each knowledge base consists of one or more rule
sequences (threads). and a collection of data elements (the "knowledge™). The data
elements are privately-stored data structures which the rules can access. Since data
elements are global to all rules within a knowledge base, they form a type of "blackboard’
or data exchange local to the knowledge base.

Knowledge base rules are implemented as functions that return pointers to rules. When
a rule is inferenced (executed), it decides how inferencing should continue, and returns a
pointer to the next rule to be inferenced (possibly itself). In this way, the interconnected
structure of the rule set provides for sequential or multi-branched inferencing, with rules

being able to activate or deactivate rule threads dynamically.

Typically, the top level of the application initiates inferencing in response to a request
from the user, or after some external condition has occurred (such as a timed event or
interrupt). The application dynamically creates an inference engine object and passes it a
rule set, thereby starting the inferencing mechanism. The inference engine evaluates the
rules in its rule set until the rule set is empty or the engine is suspended or stopped.
Inferencing proceeds under the Windows multitasking environment so that the inferencing

can be performed ‘in parallel’ with other operations.”

» The version Windows used (3.1) performs non-preemptive round-robin muititasking.

124

The WAX implementation results in a flexible inferencing system that places a large
burden on the programmer/knowledge engineer with regard to implementing the
knowledge base. In certain situations, this approach is unsuitable since it requires that the
knowledge engineer be a proficient programmer. Nevertheless, WAX is intended primarily
as an embeddable inferencing system, and thus, is inherently tied with software
development and programming. WAX is not meant to replace conventional shells that offer
ease of knowledge encapsulation without requiring a high level of programming ability on
the part of the knowledge engineer. Instead, WAX is designed to sacrifice generic

ease-of-use and high shell overhead in favour of an extreme amount of low level flexibility
and minimal shell overhead.

4.3.2.4 WAX Knowledge Base Structure
PACES uses several WAX knowledge bases for different stages of operation. These

knowledge bases are implemented as descendants of WAX's generic knowledge base

object called TKnowledgeBase. shown in Table 4-3.

TYPE PSequencer = “TSequencer;
PThreadList = “TThreadList:
PRule = "TRule;
TKnowledgeBase = object (TObject)
sequencer: PSequencer;
threads: PThreadList;

constructor Init (ASequencer: PSequencer);
destructor Done; virtual;

function RuleSet (Rule: PRule; Thread: integer;

a Action: kbActionTyp) : PRule; virtual;
end;

Table 4-3. The TKnowledgeBase object.

The sequencer field of TXnowledgeBase points to the application program’s thread
sequencer, which is responsible for execution of threaded code sequences. The field
threads points to a list of execution threads which are rule sequences to be inferenced in
parallel using a prioritized round-robin schedule. Threads can be created, blocked,
delayed, pre-empted, suspended or terminated by making calls to the thread sequencer.

The constructor Init and destructor Done are necessary components of all
objects, and are used for creation and destruction of the object. The parameter
ASequencer passed to Init is a pointer to the thread sequencer. During execution of

Init, the knowledge base registers its rule threads with the thread sequencer for future

125

sequencing. When thread sequencing is activated, the knowledge base’s RuleSet method
will be executed.

The Ruleset method of TKnowledgeBase contains no rules; it is overridden in
descendant objects to implement actual rule sets. This method is passed three parameters:
® A pointer to the next rule to be executed (Rule); @ A thread identifier (Thread). that
indicates which parallel thread is being inferenced when the rule is executed:* and @ An
action flag (Action), used to specifiy whether the rule set should initialize itself (kbInit),
terminate (kbTerminate) or perform inferencing (kbExecute). The Ruleset method
returns a pointer to the rule that should be executed the next time it is called. The actual

rules are coded as subroutines nested inside the overridden Ruleset method.

Knowledge bases are descendant objects of TKnowledgeBase that may contain data
elements in the object’s private section. An example knowledge base is shown in
pseudocode in Table 4-4. Although it contains nonsense rules, it serves to illustrate WAX
knowledge base structure. There are two knowledge elements: balanceGain and
balanceError. both pointers to variables that are monitored and updated by the control
system. The rule set consists of three rules in a single thread. Rulel is executed first, and
makes a decision based on balanceGain whether to execute Rule2 or Rule3 next. Rules

Rule2 and Rule3 make similar decisions affecting knowledge base data elements and rule

set inferencing sequence.

This approach to knowledge base implementation has several advantages. It is easy for
the system developer to write rules and declare data elements because they are coded in
the application’s programming language instead of an expert system shell. Likewise. the
overhead of execution time and storage space associated with a shell is eliminated. The
rigidity of a shell is also eliminated, enabling the developer to use the full capabilities of
the programming language. Conversely, such an implementation is virtually impenetrable
to all but experienced programmers. There is also a lack of built-in high level inferencing

techniques, such as certainty factors and decision tracing, common in commercial expert
system shells.

© This information is generally used for rule tracing diagnostics (q.v. § 4.3.2.5).

TYPE TExampleKB = cbject (TKnowledgeBase)
function RuleSet (Rule: PRule; AThread: integer;

Action: kbActionTyp) : PRule;
private
balanceGain,balanceError: float;
end;

Function TExampleXB.RuleSet (Rule: PRule; AThread: integer;
Action: kbActionTyp) : pointer;
function Rulel : PRule;
if balanceGain > 0.1 then Rulel := @Rulel else Rulel := @Rulel;

function Rulel : PRule;
if balanceError < 0.0

then balanceGain := balanceGain * 10.0; Rule2 := @Rulel:
else Rule2 := @Rule3;

function Rulel3 : PRule:
1f balanceGain = 0.0 then Rulel := @Rulel else Rulel := @Rulel;
Begin
case Action
<34

kbExececute: RuleSet := Rule; | Execute rule pointed to by Rule

kbInit: threads”.AddThread(@Rulel); { Initialize rule set thread

kbTerminate: ; { Do nothing i
end

End;

Table 4-4. Example knowledge base.

+4.3.2.5 Decision Explanation Facility
Although WAX does not directly implement a mechanism for performing explanation

of decision making, it is straightforward to add this capability to WAX knowledge bases.
The approach used in PACES employs input/output streams (1/O streams) for providing
decision explanation. An I/O stream is a object-oriented input-output file that can be
linked to a window on the pfogram’s GUI. PACES defines a special, globally accessible
output stream which is tied to the decisions explainer window (cf. Section 4.1.4). The
knowledge bases are able to access this output stream, and their rules can contain code to
send text-based information along the stream to the decisions explainer window.* When
this window is visible on the GUI, the information is viewable by the user. Figure 4-28
shows the decisions explainer window opened during accelerator start-up. In this figure,
each sentence beginning with a bullet (\) is the explanation of a *decision’ made by a rule
in the start-up knowledge base. Because of the highly flexible nature of this decision
explanation mechanism, ‘decisions’ displayed in the window can relate any information
that the knowledge base programmer deems appropriate.

*! This textual output can optionally also be simultaneously output to a disk file for later, off-line analysis.

127

B. CES.
Parficle Acceferstor Control Expert Sysiem

Startup Pracedure
‘The cooling wates must be turned on before the accelerstor is
“Fhe SF& Pressure must be st the correct lavel. Far a terminal
voitage of ZAAF A, the SFE pressure should be
approximately lipsi.

Wait 5 seconds for Casta/ Fawe/ to wanm-up
‘The Moo Sysiem Meter resds ma.mslsm;[um
the Madinow Afowedie Vecouw of 10.08.
‘Faraday Cup #1 must be put in manuaily.
-Quadrupole magneis must be tumed an manuafly.
Tum on Jnke Adower.

“Walt 2 minutes for e Meder to speed up.

Figure 4-28. Decisions explainer window during start-up.

4.3.2.6 Algorithmic Control vs. Heuristic Decision Making
As already discussed, the control system as a whole is partitioned into several layers.

The SBCs form the lowest level, possessing limited heuristic knowledge in the form of
fuzzy-logic controllers, and a large amount of algorithmic "knowledge’ in the form of
deterministic procedures. The SBCs respond to control and data acquisition commands,
but have little volition of their own. At the top level, the host PC strikes a balance between
complete heuristic activity and algorithmic activity. Algorithms are used for well-defined
control procedures in order to increase efficiency and response time, whereas heuristics

(inferencing) are used for expert-like decision making.

Certain aspects of the accelerator control problem are more suited to being
implemented as algorithms. The shut-down process, for example, almost always follows
the same, step-by-step procedure. Beam maintenance during an accelerator run, however,
calls for a mix of heuristics and algorithms: control decisions are made using inferencing,

but execution of the control decisions (e.g. feedback loops) requires algorithmic

processing.

The WAX shell provides a simple means of melding procedural activity with heuristic
reasoning: Since WAX knowledge base rules are merely sequences of embedded

subroutines, they are unconstrained as to the scope and depth of their effects on the

128

application as a whole. A rule might, for example, initiate a completely algorithmic

feedback control loop, succeeding only when the control loop meets some convergence

criterion.

For example, as the expert system works its way through the start-up procedure, the
stage is reached when the belt charge selsyn must be turned up until the required terminal
voltage is exceeded slightly.” Although this could be implemented as a purely
deterministic feedback loop. PACES instead incorporates inferencing into the control loop
in an effort to detect any problems that might arise during start-up. This is analogous to
operators who follow a general, well-established start-up procedure while simultaneously
using their expertise to watch for unexpected problems (such as non-nominal terminal
voltage slew rate and instability, poor vacuum, or improper SF. pressure). Hence. the
algorithmic nature of the start-up procedure is augmented by diagnostic heuristics to

produce a smart, flexible and robust automated start-up process.

4.3.2.7 Knowledge Engineering for PACES
The problem of controlling the accelerator presents many complications, ranging from

real-time control considerations and controller robustness to educational and safety issues.
Thus. the PACES knowledge base needs to encapsulate as much expert knowledge as
possible, especially in the area of fault detection and diagnosis, while still preserving a high

degree of real-time response.

Knowledge engineering for PACES was performed in conventional manner. Various
expert accelerator operators were interviewed and observed over several sessions, notes
were taken by hand and the interviews were taped using an audio cassette recorder.
Following preliminary interviews, a prototype knowledge base was constructed that
implemented the start-up and shut-down procedures. A development cycle ensued in
which testing was followed by expert evaluation and knowledge base modification and
further testing. The bulk of this development was performed while the knowledge engineer
was off-site — that is, away from both the target accelerator and the essential experts —

and, consequently, the development time was lengthy and complicated by numerous

“Duringthelatetsmgpwhenthcpuﬁclebumisncmallyptodueed.mcmmmalvolmgeteudsmdmp.sothemchineisiniﬁallysetma
terminal voltage higher than necessary.

129

expensive (but inadequate) field trips to the accelerator site for testing and debugging.®

Such off-site development of similar automated systems is not recommended.

Subsequent development involved knowledge engineering for the beam maintenance
process. The majority of this work was performed on-site, in close consultation with
accelerator operators and technicians.* Since these experts were readily available during
this phase of knowledge engineering, and the accelerator was almost exclusively at the
knowledge engineer's disposal. it was straightforward to iterate rapidly through
consultation. coding, testing and debugging. This facilitated a quick development time for

the beam maintenance knowledge base when compared with that of the start-up

procedure’s knowledge base.

4.3.2.8 Fault Detection and Diagnosis
The most important duty of the PACES expert system is the timely detection of faults

followed by expedient remedial action. This fault detection and diagnosis relies on
heuristic inferencing because there is a distinct lack of sensors that could be used to detect
directly the many types and locations of faults. Consequently, rather than easily. repeatedly
polling hundreds of sensors, the control system must rely on inferring anomalous
behaviour from the available telemetric data (derived from the control panel’s meters).
This is just the way that skilled operators diagnose problems: they are drawn to abnormal

readings on the control panel meters, reason about causes and then try to rectify the

problem.

Accelerator faults are classified using a continuum of severity (Figure 4-29). Low
severity faults cause minor problems (such as slight beam instability) that can be ignored
by the control system unless they become more severe. During such low severity
conditions, the expert system will limit operation of the accelerator in certain ways, such
as imposing an upper bound on the permissible terminal voltage and/or beam current. (For
example, poor vacuum would ‘de-rate’ the maximum terminal voltage to 1MV rather than
the normal 3MV until the vacuum improves. This problem can arise after the accelerator

has been opened to atmosphere for maintenance, and requires several hours after

9 The accelerator used during this phase of development was located at DREQ, several hundred kilometres from McMaster University.
*# This phase of development was performed on-site at AECL's Whiteshell Laboratories, Pinawa, Manitoba.

130

re-sealing to achieve optimal vacuum; during this time the machine is still operable. but

not at maximum rating.)

Vacuum poor Spark
SF, pressure low No beam lon source failure
Low severity High severity

Figure 4-29. Continuum of fault severity.
High severity faults may require the control system to initiate safing action (cut off the
particle beam) or complete shut-down, or may cause a hardwired safety interlock to trip.

In the latter case. the control system must recognize the trip and, if appropriate, attempt

recovery.

The fault continuum is dominated by a wide range of severity that represents faults
that are too severe to ignore but not severe enough to trigger a shut-down. It is for this
wide variety of cases that the expert system is utilized to analyze the anomalous symptoms
and produce a diagnosis. Due to the large number of possible faults, and the low number
of indicators, the expert system is charged with finding the most plausible explanation for
the anomaly. As an example of this diagnosis, consider the problem of 'no beam’
(Figure 4-30): The start-up procedure has progressed to the point at which. under normal
circumstances, a beam current should be measured at the first Faraday cup. but no beam

current is measured.*

Figure 4-30. Diagnosis of ‘no beam’ problem.

 The ‘no beam’ problunnndsoaﬂsduﬁngmdymbamnnmmmwhmmebumiswddc:ﬂymtoﬂi

131

Given the above description, the ‘no beam’ problem occurs when there is no
measurable beam current on the Faraday cup even though the terminal voltage is correct
and the gas and extraction selsyns have been adjusted properly (cf. § 2.2). The lack of
beam is most likely caused by either failure of the RF source (due, perhaps to a failed
electronic component such as a vacuum tube), or a lack of gas to be ionized. To begin the
diagnosis, the expert system consults the knowledge base to determine when the gas bottle
was last changed. If the gas bottle has not been changed for some specified time, the
expert system can suggest that the bottle needs to be re-filled. If the gas bottle was
recently changed, the lack of beam is probably not caused by an empty bottle.* Given that
the bottle is not empty, the expert system can hypothesize that the problem probably lies in
the thermo-mechanical leak mechanism. This hypothesis can be tested automatically: The
gas selsyn is zeroed, the gas source is switched to the alternate gas bottle, and the gas
selsyn is turned back up. If this test succeeds in producing a particle beam, the expert
system can conclude that the original gas bottle’s leak mechanism is faulty. If the test fails.
the expert system can infer that there is an electrical problem shared by both
thermo-mechanical leaks (e.g. failure of their shared power supply).

Although overly simplified, the ‘no beam’ example illustrates the extent to which
PACES uses knowledge-based inferencing to diagnose accelerator faults and resolve
contlicting symptoms. In many situations, the expert system can be engineered to perform
explorative troubleshooting (such as switching gas bottles) to reduce its search space
during fault diagnosis. In some cases, the expert system is able to overcome the problem
and continue accelerator operation; other problems result in shut-down and the posting of

a diagnostic message that the operator can use to effect repairs.

4.3.3 Knowledge Base for Accelerator Start-up

As mentioned in Section 4.1.1, the start-up procedure possesses a high degree of
determinism in that it is essentially a well-established, step-by-step process. Typically, one
instance of accelerator start-up differs from another only with respect to its goal

parameters (e.g. terminal voltage, analyzing magnet setting, beam current on target) and

the possible occurrence of unexpected complications during start-up (such as fauits or

% This alternative is still possible (iLe. the gas was left on high for a long period and the bottle emptied prematurety), but is less likely.

failures). Were it the case that the goal parameters never changed. and the accelerator
never experienced faults or failures, there would be little need for artificial

intelligence-based reasoning during start-up.

Consequently, accelerator start-up is verging on straightforward. and this was the first
aspect of automated accelerator operation to be implemented in PACES. Consultation with
seasoned operators at DREO and McMaster, coupled with observation of their activities
during start-up. resulted in a basic skeleton procedure for start-up (cf. Table 4-2). A

similar skeleton procedure was later developed for the Whiteshell Labs accelerator.

Once the skeleton start-up procedure was determined, it was implemented as a WAX
knowledge-base, whose flowchart is shown in Figure 4-31. The basic start-up process

involves five basic stages (O to @ in Figure 4-31):

Accelerator power-up (®): The accelerator’s control power is switched on. the van de
Graff generator’s belt drive motor is started, and the belt charging system’s power supply

is activated. For safety’s sake. this step always involves human intervention to apply

power to the accelerator.

Terminal voltage set-point acquisition (@): The belt charge selsyn is increased to
apply charge to the accelerator’s high voltage terminal until the desired terminal voltage is
achieved. The focus selsyn is adjusted to an approximate setting appropriate to the desired
terminal voltage. If the accelerator tank has recently been been opened for maintenance. or
due to other factors (such as tank internal moisture level or SF pressure), the van de Graff
generator may be unstable at high voltages, and may need to be conditioned (gradually
brought up to voltage). Two other knowledge base threads may be called during this
phase: the voltage set-point pilot (q.v. § 4.3.4.2)and the voltage conditioner (q.v. § 4.3.5).

Initial establishment of a stable particle beam (®): The source gas flow into the
ionizing chamber is adjusted (using the gas selsyn) to provide sufficient gas for ionization
into plasma. The extraction selsyn is then adjusted until a particle beam is detected on the

first Faraday cup (a strike). The focus and extraction selsyns may then be adjusted to

maximize the beam current.

133

.—-) InitiaiSettings

TumOnControlPower 2%y WaltForCommlPower)
Power already un _—{

ChcckAccclemlor[nOpcrau f PrcssStanButton bl
b
gf CheckAccclcmtoerdy ;
5 3 s
§ I WaitForAcceleratorReady %
g § !
] 2 =
& AcceleratorlsReady
1
‘ Too high No
CheckVacuumSystem ———3 Operator Waiver? ——
oK Yes
Abready on v Farkd
TumOnDriveMotor ———
DriveMotorSpeedUp)
[
TumOnBeltCharge M—-{
PowerUpStepperMotors
¢ IncreaseGasSelsyn
? 2%/ DropinA"Cu (*
P ¢ P WauForGasToRbc
~ Tou low
Lhcc‘l)tlgias Level GachchNommal
SetFocusSelsyn call[VoltageSetPointPilot
NeedToCondition? =——3 call] Conditioning| =
No
® SetBeamBiasSelsyn
WaitForGoodBeamOn* A'Cup
@ ''''' - o il
BendBeam? 2 —3 PullOut"A’Cup f—-“—l
Yes
® Aborsed
——— SetUpAnalyzingMagnet SetVoltageStabilizerTo' GVM’Mode
kil
SetVoltageStabilizerTo' Slit” Mode
l___J Furled

CheckForBeamOn'C’Cup ﬂ".‘iq

PuliOut C'Cup Bkl

>Ceo)

Figure 4-31. Flowchart for automated accelerator start-up.

134

Beam line set-up (®): The beam line is configured by setting up various beam
steerers, quadrupoles, analyzing magnet(s), etc. This step also requires the voltage
stabilizer to be activated in order to maintain beam energy finely; once the voltage
stabilizer is functioning properly, PACES can relinquish control of terminal voltage until
such time when the voltage stabilizer loses control (see Section 4.3.4). This stage of
start-up involves a large amount of human intervention because current versions of PACES
have little control over the accelerator beam line. At present, only the analyzing magnet is
configurable and controllable by PACES, but human intervention is still required to apply

power to the magnet.

Delivery of particle beam to target (®): The particle beam is now striking the last
Faraday cup upstream of the target. The focus and extraction selsyns can be adjusted to
optimize the beam current. Finally, all Faraday cups are pulled out of the beam line. and
the particle beam is conveyed to the target.

The automated start-up procedure is considered successtul if it reaches the end of
Stage 5. When this occurs, inferencing of the start-up knowledge base terminates, and

PACES switches to cruise control mode in which the beam maintenance knowledge base

is inferenced.

4.3.4 Knowledge Base Subroutines

Several inferencing threads are implemented as ‘subroutines’ (subsidiary, re-entrant
knowledge bases) which can be called from other threads during the course of inferencing.
Typically, the inferencing thread performing the subroutine ‘call’ is blocked until the

subroutine terminates. There are two main knowledge base subroutines: the ripple loop

and the voltage set-point pilot.

4.3.4.1 Ripple Loop Knowledge Base
The ripple loop (Figure 4-32) is executed whenever a period of terminal voitage

instability is detected (usually after a spark has occurred); it can be called from either the
voltage set-point pilot (q.v. § 4.3.4.2) or the voltage conditioning knowledge base
(q.v. § 4.3.5). The ripple loop returns a Boolean flag to its caller: false indicates there
was little or no voltage instability; true indicates that sufficient voitage instability is

135

occurring that remedial control action should be performed by the caller (typically

implying that the belt charge selsyn should be decreased slightly to reduce the terminal
voltage, thereby reducing the instability).

RippleLoop

GetRipplelnfo
]

f if no ripple in ripple-free time. or
ripple-free time has elapsed and
ripple frequency is low enough
then return taise { Ripple-free period reached }
else if too many ripples or
frequency too high
then return rue] { Need to back off belt charge }

else wait 10s

— D N W || Exit

Figure 4-32. Flowchart for ripple loop knowledge base subroutine.

The ripple loop subroutine performs no control actions, but merely loops as long the
terminal voltage remains unsteady, as determined by the ripple signal (first-order
derivative of terminal voltage with respect to time). If no significant ripple is detected for
10s, or the ripple frequency is low (<0.01Hz), then false is returned, and the subroutine
terminates. Otherwise, if too many ripples have been encountered (>200), or if the ripples
are occurring too frequently (>0.9Hz), then true is returned, and the subroutine

terminates. Otherwise, the ripple loop waits 10s and then reiterates.

