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ARSTRACT

The pr}blem of idencificai:ion of linear nwmultivariable

~

continuous-ﬁme systems from input—output data is considered. A'survey
has been made to presént the direccr ami the indirect approaches in
identifying continucus—time systems' from the samples of the observa-
tions. 'I‘hel‘/-‘i:lirect approach with approximate integration seems to be
more promis::lg and hence it‘: is adopted 1in this work. Three direct
methodq based on the use of block pulsle func:\ioﬁs, tfapezoidal pulse
‘functiom_a and cubic;‘ splines have been compared and applied for multi-
v_ariable‘systema. A comprehendive study has been gBti}lucted to analyze

the effect of noise on the identification. .The i:r;lysis was carried
out first for the single—input single-output case and the-n extended to
the multivarigble case. A new approach 1is presented to overcome the
combined effect of the errors in the approximation/an_d additcive wﬁite
noigse on the identification of continuous-time systems..'l'he method
consists of modelling the combined error term. Extensive simulatioms
are conducted in order to illustrate the merits of the new Brocedure,

The problem of order determination has been considered and three order

determination tests have been studied and applied for continuous-time

systems, two of them for the first time as far as* the author is aware.
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The problem of the selection of the structu;e‘ that will give good
conditioned parameterization 1is alsoc considered. A new procedure to
identify the structure in the input-output form is presented. This
procedure 1s suitable for both stationary and non-stationary systems
when a change in the structure occurs while ' the order rema;ns
constant, It uses the concept of overlapping parameterization to
choose a better conditioned parameterization for the multivariable
system whenever 111 counditioning is detected. A swigchihg criterfon is
presented basedv‘on the complexity priﬁciple which provides a good
monitor of the conditioning of the pérameterization as well as the

suitability of the tested structure,
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- : CHAPTER 1
\\\ . INTRODUCTION

Identification and process parameter estimation 1s a rapidly

developing field. The interest in system identification is essentially
due to- the needs of engineers qdrking in process industries to obtain a

I3

better knowledge about their plants for improvéd comtrol. Several
survey papers and books [1-10] have been written on the subject and

lots of control applications have benefitted from this abundant

research work. Applications in bioengineering and in econometrics {1}

are also developing in parallel. The "advent of computers and ctheir

accessibility has revolutionized system identification techaniques which
have found their way into the new sophisticated fields of robotics,
sAtelliteg control and artificial intelligence,

The research done in the sixties dealt only with single-input
single out;dt gystems. Identification of multivariagle systeﬁs was
approached carefully in the seventigéJdue to the consid;fable dif}icul—
ties associated with their ideﬁtification. Most -of this work, h;wever,
wag dedicated .to digcrete-time systems, On thg,'pther hand, the
identified processes themselves are usually described in terms of

confinuous-time differential equations. Mathematical models

encountered in the control of chemical ﬁrocesses, thermal systems,

N

1T, —
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rocket motor combustion, travelling wave systems, tracer kinetles in
health care systems, high speed aerodynamic systems, etc..., Llnvolve
differential equations.

In view of this wide field ofrapplicatioqg apecilally in adap-
tive con;rol, two basic apprcaches to identify continuous time-systens
from input-ocutput data have been developed. In the first, a discrete-
time model from the samples 6f the observations 1s obtained and then a

lcorresponding continuocus—time quel is derived. The other approach

attempts to solve the problem directly and 1s based on obtaining

approximate solutlons of differential equations over a time interval.

It is called the airect approach with approximate integration and

should be particularly well suited to certain types of adaptive control
where rapid identification‘is a prime requirement,

Several difficulties are, however, associated with the identi-
fication of continuous-time linear systems and néed to be studied
before real life applications could be realized,

Until very recently the literature lacked é reliable method to

approximate the actual continucus-time signals from the available

samples. Three methods have been proposed lately and have been applied

mainly to single—input single-output systems. These are based on the
ugse of block-pulse functions, trapezoidal’ ﬁulse functions and cubic
splines, respectiveiy as approximating functions and are promising in
fast recursive identification.

Most of the practical aystems have considerable measurement

noige, hence in certain cases the available information to the control

-l
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engineer is not accurate, In the discrete-time case the protlem of

noigy data 1s not as severe as in the continuous-time case. The

approximatien and other factors make the continuous—-time system very
sensiti\‘re to"the noise level superimposed on it. Hence, a realistic
identification technique sghould take into consideration the noise
factor. L

The problem of system identification consists of two major
steps: structure determination and parameter estimation, Several
structure and order determination procedures have been proposed and
applied to discrete—-time systems. Since continuous—t\:ime systems have
been long neglected the application of such proce-dures with the new
continuous—time identification techniques presents a new' and important
research area,

Multivariable .systems, unlike single-input single-o_utput
systems can be represented within different structures. The problem is
to choose one which gives a well conditioned parameterizaticn. To
solve this prob‘lem several approaches have been suggested iIn the

A

literature, such as using physical a priori knowledge about the system
. - .
and canonical paramterizations. But all these _methods have dia/advan—-
/tages or -are not sultable for practica ‘si_tuatbit;n‘s. The overlapping
parameterization approach presents a alistic a;;proach to the
problem. It calls for the transformation from a given structure to
another equivalent one when ill conditioning is detected.

The major effort in this thesis is directed toward the

problem of identification of linear time-invariant’ continuous-time



multivariablg systems from samples of 1nput—6utput data. The approach
édopted it the identification 1s the direct approach by approximate
integration. It is baséa on obtaining approximate exp;essions for the
signals from their samples. The differential équﬁtiona are then

A
integrated using these approximations and the results are used for a
estimating the parameters of the continuous—%imgﬁgxstem. The three-
aspects of the system Identification problem: order determination,
etructuré-select;on and parameter estimation, have been considered in
this work. | -

In Chépter 2 a comprehensive survey, that discusses and exposes
two rel;tively new approaches in continuous—time systems ide&tification
from input-output data, is conducted. The development of the indirect
and the direct approaches as well as the various resul%ing techniques
are given invdetail. A constructive discussfon of the advantages for
each approach at the end of the survey clarifies and points ouE the
qéeded and unaddressed research topics. .

Chapters 3 and 4 discuss the problem of didentification of
contlnuous — time sgystems with the direct approach by approximate
integraticns. ?hree parameter .estimation algorithms have been

- developed. 1In eafh algorithm a different method is used to approxiﬁate'
the Input—output signals and their respect;ve integréls. 'Block pulsg
functioﬁs,'trapezoidal unctions- and cubic splines are used as approxi;

mating functions. A comparison based on simulated examples for

sagg}e-input single—output and multivariable systems in both noise-free
- P . .



and nolsy cases is presented to compare computation time and the
accuracy of the estimated parameters. ;

It has been noticed that when nolse was added to any studied
system, 1dentification problems such as correlated reéiduals " and
inaccurate parameter estimates were created., So a comprehensive study
is conducted to ;nalyze the reasons behind the previously mentioned
problems andlto investigate whether the errors caused by the approxima- .
tion constituted one of those reasons. The analysis 1s carried ou;
first for the single~input s}ngle-output case and then extended to the
multivariable case,

A new approach is presenté& to overcome the combined effect of
the errors in the approximation and additive white noise on the
identif;cation of continuous-time systems. The method consists. of
modelling the combined error term. Extensive simulations are conducted
in order to {llustrate the merits of,the.new procedu}e. |

Order determin#tion is the first part of the identifcaticn
problem andrit is done, generally, off-line. 1In Chapter 5 thre; order
determination tests have been studied and applied for continucus-time
systems, twn: of them for the first time, as far as the author is
aware, The sampled input, output signals have been integrated with the
cubic ;éline technfque and the information matrix has been reformulated
to auii the new interpretation of the data, The three order determina-
tion tests have been compared according to the computation time, the

number- of input-output samples used to ilndicate the correct order and

their robustness to added noilse.



Chapter 6 presents a néw procedure to identify the structure of
continuoug—~time multivariable systems in the input—-output Ebrm. This
procedure 1s sultable for both stationary and non-stationary systems
when a change in the structure ocurs'while the order remains constant,
It uses the concept of overlapping (multistructural) parameterization
to choose a better conditioned parameterization for the multivariable
system whenever 11l donditioning 13 detected.

A switching criterion 1s presented B;gau on the complexity
principle which provides a good monitor of the conditioning of the
parameterizgtion as well as the suitability of the tested structure.
The inclusio; of this criterion in the sglection procedure answered the

-?éuestion of when to switch to another pseudostructure. This leads to
the reduction of time required for computations when compared with the
other structure selection procedures. All of the latter procedures
lack a switching c;iterion. :

Conclusions and suggestiocns for future investigation in the

problem of identification of linear continuous-time multivariable

-
—

systems are discussed in Chapter 7.

\



CHAPTER 2
v IDERTIFICATION OF CONTINUOUS-TIME

MODELS FROM INPUT-OUPUT DATA: A SURVEY

2.1 Introduction ) '

Finding the simplest system that will.realize ‘a prescribed
lnput-cutput behaviour has been a fundamental p;.'oblem in systems theory
[11]. Only a few techniqués were genera.lly known and they were based

on repeated dif@rentiétioa_ and contained all the inherent disadvan-—
tages> ‘involved tﬁerein i 114i3] -

.- - .z:In the. fifties thegmethods used to model the dynam;c systems
were pure analogue, such as the frequency response and transient
regponge me.thods'. During the gixties'and;with the introduction of the
digital computer most of the research was directed toward obtaining
"dis_c;rete—time models for the dynamic: systems. The interest in obtain-

-

ing continuous-time models for continuous systems from -l;he inﬁt and
output ‘s‘amples has been renewed téward_ the end §f the decade, Two new
t:he.o{ies vere developing from scattered reseax."ch efforts. Those two
‘theories, called the "direct” and the "igdirect” approaches, will be
' discus‘aec.i, i:;, the following sections. The evolution of both technique's
and the Imajor contributions are stated in sections 2.2 and 2.3. The

advantages - and the difficulties facing each approach 'are discussed 1in

- » 3



section 2.4. Also, a comparison 1s drawn based on several publi:sheq
papers on the subject stressing the: accuracy of the estimated para-
meters and the .computation time. Several promising re‘search topics are
outlined in the area of continuous—time systgms identification using

the direct approach. -

a

2.2 The Indirect Approach -

N

The arrival of the digital‘f“computer generated a wider use of
discrete—time/mathematical models for continuous-time processes.
Unfortunately such models do not always provide enough Iinformation for

the analysis of the process, Many efforts have then been directed

toward identifying continuous—time models from existing discrete-time
models [14-16}, This 1is called the indirect approach. Thisg approach

calls for the derivation of an appropriate discrete model H(z) for a
- »,

glven analog system G(s) with undetermined parameters and cthen the

pu . ‘ <

fitting of the sampled input—output data by H(z) to estimate these

parameters.

.

2.2.1 .Estim‘ll::lon of the Parameters of a Discrete-Time Model from the
Input—Output Data o ' ) '

Exact transformat:ion.of the continuous gystem into the discrete
system does not.exist, if there 13 no knowledge‘of the actual variation
of the iaput between the sampling instants [_]:7‘]. The unjr.nowﬁ varia—
tions of the input signalg tween thes sampling intervals could be

interpreted as some kind of nbise and this causes problems when

- .
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identifying the discretejﬁime model of the system {[18-19]. We could

uge steps or rectangular pulsgg or white noise [16] as Anputs to solve

the identification problem but this may not be true for actual plant

-t

records. ‘
B 4
The choice of the sampling interval is very important. A large
value could mean losing important information about the system and a
very small value may cause mathematical difficulties. It can be
assumed that the sampling interval T is selected such&that A¢T ¢ 0.5
where Af 1s the eigenvalue of A farthest from the origin of the

complex plane (Haykin {20]). The matrix A corresponds to the state

space representation of the continuous system in equation (2.1).

T x(e) = Ax(t) + Bu(t) e~
y(t) = cCx(t) (2.1)
z{t) = y(£) + w(r)

wherelg(t) is the n—-dimensional sgtate vector,_E(t) is the mdimensional
input vector and y(t) is the phdimensiopal noise-free output vector,
z(t) 1s the measured output vector and w(t) is considered to be a zero-
mean white noise sequences,

If a proper sa;pling interval 1is chosen (2}] and the input
signal did not vary betwgen intervals then any discrete—time structure

"determination and parameter estimation method could be applied to the



-
vulnerable in practical cases,

samples of input and output data [22-23]., Putting the final {dentified
model into a canonical discrete state space representation was also
discussed by Guidorzi [24].

=

2.2.2 The Recovery of the Countinvous—-Time Model Corresponding to the
Discrete-Time Model :

Several authors have contributed to this part.of "the problem.
The problem may be stated as follows [14]:
Given the ©pulse transfer Function H(z“l), determine the

. . . ! W
continuous gystem transfer function G(s), so that the responses of

‘tﬁese correspond ,closely  at the sampling instant$ _fqr‘ all poshible

"inputs, Many of the works done in the transformation area from

continuous to discrete was dedicated only to univariate systems [1&%

[16-17]. The identification of the multivariable continuous—-time

LY

gystems through the indirect method has "been digcussed by. Sinha and

Zhou QiJie {25-26] and by Strmenik and Bremsak [L5]. Several

‘transformations were suggested [14] based on the approximation of the

. . . o«
input as & step or a ramp but they involved long calculations and were

The bilinear z transformation [14] given bWy (2.2} or (§.3) may

-

be- more suitable and is .more 'flexible in regard of input variation

between samplirg intervals.

1

- 2%l =z~
s, = 2

. 1’“:_1) o (2.2)

or

Oy



z—l L _2;9;1‘. ‘ (2'3)
2 + sT

A comparison has been made between all these methods both in
the univariate a;d the multivariable cases. The r_eader may be referred
to [14], [25].

The most well known indirect method i# the gtate-transition
methed [26]. 1If the. input 1is .‘asaumed to be held constant during each’
sampling 1n'terval hence equation (2.4) {s the discrete-time equivalent

of equation (2.1).

x(k + 1) = Fx(k) + Gu(k) ' : (2.4)

and© ‘F = eAT . J (2..5)
. AN i </ i

(2.6)

- 4
The problem of estimating the parameters of the &8screte-time

" model described by equation (2.4) has been discussed by several authors
. S - . -

- A g

[22-24). The next problem, then,:is to determine A and B from Cthe

0
gstimates of F and G.

-This can be solved easily 1f F can be
'diagonglized. Some difficulty arises {rhen‘the eigenvalues of F are

éither comp ex or negative [27].

——
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2.3 The Direct Approach

It has been always desired to utilize the differential equation
of the dynamic system in the determination of the system parameters.
This way the parameter estimation problem will not be divided into two
subproblems as in the "indirect” approach.

Techniquesl previously used involved direct. differentiation
[11-13] of the signals which had the disadvantage of ampliffing the
superimposed noise. Another approach was to derive a discrete-time
equivalent of a continuous system by the use of finite-difference

\
approximation. Lanczos [28] showed that the latter method yields
inaccurate parameter estimates 1f the data 1s contaminated with
measurement errors. ‘

Based on the concepts of avoiding the noise accentuating opera=-
tion of signal differentiation- or the wuse of a modest equivalent
discretejtimé.modelf the "direct™ appreoach has been gradually evolu-
ating. s

Consider the dynamical single-input .single~output system

described by the fpllowing differential equation
A(D) y(t) = B(D) u(r) (2.7.

or more explicitly in the canonical input—-output form

D% + ap_ D ly(e) + ... 4+ agy(t) = BpDPu(t) + ... + byu(t) (2.8) -
m<n
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The problem 1s to estimate the unknown parameters of the system
without directly differentiating the input and output signdls.
. So, as ppinted out by Hao and Sivakunar [29]), 1f we perform a
linear operation on each side of (2.7} this would enable the generation
of transformed fnput and output signals easy to meagure or to compute.
Shinbrot ([30] introduced the technique of" "method fuﬁctions"

based on multipiying the Input and output signa amilies by suitable

functions followed by integration over finite.limits in time domain.

Loeb and Cahan: [31] used modulating functions in a similar manner to

Shinbrot. Fairman et al. [32] -employed filter chains with each unit

having a transfer function of 1 % A>0.

8 +

It was Diamessis [53] who suggeszed utilizing successive inte-~

gration in identification schemes for linear continuous systems. Hence
the differential input-ocutput model of equation (2.7) is converted inte
a linear algebraic model suitable for a least squares solution. The
next natural step was to-think of utilizing the digital computer as a
tooly in the parameter estimatioﬁ procgés provided that a reliable

approximate integraq{gk method 1s used. Since the only available
. - - .
information 1is the input and @utput samples, the 1input and output

signals should be approximated in order to perform the operation of

succesgive integration. Y
The direct approach makes use of Galerkin's approximation to

the solution of the differential equation‘(z.g)

Dy = u(x) - (2.9
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thus
N ‘

y(x) = §  ylxwgx) {2.10)
1=0

The Galerkin approximating funct;ona wi(x) are free to be selected
for better convergence rate [34]. In general wy(x) are eiggn
functions, polynomials or cubic splines [35].°

Several approximatingAfunctfbns were suggested in the »liter-

ature and will be presented in the following sections.

2.3.1 Cubic Splines

The cubic spline function S{t) is a plecewise cubic function
defined with the following properties.

