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ABSTRACT 

The problem of identification of linear multi variable 

f ---
continuous-~me systems from input-output data is considered. A survey 

has been made to present the direct and the indirect approaches in 

identifying continuous-time s;tstems" from the samples of the observa-

tions. Thel'~irect 

'G~ 
more promising and 

approach with approximate integration seems to be 

hence it is adopted in this work. Three direct 

methods based on the use of block pulse funct;..ions. trapezoidal pulse 
Ii 

'eunction~ and cubi~ splines have been compared and applied for multi-

variable systems. A comprehensive study has 

the effect of noise on the identification. 

been co~l!ucted to analyze 
" ... 

'" -
The ~.!J8lYSiS was carried 

out first for the single-input single-output case and then extended to 

the multi varia,ble case. A new approach is presented to overcome the 

combined effect of the errors in the approximation/llnd additive white 

noise on the identification of continuous-time systems. The method 

consists of modelling the comb,1ned error term. Extensive simulations 

are conducted in order to illustrate the merits of the new ~rocedure. 

The problem" of order determination has been considered and three order 

determination tests have been studied and applied for continuous-time 

systems. two - of them for the first time as far as' the author is aware. 
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The problem .of the selection of the structure that will give good 

conditioned parameterization is also considered. A new procedure to 

identify the structure in the input-output form is presented. This 

procedure is suitable for both stationary and non-stationary systems 

wifen a change in the structure occurs while I the order remains 

constant. It uses the concept of overlapping parameterization. to 

choose a better conditioned parameterization for the multivariable 

system whenever ill conditioning is detected. A switching criterion is 

presented based. on the complexi ty principle which provides a· good 

monitor of the conditioning of the parameterization as wel~ as the 

suitability of the tested structure. 
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\ - CIIAPTER. 1 

INTRODUCTION 

Identification and process parameter estimation is a rapidly 

developing field. The interest in system identification is essentially 

due to' the nee<\s of engineers ~'rking in process industries to obtain a 

,better knowledge about thei'" plants for improved corrtrol. Several 

survey papers and books [1-10] have been written on the subject and ~ 

lots of control applications have benefitted from this abundant 

research work. Applications in bioengineering and in econometrics [1] 

are also developing in parallel. The 'advent of computers and their 

accessibility has revolutionized system identification techniques which 

have found their way into the new sophisticated fields of robot:f.cs, 

satellites control and artificial intelligence. 

The research done in the sixties dealt only with single-input 

single output systems. Identification of multivariable systems was 

approached carefully in the seventies due to 
.-I 

ties associated with their identification. 

, 
the considerable difficul-

Most ,of this work, however, 

was dedicated to discrete-time systems. On the .• .other hand, the 

identified processes themselves are usually described in terms of 

continuous-time differential equations. Mathematical models 

encountered In the control of I chemical processes, thermal systems, 

• 

I 

• 

• 
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rocket motor combustion, travelling wave systems, tracer kinetics in 

health care systems, high speed aerodynamic systems, etc ••• , involve 

differential equations. 

In view of this wide field of applicati0'l!' specially in adap-

tive control, two basic approaches to identify continuous time-systems 

from input-output data have been deve~oped. In the first, a discrete-

time model from the samples of the observations is obtained and tnen a 

corresponding continuous-time. model is derived. The other approach 

attempts to solve the problem directly and is based on obtaining 

approximate solutions of differential equations over a time interval. 

It is called the direct approach with approximate integration and 

should be ,particularly well suited to certain types of aqaptive control 

where rapid identification ,is a prime requirement. 

Several difficulties are, however, associated with the identi-

fication of continuous-time linear systems and need to be studied 

before real life applicatio~ could be realized. 

Until very recently the literature lacked a reliable method to 

approximate the actual continuous-time signals from the available 

samples. Three methods have been proposed lately and have been applied 

mainly to single-input single-output systems. These are based on the 

use of block-pulse functions, trapezoidal' pulse functions and cubic 

splines, respectively as approximating functions and are promising in 

'- fast recursive identification. 

Most of the practical systems have considerable measurement 
.' 

noise, hence in certain cases the avail~ble information to the control 

" 
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"" engineer is not 
.< 

accurate. 
/ 

In the discrete-time case the problem of 

noisy data is not as severe as in the continuous-time case. The 

approximation and other factors make the continuous-time system very 

• 
sensitive to' the noise level superimposed on it. Hence, a realistic 

identification technique should take into consideration the noise 

factor. 

The problem of system identification consists of two major 

steps: structure determination and parameter estimation. Several 

structure and order determination procedures have been proposed and 

applied to discrete-time systems. Since continuous-~ime systems have 

been long neglected the application of such procedures with the new 

continuous-time identification techniques presents a new and important 

research area. 

Multivariable .systems, unlike single-input single-output 

systems can be represented within different structures. The problem is 

to choose one which gives a well conditioned parameterization. To 

solve this pro~lem several approaches have been suggested in the 

literature, such as using physical a priori knowledge ~bout the system .. 
/ 

and canonical paramterizations. But all these methods have di".dvan­

tages or· are not suitable for practicaL situatio~~. The overlapping 

parameterization approach presents a ~alistic approach to the 

problem. It calls for the transformation from a given structure to 

another equivalent one when ill conditioning is detected. 

The major effort in this thesis is directed toward the 

problem of identification of linear time-invariant continuous-time 

( 

.. 
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multivariable systems from samples of input-output data. The approach 

adopted in the identification is the direct approach by approximate 

integr~tion. It is based oq obtaining ~pproximate expression. for the 

signals from their samples. The differential equations are then 
} 

integrated using these approximations and the results are used for 

estimating the paramet~rs of the' continuous-~im~tem. The three_ 

aspects of the system identification problem: order determlnation, 

structure selection and parameter estimation, have been considered in 

this work. 

In Chapter 1 a comprehensive su,rvey, that discusses and exposes 

two relatively new approaches in continuous-time systems identification 

from in'put-output data, is conducted. The development of the indirect 

and the direct approaches as well as the various resul'ting techniques 

are given in detail. A c'onstructiv.e discussion of the advantages for 

each approach at the end of the' survey clarifies and points out the 
\ 

needed and unaddressed research topiCS. 

Chapters 3 and 4 discuss the problem of identification of 

continuous - time systems with the direct approach by approximate 

i':ltegrations. Three parameter, estimation algorithms have been 

,developed. In each algorithm a different method is used to approximate 

the input-output signals and their respective integrals. 

functio~s, 'trapezoidal JunctiOns. and CU~iC ~Plines are used 

Block pulse 

as approxi-

mating functions. A comparison based on simulated examples for 

s~le-inp:t single-ou~put ,and multivariable systems in both noise-free 

• 

• 
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t and noisy cases is presented to compare computation time and the 

• 

accuracy of the estimated parameters. 

It has been noticed that when noise was added to any studied 
, 

system, identification problems such as correlated residuals and 

inaccurate parameter estimates were created. So a comprehensive study 

is conducted to analyze the reasons behind the previously mentioned 

I 
problems and to investigate whether the errors caused by the approxima-

tion constituted one of those reasons. The analysis is carried out 

first f6r the single-input single-output case and then extended to the 

multivariable case. 
, \ 

A new approach is presented to overcome the combined effect of 

the errors in the approximation and additive white noise on the 

identification of continuous-time systems. The method consists, of 

modelling the combined error term. Extensive simulations are conducted 

in order to illustrate the merits of. the new procedure. 

Order determination is the first part of the identifcation 

problem and it is done, generally, off-line. In Chapter 5 three order 

determination tests haye been studied and applied for continuous-time 

systems, two of them for the first time, as far as the author is 

aware. The sampled i~put, output signals have been integrated with the 

cubic spline techn!que and the information matrix has been r~formulated 

to suit the new interpretation of the data. The three order determina-

tion tests have been compared according to the computation time, the 

number· of input-output samples used to indicate the correct order and 

their robustness to adde4 noise. 

-
,. 
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Chapter 6 presents a new procedure to identify the structure of 

continuous-time multivariable systems in the input-output form. This 

procedure is suitable for both stationary and non-stationary systems 

when a change in the structure oc~rs while the order remains constant. 

It uses the concept of overlapping (multistructural) parameterization 

to choose a better conditioned parameterization for t\le multivariable 

system whenever ill conditioning is detected. 

A switching criterion is presented based op the complex~ty 

principle which provides a good monitor of the condi tioning of the 

parameterization as well as the suitability of the tested structure. 

The inclusion of this criterion in the selection procedure answered the 

')question of when to switch to another pseudostructure. This leads to 

the reduction of time required for computations when compared with the 

other structure selection procedures. All of the latter procedures 
... 

lack a switching criterion. 

Conclusions and suggestions for future investigation in the 

groblem of identification of linear cont~nuous-time multivariable 

systems are discusaed in Chapter 7. 

I 

--

, , 

, 
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CHAPTER 2 

v IDE!ITll'ICATION OF CONTINUOUS-TIME 

MODKLs FROM INPUT-oUPUT DATA: A SURVEY 

2.1 Introduction 

Finding the simplest system that will realize a prescribed 

input-output behaviour has been a fundamental problem in systems theory 

[III. Only a few. techniques were generally .known and they were' based 

on repeated differentiation and contained all the inherent disadvan-, . 
tages'involved therein.[II·I~I. 

"In the. fifties theJmethods used to rodel the dynamic systems ' 

were pure analogue, such as the frequency response and transient 

response methods·. During the sixties and .with the introduction of the 

digital computer most of ~he research was directed toward obtaining 

discrete-time models for the dynamic systems. The interest in obtain-

ing conFinuous-time· models for continuous systems from -the input and 

output s!""ples has ··been renewed toward the end of the decade. Two new 

theories were developing from· scattered research efforts. Those two 

. theories, called the "direct" and the "indirect" approaches, will be 

discussed. in. ·the following sections. The evolution of both techniques 

and the major contributions are stated in sections 2.2 and 2.3. The 

advantages· and· the difficulr.1es facing each approach are discussed in 

• 
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, 
section 2.4. Also, a comparison is drawn based on several published 

papers on the subject stressing the' accuracy of the estimated para-

meters and the .computation time. Several promising re,search topics are 

outlined .in the area of continuous-time syst!)<llS identification using 

the direct approach. 

, . 
2.2 The Indirect Approach 

The arrival of the 

discrete-ti~mathematical 
digi tal ':computer generated a wider use of 

models for continuous-time processes. 

l 
Unfortunately such models do not always provide enough information for 

the analysis of the process. Many efforts have then been di rected 

toward identifying continuous-time models from existing discrete-time 

models [14-16]. This is called tlie indirect approach. This approach 

calls for the derivation of an appropriate discrete model H(z) for a 
,l. 

given analog system G(s) with undetermined parameters and then the 
6: 

fitting of the sampled input-output data by H(z) to estimate these 

parameters. 

2.2.1 Esti_tioD of the Par ..... ters of a Discrete-Ti_ Hodel frma the 
lnput-OUtput Data 

Exact transformation of the continuous system into the discrete 

system does not.exist, if there is no knowledge of the actual variation 

of the input between the sampling ins tants [1 T] • The unJ<nown varia­

tions of the input Signals~tween the; sampling intervals could be 

interpreted as some kind of ,)eise and this causes problems when 

• 

l. 
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identifying the discrete-t'ime model of the system [18-19J. We could 

use 
) 

steps or rectangular pulse: or white noise [16J as -inputs to solve 

the identification problem but this may not be true for actual plant 

records. 

" The choice of the sampling interval is very important. A large 

value could mean losing important information about the system and a 

very small value may cause mathematical difficulties. It can be 

assumed that the sampling interval T is selected such .. that A fT ~ 0.5 

where Af is the eigenvalue of A farthest from the origin of the 

complex plane (Haykill [20 J ). The matrix A corresponds to the state 

space representation of the continuous system in equation (2.1). 

i(t) - ~(t) + B~(t) 

z(t) - ~(t) (2.1 ) 

~(t) - Z(t) + ~(t) 

where ~(t) is the n-dimensional state vector, ~(t) is the m-dimensional 

input vector and Z( t) is the p'-dimensi0!lal noise-free output vector, 

~(t) is the measured output vector and ~(t) is considered to be a zero-

mean white noise sequences • 

• 
If a proper sampUng interval is chosen [21 J and the input 

signal did not vary between intervals then any discrete-time structure 

. determination and parameter estimation method could be applied to the 

J 
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samples of input and output data [22-23]. Putting the final identified 

model into a canonical discrete state space representation was also 

discussed by Guidorzi [24], 

2.2.2 The Recovery of the Continuous-Time Model Corresponding to the 
Discrete-Time Hodel 

Several authors have contributed to this part. of 'the problem. 

The problem may ·be· stated as follows' [141 : 

Given th'e pulse transfer function H( z-I), determine the 

r .. '. 
continuoull system transfer function G(s)., so that responses of 

these correspond, closely' at the sampling instan't-§. for all pos1.ible 

inputs. Many ,of the works done in the transformation area from 

continuous to discrete was dedicated only to univ,,:riate systems [1~ 
[ 16-17]. The identification of the multivariable continuous-~ime . . 
systems through the indirect method has been discussed by Sinha and 

Zhou QiJie [25-26] a~d by Strmcnik and Bremsak [15]. Several 

transformatlons were suggested '[ 14] based on the approximation of the .. 
input as a step or a ramp but they involved long calculations and were 

.,. 
vulnerable in practic!,l cas.es. 

The bilinear z transformation [14J given lly ·(2.2) or <2.3) may 

hi, more suitable' 'and is ,mo!'e 'flexible in regard of input variation 

between sampling intervals. 

2 . 1 -I 
• s - T (1 + :-1) 

or 

." 

'. 
\ 

(2.2) 

.,' 
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-I z 
2 - sT 
2 + sT 

11 

(2.3) 

A comparison has been made between all these methods both in 

the univariate and the multivariable cases. The reader may be referred 

to [14], [25]. 

The most well known indirect method ill! the state-transition 

method [26]. If the input is assumed to be held constant during each 

sampling in,terval hence equation (2.4) is the discrete-time equivalent 

of equation (2.1). 

~(k + 1) (2.4) 

\. 

and , F (2.5) 

/ 

'. 

G (2.6) 

• ' / c. The problem of estimating the parameters of the aiscrete-time 

model described by equation (2.4) has been discussed by several authors 
~ . 

[22-24]. The next' problem, then,.' is to determine A and B from the 

~stimates bf F' and G. 'This can be solved easily. if F can be 

diagonalized. Some difficulty arises when' the eigenvalues of Fare 

either c'omp-d~"or' :e'gative [27] • 

) ----

t." --~J 

~ 
~. 

/ 
... 