The net result of the ripple loop is that brief periods of voltage instability are tolerated.

but longer or more intense periods of instability are flagged for compensatory control

action.

4.3.4.2 Voltage-Set-point Pilot Knowledge Base
The voltage set-point pilot (Figure 4-33) is a subsidiary knowledge base used for

acquiring terminal voltage set-point. This knowledge base is called initially from the
start-up knowledge base to set the terminal voltage, and subsequently during beam
maintenance whenever the terminal voltage drifts significantly from its set-point.

VoltageSetPointPilot

Disable voitage stabilizer if enab

—

led

Sample terminal voltage Sample corona current
L —J

Check terminal voltage:

if terminal voltage < Lower Tolerance
then TVopt ¢ TVtooLow
else if terminai voltage > Upper Tolerance
then T'v'opt «— T"Cu@ﬂiqh
else TVopt « TVjustRight

Check corona current:
if (corona current < Lower Tolerance) and

then CORopt ¢ CORtooLow

else if corona current > Upper Tolerance
then CORopt ¢« CORtooHigh
eilse CORopt CORjustRight

InAutomaticMode and not InConditioningMode

v

Pertformance control action: CORopt

JCRtooluw TCRjustRight

{ORtecHigh

rresotew| BeltCharge T BeltCharge T

CoronaPoints |

TVopt

= ustaignt | CoronaPoints 11 NoChange

CoronaPoints {

~vtooi:gn | CoronaPoints 7| BeltCharge {

BeitCharge |

Wait 2.5s

_J

Yo

v
SparkingDetected? £2——3 cali| Rippleloop

if result istrue
then back off Belt Charge selsyn
|

Figure 4-33. Flowchart for voltage set-point pilot.

WaitForTerminalVoltageSlew)
_J

136

The voltage set-point pilot samples the terminal voltage and corona current. and if the

terminal voltage is out of tolerance, it is gradually brought to its set-point, either by
adjusting the belt charge selsyn (which alters terminal voltage directly) or repositioning the

corona points (thereby affecting corona discharge current, which affects terminal voltage

indirectly). The knowledge base determines which form of adjustment is most suitable,

depending on the values of the terminal voltage and corona current; if no control action is

warranted, the subroutine terminates. Otherwise, after the appropriate control adjustment

137

has been performed, the knowledge base waits 2.5s for the terminal voltage to slew, and
then checks to see if any sparking has occurred. If sparking has been detected, the ripple
loop knowledge base subroutine is called; if this subroutine returns true then the belt
charge selsyn is decreased slightly. The voltage set-point pilot next waits for the rate of
change of the terminal voltage to reach near-zero (indicating that the terminal voltage has

slewed completely), and then reiterates.

The net result of the voltage set-point pilot is that, upon termination, the terminal
voltage will equal the specified set-point to within the specified margin of error. As a
corollary, since the ripple loop subroutine is executed whenever sparking is detected. the

voltage set-point pilot terminates with the terminal voltage stable."

4.3.5 Knowledge Base for Voltage Conditioning

Voltage conditioning is performed to ‘condition’ the accelerator gradually to
increasingly higher terminal voltages. This is typicaily necessary when operating at
terminal voltages near the accelerator’s maximum rating, after the machine’s tank has been
opened for maintenance, or whenever the accelerator exhibits periods of voltage
instability. When performed manually, conditioning can consume as much as 24 or 48
hours of continuous accelerator operation. Consequently, automation of this aspect of

accelerator operation is of great benefit to accelerator operators.

As shown in Figure 4-34, conditioning involves a general procedure for gradually
increasing the belt charge selsyn to increase the terminal voltage whenever the terminal
voltage is stable. A compensation strategy is also employed either to wait out the periods
of instability which accompany increases in terminal voltage, or ultimately to reduce the
belt charge if the voltage becomes unacceptably unstable. There are two variations of
voltage conditioning: warm and cold. Cold conditioning is performed when the accelerator
has been started from a ‘cold’ state, such as after a weekend of inactivity, or after
maintenance. During cold conditioning, the machine is ‘over-conditioned’ to a terminal
voltage significantly higher than the desired operating voltage so as to provide a region of
stability around the desired operating voltage because stability at any given voltage implies

“ This state of stability is, of course, not guaranteed to persist for any length of time after the voltage set-point pilot terminates.

138

better stability at lower voltages. (For example, if the accelerator is to be run at 4.0MV.
cold conditioning would bring the voltage up to perhaps 4.2MV to provide a margin of
stability.) Warm conditioning, in contrast, is performed during an ongoing accelerator run
when the machine encounters a period of voltage instability; during warm conditioning
there is no ‘over-conditioning’ to a higher terminal voltage. In either case, the
conditioning operation proceeds until aborted by the operator, or until the target terminal

voltage is reached and the voltage is stable for a significant period of time.

ConditioningMode
> SampleTerminal Voltage

if terminal voltage < lower conditioning limit
call [VoltageSetPointPilot] to increase terminal voltage to
- lower conditioning limit

{ calll RippleLoop

true retumed from RippleLoop?
J .

{Voltage unstuble)

No VYes

Sample TerminalVoltage Decrease belt charge selsyn

UpperConditioningLimitReached?
No Yes

SampleBeltCharge

No

VoltageOutOtTolerance?

Yes

Any\ﬁﬂtagekipple? L) callf VoltageSetPointPilot |
Yes I NvE
F [ncreaseBeltChargeSelsyn

SampleBeitCharge

BeltChargelIncreasedSufTiciently?
Y-d hVo

Figure 4-34. Flowchart of voltage conditioning.

4.3.6 Knowledge Base for Beam Maintenance

The beam maintenance phase of accelerator operation involves one major activity and
several minor activities. The principal duty of the beam maintenance knowledge base is to
maintain the particle beam on target within specified tolerance margins (beam energy and

current). The minor activities include monitoring and possibly adjusting the corona

139

current, vacuum level, sample power, and beam current. The beam maintenance
knowledge base consists of a set of parallel inferencing threads, one for each task to be
performed. Each task can be separately configured and enabled (or disabled) by the
operator (cf. Figure 4-11). Inferencing of this knowledge base is initiated immediately

after the start-up knowledge base terminates successfully, or whenever the operator

switches the accelerator into cruise control (automatic) mode.

Beam maintenance inferencing continues until one of the following occurs: ® The
operator switches to manual control; @ The operator initiates automated shut-down; or
® An unrecoverable operating fault (such as loss of beam on the first Faraday cup) is
detected by the expert system. In the case of an unrecoverable operating fault, the expert
system attempts to place the accelerator into a “safe mode’ (by, for example. switching off
the belt charge to kill the beam) and calls for operator intervention, or performs automated

accelerator shut-down if the accelerator is running unattended.

During beam maintenance, the particle beam may fluctuate in intensity and position
due to source gas flow, fluctuations in the terminal voltage, and fluctuations in the field
strength of the analyzing magnet. The most severe form of fluctuation is caused by a rapid
drop in terminal voltage due to a discharge (spark) occurring inside the accelerator tank or
accelerating column. Figure 4-35 captures the profile of a typical spark. illustrating how
the precipitous drop in terminal voltage is usually followed by a rapid recovery to
set-point. Sparks can occur at any time, but are usually more likely when operating at
higher voltages, if the pressure of the SFs gas is too low, after the accelerator tank had

been opened to atmosphere for maintenance, or if the accelerator has not been properly

conditioned.

When a spark occurs while the voltage stabilizer is performing slit-based terminal
voltage control, the voltage stabilizer usually loses control for several seconds, and
sometimes may not be able to regain control even after the terminal voltage has recovered.
If the voltage stabilizer loses control, the operator is obliged to switch the unit to Off, wait
for the terminal voltage to recover, and then attempt to re-enable the voltage stabilizer.

During this recovery period, the operator may need to re-acquire the terminal voltage

140

set-point manually, adjust the analyzing magnet set-point, or perhaps even adjust the gas
and/or extraction selsyns to alter the stability of the particle beam, or to redirect the beam
to target. Additionally, if the accelerator is exhibiting large instability in terminal voltage,
and sparks repeatedly, the operator may be required to perform conditioning. In severe

cases, the spark may even damage accelerator circuitry or components. requiring

shut-down and maintenance.

-

100

Terminai voltage

/1Y
Stabiizer balance

Terminal Voltage (MV) or Stab. Balance
N
Sample Pwr. (W) or Corona Current (pA)

8 Corona curent
Sample power -20
8 '\/!_/_/\/\/
-10 - T 0
-5 0 5 10

Time (8)

Figure 4-35. Profile of a typical spark.

4.3.6.1 ‘Auto-Pilot’ Inferencing Thread
The Auto-Pilot is the main inferencing thread for beam maintenance, which can be

divided into four major sections (colour-coded paths in Figure 4-36):

- Preparation (—>). This phase prepares the accelerator for cruise control
by: ® Ensuring the terminal voltage is stable and at set-point (possibly
performing conditioning as well), @ Verifying that the particle beam is present
at the first Faraday cup (‘A’ cup),® @ Enabling the voltage stabilizer by
switching it to Slit (or GVM, if the beam is not being bent), @ Ensuring that the
particle beam is striking the target (as implied by the sample power signal), and
finally ® Enabling the main thread’s helper threads (described in the following
sections).

“ The first Faraday cup is located between the aperture and analyzing magnet, and is the first place where the beam current can be
mmred.Ifnobeamisdaeaaduuhislocnim,theeislikelynfnullinthewcdm(mdnsnosoumgu,ordadRFsoume),orthe
machine has not been properly configured to produce a particle beam. During automated operation under PACES, a loss of beam at the *A’
cup is considered a non-recoverable fault, and the program is forced to shutdown the accelerator and request manual intervention.

141

VoltageStabilizerActive? >
No |
ConditioningRequested? 2,
W
A
[VoltageSetPointPilot] v
—_ A"A
.-*——v—WhatVoltachtabxhzerModc’ AutorSlt }
% Siby - GVM
SwitchStabilizer FoStby Yes
BendBeam? "~ —
v No
fStabd!zerBalanchij Bendmeam? %o
R Yes -
v
DropinA’Cup »
R e
\-/
SwitchStabilizer ToGVM v
r"%**' B
VoltnchnthmTolcmncc’ " 3 BendBeam? Y- — — - — i e
Ve ch
SwitchStabilizerOtY Stnchn B'Cup? - -
No
¥
SMtchStabilizctOff SwitchStabilizerToSlit
y ‘ oo
abort —= StrikeOn" A"Cup? A4 /% StopHelperThreads
Yes - o
” .
PullOutAliCups N°“f-“°*"°"“°‘
N } y) oo YA
D“’PI“* A’Cup SamplePowerWithin Tolerunce? "—-y ln+/\ Cup
Yos ..
. g S 3 tah'h',!
SwitchStabilizerOff ActivatcHelper Threads witchS erOIr
' StrikeOn"A"Cup? X,
B Yes N04£'
SamplePower Tripped? —————3/ .
No
Stabilizchalam.cTripped" L
i) BcltChnrchthm'l'olcmncc? - SparkingDetected?
e Yes
L(—‘VLSmnplepowcrrooLowz TooMuchSparking? ~3/
s No
—> Usual exccution path No y
—3 Stable-beam loop DropIn C*Cup SparkFrecPeriodReached?
——> Alternate execution path Nt es
~—=3 Beam recovery path otifyOperator
 Voltage adjustment path 1 TcmnnalVoluA\lge“ﬁthmTolcmncc
—3 Unrecoverable fauit path RepositionC. oints
L >

Figure 4-36. Flowchart of the Auto-Pilot inferencing thread.

142

+ Stable-beam loop (—>): This loop is entered after the preparation phase, and
executes repeatedly as long as the beam is stable and on target. The sample
power and stabilizer balance signals are continuously monitored. If the sample
power signal jumps suddenly, or if the variance of the stabilizer balance signal

drops to near zero, then the beam has been lost from target, and recovery mode
is entered.

- Recovery mode (—»):. This stage initiates beam recovery by: @ Disabling the
helper threads, @ Notifying the operator, @ Disabling the voltage stabilizer, @
Verifying that the particle beam is still present at the ‘A’ cup, ® Waiting for any
terminal voltage instability to subside (and possibly switching to the voltage

adjustment phase), and finally ® Looping back to the preparation phase to
resume voltage stabilizer-based control.

+ Voltage adjustment (—»). Various paths in the main thread are used for
adjusting the terminal voltage: @ Invoking the voltage set-point pilot if the
terminal voltage if off set-point, @ Entering conditioning mode if too many
sparks are occurring, @ Performing fine terminal voltage adjustment during

recovery mode by repositioning the corona points, and @ Taking remedial
action if the belt charge exceeds a preset limit.

Inferencing of the Auto-Pilot thread is sufficient to ensure that the beam remains on
target during unattended operation, but by itseif is unable to compensate for any ‘drifting’
of various accelerator parameters which may occur during a long accelerator run.
Consequently, several helper threads are also employed, each responsible for monitoring a
particular sub-system of the accelerator and making compensatory adjustments as needed.
As mentioned previously, each helper thread is individually configurable by the operator
and can be switched on/off as desired. The helper threads remain dormant until the
Auto-Pilot enters its ‘stable-beam loop’, at which time the Auto-Pilot activates all helper
threads that have been configured and enabled by the operator. The activated helper
threads execute in parallel to the Auto-Pilot until the beam is lost and the Auto-Pilot

enters ‘recovery mode’, at which time the helper threads are deactivated (and remain

dormant until the beam is recovered).

+4.3.6.2 Corona Current Optimization
During accelerator operation, electric charge conveyed to the high voltage terminal via

the van de Graaff generator’s belt accumulates to create the terminal voltage. This voltage

gets reduced in three ways:* @ Lost as work performed to accelerate the beam’s charged

® Of course, the terminal voltage always quickly becomes zero if the van de Graaff generator is stopped, or the belt charge power is cut.

143

particles, @ Lost through high voltage discharges (sparks)., or @ Removed through

coronal discharge via the corona points.

Adjusting the belt charge selsyn increases the amount of charge being carried to the
high voltage terminal per unit time. Varying the position of the corona points affects the
amount of coronal discharge from the high voltage terminal per unit time. If the voltage
stabilizer is inactive (and thus, fluctuations in terminal voltage are not compensated for by
altering coronal discharge), any adjustments made to the belt charge selsyn or corona
points position cause the terminal voltage to shift accordingly. Under purely manual
control, the operator would typically use the belt charge selsyn to set the terminal voltage

as desired, and position the corona points to attain a level of voltage stability with a

moderate amount corona current.

When the voltage stabilizer is enabled, it accomplishes voltage stabilization by
controlling the amount of coronal discharge (corona current) from the high voltage
terminal: if the terminal voltage is below set-point. coronal discharge is reduced to
increase terminal voltage; likewise, if the terminal voltage is above set-point, coronal
discharge is increased to reduce the terminal voltage. If the baseline corona current is too
low, there is insufficient margin to compensate for large drops in terminal voltage.
Similarly, a large rise in terminal voltage is accommodated by bleeding off the excess as
increased corona current, but a high corona current is undesirable. It is therefore desirable
to maintain the corona current at a moderate level which is sufficient to afford

compensation for voltage drops, but also low enough that compensation for voltage rises

will not result in excessive corona current.

Figure 4-37 shows the corona current optimization thread, which is responsible for
ensuring that the corona current remains within a prescribed tolerance interval. This thread
executes in a loop, waiting for the corona current level to deviate from its tolerance
interval.®® When the corona current deviates from its tolerance interval, the thread waits
several seconds to ensure the deviation is non-transient, and then checks for sparking. If
sparking is detected, the thread waits several seconds before sampling the corona current
again. If no recent sparking is detected, the thread performs a belt charge selsyn

® No control actions are performed if the voltage stabilizer is inactive.

144

adjustment to drive the corona current back into its tolerance interval and towards its

optimum value.* Once optimum corona current is reached, the thread re-enters its waiting
state.

Corona current out of tolerancc‘.’!f} }

Yes

—

Wait 55 What VoltageStabilizerMode?

Off Sty } GYM Shit Auto

Wait 10s

Y . Ve
Corona current still out of tolerance>—
Yes

Yes k
L(— Corona current close to optimum?

Nu

\&————"% Sparking detected? Wait 35
No

Adjust beit charge selsyn

Figure 4-37. Flowchart of corona current optimization thread.

4.3.6.3 Beam Current Optimization
During an accelerator run, it is usually necessary to maintain the beam on target within

some tolerance interval of beam current. The beam current optimization knowledge base
thread is responsible for monitoring the target beam current to ensure that the particle
beam is still striking the target and that the beam current is within some specific tolerance
margin. Since the beam should normally strike the target unimpeded and uninterrupted, it
is generally not possible to determine continuously whether the beam is actually striking
the target,” nor measure the specific beam current on target. [n some circumstances, the
beam can be sampled periodically by dropping in a Faraday cup to measure the beam
current:® under other circumstances, the beam current cannot be interrupted at all, and
other means must be used to detect whether the beam is on target. In order to minimize
the amount of time that the beam is lost from target during beam sampling, such sampling
should be performed as infrequently as possible and last as briefly as possible.

% *Optimum’ in this case means “optimum as prescribed by the operator’.
2 |f the sample power signal is available (i.c. the sample is being actively heated using dc current), then it is possible to detect a target
strike indirectly, but not ail experiments involve sample heating.

Since dropping in a Faraday cup always stops the beam from travelling any further along the beam line, beam flow to target always gets
interrupted by beam sampling.

145

Consequently, the operator is able to specify what type of beam sampling should be
performed by the expert system:

- None: No beam sampling is performed. In this case, some other means (such as

sample power monitoring) must be used to detect the presence of the beam on
target.

- Periodic: The beam is sampled for a specified period of time with a specified
frequency (e.g. sampled for 10 seconds every 10 minutes).

- As needed: The beam is sampled as needed by the expert system.

What beam sampling mode? }

None [Perrodt As needed
Wait 10s <€—/ Wait 10s

Wait for sample period

Drop in *C’ cup
Sample beam current
Pull out *C” cup

Beam current detected?

2N

Dropin "A’ cup Beam current out of tolerance?
Ye N
Sample beam current / “ ¢

Adjust extraction selsyn

Pull out *A’ cup

Wait 10s
. . 3>/
Beam current detected?
/Nu Y‘N
Inform operator Initiate beam recovery
Abort Terminate

Figure 4-38. Flowchart of beam current optimization knowledge base thread.
The beam current optimization thread performs beam sampling as specified, and uses

the measured beam current to make two decisions (as shown in Figure 4-38):

® If no beam is detected on the target Faraday cup (‘C"), then the first
Faraday cup (‘A’) is checked — if no beam is detected on "A’ cup, an

operating fault is assumed, the operator is informed, and automated
control is terminated.

® When a beam is detected on *C’ cup, the thread determines whether the
beam current is within tolerance — if the beam current is out of

tolerance, then the extraction selsyn is adjusted to bring the beam

146

current into tolerance. It is assumed that the beam is already properly

focused for a specific beam energy (which has not changed), so no
focusing is needed to optimize the beam current.

4.3.6.4 Sample Power Optimization
As outlined previously, the sample power signal is used to detect the presence of the

beam on target indirectly. More precisely, the sample power signal can be used to
determine the relative strength of the beam striking the target (q.v. § 2.3.2). The sample
power optimization knowledge base thread (Figure 4-39) monitors the sample power
signal to ensure that the sample on target is not being over-irradiated (which could
damage the sample), or under-irradiated (which is insufficient for the experiment being
performed). If the sample power signal is extremely low (indicating high incident beam
current), the sample may be getting damaged; when this case is detected, safing action
(dropping a Faraday cup and notifying the operator) is taken to protect the sample.
Otherwise, if the sample power is out of tolerance, the extraction selsyn is adjusted to alter
the beam current slightly. If the sample power signal does not respond quickly to
extraction selsyn adjustment, the thread will initiate safing action (i.e. drop in the first
Faraday cup and notify the operator) if too many consecutive extraction selsyn
adjustments are made; this situation may occur if the beam is unexpectedly lost, or if some

other operating fault completely disrupts the particle beam.

Any Faraday cups in? 23 Wait | minule——)}
.Vo¢

Sample power < critical limiti<y Drop in *C’ cup

No

Sample power out of lolemnceil Inform operator

Yes

Abort
Adjust extraction selsyn
No y
Too many adjustments?
Yes
Drop in *A’ cup Wait 10s
- >/

Inform operator

Figure 4-39. Flowchart of sample power optimization knowledge base thread.

147

4.3.6.5 Gas Optimization
It is desirable to maintain the accelerator system’s vacuum level at an optimum level.

The accelerator is constantly kept near vacuum by a series of pumps, but during operation,
the vacuum level is reduced by the flow of source gas into the ionizing chamber and the
generation of the beam plasma. If the source gas flow is too low (and the vacuum is high),
there is insufficient gas to be ionized into a particle beam, and the beam is either
non-existent, sputtering or unstable. If the gas flow is too high (and the vacuum is low),
the quality and stability of the particle beam are affected by the presence of raw source gas
in beam line. Therefore. the source gas flow rate must be well adjusted (using the gas
selsyn) to optimize behaviour of the particle beam. The gas flow rate is controlled by a
thermo-mechanical valve which has a long time constant (slow slew rate),* making
closed-loop control difficult (q.v. § 5.1.3.3). Under manual operation, operators usually

employ a strategy whereby the gas selsyn is set based on one of two conditions:

- If replicating the conditions of a past run, the gas selsyn is set to its previous
setting.

- If not replicating a past run, the operator uses experience-based judgement to
estimate an initial setting for the gas selsyn.

Thereafter, the gas flow rate is fine-tuned over the course of several minutes (or even

hours), and possibly several times during the accelerator run, based on experiential
knowledge.