-~

A - &ty) = y; where y(t) 1s the function to be approximated

ol

B - 5(t) has continuous first and second derivatives for 0{t{tp
C - S(t) 18 a polynomial qf order 3 in each interval ry_j¢ t{ £y

Bellman [36] proposed the use of splines for the identification

of single-inpﬂt single-output systems. Shridhar ét al. {35] extended
- their use to the multivariable case. Their algorithm is based on using

the cubic splines as approximating functions fhen integrating the

differential equation.with Simpson’'s rule. By simplifying the obtained

-
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expresgion with the splines continuity relations, the parameters of a
second order system can be easily computed. For hikg‘}\i‘ter order systemsg,
they assumed that the various integrals for the different signals are
availlable for measurements. Sinha and Zhou QiJile [37] dev:lt)ped a more
complex recursive algorithm which enables the calculation of higher
integrals using the cubic splines propetties. S4(t) is\supposed to
have the following form (2.11) in the interval [tj.), tj]

ty—~t ! E-ty—)

$1(t) = yi-1 +

yi + (at+b)(t-tqy.;)(t~ty) (2.11)

where T = ti-ti. (2.12)

The valueg of a and b are c'alculatéd by applying condition (B)
and replaced in equation (2.11). -The third order polynomial Sy(t) is
then integrated by the trapezoidal rule from t = 2—1 to t = ty.
Recurgive formulae were developed for the first, second and third order
integrals {37} as a function of the available observations and the
calcu.:l.ated derivatives of sy(e). Equation (2+x13) gives the third

order Integral.

T2 L .2 2 .3
I - I -1 +TI -1 4+ =~ I -y *+ =T + — T ¥ia
3,1, 3,i~1 2,3-1 + - 11 ¥ o Ty YT 1-1

/
(2.13)

1 Th L1
- —— m +—-—-Tu.m_.
120 1% %0 Tl
. /

where my = %; S(t) ¢ = ty

-
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2.3.2 Walsh Functions

The approximation of a function by a linear combination of a
set of prthogonal basis functions was a classic tool iIn numerical
gnalysis [28]. The Walsh functions [38] have long been known to
constitute a compiete orchonOFTal get of rectangular waveforms.- Chen

and Hsiao [39] expanded the"systems variables in Walsh series and .

1

introduced an operational matrix to perform integration of Walsh

functions. This is explained by the following.

Al

Conslder the first four (m = 4) Walsh functions, in Figure 2.1,

¢k(t)’ k-otl.-!’m_lo . 1

ey womdi (2.14)

»

with 5 () = R, 8y R,

k - O,I,QQQ,ZB-l

Rg(t), a.- 1,2,;..,n are a set of orthonormal square waves for 0¢t<l
with unit height and rebétitian rate equal to 287l, (dg dg-j ... d})
is the binary expression of the decima} number k [34], [40]. The ini-
tial conditiqns fof (2.12) are ¢0(t) = Ryo(t) = 1. Integrating the four

Walsh functions of Figure 2.1 from O to t we obtain
~

do () /2 ~1/4-1/8 0 Tgg (o)
ft' o1 () GUe 0 L0 -1/8 4y (£) (2.15)
0 |92 () 1/8 0; O 0l ¢ (v
[ L \
(43 (1) 0o 1/8}] o 0; 43 (&)
A ]
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Figure 2.1 The first four Walsh functions



Equation {2.13) can be written In a more general form as

t
[y 8 (x) dv = Bg(t) (2.16)

with

P=f - ——— — - » P} == (2.17)

|

=
B
-~
»n
~
[ 3+ ]
o

for m = 28

Equation (5.17) is the key of the orthonormal series approach
to system identification. The integration is reducei to the muliplica-
tion of iﬂt) by P. Walsh functions have been used for identificacion
by Chen and Hsiao [39], Rao and Sivakumar [41] and others. A review on

this matter ie presented by Tzafestas [34].

2.3.3 Block Pulse Functions

The set of the block pulse functions 1s more - fundamental than

the Walsh fynctions. 1In a unit interval they are defined by

)

1 for (i-1)/m<tg¢i/m,; i=1,2,...,
b(E) = { m<tgi/m w

(2.18)
0 otherwise )

<)
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This set of functions can be .concisely degcribed by an m-vector ¢(¢t)

with ¢4{(t) as 1its ith component. The operational matrix P for

integration wmay be directly obtained from the integration of the set of
-~

block pulse functions as seen in Figure 2.2 and is given by:

\/.-
r -
3} 1 laatl :
: ¥ leaal (2.19)
P =~ = ) }.‘-.1
0 ‘.

B

It is an g;;i:er triangular Toeplitz matrix that consists of diagorial
elements being } and the other elements being 1. It Is simpler than
the operational.matrix derived from Walsh functions and_m co.uld be
selected as any positive integer not necessarily as 25:', 8 =1,2,..0
éhen et al. [40] intreduced the set of block pulse functions
for the solutions‘ of distributed gystems and iden_tification problems.
They éoinced out that there is a one to one relationship betwees'g\_walsh
functions and block pulse functions. The use of the latters minimizes
the computation time and the storage but the accuracy\rf t;he results 1s
the game, Dué to the particularly simple structure of thé operati‘onal
matrix, many recursive algorithms have been prc.::pbsed for the numerical
integration of differential e'quations'. The methods proposed by‘S/annut:i'
f42] for the solution of linear and non-linear problems and Shieh
et al. [43] for the golution of state space equations reqt:li‘red the

..
inversion of one matrix compared. to 1{= log, m) matrices ‘in the

Walsh-function method [39]. Block pulse functions methods have since,
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Figure 2.2 Block pulse functioqs and i'ﬁtegrationa
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then been_;applied to the {dentification of bilinear systemsa [44] and to
many_other control problems [45-46]. They have been used for ;dentifi—
cation by Palanlisamy and Bhattacharya [47) in the unmivarlate case, and
Sinha and Zhou QiJ{; in the multivariable case [25-26]), [48].. The

iaezer has developed a recursive algorithm which performs the numerical

N ’

integrations without the need for matrix inversions Theilr method will

be discussed briefly.

t
.

Given any function y(t) integrable over (O,To): it can be’

approximated as:

y(e) = ¢'(t) y ) (2.20)
Ylj . c )
whére y = |y, {(2.21)
Ym
with the superscript ' representing transposition and ¥y 4 the

average value y(t) over the interval (i-1)T t¢iT

Tg ) ~
T

The following integral may be approximated as

t ‘ t
I;(t) = [0 y(t) dt = fo $'(7) g dt (2.22)
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(¢} = T ¢ 'P' y and may be expressed in block pulse form
T
! ‘Il,ll
20 )
(e = $'(t) I where ¥y =" (2.23)

. [;li“‘J

I, is the first integral of y(t) which can be expressed recursively by

the relation:

T
I,0 = Ip,a-1 v 5 (41 + ¥i-1) ‘ (2.24)

[ ot

-
.

Similar derivations are carried out to find higher Integrals. The

generai recursive relation to find Ik,i is expressed by,

. T2 T3 b
Ie,i = Ik,i-1 + Tlg-1,1-1 + =3 Igk-2,1~1 + m Ig-3,4=1 + «o» .
- (2.25)
Tk"l Tk ",
+ Il k-1 +— (yy '+ vi-1)
k-2 1,k-1 o i .1 1

‘o

The use of recursive algorithms such as equation (2.25) makes. the

v

identification problem an easy task.
The block pulse fuffctions have long been argued as an .incom-
plete orthogonal set [493. If it 1is really incomﬁleté then it cannot

be guarantéed for any given function, that an arbitrary small mean



error can be obtained by increasing the number of terms in the seéfés.
Kwong ana Chen [45] have proved the completeness of the block.pulse
series by studying their convergencefﬁroberties ag m + =, A

Shieh et al. [43] incorporated a modification, equivalent to
the .inverse use of the frapdzoidal'rule, for the block pulse technique.
Hung et al. [50] argued that for the case of lipear time-invariant
syatems Shieh et al.'s modification 1s equivalent to the't}apezoidal
rule‘ technique. They used the following method to 1identify tﬂé

‘ ’
parameters of the single-input single—output system represefited by the

gtate equation,

X = Ax + Bu : - | (2726)

)
.

making use of the trapazoidal rule,

) x b« TN ug + up-
X, = A_.l"_i'_‘_.lc_]'.'r+3'r MJ+Xu (2.27)
2 2 k-1 .

but they considered the state vector to be known. Sinha [26], [51],
modified the method proposed by. Hung et al, [50]. He applied the
method in the multivariable case and showed that the discrete-time
transfer function matrix qbtained is identical to the one calculated by

the bilinear z transformation [26].
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2.3.4 Trapezoidal Pulse Functilons

The baglc idea behind the use of complete orthogepal functions
such as the Walsh functions and the bleck pulse functions 1s tdobtain

plecewise constant solutions of linear differential equation “oVer a
"L

time interval.

In the block pulse function apprcach the function 1is approxi-
mated by a sequence of rectangular pulses of height y, equal to the
mean value of y(t) over the-interval kTg¢t<«(k+1)T. Prasad and Sinha

[52] found that a bétter approximation can be obtained hy using

-

\
plecewise linear approximation, where it 1s assumed that the fﬁrction

1s varying linearly between sampling instants as seen in Figure 4.3 for

the subinterval RTgt{(k+l)T

y(£) = = [{(k+D)T-t} yi + (E=kT) yyaq] o (2.28)

1
T

and Yk & y(kT) ' i (2.29)

Approximate expressions for the successive integrfls were derived in
t52] using the trapezoldal rule of iIntegration. The expression for the

first-integral of y(t) 18 given by

I+t (y) = Ip k(¥ +§ (Y + Yi+i) (2.30)

"%
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where

I o(y) = 0 ) (2731)

The nth integral of y(t) can be calculated using the following recur-

sive formula

Inet1(y) = Indy) + TIp-p,w(y) + %% In-2,k(y} + ...

v

, | (2.32)

1 -1 n 1
YT T LK) oy T Ykt T T

" with In,oy) = 0

(

Prasad and Sinha {[52] used the trapezoidal- pulse functions

approach to identif& a second order single—input single-output system.

2.4 Concluding Remarks

’

In this section the advantages and the problems of the indirect
and the direct approaches are discussed. Promising research areas in
‘the identification of continuous—time systems from sampled data are

“outlined.

/
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The “indirect” method involve; a long procedure and the
accuracy of the solution depends on two factors, Fjirst, the satisfac-
tory estimation of the discrete-time model from the available observa-
t.ions. The second difficulty is the derivation of the continudus model
from the estimated discrete one so that the regsponses of both
correspond closely at the gsampling instants for all possible inputs.
There 1s considerable literature available on the first part of the
problem [53-58] which provides acceptable results. Relatively less has
been published about the gecond parr [14-17]. .
Problems are mainly caused- by the empirical choice of the
sampling interval and the in;ccurate assumptions about the variations
of.the input between sampling Instants, However, 1f the sampling
intervals wer; carefully chosen such that A¢T ¢ 0.5 as mentioned by
Haykin [20], and ‘l:he input' matched the conditions set by the transfor-
mation methods, then the continuous-time system will be accurately

"

identified from the 1nput:—output.samples.
The determination of a suitable sampling Jinterval from the
input—output. samples constitutes a prbbllem in system Jldentification.
Several methods have been proposed [21]), ([59-60] focusing on obtaining
a sampling interval which will realize: A¢T " in the neighbourhood of
0.5 but are sometimes computationally expensive.
The direct method by approximate 1integration has several

advantages over the ifodirect method . The dire‘cl: approach does not

divide the problem of the 1dentification into two subproblems, as

described in sections 2.2 and 2.3. It is in general more efficient
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. computationally due to the developmént of the recursive integration
algorithms, These algorithms are, also, suitable for on-line idencifi-
cation. The direct method techniqué; smooth the effect of noise
incorporated in the measuremént because of the subsequent integrations
of the 1input and the output signals. Sinha and Zhou @iJie [25-26]
presented a valuable comparigson between five discrete-time approximg—
tion methods in the multivariable case. Three of them gelong to the
indirect approach: the bilinear z—tranaformatizn, the state—transition
method and the wmodified state transition method, and two direet
methods: the trapezoidal rule and the block pulse function methods.
The last three methods were proposed by Sinha an§ QlJie.

The compariaog showed that the accuracy of the approximation
depends, to a large extent, on the nature of the 1ﬁput applied to the
continuous—-time system. For example, 1f the input is not a plecewise-
coanstant function of time, the state transition method does not give an
accurate discrete -time model. 1In the noise~free case [26]-the trape—
zoldal rule, the block'pulse function and the bilinear z-tranaformation
methods gave comparable results followed by the modified state transi-

.
tion ethod where the {nput is averaged over the sampling interval
instead of being held constant, When the simulated systems were
contaminated with a small amount of noise [25] the best results were
obtained using the block pulse functipn methed. This was attributed to

the fact that the implied integratioh used by this method smooths out

the effect of noise especlally when ghe sampling interval is reduced.
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Another reason 1s that all c;ansformations require ‘some differencing
and this causes the noise to be accentuated.

| Considering the relative computational effort required for each
method [26] the bilinear z-transformation is found ;o be most con-
venient for digital simulation 4f the continuous—time system 1is
described in the transfer functioﬁ form. If the model 1is given in the
form of state équations the trapezoidal rule is the most convenient for

digital implementation.

2.4.{ Promising Reueargh\greas o

The direct approach is attractive because of its simplicity and

could possibly Ee used in a wide field of applications, such as digital
simulation of continuous-tiﬁ; systens as well as in the identification
of the system through samples of the input—output data. .Further appli-
catiops of these methods are-poaaible'in digital adaptive control,

Until‘now very little [25-26] and [35] of the work done has
been directed to investigate the identificapién of wamultivariable
contlnuous-time systems with the direc; approash, Moreover, two of the
most promising recursive approximate 1ntegration algorithms [37] [52]
.have only beén applied to single-input single-output systems. \Thoée
algorithms utilize the trapezoidal pulse functions and the cudbic
splines as approximating functions.

The direct approach suffersvsome serious'diffi?ulties when the
continuous-time system is contaminated with noise.  Shridhar e; al.

[35], Sinha and Zhou (25] noticed, that as the noise level increases the

.
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parametér estimates become less accurate. And since in any practical
case different noige levels are superimposed on the data this problem
should be investigated {n order to benefit from the advantages of the -

)
direct method in real situations.

-

v In his survey on the parameter estimation " methods for
continuous—time models, Young [61] states that "it is cleafly of little
use having a sophisticated parameter estimation algorithm if the model
structure 1s not firmly established”. The selection of a suitable
order for the dynamic system 1is an important research area, A lot of
work [62-71] has been done for the discrete-time case. TYoung et al,
[71] have applied aﬁ order determination procedure baged on the instru—
menttal wvariable method to continucus-time systemg. As far as the
author is awaée, this is the only.attempt to apply order selection
methods to continuous - time systems beside the work reported in

Chapter 5. o .

LY

A multivariagfé system can be described within different
structures so in addition to determining the order of the system, one
should select a sultable structure. This is an interesting area for
both discrete-time and continuous-time systems and a lot of work 18 .
requiréd apeéially for on-line apﬁlications. Little has been published
for discrete;time systems [72~76] and none in the continuous—time

case, Those promising research areas are the subject of this thesis,



CHAPTER 3
THE DIRECT APPROACH FOR SINGLE-INPUT SINGLE-OUTPUT

N ) CONTINUOUS-TIME SYSTEMS

3.1 Introduction

' .
The identification of a suitable model for a process for
control purposes 1s often done, using a digital computer from the

samples- of 1input -and output observations. In generai, the process

itself 1s described in terms of continuous-time state equations.  The

" direct approach attempts to dolve this problem directly and is based on

obtaining approximate solutions of ‘differential equations over a time

{nterval [34=37]. Several methods of approximation of "the actual
' /

continuous~time input and output signals, from the available samples,

. have been proposed. These were presented In detail in Chapter 2. The

use of this approximation overcomes the need of resorting to direct -

differentiation techniques, Actually, the original differential
input-outpﬁt ‘model ia converted to linear algebraic (Qr regression)
model convenlent for a direct (or a least squ?tes) gsolution,

In this Chapter threé direct methods based 6n the use of block

pulse functions, trapezoldal pulse functions and cubic splines as

approximating functions, are wutilized iIin the identification of"

continuOus-timsﬁ:single-input gingle~output systems. Thelr_ relative

] - 31
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y

performances are compared both in the absence ang in the presence of
measurement nolse.

Sin;e the direct methods are based on appreximating the signals
from their samples and on approximate 1ntegra£1on teéhniques, a
thorough study is performed in section 3.3 to investigate the effect of
errors in the approxfﬁation on the 1dentification of single-input
single-output continuous-time systems, The atudy also examines the

lmportant case of nolsy data and draws several new and very useful

conclusions. -

In section 3.4 a new approach is proposed to overéome the

effect of approximate integration on the accuracy of the parameter

estimates. A simulated' example 1s presented to show the improvement

when the new approach- is applied. ™

. i

£

3.2 $ystem ldentification Using the Direct Approach

Consider a single~input single-output system represented by the

linear differential equation:

¢ LT
n ‘m
ai . dJ
— - by — .l
on ag =7 ¥(t) jzo 1 o7 O (3.1)
m<n

According to Diamessis [33] the succeasive 1ntegr$5ion of equation .

—~.~—~,/’T“\\\

(3.1) n times over the interval (0,t) ylelds:
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n

m .
): ay Iy y(r) = ): bj In-j u(t) (3.2)
i=0 i=0

The 1input and output signals may be approximated with any of the
*previocusly discussed functions in Chapter 2,
In each case, the system differential equations can be 1inte-

grated using these approximations. Expressing y(t) and u(t) of

.equation {3.1) in block pulse function series, for example, gives:

w(t) = Us(t)

: o : (3.3)
y(t) = Y¢(r) /
Equation (3.2) may be written as i
n m
I ag Yot = 1 by Upy . (3.4)
i=0 j=0 ‘ .
where Uy, = I .. U ¢(t) de = UP ¢(t)
A i,
Yq-y = vPi : _ (3.5)

Up-y = upn=]

~
The use of recursive algorithms sdch as (2.13), (2.25) and (2.32)
facilitates the computations of the different integrals., Since the

. input and output samples are known the respective integrals are easily
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calculated. Hence, the only unknowns in equation (3.4) are the model

parameters which can be estimated by the least squares algorithm.