.J • 

) 
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2.3 The Direct Approach 

It has been always desired to utilize the differential equation 

of the dynamic system in the determination of the system lIarameters. 

This way the. parameter estimation problem will not be divided into two 

subproblems as in the "indirect" approach. 

Techniques previously used involved direct differentiation 

[l1-13J of the signals which had the disadvantage of amplifying the 

superimposed noise. Another approach was to derive a discrete-time 

equivalent of a continuous system by the use of finite-differe.nce 

approximation. Lanczos [28J showed that the latter method yields 

inaccurate parameter estimates if the data is contaminated with 

measurement errors. 

Based on the concepts of avoiding the noise accentuating opera-

tion of signal differentiation, or the use of a modest equivalent 

discrete-time model,- the "direct" approach has been gradually evolu-

ating. '. 
Consider the dynamical single-input single-output system 

described by the fpllowing differential equation 

A(D) y(t) B(D) u(t) (2.p) 

or more explicitly in'the canonical input-output form 

Dn + Rn_1Dn-ly(~) + ••• + Roy(t) • hmomu(t) + ••• + bou(t) (2.8) 
m(n 

• 
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The problem is to estimate the unknown parameters of the system 

without directly differentiating the input and output signals. 

So, as pointed out by lao and Sivakumar [29), if we perform a 

linear operation on each side of (2.7) this would enable the generation 

of transformed input and output signals easy to mja ure or to compute. 

Shinbrot [30) introduced the technique of 'method functions" 

based on multiplying the input and output signa amilies by su!table 

functions followed by integration over finite' limits in time domain. 

Loeb and Cahan [31) used modulating functions in a similar manner to 

Shinbrot. Fairman et a1. [32) "employed filter chains with each unit 

1 having a transfer function of -----, A>O. 
s + A 

" . 
It was Diamessis [33) who suggested utiliiing successive inte-

gration in identification schemes for linear continuous systems. Hence 

the differential input-output model of equation (2.7) is converted into 

a linear algebraic model suitable for a least squares solution. The 

next natural step was to-t:hink of utilizing the digital computer as a 

tool,-in the parameter" estimation process provided that a reliable 

approximate integra~n method Is used. Since the only available 

information is the input and <!rutput samples, the input and output 

signals should be approximated in" order to perform the operation of 

successive integration. 

The direct approach" makes use of Galerkin' s approximation to 

the solution of the differential equation" (2.9) 
" 

Dy u(x) 

\ 

(2.9) 
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thus 

y(x) (2.10) 

The Galerkin approximating functions wi (x) are free to be selected ...-

for better convergence rate [34]. In general wi(x) are eigen 

functions, polynomials or cubic splines [35]. 

Several approximating. functi''ons were suggested in the' l1ter-

ature and will be presented in the following sections. 

2.3.1 Cubic Spline8 

The cubic spline function S( t) is a piecewise cubic function 

defined with the following properties. 

Yi where y(t) is the function to be approximated 

-
B - S(t) has continuous first and second derivatives for O.~t~tn 

C - S(t) is a polynomial of order 3 in each interval ti-l,( t~ ti. 

Bellman [36] proposed the use of splines for the identification 

of single-input single-output systems. Shridhar et al. [35] extended 

their use to the multivariable case. Their algorithm is based on using 

the cubic splines as approximating functions thEm integrating the 

differential equation.~ith Simpson's rule. By simplifying the obtained 

• 

\ 
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expression with the splines continuity relations, the parameters of a 

second order system can be easily computed. For htgher order systems, 
,~ -

- they assumed that the various i!'tegrals for the different signals are 

'-
available for measurements. Sinha and Zhou QiJie [37J developed a more 

complex recursive algorithm which enables the calculation of higher 

integrals using the cubic splines prope-tties. Si (t) is supposed to 

have the following form (2.11) in the interval [ti-l' tiJ 

t-tf-l 
+ Yi + (at+b)(t-ti-l)(t-ti) 

T 
(2.11) 

where (2.12) 

The values of a and b are calculated by applying condition (B) 

and replaced in equation (2.11). -The third order polynomial Si(t) is 

then integrated by the trapezoidal rule from t - ~-l to t - ti. 

Recursive formulae were developed for the first, second and third order 

integrals [37] as a function of the available observations and the 

calculated derivatives of Si(t). 

order integral. 

I3 i -, . 

where 

I3,i-l + T I2,i-l +r2 
2 

loA -1 __ 
- - -r- mi + - r.mi-l 

120 60 

- .!L S(t)\ t 
dt 

-

Equation (1.1~) gives the third 

Il,i-l 

J 

I 

Yi + L T3 Yi-l 
15 

(2.13) 

.. 

\ 
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2.3.2 Walsh Functions 

The approximation of a function by a linear combination of a 

set of orthogonal basis functions was a classic tool in numerical 

Ilnalysis [28J. The Walsh functions [38J have long been known to 

constitute a complete orthonormal set of rectangular waveforma. Chen 
... '~ 

and Hsiao [39J expanded the') systems variables in Walsh series and 

introduced an op~rational matrix to perform integration of Walsh 

functions. This is explained by the following. 

Consider the first four (m - 4) Walsh functions. in Figure 2.1. 

9k(t). k - O.I •••• m-l. 

with _ R dS(t) R ds-l(t) 
s s-1 " ... 

k -
s 0,1, ..• ,2 -1 

(2.14) 

Rs(t). s - 1.2 ••••• n are a set of orthonormal sq,!ar.e waves for O~t<1 

with unit height and repetition rate equal to 2s - 1 • (ds <:1s-1 : •• dl) 

is the binary expression of the decimal number k [34 J. ["40 J • The ini-

tial conditions for (2.12)' are 4>o(t) - Ro(t) - 1. Integrating, the four 

Walsh functions of Figure 2.1 from 0 to t we obtain 
'-

., r 
4>0 ( T) 1/2 -1/4:-1/8 o ' '4>0 

t i 

f cf>t (T) 1/4 ~ 1-
0 -1/8: 'cf>t 

dT - 0-1 0 h (T) 1/8 o I 0 cf>z 

h 
i 

1/81 
! 

(T)j 0 0 o : 4>3 .J 

• • 
/ 

( t), 

(t) 
(2.15) 

(t) 
, 

( t)! 



17 

.. CP2 

1 1 

1 

1 't , t 

-1 

, CP, CP3 
. 

1 1 " 

1 

/' t 1 t . 

-1 -1 

Figure 2.1 ~e first four Walsh fuo~tionB 

1 
". 



Equation (2.13) can be written in a more general form as 

t 
f 0 i (T) dT Pi(t) (2.16) 

with 

Pm/2 
I I 

r",/2 r-
I 2m 

.'..!. (2.17) P • -- - , PI 
~"'I 2 

I Im/2 I 0",/2 ~ 

2m 

for m • 2s 
," 

Equation (i .17) is the key o'f the orthonormal series approach 
, 

to system identification. The integration is reduced to the muliplica-

tion of 1(t) by P. Walsh functions have been used for identification 

by Chen and Hsiao [39), Rao and Sivakumar [41) and others. A review on 

this matter is presented by Tzafestas [34). 

2.3.3 

the 

Bloclt Pulse Functions ~ 
The set of the block pulse functions is more, fundamental than 

• 

\ 

In a unit interval they are defined by 

1 for (i-l)/m<t,(i/m,. i-I,2, ••• ,m 

o otherwise 

.. 
) 

'. 
(2.18) 

.' . 
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This set of functions can be, concisely descri bed by an m-vector t( t) 

with $i(t) as its ith component. The operational matrix P for 

integration may be directly obtained from the integration of the set of 

block pulse functions as seen in Figure 2.2 and is given by: 
'-...-, 

r 

l' 
1 1 .. '.1 

1 t 1 ••• 1 
P - t ... l 

m 
0 

·t 

(2.19) 

It is an upper triangular Toeplitz matrix that consists of diagonal 

elements being t and the other elements being 1. It is simpler than 

the operational matrix derived from Walsh functions and m could be 

selected as any positive integer not necessarily as 2s ; s - 1,2 •••• 

Chen et a!. (40) introduced the set of block pulse functions 

for the solutions of distributed systems and identification problems. 

They pOinted out that there is a one to one relationship betwee~alsh 
functions and block pulse functions. The use of the latters minilllizes 

the computation time and the storage but the accuracy \If t~e resul~s is 

the same. Due to the particularly simple structure of the operational 

matrix. many recursive algoritl)ms have been proposed for the numerical 

integration of differential equations. 
./ 

The methods proposed by'Sannuti' 

[42) for the solution of linear and non-linear problems and Shieh 

et al. [43] for the solution of state space equations required thj! ... 
inversion of one matrix compare'd. to 1(- 10g2 m) matrices 'in the 

Walsh-function method [39J. Block pulse functions methods have sinct} 

/ 

i! 
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Figure 2.2 Block pulse functions and integrations 
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then been,applied to the identification of bilinear systems [44] and to 

many other control probiems [45-46]. They have been used for identifi-

cation by Palanisamy and Bhattacharya [47] in the univariate case, and 

/ 
Sinha and Zhou QiJie in the mol ti variable case [25-26], [ 48]., The 

0' ~ 

latter has developed a recursive algorithm which performs the numerical 

integrations without the need for matrix inversion. Their method will 

be discussed briefly. 
o 

Given any function yet) integrable over (O,To), it can be' 

approximated as: 

yet) - i' (t) L 

Yl . 
where L - Y2 

Ym 

with the superscript representing transposition 

average value yet) over the interval (i-1)T~t~iT 

T 
TO 

m 

The following integral may be approximated as 

t t 

- f yeT) dT· f i'(T) LdT o 0 

~2 .20) 

(2.21) 

and Yi the 
= 

(2.22 ) 
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II(t) • T i 'p' Z and may be expressed in block pulse form 

i'(t) II where 11 

-' 

I -; 
, II ,1 I 

I ' ! 

·l~l~mj 
(2.23) 

II is the first integral of y( t) which can be expressed recursively by 

the relation: 

( 2.24) 

Similar derivations are carried out to find higher integrals. The 

general recursive relation to find Ik,i is expressed b~, 

" 

• 
T2 

+ - Ik-2 i-I 
2 ' 

T3 
+ - Ik-3 i-I + 

4! ' 

(2.25) 

Tk-l 
+ 2k-2 Il,k-l 

The use of recursive algorithms such as equation (2.25) makes, the 

-
identification problem an essy task. 

The block' pulse flnrctions have long been argued as an ,incom-

• 
plete orthogonaI set [49J. If it ,is really incomplete then it cannot 

be guaranteed for any given function, that an arbitrary small mean 

. 

/ 

\ , 

• 

• 
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error can be obtained by increasing the number of terms in the settes. 

Kwong and Chen [45J have proved the completeness of the block pulse 

series by studying thei r convergence.~roperties as m + ~. 

Shieh et al. [43J incorporated a modification, equivalent to 
" . 

the Anverse use of the trapozoidal rule, for the block pulse technique. 

Hung et a1. [50J argued that for the case of l-:!.near time-invariant 
. . 

systems Shieh et a1.' s modification is equivalent to the trapezoidal 

rule technique. They used the following method to identify the 
, 

parameters of the single-input single-output system represehted by the 

state equation, 

x -
making use of 

Xk -

Ax+ Bu 

the trapazoidal rule, 

A xk +. xk-1 

2 
T + BT 

( 27'26) 

(2.27) 

but they considered the state vector to be known. Sinha' [26J, [51J, 

modified the method proposed by Hung et al. [50 I. He applied the 

method in the multi variable case and showed that the discrete-time 

transfer function matrix obtained is identical to the one calculated by 

the bilinear z transformation [26J. 

. , 

~~" 
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2.3.4 Trapezoidal Pulse Functions 

The basic idea bf'hind the use of complete orthogoQul functions 
~ 

such as the Walsh functions and the block pulse functions is ~o Ob. tain 

piecewise constant solutions of linear differential equation 0 er a 
., 

time interval. 
~o 

In the block pulse function approach the function is approxi-

mated by a sequence of rectangular pulses of height Yk equal to the 

mean value of y( t) over the '. ¥terval kT~ t «k+ I)T. Prasad and Sinha 

[52J found that a better approximation can be obtained Qy using 
'\ 

piecewise linear approximation, where it is assumed that the furction 

is varying linearly between sampling instants as seen in figure ~.3 for 

the ~ubinterval KT~ t«k+ J)T 
\ 

and 

y( t) • ~ [{(k+l)T-t! Yk + (t-kT) Yk+ll 
T 

'. 

Yk ~ y(kT) 

(2.28) 

( 2.29)' 

Approximate expressions for the successive integr.,:ls were derived in 

\ [52J using the trapezoidal rule of integration. The expression for the 

first integral of yet) is ~iv.en by 

(2.30) 

0" 



, 

y (kt) 
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-y(t) 

~ 
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~ 
~ 
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t 
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Figure 2.3 yet) as approximated by the trapezoidal pulse 
functions 

\ 
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where 

-a (2.31) 

The nth integral of y( t) can be calculated using the following recur-

sive formula 

In,k+I(Y) In,k(Y) + TIn-I,k(Y) 
r 

+ 2T I n-2,k(Y) + ••• 

(2.32) 

+ 1 Tn-i II,k(Y) + 
n 

Tn Yk + 
1 TnYk+ 1 (n-I) ! (n+ I) ! (n+I)! 

with In,o(Y) a 
l 

Prasad and Sinha [52] used the trape;widal- pulse functions 

approach to identify a second order single-input single-output system. 

2.4 Concluding ~r1tB 

In this section the advantages and the problems of the indirect 

and the direct approaches are discussed. Promising .research areas in 

'the identification of continuous-time systems from sampled data are 

outlined. 

r 
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The "indirect" method involves a long procedure and the 

accuracy of the solution- depends on two factors. F,rst, the satisfac­

tory estimation of the discrete-time model from the available observa-

tions. The second difficulty is the derivation of the continuous model 

from the estimated discrete one so that the responses of both 

correspond closely at the sampling instants for all possible inputs. 

There is considerable literature available on tt,e first part of the 

problem [53-58'J which provides acceptable results. Relatively less has 

been published about the second part [14-17J. 

Problems are mainly caused· by the empirical choice of the 

sampling interval' and the inaccurate assumptions about the variations 

of the input between sampling instants. However, if the samplin~ 

intervals were carefully chosen such that AfT ~ 0.5 as mentioned by 

Haykin [20J, and the input'matched the conditions set by the transfor-

mation methods, then the continuous-time system will be accurately 

identified from the input-output samples • 

• 
The determination of a suitable sampling interval from the 

input-output samples constitutes a problem in system identification. 