The gas optimization knowledge base thread shown in Figure 4-40 is charged with the
task of adjusting the source gas flow rate in an effort to maintain particle beam stability.
The thread monitors the vacuum signal for deviation from a specified tolerance interval.
When deviation occurs, a gas selsyn adjustment is performed which is proportional to the
difference between the measured vacuum level and the optimum vacuum level.” A long

waiting period (5 minutes) follows each gas selsyn adjustment to accommodate the slow

slew rate of source gas flow.

% When the accelerator is started from a *cold” state, the gas slew rate can be on the order of several minutes.
% *Optimum’ in this case means ‘optimum as prescribed by the operator’.

148

Sample vacuum fevel for 5s }

Vacuum out of tolerance?23 Wait 10s—3

Yes

Adjust gas selsyn

Wait 5 minutes
\

Figure 4-40. Flowchart of the source gas optimization thread.
* L J L J
This section has described the design and implementation of the expert system-based
control mechanisms used for automated accelerator operation. The next section explores

the use of fuzzy logic-based control mechanisms to augment the capabilities of the expert
system.

4.3.7 Fuzzy Logic-based Control Considerations

The parallel processing hierarchy discussed in Section 4.2.1 is intended to improve
system response time to both the user and accelerator by dividing the overall control task
between two or more processors. To accomplish this, the embedded controllers are
charged with performing small subsets of the control problem. There are various methods
for implementing control algorithms on embedded processors, including conventional
control algorithms (such as PID control), and artificial intelligence-oriented techniques
(such as neural networks). As evidenced in the section on knowledge-based systems in
Chapter 3, fuzzy logic-based techniques have recently gained widespread popularity in
application to a variety of control problems. Moreover, as explained in Chapter 3, fuzzy
systems are conceptually more closely related to expert systems than neural networks
because both expert systems and fuzzy systems use structured knowledge. The use of
structured knowledge facilitates system transparency in that the ‘knowledge’ used for
performing control actions is readily expressible in a well-defined manner that can be
tested, modified and verified more easily than the unstructured knowledge stored in neural
networks, for example. Consequently, both expert and fuzzy systems are desirable in
applications which require accessibility to the underlying knowledge bases used for

automation of complex systems.

149

As will be explained in the sequel, fuzzy logic-based controllers (FLCs) used in PACES
are implemented as fuzzy associative memories (FAMs), ([Kos92]), which are stored in
and executed by an SBC’s RTK. The expert system is responsible for determining when a
specific FLC should be activated, and how it should be configured. Once activated,
however, the FLC operates autonomously until it completes its duties or is deactivated by
the expert system. In this way, the expert system acts in a supervisory manner, relegating
portions of the overall control problem to auxiliary processors, achieving the

multi-processor topology described in Section 4.2.1.

Within the PACES application, fuzzy logic-based control techniques are used for two
related types of control tasks. In the first (Type I), the expert system directs an FLC to
acquire and then actively maintain a specified set-point. Once the FLC is activated, the
expert system is relieved from the task of set-point maintenance until the set-point is
changed (through user action) or an operating fault occurs in the accelerator. The process,
illustrated in Figure 4-41, begins when the expert system, pursuing some chain of
reasoning, decides to start an FLC for set-point acquisition and maintenance. and sends an
RPC to the SBC (®). The RTK, which is executing its top level command loop (@),
initiates execution (interencing) of the FLC’s FAM (®). Meanwhile, the expert system
continues its current chain of reasoning (@). At some later time, the RTK may detect a
breach of its pre-set operating limits (see Section 4.2.5.2) and signal the PC (@), causing

the expert system to switch its chain of reasoning to perform fault detection, diagnosis and
recovery (@).

Figure 4-41. Type [control task: Interaction between expert system and fuzzy
controller for set-point acquisition and maintenance.

150

A Type I FLC is used for establishing and then maintaining the belt charge selsyn
setting required to generate a specific terminal voltage. It could also be used for acquiring

and then maintaining the analyzing magnet current required to bend the particle beam so
that particles of a specified energy are conveyed to the target.

In the second type of control task (Type II), the expert system activates an FL.C
periodically to perform optimization of a control parameter. When the FLC is activated, it
operates continuously until its associated accelerator parameter has been optimized (that
is, maximized or minimized). As shown in Figure 4-42, this process begins with the expert
system sending an RPC to the RTK (Q) to initiate the FLC (@). The FLC then remains
active and iterating (@) until its control parameter is optimized (®) at which time the
RTK deactivates the FLC and signals the PC that the task has been completed (©).
Meanwhile, the expert system continues its chain of reasoning (@) until notification is
received (@). This type of FLC is used for maximizing beam current by optimizing the
extraction, focus and gas selsyn settings, and for optimizing gain control on the

accelerator’s voltage stabilizer subsystem.

Expert System RTK FLC

0]

Figure 4-42. Type Il control task: Interaction between expert system and fuzzy
controller for control parameter optimization.

The FLCs are implemented as fuzzy associative memories (FAMs) which map input
fuzzy state spaces to output fuzzy state spaces, ([Kos92]). Figure 4-43 illustrates the
process of building a FLC. The FLC is first defined in a source code format
(cf. Table 4-5), which specifies fuzzy membership functions, fuzzy variable types, fuzzy
input/output variables, and FAM rules. A compiler translates this source code into a FAM
which can be downloaded to the SBC when PACES is run. Finally, a library of fuzzy logic

inferencing subroutines running on the SBC is used to ‘execute’ the FLC’s FAM to
perform fuzzy inferencing.

a1 \
TYPES
()
VARS
() 3 - A
MATRIX SBC
{
|)
Fuzzy Source Code Fuzzy Compiler FAM Table Fuzzy Inferencing
Library

Figure 4-43. Compilation of fuzzy source code into a fuzzy associative memory.

4.3.8 Fuzzy Control of Terminal Voltage Set-point
This section describes the implementation of a fuzzy logic-based belt charge selsyn
controller for terminal voltage set-point control, a Type [control task (ct. Figure 4-40).

Three versions of this FLC were developed. The performance analysis of these FLC

versions is presented in Chapter 5.

The belt charge selsyn FLC uses simple control rules to adjust the belt charge selsyn to
acquire and then maintain a specific terminal voltage. This process is required during the
initial stages of accelerator start-up (cf. Table 4-2), and then during the beam maintenance
phase for coarse terminal voltage stabilization.” As indicated in Chapter 2, the terminal
voltage usually drops during start-up when the particle beam begins to flow, because the
particles carry charge away from the terminal as they are accelerated. This means that the
operator has either to compensate by subsequently increasing the belt charge selsyn, or to
provide for the voltage drop by initially setting the terminal voltage to a level higher than
required. This problem is easy to remedy using the terminal voltage FLC, which acts to

perform automatic compensation as needed.

An important aspect of terminal voltage control is the ‘slew rate’ (capacitive charging
time) of the high voltage terminal. This is manifested as an average delay of approximately
3.5s between a belt charge selsyn adjustment and compliance by the terminal voltage.

% The accelerator’s built-in voltage stabilizer subsystem is used for fine-scale terminal voltage stabilization.

152

Additionally, the accelerator used” has a ‘dead zone’ on its belt charge selsyn. and 11 full

turns must be made initially before there is any commensurate charging of the high voltage
terminal.

The first version of belt charge selsyn FLC developed had a single input and used the
error between present and target terminal voltages to determine the number of steps to
turn the belt charge selsyn (Figure 4-44). Table 4-5 shows the “source code’ that is
compiled to produce the executable FLC: The TYPES section declares the membership
functions for the fuzzy variable types TerminalvoltagekKv and BeltChargeTurn
(cf. Figures 4-45 and 4-46, respectively). The vars section declares the FLC’s two fuzzy
variables, deltaTv and deltaBsc. Finally, the MATRIX section defines the FAM that maps
the input fuzzy variable (deltaTv) to the output fuzzy variable (deltaBc). Figure 4-47
plots the FAM’s control surface, which maps error in terminal voltage to a belt charge
selsyn adjustment. The fuzzy membership functions and FAM were derived from

observations made of the control adjustments performed by expert operators during

accelerator start-up.

Terminal Voltage
Meter ADC

Expert System
AN—><]
S sk

Terminal Voltage
Set-point

F
Fuzzification lnferuezr\zéng

Belt Charge <
Jue Je—[3<

Defuzzification

—>» Analog value — Digital value —> Fuzzy value

Figure 4-44. Block diagram of the single-input belt charge seisyn FLC.

5 This FLC was installed and tested on the McMaster Accelerator Lab’s KN-3000.

153

3eltCharge (SmallCwWw, 2, 3, §, 10, 19),
(TYPES (MediumCwW, 2, 10, 15, 20, 2%),
(TerminalvVoltageKVv, -4.000,4.000, (LargeCW, 2, 20, 25, 40, 45),
(WayTooLow, Z,-4.00,-4.00,-2.00,~-1.50), (HugeCwWw, Z, 40, 45, 75, 75))
(TooLow, 2,-2.00,-1.50,-0.55,-0.50), VARS
{Low, 2,-0.55,-0.50,-0.15,-0.10), (TerminalVoltageKVv deltaTV},
(LittleLow, 2,-0.15,-0.10,-0.05,-0.06), {BeltChargeTurn deltaBC)
(SlightlyLow, 2,-0.06,-0.05,-0.025,-0.015), MATRIX
(OK, T,-0.02, 0.00, 0.02), deltaBC = deltaTV *
(SlightlyHigh,z, 0.01%, 0.025, 0.05, 0.08), (
(LittleHigh, 2, 0.05%, 0.0e, 0.10, 0.15), WayTooLow HugeCW,
(High, Z, 0.10, 0.15, 0.50, 0.55), TooLow LargeCWw,
(TooHigh, 2, 0.50, 0.55, 1.50, 2.00), Low MediumCW,
{WayTooHigh, 2, 1.50, 2.00, 4.00, 4.00)), LittleLow SmallcCw,
(BeltChargeTurn,-100, 100, SlightlyLow SlightCW,
(HugeCCW, Z,-75,-75,-45,-40), oK NoTurn,
.LargeCcWw, 2,-45,-40,-25,-20), 3lightlyHigh Slightlcw,
{MediumCCW, 2, -25,-20,-15,-10), LittleHigh Smal l1CCW,
(Smallccw, 2zZ,-15,-10, -5, -3), High MediumCCW,
{(S1ightCCW, T, -5, =3, -1), TooHigh LargeCCW,
(NoTurn, s, oy, WayTooHigh HugeCCW
(SlightCwW, T, 1, 3, 9, 1)
Table 4-5. Source code for single-input FLC.
1 Way Toolow ToolLow Low High TooHigh WayTooHigh
atl
E
[3
b
5 (a)
8
&,
25 -20 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 20 25
Terminal Voitage Error (MV)
1 LitleLow SlightyLlow OK SlightlyHigh LittleHigh
o ‘}
5
2 (b)
k-1
g
go T T L) T T
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
Terminal Voitage Error (MV)

Figure 4-45. Membership functions for terminal voltage error fuzzy input variable.
Part (b) is a magnified view of the membership functions located about the
zero point in part (a).

154

NoTurn
SlightCCW SlightCW

MediumCCW MediumCW
HugeCCW LargeCCW \ SmallCCW SmallCW / LargeCW HugeCW
~ rd

-
1

Degree of Membership

. ©
n
o

.

T T L 3 T a T L]
-40 -30 -20 -10 0 10 20 30
Belt Charge Seisyn Adjustment (steps)

Figure 4-46. Membership functions for fuzzy output variable determining amount of
belt charge seilsyn adjustment.

This first version of the FLC used the average slew rate as a tixed loop delay of 3.5s
between control iterations. and consequently may have spent more time than necessary
waiting for terminal voltage compliance. To remedy this, the FLC was changed to
‘execute’ with a loop delay dependent on the derivative of the terminal voltage: the next
iteration of the control loop was delayed until the terminal voltage derivative reached

near-zero. This modified version resulted in improved performance, as presented in
Chapter 5.

& -4

Bek Charge Acpustment (steps)
(-]

&

8

-20 0.0 00 40
Termnel Voltage Error (MV)

Figure 4-47. Control surface for fuzzy terminal voitage controller with one input
(terminal voltage error).

A further modification to the FLC, depicted schematically in Figure 4-48, involved
inclusion of a second input variable, namely the derivative of the terminal voltage. The
membership functions for this second input variable are shown in Figure 4-49. Since a

derivative-dependent delay was not needed, the control loop delay was fixed at ls.

Terminal Voltage Expert System
Meter DC

J:.D——-B—é*

Terminal Voitage
Set-point

Fuzzification [nferencmg

Belt Charge <
e Qe—[3<
Defuzzification
—>» Analog value —¥ Digital value —> Fuzzy value

Figure 4-48. Block diagram of the two-input belt charge selsyn FLC.

SlowlyNeg SlowlyPos
TooQuicklyNeg QuicklyNeg \ Zero | QuickiyPos TooQuicklyPos
1
%
B
2
$
5
8
g0 T T) T L T L] T T 1
5 40 30 20 10 0 10 20 30 40
Derivative of Terminal Voltage Error

Figure 4-49. Membership functions for fuzzy input variable determining rate of change
of terminal voltage (first order differential).

Figure 4-50 shows the control surface of the two-input FLC which determines belt
charge selsyn adjustment as a function of both terminal voltage error and derivative of
terminal voltage. The flat region along the left side of the control surface represents an
area of inactivity, regardless of terminal voltage error, when the derivative of terminal
voltage error is large and negative; such a precipitous drop in terminal voltage is likely
indicative of a spark (high-voltage discharge within the accelerator tank or column) for
which no belt charge selsyn adjustment should be made.*®

® n this case, the expert system invokes high-level reasoning to recover from the spark. and the FL.C remains inactive until recovery is
complete.

156

2
(7]
8
)
8
z
c
(7
E
"]
2
Q
<
[+
(]
8
Q
=
Q
[+

Figure 4-50. Control surface for fuzzy terminal voltage controller with two inputs
(terminal voltage error and derivative of terminal voltage).

L L 4 [4

This section has described the use of fuzzy logic-based controllers, and presented the
design and implementation of a FLC for terminal voltage control. As will be shown in
Chapter 5, this FLC performed its task successfully, indicating that fuzzy logic-based

controllers are worthy of inclusion in the accelerator control system.

The next section investigates aspects of human factors that figure prominently in

design and implementation of PACES.

4.4 Human-Factors Aspects

Chapter 3 discussed some of the broad human factors issues that are important in
building computer systems that are designed to ‘fit the user’ in order that they
demonstrate acceptability (utility, usability and likability). These characteristics are
essential to PACES because the system’s primary duty is to assist (rather than to replace)
users in their operation of the accelerator. Since PACES is intended to be a
computer-centered means of modernizing accelerator operations, it is imperative that the

system is accepted (liked and used) by the operators. This requirement can be facilitated

157

by involving the operators in the development process, as has been done with PACES.
Operator involvement serves to keep the operators interested in the project. and increases
the likelihood that the system will be accepted when finally installed, since the operators
have a sense of pride in what they have helped to develop for their own use. Operator
involvement is, of course, also necessary to accomplish knowledge engineering and
expertise transfer. In addition to direct operator involvement, other aspects of human

factors were important considerations during PACES development.

The following sections consider some of the areas of PACES development that are
concerned with concepts of human-computer interaction and the computer-human

interface, including development of the PACES GUI, augmentation of operator abilities,

and automation of operator expertise.

4.4.1 PACES User Interface

The user interface is PACES’ link with the operator, the *window™ through which the
operator interacts with the computer program and, in turn. the accelerator. As stated in
Chapter 1, it is desirable that the system eventually evolves into a “hermeneutical’
(interpretational) state. ([Hol91]), in which the operator perceives the computer system as
an integral part of the underlying physical process (accelerator). Although desirable. this
state may be difficult to accomplish because the PACES GUI is situated in front of the real
control panel, which is visible at all times. Will the operators look only at the computer
screen, or will they find their eyes be continually drawn to the real control panel that they
are familiar with and that is spread out right in front of their eyes? As will be explored in
the sequel, this interesting question captures the essence of whether the technology
insertion problem will be successful: Will the operators voluntarily surrender the familiar,
well-known physical control panel for the computer-based facsimile? A partial answer to
this question is: They will, if the computer system enables them to do things they could

not otherwise accomplish using the conventional control panel.

158

a 58 g an 59 ag
] 0 ,\s‘(':"’?‘\ 7" 1 ‘\m\ "
| - Y 5
0 \ 3 m);n i \3 "
DRIVE NOTOR AL g 1. " 1, AL
. ™ E.__.__'i 108 . ™
SF6 PRESSURE UACHUM PRESSURE TEMPERRTURE
‘ - (Ps1) (MICREMIPERES))
58 »
COMTRSL POVER 38 e % e 2 3 08 2 3
"f b £ s88 1 »
e ” N 3 \
| 1 femoe——— 10 ¢ E N (1] [
o SEAN CURRENT BELT CHARGE TERMIMAL VOLTAGE
(MICROMPERES) (NICREANPERES) (mey)
BELT CHARSE
1 "t 5¢ 49 "
s-/:"‘ T T~ 150 smsl 2 'h))\"
I N | f AN } 1 11}
! Ll Yo
COLEY CURNENT CORGMS LOAD CORONR EXTENSION
FARADRY CUP W1 (NICREMWPERES) (NICROMPERES) (X EXTENS10M)
e ‘ O ‘ ‘
EAS SELECT
EXIRACIION BELT CNAARE

Figure 4-S1. An early version of the PACES user interface. w1/

[n an effort to make the system desirable (and easy) to use, it was decided from the
outset that the control system shouid use high-resolution computer graphics to produce a
user interface that closely resembled the real control panel which the operators were well
accustomed to using. Consequently, the facsimile control panel would require graphical
versions of control panel instrumentation such as meters, selsyns and switches. Several
early attempts at building such a graphical user interface (GUI) met with poor success,
mainly because of the high degree of effort required to implement flexible, fast and
easy-to-use GUTs. Figure 4-51 captures the main screen of one such attempt ([DeM91])
that was implemented from scratch in Turbo Pascal. Although these early attempts
provided for reasonably good looking control panel facsimiles, it was found that too much
effort was required to design properly, lay out and provide functionality for the many
graphical objects. The main reason for this was that the GUI software had to be developed
from scratch, requiring a large expenditure of effort. It was quickly realized that what was
needed was an off-the-shelf GUI toolkit that would provide the needed flexibility and
functionality without the overhead of developing the GUI from scratch.

After this initial failure to produce a capable GUI, it was decided that Microsoft

Windows® offered a good platform for the PACES GUL® Windows implements a powerful,

¥ Microsoft Corp., Redmond, WA.
 There is currently a large number of *windows-based” GUI platforms available (such as 0572, XWindows, GEM, and the Macintosh operating

159

object-oriented, graphical user interface environment suitable for rendering the facsimile
control panel, complete with the required meters, switches and selsyns. Additionally.
Windows has recently become such a popular PC-based operating system that it can be
assumed that many PACES users will already be familiar with the standardized Windows
GUI and even consider it their preferred medium of computer interface. This implies that
less effort is required for users to learn how to interact with the PACES user interface, and

that ultimate acceptance may be predisposed.

The Windows environment is predominantly a graphical, object-oriented direct
manipulation style of human-computer interaction (cf. Section 3.3.1). The computer’s
mouse and keyboard are used to manipulate graphical objects that closely resemble real
world counterparts in appearance and behaviour. This style of interaction is extremely
powerful, and has recently become commonplace in a wide variety of computer
environments. In many arenas, such as home or business computing, users frequently
demand that the computer system offers this style of interaction. People consider direct
manipulation (for some tasks) to be both visually and conceptually appealing, and find it

easy to use, thereby promoting system usability and likability, leading to system
acceptability.

Windows provides a multi-tasking ‘operating system’ for the co-ordination of user
applications. It has a large library of general purpose subroutines, called the application
program interface (API), which serves as a toolkit for building object-oriented graphical
interface objects, managing system resources, and moderating inter-application
communication. Initially, Windows applications could only be written in C, but more
recently, a wide variety of programming languages has emerged for development of
Windows applications, including Pascal, C++, BASIC, and FORTRAN. Figure 4-52

illustrates how Windows, DOS,®' the application compiler and PACES (the application) are
related.

system), and much of what is said in the sequel can be generally applied to any of these types of GUI platforms.
“ DOSsumdsfnrdiskopcmingsystmuagenu‘ictcrm,tlmthasbeeomxhcoomnmplwennmeforPC-baseddiskopunting systems such
as IBM’s PC-DOS and Microsoft’s the highly popuiar MS-00S.

160

= PACES A
= v
e A Windows modules,

3 API OWL
Source code Compiler DRS A
Borland Pascal v v

for Windows DOS deviie drivers | Windows device drivers

v .
Computer and peripheral hardware

Figure 4-52. Interrelation of PACES with Windows and DOS. .tkspied from (Bor1]. Fig 13.p. 17

The foremost feature of Windows applications is that they are event-driven. In contrast
to a "conventional’ program, a Windows program handles all user input as events. which
cause the program to alter its behaviour in response to the events. The Windows operating
system responds to events by generating messages which are sent to the application
program for processing. The program. therefore, is structured around a message
processing engine which accepts messages from the Windows operating system and
responds to them by activating different program subroutines. In this way. a Windows
program is almost always “waiting™ for the user to generate events to which the program
can respond. At the same time, however, since Windows is a multitasking environment.
other parts of the program can be functioning in parallel with the main program

component that waits for user input events.

The principal mode of input to the Windows system is the computer’s mouse, although
the keyboard plays a close secondary role. Most Windows applications are structured to
accept mouse-based input as the main source of events, but also provide equivalent
behaviour for keyboard input. The use of a mouse provides for a conceptually simple
*point and click’ style of human-computer interaction; the user moves the mouse pointer
around the screen, and presses the mouse’s buttons to cause actions to occur. This
commonplace style of interaction is well suited for the PACES application. In general,
accelerator operators are accustomed to an ‘eyes front, hands on’ form of interaction with

the accelerator: they face the control panel to observe its meters, and use their hands to

161

perform control tasks. Thus, it is sensible to design the PACES user interface so that the

operators interact with the software in a similar manner.