3.2.1 Comparison of Three. Direct Hethods

The three direct methods are based on using block pulse
functions, trgpezoidal pulse functions and cubic»splines,ps approxi-
mating functions. Each of these has basic equations for the calcula-
tions oﬁ various order integrals [37} [48] and [52]. The general
recursive relations for the first two methods are given in equations
(2.25) and (2.32). No general recursive formula has been developed for
the cubic splines method. Sinha and Zhou {37] calculated u; to the
third successive integral and based on the same principle the author

developed the recursive formulae of the fourth and fifth order
L)

integrals.
[ 3
o 7’
Is,1 = I5,4-1+ T I4,12 + ;T-Ia,i—i + 37 I2,4-1 7
T . N (3.6)
—_T 1 + - my + T x 3.
a1 At T Tog 1T Go3 ™

v

7.44037 x 107 yy_| + T° x 7.44095 x 107 my_;

Computer programs have been developed in Fortran 77 for the

three wmethods and then utilized with simulated systems to compaféa _

relative performance in noise-free and noisy environments,
o~ t

- .«
e

AR
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3.2.1.1 Identification inm the Nolse—Free Case

Consider the following third order single-input 3ingle—output

system given by the following transfer function:

—

G(s) = 1 - 1,
(s+1) (8+2) (8+3) g3 desAl] 15+6

with u(t) = Sin r, the corresponding output is calculated as

-~

y(t) = 0,25e"t - 0.2e~2t + 0.05e~3t~ 0.] cost

The resultslfor three different sampling intervals are given in
Table 3.1.

The parameters were estimated by the least squares algori;hm
[77]. As a measure of the accuracy in estimating the parameters of the
conéinuous-time mo&el the parameter error norm 1s calculated for each
cage and listed {n the Table, The parameter error norm is defined as
P 6 -8, 1 + 0t 8 | where 8 and 8, are the actual and estimated
parameter vectors, respectively [21-22]. ‘

The use of cubic sgplines as approximating functions does
clearly improvq the parameter estimq;es of the system under considera-
tion.' This is due to the good approximation of the original signal the
cubic splines provide. When tﬁe number of successive Integrations
.exceeds two, ;he cubic splines in the noise-free case show superiority

to the other two methods.
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Table 3.1 Cowmparison of the three approximate integration methods for the noise—free
case
1 4
Number Variance Parameter |
Sampling of as - &) ag by of Error
Interval|Method|Samples| {6) (1 (6) (1 Regiduals Norm-
BPF 5.959  10.95 5.968 0.9953  0.1824 x 1073 0.00519
0.07 TPF 100 6:056 11.094 6.054 1.009 0.201 x 107° 0.00878
cub sp 6.00 11.00 * 6.00 1.00 0.5043 x 107'% o,
BPF 6.00 11,00 6.00 1.00 0.1785 x 10712 o,
0.007 TPF | 1000 | 6.00 11.00 6.00 1.00 0.5605 x 10713 0.
cub sp * 1 6.00 11.00 6.00 1.00 0.563° x to~'® o,
BPF 6.00 -+ 11.00 6.00 1.00 0.1114 x 10713 o,
035 TPF | 2000 6.00 11.00 6.00 1.00 0.3498 x 107!* 0.
cub sp 6.00  11.00  6.00  1.00 0.5618 x 10718 0.

9¢



The spline function K has the best approximation and minimum
"curvature properties [35], i.e., of all twice differentiabk@?linter—
'}olating functions, the cubic spline provides the smoothest interpola-
tion. So by its nature, the cubic splines give better approximation to
a glven function then the block pulse functions or the trapezoidal

pulse functions and this property influenced the parameter estimation
process.  On the other hand the computation time is lérger compared

i
with the case of the block pulse functions or trdpezoldal pulse

37

functions as approximating functions, see Table 3.2, The latter

A

methods have also the advantage éf being easily incorporated in an}
on-line algorithm to obtain directly at each sampling inpstant the
approximate value of the function and its successive integrals. To
calculate tge cubic spline function at a certain sampling instant cthe
value of Ehe first derivative at the same and previous sampling
instants-should be known in addition to the obsBerved values.

T;ble‘B.Z Cowparison of execution time of the three direét methods to

approyimate the first, second and third 1integrals of - 500
samples., (Cyber 730) .

Method . BPF ‘ TPF Cubic Splines

b
Execution time in seconds |
for 500 iteérations 0.0989999 0.0939999 0.238

3.2.1.2 Identification in the Presence of Noise

I 4

Two other simulated examples are presented to compare between
the three direct pethods when the single-input single-output system is
0

contaminated with noise,
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Example 1 Second Order System:

Consglder the followtng transfer function:

o8y 10 . 10

(s+1) (s+10) 82 + lls + 10

The input to the system u{t) Is taken as

~

u{t) = cos 0.47 t + cos 3.83 t - 2 cos 7.29 ¢

Assuning zero initilal conditions, the output of the system is givén by:

as

g(t) = =0.93995le~t + 0.062662e~10t + 0.9049026
cos(0.47t - 0.486326) + 0,235916 cos(3.83t -
1.681167) = 0.219636 cos{7.29t - 2.064398)

Two white nolse sequences were generated by the computer and added to
the outpf. The sequenceé had zero means. and standard deviations equal
to ten percent (10%) and éwenty percent (20Z) of the o;cput signal
respecively (corresponding to a signal to noise ratio (SNR) %f 20 db
andglﬂ db; respectively). In Table 3.3, the three approximate inte-
grations methods are compared with respgct to the accuracy of the
estimated parameters for a sampling interval T of 0.0l sec.

The cubic splines method does not_qhdw any Supefiority in the
nolsy case. The three methods gave the game results, almost the same

parameter estimates. . “r
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Table 3.3 Second order system with 10Z and 20X noise levels 500 input-
putput samples. T = 0.01 sec. ‘

N.S.R. = 10% N.S.R. = 20%
True - -

Parameters BPF TPF Cub. Sp. BPF TPF Cub. Sp.
ay (11) 10.91 10.91 - 10.9 16.65 10.65 10.64
ag '(10) X 10.15 10.15 10.15 10.16 10.16 10.15
by (10) ’ 10.04 10.04 10.04 9.925 9.925 9.918
Parameter 0.01 0.0i 0.01 0.0219 0.0219 0.0222
Error Norm .

7 e ‘

‘While examining this Sxample, it is worthy to illustrate the
.effect of. the choice of the hgmpliné interval on the idenéificationil
Three different sampling 1intervals are chosen, to show how a large
sampliong interval as well as a small one may affect the accuracy of the
estimate@ ﬁarameters. .The results are listed in Table 3.4. They were
taken with the cublc splines as approximating functions at 10X and 20%
noise 1e\‘re;.s, r;aspectively. R
It ;; clear that taking the sampling interval T equal to 0.0Q1

-
sec. glves the best results compared to thg other two sampling inter-

vals. A large sampling interval cauéés 1658 of information, while a
very small sgampling interval causes numerical problems, makes the

gystem more sgensitive to the noise and increases the computation time

as well [37].

-
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Table 3.4 Comparison of three different sampling intervals

Noige to Parameters (True Values)}
Signal Number Sampling |~ Parameter
Ratio . of - Interval Error

N.S.R. Samples - T(sgc.) ay (11) ag (10 by (10) Norm

10% 250 0.02 11.45 10.55 10.53 0.046
500 0.0 10.9 10.15 10.04 0.01
714 0.007 11.15 10,34 10.21 ¢.0238

20% 250 0.02 11.05 10.4 10.31 | 0.0284

- 500 0.01 10.64 10.15 9.918 0.0222
714 0.007 11.07 10.5 10.2 0.0303

A commonly used rule is tﬁat the sampling interval T should be

gelected in such a manner [20] that

AeT 0.5 (3.7)

where Af 1s, the  magnitude of the largest eigenvalue of the
continuocus~time model. ~ In this example the equality sign 1s nrot-
sultable, it results in a véry large value of T. As we proceed In this
chapter we will find that a more appropriate rule-of-thumb to choose
the sampling interval when using approximate integration methods is the

following:

0.05 ¢ A¢T g 0.1 (3.8)
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Example 2  Third Order System: ‘

In the nolse free case, the cubic splines approach show;d
superiority over the other two techniques because the order of the
system exceeded two, To Investigate 1f this property still holds in
the no{sy environment a third order single-input single-output system
1s simulated with the following transfer function:

. 2 2
o(s) = 8 + 23 + 5 . s + 23 +5

(8+0.1)(s+1)(s+10) g + 11.1 82 + 11.1 8 + 1

u{t) = cosVO.St + cos 3t - 2 cos 7t

The output was calculated to be:

y{t) = = 0.21142 e=0.1t 4+ 0.42469 et - 0,05463 e~10t - 0.092269
cos 0.5t + 0.84538 sin 0.5t + 0.04413 cos 3t + 0.0578562
gin 3t -~ 00,1105 cos 7t - 0.1055714 sin 7t

In Table 3.5, the three direct methods are compared for the noise
levels of 10% and 20%, respectively, for a sampling interval T = 0.007
. 4 .
sec.
It {s clear from Table 3.5 that even for a third order system,
the cubic splines approach performed in the same level as the other two
methods (the block pulse functipns and the ;rapezoiaal pulse functions

approaches). Since the method of trapezoidal pulse functions requires

less computations it 1is preferrable to use it in practical cases.
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Table 3.5 Third order system with 10X and 20X noise levels 1000 fnput—output samples.
T = 0.007 sec. -

-

Noise ' Parameters (True Values) ° Parameter
Level Error
N.S.R. Method a9 (11.1) a) (11.1) ap (1) by (1) by (2) by (5) Norm

10% BPF 11,64 10.16- 1.021 1.032 2.151 4.673  0.068623
TPF 11.64 10.16 1.021 1.032 2.151 4.674  0.068605
cub.ap. - 11.64 10.16 1.02 1.032 2.15 4.673 0.068614
20% BPF 11.53 8.793 ©0.9961 1.029 2.163 4.149  0.15020
TPF 11.53 8.794 0.9962 1.029 2.163 4,149  0.15015
cub.sp. 11.52 8.792 0.9953 1.029 2.16 4.148 0.15016

<k
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The estimates of the parameters obtained for different sampling
intervals with the trapezoidal pulse functions method are given 1in
Table 3.6. It 18 clear that T = 0.007 sec. gives the best results
which corresponds to AgT = 0.07. This value lies within the region
indicated in equation (3.§).

It can be noticed that as the noilse level increases the
parameter estimates deterliorate even after an appropriate sampliné
interval has been picked up carefully. |

This problem 1is the topic of the folloding section.

3.3 . Effect of Approximate Integration on Identification

The input and output signals and their integrals are approxi-
mated at the sampiing instants either by the block pulse functions, the
trapezoidal pulge functions; etc..., and substituted in the differen-
o
tial equation. There always exists an error in the approximation, but
does this error Affect the identification? Previous work [25] [35]
[37]) ;as been cénducted to identify continuous-time systems with the
direct approach In presence of noise with lirtle success. In [25] the
highest noise level added to the system to o?éain reasonable parameter
estimates was 1.5%7, which is actually very low. Sinha and Zhou [37],
Shridhar and Balatoni [35] showed also that the higher the noise level

the less accurate are the estimates of the parameters. They also

mentioned the presence of numerical problems,

:'f‘!
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Table 3.6 Cowmparison of three different sé-pling intervals

Parameters (True Values)

Rymber S;mpling Parameter
Noise of Interval Error
Level Samples T 1.1 11,1 1. I. 2. S. Norm
102 700 0.01 9.82 -10.72 0.8791 0.9423 1.772 4,695 0.08375
1000 0.007 11.64 10.16 1.021 1.032 2.15 4,673 0.0686
2000 0.0035 10.22  '9.992  0.9833  0.9554 1.75 4,575 0.09
202 700 0.01 8.391 10.17% 0.7516 0.B744 1.508 4.324 0.1799
1040 a.0qQ7 11.52 8.792 0.9953 1.028 2.16 4.148 0.15016
2000 0.003s 8.968 8.814 0.9199 0.8888 1.444 5,078 0.19866

v
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3.3.1 Problem Pormulation

Let us sgtudy the effect of the approximation errors on the
identification of continuous~time sgystems for a second order single-
input single-output system and assume that the measurements are noise
free to emphasize the effect of the errors in the approximation.

The system is described by the followlng differentiallequation

2 ;
gzuy(t) + al'%: y(t) + ap y(t) = bl'%: u(t) + by u(e)  (3.9)

Integrating twice and assuming zero initial conditions we obtain

y(t) + apfy(t)de + agf[y(t)de - blfu(t)dt>+ b/ fu(t)de (3.10)
or

y(£) + a)I1(y) + agIz(y) = biIj(u) + byIz(u) (3.11)

Substituting the input and outpué gignals and their integrals by their

approximated values we get:

§(t) +’a111(y) + aoig(y) - blilcu) + b°i%§3) (3.12)

/
\\_//

Substracting equation (3.12) from{3.11):

-«

S~

El[y(t)) + alez(ll(y)'l + BOEB(IZ(Y)} i blaa(Il(U)) + boES(Iz(u)) (3-13)
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€ constlitute the error in the approximations.
.1t 18 well known that a function which 13 integrable over an

-

interval can be approximitéd as:

N

£(r) ~ T f£1 ¢4(t) - A (3.14)
1=0 _ A

. N
e (£¢e)) = £(e) = § f£4 ¢4(t) (3.15)

i=0

where g; 1is the error in approximating the fuéction. €3, €3, eLCas.,
represents the errors in the integrals,

Th; errors in the approximation exisF whether the' system is
contaminated with noise or noise-free. Equation {3.12) may be

presented as follows:

y(£) + ayIj(y) + agl(y) = byI(u) + byIp(u) + e(r) (3.16)

where e(t) is the resultant error from all approximation errors.
- The errors in the 1integrations propogate and hence the
residuals are correlated. Jhis is better illustrated by the following

example.

Consider the third order system of subsection 3.2.1.1°

represented by the transfer function C(s).
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4

G(g) = L
{8+1)(s+2)(s+3)

<

We take 500 input, output data points, éampled at the rate of
0.007 sec. and use the cubic splines as approximating functions. The
recursive least squares algorithm Jhilized in thg idéntification
converged to the true parameter values. But if we examine the
autocorrelations and partial autocorrelations [see Figure 3.1] we find
that the residuals are highly correlated. This is the result of the
abproximations in the integration.

Let us assume now that the approximation errors are negligible
and consider a first order single-input single—outpdt system, with an

added meaaurement.error term.
d y ' .
i y(t) + ap y(t) = by u(t) + n(cr) (3.17)

n(t) is a white noise sequence,

Integrating (3.17) once we get:

y(t) + agfy(e) = bgfu(t) + fn(r) (3.18)
;o
So even if we assume that there was no error in the approxima-

tion while integrating, we do have a new term In(t) which‘is no longer

white noise, It 48 a Wiener process.
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-

The combination of both the errors in the approximation and the
integrated noise term gilve birth to a new error series. When the order
of the continuous..time system Increases, the number of times the error
term is integrated is higher. This res;lts in less accurate estimated

parameter values and correlated residuals.

3.4 A Proposed Approach for Modelling the Error Term

The presence Qf this unmodelled error term 1is responsible for
all the problems encountered in identificatlon in presence of noilse

(25], [35] and [37]. In previous work the error term was consldered to

-

represent a white nolse sequence and was not accounted for in the

identificacion.

A new approach Is now presented éo deal with the problems
discussed previously. It consists og modelling the error tefm‘with the
time series method of Box and Jenkins [70). This is done by examining
the auto;orrelations and partial autocorrelations of the residuals (the
nolse series) and fitting a suitable model. The fitted model is
checked for adequacy and is adjusted, 1f it falls diagnostic tests.

The modelling of the resultant noise absorbs the errors and
gives good estim;tes of the parameters., Although it ig F Eontinuous

time system the noise 1a modelled with a discrete model.l This hybrid

approach is usually utilized {78] to overcome the problems associated

L
1

with the identification of continuous noise models.
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Because -of the existence of the Iintegrated noise term, non-
stationary models such as IMA (0,d,q) and ARIMA (p,d,q) [equation

(3.19)] are expected to be adequate models for the error term.

¢(B) vdw, = g(B)a, . . (3.19)

[N

where ¢(B) 13 a stationary autoregressive operator of order p
d is the number of roots lying on the unit circle (degrae of
aiffqyencing)
wr 1is the combined error term
vV = (1-B) where B is the backward shift operaior
8(B) 1s a stationéry moving average operator of order g

ar 1s a sequence of random shocks.

Now, 1f the model is adequate, it 15 posaible to show [70]

that,

- ]
ag = 8t+0(ﬁ-T] \

where N 1is the number of w's.r The autocorrelations ri(a) of the

residuals a's can yleld valuable evidence concerning lack of fit and
the possible nature of model inadequacy. If more sthan 52 of the auto-
correlations exceed :j:%:, as it will be clearly indicated by a dashed

line on each figure, then the modael is not adequate,

-
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J.4.1 The Noise—Free Case

Example 1:

Let us reconsider the game third order system of
1Y

section 3.3.1. After examining the autocorrelations and partial auto-
correlations of the residuals, gilven in Figure 3.1, several discrete
models were tried to model the residuals. The best model found is

described by:

V2ep = ap or (1-B)2 ey = a, o (3.20)

f.e., the second differencing of the errors in the approximation is a

* e
stationary series. Q*'

By looking at Figure 3.2 we can see that the residuals are mno

more correlated and rhat the model doeé.fit the series,
e .

Example 2: N )

No@ let us present another example to demonstrate the effect of
Ty

thé error term on the 1dentif1;ation of single-input 'single-;utput
continuous-time systems, Consider the third order systém of
sectiqg/é.z.l.z uhicﬁ is a difficult system because ' the poleslare not
clqse .to each other. The system was represented by the following

transfer function:

]
£ 242545 2+ 25 +5
L ga) = 8 s.‘ - 8 qs
. (8+0.1)(s+1)(s+10) . 8 + 1l.1s%+ Il.1s + 1

.