Several methods have been proposed [21J, [59-60J focusing on obtaining 

a sampling interval which will realize AfT' in the neighbourhood of 

0.5 but are sometimes computationally expensive. 

The direct method by approximate integration has several 

advantages over the indire'ct method. The direct approach does not 

divide the problem of the identification into two subproblems, as 

described in sections 2.2 and 2.3. It is in general more efficient 

, 

-. 
'. 
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computationally due to the development of the recursive integration 

algorithms. These algorithms are, also, suitable for on-line identifi-
o 

cation. The direct method techniques smooth the effect of noise 

incorporated in the measurement because of the subsequent integrations 

of the input and the output signals. Sinha and Zhou Q1Jie [25-26 J 

presented a valuable comparison between five discrete-time approxima-

tion methods in the multivariable case. Three of them belong to the 

~ 

indirect approach: the bilinear z-transformation, the state-transition 

method and the modified state transition method, and two direct 

methods: the trapezoidal rule and the block pulse function methods. 

The last three methods were proposed by Sinha and QiJie. , 
The compariso,: showed that the accuracy of the approximation 

depends, to a large extent, on the nature of the input applied to the 

continuous-time system. For example, if the input is not a piecewise-

constant funct"ion of time, the state transition method does not give an 

accurate discrete -time model. In the noise-free case [26J the trape-

zoidal rule, the block pulse function and the bilinear z-transformation 

methods gave comparable results followed by the modified state trans i-
• 

tion method where the input is averaged over the sampling interval 

instead of being held constant. When the simulated systems were 

contaminated with a small amount of obe [25J the best results were 

obtained using the block pulse functi This was attributed to 

the fact that the implied integratio used by this method smooths out 

the effect of noise especially when he sampling interval is reduced. 
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Another reason is that all transformations require some differencing 

and this causes the noise to be accentuated. 

Considering the relative computational effort required for each 

method [26] the bilinear z-transformation is found to be most con-

venient for digital simulation 'i'i: the continuous-time system is 

described in the' transfer function form. If the model is given in the 

form of state ~quations the trapezoidal rule is the most convenient for 

digital implementation. 

2.4.1 Pr01rlsi eas 

The direct approach is attractive because of its simplicity and 

cotlld possibly be used in a wide field of applications. such as digital 

simulation of continuous-time systems as well as in the identification 

of the system through samples of the input-output data. ,Further appli­

cations of these methods are"possible in digital adaptive control. 

Until now very little [25-26] and [35] of the work done has 

been directed to investigate the identification of multivariable 

continuous-time systems with the direc~ approach,. Moreover. two of the 
.' 

most promising recursive approximate integration algorithms [37] [52] 

have only been applied to single-input single-output systems. Those 

algorithms utilize the trapezoidal pulse functions and the cubic 

splines as approximating functions • 

The direct approach suffers some serious 'difficulties when the 

continuous- time system is contaminated with noise. Shridhar et al. 

[35]. Sinha and Zhou [25] noticed, that as the noise level increases the 

, 
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" I 

parameter estimates' become less accurate. And since in any practical 

case different noise levels are superimposed on the data this problem 

should be investigated in order to benefit from the advantages of the 

direct method in real situations. 

! In his survey on the parameter estimati<>n m'ethods for 

continuous,-time models, Young [61] states that "it is clearly of little 

use having a sophisticateq parameter estimation algorithm if'the model 

structure is not firmly established". The selection of a suitable 

order for the dynamic system is an important research area. A ~ot of 

work [62-71] has been done for the discrete-time case. Young et a1. 

[71] have applied an order determination procedure based on the instru-

mental vpriable method, to continuous-time systems. As far as the 

author is aware, this is the only at tempt to apply ortier selection 

methods to continuous _ time sys tems beside the work reported in 

Chapter 5. 

A "" >" 
multivariable system can be described wlthin different 

structures so in addition to determining the order of the system, one 

should select a suitable structure. This is an interesting area for 

both discrete-time and continuous-time systems and a 'lot of work is 

required specially for on-line applications. Little has been published 

for discrete-time systems [72-76] and none in the continuous-time 

case. Those promising research areas are the subject of this thesis • 



( 
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CHAPTER 3 

THE DIRECT APPROACH FOR SINGLE-INPUT SINGLE-OUTPUT 

CONTINOOOS-TIHK,SYSTEMS 

3.1 Int:roduct:ion 

• 
The identification of a suitable model for a process for 

control purposes is often done, using a digital computer from the 
, , . 

samples of input and output observations. In general, the process 

itself is described in terms of continuous-time state equations. The 

direct approach 'attempts to solve this problem directly and is based on 

obtaining approximate solutions of' differential equations over a time ',' 

interval [34-37] • Severar methods of approximation of 'the 
• 

actual 

continuous-time input and output signals, from the available samples, 

have been proposed. These were presented in detail in Chapter 2. The 

use of this approximation overcomes the need of resorting to direct 

differentiation techniques. Actually, the original differential 

input-output model is converted to linear algebraiC (or regression) 

model convenient for a direct (or a least squares) solution. 

In this Chapter three direct methods based on the use of block 

pulse functions, trapezoidal pulse functions and cubic splines as 

approximating functions, are utilized in the identification of 

continuous-tim"~ single-input single-output systems. Their relative 

31 
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performances are compared both in the absence and in the presence of 

measurement noise. 

Since the direct methods are based on approximating the signals 
\ 

from their samples and on approximate integration techniques, a 

thorough study is performed in section 3.3 to investigate the effect of 

errors in the approximation on the identification of single-input, 

single-output continuous-time systems. The study also examines the 

important case of noisy data and draws several new and v~ry useful 

con,elusions. 

In section 3.4 a new approach is proposed to overcome the 

effect of approximate integration on the accuracy of the parameter 

estimates. A simulated' example is presented ~to show the improvement 

when the new approach, is applied. 

3.2 flyat ... Identification Uaing the Direct Approach 

Consider a single-input single-output system represented by t~ 

linear differential equation: 

-

According to Diamessis [33] the succeed ve 

(3.1) n times over the interval (O,t) yields: 

.. 

" 

• 

m~n 

'J integration of 
[' 

(3.1) 

equation 
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(3.2) 

The input and output signals may be approximated with any of the 

'previously discussed functions in Chapter 2. 

In each case, the system differential equations can be inte-

grated using these approximations. Expressing y(t) and u(t) of 

equation (3.1) in block pulse function series, for example, gives: 

u(t) • U~(t) 

y(t) • Y~(t) 

Equation (3.2) may be written as 

11 
where Un • JJJ ... J U ~(t) 

... 
Yn-i • ypn-i 

Un-j • upn-j 

(3.3) 

I 
.' 

(3.4) 

dt • UP ~( t), 

- (3.5) 

r 
The use of recursive algorithms sJch as (2.13), (2.25) and (2.32) 

facilitates the computations of the different integrals. Since the 

input and outp~t samples are known the respective integrals are easily 

,. 
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calculated. Hence, the only unknowns in equation (3.4) are the model 

parameters which can be estimated by the least squares algorithm. 

3.2.1 Comparison of Three. Direct Methods 

The three direct methods are based on using block pulse 

functions, trapezoidal pulse functions and cubic splines as approxi-

mating functions. Each of these has basic equations for the calcula-

tions of various order integrals [37] [48] and [52]. The general 

recursive relations for the first two methods are given in equations 

(2.25) and (2.32). No general recursive formula has been developed for 

the cubic splines method. Sinha and Zhou [37] calculated up to the 

third successive integral and based on the same principle the author 

developed the recursive formulae of the fourth and fifth order 

• 
integrals. 

Is,i 
r2 T3 

Is,i-1 + T I4,i-1 + 2! I3,i-1 + 3! I2,i-1 + 

(3.6) 

7.44037 x 10-3 Yi-1 +"r6 x 7.44095 x 10-4 mi-1 

Computer programs have been developed in Fortran 77 for the 

three methods and then utilized with simulated systems to compare. 

relative~~"r"formance in noise-free and noisy environments • 

. , 

'I' 
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3.2.1.1 Lden~ifica~ion in the Noise-Free Case 

35 

Consider the following third order single-input single-output 

system given by the following transfer function: 

G(s) 
(s+I)(s+2)(s+3) 

with u(t) Sin t, the corresponding output is calculated as 

.. 
y(t) 0.2Se- t - 0.2e-2t + 0.OSe-3t- 0.1 cost 

The results for three different sampling intervals are given in 

Table 3.1. 

The parameters were estimated by the least squares algorithm 

[77]. As a measure of the accuracy in estimating the parameters of the 

continuous-time model the parameter error norm is calculated for each 

case and listed in the Table. The parameter error Jlorm is defined as 

8 - !l t 8 where 8 and !l are the actual and estimated 

parameter vectors, resRectively [21-22]. 

The use of cubic splines as approximating functions does 

clearly improve, the parameter estimates of the system under considera-

• tion. This is due to the good approximation of the original signal the 

cubic splines provide. When the number of successive integrations 

exceeds two, the cubic splines in the noise-free case show superiority 

to the other two methods. 



Table ].1 Co.parison of the three approxiaate integration ~thods for the noise-free 
case , 

Number Variance Parameter 
Sampling of a2 - al aO bo of Error 
Interval Method Samples ( 6) (1J) (6) (1) Residuals Norm-

BPF 5.959 10.95 5.968 0.9953 0.1824 x 10-8 0.00519 
0.07 TPF 100 6~56 11.094 6.054 1.009 0.201 x 10-9 0.00878 

cub sp 6.00 11.00 ., 6.00 1.00 0.5043 x 10-13 O. 

BPF 6.00 lLOO 6.00 1.00 0.1785 x 10-12 O. 
0.007 TPF 1000 6.00 11.00 6.00 1.00 0.5605 x 10-13 O. 

cub sp • 6.00 11.00 6.00 1.00 0.563' x 10-18 O. 

~ 
BPF "6.00 . 11.00 6.00 1.00 0.1114 x 10-13 o. 
TPF 2000 6.00 11.00 6.00 1.00 0.3498 x 10-14 O. 

cub sp 6.00 11.00 6.00 1.00 0.5618 x 10-18 O • . 
c' 

" 

w 
en 

~ 
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The spline function has the best approximation and minimum 

curvature properties [ 351, Le., of all twice d1fferentiab1f" inter-... \-. 

.~ 

polating functions, the cubic spline provides the smoothest interpola-

tion. So by its nature, the cubic splines give better approximation to 

a given function then the block pulse functions or the trapezoidal 

pulse functions and this property influenced the parameter estimation 

process. On the other hand the computation time is larger compared 

"-with the case of the block pulse functions or trapezoidal pulse 

functions as approximating functions, see Table 3.2. The latter 

methods have also the advantage of being easily incorporated in any 

on-line algorithm to obtain directly at each sampling iqstant the 

approximate value of the function and its successfve integrals. To 

calculate the cubic spline function at a cettain sampling instant the 

value of the first derivative at the same and previous sampling 

instants should be known in addition to the observed values. 

Table· 3.2 eo.pari~on of execution time of th~ three direct methods to 
appro,,!.u.te the first. second and third integrals of - 500 
sa.plks. (Cyber 730) 

Method • BPF TPF Cubic Splines 

Execution time in secon~s 
for 500 iterations 0.0989999 0.0939999 0.238 

. 

3.2 •. 1.2 Identification in the Presence of Noise 
, 

Two other simulated examples are presented to compare between 

the three direct ~thods when the single-input single-output system is 
o 

contaminated with noise. 

, . 

, 
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Exruople Second Order System: 

Consider the fo11owtng transfer function: 

G(s) ~ 
10 10 

(s+l) (s+IO) s2 + lis + 10 

The input to the system u(t) is taken as 

u(t) cos 0.47 t + cos 3.83 t - 2 cos 7.29 t 

Assuming zero initial conditions, the output of the system is given by: 

.. 
y( t) -0.93995Ie- t + 0.062662e- IOt + 0.9049026 

cos(0.47t - 0.486326) + 0.235916 cos(3.83t -

1.681167) 0.219636 cos(7.29t - 2.064398) 

Two white noise sequences were generated by the computer and added to 

the outP~. The sequence~ had zero means. and standard deviations equal 

to ten percent (10%) and twenty percent (207.) of the output signal 

> respecively (corresponding to a signal to noise ratio (SNR) of 20 db 

and 14 db, respectively). In Table 3.3, the three approximate inte-

grations methods are compared with respect to the accuracy of the 

estimated'parameters for a sampling interval T of 0.01 sec. 
, I . 

The cubic splines method does not. ~how any superiority in the 

noisy case. The three methods gave the same results, almost the same 

., 

f 
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Table 3.3 Second order syate. with 10% and 20% noise levels 500 input­
putput saaples. T - 0.01 sec. 

, 
i 

i 
I 

N.S.R. - 10% N.S.R. - 20% 
True 

Parameters BPF TPF Cub. Sp. BPF TPF Cub. Sp. 

al (11 ) 10.91 10.91 10.9 10.65 10.65 10.64 

So '(10) 10.15 10.15 10.15 10.16 10.16 10.15 
, . 

bo (10) 10.04 10.04 10.04 9.925 9.925 9.918 , 

Parameter 0.01 0.01 0.01 0.0219 0.0219 0.0222 
Error Norm • 

Whi"le examining this y!,mple, it is worthy to illustrate the 
".;-" 

effect of the choice of the sampling interval on the identification,',', 

Three different sampling intervals are chosen, to show how a large 

'" 
sampling i~terval as well as a small one may affect the accuracy of the 

estimate~ parameters. The resul.ts are listed in Table 3.4. They were 

taken with the cubic splines as approximating functions at 10% and 20% 
, . '1:1 

noise le~els, respectively • 
... 

It is clear that taking the sampling interval T equal to 0.01 
../ , \. 

sec. gi~ss the best results compared to tile, other two sampling inter-

vals. 
/', J: 

A large sampling inte'rval causes loss of information, whll!! a 

very small sampling interval causes numerical problems, makes the 

syst!!lJl more sensitive to the noise, and increases the compu~ation time 

as well [37]. 

J. 