PACES provides a GUI that closely resembles the actual accelerator control panel
(cf. Figures 2-8 and 4-3). The control panel’s meters, selsyns and switches are reproduced
on the GUI, with effort taken to preserve as much of their appearance and behaviour as
possible. The GUI meters have needles that are updated at regular intervals® to reflect the
values displayed on the control panel meters. The mouse is used to manipulate the selsyns
and switches: the user points the mouse cursor at a selsyn or switch and then presses the
mouse’s button to ‘push’ the switch or ‘turn’ the selsyn. Likewise, the various "tools’

available to the operator (cf. Section 4.1.4) are invoked in a similar manner by clicking on

their associated iconic buttons.

The GUI resembles the real control panel in colour and approximate layout: The
GUI’s background is grey, meters have white faceplates, and selsyns have black knobs
with silver cranks, just like the real control panel. The positioning of the meters, selsyns
and switches also closely resembles the layout of the real control panel. Appearance is
seen as a crucial aspect of system acceptance by operators, and it can be said that in this
case familiarity breeds acceptance. One seasoned operator, seeing the PACES GUI for
the first time, was pleased to note that, for example, the gas selsyn was positioned beside
the extraction selsyn “as it should be”, and that the scale on the vacuum system meter was
“as it should be”, ([Str92]). This operator was enthusiastic about the GUI from that
moment onward, and took active involvement in the evolution of the GUIL. Had the GUI
been lacking in or completely devoid of resemblance to the real control panel. he would

likely have been less positive about having to learn an unfamiliar computer system.

The GUI possesses what could be termed “instrumentation consolidation’ in that it
concentrates instrumentation components that are, on the real control panel, spread across
several large cabinets (cf. Figures 2-8 and 4-3).* This consolidation helps to focus the

operator’s attention and enables all major indicators* of accelerator state to be assessed in

“Asmentionedpreviously,PACESreccivstdmdamfmmtthBCcveryZOOmnndth:nntasmupdawdatthismm.
5 The instrumentation is spread out across these cabinets for technical and historical reasons.

* Some indicators are not present on the GUIL, and not even sensed by the system, because they are not coasidered important enough or
are, at present, too costly to sense digitally.

one field of view; the operator’s gaze (and hands) no longer need to range across several
large cabinets. An important issue to consider with respect to such instrumentation
consolidation is the information density, or ‘display loading’, of the GUI. It is desirable to
display as much information as possible, but this must be weighed against display
(over)loading, which only serves to confuse the operator due to clutter and information

overload. Some good guidelines for such human factors aspects of GUI design are
discussed in [Gal97], [Gil89] and [Man97].

[4 L 4 *

The PACES GUI is designed to facilitate two aspects of human-computer interaction
that are important to computer-assisted accelerator operation. In the following sections.

the augmentation of operator abilities and the automation of operator expertise are

investigated.

4.4.2 Augmentation of Operator Abilities

In relation to Section 2.2, the GUI analogues of control panel instrumentation
components yield some benefits over the real control panel, but also pose some problems.
The GUI meters provide more functionality than their real-world counterparts, but the
GUI selsyns lose some of the useful characteristics of real selsyns. The GUI meters have
the ability to display numeric values simultaneously with the analog values (needle
positions), giving the operator a choice of analog or digital information (Figure 4-53).
Generally, the analog form is used to gauge accelerator behaviour quickly in a qualitative
manner, that is, to get an intuitive ‘feel’ about the accelerator. The digital information, on
the other hand, frees the operator from having to interpolate the meter’s scale, and
provides exact, quantitative information when needed. Furthermore. the GUI beam current
meter, whose dynamic range spans nine decades from nA to mA, has been given the ability
to change its decade scale automatically as needed. This feature is seen by operators as a
great improvement over the real-world beam current meter, whose decade scale must be
switched manually whenever its signal goes off scale. Finally, the integration used to
smooth needle ripple can be switched on or off individually for each GUI meter as the

operator desires. Here again, there is improvement over the real-world meters because the

163

operator can choose between stable display (integrated signal) or ‘jumpy’ display (raw
signal); the former is generally preferable, but there are times when it is more informative
for the operator to see the true, non-integrated signal. Seasoned operators would usually
prefer to see the non-integrated signal because they can glean more information from the
raw signal than the integrated one; in contrast, novice operators would likely find the

“jumpiness’ of the raw signals too distracting, and therefore prefer the integrated signals.

Corona Current

Figure 4-53. GUI meter (a) juxtaposed with real control panel meter (b).

The GUI selsyns have both added functionality and loss of functionality over the real

selsyns (Figure 4-53). To their benefit, they require less hands-on control. The operator is
able to perform ‘fire and forget’ operation using the selsyn controller window
(cf. Figure 4-6), instructing a selsyn how much to turn, or to which absolute position to
turn. and can leave the computer to keep the selsyn turning until its set-point has been
reached. Such actions can be combined to adjust several or all selsyns automatically at the
same time. This ability extends the user’s grasp, where before a single operator could
never manipulate more than two selsyns simultaneously. Each selsyn can also be switched
to ‘automatic’. causing the computer to perform knowledge-based set-point maintenance
while other selsyns are manipulated, thus providing a form of automatic compensation that
was previously unavailable.®® As a result, the operator can, for example, lock the belt

charge selsyn to maintain a terminal voltage of 1.SMV automatically while manually

*S One operator at McMaster termed this operation the *third hand’ capability, with which he was extremely pleased.

164

varying the extraction selsyn to adjust particle beam current (which directly affects
terminal voltage).

Figure 4-54. GUI selsyn (a) juxtaposed with real control panel selsyn (b).

On the negative side, the GUI selsyns have lost the torsional feedback that is so useful
in their real world counterparts. Operators have learned to rely on the “feel’ of a selsyn to
determine when it has reached zero or its upper limit, or when slippage is occurring in its
tank-mounted partner. This loss of feedback has been found to impair operators because
they have learned to rely heavily on the feedback. It would be possible to mimic such
feedback with additional hardware, but this is deemed too costly and cumbersome to be
worthwhile. A related problem deals with the stepper motors that are used to turn the
control panel selsyns: Operators have reported that when the computer system is off and
the selsyns are turned manually, there is a small but noticeable degree of resistance in the
unenergized motors, causing a confusing and disliked change in the ‘feel’ of the selsyns.

Evidently, the advocated ‘non-invasiveness’ of the piggy-back machine interface is not
perfect.

A key facet of PACES design has been the operator-assisted evolution of the system.
As development of PACES proceeded, field tests were performed at DREO and McMaster
in which operators were asked to use and evaluate the system. Then, based on their
complaints or suggestions, the system was altered and improved. This form of operator

participation in development is considered valuable because it ensures that the operators

165

are kept interested and actively involved, and that the final version of the system will be an
accepted and welcomed arrival. Four examples of this valuable interaction are presented in
the sequel to illustrate how PACES has evolved to suit the perceived needs of the
operators. [t is noteworthy that such evolutionary development can proceed even after the

system is installed, and the PACES object-oriented software is designed to accommodate

such ongoing extension and expansion.

On one visit to DREO. an operator commented that one piece of hardware on the real
control panel was particularly useful: a paper stripchart recorder that could be used to
monitor target beam current varying over time. This capability was subsequently added to
PACES in the form of a stripchart window for each meter (Figure 4-55), which could be
opened (or closed) as desired to monitor the time-varying behaviour of an accelerator
state variable. The stripchart windows also plot the first-order derivative, giving them
capability beyond that of their real-world namesake. On the next visit to DREO. the
operators were thrilled that they could now call up stripcharts for any meter, not just the

beam current meter. and that they could observe rates of change as well.

Figure 4-55. A stripchart window.

Another example of GUI evolution is the incorporation of a ‘kiviat graph’
(Figure 4-56). This type of multi-axis graph is used primarily in computer operating
systems to indicate system balance and resource loads. Each axis measures a different
variable, and lines link the points on neighbouring axes to form a polygon. The axes’
scales are adjusted so that a ‘normal’ state is implied when the polygon most closely
resembles a circle; system imbalances are therefore indicated by deviations from circular.
This type of graph was added to PACES to provide an ‘accelerator at a glance’ indicator

that would convey a collection of important accelerator state variables simultaneously to

166

imply machine stability. Operators have expressed interest in the concept of such a

broad-spectrum indicator which is unparalleled on the real control panel.

TermVo Gas Sel
CorPos Extr Sel
Corl.oad BC Sel

CoiCurr BeamCurr

Figure 4-56. A kiviat graph of accelerator state.

During another visit to DREO. the site manager happened to mention the fact that at
least two people were always needed during an accelerator run, one (the experimenter)
performing experiments in the target area, and another (the operator) stationed at the
control panel. The site manager commented that it would be of great advantage if the
computer system could somehow be used to provide control panel access from the target
area, making the accelerator site as a whole easier to use. After some thought, it was
decided that the system could easily be extended by adding an additional PC in the target
area which would communicate with the main PC via an RS-232 serial link. This optional
remote console was recently given a test-run and demonstrated that it was possible to
teleoperate the accelerator remotely just as effectively as from the control room. The
remote operation facility has shown promise of reducing site staffing requirements and
increasing availability of the machine since less people are required for operation.
Furthermore, the serial link can be extended with the use of modems to provide

long-distance accelerator operation, enabling off-site analysis and trouble-shooting of a

malfunctioning accelerator.

One final example of GUI evolution involves the use of a sound card installed in the
host PC to facilitate the use of high-quality sound effects as an extension of the user

interface. PACES is able to emit a wide variety of audible indicators, such as bells and

167

sirens, which are used to gain the operator’s attention. At AECL’s Whiteshell Labs.
PACES emits a digitized recording of a distinctive and familiar alarm when it detects that
the beam has been lost from target; operators accustomed to the existing hardware-based
alarm instantly recognize this software-based alarm, and know immediately that the beam
has been lost. This, then, is another example of how PACES' mimicry of the real control

panel facilitates operator acceptance and ease-of-use by experienced operators.

Plans exist to connect the audio output to the accelerator site’s public address system
so that operators are still in audible contact with the control system even when not
physically present at the computer console. In this way, the computer can sound alarms
and convey information that can be heard throughout the site, freeing operators from

constantly having to remain at the computer console during accelerator operation.

* L 4 L J

The augmentation of operator abilities forms one half of the objective of furnishing
accelerator operators with a computer-centered system for assisting them in their work.

The second half of the objective takes the form of automation of operator expertise, as is

explored in the next section.

4.4.3 Automation of Operator Expertise
Figure 4-57 illustrates the accelerator user community in a general sense, consisting of

operators and experimenters. Operators can be loosely categorized as novices or experts.

Experimenters can be considered as operators (novice or expert) and non-operators.

The operations expertise incorporated into PACES consists of a large body of
operating procedures, established step-by-step sequences for start-up, shut-down and
beam maintenance operation. The procedures are generally perceived as mundane, and are
the drudgery of accelerator operation. Accelerator users are seldom interested in start-up
and shut-down, viewing them as necessary but uninspiring phases of accelerator operation.
Operators are more interested in the intellectual aspects of operating demands for the
day’s experiments and the possibility of seeking novel means of achieving the requirements
of the experiments, such as, for example, the challenge of fine-tuning the particle beam to
get a mere trickle of particles of a specific energy. Experimenters, in contrast, are, by and

168

large, more interested in the physics underlying the experiments, and prefer to look
beyond the humdrum of machine operation to the realm of scientific experimentation.
Therefore, these established procedures, because of their algorithmic nature and their

disappeal to humans, are ideal for automation by computer.

Operators

""vmr

Experimenters

Figure 4-57. Operators and experimenters.

This form of automation affords benefit for novices and experts alike. Novices
divested of these mundane duties are able to learn about accelerator operation in a
controlled environment. Every day, the same procedures can be used to start-up the
accelerator to a predictable state from which the operator-in-training is able to explore. on
an ongoing basis, the finer details and nuances of accelerator operation. Eventually, as the
novice operator’s skills develop, the novice can rely less and less on automated operation
if so desired. Additionally, the system’s knowledge base can be employed for safeguarding
the accelerator from errors and damage caused through lack of experience: the computer
system can prevent novices, for example, from operating above 1 MV of accelerating
potential, or above 10 pA of target beam current. The knowledge base can also be used as
an advisor or tutor for operators-in-training, providing examples, guidance and tutorials of
established operating procedures. Finally, the computer system can be employed as a

training assessment monitor, logging operator control actions and machine data for later

off-line analysis by an expert operator.

Whereas PACES facilitates training of novice operators, it also offers advantages for
expert operators. Primarily, the experts are liberated from the drudgery of mundane
accelerator operation so they can better spend their time preparing for the experiments at

hand. For example, an operator could invoke automated accelerator start-up, begin

169

preparations in the target area while the computer is performing the start-up procedure.
and return to the control panel when the particle beam has been stabilized and is ready to
be conveyed to the target area. Moreover, the expert can make use of PACES’ “third hand’
facility when making fine adjustments of accelerator state: one or more selsyns can be set
to automatic so that the computer performs any compensation required as the operator
makes control adjustments manually. This again is a form of liberation: the operator can
concentrate on a specific control point of interest and rely on the computer system to
compensate other control points as needed. In addition, PACES’ data logging facility can

be used for later off-line analysis, giving the expert a chance to experiment with the

machine and later observe and analyze quantitative performance data.

The computer system also serves to bridge the gap between operator and
experimenter. Traditionally, the experimenter works in the target area and the operator
monitors the control panel some distance away. PACES’ ability for remote operation
enables the operator to control the machine from the target area, thereby permitting a
strengthening of the experimenter-operator relationship. Operator and experimenter are
able to take part in the experiment together, each gaining better understanding and
appreciation of the other’s perspective. This relationship can only serve to improve overall

operations of the accelerator site due to improved personnel interaction.

* * *
This section has explored the human factors aspects of PACES development, and
documented examples of how the system has evolved under the assistance of accelerator

operators into a software product that the operators find acceptable (useful. usable and
likable).

The next section investigates the aspects of software engineering that were prominent

in PACES’ software development lifecycle.

4.5 Aspects of Software Engineering

Attention was drawn in Section 3.4 to the importance of properly applying formal
software engineering methods to software development, and although there are many

varying approaches and schools of thought, it is evident that a software development

170

project benefits from the employment of some form of software engineering principles.
PACES is no exception to this claim, and software engineering methods have featured
prominently in its design and implementation. In parallel to Section 3.4, the following

sections will relate PACES’ software engineering aspects on both the macro- and

micro-scale levels.

4.5.1 The Macro-scale: PACES Development Lifecycle

PACES has been required to play a dual role during its development. In one respect, its
purpose was to meet a contractual obligation to provide the Defence Research
Establishment Ottawa with a working, computer-oriented accelerator control system; in
another respect, it was seen as a foundation for academic investigation of the application
of artificial intelligence and real-time systems concepts to computer-centered complex
process modernization. The direct result of this duality is that many of the formalized
macro-scale software engineering principles advocated in Section 3.4 were difficult to
apply to PACES development. For example, PACES development was originally
envisioned to involve the efforts of two people: a physicist would build PACES from the
‘top down' by performing knowledge base development; simultaneously. an
electrical/computer engineer would build PACES from the “bottom up’ by implementing
the underlying accelerator interface, parallel processor system, and graphical user
interface. This approach can be compared to the U.S. Department of Defense standard
DoD STD 2167-A software lifecycle model (cf. Figure 3-27), which possesses parallel
streams for development phases for both hardware and software. Similarly, the PACES
approach can also be likened to the POLITE lifecycle model (cf. Figure 3-32), which
possesses parallel streams for development of knowledge-based and ‘conventional
program components. Yet, in another way, the PACES development lifecycle shares
elements in common with the evolutionary rapid prototyping model (cf. Figure 3-30), in
that rapid, evolutionary prototyping was used to build workable field versions of PACES
quickly which could be tested and evaluated by accelerator operators. Indeed, even the
spiral lifecycle model (cf. Figure 3-29) is mirrored in PACES development, from DREO’s

perspective, because as prototype versions became available for evaluation on specific

171

deadlines, the DREO personnel had the option of renewing, extending or cancelling the
project.

Since PACES’ development lifecycle appears to share elements in common with
several different models, it is difficult to clarify the exact form of the PACES lifecycle
model. Nevertheless, Figure 4-58 attempts to illustrate this lifecycle model as a useful
amalgam of several other popular lifecycle models. For lack of a better name, it is called
the “parallel-threaded prototyping’ (PTP) model. This model is a combination of various

existing models that has proven effective in the development of PACES.

The PTP lifecycle model shown in Figure 4-58 begins with a preliminary specification
and design phase in which the general requirements and functionality of the overall system
are defined. During the next phase, the design and specification become more detailed, and
branch into two parallel development threads: hardware and software. The software
thread in turn branches into three threads: machine interface, user interface. and
knowledge-based system (KBS). Finally, the KBS thread divides into the engine and
knowledge base threads. As this division into parallel threads occurs, an increasing amount
of detail is added to the overall system design as the design of the individual threads
becomes more developed. During the next phase, parallel development, each thread
follows a typical RUDE-like iterative cycle consisting of design, build, and test/modify

phases, but there is intercommunication between the threads in each phase to promote

eventual integration.

At some point during the test/modify phase, a decision is made that the overall system
is ready for prototyping, and the next phase, prototyping, is entered. In this phase. the
threads are integrated to form a prototype version ‘n’ of the system. This prototype is
released (‘fielded’) for evaluation by the end-users,” who decide whether the version is
acceptable. One of four outcomes can result from this evaluation:

@ If all goes poorly, and the end-users are completely dissatisfied with the

system, they can opt to scrap it altogether — this is usually an unlikely
scenario, but still a possibility.

* This group includes not only users per se, but all personnel that are able to affect the evaluation of the prototype, such as site managers.
administrators, licensing officers, commissioning staff, system maintainers, etc.

172

“yosuasul Agojouydl pa1aI2-191ndwiod 10§ [Ipou 31952911 (d1d) ad10101d PIPLAIYL-PlIitd Y L "gs-+ ndig

d uotsiaop nonIstRl) HOISIAA paIBIdaiu]

uonusmmunuos aseqdenug

uorsues] 50| €——

1+ 1/ UOISIOA
.M . 182 <{— mgy |€d—| wdisa) |«
PUIIXS] MUNUO,) 1 _ j._. MD ! aseg]
LN ‘ A % % adpapwouy
, ApoN

SHA

o) |€f—| ping | €| WIS | € anEug

1 i

&xmﬁonal/
aintenance

_W 2], l_All_‘E_:P_A!I E < DORMSIT I5S[) [2IBMYoS
» ! 1 !
dary JIpoN
v | sengeay udisap pue
dv.aog . 2] <] pind aogpIAN WMo uoreoytoads
i —|v : T Lsuiunipaid
U UOISIOA
\ oy |ed—| png |€f—| weaQ € amMpmE
APPO
———— SwdAo104 — Statdopanac] o] ————i b SIS P wounfizads papo1ac] - wondasuo)) (oI

173

@ Most likely, however, the evaluation will uncover bugs, deficiencies,
insufficiencies or inefficiencies, and the end-users wiil decide to continue
development towards the next prototype, version ‘n+1".

Q If all goes well, the end-users can choose to accept the system and

declare the project completed. The system then enters its
operational/maintenance phase.

@ The end-users may find that the system is acceptable in its current
version, but desire to extend it to add further features and capabilities.
This outcome, which causes development to fall back to the design
phase for version ‘p’, can also be entered from the

operational/maintenance phase if the end-users decide that the system
should be extended.

It is obvious that this software development lifecycle model shares much in common
with the models reviewed in Section 3.4, such as parallel development paths, RUDE-like
iteration, and spiral prototyping. All of these features are considered valuable components
of formalized software engineering methodologies, and each has found a place in the
battery of principles that software developers can apply to building complex software
systems. Nevertheless, as was stated in Section 3.3, each individual software development
project has its own set of requirements and constraints, and, as such, any specific software
development strategy may not be optimal. Indeed, software development teams evolve
over time, learning which strategies to adopt, adapt and combine to yield an effective,
hybrid strategy that performs to their satisfaction. In this sense, the PTP model. as applied
to PACES development, has performed adequately, but is not necessarily equally

applicable for all software development projects.

4.5.1.1 Development Cost
The installed hardware takes the form of a modern personal computer (PC),

industry-standard embedded controller and ensemble of custom interface circuitry. The PC
is the mainstay of the system, costing only approximately $3000, but providing a high level
of flexible computing power. The embedded controller, costing less than $300, is designed
specifically as a data acquisition and control engine. The custom interface circuitry,
costing about $6000, is contrived specifically to facilitate non-invasive interface to the
accelerator. Thus, on the order of $10,000 worth of hardware is required to form the basis
for the control system. This figure is not only affordable but also of good value,

considering that some individual instruments used on the accelerator (such as the NMR

174

magnetometer) cost an equivalent amount each. Of course, the highest cost is in software
development, which has consumed approximately three work-years and some $60,000.
Figure 4-59 illustrates this cost breakdown.

PC

$3.,000
SBC
$300

J/ Interface

Hardware
$6,000

Software
$60.000

Figure 4-59. Breakdown of PACES development cost.

L 4 L 4 L]

This section has discussed the macro-scale facet of PACES software engineering, and
introduced the hybridized PTP software development lifecycle model. The next sections
focus on the micro-scale aspects of PACES software engineering, serving to illustrate how

the RIMS programming techniques and object-oriented programming (OOP) have been
applied to PACES development.

4.5.2 The Micro-scale: OOP and RIMS Applied to PACES
PACES is implemented in Borland Pascal for Windows, a programming environment that

offers rich OOP capabilities and a modularization facility that promotes the RIMS
techniques.