[ 4
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. r The accuracy of the estimated parameters and the correlations

existing between the residuals are compared before and after using the

’ awjﬁggested approacﬂ to {llustrate the improvement. We take 1000 {input-
S’ cutput data sampled at the rate of 0.007 sec. and the cubic splines as
approximatiqg fuﬂccﬂons. The least squares algorithm .converged to the
true parameter values. By examining the autocorrelations and partial
\ ) autocorrelations of the residuals [see Figure 3.3] we find‘that the
+ residuals are correlated..
After extensive simulations the residuals were modelled with
the Integrated Moving Average model IﬁA (0,3,3) which ‘improved the
" variance of the residuals as presented in Table 3.7, and decorrelated
the residuals [see Figure 3.4].
IMA (0,3,3) is describsd by the following equation:
r
. : Par®a 2, +8,8p + 9pap-p + 93ap-3 (3.21)
-/ - - - .
f.e., (1-B)%er = ag + J . 64ap-4 : . (3.22)
. i=1
b ~
d The résgl;s prove cﬁét a model for‘thé errors Iin the approximation is

-

necessary even when no noise is superimposed on the system.

Table 3.7 Variance of the residuals with and without modelling e,

Without Modelling e, ‘ With Model IMA (0,3,3)

0.5805 x 101! 0.2054 x 10”17

mpm.
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the error term without modelling. Noise—free case
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3.4.2. % The Hoisy Case

Two white noise sequences were generaged by the computer and
added to the output of the simulated third order system to examine the
effect of the combined error term on the identification. The parameter
egtimates, when no modelling for the error term was used, were presen-—
ted in section 3.2.1.2.

The nolse sequences had zero wmeans and sgtandard deviations
equal to ten and twenty percent of the output sgignal, respectively.
When no model for the resliduals was used the residuals were correlated.
., Figure 3.5 shows the autocorrelations and partial autocorrelatlions of
the residuals wheq the system is contaminated with twenty percent noise
level without modelling the residuals.

. Several discrete-time models were tried, the best model found
to fit the error series w¢ in both noise levels was ARHA(I,I):

\

We ot 6] Veop = ap + 0] ap-) (3.23)

In Table 3.8 the variance of the modelled residuals and the
corresponding parameter error norm are compared for each noise level

with those obtained when no modelling of w, was used.

~

By examining the residuals correlations 1in Figure 3.6 1t

becomes clear that the wmodelling of wy did cause the residuals

whiteness .~
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Table 3.8 Variance of the residuals and parameter error norm for
different noise levels with and without modelling wy

10X Noise 20% Noise
wp Not 102 Noise wy Not 20X Noise
Modelled ARMA(1,1) Modelled ARMA(1,1)

Variance of \
the Residﬁals- 0.9838x10"3  0.9083x10~%  0.3941x10~2  0.3627x1072
—

|
Parameter \ |

Error Norm 0.0685147 0.0635743 0.1501634 0.1390276

If we compare, between different sampling intervals we find that

.

the suggested approach does enhance the performance of the least
-
squares algorithm when the sampling interval is not adequate for the

system,” This is clearly demonstrated in Tables 3,9 and 3.10. -

—~ .

XY
R
Table 3.9 Third order aystem with T = 0.02 sec., 10.% noise - 1000

- input-output data

T = 0.02
T = 0,02 With Error
True Parameters Without Error Model Model IMA(O,1,1)
11.1 3.091 9.211
1.1 2.187 8.104
l. 0.221 0.8299
I._ 0.4391 0.892
2, 0.7406 1.726 |
54 . 0.9864 3.718 !
Residuals Variance 0.01164 0.431 x 1072
Parameter Error Norm 0.764 0.22569 !

-,
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Table 3.10 Third order system with T = 0.0]1 sec. 10.2 nolse -~ 1000
input—output data

T = 0.0l
T = 0.01 With Error
True Parameters Without Error Model Model ARMA(L,!l)
1.1 . 9.514 9.776
11.1 8.846 9.508
: 1. 4 0.8431 0.8887
1. 0.9213 0.946
2. 1.794 1.803
5. 1.969 4.246
Variance of Residuals 0.4775 x 10~2 0.3917 x 1072
Parameter Error Norm 0.177301 0.132952

3.5 Concluding Remarks

Differential equations can be coqverted. to linear algebraic
models convenient for a least squares solution when using the direct
approach. The signals and their successive integrals are appioximated
and aubdtitute& in the differential equations which then can be solved,

Three direct methods using the block pulse functions, the
trapezoidal pulse functions and the cubic spline functions as
appre;imacing functions are thoroughly compared 1in the case of»
single~input single-output systems.

The Comparison showed the superiority of the cubic aplinés as
approximating functigns followed by the trapezoidal pulse functions
method in the nolse-free case. When the observations were contaminated
with noise the cubic spline method did not show any superiority for

]
second and third order systems. But probably in the case where the

«
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order of the system.wlll exceed say 6 or 7, the cubic splines will give
better results because they are more accurate for hiéﬁ order {integra-
tions. All three direct methods gave almost the sgame parameter
egtimates, But for practical cases it 1s advisable to use the trape-
zoldal pulse functions method. It has the advantage of being easily
incorporated in any on—-line algorithm. It uses the actual output data
unlike the block pulse functions method and hence utilizes the least
~
computational time.

Several 1llustrative examples were presented throughout this
chapter. It has been shown that the choice of the samplz;g interval
affects the accuracy of the estimated parameter. A heuristic r;le has
been suggested to properly choose a sultable sampling interval, It was
also noticed that as the nolse levél increases the parameter estimates
deterioraca even with the sampling interval ﬁicked up carefully.

The effect of the errar in the approximétions and additive
noise are then studied,. The study showed that the errors in the
approximation have a non-stationary behaviour and result in correlated
residuals. y

It has been also 'demonstrated that when the continuous-time
system 1s contaminated with white noise, the integrated noise is added
to the error term, hence causing identification problems. A new
approach 1s proposed in section 3.4 to overcome these difficulties.
This approach consists of modelling the error term which forms the

stochastic part of the problem. The modelling has been done with the

time series technique,
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The proposed approach showed superior results in fmproving the
estimates of the parameters and providing uncorrelated regiduals., It

also improves the sensitivity of the eatimation algorithm to the cholce

of sampling intervals.

*

I

-



CHAPTER 4
PARAMETER ESTIMATION OF MULTIVARTABLE

CONTINUOUS-TIME SYSTEMS

4.1 Introduction

The identification of multi®ariable systems from the ngples of
lnput—-output data was extensivel; treated 1in the 1iteratufe for the
discrete-time case [52-24]. Little was done in the field of estimating
the parameters of a mnpultivariable continuous—ti?e nodel from the

samples of the input-output data. This will be the roplc of this

chapter and the work of Chapter 3 will be extended to the multivariable
case.

) In sections 4.2 and 4.5 three direct methods will be used to
identify multivariable systems from the avallable data. CSmparisons
will be drawﬁ based.on the accuracy of the parameter estimates in noise
free and noisy cases. The three direct methods are those considered in
Chapter 3 for the single-input single-output case.,

'The identification problems associated with the approximate

integration methods are discussed for the multivariable case in

section 4.3.

63

——



64

In section 4.4 the error modelling approach 1s proposed to

overcome those problems and to improve parameter estimates of the least

aquares solution,

4.1.1 Statement of the Problem

/J Consider an ath-order linear ti#me-invariant saystem with m
inputs and p outputs, The outputs of the system are assumed to be

contaminated with additive noise.

£ .
The system can be described by the following equations

x(t) = A'x(t) + B'u(t) ’ |
z(t) = C'x(t) ) | (4.1)
’
. -
y(t) = z(t) + w(t)

»

where x(t) € R“,'Eﬁt) € -R® and z(t) ¢ RP. The noise vector Egtl‘ .
is assumed to be a zero—mean random noise vector of dimension p.

We problem of system identification may be stated as the
determination of the matrices A', B' and C' from records of samples

of ' u(kT) and y(kT), where k 1s, an integer, and T is the sampling

i

-
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interval. For convenience, these sampled observations will be denoted
as u{k) and y(k), respectively., It will be assumed that the sampling
interval, T, has been selecFed carefélly. It will also be assumed that
the order, n, éf the model is known a priori,

* It {8 well known that the matrices A’, g' and C' are not unique
aﬁd for any given 1nput—outp;t descritpion, many such matrices can be
obtained through a linear transformagion of‘the state. Alternatively,
one may utilige the transfér function matrix description of equation
{4.1), which is unique.

L}

Y{s) = G(s) U(s) + W(s) ) (4.2)

where B

- = b

g11(8) g12(8) +.. gim(s)

812(8) 822(3) e 82m(8)
G(g) = . . . (4.3)
K . -

gp1(8) gpa(s) ... gpm(s\)i

L : 1
LY

is the transfer function matrix of the éysteﬁ.“lf necessary, it 1ia

-

always possible to obtain the state equations from the transfer
function matrix. Another advantage of using the transfer function

m.atrf;D is that one can decompose the multivariable system into p

-

.y .,
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J'apﬁropria;e dimensions.\\

subsystems, each with one output and m inputs, correspdnding to each '

- - oo Co
row of G(s). Hence, each outpuf may be caldulated in the folléwing
. . e - -

fo;“' . a T . -
’.\'\. J T )
o . .
Yi(a) = L gij(s) UJ(B) +-w1(3) (4.4)
J=1 .

1 = 1,2, aeey P

LW

_ Another commonly used representation of equatfon (4,l) is the input:\\

output description which can be identified directly from the available

input and output samples. . \\\\

AN
Ce

.

T

(D% + Ap_y DL 4 L+ APD + Ag) y(E) =

(4.5)

‘ (Bp-1 D®"1 4 .. + ByD + By) u(t) + w(t)

X
o

where D corresponds to the operator d/dt and A & B _are matrices of
' . r
.

- -

In the coming sections these two types of models, the transfer

matrix representation and the input-output desdriptioq; will be

studied.

Y

e



4.2 Identification in the Transfer Function Form

.

B'll(s)

(4.3) can be presented in another form

Blz(s)‘\\

-DI(S)

BEJ{S)

Dy1(s)

BPZ(S)

Dp(s)

Dp(s)

Bin(s)

DI(S)

Bpm(s)

Dp(s)

67

The general Trangfer Macrix representation given in equation

/

/i
where Di(s{ is defined as the least common denominator of the ith row
of G(s) of eq;ation (4.3)Ihav1ng the degree:ni (less than_or equal to
n) and Bij(s)'s are polynomials of s of maiimum degree ni—l- This
form has 5een considered for identification by El-Sherief and Sinﬁa
{79] and Sinha &. Zhou QiJie [25_].

. fﬁé structural parameters for Gks) of equation 74.6),are the
orders “1;5 of each row o 8) and the number of paéamecers to be

P -
estimated 18 ] ny . It can be noticed that the form of equation

v im] ~ ’
. .(4'3) for, G(s) 1s unique and minimal while the form of equation (A)GT:?_
«§?15 unique but not.ﬁinggal. The ith differential equation of the Bystem

represented by equation (4.6) can be written'as:f

1% o . Voad

La
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. h moon4 (ny-2)
(0™ yy)e = I I byylag-o) (b up)k -
jm=1 2=l
’ P ’ _(4.7)
f
ny (ng-L)~
121 dy(ng=£) (D Y1)k

-

where byj(ny-L) and dy(ng-%) are the parameters of the polynominals
ny 4
By4(s) and Dy(8), respectively, and D ° yq) 18 the k.th sample of the

niFh time derivative of the 1Cth output. Using the direct approach,

i.e., integr-a!:ing equation (4.7) ny times, (4,7) becomes r

m nq . ny
yae = L 1 byg(ng=0) Ll - L odglngm) Ilygde  (4.8)
1=1 2=l 2=l

- v

IS L]

where yqy 18 the kth gample of the ith output without any integration

‘

. 2 .
S o S
Io(y{)y is the kth sample “of the 2th inregral of the 1ith ourput
——
' !

Iy (ug) 18 the kth gample of the £th integral of the jth faput

Now the given system has been decomposed 1into p subsystems’

where each subsystem corresponds to one ‘row of the TFM (Transfer
- . v .
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/

Function Matrix) and can be regarded as a single—output multi-input
gystem of order nye.
In Chapter 5 three order determination methods will be applied

to continuous-time multivariable systems in the TFM form to identify

o

‘the order of each subsystem. The next gubgections will deal with the

identification of the parameters bij(ni—i)'a and dy(ny~2)'s of
each row with the dirve#€t approach for the noilse-free and the noisy data

cases,

4.2.1 Identification in the Noise Free Case

The three direct approach methods: block pulse functions,
trapezoidal pulse functions and the cubic spline method, discussed in
Chapter 5 and used in Chapter 3 with single-input single~output systems
wiliifow be applied to f;e,muitigariable case. The parameter estimates

obtained with each method and the correspondiﬁg normalised error value

will be tabulated and compared.

-

Y

- Cousider the following two-input two—output system with the

following transfe¥ function matrix:

. ' -
- . N

1 2 .
s§+3s+2 s+l
G(s) = |,
. 3 28+1

§+2 g +3s+2

G
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The inputs used to excite the system are:

-

A : ?

up(t)” = 1.5 cos 0.9871t + 2.5 cos 0.2137t - 4 cos 5.8763t

U, (£) = "2 cos 0.4769t + Z cos 3.83t — 4 cos 2.317t

With zero initial conditibns. The exact outputs are given by:

y1{t) = 1.63123e72%t - 5,295588e~C + 0.478639 cos(0.9871t -
1.237807) + 1.21548 cos(0.2137t - 0.31698) - 0.108106
cos(5.8763t - 2.64498) + 3.6104 cos(0.476%t — 0.4449) +
1.0105 cos(3.83t - 1.3154) - 3.17 cos (2.317 ™= 1.1§33)

ya(t) = 1,1286et - 5. 8133e2t + 2,01764 cos(0.9871t - 0. 4584) +

3.7287 cos{0.2137t - 0.106446) - 1.9332 cos(S 8763t -
1,2427) + 1.2133 cos(0.4769t + 0.0826) + 0 9033 cos(3.83t -

0.9639) — 2.4549 cos(2.317t - 0.6637)
oy
This example was used by Sinha and Zhou ([25] to identify the
parameters of the transfer function wmodel with the block pulse func-
tions wmethod. 1In the noisy case they applied only a noise to signal
ratio (N.S.R.) of 1.5% to the outputs to get reasonable estimates due
to the identification problems discussed earlier in Chapter 3. The
ﬁarameter egtimates obtained by.the three direct methode for the firsg

-

and second subsystems are listed in Tables 4.1 and 4,2, The output and
) )

» lnput signals have been sampled at two different sampling rates and the

resuylts are included in the same tables. . ' .

X . ' N\
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Table 4.1  Comparison of three direct methods in the noise-free case.
First subsystem

" Number Parameter
Sampling Direct of * Error
Interval Method Samples b;;(0) by,(1) by,(0) d;{1) d,(0) Norm
- 0.1 BPF 1.003 2.008 4.013 3.011 2.006. 0.00342
. TPF 200 1.004 2,009 ™ 4.017 3.014 2.008 0.00435
cub.sp. 1.000 2.000 4.004° ~ 3.000 2.000  O.
0.05 BPF * 1.001 2.002 4.002 3.002 2.001 0.00064
TPF 400 1.001 2.002 4.003 3.003 2.001 0.00084
‘cub.sp. 0.9997 2.000 3.999 2.999 1.999 0.00030
Table 4.2 ,Comparison of three direct wmethods in the noise-free case. Second subaystem
=
Number Parameter
Sampling Direct. of k . Error
Interval Method Samples by (1) by (0)  bpy(1) by (0)  dy (1)  dy(0) Norm
0.1 BPF 3.03  2.998 2.012 0.9974 , 3.02 1.999 0.0063
TPF 200 3.031 2.994  2.011 0.9957 3.019 1.996 0.0064
WM. sp. ) 2,997 v 3.002 1.998 0.9999 2.998 2.002 0,0008
0.05 BPF 3.007 3.000 2.003 3.005 3.005 2.00C 0.0015
TPF 400 3.008 ° 2.999 2.003  3.005  3.005 1.999  0.0016
cub.sp. 3.000 3.000 2.000 3.000 3.000 2.000 0.00

L
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The results of simulation indicated that, as expected, the
cubic gpline method {n the nolse ﬁree case 1ls superior to the other two
direct methods. .

.U - s - .

4,.2.2 Identificarion in the Presence of Noise

The outputs of the slmulated system were contaminated with two
different white noise sequences. The sequences had zero means and
standard deviations equal to ten percent (10%) and twenty pgrcént (202)
of the output signals, respectively.

In Table 4.3 tHe three approxiﬁate integration methods are
compared with ;gspect to the accuracy of the'eatimated parameters at a
sampling intervq} of 0.05 sec. for(;he two subsystems.