• 

n 
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Table 3.4 Comparison of three different sampling intervals 

Noise to Parameters (True Values) 
Signal Number Sampling Parameter 
Ratio of Interval Error I 
N.S.R. Samples T(sec.) al (11) aO ( 10) bO (10) Norm 

10% 250 0.02 11.45 10.55 10.53 0.049 
500 0.01' 10.9 10.15 10.04 0.01 
714 0.007 11 .15 10.34 10.21 0.0238 

.. 
20% 250 0.02 11.05 10.4 10.31 0.0284 

- 500 0.01 10.64 10.15 9.918 0.0222 
714 0.007 11.07 10.5 10.2 0.0303 

, 

A commonly used rule is that the sampling interval T should be 

se·lected in such a manner [20 J that 

(3.7) 

where Af is, the magnitude of the largest eigenvalue of the 

continuous-time model. In this example the equality sign is not· 

suitable, it results in a very large value of T. As we proceed in this 

chapter we will find that a more appropriate rule-of-thumb to choose , 
the sampling interval when using approximate integration methods is the 

following: 

0.05 ~ AfT ~ 0.1 (3.8) 

o 

• 
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Example 2 Third Order System: '-
In the noise free case, the cubic splines approach showed 

superiority over the other two techniques because the order of the 

system exceeded two. To investigate if this property still holds in 

the noisy environment a third order single-input single-output system 

is simulated with the following transfer function: 

G(s) 
s2 + 2s + 5 S2 + 2s +5 

(s+O. n (s+ 1)( s+10) S3 + 11.1 s2 + 11.1 s + 1 

u(t) cos 0.5t + cos 3t - 2 cos 7t 

The output was calculated to be: 

y(t) - 0.21142 e-0 • 1t + 0.42469 e- t - 0.05463 e-IOt - 0.092269 

cos 0.5t + 0.84538 sin 0.5t + 0.04413 cos 3t + 0.0578562 

sin 3t - 0.1105 cos 7t - 0.1055714 sin 7t 

In Table 3.5, the three direct methods are, compared for the noise 

levels of 10% and 20%, respectively, for a sampling interval T - 0.007 

I 
sec. 

It is clear from Table 3.5 that even for a third order system,. 

the cubic splines approach performed in the same level as the other two 

methods (the block pulse functipns and the trapezoidal pulse functions 

approaches). Since the method of trapezoidal pulse functions requires 

less computations it is preferrable to use it in practical cases. 



.., 

.... 

~ 

.' 

Table 3.5 Third order syst.,. vith 10% and 20% noise levels 1000 input-output s .... ples. 
T - 0.007 sec. 

Noise Parameters (True Values) Parameter 
Level Error 
N.S.R. Method a2 (11.1) al (11.1) aO (1) b2 (1) b l (2) bo (5) Norm 

10% BPF 11.64 10.16· 1.021 1.032 2.151 4.673 0.0686-23 
TPF 11.64 10.16 1.021 1.032 2.151 4.674 0.068605 

cub.sp. ' 11.64 10 .16 1.02 1.032 2.15 4.673 0.068614 

20% BPF II .53 8.793 "'0.9961 1.029 2.163 4.149 0.15020 
TPF 11.53 8.794 0.9962 1.029 2.163 4.-I49 0.15015 

cub.ap. 11.52 8.792 0.9953 1.029 2.16 4.148 0.15016 

.t>. 
N 
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The estimates of the parameters obtained for different sampling 

intervals with the trapezoidal pulse functions method are given in 

Table 3.6. It is clear that T • 0.007 sec. gives the best results 

which corresponds to AfT • 0.07. This value lies within the region 

indicated in equation (3.~). 

It can be noticed that as the noise level increases the 

parameter estimates deteriorate even after an appropriate sampling 

interval has been picked up carefully. 

This problem is the topic of the following section. 

3.3 Effecc of ApproxiaaCe InCegraCion on IdenCificacion 

The input and output signals and their integrals are approxi-

mated at the sampling insCants either by the block pulse functions, the 

tJ;apezoidal pulse functions, etc ••• , and substituted in the ditreren-
Q ~ 

tial equation. There always exists an error in the approximation, but 

does this error 'lffect the identification? Previous work [25) [35) 

[37] has been conducted to identify continuous-time systems with the 

direcc approach in presence of noise '11th little success. In [25) the 

highest noise level added to the system to obtain reasonable parameter 
'-

estimates was 1.5%, which is actually very low. Sinha and Zhou [37], 

Shridhar and Balatoni [35] showed also that the higher the noise level 

the less accurate are the estimaces of the parameters. They also 

mentioned the presence of numerical problems. 



~ 

Table 3.6 Coaparison of three different SHapling intervals 

. Parameters (True Values) 
N\lmber Sampling Parameter 

Noise of Interval Error 
Level Samples T 11.1 11.1 1. 1. 2. 5. Norm 

10% 700 0.01 9.82 . 10.72 0.8791 0.9423 1.772 4.695 0.08375 
1000 0.007 11.64 10.16 1.021 1.032 2.15 4.673 0.0686 
2000 0.0035 10.22 9.992 0.9833 0.9554 1.75 4.575 0:'09 

20% 700 0.01 8.391 10.17" 0.7516 0.8744 1.508 4.324 0.1799 
I 

1000 0.007 11.52 8.792 0.9953 1.028 2.16 4.148 0.15016 I 

2000 0.0035 8.968 8.814 0.9199 0.8888 1.444 4.078 0.19866~ 
-~~~~------~~---------.-.---------- - - ----------------- -- ---- - - - --------------

, 

• 

"'" ..,. 
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3.3.1 Proble. For.ulation 

Let us study the effect of the approximation errors on the 

identification of continuous-time systems for a second order single-

input single-output system and assume that the measurements are noise 

free to emphasize the effect of the errors in the approximation. 

The system is des,cribed by the following differential equation 

d2 d 
-:;zy(t) + al - yet) + ao yet) 
dt dt 

d 
bl - u(t) + bo u(t) 

dt 
(3.9) 

• 

Integrating twice and assuming zero initial conditions we obtain 

yet) + ar!y(t)dt + a~f!y(t)dt br!u(t)dt + bof!u(t)dt (3.10) 

or 

(3.11) 

Substituting the input and output signals and their integrals by their 

approximated values we get:, 

. 
yet) +"alIl(y) + aOIZ(Y) 

Substracting equation (3.1Z) from'(3.11): 

. 
+ bO IZ(u) 

'/ 
/' 

(3.1Z) 

-_/ 

,~ . 
.; 

.. 
'-

• 



.' 

46 

• 

£ constitute the error in the approximations • 

. It is well known that a function which i~ integrable over an 

interval can be approximated as: 

N 
f(t) - I fi ~i(t) 

i-O 

N 
£l(f(t») - f(t) - I fi ~i(t) 

i-O 

\ 
(3.14) 

(3.15) 

, 

where £1 is the error in approximating the function. £2' £3' etc.;., 

represents the errors in t~e integrals. 

The errors in the approximation exis t whether the' sys tem is 

contaminated with noise or noise-free. Equation (3.12) may be 

presented as follows: 

bOI2(u) + e(t) (3.16) 

where e(t) is the resultant error from all approximation errors. 

The errors in the integrations propogate and hence the 

residuals are correlated. .This is better illustrated by the following 

example. 

Consider the third order system of subsection 3.2.1.1 

represented by the transfer function G(s). 
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G(s) - 1 
~s+l)(s+2)(s+3) 

We take 500 input, output data points, sampled at the rate of 

0.007 sec. and use the cubic splines as approximating functions. The 

recursive least squares algorithm utilized in the identification 

converged to the true .parameter values. But if we examine the 

autocorrelations and partial autocorrelations [see Figure 3.1] we find 

that the residuals are highly correlated. This is the result of the 
. ~ 

approximations in the integration. 

Let us assume now that the approximation errors are negligible 

and consider a first order single-input single-output system, with an 

added measurement error term. 

d 
- y( t) + "0 y( t ) 
dt 

bO u(t) + n(t) 

n(t) is a white noise sequence. 

Integrating (3.17) once we get: 

y(t) + ao!y(t) - bo!u(t) + !n(t) 

(3.17) 

(3.18) 

'. 
So even if we assume that there was no e17ror in the approxima-

tion while integrating, we do have a new term !n(t) which\is no longer 

white noise. It is a Wiener process. 
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The combination of both the errors in the approximation and the 

integrated noise term give birth to a new error series. When the order 

of the contlnuous.-t1me system increases, the number of times the error 

term is integrated is higher. This results in less accurate estimated 

parameter values and correlated residuals. 

3.4 A Proposed Approach for Modelling the Error Term 

The presence Qf this unmodelled error term is responsible for 

all the problems encountered in identification in presence of noise 

[25], [35] and [37]. In previous work the error term was considered to 
-~ 

represent a white noise sequence _ and was not accounted for in the 

identification. 

A new approach is now presented to deal with the problems 

discussed previously. It consists of modelling the error term with the 

time series method of Box and Jenkins [70]. This is done by examining 

the auto correlations and partial autocorrelations of the residuals (the 

noise series) and fitting a suitable model. The fitted model is 

checked for adequacy and is adjusted. if it fails diagnostic tests • 

. 
The modelling of the resultant noise absorbs the errors and 

-gives good estimates of the parameters. AI though it is ~ continuous 

time system the noiSe is modelled with a discrete model. This hybrid" 

approacn is uBually utilized (78) to overcome the problems associated 
• 

with the identification of continuous noise models. 
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Because ·of the existence of the integrated noise term, non-

stationary models such as IMA (O,d,q) and ARIMA (p,d,q) [equation 

(3.19)J are expected to be adequate models for the error term. 

(3.19) 

where ~(B) is a stationary autoregressive operator of order p 

d is the number of roots lying on the unit circle (degree of 

diffe.rencing) 

Wt is the combined error term 

v - (I-B) where B is the backward shift operator 

6(B) is a stationary moving average. operator of order q 

at is a sequence of random shocks. 

Now, if the model is adequate, it is possible to show [70 J ... 

that, 

at + 0 ( _1_) 
rtf" 

where N is the number of w's. The autocorrelations rk(a) of the 

residuals a's can yield valuable evidence concerning lack of fit and 
.' 

the possible nature of model inadequacy. If more than 5% of the auto-

correlations exceed 1 
±/~' as it will be clearly indicated by a dashed 

line on each figure,'then the modal is not adequate • 

. . 
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3.4.1 The Noise-Free Case 

ExBlllpie 1: 

Let us reconsider the same third order system of 

section 3.3.1. After examining the autocorrelations and partial auto-

correlations of the reSidual", given in .-Figure 3 .1, several discrete 

models were tried to model the residuals. The best model found is 

described by: 

(3.20) 

\ 
i.e., the second differencing of the errors in the approximation is a 

sta~ionary series. • 
By looking at Figure 3.2 we can see that the residuals are no 

more correlated and that the model does 'fit the series • ., 

.. 
~le 2: 

~oO let us present another example to demonstrate the effect of ., 

the error term on the identification of Single-input 'single-output 

continuous-time systems. Consider the third order system of 

sectio,njl.2.1.2 ·which is a difficult system because' the poles are not 

close to each other. The system was represented by the following 

transfer function: 

.r' 
• G(s) - - S2 + 28 + 5 .... 

(s+0.1)(s+I)(s+10) S3 + 11.ls' + 11.ls + 1 

• 

...l 
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The accuracy of the estimated parameters and the correlations 

existing between the residuals are compared before and after using the 
. \ 

~ggested approac~ to illustrate the. improvement. We take 1000 input-

output data sampled at t\le rate o~ 0.007 sec. and the cubic splines as 

approximati~g func~ons. The least squares algorithm.converged to the 

true parameter values. By examining the autocorrelations and partial 

autocorrelations of the residuals [see Figure 3.31 we find that the 

residuals are correlated •. 

After extensive simulations the residuals were modelled with 

the Integrated Moving' Average model IHA (0,3,3) which improved the 

variance of the residuals as presented in Table 3.7, and decorrelated 

the residuals [see Figure 3.41. 

1HA (0,3,3) is described by the following equation: 
" • 

(3.21) 

i.e. t (3.22 ) 

The res~ts prove that a model for tho! errors in the apprOXimation is 

necessary even when no noise' is superimposed on the system. 

Table 3.7 Variance of the residuals with and without .orlelliog et 
, 

Without Modelling e t With Model IMA (0,3,3) -
0.5805« 10-11 0.2054 x to-17 

, 
, 

-
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Z 3.4.2. The Noisy Case 

Two white noise sequences were gener:.ated by the computer and 

added to the output of the simulated third order system to examine the 

effect of the combi~error term on the identification. The parameter 

estimates, when no modelling for the error term was used, were preaen-

ted in section 3.2.1.2. 

The noise sequences had zero means and standard deviations 

equal to ten and twenty percent of the output signal, respectively. 

When no model for the residuals was used the residuals were correlated. 

Figure 3.5 shows the autocorrelations and partial autocorrelations of 

the residuals when the system is contaminated with twenty percent noise 

level without modelling the residuals. 

Several discrete-time models were tried, the best model found 

to fit the error series we in both noise levels was ARHA(l,I): 

(3.23) 

In Table 3.8 the variance of the modelled residuals and the 

corresponding parameter error norm are compared for each noise level 

with those obtained when no modelling of Wt was used. 

By examining the residuals correlations in Figure 3.6 it 

becomes clear that the modelling of Wt did cause the residuals 

whi teness"":', 
/ 

, \ 

• 
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Table 3.8 Variance of tbe relliduals and pIIra.eter error oora for 
different noiae levela with and without .adelling Vt 

10% Noiae 20% Noiae 
Wt Not 10% Noise Wt Not 20% Noise 

Modelled ARMA(l,I) Modelled ARMA(l,I) 

Variance of 
the Resid~als. 0.9838xI0-3 0.9083xI0-3 0.394IxI0-2 0.3627xI0-2 , 

J 
Parameter} 
Error Norni 0.0686147 0.0635743 0.1501634 0.1390276 

If we compar~ between different sampling intervals we find that 

the suggested approach does enhance the performance of the least 

squares algorithm when the sampling interval is not adequate for the 

system." This is clearly demonstrated in Tables 3.9 and 3.10. 

- ., 
""~ 

I 

Table 3.9 Third order IIJlltea with T· - 0.02 sec. 10.% noille 1000 
,- input-output data 

T - 0.02 
T - 0.02 With Error 

True Parameters Without Error Model Model IMA(O,I,I) 

11.1 3.091 9.211 
11.1 2.187 8.104 

1. 0.221 0.8299 
1. 0.4391 0.892 . 
2. 0.7406 1.726 
5, 0.9864 3.718 

Residuals Variance 0.01164 0.431 x 10-2 

Parameter Error Norm 0.764 0.2269 
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Table 3.10 Third order syst.,. with T - 0.01 sec. 10.% noise - 1000 
input-output data 

T - 0.01 
T - 0.01 With Error 

True Parameters Without Error Model Model ARMA( I ,1) 

11.1 9.514 9.776 
11.1 8.846 9.508 
!. :J 0.8431 0.8887 
1 • 0.9213 0.946 
2. 1.794 1.803 
5. 3.969 4.246 

Variance of Residuals 0.4775 x 10-2 0.3917 x 10-2 

Parameter Error Norm 0.177301 0.132952 

3.5 Concluding llellarlts 

Differential equations can be con,verted to linear algebraic 

models convenient for a least squares solution when using the direct 

approach. The signals and their successive integrals are ap~oximated 

and substituted in the differential equations which then can be solved. 