Modularity is an important quality of the PACES software. As the system has
developed and evolved through several prototyping stages, the modularity of the software
has ballooned considerably. PACES currently consists of some 35,000 lines of source code
dispersed throughout 29 separate software modules. Of these, 15 are general-purpose
software libraries, while the remaining 14 contain code specific to the PACES application.
Figure 4-53 shows the hierarchy of modules that are linked to form the PACES program.
At the level most removed from PACES, the Windows API is a non-object-oriented library

which provides a gamut of subroutines for such things as performing GUI operations and

175

accessing system resources. Since the API is not object-oriented, BPW’s ObjectWindows
library is implemented ‘on top of’ the API to cast its subroutines as objects and methods.
At the next level, general-purpose units contain subroutines and objects that perform
operations not specific to PACES, such as database manipulation, serial link
communications, and knowledge base inferencing. The generic units implement
functionality common to all accelerators (such as GUI objects for selsyns, switches and
meters, and SBC communication procedures), while the site-specific units implement
functionality specific to individual accelerator sites (such as knowledge bases, GUI control
panel objects, and electronic logbook manipulation). This is done to facilitate the
development of a general-purpose particle accelerator control program that can be

targeted for different accelerator sites in a straightforward manner by altering only the

site-specific modules accordingly.

Level of Specificity
Windows It Lower
A
i
BPW CbjectWindows §
A |
General-purpose Units Generic Units i
t
\ A ;
Site-specific Units 1
PACES Higher

Figure 4-60. Hierarchy of software modules forming PACES. Those shown in gray are
commercial products.

The modularity illustrated in Figure 4-60 enables use of the RIMS techniques of
information hiding and code reusability. Different modules ‘hide’ information and provide
objects, methods and subroutines for accessing the information, thereby imposing a degree
of information integrity since access to information is tightly controlled. Additionally, the
hierarchy lends itself to reuse of code because modules at higher levels of specificity can
share the code of less-specific modules, and even define objects which inherit code from

lower level modules. For example, the site-specific units reuse the code of the generic

176

units in that site-specific functionality is built upon (reuses) generic (non-specific)
functionality.

Figure 4-61 delineates the inter-relationship between the PACES-specific modules. The
Main Program module is responsible for loading the other modules and transferring
control to the generic User Interface module. The generic User Interface module relies on
the KN Devices module for rendering accelerator-specific GUI objects such as meters,
selsyns and switches. The site-specific User Interface module implements control panel
objects specific to different accelerator sites, such as the corona position controller which
is present on the accelerator at McMaster but not at DREO. The RTK module is the

SBC’s real-time kernel, which is communicates with the User Interface module for data

acquisition and control.

Main Program

Site Administration

User Interface Idle Watchdog Facility

RTK User Interface

Security KN Devices R#’K Knowledge Base
Data Loggin
Log book BEE
Fuzzy Logic Control
Log book
Data Banker

Figure 4-61. Module inter-relationships. Site-specific modules are shown in italics.

The remainder of the PACES modules are used either for automated accelerator
operation, or for responding to various types of ‘events’ (or for supporting other modules
in this task). Since all Windows applications are ‘event-driven’, they consist of a collection
of sub-components that are executed depending on ‘events’ that occur. In this context, an
event is either a user input action such as a keypress or mouse movement, or a system
event such as a timer expiration event or serial communications event. Typically, the user
will click a button on the GUI, causing an event which activates, for example, the KN’s
drive motor or initiates automated start-up. Much of the user-oriented event handling is

performed in the generic and site-specific User Interface modules, but several other

177

modules also respond to user input actions. The Data Banker module is used to
co-ordinate access of accelerator state variables, and all accesses to these variables are
made through the Data Banker module’s subroutines. The Security module is responsible
for access authorization, and is utilized whenever an operator logs in or out of the system.
The Log Book module is invoked whenever the user opens the electronic log book which
is used for recording accelerator control settings for later duplication of accelerator state.

The Site Administration module is concerned with accelerator site management, and is

site-specific in its duties.

The rest of the modules are used for handling system events, such as timer expirations
or communications events. These modules therefore operate in the background, without
necessarily requiring user interaction. The Data Logging module is used to log telemetric
accelerator data to disk for later off-line analysis. The Idle Watchdog Facility module
monitors operator inactivity (of the keyboard and mouse), and initiates accelerator safing
action if the operator has been inactive for a specific timespan (q.v. § 4.1.4.2). Finally, the
Knowledge Base and Fuzzy Logic Control modules are used for decision making during
automated start-up, shut-down and steady-state operation (q.v. § 4.3).

PACES is highly object-oriented, with objects and object hierarchies used to implement
almost all aspects of the program. This makes the system flexible to revision and
expansion, and facilitates porting of the system to different accelerator sites. For example,
the GUI is completely object-oriented, and is composed of hierarchies of objects which
implement the behaviour of the user interface. Figure 4-62 shows how the GUI is
organized. The main object is the control panel, the GUI facsimile of the real control
panel. This object is responsible for creating the subservient objects of the GUI which
comprise the components of the user interface. The user interface objects include the
meters, selsyns, switches and support tools present on the control panels at all accelerator
sites (generic objects) and specialized tools which may differ from site to site (generic or
site-specific objects). Since the site-specific control panel object is a descendant of the

generic control panel object, it inherits its parent object’s generic behaviour, and extends
this behaviour with site-specific objects.

178

Generic Control Panel
— Meters

— a Selsyns Accelerator Interface
A

— & Switches

- - Tools ——————> Support Modules

- Site-specific Control Panel

N .
\: YD Other controls and instruments
3 Tools

Figure 4-62. GUI object hierarchy.

The generic objects, and the modules they reside in. form a generic basis for the
accelerator control system, and only a relatively smaller amount of site-specific objects
and modules need to be added on top of this base to implement a site-specific system.
Thus. it is evident that this arrangement makes for a highly modular, object-oriented
system architecture which possesses the desirable RIMS properties, and leads to a control

system which is both powerful (through genericity) and flexible (through site-specificity).

* *® »
This chapter has described the design and implementation of PACES in considerable
detail, elaborating on aspects of the system’s overall development that are relevant to the
theme of this thesis. The next chapter presents some analysis of the expert system’s

performance during automated accelerator operation.

Chapter 5

Autonomous Performance

This chapter details performance of PACES’ knowledge base during automated
accelerator operation. Time-series plots of accelerator operating parameters will be
presented and discussed to illustrate how the expert system performs during accelerator
start-up, conditioning and beam maintenance. The performance of the fuzzy logic-based

terminal voltage set-point controller will also be presented and compared with the expert

system’s voltage set-point pilot.

The time-series plots which figure prominently in this chapter are generated off-line
from telemetric data logged to disk during accelerator operation. Each plot shows how
several accelerator parameters vary over time. By plotting selsyn position values (control
outputs) simultaneously with analog meter values (control inputs), it is possible to

demonstrate how the accelerator responds to various forms of automated control.

5.1 Expert System Performance

As described in Chapter 4, the expert system is responsible for automated accelerator
start-up, beam maintenance, and shut-down. The start-up knowledge base is required to
start the accelerator from an inoperative state and establish the particle beam within
specified tolerance intervals for parameters such as terminal voltage and target beam
current. The beam maintenance knowledge base is charged with maintaining the particle
beam within specified tolerance intervals and engaging in beam recover whenever the
beam is lost from target. Finally, the shut-down knowledge base performs accelerator
deactivation. Due to its low level of complexity, the shut-down knowledge base will not
be discussed further. Instead, what follows is a discussion of the performance of the
start-up and beam maintenance knowledge bases.

179

180

5.1.1 Automated Start-up

Figure 5-1 shows some of what occurs during an automated accelerator run in which
the expert system performs accelerator start-up (cf. Figure 4-31). There are two goals for
the start-up procedure: The first is to reach a specified terminal voltage of 1.0MV.* Once
the target terminal voltage is reached, the second goal of acquiring a strike (generating a
particle beam that strikes the first Faraday cup) comes into effect. For this specific
accelerator run, the gas and focus selsyns were set to positions used in a previous run, so

only the belt charge and extraction selsyns were manipulated by the control system.

600

- S00

"g‘ 400 2
2 @
i :
3 8- L300 §
a
g, 2
2 61 g
a L200 2
<

N - 100

0 50 100 150 200 250 300 350
Time (8)

Figure 5-1. An example of automated start-up.

The control power is switched on at time Os, and the terminal voltage assumes its
uncharged baseline value of approximately 250kV. The start-up process then proceeds to
verify several safety interlocks (e.g. cooling water turned on, tank SF pressure within
acceptable limits). Next, the van de Graaff drive motor is switched on, followed by the belt
charge power supply. Automatic control begins at A, when the control system increases
the belt charge selsyn to achieve the specified terminal voltage of IMV. A fact stored in
the knowledge base indicates that there is a ‘dead zone’ in the belt charge selsyn, and the
first 11 full turns will have no effect on the terminal voltage. The expert system therefore
quickly turns the selsyn through 11 turns (B), and then begins making small stepwise

® This terminal voltage is low enough that conditioning is not needed for stable operation.

181

increases of the selsyn (C) to bring up the terminal voltage to its target level. The expert
system then begins increasing the extraction selsyn (D) in an attempt to generate a strong
particle beam. Beam intensity occurs at E, marked by a pronounced jump in beam current.

At this point, the start-up sequence terminates successfully, and beam maintenance mode

is entered.®’

In the example shown. automated start-up took about six minutes, but generally the
time required for start-up depends on many factors (such as voltage stability. quality of

vacuum, previous control settings and condition of the ion source) and can vary from run

to run.

5.1.2 Conditioning

As stated in Chapter 4, the expert system performs voltage conditioning to "condition’
the accelerator gradually to increasingly higher terminal voltages. Conditioning is typically
necessary when operating at terminal voltages near the accelerator’s maximum rating.

after the machine's tank has been opened for maintenance, or whenever the accelerator

exhibits periods of voltage instability.

‘Warm' conditioning is performed during an ongoing accelerator run when the
machine encounters a period of voltage instability while in “cruise control’ mode. or when
starting up the accelerator after a relatively short period of inactivity (e.g. overnight, or

after a brief shut-down to change samples in the target chamber).

As illustrated in Figure 5-2, during warm conditioning (cf. Figure 4-34) the belt charge
selsyn is repeatedly adjusted in a step-wise manner (A), with the expert system pausing
after selsyn adjustments to allow the accelerator time to ‘condition’ itself to the higher
terminal voltage (B). As long as the terminal voltage appears stable (that is, there is no
sparking or excessive voltage ripple), the expert system gradually increases the terminal
voltage. Usually at some point, however, the terminal voltage becomes unstable or a spark
occurs (C). The expert system detects this instability and backtracks by decreasing the belt
charge selsyn to recover stability at a lower terminal voltage (D). More pronounced
episodes of instability (F,H) require greater amounts of backtracking to recover stability

S The sharp drop in beam current occurring at F may indicate beam sputtering due to an initial, short-lived instability in the plasma or
source gas flow.

182

(G,)). Once the instability subsides, the expert system resumes its stepwise belt charge
selsyn increases (E,J). Eventually, when the terminal voltage is stable and within tolerance

of its set-point, the conditioning operation terminates. and inferencing switches to the
Auto-Pilot knowledge base.

113

Belt Charge Selsyn (turns)
Terminal Voltage (MV)

3.5

3.0

103

25

0 200 400 600 800 1000 1200
Time (s)

Figure 5-2. Portion of a "warm’ terminal voltage conditioning operation carried out
during start-up after a brief period of shut-down.

*Cold" conditioning, in contrast, is performed when the accelerator has been started
from a ‘cold’ state. such as after a weekend of inactivity, or after maintenance. and is
therefore expected to exhibit a substantial initial period of voltage instability, especially at
terminal voltages near the accelerator’s upper limit. The difference between cold and
warm conditioning is that in cold conditioning, the accelerator is deliberately
over-conditioned to a higher terminal voltage than is needed for the run so as to provide a
buffer zone of voltage stability; by conditioning the accelerator to stability at a higher
voltage, stability at lower voltages is more reliable and longer lasting. Cold conditioning
commences immediately after the accelerator has been started and the terminal voltage has
been brought to a baseline level of approximately 3.0MV. Cold conditioning, like warm
conditioning, involves repeatedly increasing the belt charge selsyn in a step-wise manner,
with the expert system waiting out periods of voltage instability. When the specified upper

limit for conditioning is reached and the voltage is stable, the conditioning operation

183

terminates successfully, and the voltage set-point pilot is executed to bring the terminal
voltage down to the level required for the accelerator run. When the target terminal
voltage is reached and is stable, the conditioning knowledge base terminates, and

inferencing switches to the Auto-Pilot knowledge base.

10.8 47
10.5
‘éﬂ .
H 3
1 2
2 8
0 g
5 98 39 &
8 997 Termnal voitage 4.2 &
o N E
3 2
9.5 1 n M h 37
| / WA
9.3 — \ [35
—8
90 T L} v T M T v T v ¥ M T T Ll v T v] 33
0 100 200 300 400 500 600 700 800 900
Time (8)

Figure 5-3. An example of *cold’ terminal voltage conditioning.

Figure 5-3 shows an example of cold conditioning for a target terminal voltage of
3.5MV. In the figure, the target terminal voltage is shown by the green line, the tolerance
interval of [+100kV,-50kV] is indicated by the red lines, and the upper limit for
conditioning is marked by the blue line. The belt charge selsyn is repeatedly increased to
increase the terminal voltage through tiers of stability (A). When the voltage level becomes
unstable or sparking occurs (B), the expert system backtracks to stability at a lower
terminal voltage tier (C). When the upper limit for conditioning is reached and the voltage
is stable (D), conditioning terminates successfully, and the voltage set-point pilot is
executed to bring the terminal voltage down to the level required for the accelerator
run (E). When the terminal voltage is brought to stability within tolerance of the required
level (F), the conditioning knowledge base terminates, and the Auto-Pilot knowledge base

is activated.

184

5.1.3 Beam Maintenance

When the accelerator is being operated in automatic mode — that is, when PACES is
in control of the accelerator during the beam maintenance phase — the expert system is
required to maintain the particle beam on target within specified tolerance intervals. As
described in Chapter 4, the beam maintenance knowledge base comprises several threads
which are inferenced in parallel: The Auto-Pilot is the principal knowledge base thread
responsible for maintaining the particle beam on target, and several other “helper threads’
are charged individually with maintaining various accelerator parameters (such as corona

current. source gas flow, and belt charge) within tolerance.

3.1.3.1 Auto-Pilot
The Auto-Pilot employs the voltage stabilizer hardware subsystem for maintaining the

terminal voltage (and. therefore, particle energy) at set-point — as long as the voltage
stabilizer is able to maintain the terminal voltage at set-point. the Auto-Pilot remains
essentially idle. When the voltage stabilizer loses control of the terminal voltage (usually
after a spark). the Auto-Pilot must be able to detect the loss of control and enact recovery

in order to restore the particle beam to target with as little delay (lost beam time) as

possible.

o
o

45 Beam current L4
\

4.0 o \- —— ' 3 z
35 ~
g g
-3 3
230 gé
825 8
3 5
E20 3
3 8
Tys- a
: g
8
(7]

Figure 5-4. Example of Auto-Pilot entering ‘cruise-control’ mode.

185

Figure 5-4 shows what occurs as the Auto-Pilot is activated and takes control of the
accelerator (cf. Figure 4-36). Initially, the terminal voltage has been brought to within
tolerance of its set-point by the voltage set-point pilot (maybe after conditioning), and a
particle beam is being detected on one of the Faraday cups (typically ‘A’ or ‘B’ cup®).
The Auto-Pilot first performs several checks to ensure that the accelerator is ready for
‘cruise control’ mode (e.g. terminal voltage stable and within tolerance, beam current
detected on Faraday cup, sample power within tolerance), and then switches the voltage

stabilizer mode from Off to Stby and then to SIit®, and enters its ‘stable beam’ loop.

Figure 5-4 shows that as the voltage stabilizer’s mode is switched from Off to Slit, the
stabilizer balance signal shifts from being steady and near-zero to varying and negative,
indicating that the voltage stabilizer has assumed active control of the termiral voltage.
This example also shows that "C’ cup has been left inserted into the beam line (for
on-demand beam sampling), but it is more typical for the expert system to pull out all

Faraday cups and monitor the beam indirectly using the sample power or stabilizer balance
signals (as described below).

The voltage stabilizer is able to maintain the terminal voltage at set-point for long
periods of time (sometimes hours) by compensating for minor fluctuations in terminal
voltage. But, occasionally (and depending on the relative level of the terminal voltage),
large terminal voltage fluctuations occur for which the voltage stabilizer is unabie to
compensate. This occurs because as the particle energy shifts too far off set-point, the
analyzing magnet fails to bend the particle beam properly, and the beam fails to strike the
energy slits, breaking the feedback path required for terminal voltage control
(cf. Figure 2-7). The net effect of such a large voltage fluctuation is that the beam gets lost

from target, and the voltage stabilizer is unable to recover the beam.
The beam maintenance knowledge base can detect beam loss in three different ways:

® Sample power: The sample power signal is monitored to detect indirectly whether

the beam is on target. The sample power signal is low when the beam is irradiating the

@ The KN-4000 at AECL's Whiteshell Labs has three Faraday cups: ‘A’ is upstream of the analyzing magnet. *B’ is downstream of the
analyzing magnet, steerers and quadrupoles; and *C” is located immediately upstream of the sample chamber.

“Thisassumthanhcbeamistobebemthmughﬂnamlyzingmamlfthemgnctisnotbcingusd.th:volngembilizcrgﬂs
switched to GvM mode.

186

target, and high when the beam is not on target. The Auto-Pilot can monitor the sample
power signal and infer a loss of beam from a jump in the sample power signal. This is the
best method for detecting beam loss (because the beam does not need to be disturbed to
detect its presence), but is not always available depending on the features of the target

chamber which vary from experiment to experiment.

@ Stabilizer balance: When the voltage stabilizer is controlling the terminal voltage,
the stabilizer balance signal shows a relatively high amount of variance; when stability is
lost, the stabilizer balance signal has low variance. It is therefore possible to infer loss of
beam indirectly by detecting a significant change in the variance of the sample power
signal. This effect is captured in Figure 5-4 above, which shows how the stabilizer balance
signal changes from being low-variance and near-zero to high-variance and negative when

the voltage stabilizer acquires active control after being switched to GVM mode.

® Beam current sampling: The expert system can “sample’ the beam by inserting the
*C” cup into the beam line and measuring the beam current for a short time. The beam'’s
presence on target is directly ascertainable using this method. but the beam is disrupted

from target, which may not be tolerable in certain experiments.

Whatever method is used. the expert system enters its “beam recovery’ mode when it
determines that the beam has been lost from target. Figure 5-5 shows an instance of
automatic beam recovery in which the sample power is monitored to detect beam loss.
Initially (A) the terminal voltage is stable at approximately 4MV. and the sample power
(B) is low (approximately 10W). A spark occurs at time Os (C), which causes the voltage
stabilizer to lose control, and the beam is lost from target. As a result, the sample power
quickly jumps to a high level (D), indicating that the beam has indeed been lost from
target. A short time later, the expert system initiates recovery mode (cf. § 4.3.6) by
switching the voltage stabilizer to Off (E). The terminal voltage shortly recovers to its
set-point (F), and the expert system re-activates the voltage stabilizer, gradually switching
it from Off to Slit (G), all the while checking that the voltage is stable. Once the voltage
stabilizer regains control, the expert system pulls out the ‘C” cup so that the beam strikes
the target, and the sample power drops back to its previous level (H), indicating that the

187

beam is on target. At this point, beam recovery has succeeded, and the expert system
switches back to ‘stable beam’ mode. In this example, the beam was lost from the target

for 61.4 seconds.

4.5 200
b]
/
A c
4.0 \ \
/ \ ~15.0
Termmal voitage F
: ' \ 3
o 35 T \ M %
[<]
-] M %
S / 7 F10.0 &
< H P
[Sample power a
E 30 4 ,E,
o (7]
= G
° —Sit \. —Sit 5.0
2.5 4 . e —Auto
. o —GW
/ . e —Stby
g *—of
20 v Ll M 1 M v T M ¥ v T M T v L] v L] v T A o o
-30 -20 -10 0 10 20 30 40 50 60 70 80
Time (8)

Figure 5-5. Example of beam loss and automatic recovery, using sample power signal
to detect loss of beam.

In comparison. Figure 5-6 shows an example of beam recovery in which beam loss
was detected from a change in the variance of the stabilizer balance signal. Initially,
approximately 25s prior to beam loss, the terminal voltage enters a period of instability (A)
punctuated by three sparks. This instability proves too much for the voltage stabilizer to
handle, and the beam gets lost at Os (B). The expert system determines that the variance of
the stabilizer balance signal has changed significantly and concludes that the stabilizer has
lost control. The stabilizer is immediately switched to Off and inferencing shifts into
recovery mode. Although the terminal voltage continues to fluctuate (unlike the previous
example), the expert system is still able to re-activate the voltage stabilizer (C), the
terminal voltage settles back to its set-point under control (D) with the beam on target,

and the expert system switches back to *stable beam’ mode. In this example, the beam was
lost from target for 32.1 seconds.

42 6.0
Termmnal voitage
40+ D
a \ +4.0
38 + B /smnum—nam
g - 120
s ﬂ g
[}
236 T+ a
2 ["'\‘\,fm"\’\ 3
2 \ @' - 0.0 g
£34 { N -
E b — Sit < —sit a
- +-2.0
32 + » e — Auto V\/\‘
L4 o —GW
+4.0
30+ - o — Stby
o —Oft
28 A ¥ T v |l Li M T M T '60
-30 -20 -10 0 10 20 30 40 50
Time (s)
Figure 5-6. Example of beam loss and automatic recovery, using stabilizer balance

signal to detect loss of beam.

188

A comparison of the recovery times for six instances of beam loss is presented in

Figure 5-7. Recovery time during these instances of beam loss averages 54.3s.™ This

indicates that. usually, the expert system is able to recover the beam within one minute of

beam loss, but this time can be affected by such factors as terminal voltage stability.

quality of system vacuum, and the vitality of the accelerator’s ion source.