The results show no difference in perfofmance betweeﬁ ph; three
methods when noise 1s applied 'to the wmultivariable system. The
parameter estimates obéained ére nearly identicaf. Also, the estipaﬁes
are far érom good especially.when the noise level 1ncreases; This 1s
due to the wombined effect of the errors in the approximation plu? the
integrate& noisg term as discussed previously in Chapter 3 for single-

input single—-output systems. The analysis 1s extended to the multi-

variable case in the next section. . *

\

4.3 Effect of Approximate Integration omn the .Identification in the

Multivariable Case

Consider an, nth order multivariable system described in the

input-output form by the foliowing'differential equation:
-



©

Table 4.3 Comparison of three direct methods in the noisy case

BEF TPF  Cub. Sp.  BPF TPF  Cub. Sp.
True
Parameters Values N.S.R. = 10% .5.R. = 20X
(1) 3. 3,136 3,135 3.135 3.245  3.247  3.247
d,(0) 2. 2.075  2.075  2.08 2.136  2.137 2145
(0 7 1. £.062  1.062  1.063 1.119 1,119 1.121
bya(1) 2. 1.988  1.988 1,981 1.957  1.958  1.944
b)2(0) 4. 6,146  4.148 4,152 4.262  4.264  4.272
da (1) 3. 2.603  2.603  2.597 2,253 2.253  2.247
d2(q) . 2. 1.529 1.528 1.53 0.9098 0.9099 0.9109
T by (1) ‘3. 2.973 2.974 . 2.965 3.007  3.007  2.998
b1 (0) 3. 2.285  2.285  2.287 1.355 1.355 1.356
by (1) 2. 1.821 1.821 1,817 - 1.647-  1.647 1.643
by2(0) 1. 0.6737  0.6734  0.6744  0.2893  0.2894 , 0.29
Parameter Error
Norm I 0.038  0.038  0.039 0.069  0.069  0.071
Parameter Error : .
. Norm II . 0.169  0.169  0.169 0.375  0.375  0.375

€L
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/ﬂ\ ‘ d? l{t)+Aﬂ_ldn yle)y + oo+ Ay y(t)

den den—1
(4.9)
n=-1
= Bu-j a(t) + ... + By u(r)
dtn"[ - -
|
Ihtegrating (4.9) n successive times, we get
20E) + Aqey 1) (F()) + oeu + AgLn(y(®)) f
£4.10)

= Bp1Iy(u(e)) + «oo + ByIp(u(e))

Assuming an ideal .case with no noise and taking into consideration the
r— .

existing approximation in the integratiaa equation (4.10) is modified

into

v

2(E) + Aqo T 3(e)) + oo + AIq(y(e)) =
(4.11)
Bp—1I(u(e)) + .. + ByI,(u(e)) + e(r)
where Eﬂtf is the vector épntaining the errors in the approximation
series assoclated with each .output. For the 1th oyrRut equation

(4.11) may be written explicitly as

L4
*

A7

74



p ny

ye) + 1T agslage) Ly(o) -
1=1 2=1
(4.12)
m ng -’ .
z Z .bij(ni—i) Il(“j(t)) + ey (t)
J=1 2=1

If we compare equation {4.12) with equation (3.16) it becomes
clear that in the multivariable case the errors in the approximation
have a greater impacf on the 1dent1fication‘than in the single-input
single~output case, We have additional accumulative errors\due to the
approximation of the integrals of the different outputs and inputs. 1In
the transfer function fomA, the multi-input multi—output_ system 1is
decomposed into p different systems with onre output and m inputs.
Hence the approximate integration of the other noisy outputs to the

system does not influence the parameter estimation process contrary to

N

-

the input-output form representation of equal order.

~
Let us add a measurement ‘error term to equation (4.10), and

!

assume that the errors in the approximation are negligible. Inte-
o

grating (4.10) n successive times we get

75

t . L,

- 2(E) + A Tp(F(E)) + eee * AIy(p(e)) - ¥

”~
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where TI,(n(t)) represents the n fold time {ntegral of the noise
sequence assoclated with each output.

So 1f n(t) are 1r-1d‘ependent -white nolse, sequences Iy(n{t)) is
not guaranteed to be so. Since the errors in the approximation are not

negligible as assumed, the new error term
w(t) = e(t) + Ip(n(t)) (4.14)

will be a vector of coloured nolse sequences.

Hence we reach the same conclusion as in section 3.3, The
error te'fx\n composed of the errors generated. by the approximate
integration in addition to the integrated noise term are responsible
for the non—sgtisfactory obtained parameter estimatgs as well as the

correlated residuals.

4.4 The Error Modelling Approach

To solve the problems associated with the identification of

-mull::l.variable continuous-time sygtems, the error wmodelling approach
presented in section 3.4 1is proposed. The modelling of the. coloured
noise sequences is believed to provicie a considerable improvement in
the parameter estimates and gives ac;:ordingly uacorrelated residual
series. In previous work, no mdglling was used [37]), [34] and the
errors tn the approximation problem never\ addressed, but it was noticed
that the estimates deteriorate as the noise level increases [35]. The

o N

A



1s the estimated autocorrelation at lag &k

77
tié; series approaéh of Box and Jenkins [70] presents-a very good
analytical approach which makes use of al{ the avallable information to
identify a suitable model for the error serles.

The error modelling approach recognizes the existence of a
stochastic error series and shows the importance of modelling it. Once
a model is tdegtified for the error series, the parameters of Poth the
multivariable -system model and the noise model can be estimated at the
same time recursively. This _Eransforms the least squares algorithm

into an approximate maximum likelihood method [78].

4.4.1 Results of Simulation

e

In this section the error modelling app}oach will be applied to
the system described in gection 4.2. The plot of the autocorrelations
and “partial autocorrelations of the error series when the system 1s

contaminated with 20% N.S.R. without modelling is given in Figure

[4.1-2]. 1t 13 evident that the residuals are correlated ‘A* second

diagnostic test called the portmanteau criterion also shoys an inflated

Q, when compared with the xz tables [70].

.

- K
Q= nl rla) - _ . (4.15)
oo

where n = N-d.is the number/é; w's used tp fit the model, d 'is the

number of differencing and N is the total "gumber of observations., ry

For n = 400, d = 0, K = 30,
. -

the correspbnding values of Q are given 1in Table 4.4. —
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Table 4.4 The values of Q when w; is not modelled

: N.S.R. = 10% N.S.R. = 20% ,
Ist Subsystem _5B.94 66.35 !
#+ 2nd Subsystem 1031.53 ' 597.83

[

The tlme-series model identified for the error term of the

first subsystem 1is an integrated moving average model of order one,
IMACO,1,1), equation (4.16), and the error series of s+the second
subsystem was modelled by an autoregressive integrated moving average

model,. ARIMA (1,1,1), given in equation (4.17).
/

th = at + elat_.l i (4-16)

"\
Vep = 41V weop = oag + 0] ag- (4.17)

In Table 4.5 the parameter estimates obtained, before and after .

the modelling of the error serles, are listed to show the 1mpro§edtnt

introduced by the error modelling approach.

Tabie 4.6 gives the values of Q after thé modelling and Figure%,
4.3 = 4.4 show the estimated autocorrelations and paftial autocorrela-
tions of the rediduals at 20% noise t; signal ratio,

The autocorrelations of the residuals as well as the values of

.

0 gives us a clear indication that the identified models do fit the

.
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Table 4.5 Results of simulation of the .given example after 400 iterations at

T = 0.05 sec -
] Proposed . . . i Proposed.
. . wy Not Modelled Approach wy Not Modelled Approach
True
Parameters Values N.S.R. = 10% N.S.R. = 20%
d)(1) 3. 3.135 3.083 3.247 3.009
d,(0) . 2. - 2.075 ."2.035 2.137 1.933
b1 (0) “1. 1.062 . 1.044 . 1.119 1,018
byz(1) 2, 1.988 2.016 . 1.958 2.02
by2(0) 4. 4.148 4,077 4.264 3.875
_ da(D) 3. 2.603 2.819 2.253 2,555
dy(0) 2. 1,528 1.842 0.9099 1.461
bp (1), = 3. © 2,974 2,996 - 3.007 2:992
by (0) 3. '2.285 2.768 " ‘Er 1.355 2.197
bga(1) 2. 1.821 1.977 1.647 1.92
,b22(0) 1. 0.6734 '0.8489 0.2894 | .0.5673
Parameter 0.038 0.02185 0.069 . 0.0248
Error Norm I .
Parameter “0.06122 0.375 0.117

Error Norm II

F -

0.169

£8
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error serles. It 1is also evident by examining Table 4.5 that the

medelling of wy Improves the parameter estimates.
~

Table 4.6 Estimates of Q when wg 1is modelled

N.S.R. = 10Z N.S.R. = 20% !
lst Subsystem 1
MA (0,1,1) < 28.65 28.35 ‘
. 1
1
2nd Subsysten . '

ARIMA (1,1,1) , 19.7 18.41

] .

4.5 Identification in- the Input—Qutput Form

Another popular form in which we can identify a muléivariable'
system 1is the input—outpup'fqrm. this form plays an lmportant role in
syséem identification since the input-output models .are linking
directly the input and output observations. Guidorzi [24] considered
for iﬁentification a -canonical input—output difference equation repre-
sentation for the discrete-time';ase-which can be generalized to the

continuous-time case as follows:

P(D) y(t) = QD) u(t) ' (4.18)

.

~
p11¢D) ... Plp(D)

with  p(D) = ) ] (4,19)
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—_

q[l(D} cee qlm(D)

D) = (4.20)

i
i
i
i

9p1(D) ., Qpﬁ(DiJ

where pjy(D) and qij(D) are polynominalé'in D (- g—) of the folleowing
A

forn

Pii(D)' = p'i- aji(ng-1) e e ag4(0) "y (4.21)

PRg(D) = -agylagg-1) DPLITH - Ll agy(0) (6.3
ny-1 ’ . .

q;[j(D) - bij(“i‘l) D + e bj_j(O) (4.23)

and 'ni's are the ogservability aubindiceslrof the system [24]. The
canonical form of equations (4.19) - (4.23) has b;en also considered
for ideptification by El-—Sherief and Sinha [81]. Guidorzi also
established [24] a relationship between the state space reprgaentation'
in a certain canonical forﬁ and the inputhoutput' representation of
equations (4.19) - (4.23). This made it a:cractiv; for identification

purposes and made the transformation to the state space form an easy

‘task.

o
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The canonical form described by Guidorzi will be used 1in the
identification of continuous time multivariable gystems in this section

and throughodt Chapter 6“

4.5.1 Results of Simnlation

p

{Fr the sake of completing 0u£\60mparison of the three direct
approach methods, the block pulse functfons, the trapezoidal pulse
functions and the cubic, spline method, their performance will be also

1nvestigated when the fdentification 1is performed in the input-output
form. ’C‘J ) ‘ _ [/’

Consider the following two—input two—output system

v h ) ’ //

‘ 1 0 o _ L

¥1 [511 aja| [y1] |a11 ali] I - bLl\blzi fulf ~
I + D + ' g‘ ' (4.24)

y2 lle aza |yal |[a2 azz' v2| £31 bzz; Lng

The outputs of the system were calculated for the following

inputs
P L YN

uj(t) = sin 0.5t + sin t + sin 1.5t v

up(t) = sin 1.2t + sin 2.5t

s Assuming zero initial conditions the 'exact output is given by:

yi{t) = -0.2677 cos 0.5t + 0.773 sin 0.5t - 0.6408 cos t + 0.6248
sin t - 0.8197 cos 1.5t + 0.10587 sin 1.5t + 1.7282
cos 1.3856te~0+8t + 0,15329 sin 1.3856te0.8t



y2(t) = 0.1222 cos 0.5t —.0.1474 sin 0.5t + 0.228 cos t + 0.02375
sin t + 0.0232 cos 1.5t + 0.18238 sin 1.5t - 0.87775 cos 1.2t
+ 0.39458 sin 1.2t - 0.23698 cos 2.5t — 0.252788 s§in 2.5t -
1.86781 cos 1.299te™0-75C - 1.55427 sin 1.299te=0-75¢ + 2,609
cos 1.3856te~0-8t + 1,90567e=0+8t gin ],3856¢

Table 4.7 gives the values of the parameters estimated with the
block pulse functions, trapezoidal pulse functions and cubic spline
methods. The results are obtained with 200 samples using the recuréive
least squares method wi;h, no modelling of the error sequenceﬁ at a
.8ampling interval of 0.1 sec. The noise to signal ratlo utilize& in

the comparison 1s varied from 10Z to 20Z by adjusting the variance of

the random sequences.

4.5.2 Parameter Estimation with the Error Modelling Approach

By examining Table 4.7 we see that the results are not

satisfactory. The errors in the parmeters are large, and ;f we plot
. .

the autocorrelations and partial autocorrel;tions of theu residual

series ajtin Figures 4.5 and 4.6 (N.S.R. = 20%), it becbmes evident

thag the residuﬁls fail the whiteness test, Thg - gecond diagnpd;ic

test, (Taﬁle 4,8), also shows that the estimated values of Q are very

large.

The error modelling approach will be now applied to the multi-

variable systen.

(W)
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Table 4.7 Ct)lpafison of three direct methods in the no:l.hy case

BPF TPF Cubic, Sp. BPF TPF  Cubie. Sp.
Par'ameters True Values N.S.R. = 10X N.S.R, = 20%
ajp(1) 1.6 1.473  1.473 1.469 0.7164 0.7173  0.7257
ay1(0) 2.56 2.158 ~ 2.157 2.15 1.018  1.019 1.029
. bif(o) 2. 1.711 1.711 1.702 0.8174 0.8181  0.8238
- $
85,(0) 1.9 1.567 1.565 1.555 1.195  1.193 1.187
a5(1) 1.5 . 1.155  1.155  1.15 0.8045 - 0.8043  0.8015
a39(0). 2,25 1.981 1.979 - 1.974 1.642 1.64 1.639
boo(0) 0.5 0.3657 0.3651 0.3641 0.2368 0.2365  0.2363
Parameter oa
Error Norm I 0.141  0.141 0.144 0.589  0.589 0.585
Parameter _ ﬂ' b -
Error Norm II 0.169  0.171 0.173 0.356  0.357°  0.358
J
C\:_’J/
8

06



Table 4.8 GEstimated values of Q when w;, is not modelled

91

N.S.R. = 107

N.SaR. = 207

lst Subsystem 2706.12

1716.93

- t T
2nd Subsystem 846.11

r

660.95

Several discrete models were 1nvestigated for the

- -

geries. The models that did pass the diagnostic

tests were ARIMA

error

N

(1,1,1) for the error term of the first subsystem and IMA (0,2,2) for

theerror term of the second subsystem. The Autofegressive Integrated

Moving a¥erage model ARIMA (1,lyl) was presented in equation (4.16) and

the Integrated Moving Average model IMA (0,2,2)} can be written as:

Vzwt = at + 81\ at_l + 62 at_z S

Table 4.9 gives the estimated values of Q after the modelling,
. A

(4.25)

and Figures 4.7 and 4.8 show the estimated autocorrelations and partial

autocorreations of the residuals at 20% noilse to signal ratio.

-

Table 4.9 Estimates of Q when %y 13 modelled

N-S.Rl = loz .

N.S.R. = 20X

‘1st Subsystem . -
-ARIMA (1,1,1) 27.11

v

; 27.11 ‘
2nd Subsystem.
MA (0,2,2)..,, 27.83 28.06
H .
“
)
\./
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Table 4.10 Results of

simulations of the given example after

200 1teratlions at

T = 0.1
sec v
we Not Modelled Proposed w. Not Modelled Proposed
_ Approach Approach
True
Parameters Values N.S.R. = 10% N.5.R. = 20%
aj (1) 1.6 1.473 1.603 0.7173 1.579
a;1(0) 2.56 2,157 - 2.543 1.019 2,494
by (D) 2. 1.711 1.965 0.8181 1.902
a31(0) 1.9 1.565 1.852 1.193 1.786
. aga(h) 1.5 1.155 1.421 0.8043 1.377
a;2(0) 2.25 1.979 2.189 1.64 2.151
t bpy(0), 0.5 0.3651 0.4511 0.2365 0.4491
Parameter Error Norm I 0.141 0.0107 0.589 0.033
0.171 0.0362 0.357 0.06

Parameteikgyror Norm II

6
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In Table 4.10 the parameter estimates are listed, before and

after the modelling of the error series.

4.6 Concluding Remarks

In thig chapter three different direct methods have been

considered for identification of continuous—time multivariable systems.

The comparigon in noise-free and nolsy environments in both the

transfer function and the input-output representations showed that the
cubic sgpline interpolation method is only superior 1in the noise fre;
cagse. No distinct atfference is noticeable when the level of wolse
superimposed on the gystem increases.

On the other hand, it has been noticed that when the nolse is
added to the multivariable system, identification problems arise such
as inaécurate parameter estimates and correlated residuals. The
analysis of this problem has been extended to Ehe mulcivariable case.
In gection 4.4 an approach is proposed which recognizes the existence
of a stochastic error series and points out the importance of modelling
ic.

As we can seé¢ from Tables 4.6 and 4.9, better estimates of the
parameters were obtained after using the error_modelling approéch for
different noise levels, The least squares algorithm i1s tranformed into
an approximate maximum likelihoqd method estimating at the éame.time
the model of the system and the model of the corresponding error

series. .



. CHAPTER 5
ORDER DETERMINATION ‘OF MULTIVARIABLE

CONTINUOUS-TIME SYSTEMS

5.1 Introduction

The choice of model structure 1is one of the basic factors in
the formulation of the identification problem [23]. The choice will
reflect on the computational effort, the number of parameters to be
estimated, etc...

Order determination tests, in general, can be classi'fied in two
categories. f‘irst, there -are the methods based upon testing the rank
of the product‘moment watrix (PMM).. They are fast and can serve as a
rough determinat.ion of a range of or&ers. A major .disadvantag.e of
order tests based upon the (PMM) is :ha‘;t the rank condition is masked
in the case of noisy data. This problem,;lan be al]:eviat:ed by enhancing
the PMM [62], 1.e,, assume that a vleétor _pf disturbances 1is super-
imposed to the input and output signals and that the cove.nriance matrix
of the df'sturbances 1s knowm. . Ho_wever, enhancement involves additional
computations, the instrumental PMM [63] 1is then used in place of the
normal product matrix. The IPMM assumes the input to be nolse-free and
the measured output to be contaminated with disturbanc'.es. The rank

%
condition test was exploited and used by many authors, notably Chow

- : 96 ' e



97
-

[64], Tse and Welnert [65] and Guidor.zi [24] who have applied the idea
to autorégreasive, moving average processes and to the structure deter—
mination of -multivariable gystems.