Three direct methods using the block pulse functions, the 

trapezoidal pulse functions and the cubic spline functions as 

approximating functions are thoroughly compared in the case of 

single-input single-output systems. 

The Comparison showed the superiority of the cubic spUnes as 

approximating functions followed by the trapezoidal pulse functions 

method in the noise-free csse. When the observations were contaminated 

with noise the cubic spline method did not show any superiority for 

second and third order systems. But probably in the case where the 
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order of the system.will exceed say 6 or 7, the cubic splines will give 

better results because they are more accurate for high o·rder integra-

tions. All three direct methods gave almost the same parameter 

estimates. But for practical cases it is advisable to use the trape-

zoidal pulse functions method. It has the advantage of being easily 

incorporated in anyon-line algorithm. It uses the actual output data 

unlike the block· pulse functions method and hence utilizes the least 

" 
computational time. 

Several illustrative examples were presented throughout this 
-'S 

chapter. It has been shown that the choice of the sampling interval 

affects the accuracy of the estimated parameter. A heuristic rule has 

been suggested to properly choose a suitable sampling interval. It was 

also noticed that as the noise level increaaes the parameter estimates 

deteriorate even with the sampling interval picked up carefully,. 

The effect of the errQr in the approximations and additive 

noise are then studied. The study showed that the errors in the 

approximation have a non-stationary behaviour and result in correlated 

residuals. 
/ 

It has been also demonstrated that when the continuous-time 

system is contaminated Ilith white nOise, the integrated noise is added 

to the error term, hence causing identification problems. A nell 

approach is proposed in section 3.4 to overcome these difficulties. 

This approach consists of modelling the error term which forms the 

stochastic part of the problem.. The modelling has been done Ilith the 

time series technique. 
I 

, . 

,. 
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The prop,?sed approach showed superior results in improving the 

estimates of the parameters and providing uncorrelated residuals. It 

also improves the sensitivity of the estimation algorithm to ~he choice 

of sampling intervals. 

" 

'. .. 
• 

" 

.... 

) 
• 



CHAPTER 4 

PARAKETER ESTIKATION OF HULTIVAlUABLK 

CO~INUOUS-TIKK SYSTEMS 

4.1 Introdu"'tion 

-The identification of multifariable systems from t~e samples of 
I 

input-output data was extensively treated in the literature for the 

discrete-time case [22-24]. Little was done in the field of estimating 

the parameters of a multivariable continuous-time model from the 
• 

samples of the input-output data. This will be the topic of this 

chapter and the work of Chapter 3 will be extended to the multivariable 

case. 

In sections 4.2 and 4.5 three direct methods will be used to 

identify multivariable systems from the available data. Comparisons 

will be drawn based.on the accuracy of the parameter estimates in noise 

free and noisy cases. The three direct methods are those considered in 

Chapter 3 for the single-input single-output case.~ 

The identification problems associated with the approximate 

integration methods are discussed for the multivariable case in 

section 4.3. 

63 .. 
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In section 4.4 the error modelling approach is proposed to 

overcome those problems and to improve parameter estimates of the least 

squares solution • 

• 

4.1.1 State.ent of the Problea 

,.J' r Consider an nth-order linear time-invariant system with m 

inputs and p outputs. The outputs of the system are assumed to be 

contaminated with additive noise • 

.r 
The system can be described by the following equations 

-
, 

( 4.1) , 

z(t) • .!.(t) + !.(t) ·. 
where .!(t) £ Rn, ~(t) E ·Rm and .!.(t) E RP. The noise vector !.( t) 

is 88sumed to be a zero-mean random noise vector of dimension p. 

1Ile problem of system identification may be litated 88 the 

determination of the matrices A', 8' and C' from records of samples 

of' u(kT) and y(kT), ,where k is. an integer, and T is the sampling 

.. 
. 1 
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interval. For convenience, these sampled observations will be denoted 

as u(k) and y(k), respectively. It will be assumed that the sampling 

fnterval, T, has been selected carefully. It will also be assumed that 

the order, n, of the model is known a priori. 

It is well known that the matEices A', B' and C' are not unique 

and for any given input-output descritpion, many such matrices can be 

obtained through a linear transformat1on of the state. Alternatively, 

one may utili~e the transfer function matrix description of equation 

(4.1), which is unique. 

ns) G(s) U(9) + W(s) (4.2) 

where 

gll (s) gI2(s) .. , glm(s) 

g12(s) g22(s) .. , g2m(s) 

G(s? - (4.3) 
.J-r -. 

gpl(s) gp2(S) ... gpm(S) ; 

J 

is the transfer function matrix of the system. til If necessary, it is 

always possible to obtain the state equations from the transfer 
'\ 

function matrix. Another advantage of using the transfer function 

matr~J is that one can decompose the multivariable system into p 

• 

. , 

/ 

J 

• 
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• Bubs y8 terns t each with on~ output and m inputs. correapbncHng to each 

row of G(s) • f\!:nce, each outpu,\ may 
". 

be cal~~ated in the !ol.1JJwlng 
' .. • 

fo_ " • • 
'-

m 
Yi(s) E gij(s) Uj(s) +.W~(s) 

j -I 
(4.4) 

1-1,2, ... ,p 

'" 

Another commonly used representation of equation (4,,1) is the input-\ 

output description which can be identified directly from the av~ilable 

input and output samples • 

c. 

(On + An-I Dn~1 + •• + AID + AO) Z(t) 

(B 1 Dn-I + n- •• + BID + Bo) ~(t) + ~(t) 

I~I 

( 

, 

(4.5)· 

where 0 corresponds to the operator d/dtand A & B are matrices of . -. , . 

"appropriate dimensions.~ , 

In the coming sections these two types 'of models. the transi;er 

matrix representation and the input-output descriptio'!. will be 

studied. 

. " 
\' 

, . 

", 

\ 

( 

• 

>. 

" 
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• 
4.2ld~ntlflcatlon in the Transfer Function Fora 

.' 

) 

The general Tran~fer Matrix representation given in equation 

can be presented 1n another form 

G(o) 

Blm(s) 

01(0) • 
(4.6) 

1 
where Di(S), is defined ao the least common denominator of the ith row 

of G(s) of equation (4.3) having the degreeni (less than. or equal to 

n) and Bij (s) 's are polynomials of 0 of maximum degree ni-1.· This 

form has been considered for identification by El-Sherief and Sinha 

[79] and Sinha &.Zhou OiJie [25]. . . • Th'e structural pari"Iietero for G(s) of equation (4.6). are the 

and the number of parameters to be 

be noticed that the form of equatfon 

• 

orders ni's o~ eaCh~O';' p 8) 

estimated is I ni • It Can 
i-I 

(4.3) for. G(s) is 
'" .;.-::, 

form of equation (4i6)~1 . unique and minimal while the 

~iS unique but not min~~l. The ith differential equation of the bystem 

represented by equation (4.6) can be written as: 



\ 

, 

.. 

.. 

where 

Bij (s) 

m ni (ni-~) 
I I bij(nCt) (D ujh -

j-I t~1 

68 

(4.7) 

~ 

bij(ni-t) and di(ni-i) are the parameters of the polynominals 
ni th 

anc! Di (s), respectively, and D Yik is the k.; Isample of the 

ni~h time derivative of the i th output. Using the direct approach, 

i.~., integrating equation (4.7) ni times, (4.7) becomes 
( 

Yik 
m ni ni 
I I bij(nCi ) Ii(uj)k - L di(nct ) Ii(Yi)k 

j-l t-l i-I 
(4.8) 

where Yik is the kth sample of the i th output without any integration 

. , 
* . 

It (yi)k is the kth sample ~of the' i th integral of the i th output 
..-. 

.. 
Ii(Uj)k is the kth.sample of the ith integral of the jth input 

Now the given system has been decomposed into p subsystems' 

where each subsystem corresponds 

I 

/ 

.) 
..... 

to one row of the TFM (Transfer ,.. 

( 

.~ -.. • 
~ 

~ A. 

• , 
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Function Matrix) and can be regarded as a single-output multi-input 

system of order ni. 

In Chapter 5 three order determination methods will be applied 

to continuous-time multivariable systems in the TFM form to identify 

'the order of each subsystem. The next subsections will deal with the 

identification of the parameters bij(ni-£)'s and di(ni-£)'s of 

each row with the di~t approach for the noise-free and the noisy data 

cases. 

4.2.1 Identification in the Noise Free Case 

The three direct approach methods: block pulse functions, 

trapezoidal pulse functions and the cubic spline method. discussed in . 
Chspter 2 and usea in Chapter 3 with single-input single-output systems 

will now be applied to the.multiyariable case. The parameter estimates ..., 
obtained with each method and the corresponding normalised error value 

will be tabulated and compared. 
" 

Consider the following two-input two-output system with the 

following transf~ function matrix: 

.. .; 
1 2 

s2+3s+2 s+1 
G(s) • '" 3 ~28+1 

s+2 82;3s+2 

\ 

'" 

...,' . 



Yl(t) 

yz(t) 

The inputs used to excite the system are: 

ul (t)' - 1.5 COB 0.9871t + 2.5 cos 0.2137t -' 4 COB 5.8763t 

U2(t) -"2 cos 0.4769t + 2 cos 3.83t - 4 cos 2.317t 

With zero initial condit1hns. The exact outputs are given by: 

1.63123e-2t - 5.295588e- t + 0.478639 cos(0.9871t -

1.237807) + 1.21548 cos(0.2137t - 0.31698) - 0.108106 

cos(5.8763t - 2.64498) + 3.6104 cos(0.4769t - 0.4449) + 

1.0105 cos(3.83t - 1.3154) - 3.17 cos (2.317 r~- 1.~33) . .. . ,. 
1,1286e-t - 5.8133e-2t + 2.01164 cos(0.9871t - 0.4584) + .. 
3.72~? cos(0.2137t - 0.106446) - 1.9332 cos(5.8763t -
1,2427) + 1.2133 cos(0.4769t + 0.0826) +~.90~3 cos(3.83t 

0.9639) - 2.4549 cos(2.317t - 0.6637) 

~ 

70 

This example was used by Sinha and Zhou [25) to identify the 

parameters of the transfer function, model with the block pulse func-

tions method. In the noisy, case they ap'pUed only a noise to signal 

ratio (N.S.R.) of 1.5% to the outputs to get reasonable estimates due 
. 

to the identification problems discussed earlier in Chapter 3. The 

parameter estimates obtained by the three direct method~ fOf the first 

~ and second subsystems are . listed in Tables 4.1 and 4.2. T!te output and 
• 

input signals have been sampled at two different sampling rates and the 

results are included 1n the same tables. , 

\ 
It 

L 

• 
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Table 4.1· Coapariaoo of three direct .ethoda io the noise-free case. 

Firat aubaystea 

Number 
Sampling Direct 9f 
Interval Method Samples bll (0) b12 (1) bl2 (0) dl (I) dl(O) 

. 0.1 BPF 1.003 2.008 4.013 3.011 2.0064 

TPF 200 1.004 2.009 ,. 4.017 3.014 2.008 
.,,-

cub.ap. 1.000 2.000 4.00d' • 3.000 2.000 

~ 

0.05 BPF 1.001 2.002 4.002 3.002 2.001 

TPF 400 1.001 2.002 4.003 3.003 "2.00 I 

cub.ap. 0.9997 2.000 3.999 2.999 1.999 

Tabl~ Coaparison of three direct .ethods in the noise-free case. 

Number i Sampling Direct. of , 
Interval Method Samples ~l(l) b21 (0) b22 (I) b22 (0) d2 (1) 

0.1 BPF 3.03 2.998 2.012 0.9974 ,3.02 

TPF 200 3.031 2.994 2.011 0.9957 3.019 

""'.sp. 2.997 .. 3.002 1.998 0.9999 2.998 

0.05 BPF 3.007 3.00Q 2.003 3.005 3.005 

TPF 400 3.008 2.999 2.003 3.005 3.005 

c!lb.sp. 3.000 3 •. 000 2.000 3.000 3.000 

c 

Parameter 
Error 
Norm 

0.00342 

0.00435 

O. 

0.00064 

0.00084 

0.00030 

Second subsystem 

Parameter 
Error 

d2 (0) Norm 

1.999 0.0063 

1.996 0.0064 

2.002 0.0008 

2.000 0.0015 

1.999 0.0016 

2.000 0.00 

.U 

-.J 
f-' 

" 

, 

") 
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The results of simulation indicated that, as expected, the 

cubic spline method in the noise f~ee case is superior to the other two 

direct methods. 
I 

4.2.2 Identification in the Presence of Noise 

The outputs of the simulated system were contaminated with two 

different white noise sequences. The sequences had zero means and 

standard deviations equal to ten percent (10%) and twenty percent (20%) 

of Ghe output signals, respectively. 

In Table 4.3 t~e three approximate integration methods are 

compared With r~spect to the accuricy 

sampling interv~l of 0.05 sec. for\che 

of the estimated parameters at a 

two subsys tems. 

,The results show no difference in performance between the three 

methods when noise is applied to the multivarlable system. The 
~ 

parameter estimates obtained are nearly identica{. Also, ,the estimates 

are far from good especially when the noise level increases;- This is 

due to the ,tczutll1uat! "effect of the errors in the approximation plus the , 
integrated noise term as discussed previously in Chapter 3 for single-

input single-output systems. The analysis is extended to the multi-

variable case in the next section. 

'4.3 
1 

Effect of Approxt.ate Integration on the ,Identification in the 
Ifu1tbarlable Caae 

Consider an nch order multivariable system described in the 

input-output form by the following'differential equation: 
" 

(' , 

,-



.. 