Beam Loss Time (s)

g 3 8

Nae e

T Avernge 343

N1721 AFs 9611721 AFD BBV AR SB11/IB A1 95/11/18 AMa 98/11/18 AMD

Figure 5-7. Comparison of recovery times for six instances of beam loss.

£ the beam loss time for instance #4 is discounted as an upusuaily rapid recavery, the average beam loss time is 58.7s.

189

3.1.3.2 Corona Optimization
As described in Chapter 4 (§ 4.3.6.2), one of the beam maintenance knowledge base’s

helper threads is responsible for ensuring that the corona current remains within its
prescribed tolerance interval. Figure 5-8 illustrates the corona current optimization thread
performing an automatic adjustment to maintain the corona current within the specified
tolerance interval: The ‘optimum’”* corona current of 50pA is indicated by the green line,
and the lower and upper limits (of 30pA and 80uA. respectively) are indicated by the red
lines: the corona current signal is shown in blue. Prior to approximately Os, the corona
current is oscillating within the tolerance interval (A), but breaches the upper tolerance
limit at Os (B). triggering the corona current optimization thread to perform a control
adjustment of the belt charge selsyn (C). After several decreases of the belt charge selsyn.
the corona current drops back into its tolerance interval and approaches the optimum
value (D), and the corona current optimization thread ceases control adjustment. In this

example, approximately 30 seconds were required to adjust the corona current.

10.50 1200
\ /C\
Belt charge seisyn ‘-_‘__\——_‘
10.00 A
- 100.0
Corena current
e s
E 950 1 8 Upper tolerance it _
g \ A 4 3
€ v 800 =
3 A g
@ 9,00 - / \\ 3
& 2
5 -60.0 ©
g 8501 /’M'\/\/\/V\ ©
\ ~ hd v
Optimum level \
D -40.0
8.00 A
Lower tolerance limt
7.50 T T T T T T T T T T T T T T 20.0
-30 -20 -10 0 10 20 30 40 50

Time ()

Figure 5-8. Example of corona current optimization.

5.1.3.3 Gas Optimization
The gas optimization helper thread is used by the beam maintenance knowledge base

for adjusting the source gas flow rate in an effort to maintain particle beam stability by

™ *Optimum’ in this case means “optimum as prescribed by the operator’.

190

maintaining the accelerator’s vacuum at an ‘optimum’” level. It was mentioned in
Chapter 4 (§ 4.3.6.5) that the gas optimization problem is complicated by the slow slew
rate of source gas flow in response to gas selsyn adjustments. Figure 5-9 presents an
example of slow gas slew rate, showing how the vacuum level (an indirect gauge of source
gas flow) changes in response to gas selsyn adjustments. As shown in Figure 5-9. a
two-turn increase of the gas selsyn (A) results in a slow, gradual rise of the vacuum level
(B) which lasts approximately 150s (2.5 minutes). When the gas selsyn is decreased by
3.15 turns (C), the vacuum level does not show any significant response for approximately
38s (D). It is obvious that the gas slew rate is quite slow in comparison to the terminal

voltage slew rate (which is about 3s); this slow slew rate consequently makes

heuristic-based control slow and clumsy.

29.00

20.0
0
"Wt g
28.00 -
L15.0
'E‘27.00 ?
g :
-
% 100 E
3 3
0 8
gzs.oo e >
5.0
25.00 -
24.00 . T : r y . 0.0
0 50 100 150 200 250 300

Time (8)

Figure 5-9. Example of slow source gas slew rate.

The gas optimization helper thread presented in Chapter 4 (§ 4.3.6.5) incorporates a
long time lag (5 minutes) in order to accommodate the slow gas slew rate, and performs
gas selsyn adjustments when the vacuum level deviates from the specified tolerance
interval. Figure 5-10 plots an instance of gas optimization: The vacuum level is hovering

about the lower tolerance limit, and slips below this lower bound long enough to be

2 +Optimum’ in this case means *optimum as prescribed by the operator’.

191

detected by the knowledge base (A). The gas optimization thread gradually increases the
gas selsyn to raise the vacuum level towards *optimum’” (B), and waits for 5 minutes after
gas selsyn adjustment (C) to allow the gas flow rate to respond. During this time, the
vacuum level slowly drifts up towards optimum (D) and then settles near optimum (E).
This response satisfies the termination criterion for the gas optimization thread, and gas
selsyn adjustment is ceased until the next time the vacuum level drifts out of tolerance. In

this example. approximately 12 minutes were required to make the gas flow adjustment.

270

C 11.0

B
26.0 \
Gas seisyn
L 10.0

»N
o
(=]

Vacuum

Gas Seisyn (turns)

2°;ol—fl' T T v ¥ T F M T A ¥ L | v 1 M

o] 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (minutes)

Figure 5-10. Example of gas optimization.

5.1.4 Fuzzy Control of Terminal Voltage Set-point

This section presents the results of an evaluation of the application of fuzzy
logic-based controllers to terminal voltage control. As explained in Chapter 4 (§ 4.3.8),
three versions of the belt charge FLC were evaluated and compared with both manual and
expert system-based belt charge control. The test case (goal) for evaluating the FLC was a
target terminal voltage of 1.0MV during start-up of the KN-3000 at McMaster. A
tolerance window of [+100kV,-50kV]™ was specified, so any stable terminal voltage
within the range 0.95MV to 1.1MV was sufficient to satisfy the goal (set-point). In the

™ *Qptimum’ in this case means *optimum as prescribed by the .
™ This coarse error margin is acceptable because the accelerator’s built-in voltage stabilizer is responsible for finer control of terminal
voltage set-point.

192

following figures, the target terminal voltage is indicated by a green line, and the tolerance
window by two red lines. Note, however, that no tolerance window was specified for the

manual set-point acquisition trial.

As a basis for comparison, both a human operator and the existing expert system were
used to start-up the accelerator to its target voltage. Figure 5-11 presents the data logged
during a manual start-up. The operator’s ‘control loop” starts at 172s, and the goal state is
reached at 300s. for an elapsed time of 128s. No less than 20 belt charge selsyn
adjustments were performed to reach set-point.” This manual start-up was performed by a

novice operator, and can be considered an upper bound on manual set-point acquisition.

k1.1
12.0 ,J—_——‘_Fﬁ
- 1.0
10.0 -1 0.9
e -0.8
S \Bdlchuwnduyn L g
E 8.0 4 0.7 =
2
] 0.6 g
6.0 =
g’ -0.5 &
S 04 5
Lo4 8
2 40
0.3
S
20 1 ‘ermnal voitage Lo.2
~0.1
0~° T L] v Ll A T T] T T 1 T T M L M] M T M T M) 00
70 90 110 130 150 170 180 210 230 250 270 290 310
Time (8)

Figure 5-11. Manual acquisition of 1.0MV during start-up.
Figure 5-12 shows the expert system’s voltage set-point pilot (q.v. § 4.3.4.2) being
used to adjust the belt charge selsyn until the target terminal voltage is reached. In total,
6 belt charge selsyn adjustments were made. The voltage set-point pilot took

approximately 33s to reach its goal state. There was no overshoot during terminal voltage

set-point acquisition.

™ The nine vernier decreases of the belt charge selsyn performed afier 300s could be considered overshoot compensation except that no
overshoot in terminal voltage is observable.

193

11
12.0 4 ’——’__r____,__,—-—-——
10
el P an
10.0 - -09
g Belt charge selsyn 08 o
2 s
P 8.0 A 0.7 o
e o
b
2 Los £
S 60 - 2
S 05 2
5 04 5
= 0.4
8 40 1 ~
Terminal voitage Lo.3
20 4 _ :-0.2
rrr'f Lo.1
00 M ¥ A T v T T T M T A\ T v L v 00
60 70 80 90 100 110 120 130 140
Time (S)

Figure 5-12. Acquisition of 1.0MV by expert system'’s voltage set-point pilot during start-up.
The first version of the belt charge FLC was ‘executed’ in a control loop with a fixed
delay of 3.5s to accommodate the terminal voltage slew rate. As illustrated in Figure 5-13.
this FLC required 28s to reach set-point, and performed 6 belt charge selsyn adjustments.

No overshoot was observed.

1.1
120 f
1.0
Vad P S
10.0 4 -0.9
Belt charge seisyn
T ~ Lo.8
g °s
€ 50 0.7 S
s g,
3 Log £
A s
& 6.0 b
o Los 8
5 £
o
§ 0.4 3
40 4
™ Termnal voltage 0.3
20 0.2
0.1
o 0 T LM A 1 ’ LB ¥ T T) 0 o
60 70 80 90 100 110 120 130 140
Time (8)

Figure 5-13. Performance of first version belt charge FLC: One input (terminal voltage
error) and 3.5s delay between control iterations.

194

The second version FLC employed a control loop delay dependent on the derivative of
the terminal voltage, which resulted in improved performance. The modified FLC
(Figure 5-14) took 23s to reach the required terminal voltage, performed 5 selsyn

adjustments, and did not exhibit any overshoot.

11
12.0 A J_,_/—' - }ﬁ ‘

[_f 7 1.0

10.0 4 0.9

) Los

£

3 Belt cnarge selsyn g
T 8.0 Lo7 ©
> [
K4 =]
3 ~ 0.6 %
] Tenminal voitage >
a 6.0 1 g
E 0.5 €
5 :

= 0.4
8 40 =

-0.3

2.0 1 0.2

-0.1

0.0 T T ¥ T T T v T ¥ T M T T T T A T 0.0

50 60 70 80 90 100 110 120 130 140 150
Time (8)

Figure 5-14. Performance of second version belt charge FLC: One input (terminal
voltage error) and derivative-dependent delay between control iterations.

The third version FLC involved inclusion of a second input variable, the derivative of
the terminal voltage. As shown in Figure 5-15, this version spent 26s reaching the
set-point, executed 10 selsyn adjustments, and caused an overshoot of 0.1IMV; four
selsyn adjustments were applied for overshoot compensation. This performance suggests
that the two-input FLC is potentially the fastest at reaching the set-point, but that
fine-tuning of its FAM is needed to eliminate overshoot.

195

11

——= i N 1.0

10.0 1 0.9

@ 0.8
5 g
c 8.0 geit selsyn 0.7 o
) ~N o
2 8
@ 06 3
3 60 - 2
s ’ o5 2
2 0.4 :
& 40 o

™ Terminai voltage -03

204 o 0.2

HJ_/J -0.1

0 0 v T M L v T T T M] T T M 00

40 50 60 70 80 90 100 110
Time (s)

Figure 5-15. Performance of third version belt charge FLC: Two inputs (terminal
voltage error and derivative of terminal voltage error) and Is delay
between control iterations.

Table 5-1 summarizes the results of this study. The constant-delay single-input FLC
(version one) required less time to reach the target voltage than the expert system’s
voltage set-point pilot. The variable-delay FLC (version two) also required less time, and
executed fewer control actions than the expert system. The two-input FLC (version three)
was second fastest to reach the target voltage, but caused an overshoot of 10% and

expended 4 selsyn adjustments to compensate.

Controller _ Time (s) Control Actions Overshoot
Manual 128 20 Possible
Expert system voltage set-point pilot (variable delay) 33 6 No
Constant-delay single-input FLC (version 1) 28 6 No
Variable-delay single-input FLC (version 2) 23 5 No
Constant-delay two-input FLC (version 3) 26 10 Yes

Table 5-1. Summary of results comparing belt charge FLCs with manual and expert
system-based terminal voltage control.

* * »
This chapter has described the performance of PACES’ artificial intelligence-based
automation mechanisms. The results presented show that the expert system and fuzzy

196

logic-based controllers are capable of performing autonomous accelerator start-up and

beam maintenance operations with accuracy and response times comparable to manual

operation.

The following chapter discusses considerations involved in generalization of the
computer-centered technology insertion (CCTI) approach which was used in the PACES
project. The PTP development lifecycle model will figure prominently in this discussion,
serving as a foundation and backdrop for the many diverse aspects of the CCTI operation
which must be properly considered and developed in detail in order to produce a computer

system which both successfully performs the tasks required of it and is ultimately accepted
by the people who use it.

Chapter 6

Discussion

The concept of technology insertion introduced in Chapter | is concerned with
modernizing and upgrading existing human-machine systems through the addition of
computer-centered hardware and software in an effort to increase the useful lifespan,
efficiency and capability of these systems. Because humans and machines are radically
different entities, many of the things that humans are good at are usually things that
machines are not good at, and vice versa. A good illustrative comparison of the
differences between humans and machines is supplied by Siddall, ([Sid94], § 1, p. 6):

“The human has intelligence, foresight, creative ability, diagnostic ability and
extreme versatility in all respects. On the negative side, the human can get bored,
distracted, confused or frightened, and needs to eat and to spend time in the
cafeteria and washroom, and is commonly burdened with incidental chores such as
writing reports and talking on the telephone. On one hand the human can make
‘intelligent’ errors in routine situations: on the other hand he can work tenaciously
to resolve a complex and unforeseen mishap. The machine is tireless and entirely
unemotional and can bring kilowatts of effort to bear in miliiseconds after months

of total inaction. On the other hand, in human terms it is just plain dumbs; it has no
idea what ought to be done, only what it has been told to do, right or wrong.”

Given this large dissimilarity between humans and machines, it is sensible to ensure that
each party within a human-machine system is charged with the tasks for which it is best
equipped. Prior to the computer age, humans were required to perform many tasks that
were better suited for computers to perform had they existed. In modern times, computers
(and computer-controlled machines) replace humans in areas where computers are better

suited to the tasks at hand, thereby freeing humans to concentrate on the tasks for which
they are best suited.

Whereas modern human-machine systems are likely to include some form of
computerization, many older systems still in operation today possess no computerization
197

198

to speak of, and rely heavily (or entirely) on human operators to perform tasks that would
be better accomplished by computers or computer-directed machines. It is, therefore,
important to ensure during computerization of such systems that tasks are assigned

appropriately to the human(s) and computer(s) to ensure that each party is not assigned
tasks for which it is not suited.

The preceding chapters have presented the Particle Accelerator Control Expert System
as a case study of how computer-centered technology insertion (CCTI) can be applied to a
specific human-machine system, the KN-3000 particle accelerator, and it is possible to
extrapolate from this case study towards a generalized methodology for CCTI. The term
technology insertion is used in this context to describe the modernization of the
accelerator (or similar human-tended machine) by installing specialized computer-centered
hardware and software to increase the usability and capability of the machine. In this case,
increased usability means that less-skilled operators can operate the accelerator as
experts, while increased capability means that the accelerator can be used in new ways

that were previously impossible or intractable.

The insertion of such a computer system into an existing human-machine system is
bound to disrupt proper operation of the machine, mainly due to human factors-related
issues arising from the disturbance of operating procedure. There is, therefore, an acute
need that the computer system is designed from the outset to minimize disruption of the
existing human-machine relationship. In practice, there will always be some degree of
disruption, and the solution is to offset this disruption by furnishing the operators with
computer-oriented capabilities that did not previously exist as part of the complex system.
That is, the operators will be more accommodating to a small amount of disruption if they
perceive a net gain in their ability to operate the machine more effectively and efficiently,
and in ways not previously possible. This, in turn, requires that the operators find the
computer system acceptable (useful, usable and likable), and it is well understood
(cf. § 3.3.2) that these qualities are more easily attained if the computer system is well

designed to be considerate of human factors concepts.

199

At the same time, a significant factor in assessing the computer system’s acceptability
is its ability to function properly (that is, function from a real-time systems point of view
in a timely, reliable and error-free manner). Users may indeed find a computer system
easy to use, and likable to use, but ultimately reject the system due to its lack of reliability.
Thus, it is necessary to incorporate real-time systems concepts into the development of the
computer system in order to provide such important qualities as efficiency, timeliness,
predictability, reliability, fault tolerance and safety (cf. § 3.1). This is especially important
if the computer system can affect expensive equipment and property, or jeopardize human
lives. Echoing this concern, Stankovic ([Sta88]) writes that:

“Many real-time systems of tomorrow will be large and complex and will function
in distributed and dynamic environments. They will include expert system
components that will involve complex timing constraints encompassing different
granules of time. Moreover, economic, human and ecological catastrophes will

result if these timing constraints are not met. Meeting these challenges imposed by

these characteristics very much depends on a focused and co-ordinated effort in all
aspects of system development.”

The proper incorporation of human factors and real-time systems concepts into the
technology insertion exercise leads to development of acceptable interfaces between the
computer system and the user, and the computer system and the machine, respectively.
But, as indicated in Chapter 1, the insertion of a computer system into an existing
human-machine interaction can create a ‘technology insertion gap’ between human and
machine which is likely to disrupt proper machine operation. The remedy to this is to
‘bridge’ this gap by providing the system with functionality to assist operators through
computerization and automation. Computerization, in this context, means using a
computer system to transform aspects of machine operation from being entirely manual to
being computer-assisted or completely automated, thereby streamlining or simplifying
otherwise tedious or mundane activities. For example, Sage ([Sag90], p. 5) observes that:

“In most cases, a new tool or machine makes it possible to perform a familiar task
in a somewhat new and different way, typically with enhanced efficiency and
effectiveness. In a smaller number of cases, a new tool has made it possible to do
something entirely new and different that could not have been done before.”

In this sense, the computerization exercise should strive to improve the existing
human-machine interaction by offering novel capabilities for the human-machine system,

200

novel methods for the human-machine interaction, and novel perspectives for the humans
interacting with the machine. In a sense, the computerization exercise should act as a
flexible, mutable encapsulation for the machine — a malleable human-machine interface

which enables the machine to be fit to the user, instead of the user being fit to the machine.

In addition to computerization per se, CCTI can also implement automation to liberate
the operators from duties that do not require direct human supervision but which have
traditionally involved human supervision for lack of better means of accomplishing the
tasks. Artificial intelligence reasoning techniques can be used to enhance automated
operations in order to capture human operational expertise and problem solving abilities,

thereby preserving some semblance of the original human-machine interaction during

automation.

Evidently, a computer system intended to possess such a diverse collection of
attributes, from several different disciplines, implies a high level of system complexity,
which, in turn, presents a challenge for achieving sufficient reliability. The more complex
the system, the more difficult it is to prove reliable in all situations. Consequently, it is
prudent to strive towards minimal system complexity while still providing the intended
characteristics of the system. This effort to minimize complexity simultaneously while
maximizing functionality presents systems developers with a tall order, and it may be
tempting for developers to forego it in the interests of yielding to budgetary pressures and
time constraints. The key, however, is to invest the effort early in the development process
to ensure that the proper balance between simplicity and functionality is achieved. This
may be difficult, or even impossible, if an iterative or prototyping development strategy is
followed — the system could easily become overly complex as functionality is increased
with each new version or prototype. Moreover, the method advocated earlier of involving
users in prototype evolution can lead to systems whose complexity mushrooms due to
poor initial planning followed by cycles of iterative system extension. On the other hand,
completely abandoning an iterative prototyping lifecycle in favour of a more linear, more
compartmentalized development scheme can result in an end product that is stilted and
lacking in utility (functionality), usability or likability.

201

The PTP system development lifecycle model presented in Section 4.5.1
(cf. Figure 4-58) is organized to benefit from both linear (non-iterative) and iterative
development phases. It combines the foresight of linear, phased development with the
resiliency of iterative development. As stated in Section 3.4, there are many different
lifecycle models, and developers tend to choose and evolve models based on the project

requirements at hand and on past experience. In practice, no single lifecycle model is a

panacea for all projects.

The PTP model is a skeleton framework upon which a generalized CCTI methodology
can be built. It is intended to be employed for technology insertion projects targeted for
small-scale human-tended systems. with a workload suitable for involvement of a small
number of people and can be accomplished under a relatively small budget and in a
relatively short timeframe. The development team should include engineering skills in the
following areas: electrical, computer, process and control, software and human factors
engineering. Additionally, domain experts and machine operators should be available for
in-depth consultation during development, product evaluation during the prototyping

stage(s), and during testing and commissioning of the final system.

The first step in the technology insertion exercise begins when a management-level
decision is made to investigate the possibility of computerizing an existing human-machine
system in an effort to modernize operations. This decision may come about for any
number of reasons, and the most important thing to determine is whether a
computer-centered modernization approach is warranted. What does modernization entail
in terms of the system in question? What is hoped to be accomplished or gained from
modernizing the system? It is likely that the existing system is already ‘mature’ in the sense
that it has been well-debugged, the humans are accustomed to using the machine, and the
system as a whole has been operating as designed and expected for a long time. Will
system modernization through the insertion of computer-centered technology yield a net
improvement in system operation, or will it disrupt and complicate the system to the
detriment of effective operation? Unfortunately, it seems commonplace these days for
system managers to justify computerization by claiming that the mere existence and
availability of a good, powerful tool (the computer) justifies its use in a given application.

202

People are, in a sense, saying: ‘Computerizing it has to make it better!” This illogical
justification has all too often resulted in computers being ‘thrown into’ existing systems
(that were working perfectly well beforehand) and wreaking unnecessary havoc. Siddall’s
treatise ([Sid94]) on the debacle of the computerized shutdown system for the Point
Darlinginton CANDU nuclear power plant is a prime testament to the problems that can
arise through misdirected computerization of existing, well-functioning systems. This
report chronicles and diagnoses several situations in which computer software systems
have led to potentially disastrous and lethal outcomes, including the Therac-25 accidents
(cf. Section 3.1.2), the Bruce-A nuclear power plant refuelling system accident, and the
problems suffered by the automatic shutdown system at the Darlington nuclear power
plant. If this report can be taken as a representative sample of how computerization can
adversely affect the proper operation of complex systems in general, then it has much to

warn about the uncareful, brute force insertion of computerization into existing systems.