'The second class of tests 1is based on examining the output
signals for minimum prediction error., Akaike [66] proposed the final

prediction error (FPE] test and 18 calculated from

FPE = 2 Ntpt 1) (5.1)
'(N-p-l)

where N is the number of data points, p is the number of parameters,
and 02 is the variance of the residuals from the model estimation, A
gimilar measure iIs Akaike's information criterion .(AIC) {67], defined

by:

3

AIC = (-2) log, (maximum likelilood) + 2 (number of free parameters)

or AIC = N loge o2 + 2p (5.2)

A
&y
-

Another test based on the analysis of the residuals is the loss

function test /\.‘(
; 1 Y @) 2t
vvi(ni) - ~ z. [eini (k)]z 0 (5.3)

N-ny-l k=ny+1

and the model with the minimum squared error has the true order nj.

L
- ~
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" Diekman and Unbehauen [68] compared the PMM based tests, the
loss function and the FPE tests agailnst the polynomial test and said
that the latest 1s the most accurate in determining the order .of a

multivariable‘;yatem. The polynomial test does not examine the output

gsignal but the parameters of the estimated transfer function. For each

transfer fungtion the poles and zeros will be calculated and plotted in
the unit circle of the z domain. The most probable order of the system
is equal to the number of poles not compensated by zeros.

The Information Criterion (AIC) and FPE criteria [67]'; [68]

I3

appear to be very fowerful practical approacheé to thé problem of model-
structure identification so long as the noise 1is normally distributeds
When the noise distribution is not normal the infofmation criteria tend
to give larger values than the actual ones [69].

Suen and Liu [69] developed an algorithm 'the normalized
residual technfque' to estimate the structure of multivariable
stochastic linear systems with the knowledge of only the signal to

noise ratio. This algorithm have been successfully utilized by

A B

El-Sherief and Sinha [81].

|
., Box and Jenkins [70] esgtablished a time sgeries analysis .
. ; ,
method. A good model for theﬂ}lme serlies data is the one which is

B g .

parametrically efficient (parcimonious) 4nd simultaneously provides a
low residual estimatign error variance {i.e., a good explanation of the

data) and low parametric estimation error variance. Box and Jenkins

v “

method. has been discussed and utilized in Chapters 3 and 4 of this .

. ]
thesis. ' The most reécent method in the order determination field is
ST \ . ,

r

Lo
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Young et al.'s 1ingtrumental variable method [71] which will be
presented in 8 coming section.

The difficulty with the tests based on analyzing the resi%uals
is ég:t they {terate on the system order and they require the calcu-

lation of the estimated parameter at every step [65] as we see in

Figure (5.1).

[
Agsume
n=] n + 1 “-— T
Input-Output
Data —s—p—— Parameter 4
Identification !
Not Valid
Validity —

™

Test

Final Model

"1

Figare. 5.1 Iterative proéedute of tests bagsed on analysing the
residuals

In this chapter three order determination tests are proposed to
be applied for multivariable continuous—time systems when approximate
integration is performed on the data,.

The metﬁods under investigation ;re the instrumental variable

method for model ordbr identification, the.residual error technique and
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-
the instrumental determinant ratio ‘test. From the three methods only
the instrumental va‘:\-iable methed was applied to continuous-time systems
and in they simulation the direct .approach with' epproximate integration
was not utilized [71].

The continuous-time wmodel of the multivariable system will be
identified in the transfer function form for &1l three tests. The
ith differential equation representing the relation of the 1th out—
put and the different inputs is given by:

n4 ni-~1 '

D yy(e) + 841 D y4{t) # ~un + agyq(r) =

. (5.4)
ny~1
. Bagy D u(t) + ... + Byu(t) + eq(t)

where ey(t} is the error in the model of the £th output.
The iInformation matrices uged in the three procedures are

redefined to suit the new interpretation of the data. The proposed

)
3

methode have been applied to a simulated three outputs two inputs

“®»
continuous-time system. The different properties of each method are

-
exposed based on the obtaineq results.

N
¢

5.2 Reformulation of the Information Matrices -
All system identification methods depend on the available
input—output data to estimate the model order or parameters. We define

by the information matrices the observation matrix G composed of the
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input and output observations and the instrumental variable matrix W.

The latter matrix has to satisfy the following conditions [2].

EWTy] = 0 o (5.5)

hA

E(WIG] = R : (5.6)

where v is the nolse vector superimposed on the system.

An unbiased and consistent estimate of the ptrameters vector

8 1is obtained as

ey = (WIe)~lwly (5.7)

|
1
A

A

Equations (5.5) and (5.6? imply thz;t the instrumental variables are
uncorrelated with the- nolse, and on the other hand strongly correlated
with the ' inputs and outputs. To' satisfy these conditiomns \che Iv
sequence z are chogsen as the oytput of an auxiliary model with the same
input as the system under investigation and provided that the filter
which generates z is stable and of order ngy or greater.

The IV >method can be ':‘n:ilized on—line and off-line in a
recursive form easy to yimplement on digital computers hence avoiding

;
‘the matrix 1nler§sion in (5.7).

. 6 = 6p-] + — (5.8)

o -
-
P
~
.
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T
Pr—1 Wk 8k Pr-] _
Pp = Pg-] - T . (5.9)

where !

K
P = I owg g4 (5.1(_))

wr and gy are defined by Young [61] for the single-input single-

output case &s:

_dni-]. .dn1,-2 _d"l'l i~ 1 .
E.k - 1 Yk’ -2 Yk’---,_ ‘Yk. g -1 uk,---uk (5.11)
. et at™ : de"t
ny-1 nj-1
-4 4™ .
w n Zkyerey —Zks -n—iuk,...uk {5.12)
g~ -
et et
-7 ~

A -mew approach 1is now applied to identify continuous—time
systems using approximate integration. So, let us redefine the infor-
mation matrix G and the instrumental variables matrix W on the light of

this new perspective for the system in (5.4).

S
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SN S
let zjni = the nyth integral of zi(r) = fg fg ces fg zJ (e)de

zjnik = the kth_sample of the ngth integral of z3(r)
+

Uini = ~the nith integral of ul(r)

<

“

“1nik = the kth sample of the nyth tntegral of ul(r)

ani and anik are defined {in the same manner,

Ry

. For M observations W can be redefined as:

) —
—

ulyy ulyy O ulni]_ uZ)] oo uznil eas UMy ... umnil —zi ) ... 'zjnil
\ .

u112 ulz . L] .V - . " L . .

. . - * » 1. .

-'-“ - - . . - - . . L4 .

’ \

[ ] \- - - L] L] L] L] - \‘ L]

uliyulay  wlpme?iy w?q Ty e.e ulnuy -zdpy ... -zdngd|
L . -

42
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G is defined in a similar manner by substituting znj by ynj.

A- slight change is also a necessity £n equation (5.8) to

become:

T
. Ptk (YD~ grex-1)
T
1 + guPr-juy

8k = Bk (5.14)

where yi is the ktN gample of the jTM output without any integration.

We will now proceed to give a brief description about each of

the order determination tests mentioned in the introduction. '

5.3 The Instrumental Variahle Method of Model Order Identification
This method was proposed by Young et-al. [71] and the procedure

can be summarized as follows:

.
1

I. Specify a vrange of wmodel orders using all available
information.
2, Use the IV recursive algorithm and calculate for each model

order: ) ) \\“4
a) EVN (njy) and

b) R3 (ng)
[

where

gumber of parameters

§ o?pyy (5.15)
1=1

1

EVN(ng) = nunber of parameters
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and o2 1s the variance of e(t) in (5.4) and

.

. Rp = 1 - (5.16)
T M 2 .-
- L v i
i=1
1'}. T
//// ‘

where J, 1s the residuals sum of squares.

3. Select that model structure which yig}ds the best combination

of EVN and R% [71]

a) The EVN attains or 1s close to its minimum value,.

b) R& should be consisﬂent with the degree of model fit expec-
_ted by the analyst..

Also for further incremental increase in model order, 1t

should not increase substantially and should tend to

"plateau”. Other statistical.facggrs were mentioned in [71]

but EVN and R% are the major indicators of nj.

. This procedufe was applied after the necessary changes of the

information matrices indicated in the previous section have been made.

5.4 The Instrumental Determinant Ratio Test (IDR)

In his 1978 paper Wellstead [63] described'the order determina-
tion methods based,K upon the BM as.a rough estimate of the order of an,
unknowfi aystem, The speed with which these methods can assess an
approximate order to fhe system 1s a very attractive feature, The IDR

test developed by Wellstead has been applied to numerous discrete-time
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applications. In this chapter, 1t 1is applied on multivariable

continuous—-time systems.

The instrumental product moment matrix (IPMM) can be defined
]

as:

S(ng) = WIG : | (5.17)

and ) )

det S(ny)
det S(ni+1)

IDR(ny) = . (5.18)

— .

-

W and G are the instrumental variable matpix and the observation matrix

as defined in Section 5.2.

Thé rank of the IPMM matrix should collapse when ny.> nj.

Because of the presence of noise the rank condition is not so: clear but

the value IDR (ni) should increase compared to the previous value of

IDR(ny—1) if ;1 is the true order.
t

5.5 The Residual Error Technique -(RET)

It is an off-line non-recursive method first introduced by Suen
and Liu [?9} to identify_ the sfructural: indi;es of multivariable
discrete—time systems in a certain canonical form. It was then
utilized by El-Sherief and éinha [81] to identify another canonigalh

structure of discrete multivariable systems.
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Considering the case of nolisy data the RET theory 1s briefly

‘ gtated [2]:

Let y* be the noise_free ﬂé:put vector and v the zero mean

e’

nolse vector then

y vy . (5.19)
If y* is a’linear combination of a set of other vectors where X = [x;,

X2 ""'.’.‘.n] then there exists a non zero vector such that

y* = X8 _ : ' (4\23/.

R

The optimal solution in the noi'se—free case should be:
g° = (xTr)~lxTyx = xhtyx (5.21)

r

e(8°) = y*T(r-xx)y* o (5.22)

then (5.19) may be written as:

.

Yy = ¥+ . - - (5.23)

the residual error is thus obtained by substitu;ing in (5.22) for y* by

Y we get
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e(f®°) = e° = X?(I-XX+)1 ) (5.24)

= yT(I-xxt)y* + 2 ypvT(I-xxM)v

+ !F(I—XX+)X_ (5.25)

Lemma :
Assuming that v is zero mean and uncorrelated with y* then if
4 y* is a linear combination of {X),X3, ..., X} we have
. = ) - .
N E{e°} = E vI{(I-xxt )v} ' (5.26)
Otherwiée . \{\"‘1“’

Ele} = B [vT(I-Xy} + prT(I-xxhyy (5.27)

It is clear that the R.H.S. ¢f equation (5.27).is greater than ‘that of

-~

equation (5.26). S,

For more details, tPe reader could referred to {2,69,81].

. . , -

[y

P
When the RET 1s applied to estimate the sXructural indices of

continuous—-time multivaridble systems, it can ke sden that the matrix X

is simply the observatifn matrix G. So using the definitions stated in

. s - . ,
section 5.2, the residual error of the ith subsystem_can be expressed

as:

e1%(ng) 4 yiTOO[I-Glng M) GyH(ng M) )y (30 (5.29)

.
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[
El-Sherief and Sinha [81]) indicated chat 1in practice 1t is

better to plot eio*(ni) against ny, where
e1%%(n;) = ey°(ny) - ej%(ny-1) ©(5.30)

S.6 Results of Simulation

A 3 output 2 input multivariable continuous-time simulated
system 1s gampled at the rate of 0,07 sec, ‘according to the impirical

rule AT £ 0.5 [20] where XA 1s the farthest elgenvalue from the

origin.
—Y— - I 5«}-3 _2 _I - -I
! (s + 1) (s +2) (s + 1) (s +2) | !
go | = | st*10s¥15 1 u
z (s +2) (8 +3) (8 +4) (s + 2) -
y s + 9 s + 10
L7 i (s + 3) (8 + &) (s + 3 (3 + 6

m =2, 0 =3, ny3 =2
ngy is the structural index of the ith gubsystem
[ ; .

uy = unit step

up = gin(t)
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The three methodg described in sections 5.3 to 5.5 have been appl%ed to
the simulateq multivariable system with superimposed, White noise
ranging from low noise SNR = 20 db to medium noise SNR = 10 db. )

The input-output data have been integrated using the cubic
spline method ([37], which provides good approximation to the original
signals and their inteérals. _ ' -

Young et al.'s procedure has been applied to the simulated
multivariable example with §'= 500 samples sets of imnput and output
data. The instrumental variables sequence was generated with two IV
schemes. First the IV sequence is taken as the output of a known fifth
order system with the same input as the s;égém under {nvestigation,
this 18 called the ordinary IV, The second scheme\‘utilizes the syst.em
model as auxiliary model which is adaptively updated. The IV sequence
and the output are adaptively integrated with the trapezoidal pulse
function technique dt each recursive step. )

E"ne results showed that regardlessl:of the ‘method used to
gen'era{e the IV sequence Ehe value of EVN in equation (5.15) in Young's
method indicates a first o?'-a-er system in most of. the studied cases. A
better indicator of the true order of a system would be to compare the

variance of the residuals éeneraﬁed by each model, see Table 5.1, The

procedure with ordinary IV indicated the correct structure of the third

subsystem ny = 2 with S = 600 samples, the first subsystem n; = 2 with .

s = 800 samples, see Figures 5.2 and 5.3, and falled to fglentify the
structural index of the gecond subsystem n, = 3 using S = 800 samples

at SNR = 20 db. We can notice that the procedure needs a sufficiently

110
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large amount of samples of data to precise the ordér of each gubsystem
when using an ordinary IV algorithm, which makes 1t computationally
demanding for higher order systems. The same procedure with adaptively
updated and integrated auxiliary model used only S = 500 samples and
did correctly identify the structural indices of the three subsystems
as can be seen in Figure 5.4 from input-output data contaminated with

.

white noise,SNR = 10 db. ¥ ~

Table 5.1 Variance of tﬁe regiduals whire noise, SHR = 10 db, s = 500
samples adaptive auxiliary model

Structure n) ntp ny
1 49.8 1.85 11.88
2 3.88 7.3 0.202
3 82. : 0.43 3.89
4 320. ; 6.44 1.5

Table 5.2 Time comparison based on S = 600 samples

Method _ IDR » IV Method RET

Time/{iteration (sec) 0.8 7.4 3.6

The IDR test ig a verj fast test. It also carries the order
determination part‘indqpendensly from estimating ehe parameters of the .
model. Figures 5.5 to 5.7 show the estimation of‘nl, np and n3 using
S = 400-800 samples. In presence of noise the IDR test ten&s to over
estimate the value of n; as can be seen in Figure 5.8, By raising the

number of samples to 800 the test indicates in a vague way the correct
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index n; = 2 for SNR 10 db. This test does not have difficulty in
estimating ny; = 3 in low noise and medium noise cases.

The RET requires large amount of storage. It ;perates on
blocks of data non recuraivelf. It is also glower than the IDR test
because it does esgstimate the parameters‘ of the model to obtain the
value of the residuéla. But the RET can detect the order' of the
structural indices in a short lengthed sequence of data which may
alleviate some of the storage problem. Second order subsystems were
éorrectly estimated with § ; iSO samples, but the third order subsjstem
could not be well identified until the algorithm was fed by S =600.
This result is clearly better than Ydung et al. procedure with ordinary
IV which was not able to detect the correct index even with § = 800..

(see Figures 5.9 to 5.12).

L
L

5.7 Concluding Remarks

In this chapter, the identification of the order or structural

-

indices 'of wmultivariable continuous-time subsystems in the ‘transfer
function form from the sampIéh"ﬁf' the input-output data has been

proposed using three order-determination methods. An.important feature;
\
‘ H

of the proposed methods 1s the operation of approximate integration of

the sampled data. *

The' observarion wmatrix and the instrumental varipbles matrix

+have been redefined to suit the new interpretation of the data, A
. . ’ -
simulated 3 output-2 input multivariable continuous—-time system was

used to 1llustrate the behaviour of each method. The three propesed

¢
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s

methods have given good results regardless of the noise superimposed on
the data provided ‘that they are fed with sufficient tnformation. The
proposed methods work well with various types of on-line and off-line

algorithms for identification. “The analyst can therefore choose the
method which suits.best the particular experiment's needs. But the
regsidual error pechnique may be pre;erred as a good compromiée'between
the accﬁ;acy and theiused computation time,

-
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CHAPTER 6

STRUCTURE SELECTION FOR MULTIVARIABLE CONTINUOUS-TIME SYSTEMS

6.1 Introduction

The identification of single-—inp[:: single—-output systens
conglsts of two parts: order determination and parameters estimation.
In the case'of multi-inpﬁc multi-ouput systems a third and important
step 1s added to the identification procedure: the selection of a
modc_:L structure.

A multivariable system of known- order can be represented by
many different structures. The problem 1s to choose one which will -
give. well-conditioned pa;ametérization. Different approaches_have been
'-suggehted aqd used in the past. The problem can be simplified by the
use of a priorl knowledge about the system, but often the system is
congidered as a black box and this approach cannot be used. QOther
regearchers have reduced the multivariable 'system to several single-
output systems by decoupling the outputs. This approach 1s also not
realistic.. The most popular approach during the past decade has been
to describe specific systems within given equivalence classes by using
suitable canonical forms [24], [72-73].. The canonical form implies

that the system 1is- represented with one unique model structure. The

application of this approach in recursive off-line or on-line

125
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identification scheme 1s critical when the sy\stem chafges 1its structure
and the model cannot track the changes. Hence, the principle of over-
lapping parametrization was introduéed by Glover and Willems [74],

Ljung and Rissanen [75]. Based on this idea Beghelli ~and Guidorzi

]
[76], Van Overbeek and Ljung [82-83], have.proposed procedurias to gsolve
the structure and identific‘ation problems of discrete-time multi-
variable systems.