. , 
• 

• 

Table 4.3 eo.pariaoo of three direct .etbods io the noisy case 

If BPF TPF Cub. Sp. BPF TPF Cub. Sp. 
True 

'I" ParslIl!ters Values N.S. R •• 10% N.S.R •• 20% 

/ dl (I) 3. 3.134 3.135 3.135 3.245 3.247 3.247 

dl(O) 2. 2.075 2.075 2.08 2.136 2.137 2.145 
( bll(O) / I • 1.062 1.062 1.063 1.119 1.119 1.121 

b12(1) 2. 1.988 1.988 1.981 1.957 1.958 1.944 

bJ2'(O) 4. 4.146 4.148 4.152 4.262 4.264 4.272 

d2(1) 3. 2.603 2.603 2.597 2.253 2.253 2.247 

d2(Q) 2. I. 529 1..528 I. 53 0.9098 0.9099 0.9109 

~ 
b21 (I) 3. 2.973 2.974 2.965 3.007 3.007 2.998 , 

') b21(0) 3. 2.285 2.285 2.287 1.355 1.355 1.356 
\\ 

b22 (I) 2. 1.821 1.821 1.817 I. 647, 1.647 1.643 

b22(0) I . 0.6737 0.6734 0.6744 0.2893 0.2894 .0.29 

Parameter Error 
Norm I 0.038 0.038 0.039 0.069 0.069 0.071 

Parameter Error 
• I' Norm II 0.169 0.169 0.169 0.375 0.375 0.375 .. 
0 

e 
-.I 
w 

• 

, 
" 
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dn d n- I 
-- z( t) + An-I -- Z( to) + ••• + Ao Z( t) 
dt n dt n- I 

dn- I 
Bn-I -- u(t) + ••• + Bo ~(t) 

dtn- I -

Integrating (4.9) n successive times, we get 

(4.9) 

Assuming an ideal·case with no noise and taking into consideration the 

existing approximation in the integratio~ equation (4.10) is modified 

into 

. 
where ~(t1 is the vector containing the errors 

series associated with each .output. For the 

(4.11) may be written explicitly as 

(4.11) 

in the approximation 

i th O\1tt equation 

.\ 
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p ni 

Yi(t) + L L aij(ni-t ) It(Yj(t») 
j-l t-1 

(4.12) 

m ni 

L L· bij(ni-t ) iduj(t») 
j-1 t-1 

If we compare equation (4.12) with equation (3.16) it becomes 

clear that in the multivariable case the errors in the approximation 

have a greater impact on the identification than in the singl~-input 

single-output case. We have additional accumulative errors due to the . , 

approximation of the integrals of the different outputs and inputs. In 

the transfer function form, the multi-input mUlti-output system is 

decomposed into p different systems with one, output and m inputs. 

Hence the approximate integration of the other noisy outputs to the 

system does not influence the parameter estimation process contrary to 

the input-output form representation of equal order. 
, 

Let us add a measurement ·error term to equation (4.10), and 

assume that the errors in the approximation are negligi ble. 
01 

grating (4.10) n successive times we get 

• 

• 

Inte-

(4.13) 

, 

• 

• 

.. 
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where In(~(t» represents the n fold time integral of the noise 

sequence associated with each output. 

So if ~(t) are independent ,white noise, sequences In(~(t)} is 

not guaranteed to be so. Since the errors in the approximation are not 

negligible as assumed, the new error term 

!!.( t) (4.14) 

will be a vector of coloured noise sequences. 

Hence we reach the same conclusion as in section 3.3. The 

.. \ 
error term composed of the errors generated by the approximate 

integration in addition to the integrated noise term are responsible 

for the non-satisfactory obtained parameter estimates as well a~ the 

correlated residuals. 

4.4 The Error Ifodelling Approach 

To solve the problems associated with the identifica.tion of 

multivariable c~ntinuous-time systems, the error modelling approach 

presented in section 3.4 is proposed. The modelling of the coloured 

noise sequences is believed to provide a considerable improvement in 
\-. 

the parameter estimates and gives accordingly uncorrelated residual 

series. In previous work, no mod,:Uing was used [37 J, [34 J and the 
, 

errors 1n the approxima~on problem never addressed, but it was noticed 

that the estimates deteriorate as the noise level increases [35 J • The 



, 
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time series approach of Box and Jenkins [70J presents a very good 

analytica! approach which '" makes use of all the available information to 

identify a suitable model for the error series. 

The error modelling approach recognizes the existence of a 

stochastic error series and shows the importance of modelling it. Once 

a model is ide~tified for the error series, the parameters of poth the 

• multivariable -system model and the noise model can be estimated at th'e 

~ 

" , 

same time recursively. This transforms the least squares algorithm 

into an approximate maximum likelihood method [78J. 

4.4.1 Results of Simulstion . 
In this section the error modelling approach wi~l be applied to 

the system described in section 4.2. The plot of the autocorrelations 

and -partial autocorrelations of the error series when the system is 

contaminated with 20% N.S.R. without modelling is given in Figure 

[4.1-2]. It is evident that the 'residuals are 'AO second 

diagnostic test called the portmanteau criterion 

Q, when compared with the X2 tables [70J. 

an inflated 

K 

where n - N-d is the numbe~ w's used 

number of differencing and N is the total' 

,is the estimated autocorrelation at la~ k 

the co~respbnding values of Q are given i 

(4.15) 

f1 t the model, d 'is the 

df observations. rk 

For n -'400~ d - 0, K - 30, .. 

• 

• 

v 
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Table 4.4 The values of Q when Wc is DOC modelled 

N.S.R. - 10% N,S.R. - 20% 

1st Subsystem 58.94 66.35 

... 2nd Subsystem 1031.53 597.83 

The time-series model identified for the error term of the 

first subsystem is an integrated moving average model of order one, 

.IMA(O,I,I), equation (4.16), and the error series of -the second 

subsystem was modelled by an autoregressive integrated moving average 

model,- ARIMA 0,1,1), given in equation (4.17). 
{ 

(4.16) 

(4.17) 

In Table 4 .. 5 the parameter estimates obtained, before and after 

the modelling of the error series, are listed to show the improvenA.nt· 

introduced by the error modelling approach. 

Table 4.6 gives the valu~s of Q' after the modelling and Figures/ 

4;3 - 4.4 show the estimated autocorrelations and partial autocorrela-

tions of the residuals at 20% noise to signal ratio. 

The autocorrelations of the residuals as well as the values oe 

Q' gives us a clear indication that the identified models do fi t the 

/ . 

. . 
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-Table 4.5 Results of a1...tation ,Of th.e .given eJUUlple after 400 iterations ,at 

r - 0.05 sec 

Proposed 
Wt No't M~delled 

Proposed 
Wt Not Modelled Approach Approach 

True 
Parameters Values N.S.R. D 10% N.S.R •• 20% 

dl (1) 3. 3.135 3.083 3.247 3.009 

dl (0) 2 • 2.075 2.035 2.137 1.933 

bll (0) • I • 1.062 I.Q44 1.119 1.018 

b12(l) 2. 1.988 2.016 ' I. 958 2.02 
~ 

bI2(0) 4. 4.148 4.077 • 4.264 3.875 

d2(l) 3. 2.603 2.819 2.253 • ',2.555 

I ' d2JO) 2. 1.528 1.842 0.9099 1.461 
eo 

b21(l), 3. 2.974 2.996 3.007 ,2 ~ 992 
'" , . 

b21(0) 3. 2~285 2.768 :1' 1.355 '2.197 

b22(l) .2 • 1.821 1.977 I. 6.47 1.92 

b22(0) 1 • 0.6734 '0.8489 0.2894 - 0.5673 
I 

Parameter" 0.038 0.02185 0:069 , 0.0248 
Error Norm I • 

Parameter f 0.169 '-0.06122 0.375 0.117 
Error Norm II I 

• 

CD 
W 

-
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error series. It is also evident by. examining Table 4.5 that the 

modelling of Wt improves the parameter estimates • 
... 

EsU-...tes of Q when Wt is ~elled 

1st Subsystem 
lMA (0,1,1) 

2nd Subsystem 
ARlMA (1, 1 , 1 ) 

N.S.R. - l<i;t 

28.65 

19.7 

4.5 Identification in· the Input-output Form 

N.S.R. - 20% 

28.35 

18.41 

Another popular form in whicl' we can identify a multi variable' 

system is the input-output· fo.rm. this form plays an important role in 

system identification since the input-output models .are linking 

directly the input and output observations. Guidorzi [24 J considered 

for identification a 'canonical input-output difference equation repre-

sentation for the discrete-time esse· which can be generalized to the 

continuous-time case as follows: 

.\ . 

(4.18) 

(4.19) 



Q('O) 

where Pii(D) and qij(D) are polynominal} in 

form 

• 
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(4.20) 

d 
D (- --) of the following 

dt, 

(4.21) 

and ni's sre the observability subindices of the system [24). The . 
canonical form of equations (4.19) - (4.23) has been also considered 

for id1Ptif1cation by El- Sheri!,f and Sinha [81). Gutdorzi also 

established [24), a relationship between the state space representation 

in a certain canonical fo~ and the input'-output' representation of 

equations (4.19) - (4.~3). This made it attractive for identification 

purposes and made the transformation to the state space form an easy 

'task. '.' .. 

• 
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The canonical form described by Guidorzi wiJ.l be used in the 

identification of continuous-time. multivariable. systems in this section 
{ 

a~d throughodc Chapter 6~ 

4.5.1 Resu1ts of SiDnlstion ,. 
For the sake of completing our~ <!ompari:son of the three direct 
~ 

approach methods, the block pulse functions, the trapezoidal pulse 

functions and the cubic. spline method, their performance will be also 

investigated when the identification is performed in the input-outpurt 

f ,~ orm. ~' . .}. 

inputs 

Y1(t) 

Consider the foll?wing two-input twe-output system 

(4.24) 

-The outputs of the system were calculated for the following 
FrII' 

'. \. .. 

sin 0.5t + sin t + sin'l.5t 

" u2(t) • sin 1.2t + sin 2.5t 

• Assuming zero initial conditions the 'exact output is given by: 

-0.2677 cos 0.5t + 0.773 sin 0.5t - 0.6408 cos t + 0.6248 

sin t - 0.8197 cos 1.5t + 0.10587 sin 1.5t + 1.7282 

cos 1.3856te-0 •8t + 0.15329 sin 1;3856te-0 •8t 

• 

/ 
t. 
'-./ 



Y2(t) 

f ,~ 

'J 

J' 
0.1222 cos 0.5t -,0.1474 sin 0.5t + 0.228 cos t + 0.02375 

87 

sin t + 0.0232 cos 1.5t + 0.18238 sin 1.5t - 0.87775 cos 1.2t 

+ 0.39458 sin 1.2t - 0.23698 cos '2.5t - 0.252788 ~in 2.5t -

1.86781 cos 1.299te-0 •75t - 1.55427 sin 1.299te-0• 75t + 2.609 • 

cos 1.3856te-0 •8t + 1.90567e-0 •8t sin 1.3856t 

Table 4.7 gives the values of the parameters estimated with the 

block pulse functions, trapezoidal pulse functions and cubic spline 

methods. The results are obtained with 200 samples using the recursive 

least squares method with, no modelling of the error sequences at a 
I ' 

,sampling interval of 0.1 sec. The noise to signal ratio utilized in 

the comparison is varied from 10% to 20% by adjusting the variance of 

the random sequences. 

4.5.2 Para.eter Kst~tion with the Error Modelling Appro!ch 

By examining Table 4.7 we see that the results are not 

satisfactory. The errors in the I'I!..rmeters are large, and 'if we plot , -the autocorrelations and partial autocorrelations of the residual 
,/' 

series as in Figures 4.5 and 4.6 (N.S.R •• 20%), it becomes evident 

that the residuals fail the whiteness test. . ' 
'The' second diagn!lstic 

test, (Table 4.8), also shows that the estimated values of 0 are very 

large. 

The error modell,ing ~pproach will be now applied to the multi-

variable system. 

• 

• 

\. 

• 
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Table 4.7. CoIIpari80n of three direct _thods in the l;Ioi;'y case 

BPF TPF Cubic. Sp. BPF 

<:. Parameters True Values N.S.R. - 10% 

all (1) 1.6 1.473 1.473 1.469 0.7164 

all(O) 2.56 2.158 2.157 2.15 1.018 

.- bli(O) 2. 1.711 1.711 1.702 0.8174 

a21 (0) 1.9 1.567 1.565 1.555 1.195 

a22( I) 1.5 _ 1.155 1.155 1.15 0.804~ 

a22(0) . 2.25 1.981 1.979 1.974 1.642 

b22( 0) 0.5 0.3657 0.3651 0.3641 0.2368 

Parameter ,.,-
Error Norm I 0.14.1 0.141 0.144 0.589 

Parameter 
0.171 f/ Error Norm II 0.169 0.173 0.356 

TPF Cubic. Sp. 

N.S.R., • 20% 

0.7173 

1.019 

0.8181 

1.193 

0.8043 

1.64 

0.2365 

0.589 

~ 
0.357 I 

0.7257 

1.029 

0.8238 

1.187 

0.8015 

1.639 

0.2363 

0.585 

0.358 

. ( 
GJ ,.--

\ 

j 

'" a 

• 
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Table 4.8 Kstiaated values of Q when Wt, is not modelled 

N.S.R. - 107. N.S.,R. -,20% ,. 

1st Subsystem 27'06.12 1716.93 

2nd Subsystem 
, 

846.11 r 660.95 I 

Sever'al discrete models were investigated for the error 

series. The models that did pass the diagnostic tests were ARIHA 

0,1,1) for the error term of the first subsystem and IHA (0,2,2) for 

theerror term of the second subsyste~. The Autoregressive Integrated 

Moving average model ARIHA 0,1',-1) was presented in equation (4.16) and 

the Integrated Moving Average model IMA (0,2,2) can be written as: 

- at + 61 at-l + 82 at-2 (4.25) , 

Table 4.9 gives' the estimated values of Q after the modelling, 
• 

and Figures 4.7 and 4.8 show the estimated autocorrelations and partial 

autocorreations of the residuals at 20% noise to signal ratio. 

Table 4.9 Eat!.ates ofQ when ¥t Is modelled 

N.S.R. - 10% • N.S.R. - 20% 

,1st Subsystem 
. ·ARlMA 0,1,1) 27.1"1 27.11 l 

2nd Subsystem. 1 
lMA (Ol,2) '~, 27.83 28.06 

). 
, 

\ 
• 

• 
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Table 4.10 Results of si .. llatioDs of the given exa.ple 
T - 0.1 sec 

\ 

Wt Not Modelled Proposed 
Approach 

True 
Parameters Values N.S.R. z 10% 

811(1) 1.6 1.473 1.603 

all (0) 2.56 2.157 2.543 

b11(O) 2. 1.711 1.965 • 
a21(0) 1.9 1.565 1.852 

822(1) 1.5 1.155 1.421 

a22(0) 2.25 1.979 2.189 

b22(0), 0.5 0.3651 0.4511 

Parameter Error Norm I 0.141 0.0107 

paramete~or Norm II 0.171 0.0362 

• 

./ 

after 200 iterations at 

Wt Not Modelled Proposed 
Approach 

N.S.R. g 20% 

0.7173 1.579 

1.019 2.494 

0.8181 1.902 

1.193 1.786 

0.8043 1.377 

1.64 2.151 

0.2365 0.4491 

0.589 0.033 

0.357 0.06 

r-
~ .... ~./ 

'"' Ln 
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In Table 4.10 the parameter estimates are listed, before and 

after the modelling of the error series. 