Nevertheless, there are many legitimate reasons for deciding to modernize a system. [t
may be that the human-machine system has experienced loss of operations expertise due to
personnel layoffs, operator retirement or other factors. In this scenario, the modernization
may be seen as a way to diminish the loss of expertise, or preserve it in a usable form. It
may be the case that management perceives the need to extend the useful lifespan of the
existing system because there is no short-term prospect of getting a new, modern system
to replace it. A computerization project might be considered, in this situation, as a means
of improving operations to increase the usefulness and lengthen the lifetime of the system.
Another reason may stem from a desire to simplify or streamline operations by employing

computerization to improve efficiency and automate aspects of system operation.

One of the issues that needs to be resolved early in the design process is determining
what form the computer-centered modernization should take. Should the computer system
replace the humans entirely, or should it assist them in their duties? Should it be
autonomous or human-supervised? It is assumed, since the systems in question are
human-tended, that it is desirable (or necessary) to maintain human involvement in some

form, whether in the capacity of direct system control, or in a supervisory role. It is

203

therefore necessary for the computer system to incorporate human factors engineering to

promote system acceptability (that is, utility, usability and likability).

Moreover, if the computer system is planned to have some level of autonomy, then it
may be worthwhile to consider inclusion of artificial intelligence paradigms for problem
solving and self-directed reasoning. Inclusion of Al mechanisms is certain to complicate
the system, but the benefits of such prospects as machine learning, adaptability and
human-like decision making may make employment of Al worth the extra effort.

Additionally, should the computer system be ‘on line’ (physically connected to the
system) or ‘off line’ (playing an advisory role in system operation)? If the system is
intended to be ‘on line’, then it must be fault tolerant and reliable, and perhaps even
failsafe in its operation to avoid calamity. In the case of an off-line computer system,

dependability is an important issue since humans will expect the advisory computer system

to give good advice at all times.

Finally, it must be decided what programming language(s) and/or programming
environment(s) will be used during development. This decision is influenced to a great
extent by the degree to which third-party software modules can be acquired and utilized
for the computer system. It may be that much of the software for the CCTI exercise
already exists as separate libraries which need only be cobbled together; or, at the other

extreme, it may be that the entirety of the software system must be developed from
scratch.

All of these considerations must be weighed during the initial conception stage of the
CCTI exercise; once the computer system’s requirements have been delineated, the project
can move into the detailed specification and design phase of the PTP lifecycle model.
During this phase, several parallel threads of planning are carried out, beginning with two
parallel threads for the hardware and software. The hardware used to interface the
computer system to the machine (and possibly also the human) is designed. Various key
issues must be resolved at this point: What type of computer should be used? Should there
be an element of multiprocessing? If so, what type of topology should the multiprocessor
employ? Should the processors be homogenous (all the same type) or heterogeneous

204

(different types)? In PACES, an IBM-style 80486 personal computer was used as the main
computer (interfacing with the operator), and presided over one or more 805!
single-board computers which were used for controlling the machine interface. In this
sense, PACES implemented a heterogeneous ‘star-shaped’ multiprocessor topology.
Nevertheless, it may be that some other multiprocessor topology is more appropriate for

the CCTI exercise in question. Some common topologies are shown in Figure 6-1.

Figure 6-1. Various multiprocessor topologies. dared fom jtvassy. p. 335

Since the CCTI exercise involves interfacing with the machine to be controlled. how
should the machine interface (MI) be realized? Should off-the-shelf components be used?
Should custom DACS circuitry be built? How should the MI components be connected to
the computer(s)? PACES made use of some existing, off-the-shelf MI components
(e.g. terminal voltage stabilizer, single-board computer, NMR magnetometer), and added
some customized DACS circuitry for digitizing control panel meters, turning selsyns and
actuating control panel switches. Other CCTI operations may involve a large reliance on
existing sub-systems, or require the entire MI to be designed and built from scratch.
Again, the exact nature of the MI depends largely on the target machine. the existence of
DACS hardware already built into the machine, and the availability of third-party DACS
hardware which could be used in lieu of developing MI components from scratch.
Ultimately, it is recommended that the qualities of the MI described in Section 4.2.2
(p. 106) are pursued: Frugality requires that the MI be low-cost and make use of existing
MI components whenever possible. Modularity and flexibility ensure that the MI will be
extensible to meet the changing needs of both the machine and the computer system.

205

Utility calls for the MI to be as autonomous as possible by ‘off-loading” DACS tasks from
software to hardware where appropriate so as to reduce software complexity and
encourage the use of semi-autonomous hardware sub-systems. Finally, passivity is
recommended in order to minimize the time that the machine is inoperable during CCTI
development and to minimize disruption of normal machine operation during times when
the computer system is not operating (due to such things as debugging, maintenance and
revision). Together, these five qualities of the MI, when applied properly, will yield a
machine interface which is relatively inexpensive yet flexible, simple to control via

software, and minimally disruptive to normal machine operation.

The second thread of planning which should be carried out in parallel to the hardware
thread concerns design and specification of the software which will run on the
computer(s). There are two (possibly three) sub-threads of the software planning, one for
the machine interface, one for the user interface (UI), and possibly one for the artificial
intelligence (if any). The machine interface software is responsible for communicating with
the machine interface hardware described above. and should incorporate appropriate
features of real-time systems as described in Section 3.1. Issues which should be addressed
for the machine interface software include such things as: How should the DACS
workload be distributed between processors? What form of interprocessor communication
should be used? Which aspects of the DACS are time-critical, resource-critical,
fault-critical? What form and level of fault-tolerance should be employed?

The UI software should be planned out in a manner similar to that for the Ml software:
First and foremost, how should the user(s) interact with the computer system? The most
common contemporary form of Ul is the so-called ‘windows’-based, direct manipulation
GUI predominated by a high-resolution colour graphics monitor, mouse and keyboard, but
being most common does not necessarily include being most appropriate. It may be that
some other form of UI is better suited to the machine at hand. As detailed in Section 3.3,
design of the UI must consider a wide range of details, including such things as the task(s)
to be performed, the skill-levels) of the users, and the users’ attitudes towards
computerization of their work (and towards computers in general). Additionally, it must
be decided whether the user(s) should assume an active role in the UI's development, and

206

how this will affect the development process and the finished product. Ultimately, the
most important detail is that of user acceptance of the computer system: the user(s) must
find the computer system likable, usable and possessing of utility. Without user acceptance
of the computer system, the CCTI operation is doomed to failure.

The final thread of parallel specification and design involves the knowledge
based-system, if such is to be included in the computer system. Artificial reasoning should
be considered for such tasks as: autonomous machine control; fault detection, diagnosis
and recovery; operator training; and advising operators during machine operation. It was
mentioned in Section 3.2 that artificial reasoning paradigms can be generally divided into
three categories: expert systems, fuzzy systems and neural systems. Although only expert
and fuzzy systems were applied in the PACES project, it may be that other CCTI exercises
may be better served by neural systems as well as (or instead of) expert and fuzzy systems.
In general, expert and/or fuzzy systems are applicable whenever there exists a good body
of domain knowledge which can be quantified, collated and assembled (by a knowledge
engineer) into a knowledge base. [f no such domain knowledge is readily attainable, then it
may be more appropriate to use neural systems, which are amenable to self-training
without any need for existing domain knowledge. As for expert/fuzzy systems, the
planning of the knowledge base (the knowledge engineering) should take place in parallel
with the planning of the inference engine so as to ensure that the computer system
possesses the proper set of inferencing tools for manipulating the knowledge base to
accomplish the duties of the artificial reasoning sub-system. Some of the details worthy of
consideration during this thread of planning include: What structure should the knowledge
base assume? How extensible does the knowledge base need to be? Should a commercial
expert system shell be used, or should one be developed from scratch? Should the
inference engine be forward chaining, backward chaining, or both? How quickly do
decisions need to be made? How accurately do decisions need to be made? What
mechanisms should be employed to make the decision making reliable? What portion of
the artificial reasoning should be performed by an expert system rule base, and what
portion by fuzzy logic system FAMs? And finally, if the computer system is
multiprocessor, how should the knowledge base be distributed among the processors?

207

Once the detailed specification and design phase has been completed. the CCTI
project moves into the parallel development phase, during which time the hardware for
the MI and the software for the MI, Ul and KBS are further designed, coded, tested and
modified in an iterative cycle. During this time, it may be that the machine’s operators are
taking an active role in the development, evaluating aspects of the UI, furnishing
information and advice for the knowledge engineering, or providing technical assistance
during the construction of the hardware MI. Much of the work performed during this
phase needs to be carried out on-site, with ad libitum access to the machine and its

personnel (operators, technicians, managers, etc.), but some parts of the development
might be amenable to off-site development.

The parallel development phase is followed closely by the prototyping phase, in which
the various parts of the computer system are integrated, connected to the machine, and
presented to the end-user(s) for evaluation. As described in Section 4.5.1 (p. 173), this
evaluation has one of four outcomes: At worst, the end-user(s) may decide to scrap the
system; instead, it is more likely that they will either request that development continue or
that the system be extended, and the parallel development/prototyping cycle continues; or,

at best, the end-users may decide to accept the system. and the system enters its

operational/maintenance phase.

* ® »
This chapter has presented a discussion in general terms of how the CCTI exercise
exemplified by the PACES project can be extrapolated into a framework for a CCTI
methodology for modernizing and upgrading human-machine systems.

The next. and final chapter offers a summary of the work presented in this thesis,
draws some conclusions about the use of CCTI for modernization of human-machine

systems, and outlines some areas worthy of further study.

Chapter 7

Conclusion

This thesis has explored the subject of computer-centered technology insertion (CCTI)
for modernization of small-scale, human-tended systems. The Particle Accelerator Control
Expert System has been presented as an example of such a technology insertion operation
in which a hybrid computer system has been developed to become a modernization

component intended to provide performance enhancement and operations support for a

KN-3000 particle accelerator facility.

Chapter 1 introduced the technology insertion problem by claiming that
computer-centered modernization has great potential benefits, but must be performed

sufficiently well that the resulting system functions properly and reliably, and is accepted
by the users.

Chapter 2 described the KN-3000 particle accelerator, outlining it basic operating
principles, and explaining how the loss of operations expertise at Defence Research
Establishment Ottawa. coupled with budgetary constraints and the necessity of
maintaining accelerator operations at their present level, establishes a need for

modernizing this system through the insertion of computer-centered technology.

An extensive literature survey was presented in Chapter 3 to show how four diverse
areas of electrical and computer engineering have bearing on the technology insertion
exercise: Real-time systems principles are required to interface the computer system with
the machine. Human factors concepts are required to ensure that the computer system is
accepted by the users. Artificial intelligence paradigms can be applied to provide the
computer system with autonomy. Lastly, software engineering methods are essential for
amalgamating these diverse disciplines into a functioning computer system.

208

209

The Particle Accelerator Control Expert System (PACES) was investigated in
Chapters 4 and 5 as a case study of a technology insertion operation. Real-time systems
principles were applied to build a hierarchical, multiprocessor environment capable of
timely response to both the accelerator and the user. The artificial intelligence paradigms
of expert systems and fuzzy logic controllers were used to provide PACES with a degree
of reasoning and problem solving ability sufficient to enable automated accelerator
operation. Aspects of human-computer interaction and the computer-human interface
were involved in making the software system useful, usable and likable by the accelerator
operators. The software engineering concepts of the software development lifecycle,
object-oriented programming, modularity, specification, reuse of code, and information

hiding were harnessed to forge a working, hybridized computer system for performance
enhancement and operations support.

Finally, Chapter 6 presented a discussion concerning computer-centered technology
insertion in general, highlighting the pertinent issues which must be considered and

addressed during the planning, development and maintenance phases of CCTI operations.

The issues of accelerator modernization and operator performance enhancement were
paramount during design and implementation of PACES. Operator performance
enhancement was achieved in several forms, including preservation of operating expertise,
automation of operating procedures, augmentation of operator abilities, and streamlining
of record-keeping requirements. Within the PACES environment, performance
enhancement relies completely upon technology insertion: The installation of new,
computer-oriented hardware and software is required for the performance enhancement
features. It must be emphasized that this computer system, with its customized
accelerator-interface hardware and flexible operator-interface software, serves as a

low-cost and vital bridge between the ageing accelerator and a reduced, less-experienced
operator pool.

The PACES project, as an example of CCTI in general, constitutes a body of original
work in that it has successfully combined aspects of real-time systems, human-computer

interaction and artificial intelligence to produce a semi-autonomous particle accelerator

210

control system and operator performance enhancement platform: Simple, relatively
inexpensive electronic circuitry was used to connect a modern, hierarchical multiprocessor
computer system with the ageing accelerator which was never intended or designed to be
computer-controlled to any appreciable degree. The non-invasive nature of the
computer-machine interface provided for a flexible and modular ‘piggy-back’ data
acquisition and control system which facilitated computer-based accelerator control

without disrupting normal, manual (non-computerized) accelerator operation.

Simultaneously, the customized PACES graphical user interface offered operators a
novel perspective on accelerator operation, furnishing them with a software-based
collection of tools to improve and augment their expertise with such features as
instrumentation consolidation, combined-mode analog/digital meters, time-based
stripcharts. semi-autonomous ‘fire and forget’ selsyn controllers, system-wide kiviat
graphs of accelerator parameters, electronic record keeping and real-time accelerator data
logging. Also, the highly desirable qualities of software acceptability (utility, likability and
usability) were approached through the active involvement of the end-users (operators) in
the design, implementation and testing phases of system development, thereby promoting
the successful bridging of the so-called ‘technology insertion gap’.

Additionally, the inclusion of artificial intelligence reasoning mechanisms imbued the
control system with moderate autonomy and the ability to control the accelerator in ways
modelled on and similar to conventional manual operating procedures, with comparable
(and in some cases superior) response time and accuracy. The expert system-based
Auto-Pilot enabled PACES to perform automated start-up, shut-down, voltage
conditioning and beam maintenance operations (under operator supervision or
autonomously), with the ability to generate and then maintain the particle beam on target
within specified tolerance intervals, even through periods of terminal voltage instability
and particle beam loss. Furthermore, the limited application of fuzzy logic-based control
techniques to terminal voltage set-point acquisition and maintenance indicated that fuzzy
logic-based controllers offer a simple and useful means of implementing various
appropriate sub-components of the overall control task in replace of higher-overhead
expert system-based decision-making mechanisms.

211

Finally. the rigours of software engineering and the power of object-oriented
programming, under the encompassing umbrella of the Parallel Threaded Prototyping
development lifecycle model (or other suitable lifecycle model), ensure that all the
abovementioned aspects of the computerization exercise will meld together seamlessly and

effectively to yield a monolithic, hybridized control and performance enhancement system.

Several conclusions can be realized from this work. Foremost, it is not only possible
but readily accomplishable to modernize and upgrade a mature, human-tended machine via
computer-centered technology insertion, even if the target machine was never intended to
be modernized in such a way. Moreover, the application of computer-centered operations
support and performance enhancement can improve the operator’s ability to use the
machine while at the same time expand the machine’s capability to do its job. That is, the
truly flexible and extensible nature of the computer software creates a pliable
human-machine interface which can both fit the machine to the human and evolve to better
levels of human-machine interaction — the computer intermediary serves as a mutable
stage for the human-machine interaction, providing ways of interacting with the machine
that are otherwise impossible. When this power of flexible interfacing is coupled with the
power of artificial intelligence-based autonomy, human-computer teamwork is bolstered
because each party can attend to the duties to which it is best suited, ultimately resulting in
an improved, composite human-computer-machine interaction. The computer system, in
this sense, can be likened to a Swiss Army Knife, an efficient, compact collection of useful
tools to aid the operator at work — each tool, on its own, improves the operator’s ability
to function, and by combining several useful tools into one, an even greater improvement
is gained. Thus, the exercise of computerizing a human-machine system by assembling a
‘toolkit’ of various tools selected from the realms of real time systems, human factors and
artificial intelligence can offer significant advantages, and can improve the operation of the

machine, preserve operational expertise, and possibly even extend its useful lifespan.

The work presented in this thesis suggests various avenues of further study,
particularly in the areas of artificial intelligence and hierarchical multiprocessing for
process control. How can the PACES knowledge base (and underlying inference engine)
be extended to yield faster decision-making, more comprehensive fault detection and

212

diagnosis, and enhanced adaptability to gradually changing operating regimens and
age-related shifts in accelerator characteristics? How much more of a role can fuzzy
logic-based controllers play in accelerator control? Is it possible to develop adaptive fuzzy
logic controllers to accommodate gradual changes in the accelerator’s behaviour as it
ages? If the hierarchical processing topelogy is expanded through the addition of other
embedded controllers, how best to partition the work load between the host computer and

embedded controllers? Should the knowledge base be distributed between processors, and
if so, should such distribution be static or dynamic?

With regard to the computer-human interface, how can the PACES GUI be extended
and improved? Are there more effective ways of increasing operator performance? Are
there novel forms of human-machine interaction which could be incorporated into PACES
to enhance accelerator operation further? What other aspects of accelerator operation can

be relegated to automatic control in order to relieve the operators and free them to

accomplish other tasks concurrently?

All of these questions are worthy of further investigation, and would serve to broaden

the effectiveness of PACES as an example of computer-centered technology insertion.

* * *

There was a time, not so long ago, when the computer was no more than the
cogs-and-gears dream of Charles Babbage, unable to take form for lack of adequate
funding and mechanical engineering skills. And, there was a time, also not so long ago,
when humans were obliged to perform all variety of arduous and drudgerous tasks, for
want of more suitable agents to labour in their stead. And then, the dream took form, and
the computer assumed the yoke, shouldered its harness and bent to its task, relieving its

creators of their labour.

It seems increasingly likely that in the years ahead computerization will creep its way
into every corner of the world and into every aspect of human life. Computer-centered
technology insertion is a part of this ongoing computerization, a way of modernizing and
computerizing small-scale human-tended machines and systems. This thesis has sought to

213

identify and explore the wide-ranging details and concerns of computer-centered
technology insertion, and has suggested a hybridized methodology for accomplishing such

computerization exercises. In doing so, it is hoped that similar technology insertion

operations are met with all measure of success in the years to come.

[BacB4]

[Bad9l]

[Bar87]

[Bar91]

[Bar95]

[Ben88]
(Bir82]

[Bir95]

[Boe76]
[Boe86)
[Boo86]
[Bur50]
[Car83]

[Cav67]

[Cha91]

214

References

Bachant, J., McDermott, J., “R| Revisited: Four Years in the Trenches”, The 4/ Magazine,
vol. §, no. 3, Fall, 1984.

Bader, J., Edwards, J., Harris-Jones, C., Hannaford, D., “‘Practical Engineering of
Knowledge-based Systems”, Artificial Intelligence and Software Engineering, Partridge, D.,
ed., Ablex Publishing Corp., Norwood, New Jersey, 1991, pp. 383-407.

Barnard, P.J., “Cognitive Resources and the Learning of Human-Computer Dialogs”,

Interfacing Thought: Cognitive Aspects of Human-Computer Interaction, Carroll, J.M., ed.,
MIT Press, Cambridge, Massachusetts, pp. 112-158.

Barnard, P.J., “The Contributions of Applied Cognitive Psychology to the Study of
Human-Computer Interaction”, Human Factors for Informatics Usability, Shackel, B.,
Richardson, S.. eds., Cambridge University Press, Cambridge, England, 1991, pp. 151-182.

Bardik, Y., Kallistratov, E., Machnachev, A., Matiouchine, A., Obukhov, G., “Microcontroller
Applications for [HEP Accelerator Control”, The 1995 International Conference on
Accelerator and Large Experimental Physics Control Systems, Chicago, lllinois, October
29-November 3. 1995.

Bennett, S., Real-Time Control: An Introduction, Prentice Hall, New York, 1988.

Birnbaum, J.S., “Computers: A Survey of Trends and Limitations™, Science, vol. 215, 1982,
pp. 760-765.

Birke, T., Lange, R., Muller, R., “Object Oriented API Layers Improve Modularity of
Applications Controlling Accelerator Physics”, The 1995 International Conference on
Accelerator and Large Experimental Physics Control Systems, Chicago, Illinois, October
29-November 3, 1995.

Boehm, B.W., “Software Engineering”, [EEE Transactions on Computers, vol. C-25, no. 12,
pp. 1226-1241, December, 1976.

Boehm, B.W., “A Spiral Model of Software Development and Enhancement”, ACM SIGSOFT
Software Engineering Notes, vol. 11, no. 4, pp. 14-24, August, 1986.

Boose, J.H., Expertise Transfer for Expert System Design, Elsevier Science Publishing,
Amsterdam, Netherlands, 1986.

Burns, A., Wellings, A., Real-time Systems and Their Programming Languages.
Addison-Wesley Publishing Co., Wokingham, England, 1990.

Card, S.K., Moran, T.P., Newell, A., The Psychology of Human-Computer Interaction,
Lawrence Eribaum Associates, Hillsdale, New Jersey, 1983.

Cavanagh, J.M.A., “Some Considerations Relating to User-System Interaction in Information
Retrieval Systems”, Information Retrieval: The User’s Viewpoint, Tonik, A.B., ed., Fourth
Annual National Colloquium on Information Retrieval, International Information Inc.,
Philadelphia, 1967.

Chapanis, A., “Evaluating Usability”, Human Factors for Informatics Usability, Shackel, B.,
Richardson, S., eds., Cambridge University Press, Cambridge, England, 1991, pp. 359-395.

[Che95)

[Che95]

[dAg87)

{Dau92]

[DeM91]
[Des62]

[Dic95]

[Dic95]

[DiM95]

[DiM95]

[Dor77]
[Dri93]
[El91]

(Eng67]
[Epa95]

[Fai85]
[Gai9l]

[Gal97]

[Gil89]

215

Chen, J., Akers, W., Heyes, G, Wu, D., Watson, C., “An Object-Oriented Class Library for
Developing Device Control Application™, The 1995 International Conference on Accelerator
and Large Experimental Physics Control Systems, October 29-November 3, 1995.