The overlapping models ha\‘re a reduced but not minimal para-
metrization and can de:;cribe within a given order, several structures
accor_ding to the acj;pal‘ parameter values. These parameterizations
overlap, so that a chang-e of parametrization can be made without loss
of information. We have also the advantage of selecting, among
different parametrizations, a well conditioned one,

In this chapter a new procedure which uses the overlapping
parametrization approacl.'t is 'proposed to 1identify the structure of
multivariable systems in the input-output form [84]. This procedure
will enable the transformation from an ill-conditioned pdfametrization
to a better conditioned one of the, same order whenever it is necessary.

f\. - : - :

“There are several ways of defining a "best™ parametrization for the

. representation of a stationary finite dimensional wmultivariable

stochastic process. A logical method would be to select the structure
that minimizes some scalar measure of the information matrix that
coh‘esponds to each parametrization. Wertz, Gevers and Hannan [85]

showed that the_del_:erminants_: of all these information matrices are

r
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agymptotically equivalent, and that this criterion is therefore unable

to discriminate between different structures.

.
’

A criterion which discrimi;}ates between structures and dgcideé
when to switch to a different structure based on the rf/rinci;le of
complexity is presented in section 6.4 ‘ — .

In section 6.5 a simulated example ig developed for both noilse

free and noisy cases to demonstrate the applicability of the proposed

procedure.

6.2 A New Becursive Structure Selection Procedure for Multivariable

Continuous—Time Systems in the Input—Output Form

We summarize the problem as follows:

. Given a set of input-output data representing a continuous

multivariable system of known order; select the structure that will

Igfi-ve well-conditioned parametrization, 1i.e., that will not cause
numerical problems ﬁﬁriné the minimization of the prediction error.
Input-output wmodels of wmultivariable syst;ms_ are very useful
and practical in on-line 1identification of dynamic systems. These
models consistute a direct link bet:w;en the input and output _.aalmples
and can thus be directly estimated from the process observations.
Usually. records of - the nolsy samples are available and the gystem is
treated as a black box. Canonical igput-o'utput representations and
their equivalence to canonical state space models have been inves_ci-

gated by Guidorzi [24], [86]. Multistructural 1n§u|:-output models were

discussed by Gevers and Wertz [87]; Beghelli and Guidorzi [88].
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// A multivariable continucus—time system 1s represented by the
l.\
following equation in the input—output form:
P(D)y(t) = 0(D)u(t) + e(t) . (6.1)

~. -

y(t) and u(t) are the p dimensional output vector and the m dimensional
input vector, respectively. P(D) and Q{D) are poljynomial matriées in D
(or d/dt) the time derivative operator. and e(t) is a sequence of
independent random, p dimensional vector, with zero mean value.

A new recursive procedure for structure éélection is proposed
'{bﬁ], based on the overlapping parametrization approach. The main
feature of this procedure, besides tackling this problem for
continuous-time systemﬁ for the first time, is a criterion for ill
conditfoness. Hence, ' the transformation from an {11 conditioned
parametrization to a better conditioned on; of the same order occurs
only whenever it is necessary.

The proposed procedure 18 i{llustrated in the general flow
chart in Figure 6.I. We can start with any pre-identified structure.
Tﬁe ‘cubic spline technique 1s then used té6 approximate the various

. integrals of the inputs and the outputs‘uéilizing the available data as
explained’in the earlief chapters (to minimize the time, trapezoidal.or
block pulse: functions could be used instead). We then proceed tqfthe
identification of the system model by minimizing a recursive prediction

error criteg&pn.

)
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'start with any structure
or parametrization
associated with the
known order
of the system

integrate (with the
cubic spline) the
D.E. eguation

Y

minimize the least
squares error
-y

test the
parametrization
conditioning

NO (i1l conditioned)

LY

A2

better conditioned
structure
of the same order

select a new //

4

e

LN

Figure 6.1 Flow chart of the structure selection procedure
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After every M lterarions a test is performed on the parametri- .

zationv¥or 1ll-conditioning. If the result of the test 1s positive
then the tested structure 18 good. If, on the other hand, the para-
metrization falils the test then it 1is starting to be i{ll-conditioned
and the structure should be changed. Another structure for the system
_is selected which will have better conditioned parametrization.x A
change in the initial structure occurs once or several times during the

procedure 1f we did not start with the true structure.

6.2.1 The Model Identification

The parémeter estimation part 13 performed uging the recursive

.

least squares algorithm which 1s thé{)simplest and most practical

algorithm for on-line parameter estimation.
The algorithm 1in 1its basic recursive form 1s described by
k! -

equations (6.2 and 6.3). .
- T : '
R . - (6.2)
< L+ gkP~18k -
Pl = Pi-p - PoiBiell + g1k BRIkl (6.3)

-

8y 1s the estimate of the p?gameters vector, g, and yy are the

pl

available information organized .in an appropriate way [89] for the case

#5

b
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o« . : .
' of identifying contlnucus—-time systems using the direct approach (see

Chapter 5).

P =) gkl : (6.4)

Another more useful version of the algorithm [77] makes use of
the statistical assumptions of the error term in (6.1). Provided that
the following assumptions are satisfied: 1) the estimatfon error vec~

tor ék = 8 - 0y has zero mean value, 2) E{ec} =.0, then the variance-

- -

covariance matrix P 4 E{838xT} is related to the matrix Py in (6.3)
and ,(6.4) by Pﬁ = csz
. :
P
Substituting Py by’-% in (6.2) and (6.3) yield
g B

"~ - ) . ~ _1 3

B = 8-l - PhoigilBx Be1ovk) (07 + RPho1md T (6-5)
. =1 .

B~ By - Bleimme Phel (0F + g Phoigk) (6.6)

The variance of the residuals can be also computed recursively as in
‘equation (6.7).

1

)

L
ok = ot -+ lexex - 0% 1] ) (6.7)
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“This version of the least ‘squares gives not only Che parameter
egtimates and the variance of the residuals at each sampling 1nstant,
but also gives an Indication of the accuracy of the estimates through

-

the error covariance matrix Pi.

6.2.2 The Switching Criterion , )//
N’ .

Complexity 13 a measure of the interaction between .the
components of a random vector. The more the interaction there is, the

larger the complexity. .

‘Van Emden [90] showed that the complexity can _ﬁe expres;;&.
using the Sovariance matrix of the £5ndom vector.

Maklad [91-92] suggested that a compromise between the white-
ness of modél regidues and the accuracy of its estimated parameters be
utilized. .The derivation of this criterion iﬁ given in Appendix A. So
Maklad computed the complexity of the joint random variables
((EJE), é)), where é_ig the estimated parameters vector and e are, the
model residuals as seen in Figure'6.2. It is noted that the informa-
tion about e is only dttéinable'after the outcome of i is given. This

is the reason for conditioning e on §.

; .

3 1
.
b3

1 y ;2 trace P* z 2
coMP = [= P — (ZE8ce )y L =
[N igl ii ( N ) N

N N

*2
Pij ] (6.8)
im] j-i+1 .

L .
+5— ] (Np - 1) o(1)
i=1
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where P* 1is the error covariance matrix, N the number of parameters,

;(1)7thg estimated autocorrelation of the residuals at lag 1. N 1s
the length of the available data and L 1s the first lag at which ;2
(L+1)<var (;(i)). Maklad used his criterion in model order discrimina-
tion single-input, single—output systems and proved that it can detect
the ﬁaae of correlated residuals unlike ATC and FPE criterla [91]: An
ill—conditioned‘parametrization will give a large complexity., So to
monitor the conditioning of the parametrization oé the tested structure
the following prbcedure is suggested.
N 1. After every M iterations compute the complexity of the
joint random variables <(El§)’ é) for the tested structure,
. the error covariance matrix P* and the residuals are both
supplied directly from the '}ecursive. least squares
algorithm without any added computation.

2. Test the ratio of the old comple*ity over the new comp-
lexity valuve. 1f the ratio is greater than 1, then the
structure is well-conditioned and the algorithm is trying
;o improve both the parameter estimates, and the whiteness

of the residuals.

5
L3

3. If the ra;io‘is less than 1, then this parametrization 1s

ill-conditioned and a change of structure is required,
)

-
1

Remarks

1. After every changé in structure the first 'two or rthree

-computed complexities have In general high values because
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the initial parameters to the ldentification élgorithﬁ are
far from the true ones.-‘ As more data are fed to the
algorithm the complexity starts to decrease very quickly
for a sultable structure of the sgystem. ‘

2, It 1is better to choose M not very large so that if an 111
parametrization is detected, and a change 1in. structure is
necegsary, éhen the transformed parameters used as initial
parameters will not constitute a bad start for the least-

squares algorithm. - ‘

The switching criterion 1is important in determinlng when to
switch to another better-conditioned structure. It eliminates the need
te switch between parametrizétions unncessarily to lock for a better
structure like in [76], [83]). The presence of this ?rfterion reduces

congiderably the amount of computations. )

6;2.3 Selection and Transformation to a Better Structure z

- Guidorzi [93] has set in E982 a definition for the adjacent
pseudostructures associated-wi:h the same syste%_(see Appendix B). He
then. developgd an algorithm which transforms a. system with pseudo-
structure pf{; into an equivaleﬁt system with an adjacent_pgeudostruc—
ture pyj. The transformatiocn algorithm consists of elementary row oper—:
ations of the .polynom4al matrices P and Q and gives both the new

pseudostructure and the new parameters of the system (Appendix B). To

select between adjacent structure he proposed the following criterion.
. "

/ - - -
- +
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Given an input-output multistructural model, consider the scalars §¢

(1-1,.:§\gi\f%ven by

o
p- nf : ,

6y = (Z j Z k uijk){' ‘ ’ (6.9)
i 1.

where ag{ are elementé of the P(D) polynomial matzij, and define the

conditioning factor p = Gmaxfdmin' If we hav two equivalent
multistructural models, the best conditioned one 1s the model with the

lower conditioning factor.

We may summarize the structure selection procedure for
continuous—time multivariable system [84] in the following steﬁé:

l., Start with.any pseudostructure.'

2. Iﬁtegrate the differential equations of the assumed input-

output fwdel, You mé};use as integration tools, the block °

-t
AR

pulse functions, trapezoidal pulse functions or cublc
( spline method, which approxidﬁtes the origina® functions

- N

from the givendata samples with various degrees of

3 - .
accuracy.

3. Arrange the observation matrix with the samples of the

input~output integrals [89], and perform the least squares

o algorithm.



Compute, every M iterations,rthe complexity of the joint
random variables ((E'é)' ?i) and follow the ill-conditioning
test as demonstrated in Section 6.2.2. |

If.the structure passes the t;st go to 4.

If the test indicétes 111 conditioning, switch to an
adjacent pseudostructure and compare with the selection
criterion (6.9). TIf a better conditioned parametrizatioﬁ
i{s found go to 3 to arrange the new information matrix. If
the tested structure has the least conditioning factor then

no better pseudostructure can be found. New analysis is

advisable to change the order of the system.

6.3 Results of Simulation

To illustrate the applicability of the proposed prdcedure it

has been tested on a simulated two—inputs two—outputs fogkth—order

~

continuous-time system. The input and output signals have been sampled

at the rate of T = 0.07 sec providing 500 iﬁput—Output data samples.

The input-output model of the system is

ar .- ST
D + 1.6D0+0.6 0.5 D+ 0.2-| |y, (t) D+ 2.6 D+l.l, [y (t)
3 P ;

. ] |

[
. RN
- p? + 0.5D + 0.06 | |y (t) -1 - D -0.5 | uz (1)

b
N
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The 1ntegrations have been done with the cublc $spline 1integration

method.

6.3.1 Nolse—Free Case

Start the procedure with the thre; possible pseudoétruétures of
th; system (3,1), £2,2), (1,3) and see the ability of the procedugé to
decide when the tested parametrization is ill-conditiomed and should be
changed. . The example illustrates the new selected structure which have

a better conditioned parametrization as seen in Table 6.l.

Table 6.1 Structure selection in nolise-free case

Pseudostructure 3,1 1,3 2,2
No. of iterations 100 40 500
before change
No. of test calls 5 2 25

2.83 x 10%? 61188660.4 0.06
Complexity . g
0.00009858  1.830766 x 10'' 1.86 x 10~
C.F. 14.69 12.95 3.57
(conditioning factor)
Decision Switch to adjacent structure No change
C.F. (2,2) 2.53 1.4536
(conditioning factor)
Decision Use pseudostructure 2,2
No. of iterations %00 460 -
0.06629 17780.908
COMP
1.3673 7020.769
Total execution " 15.006 15.819 14.761

time in sgec.




6.3.2 The Noiay Case

To test the structure selection procedure in presence of nolsge,
five percent zero mean white noise was added to the outputs of the
tested system. The addition of nolse did not affect the selection of a

well conditioned parametrization for the system as seen In Table 6.2.

Table 6.2 Structure selection in noisy case

Pseudostructure 3,1 1,3 2,2
No. of iterations 60 60 500
before change
No. of teat calls 3 3 25

2.8377 x 10%! 0.06129 0.06
Complexity
. 0.84955 1.339 x 10! 0.00139
" c.F. 27218 54,97 3,425
{(conditioning factor) .
Decision Switch to adjacent No change
pseudostructure
C.F.7(2,2) 1.66817 4.082
(conditioning factor) .
Decigion Switech to
. pseudostructure 2,2
No. of iterations 440 440 7 ,
0.06 . 20075.7
COMP
1.4 8120.63
A
¥




6.4 Discuséion

Overbeek and Ljung [82] proposed a computationally more expen-—
sive sgelection criterion 1in their fdentification in multistructural
state space forms.(B.IO). It is based on computing the complexity of
the state covariance matrix of the tested structure, then an orgapiied
search for a structure which will have more independent rows for the F
matrix is conducted. The complexity of the new state cov;riance matrix
1%7calculated and compared with ;he initial one until a better condi-

tioned structure is found. .

x(k+1) = Fx(k) + G e(ﬁ)
(6.10)
y(k) . = Hx(k) + e(k)
- ¥

4 L]

Their ﬁrOCedure was later criticized by Guidorzi [93].. He
argued thatqkhe iterative computation necessary to obtain P (the state
covariance hatrix) can prove to be time-consuming in on-line identifi-
cation particularly when the model with the best conditioning is
requested. He then propogfd the fast transformation and selection
criterion described in section 6.2.3 and Appendix B and used in this
chapter. However, the structure selection algorithm of Guidor;i lacked
an important part and that is how to determine the suitable time to
change the structure of the system? Otherwise, we have to tesgt

repeatedly all the possible structures to select the best conditioned

one., This will also be time consuming specially when the order of the

140
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system 1s ‘high. To overcome this problem Beghelli and Guidorzi [76]
imposed on the data more analysis, Model and structure identification
was performed on 200 samples every 75 gamples, Structural
identification have been performed 5y the 'range error test' [76] which
gelects the most suitable ones for the system under consideration, and
the awitching is done ouly between a limited number of structures.

‘ In the procedure proposed in this chapter a criterion which
detects 111 conditfoning is presented in section 6.2.2 and hence we can
save all the effort of repeated model and structure identification.
When the chose; structure starts to give an ill-conditioned paramete}—
ized, then at this moment alone that the gwitching between the adjacent
pseudeostructure begins until the structure with a smaller conditioning

factor than the initial one is foun%. -

6.5 Concluding Remarks

A step-by-step procedure for identifying the structure of
continuous-time multivariable system is preseﬁted for the representa-
tion in the input-Output»Eorm. This procedure is suitable for both
stationary and non*stationary systems when a change of structure occuf;
while the order of the ‘system remains constant. It uses the over-

lapping wmultistructural parametrization approach to choose a better

conditioned parametrization to the multivariable system whenever

»111-conditioning is detected. The switching decision is based on the

»
complexity principle which provides a good monitor for the conditioning

‘of‘ the parametrization as well as the suitability of the tested

141
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gtructure. The inclusion gf this criterion in the selection procedufe
answered the questio; of &hen to switch to another pseudostroycture.
This leads to the reduction of the time required for computations) when
compared with other structure selection procedures. The overlapping
parametrization principle allows te obtain the new parametes values of

the new selected structure with the ald of a similarity transformation

with no loss of information.



N CHAPTER 7

CONCLUSIONS

The major effert in this tpesis has been diracted towards the
problem of identification of continuous-time systems from input-output
data. The identification with the direct approach “converts the
original differential input-output Asdel to a linear algebraic model
convenient for a direct solution. It has been shown thét baged on the
available samples, the input and output signaié can be reconstructed
with approximating functions. The system differential equations. can be’
integrated using these approximations and the results used for esti-
mating the paramétets of the model. The system identificiation problem
of multivariable gystems consists of three main steps, order determina-
tion, structure selection and parameter estimation. In this thesis the
three parts 6f the problem were addressed and studied. New approaches
were developed for the structure selection and the parameter e;cimation
of continuous-time systems. Order determination procedures previouply
used for discrete-time systems were applied for the first time for
continucus-time systems, These algorithms find their direct applica-
tions in diéital adapfive control, digital simulation of continuous-
time systems as well ag the identification of the system Cthrough

samples of the input-output data.

143
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> A comprehensive survey 1is presented in Chapter 2 to discuss the

idenéification of continous-time systems from .sampled data .with the
direct and the 1ndirect approaches. In the indirect approach a
discrete-time model is obtained.from the samples of the observations
thep a corresponding continuou‘s-t‘ifne model is derived. The advantages
and the pt_'oblems of the two approaches .‘«f;are discussed.

Threé approximating functions'wgre proposed ‘recently in the
lit ature [37], (48] and [52_]. They are the block pulse functions,
trapegoidal pulse functions and cubic splines. It has been shown in
Chapfer 3 and Cgapter 4 cthat the cubic splines method 1is super."ior to
the other two methods in the noise—free case. When the observations
were contaminated with nofse the three methods ga’ve identical pa}'ameter
estimates. Since in practice both _the accuracy of the estimates and
the computation time are important, the "trapezoidal pulse functions
method is recommended. It has the advantage of being easily incor-
poratet;l in any on-line algorithm. It also uses the actual data values
unlike the block pulse functions method which requires an extra arith-
m'etic operation.