4.6 Concluding Remarks 

In this chapter three different direct methods have been 

considered for identification of continuous-time multivariable systems. 

,The comparison in noise-free and noisy environments in both the 

transfer function and the input-output representations showed that the 

cubic spline interpolation method is only superior in the noise free 

case. No distinct dHference is noticeable when the level of ..noise 

superimposed on the system increases. 

On the other hand, it has been noticed that when the noise is 

added to the multivariable system, identification problelllll arise such 

as inaccurate parameter estimates and correlated residuals. The 

analysis of this problem has been extended to the multivariabie case. 

In secti,on 4.4 an approach is proposed which recognizes the existence 

of a stochastic error series and points out the importance of modelling 

it. 

As we can se~ from Tables 4.6 and 4.9, beteer estimates of the 

parameters were obtained after using the error modelling approach for 

different noise levels. The least squares algorithm is tranformed into 

an approximate maximum likelihood method estimating at the same. time 

the model of the system and the model of the corresponding error 

series • 
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• CHAPTl!R 5 

ORDER IlKTKRKIHATION 'OF IIIJLTIVARIABLK 

CONTlNUOU5-TIHK SYSTEKS 

5.1 Introduction 

The choice of model structure is one of the basic factors in 

the formulation of the ident1ficat:i.on prob).em [23]. The choice will 

reflect on the computational effort, the number of parameters to be 

estimated, etc ••• 

Order determination tests, in general, can be classified in 'two 

categories. First, there' are the methods based upon testing the rank 

of the product moment matrix (PMM)., They are fast and can serve as a 

- rough determination of a range, of orders. A maj or ,disadvantag,e of 

order tests based upon the (PMM) is that the rank condition is masked 

in the case of noisy data. This problem,can be alleviated by enhancing 

the PMM [62], 1.e., assume that a vector of disturbances is super-

imposed to the input and output signals and that the covariance matrix 

of the d:l'sturbances is known. However, enhancement involves additional 

computations, the ins trumental PMM [63] is then used in place of the 
.' 

normal product matrix. The IPMM assumes the input to be noise-free and 

the measured output to be contl!-lIIinated with disturbances. The rank .. 
condition test was exploited and used by many authors, notably Chow 

96 ' 
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[64J. Tse and Weinert [65J and Guidorzi [24J who have applied the idea 

to autoregressive, moving average processes and to the structure deter-

mination of multivariable systems • 

. The second class of tests is based on examining the output 

signals for minimum prediction error. Akaike [66J proposed the final 

prediction error [FPEJ test and is calculated from 

FPE ~2 (N + P + 1) 
(N-p-I) , 

(5.1) 

where N is the number of data points. p is the number of parameters. 

and ~2 is the variance of the residuals from the model estimation. A 

similar measure is Akaiiq,' s information criterion' (AIC) [67J. defined 

by: 

AIC (-2) loge (maximum likeli + 2 (number of free parameters) 

or AIC ... ~ 
'~ 

N loge ~2 + 2p (5.2) 

Another test based on the analysis of the residuals is the loss 

function test 
'-

I (5.3) 

I 

and the model with the minimum squared error has the true~~der ni' 
'-. 

/ 
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Diekman and Unbehauen [68 J compared the PMM based tests, the 

loss function and the FPE tests against the polynomial test and said 

that the latest is the most accurate in determining the order ,of a 

-multivariable system. The polynomial test does not examine the output 

signal but the parameters of the estimated transfer function. For each 

transfer function the poles and zeros will be calculated and plotted in 

the unit circle of the z domain. The most probable order of the system 

is equal to the number of polss not compensated by zeros. 

The ,Information Criterion (AIC) and FPE criteria [67J, [68] 

appear to be very powerful practical approaches to the problem of model' 

structure identification so long as the noise is normally distributed~ 

When the noise distribution is not normal the information criteria tend 

to give larger values than the actual ones [69]. 

Suen ~nd Liu [69) develope~ an algorithm 'the normalized 

-
residual technique' to estimate the structure of multivariable 

stochastic linear systems with the knowledge of only the signal to 

noise ratio. This algorithm have been successfully utilized by 
"I ~-' 

El-Sheri!f and Sinha [81). 

----
Box and Jenkins [70] 

\ 
e~tablished a time series analysis • 
/ , 

method. A good model for the -,"tme series data is the one which is 

parametrically efficient (parcimonious) Ifnd simultaneously provides a 

,low residual estimati.9n error variance (i.e., a good explanation of the 

data) and low parametric estimation error variance. Box and Jenkins 

method, has been discussed and utilized in Chapters 3 and 4 of this 
I 

thesis. ',The DIOst recent method in the order determination field is 
\ 

• 

r 

" 
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Young et al.'s instrumental variable method [71J which will be 

presented in u coming section. 

The difficulty with the tests based on analyzing the resi~uals 

"'" is that they iterate on the system order and they require the calcu-

lation· of the estimated parameter at every step [65J as we see in 

Figure (5.1). 

Input-Output 
Data ..... ...,...~- Parameter 

I<!entificat!on 

Validity 
Test 

., 

Not Valid 

Figure. 5.1 Iterative procedure of tests based 00 analysing the 
residuals 

In this chapter three order determination tests are proposed to 

be applied for multivariable continuous-time systems when approximate 

integration is performed on the data. 

The methods under investigation are the instrumental variable 

method for model ord~r identification, the· residual error ~echnique and 

ri 
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the instrumental determinant ratio ·test. From the three methods only 

the instrumental va~iable method was applied to continuous-time systems 

and in the, simulation the direct approach with' approximate integration 

was not utilized [71]. 

The continuous-time model of the' 1I •. lltivariable system will be 

identified in the transfer function form fQf-all three tests. The 

ith differential equation representing the relation of the ith out-

put and the different inputs is given by: 

ni ni-1 
D Yi(t) + ani_

1 
D Yi(t) + ~ .. + aOYi(t) 

( 5.4) 

ni-1 
,Bni - 1 D ~(t) + ... + Bo~(t) + ei(t) 

where ei(t) is the error in the model of the ith output. 

The information matrices used in the three procedures are 

rede~ined to. suit the new interpretation of the data. The proposed 

methods have been applied to a simulated three outputs two inputs 

• 
continuous-time system. The different 

exposed based on the Obtaine~eSUl~S. 
properties of each method 

/ 

5.2 Refor.o1ation of the Infor.ation Matrices 

are 

All system identification methods depend on the available 

input-output data to estimate the model order or parameters. We define 

by the information matrices the observation matrix G composed of the 

.. 
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input and output observations and the instrumental variable matrix W. 

The latter matrix has to satisfy the following conditions [2J. 

o (5.5) 

R 

where v is the noise vector s~perimposed on the system. 

An unbiased and consistent estimate of the ptrameters vector 

6 is ~btairied as 

!Iv • (5.7) 

Equations (5.5) and (5.6) imply that the instrumental variables are , . 
uncorrelated with the' noise, and on the other hand strongly correlated 

\ 
with the' inputs and outputs. To' satisfy these conditions the IV 

sequence ~ are chosen as the output of an auxilisry model with the same 

input as the system unde'r investigation and provided that the f11 ter 

which generates ~ is stable and of order ni or greater. 

The IV' method can be 'utilized on-line and off-line in a 

recursi ve form easy to implement on digi tal comput;ers hence avoiding 

,the matrix inlerSion 1:n (5.7). 

J [d

ni T ' 
Pk-l ~ "Ii' Yk - aJt ~-l 

, dt i 
~' . ~-l + (5.8) 

T 
1 + aJt Pk-l ~ 

t • / 

! , 

.~ 

, 
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T 
Pk-I ~.IDe Pk-I 

PJt-1 - T 
1 + ID< Pk-I ~ 

(5.9) 

where 

(5.10) 

~ and ID< are defined by Young [61] for the single-input single-

output case as: 

[ -d
ni

-
l ni-2 ne l 

uk> ••• uk] 
-d . -d (5.11) ID< - Yk, Yk' ••• '. -Yk, 

~tni-l 
'-:: 

dtni- l dtni- 2 

-[ _dni- l -dni- I 
uk> ••• uk ] (5.i2) .~ zk J ••• , -zk, . 

nel ,,/"4tni- l dt 
,./ " 

" 

A -new approach is now applied to identify continu~us-time 

systems using ~proximate integration. So, let us redef~ne the infor-

mation matrix G and the instrumental variables matrix W on the light of 

this new perspective for the system in (5.4). 

.' 

• 

--J\ 



let 

l 

• 

.w· o 

• the ni th integral of zj(t) 

• cthe ni th integral of ui(t) 

C 

For M.observations W can be redefined as: 

Ulll Ul 21 1 u211 2 umll u nil u nil -
ul 12 u12 

, 0- -

I 

... 

103 

m -zj 11 -zjnil u nil .. :-

i 
\ . 
• 

\ 

' . . 

(5.13) 
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G is defined in a similar manner by substituting znj by Ynj • 

A· alight change is also a necessity tn equation (5.8) to 

become: 

- ~-I + (5.14) 

where ~. is the kth sample of the jth output without any integration. 

We will now proceed to give a brief description about each of 

the order determination tests mentioned in the introduction. 

5.3 the Instru.ental" Variable Method of Hodel Order Identification 

This method was proposed by Young et ale [71) and the procedure 

can be summarized as follows: 

I. Specify a range of model orders using all available 

information. 

2. Use the IV recursive algorithm and cslculate for each model 

order: 

where 

I - number of parameters 

.' 

~umber of parameters 

L a2Pl1 
i-I 

• 

(5.15) 



.. 
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and 02 is 'the variance' of e( t) in (5.4) and 

R? - I - J o ---M 2 
L Yi 

(5.16) 

i-I 

-" 

where Jo is the residuals sum of squares. 

Select that model structure which y~lds the best combination 

of EVN and R? [71] 

a) The EVN attains or is close to its minimum, value. 

b) Rt should be consistent with the degree of model fit expec-

, ted ,by the analyst. 

Also for further incremental increase in mO,del order. it 
~. 

should not 

"plateau". 

increase substantially and should tend to 
. .. 

Other statistical factors were mentioned in [71] 

but EVN and ret are the major indicators of ni' 

This procedure was applied after the necessary changes of the 

information matrices indicated in the previous section have been made. 

! 
5.4 Ibe Instru.enta1 Iletendnant Ratio Test (IDa) 

In his 1978 paper Wellstead [63] described the order determina-
~ 

tion methods based, upon the 1lMM as a rough estimate of the order of an. 

~e speed with which these methods can assess an 

approximate order to the system is a very attractive feature. The IDR 

test developed by Wellstead has been applied to numerous discrete-t'ime 

" 

• 

J 
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applications. In this chapter, it is applied on multivariable 

continuou~-time systems. 

The instrumental product moment matrix (IPMM) can be defined , 
as: 

and 

• 
det S(ni) 

det S(ni+1) 

(5.17) 

(5.18) 

Wand G are the instrumental variable ~x and the observation matrix 
, 

as defined in Section 5.2.· 

The rank of the IPMM matrix should collapse when ni') ni. 

Because of the presence of noise the rank condition is not so· clear but 

the value IDR (ni) should increase compared to the previous value of 

IDR(ni~l) if ni is the true order. 

5.5 The Residual Error Techn1gue{RET) 

It is an off-line non-recursive method first' introduced by Suen 

and Liu [69]. to identify the structural indices ,of multi variable 
• 

discrete-time systems in a certain canonical form. It was then 

utilized by El-Sherief and Sinha [811 to identify another canonical 

structure of discrete multivariable systems. 
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Considering the case of noisy data the RET theory is biiefly 

stated [2l: 

Let 'y* be the noise_free ~put 
~. 

vector and v the zero mean 

noise vector then 

y y* + v , (5.19) 

If :i!' is a'linear combination of a set of other vectors where X - [2£l. 

~ •...• ~l then there exists a non zero vector such t~at 

:i!' .. xe (~ 
,< 

The optimal solution in the noise-free case should be: • 

eo - (XTX)-IXT.r X+Z* (5.21) 

(5.22) 

then (5.19) may be written as: 

'. 
z - X8 + v (5.23) 

P," 

the residual error is thus obtained by substituting in (5.22) for :i!' by 

zwe, get 
, . 
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(5.24 ) 

(5.25) 

Assuming that v is zero mean and uncorrelated with r then if 

j X* is a linear combination of {~l'~' ... , ~I we have 
C 

\. E{eol 

Otherwi<3e 

E{eol 

E .::T{(I-xxt ):::0 
( 
~-

(5.26) 

(5.27) 

It is clear that the R.H.5. \If· equ/lti'on (5.27) .is greater than that of 

equation (5.26). 

\ 
• For more details, 

. , 

".'" 
When the RET is applied 

the reader could 
\ 

to estimate 

oontinuous-nime multivariable systems, it 

to [2,6'9,81J. 

indices of 

the matrix X 

is simply the observatibn matrix G. 50 using the def~nitions stated in 
. , .. , 

section 5.2, the residual error of the ith subsystem.A:an be expressed 

as: 

'(5.29) 

~. 

.J • 
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El-Sherief a,nd Sinha [81) indicated that in practice it is 

better to plot eio*(ni) against ni. where 

(5.30) 

5.6 Results of Simulation 
., 

A 3 output 2 input multi variable continuous - time simulated 

system is aampled at the rate of 0.07 aec. 'according to the impirical 

rule AT ~ 0.5 [20) where A is the fartheat eigenvalue from the / 

origin. 

a + 3 
Yl 

(a + 1) (a + 2) (a + 

s2 + lOa + IS 
Y2 

(a + 2) (a + 3) (a + 4) 

\ s + 9 
Y3 

(s + 3) (a + 4) (a + 

ni is the structural index of the ith subsyatem 
( 

Uj - unit step 

U2 - sine t) 

-2 ,-
Uj 1 

1) (s + 2) 

-~ j 1 
(a + 2) 

a + 10 I 

3) (s + 
\ 

4) J 
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The three method~ described in sections 5.3 to 5.5 have been applied to 

the simulated multivariable system with superimposed, White noise 

ranging from low noise SNR - 20 db to medium noise SNR - 10 db. 

The input-output data have been integrated using the cubic 

spline method (37), which provides good approximation to the original 

signals and their integrals. 