Chen, J., Akers, W., Heyes, G., Wu, D., Watson, C., “*An Object-Oriented Class Library for
Developing Device Control Application™, The 1995 International Conference on Accelerator

and Large Experimental Physics Control Systems, Chicago, [llinois, October 29-November
3, 199s.

d’ Agapeyeff, A., Hawkins, C.J.B., Report to the Alvey Directorate on the Second Short Survey
of Expert Systems in UK Business, IEEE on behalf of the Alvey Directorate, United
Kingdom, 1987.

Daugherity, W.C., Rathakrishnan, B., Yen, J., “Performance Evaluation of a Self-Tuning
Fuzzy Controller”, Proceedings of the IEEE Conference on Fuzzy Systems, March 8-12. San
Diego, CA, 1992, pp. 389-397.

DeMooy, S., Development Towards a Control Program for a Model KN Van de Graaff Particle
Accelerator, M.Sc. Thesis, Dept. of Physics, McMaster University, 1991.

Descartes, R., Traité de I'homme, 1662. Translated by Haldane, E.S., Ross, G.R.T., Cambridge
University Press, Cambridge, England, 1911.

Dickey, C., Burnham, B., Carter, F., Fricks, R., Litvinenko, V.N., Nagchaudhuri, A.,
Morcombe, P., Pantazis, R., O'Shea, P., Sachtschale, R., Wu, Y., “EPICS at Duke
University”, Proceedings of the 1995 Particle Accelerator Conference, Dallas, Texas, 1995,
pp- 2217-2219.

Dickey, C., Burnham, B., Carter, F., Fricks, R., Litvinenko, V.N., Nagchaudhuri, A..
Morcombe, P., Pantazis, R., O’Shea, P., Sachtschale, R., Wu, Y., “EPICS at Duke
University”, Proceedings of the 1995 Particle Accelerator Conference, Dallas, Texas, 1995,
pp- 2217-2219.

Di Maio, F., Goetz, A., “Towards a Common Object Model and AP for Accelerator Controis™.
The 1995 International Conference on Accelerator and Large Experimental Physics Control
Systems, October 29-November 3, 1995.

Di Maio, F., Goetz, A., “Towards a Common Object Model and API for Accelerator Controls”,

The 1995 International Conference on Accelerator and Large Experimental Physics Control
Systems, Chicago, [llinois, October 29-November 3, 1995.

Dorf, R.C., Computers and Man, 2nd ed., Boyd & Fraser Publishing Company, San Francisco.
1977, p. 21.

Driankov, D., Hellendoorn, H., Reinfrank, M., An Introduction to Fuzzy Control,
Springer-Verlag, New York, 1993.

Ellison, D., Understanding occam and the transputer, Sigma Press, Wilmslow, England, 1991.

Enge, H.A., “Magnetic Spectrographs”, Physics Today, July 1967, pp. 65-75.

Epaud, F., “Beamiine Control at ESRF”, The 1995 International Conference on Accelerator
and Large Experimental Physics Control Systems, Chicago, lllinois, October 29-November
3, 199s.

Fairley, R.E., Software Engineering Concepts, McGraw-Hill, New York, 1985.

Gaines, B., “Designing Expert Systems for Usability”, Human Factors for Informatics
Usability, Shackel, B., Richardson, S., eds., Cambridge University Press, Cambridge,
England, 1991, pp. 207-246.

Galitz, W.O., The Essential Guide to User Interface Design : An Introduction to GUI Design
Principles and Techniques, Wiley Computer Pub., New York, 1997.

Gilmore, W.E., The User-Computer Interface in Process Control : A Human Factors
Engineering Handbook, Academic Press, Boston, 1989.

[Gla82]

[Gle81]
[Gol83]

[Gou83]

[Hal92]

[Har88)

[Hol91]

[(Hwa84]

(IEES3]
[IEE92]
[Jac92]

[Jen93]
{Jen94]

[Jen96]

[Jen96]

[Kos92]

[Kuz95]

{Lap85]

(Lar81]

{Law92]
[Lev86]

[Lev93]

216

Gladden, G.R., “Stop the Life Cycle, [Want to Get Off", ACM Software Engineering Notes,
vol. 7, no. 2, 1982, pp. 35-39.

Gleitman, H., Psychology, W.W. Norton and Company, New York, 1981.

Goldberg, A., Robson, D., Smalltalk-80: The Language and Its Implementation,
Addison-Wesley, Reading, Massachusetts, 1983.

Gould, J.D., Drongowski, P., “Designing for Usability — Key Principles and What Designers
Think”, Proceedings of the CHI '83 Conference on Human Factors in Computing Systems,
ACM, New York, 1983, pp. 50-53.

Halang, W.A., Sacha, K.M., Real-Time Systems, Implementation of Industrial Computerised
Process Automation, World Scientific, Singapore, 1992.

Harmon, P., Mans, R., Morrissey, W., Expert Systems: Tools and Applications, John Wiley
and Sons, New York, 1988.

Hollnagel. E., *The Phenotype of Erroneous Actions: Implications for HCI Design”,
Human-Computer Interaction and Complex Systems, Weir, G. R. S., Alty, J. L., eds.,
Academic Press Inc., San Diego, California, 1991, pp. 73-121.

Hwang, Briggs, Computer Architecture and Parallel Processing, McGraw-Hill Book
Company, New York, 1984,

IEEE Standard Glossary of Software Engineering Terminology, IEEE Standard 729-1983.
Proceedings of the IEEE Conference on Fuzzy Systems, March 8-12, San Diego, CA, 1992.

Jacobson, L., Christerson, M., Jonsson, P., Overgaard, G., Object-Oriented Software

Engineering: A Use Case Driven Approach, Addison-Wesley Publishing Co., Wokingham,
England, 1992.

Jennings, N.R., “The ARCHON System and its Applications”, Second International Working
Conference on Cooperating Knowledge Based Systems, Keele, UK, 1994, pp. 13-29.

Jennings, N.R., “The ARCHON System and its Applications™, Second International Working
Conference on Cooperating Knowledge Based Systems, Keele, UK, 1994, pp. 13-29.

Jennings, N.R., Corera, J., Laresgoiti, I., Mamdani, E.H., Perriolat, F., Skarek, P., Varga, L.Z.,
*“Using ARCHON to develop real-word DAI applications for electricity transportation
management and particle accelerator control", IEEE Expert, 1996.

Jennings, N.R., Corera, J., Laresgoiti, |., Mamdani, E.H., Perriolat, F., Skarek, P., Varga, L.Z.,
“Using ARCHON to develop real-word DAI applications for electricity transportation
management and particle accelerator control”, [EEE Expert, 1996.

Kosko, B., Neural Networks and Fuzzy Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1992.

Kuznetsov, S., “C++ Library for Accelerator Control and On-line Modeling”, The /995
International Conference on Accelerator and Large Experimental Physics Control Systems,
Chicago, Illinois, October 29-November 3, 1995.

Laprie, J.C., “Dependable Computing and Fault Tolerance: Concepts and Terminology”,
Digest of Papers, The Fifteenth Annual International Symposium on Fault-Tolerant
Computing, Michigan, USA, 1985, pp. 2-11.

Larsen, P.M., “Industrial Applications of Fuzzy Logic Control”, Fuzzy Reasoning and lts
Applications; Mamdani, E.H., Gaines, B.R., eds., Academic Press, New York, 1981,
pp. 335-342.

Lawson, H.W., Parallel Processing in Industrial Real-Time Applications, Prentice-Hall,
Englewood Cliffs, New Jersey, 1992.

Leveson, N.G., “Software Safety: what, why and how”, ACM Computing Surveys, vol. 18,
no. 2, 1986, pp. 125-163.

Leveson, N.G., Turner, C.S., “An Investigation of the Therac-25 Accidents”, Computer,
August, 1993, pp. 18-41.

[Lew95]

[Lew95]

[Lic65]

[Lin88)

[Lin91]

[Lin92a]

(Lin92b]

[Lin93a]

[Lin93b]

[Lin94]

217

Lewis, J., Skarek, P., Varga, L., “A Rule-Based Consultant for Accelerator Beam Scheduling
used in the CERN PS Complex”, The 1995 International Conference on Accelerator and
Large Experimental Physics Control Systems, October 29-November 3, 1995.

Lewis, J., Skarek, P., Varga, L., “A Rule-Based Consultant for Accelerator Beam Scheduling
used in the CERN PS Complex”, The 1995 International Conference on Accelerator and

Large Experimental Physics Control Systems, Chicago, Illinois, October 29-November 3,
1995.

Licklider, J.C.R., “Man-computer partnership”, /nternational Science and Technology, vol. 41,
pp. 18-26.

Lingarkar, R., Automation of the Low-energy Steerers for the FN Tandem Accelerator. M.Sc.
dissertation, McMaster University, Hamilton, Ontario, 1988.

Lind, P.C., Poehiman, W.F.S. and Stark, J.W., “Implementation Considerations for PACES:
The KN-3000 Particle Accelerator Control Expert System”, Proceedings of the Third
Symposium/Workshop on Expert Systems in the Department of National Defence, Royal
Military College, Kingston, Ontario, Canada, pp. 17-36, May 2-3, 1991.

Lind, P.C., Poehlman, W.F.S., Stark, J.W. and Cousins, T., “Knowledge Engineering for
PACES: The KN-3000 Particle Accelerator Control Expert System”, Proceedings of the
Fourth Symposium/Workshop on Expert Systems in the Department of National Defence,
Royal Military College, Kingston, Ontario, Canada, pp. 133-152, April 23-24, 1992.

Lind, P.C., Pochiman, W.F.S., “Design of an Expert-System-based Real-Time Control System
for a Van de Graaff Particle Accelerator”, Applications of Artificial Intelligence in

Engineering, Grierson, D.E., Rzevski, G., and Adey, R.A., eds., Elsevier Applied Science,
NY, pp. 317-334, 1992.

Lind, P.C., Poehlman, W.F.S. and Stark, J.W., *“The KN-3000 Particle Accelerator Control

Expert System (PACES)”, IEEE Transactions on Nuclear Science, vol. 40, no. 6, December,
1993.

Lind, P.C., Poehlman, W.F.S., “Fuzzy Logic for Particle Accelerator Control”, Proceedings of
the Fifth Symposium/Workshop on Expert Systems in the Department. of National Defence,
Westin Hotel, Ottawa, Ontario, Canada, November 14-17, 1993.

Lind, P.C., Poehiman, W.F.S., “Technology Insertion and Performance Enhancement for a

Van de Graaff Particle Accelerator”, Proceedings of the Workshop on Performance Support

Systems for Nuclear Power Plants, Applied Computersystems Group, McMaster University,
July 15-17, 1994,

[Mam81a] Mamdani, E.H., “Advances in Linguistic Synthesis of Fuzzy Controllers”, Fuzzy Reasoning

and Its Applications; Mamdani, E.H., Gaines, B.R., eds., Academic Press, New York, 1981,
pp. 325-334.

{Mam8 1b] Mamdani, E.H., Assilian, S., “An Experiment in Linguistic Synthesis with a Fuzzy Logic

[Man97]
[McC82]

[Mcl96]

[Mej95]

[Mil94]

Controller”, Fuzzy Reasoning and Its Applications; Mamdani, E.H., Gaines, B.R., eds.,
Academic Press, New York, 1981, pp. 311-323.

Mandel, T., The Elements of User Interface Design, John Wiley and Sons, New York, 1997.
McCracken, D.D., Jackson, M.A., “Life Cycle Concept Considered Harmful”, 4CM Software
Engineering Notes, vol. 7, no. 2, 1982, pp. 29-32.

Mcliwain, A.K., Lind, P.C., “An Intelligent Windows-based Interface for the KN4000 Van de

Graaff Accelerator”’, Symposium of North Eastern Accelerator Personnel, TUNL, North
Carolina, 1996.

Mejuev, ., Abe, ., Nakahara, K., “Al-Based Accelerator Control”, The 1995 International

Conference on Accelerator and Large Experimental Physics Control Systems, Chicago,
Illinois, October 29-November 3, 1995.

Personal communication, Dr. P. Milgram, Associate Professor, Department of Industrial
Engineering, University of Toronto, September 1, 1994.

[Nic77]

[Nic86]
[Nor83]

[Nor86]
{Par88)
[Pas86]

[Peabd]
[Poedl]

[Pro87]

[Riv95]

[Rod97]
[Roy70]

[Ryb95]

[Sag90]

[Sak95]

[Sha81]

(Sha9la]

[Sha91b]

[She82]

218

Nickerson, R.S., Pew, R.W., “Person-Computer Interaction™, Chapter 6, The C’-system User:
vol. 1. A Review of Research on Human Performance as it Relates to the Design and
Operation of Command, Control and Communication Systems, (Report no. 3459), Bolt
Beranek and Newman Inc., Cambridge, Massachusetts, 1977.

Nickerson, R.S., Using Computers: The Human Factors of Information Systems, MIT Press,
Cambridge, Massachusetts, 1986.

Norman, D.A., “Design Principles for Human-Computer Interfaces”, Proceedings of the

CHI '83 Conference on Human Factors in Computing Systems, ACM, Mew York, 1983,
pp. 1-10.

Norman, D.A., “Cognitive Engineering”, User Centered System Design, Norman, D.A.,
Draper, S.W., eds., Lawrence Erlbaum Associates, Hillsdale, New Jersey, pp. 31-62.

Partington, D., “Artificial Intelligence in Process Control”, Measurement and Control, vol. 21,
no. 6, July-August 1988, pp. 177-178.

Pascoe, G.A., “Elements of Object-oriented Programming”, BYTE, vol. [1, no. 8, August 1986,
pp. 139-144,

Pears Cyclopaedia, Seventy-Third Edition, 1964-1965.

Poehiman, W.F.S., Garland, Wm., Stark, J., “Design Principle Employed in Aid of Real-Time
Expert Control Systems Development™, Proceedings of the Fourth Atrificial Intelligence
Symposium, University of New Brunswick, Fredericton, NB, September 20-21, 1991,
pp. 109-119.

Proceedings of the 7th International Workshop on Expert Systems and Their Applications,
Avignon, France, May 1987.

Rivers, M., “Beamline Control and Data Acquisition at the Advanced Photon Source”, The
1995 International Conference on Accelerator and Large Experimental Physics Control
Systems, Chicago, lllinois, October 29-November 3, 1995.

Rodriguez, B.J., An Embedded Temporal Expert for Control of a Tandem Accelerator, Ph.D.
dissertation, McMaster University, Hamilton, Ontario, 1997.

Royce, W.W., “Managing the Development of Large Software Systems: Concepts and
Techniques”, Proceedings WESCON, pp. 1-9, 1970.

Rybin, V.M., Rybina, G.V., “Use of Expert System for Beam Diagnostics”. The 1995
International Conference on Accelerator and Large Experimental Physics Control Systems,
Chicago, [llinois, October 29-November 3, 1995.

Sage, A.P., Palmer, J.D., Software Systems Engineering, John Wiley and Sons, New York.
1990.

Sakaki, H., Hori, T., Yoshikawa, H., Suzuki, S., Taniuchi, T., Kuba, A., Yokomizo, H.,
“Conditioning of the SPring-8 LINAC RF System Using Fuzzy Logic”, The 1995
International Conference on Accelerator and Large Experimental Physics Control Systems,
Chicago, Illinois, October 29-November 3, 1995.

Shackel, B., “The Concept of Usability”, Proceedings of IBM Software and Information
Usability Symposium, Poughkeepsie, New York, Sept. 15-18, 1981, pp. 1-30.

Shackel, B., Richardson, S., “Human Factors for Informatics Usability - Background and
Overview”, Human Factors for Informatics Usability, Shackel, B., Richardson, S., eds.,
Cambridge University Press, Cambridge, England, 1991, pp. 1-19.

Shackel, B., “Usability - Context, Framework, Definition, Design and Evaluation”, Human
Factors for Informatics Usability, Shackel, B., Richardson, S., eds., Cambridge University
Press, Cambridge, England, 1991, pp. 21-37.

Sheil, B.A., “Coping with Complexity”, Information Technology and Psychology: Prospects
for the Future, Kasschau, R.A., Lachman, R., Laugherty, K.R., eds., Praeger, New York,
1982.

[She83]
(Shn91]

[Sho76]
[Sid94]

[Sil88]
(Sin83]

[Sma94]
[Sta88]

[Sta95]

[Str92]
[Swa94]

[Tan95]

(Tau89)

[Umb81]

[Vio93]
[Wan94]

[Wes95]

[Wil84]

[Wu95]

[Wu95]

219

Sheil, B., “Power Tools for Programmers”, Datamation, vol. 29, no. 2, 1983, pp. 131-144.

Shneiderman, B., “A Taxonomy and Rule Base for the Selection of Interaction Rules”, Human

Factors for Informatics Usability, Shackel, B., Richardson, S., eds., Cambridge University
Press, Cambridge, England, 1991, pp. 325-342.

Shortliffe, E.H., Computer-Based Medical Consultations: MYCIN, Elsevier, New York. 1976.

Siddall, E., The Engineering of CANDU Shutdown Systems Using Computers in Automatic
Protective Functions, Report prepared for AECL Research in part-fulfiliment of Contract

No. UC85929, Revision |, Department of Systems Design Engineering, University of
Waterloo, Waterloo, Ontario, Canada, May 2, 1994.

Silbar, R.R., Schultz, D.E., “Automation of Particle Accelerator Control”, Proceedings of
Computers in Engineering, San Francisco, CA, July 31-Aug. 4, 1988.

Sinha, N.K., Kuszta, B., Modeling and Identification of Dynamic Systems, Van Nostrand
Reinhold Co., New York, 1983.

Small, P., “Ergo.. what? It’s the future”, The Toronto Star, August 21, 1994, p. A2.

Stankovic, J.A., “Misconceptions about Real-time Computing”, Computer, vol. 21, no. 10,
1988, pp. 10-19.

Stanek, M., “Development of Operator and User Requested Control System Applications;
Experience with the SLC Control System at SLAC™, The 1995 International Conference on

Accelerator and Large Experimental Physics Control Systems, Chicago, lllinois, October
29-November 3, 1995.

Personal communication, Mr. F. Strain, Accelerator operator (retired), Nuclear Effects
Division, Defence Research Establishment Ottawa, July 5, 1992.

Swainson, G., “Ambulance system *unacceptable’™, The Toronto Star, September 27, 1994,
p.- A2.

Tang, J., Shoaee, H., “A Comparative Study of Fuzzy Logic and Classical Control with
EPICS”, The 1995 International Conference on Accelerator and Large Experimental
Physics Control Systems, Chicago, Illinois, October 29-November 3, 1993.

Taunton, C., “Expert Systems in Process Control: An Overview”, IS4 89 Advanced Control
Conference, NEC, Birmingham, 1989, pp. 5.1-5.5.

Umbers, 1.G., King, P.J., “An Analysis of Human Decision-Making in Cement Kiln Control
and the Implications for Automation”, Fuzzy Reasoning and lts Applications, (Received May
25, 1973); Mamdani, E.H., Gaines, B.R., eds., Academic Press, New York, 1981,
pp. 369-381.

Viot, G., “Fuzzy Logic in C”, Dr. Dobb’s Journal, no. 197, February, 1993, pp. 40-49.

Wang, C.J., Chen, J., Chen, J.S., Jan, G.J., “The Design Schemes of Graphic User Interface
Database and Intelligent Local Controller in the SRRC Control System”, Nuclear
[nstruments and Methods in Physics Research, North-Holland, A 352, 1994, pp. 300-305.

Westervelt, R.T., Klein, W.B., “Framework for a General Purpose, Intelligent Control System
for Particle Accelerators”, The 1995 International Conference on Accelerator and Large
Experimental Physics Control Systems, Chicago, lllinois, October 29-November 3, 1995.

Willis, J., Milier, M., Computers for Everybody: 1984 Buyer's Guide, Dilithium Press,
Beaverton, Oregon.

Wu, Y., Burnham, B., Litvinenko, V.N.,.“The Duke Storage Ring Control System”,
Proceedings of the 1995 Particle Accelerator Conference, Dallas, Texas, 1995,
pp. 2214-2216.

Wu, Y., Burnham, B., Litvinenko, V.N., “The Duke Storage Ring Control System”,
Proceedings of the 1995 Particle Accelerator Conference, Dallas, Texas, 1995,
pp. 2214-2216.

[Yas85]

[Yo0s95]

[You82]

[Zad65]
[Zad73]

[Zha95]

[Zie91]

[Zol82]

220

Yasunobu, S., Miyamoto, S., “Automatic Train Operation System by Predictive Fuzzy
Control”, Industrial Applications of Fuzzy Control, Sugeno, M., ed., Elsevier Science
Publishers B.V., North-Holland, 1985, pp. 1-18.

Yoshikawa, H., ltoh, Y., Sakaki, H., Taniuchi, T., Kodera, M., Tamezane, K., Kuba, A., Hori,
T., Suzuki, S., Yanagida, K., Mizuno, A., Yokomizo, H., “Software Project for SPring-8
Linac Control”, The 1995 International Conference on Accelerator and Large Experimental
Physics Control Systems, Chicago, Illinois, October 29-November 3, 1995.

Yourdon, E.N., Managing the System Life Cycle: A Sofrware Development Methodology
Overview, Yourdon Press, New York, 1982,

Zadeh, L.A., “Fuzzy Sets”, Information and Control, vol. 8, 1965, p. 338.
Zadeh, L.A., “Outline of a New Approach to the Analysis of Complex Systems and Decision
Processes™, [EEE Trans., SMC-3-1, 1973, p. 28.

Zhao, J., Wang, B., Wang, C., Geng, X., Xu, J., “New Man-Machine Interface at the BEPC™.
The 1995 International Conference on Accelerator and Large Experimental Physics Control
Systems, Chicago, [llinois, October 29-November 3, 1995.

Ziegler, J., Bullinger, H.-J., “Formal Models and Techniques in Human-Computer
Interaction™, Human Factors for Informatics Usability, Shackel, B., Richardson, S., eds..
Cambridge University Press, Cambridge, England, 1991, pp. 183-206.

Zoltan, E., Chapanis, A., “Strategic Command, Control, Communications and Intelligence”,
Science, vol. 224, 1982, pp. 1306-1311.