It has been shown that the direct approach suffers some serious
difficulties such as 1naccurgte parameter estimates and correlated
residuals in presencé of noise. A study was ;:o}nducted in Chapter 3 for
the gsingle-input single-output case and then extended for the multi-

variable case im Chapter 4. The study revealed that the errors in the

agproximation result in correlated residuals and that the approximate
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integration- éive birth to an integrated noise term 1instead of the
expected seriea.of qon—cbrrelated random shocks.

Based on this new information, 1t was possible to deduce that
the errorlterm resulting from the combination of the two factors 1s not
a white noise series as was implied in all the previous work conducted
in this field.

A-new approach 1is presented to overcome the combined effect of
the errors in the approximation and additive white noise on the identi-
fication of continucus—time systéms. The method consists of modelling
the combined error term. The errors were absorSQd by the error model,
thus providing good parameter estimates and uncorrelated residuals.of
the system under consideration. Extensive simulations were conducted
in order to {illustrate the merits of the new procedure. The method
worked successfully for different noise levels (10X and 20%) compared
to 1.5% reported previously in the -literature when no modelling was
ugsed. The modelling of the error 1n_;he proposed algoritlm has been
done using the time seriles metﬁ;E? Another advantage of the proposed
method is 1ts insensitivity to the choice of the sampling interval, It
has been‘tested with systems sampled at different sampling Intervals
and - the resuits showed a considerable imprdvement in the est;mated
parameters and thelr accuracy as well as the whitening of the
residuals.

Order determination 1s the first part of cthe identification

problem and it is generally done off-line. Three order determination

tests have been studied 1in Chapter 5 and used to d1identify the
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structural indices of multivariable continuous-time systems 1In the
transfer function form. Two of those tests are applied for cthe first
time for contlnuous-time systems as the author 1is aware. The three
methods are; the instrumental.variable method for model order identi-
fication, the Iinstrumental determinant ratio test and the residual
error technique. Thg sampled input-output signals have been integraEed
with the cubic spline technique and the information matrices have been
reformulated to sult the new Interpretation of the data. The threer
order determination tests have been compared according to the computa-
tion time, the number of 1npu;—output samples used to 1indicate the
correct order and their robustness to added noise. The residual error
techﬁique was found to present a good compromise between all tﬂese
factors.

Multivariable systems unlike single—input single-output systems
can be repregsented within different structures. The problem is to
choose,'one which will give a well conditioned parameterization. In
Chapter 6 a new proceduré is presented to iﬁfntify the struéﬁure of
continuous-time multivariable systems in the\ input-ocutput form. This
procedure 1s suitable for both stationary and.non:$tationary systems
when a chénge in the structure occurs. whilé "the order remains
constant. It uses the cqncepF of overlappingI/parameterization to
choogse a better conditioned pargmeterization for the mul:ivariable
gystem whenever 11l conditioning is detected.

A switching criterion 1is presented based on the compleﬁity

principle which provides a good monitor of the conditioning of the
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parameterization as well asﬂthe suitability of the tested structure.
The inclusion of this criterion in the selection procedure answered the
question of when to switch to another pseudostructure, This leads to
the reduction of time required for computations when compared witﬁ the
other structure selection procedures [76]. Tﬁe latter procedures all

lack a switchiné criterion.

7.1 Suggestions for Further Research
1. The cholce of a suitable sampling interval 1s an essential
requirement 1In system identification, All identification

procedurea such as the direct and the indirect appfoaches are
baged on the fact that the agmplfng interval' has been selected
properly. But when the system Is treated as a black box and
there 1s no Ifnformation about the system time constants we.
cannot predict a suitable sampling interval beforehand., Sinha
and Puthenpura [21] have developed a criterion to determine the
optimum sampling interval from the input and output data. It
is based on the common rule that the sampling inte;val T,

should be chosen such that

A¢T & 0.5 _ (7.1)

" ) T )
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where Ay 1s the magnitude of the largest eigenvalue of the
continuous model. Since Ag are not known a priori, they [21]
used a bilinear transformation to map the area inside the unit

circle gso that 1t can be spread out %9 the entire left-half of

the weplane -
w = 221 (7.2)
z -1

‘so-if z = &% the corresponding point In the w plane is given

by
W o= W 3§ wW ’ i (7.3)
-
2a . ' 2a
and w) = £ - 1 - and wp = ?e ;sin 8
edd - 2% cog B + 1 e28 - 2e® cos 8 + 1
They proposed to place the poles at a distance
~0.5 '
R = 5.00 » S——-%1 (7.4)
e~0.5 -

-

Simulatiéns in Chapter 3 showed that tﬁg equality "In

equation (7.1) 1s not suitable for the identification with the
L J

direct app:oach by approximate integration. It resulted in a
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large sampling Interval value and hence {inaccuriate parameter

+

estimates are obtained.

A more appropriate choice for this case 18 the rulk-of-

«
-

thumb proposed In this thesis. *
I

0.05¢A¢ T g 0.1 ‘ ‘ (76

If we use the upper limit ‘the value of R becomes

. -0.1

e + 1

R = T = 20.00 . \'(ﬂ.ﬁ)
e-O.l -1

L -
This will be more efficient than SinHa'&h@ Puthenpura [21]

in the direct approach specially in the noisy case,

The proposed on-line algoldthm for structure selection and the

‘;Lgorithms for eter  estimation of  multivariable

continuous-time systems are“fasy to use, Since the s:o;qge

requiremé%ts‘ for 'data are small and the 'dentification

algorithm with the- trapezoidal pulse funetions requifes few

arithmetic operations, they may be implementea-in real time on

a microcomputer. The direct application of this app:oach could
n tike fleld of robotics and computer aided panufa uring.

Degspite their attractive features for identification y poses,

: v
the ifnput-output form and the transfer function f&rm require
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the approximate integration to be performed several times in
order to solve the systems differential equations. This
results in gsome deterioration in the pa.rani‘et:er egtimates. The
direct identification in Vthe stagf space fo;m presents a
promising alternative for higher: order systems, As we see In

equation (7.7)

X ® Ax + Bu . 27.7).
the approximate Integration is done only once,

Shrindhar et al. [35] were the first to use the spline
technique 1in coqiunctién with the Kalmanlescimation prdkedure
to generate requirid state vafiables and to ginimize a perfor-
mance index uith respect to Ehe system parameters.

However the problem with the state space form 1s the
additional ,burden of estimating the state variablés. The
convergeﬁce of bootstrap algorithms of the combined state and
parameter: estimation. has not been theoretically justified.
However, when qacﬁ stage of these two stage algorithms 1is

treated- separately the convergence of each stage can be argued

1f the other one satisfies certain properties, Generally, the

. conve;sgnce of the overall algorithm is not obvious '[22]. This

N

agspect has to be further investigatad.

L8 —/



APPENDIX A <

THE COMPLEXITY CRITERION

1. The Concept of Complexity —

Definition: Complexfty 18 a measure of the diffgrence between
a whole and the noninteracting composition of its
components.
If we decompose a system S into two subsystems §; and S, which
are the simplest possible components, we can consider the compleiity of

-

€, (S) of the system S to be given bf
Cl(S) - C]_(Sl) + CI(SZ) + R(Sl y Sz) {A-l)

where R(.,.,...,.)} signifies interaction between the arguments and
n

where we considered ) C;(S4} = 0, n 18 the number of the simple com-
v 1-1
ponents of the system. .

Congider the two discrete random variables X and Y with "out-

comes (Xj,Xp,...,Xy® and (y;,¥2,...,¥n), respectively. Let the joint

probabilities be given by

Pr(X = x4, Y = Yj] - Yij i=1,2,.0e,my j =1,2,...,n

151
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L 4

The marginal probabilities are then

of

n
PE(X = xy4] = py = ): \'fij, {i=1,2,...,m,
=1

-~
- .

»

m
Pri¥ = yy] = q¢ = 121 Yigs 3 = 1,2,...,m,

-~

b

~

Define two independent random variables X*, Y* with the same outcomes

as X and Y, respectively, then

3

Pr(Xk = xq, T* = yy] = Pr(X* = xy] « Pr(¥ = y4]

= Pr {X = xg] + PrlY = yy]

>

= P14

i=152,.00,my j=1,2,e.u,n
>

’ 4

L

There would have been no interaction between X and Y 1f they had the
same joint probabilities as X* and Y*,

Thus a measure of the interac-

tion between X and Y may be the degree of fit (or discriminatton)

between the probability distribution of (X, Y) and that ﬁf (X*,T*).
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For this purpose the Kullback-Leibler's information for discrimination

{ 4111 be employed {94], This ylelds

. m n -
RGN = § § vi4ln 14
1=1 j=1 P1q4
1
= Yi4 1lovyg
i=] j=] . ]
- m n ’
= 1 I vi4lln py + In q)
im] j=1
11
- Y1y 1n vy
im] j=1 . .
m n

- I pglopg - ] 9lnaqy
1=1 =1

= - I(X, ) + I(X) + I(1)
= I(x) - I(X/Y)

= I(Y) - 1(Y/X) (4.2)
where I(-) 1is the ;:ntropy of 'a random variable (or of a probability

distribution) defined by. Shannon [95].

. )
3
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* In general for k random variables X;,Xj,...,Xy;
k
R(X|KppeeasXp) = 1 I(Xg) = I(X},Xz,.0Xy) (4.3)
i=]

is a measure of the'interaction between these random variables.

2, Derivation of Maklad's Complexity Criterioﬂn

In system idenéification the desirable model .has properties
that are related to the parameter estimat‘es é rand and model residues
eN» Maklad considered t omplexity of the joint random variables
((en/8),8)-

Using (A.1)

‘ CL((en/8),8) = CL(en/8) + C1(8) + R((en/8),8)

From (A.2)

-

I(en/8) - I((ey/

}/8)

(=28 ]

R((ex/8),8)

J

1(en/9) - T(en/8)

o
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Regarding the complexities of (c(1)/6) and 84i 1 =1,2,...,N, and j =

1,2,...,k where k = dim 8, as zeros, we get,

!

C1((En/8),8) = R((1),.ee (N)/B) + R(8),67,...0%)

N - -

) I(e(1)/8) - 1(ey/8)
i=1 N
k -

s 5 W8y - 18) (A.4)

_ ‘3=l
£y has a zero mean and the empirical covariance matrix 7’
R = [ryy] | £, = 1,2,0.4,N

where ryy are the estimated autocorrelations of the residuals

I(ey/8) = -’2'-\[1n 2+ 1] + 3 In det R (A.5)
Ke(e)/8) = 3 [la 2x + 1] + 3 In r(0) ' (A.6)
Y
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Using the estimated covariance @ for the actual covariance, we get
- k 1
(8) = 7 (In 2r + 1) +-5 In det @ (A.7)

and

I(8y) = %(m o+ 1) +% In qqq (A.8)

i

Using (A.7), (A.8)

N

RN

N

Ci{en/8) = % ] 1n r(0) -—;- ln det R (A.9)
i=]
and
- k - 1 ' ‘
@ = = ] 1aqyq - 3 1o det Q Ay (A.10)
N i=]1 ’

where qi; 1s the 1ith diagonal element of Q.

But C;(8) given by (A.10) is not valid for discrimination
another one value which depends only on Q@ and would not change under

orthogonal transformations is given by:

C208) = % 1n ((trace Q)/k) ~ 3 In det Q (A.11)



A gimpler measure was suggested by Van Emden [90] and has the form:

- k . 2 k k .
&) = ¢ I Inafy- (Y L2707 G (A.12)
=] 1=] jwi+l
and
. N . ) k k
1 trace R 2
Clen/8) = <= 7 1n r2(0) - (—=——=) +=< T I oo
N =1 N N jm1 gmi+] 1
N-1 X
- % I (n-1)r? (1), T (A3
i=1 ‘

To compute C(EN[E). Maklad did not consider all ;(i) up to 1 =

N - 1, This is due to the stationarity of (Eﬂt)/é), where }(1) should
decay with increaéing i. We now determine an upper bound for 1{.

Employing Bartlett's results [96] conce;ning the variance of

the estimates of  the autocorrelations of normally distributed,

stationary time series: '

var {(1)] = £ [ {e2(1) + x(3-0)r(g+D)

-4e()r(3)e(1-1) + 222 (DY)}
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Since {rz(i)} is decaying, the dominant term in the’above expression 1is

var [r(1)] = % I 2D

(A.14)
1 T Nl A
=5 |oT(Ney +2 o).
=1 J
N

In calculating C(EN[E), Maklad considered the first L correlations,

-3
where L is the first lag at which
r2(L + 1) ¢ var [c(1)].
A
Thus, Maklad rule will be ,
k . 2 k k <7
1 trace Q 2 -
comp = | = I qii-f-'————'k )+ 1 ! qzij (A.15)
i=] 1=] J=i+] | .
Y,

+
=zIn

L -
[ I (N-1) )
-1



APPENDIX B

MULTISTRUCTURAL INPUT-OUTPUT MODELS

1. Equivalence Between Input—Qutput Models

A linear time-invariant discrete-time system is described in

the input-output representation by [76]

P(z) y(t) = Q(z) uw(t) (B.1)
where teZ, y(t) 18 the m dimensional output vector, u(t; is the
r-dimenéional input vector, P(z) is a square non singu}ér polynominal
matrix in z (unitary advance operator) and Q(z) 1s an (;xr) polynoﬁin;l
matrix in Z,

Por Ydentification purposes two Input-output models can be
considered equivalent when they describe the same external behaviour
{76]. If the additional condftion of sharing the same oréer is added,
the following well-known algebraic condition is obtained [97].

The input-output models {P'("t Q'(z)} and -{P"(z), 0"(z)} are

equivalenc if and only if

P'(z) = M(z) P"(2)

(B.2)
Q'(z) = M(z) Q"(z)

159
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where M(z) {8 an {mxm)} non dingular unimodular polynomial matrix.
As already noted, all the models (B.}) belonging to the same
equivalence class with respect té the equivalence relation (B.Z):have
the game order and describe the same system.

A

2. Input—Qutput Multistructural Models

According to Beghelli and Guidorzi [76] the pair {P(z), Q(z)}

P(z) = [pg3(z)] (4,1 = 1,...,m) -
z) = [qij(z)] (L = 1l,.e0,m; j = 1,.4.,r)
defines an input-output multist;gctural modgl if and only if

\ deg {Pii(z)} > deg {Pji(z)} for 1 # § (B.3a)

deg {q3(2)} ¢ oy (B.30) "

where py is the degree of the ith row of P(z).

The entries of a multistructural pair {P(z), Q(z)} will be

»

denoted in the following way

MOUTI O

pei{z) = Pt LFE I res = @y§]s Uy > O - (B.3c)
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pij(z) - - aijujz(“jul)— cee T O44] {(B.3d)

Q1j(2) = Bij(pi+l)zpi + ...~ Byy2z * By (B.3e)

The integers uy(i{ = 1,...,m) define the output pseudostructure for

the considered multistructdral input-output model. ‘

3. Adiacent Pseudostructures Definition (Cuidorzi [93]) 1
£ )

The pseudostructures {u'y} and {u”;]} associated with the

same system are called adjacent if there exist two 1integers A and 2

(1 ¢ A, & ¢ m) such that

I
Ty o= u'y + 1 ' -
Bty o= ou'p + 1
u'y = p'y for 1 # A, 2

4. Transformation Algorithm Between Adjacent Models

Denote by {P'(z), Q'(z)} a multistructural model characterized

by the pseudostructure {u'i}, and by {P"(z), 0”(2)} an equivalent adja-

cent multistructural model characterized by the pseudostructure {ug}.
-

- L]

%
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The transformation from the first model to the second can be obtaianed
by means of the following elementary steps. '
Step 1. Add to the 2th row of P'(z) 1its Ath row multiplied by z/u'uunE

Step 2. Exchange the 2th row of P'(z) with the Ath one. .Note that

after these operations deg {p'j)(z)} = u'y+l and deg {p'gy(2)}
= pty-l., .

Step 3. The entrles p'ij(z). i#3, are tested with respect to \nr umﬁ/
conditiocn (B.3b). When U'ij = deg {p'ij(z)} <uj-- deg {pjj(zs},
ﬁo operations are performed. If after Step 2, “ij = u;; the

~degree of p'ij(z) is lowered by subtracting from the i1th row of
;'(z) its jth row multiplied by the ratio of Ehe-maximal degree
coefficients in P'ij(z) and p'jj(z). ' The previous —Operations
are 'repeatgd until condition' {(B.3b) 1is achieved hfg{ ail the
polynomials P 1j(z)
Note that the operations performed in this step q9/not change
the.output pseudostructure obtained in Step 2.
Step 4. The tth row of 5'(z) (i=l,...,m) 18 divided by the coefficient

1 .
of z* 1 in p'y4(2). ’

>

After Step 4 all the polynomials on the main diagonal of P'(z) are,

monic., All the operations performed in the previous steps.om.the rows
of P'(z) must be simultaneously performed also on the rows of Q'(z).
Now denote by {P"(z), Q"(z)},'the polynomial pair obtained; the

models {;'({), a'(z)} and {;"(zj, b"(z)} are equiv t according to



)
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Py
conditions (B.2), and the multistructural model [P"(z),'O"(zj} exhibits

.- 3
the new adjacent pscudostructure.  The ‘unimodular matrix M(z) des-

i';oh..é;tn be obt.'.ut"téd, if degired, as

crib¥ng the performed transformat

-

the product of the unimodelar matrices describing the elementary row
' " el
operations performed on P'(z)jand Q"(z).
The following corollary can be immediately deduced from Step 1

of the above algorithm.

Corollary 1 , ’ \\.
A model with output pseudostructure {p'y| can be transformed

to an adjacent model with pseudostructure {u"ii\;ff and only if the

parameter “'Aiu'g in the first model, 18 non-zero.

*a

Remark V" : ) *
The transformation of an .input-=output multistructural model to

a different one, characterized by a non-adjacent outpht pseudéstructure

but belongfng to‘£he same equivalence class, can be ;erfdrmed by meaﬁs

‘of repeated applications of the algorithm.

\\ . ’ .

M
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