Young et al.' s procedure has been applied to the simulated 

multivariable example with S' - 500 samples sets of input and output 

data. The instrumental variables sequence was generated with two IV 

schemes. First the IY sequence is taken as the output of~ a known fifth 
• 

order system with the same input as the system under investigation, 

this is called the ordinary IV. The second scheme utilizes the system 

model as auxiliary model which is adaptively updated. The IV sequence 

and the output are adaptively integrated with the trapezoidal pulse 

function technique-at each recursive step. 

The results showed that regardless ~·of the 'method used to 
./ 

genera(e the IV sequence the value of EVN in equation~(5.15) in Young's 
'" IT'-

met~od indicates a first order system in most of the studied cases. A 

better indicator of the true order of a system would be to compare the 

variance of the residuals generated by each model, see Table 5.1. The 
• 

procedure with ordinary IV indicated the correct structure of the third 

subsystem n3 - 2 with S - 600 samples, the first subsystem nl - 2 with 
, 

S - 800 samples, see Figures 5.2 and 5.3, and failed to identify the 

structural index of the second subsystem n2 - 3 USing S - 800 samples 

at SNR - 20 cI.b. We can notice that the procedure needs a sufficiently 

J 
". 

" 
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large amount of samples of data to precise the order of each subsystem 

when using an ordinary IV algori thm, which makes it computationally 

demanding for higher order systems. The same procedure with adaptively 

updated and integrated auxiliary model used only S - 500 samples and 

did correctJy identify the structural indices of the three subsystems 

as can be seen in Figure 5.4 from input-output data contaminated with 
.,. - . 

white nOise,SNR - 10 db. ~ 

Table 5.1 Variance of the residuals ·vhite noise, SRR - 10 db, S - 500 
sa.ples adaptive auxiliary model 

Structure n1 n2 n3 

1 49.8 1.85 11.88 
2 3.88 7.5 0.202 
3 82. 0.43 3.89 
4 320. 6.44 1.5 

Table 5,2 n- co.parison based on S - 600 sa.ples 

Method IDR IV Method RET 

Time/iteration (sec) 0.8 7.4 3.6 

The IDR test is a very fast test. It also carries the order 

~termination part independen~y from estimati~g the parameters of the 

model. Figures 5.5 to 5.7 show; the estimation of n1, n2 and n3 USing 

S - 400-800 samples. In presence of noise the IDR test tends to over 

estimate· the value of n1 as can be seen in Figure 5.8. By raiSing the 

number of samples to 800 the test indicates in' a vague way the correct 

""~ 

.' 
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index n1 • 2 for SNR 10 db. This test does not have difficulty in 

estimating n2 • 3 in low noise and medium noise cases. 

The RET requires large amount of storage. It operates on 

blocks of data non recursively. It is also slower than the IDR test. 

because it does estimate the parameters of the model to obtain the 

value of the residuals. But the RET can detect the order' of the 

structural indices in a short lertgthed sequence of data which may 

alleviate SOme of the storage problem. Second order subsystems were 

correctly estimated with S • 150 samples, but the t~ird order subsystem 

could not be well identified until the algorithm was fed by S -600. 

This result is clearly better than Ydung et al •. procedure with ordinary 

IV which was not able to detect the correct index even with S·· 800. 

(see Figures 5.9 to 5.12). 

5.7 Concluding ae.arks 

In this. chapter, the identification of the order or structural 

indices' of multivariable continuous-time subsystems in the transfer 

function form from the sampre~'-of--the input-output data has been 

proposed using three order' determination methods. An important feature 

/ \ 

of the proposed methods is the operation of approximate integration of 

the sampled data. • 
The' observation matrix and the instrumental variables matrix 

.,have been redefined to suit the new interpretation of the data. A 

• 
simulated 3 output-f input multi variable continuous-time system was 

used to illustrate the behaviour of each method. The three prop",sed 

./: 

• 

. \ 
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methods have given good results regardless of the noise superimposed on 

-' 
the data provided 'that they are fed with sufficient informatiOn. The .. 
proposed methods work well with various types of on-line and off-line 

algorithms for lde'1tification. '''The analyst can therefore choose the 
" , 

method which suits. best the particular experiment's needs. But the 
, , 

residual err,or technique may be preferred as a good compromise between 

• 
the accuracy and the 'used computation time. 

, 

\ , 

" 

<. , 
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CHAPTER 6 

STRUCTURE SELECTION FOR HIJLTIVARIABLE CONTINUOUS-TDIE SYSTEMS 

6.1 Introduction 

... 
The identification of single-input single-output systems 

consists of two parts: order determination and parameters estimation. 

In the case' of multi-input mu1t~-ouput systems a third and important 

step is added to the identification procedure: the selection of a 

mode~ structure. 

A mu1tivariab1e system of known order can be represented by 

many different structures. The problem is to choose one which will 

give well-conditioned pa~ameterization. Different approaches have been 

suggested and used in the past. The problem can be simplified by the 

use of a priori knowledge about the system, but often the system is 

considered as a black box and this approach cannot be used. Other 
• 

researchers have reduced the mu1tivariab1e system to several sing1e-

output systems by decoupling the outputs. This approach is also not 

realistic. The most popular approach during the past decade has been 

to describe specific systems within given equivalence classes by using 

suitable canonical forms [24J, [72-73J.' The canonical form implies 

that the system is, represented 'with one unique model structure. The r 

application of this approach in recursive off-line or on-line 
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\ identification scheme is critical when the system cha es its structure 

and the model cannot track the changes. Hence, the prin iple of over-

lapping parametrization was introduced by Glover and illems [74), 

Ljung- and Rissanen [75). Based on this idea Beghelli ,and Guidorzi 
") 

[76), Van Overbeek and Ljung [82-83), have proposed procedures to solve 
, 

the structure and identification problems of discrete-time multi-

variable systems. 
. 

The overlapping models have a reduced but not minimal para-

metrization and can describe within a given order, several structures 

accor~ing to the a~sual' parameter values. These parameterizations 

overlap, so that a change of parametrization can be made without loss 

of information. We have also the advantage of selecting, among 

different parametrizations, a well conditioned one. 

In this chapter a new procedure which uses the overlapping 
. 

parametrization approach is proposed to identify the structure of 

multivariable systems in the input-output form [84). This procedure 

will enable the transformation from an ill-conditioned parametrization 

to a better conditioned one of the,same order whenever it is necessary.­

['-"'There are sev~ral ways of defini~g a "best" parametrization for the 

representation of a stati~nary finite dimensional multivariable 

stochastic process. - A logical method would be to select the.structure 

that minimizes some scalar measure of the information matrix that 

co'\esponds to each parametrization. Wertz, Gevers and Hannan [85) 

showed that the determinants of all these information matrices are 

\ 

'-

,. 

-
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asymptotically equivalent, and that this criterion is therefore unable 

to discriminate between different structures. 

A criterion which discriminates between structures and decides 

when to switch to a different structure 'based on the principle of 
/' 

complexity is presented in section 6.4 

In section 6.,5 a simulated example is developed for both noise 

free and noisy cases to demonstrate the applicability of the proposed 

procedure. 

6.2 A New Recursive Structure Selection Procedure for Hultivariable 
Continuous-Tt.. Syste.a in' the input-OUtput Pora 

We summarize the problem ss follows: 

Given a set of 'input-output data representing a continuous 

"\.ultivariable system of known order; select the structure that will 
" 

give well-conditioned parametrization, i.e., that will not cause 

numerical problems ~ring the minimization of the prediction error. 
~ ~ -

Input-output models 'of multi variable systems are very useful 

and practical in on-line identification of dynamic systems. These 

models consistute a direct link between the input and output ,samples 

and can thus be directly estimated from the process observations. 

Usually records of, the noisy samples are available and the system is 

treated as a blsck box. Canonical input-o'utput representations and 

their equivalence to canonical state space models have been investi-

gated by Guidorzi [-241, [861. !!ultistructural input-output models were 

discussed by Gever. and Wertz [871, Beghelli and Guidorzi [881. 

\ 
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( A multivariable continuous-time system is represented by the 

I 

following equation in the input-output form: 

P(D)Z(t) (6.1 ) 

z(t) and ~(t) are the p dimensional output vector and the m dimensional 

input vector, respectively. P(D) and Q(D) are polynomial matrices in D 

(or d/dt) the time derivative operator and e(t) is a sequence of 

independent random, p dimensional vector, wi~h zero mean value. 

A new recursive procedure for structure se-lection is proposed 

{S4], based on the overlapping parametrization approach. The main 

feature of this procedure, besides tackling this problem for 

continuous-time systems for the first time, is a criterion for ill 

conditioness. Hence,' the transformation from an ill conditioned 

parametrization to a better conditioned one of the same order occurs 

only whenever it is necessary. 

The proposed procedure is illustrated in the general flow 

chart i:> Figure 6.1. We can start with any pre-identified structure. 

The cubic spline technique is then used to approximate the various 

. integrals of the inputs and the outputs utilizing the available data as 

explained' in the earlier chapters (to minimize the time, trapezoidal or 

block pulse. functions could be used instead). We then l'roceed to c the 
7 

identification of the system model by minimizing a recursive prediction 

error criterj;9n. 

''oj 

\ 

\:. 
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After every M iteratio.ns a test is performed on the parametri-. 

-:t" 

zation for ill-conditioriing. If the result of the test is positive 

then the tested structure is good. If. on the other hand. the para-

metrization fails the test then it is starting to be ill-conditioned 

and the structure should be changed. Another structure for the system 

is selected which will have better conditioned parametrization. A 

change in the initial structure occurs once or several times during the 

procedure if we did not start with the true structure. 

.' 6.2.1 'Ibe HOdel Identification 

The parameter estimation part is performed using the recursive 

least squares algorithm which is th/. simplest and most practical 

algorithm for on-l;ne parameter estimation. 

The algorithm in its basic recursive form is described by 
\ 

equations (6.2 and h.3). 

• !k-l -
'r: 

1'k-lIDc [!k!k-l'-YkJ 

I + ~ I'K-LID<. 
(6.2) 

A. 

• (6.3) 

!k is the estimate of the parameters vector. ~k and Yk are the 
I 

available information organized ·in an appropriate way [89] for the case •. 

• 

" 

, I 

, 
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,. 
, of identifying c~ntinuous-t1me systems using the direct approach (see 

Chapter 5). 

(6.4) 

Another more useful version of the algorithm [n J makes use of 

the statistical assumptions of the error term in (6.1). Provided that 

the following assumptions are satisfied: 1) the estimation error vec-

tor!k -!k ~,!k has zero mean value, 2) E{~} -.0, then the variance­

covariance matrix P~ ~ E{~T} is related to the matrix Pk in (6.3) 

and ,(6.4) by p{ _ a2~ 
P~ 

Subs tHuting Pk by 2" in (6.2) and .( 6.3) yield 
a 

• 

* * * T * ·T ( 2 T * )_1 Pk - Pk-1 - Pk-lSl<.Sk Pk-1 a +.8k Pk-l.8k 

(6.5)' 

(6.6) 

The variance of the residuals can be also computed recursively as in 

equation (6.7). 

, 
.' 

l 

i 
J 

(6.7) 
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This version of the least 'squares gives not only the parameter 

estimates and the variance of the residuals at each sampling instant, 

but also gives an indication of the accuracy of the estimates through 

, * the error covariance matrix Pk' 

6.2.2 The Switching Crit,,& / 
Complexity is a measure of the interaction between .the 

components of a random vector. me more the interaction there is, the 

larger the comple~ity. 
. ~ .. ~. 

'Van Emden [90]' showed that the complexity can be expressed 

using the covariance matrix of the random vector. 

Maklad [91-92] suggested that a compromise be.tween the white-

ness of model residues and the accuracy of its estimated patameters be 

utilized •. The derivation of this criterion i~ given in Appendix A. So 

Maklad comp,:,ted the complexity of the joint random variables 
• A A 

«~I!)' !», where ! i~ the estimated parameters vector and ~ are, the 

model residuals as seen in Figure 6.2. It is noted that the informa­

tion about e is only att~inable after the outcome of e is given. This 

is the reason for conditioning ~ on e. 

N 

COMP [1 I 
N i-I 

'. 
* 2 N 

(trace p) + 1 I 
N N i-I 

L 
I (NI - i) r(1) 

i-I 

N 

I (6.8) 
j-1+1 

.. 
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where p* is the error covariance matr~x, N the number of parameters, 

rei) the estimated autocorrelation of the residuals at lag i. N 1 is 
'2 

the length of the available data and L is the first lag at which r 

(L+l~<var (r(i». Maklad used his criterion in model order discrimina-

tion single-input, single-output systems and proved that it can detect 

the case of correlated residuals unlike AXe and FPE cri teria [91]. An 

ill-conditionea parametrization will give a large complexity.!" So to 

monitor the conditioning of the parametrization of the tested structure 

the following procedure is suggested. 

Re.arks 

1. After every M iterations compute the complexity of the 
. 

joint random variables «!.Ii.), i.) for the tested structure, 

,the error covariance matrix p* and the residuals are both 

supplied directly from the recursive least squares 

algorithm without any added computation. 

2. Test the ratio of the old complexity over the new comp-

lexity value. If the ratio is greater than I, then the 

structure is we'll-conditioned and the algorithm is trying 

to improve both the parameter estimates, and the whiteness 
~ 
of the residuals. 

4 

3. If the ratio "is less than I, then this parametrization is 

1. 

ill-conditioned snd a change of structure is required. 

After every chan~n structure the firs't 'two or ,three 

,computed comPIZ:es" hjlve in general high values because 
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the initial parameters to the identification algorithm are 

far from the true ones. As more data are fed to the 

algorithm the complexi ty starts to decrease very quickly 

for a suitable structure of the system. 

2. It is better to choose M not very lsrge so that if an ill 

parametrization is detecied, and a change i~ostructure is 

necessary, then the transformed parameters used as initial 

parameters will not constitute a bad start for the least-

\. 
squares algorithm. 

The switching criterion is important in determining when to 

switch to another better-conditioned structure. It eliminates the need 

to switch between parametrizations unncessarily to look for a better 

structure like in [76], [83]. The presence of this cr:(terion reduces 

considerably the amount of computations. 

Selection and Tranafor.ation to a Better Structure : 

Guidorzi [93] has set in 1982 a definition for the adjacent' 

pseudostructures associated with the same syste~ (see Appendix B). He 

then developed an algorithm which transforms a system with pseudo-

structure ~1; into an equivalent system with an adjacent p~eudostruc­

ture ~i. The transformation algorithm consists of elementary row oper--

ations of the polyno~al matrices P and 0 and gives both the new 

pseudostructure and the new parameters of the system (Appendix B).. To 

select between adjacent structure he propOSed the following criterion • 

./ 

-

, 
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(6.9) 

. 
where aijk are elements of the p( 0) polyn~mial mat;Jx, and define the 

conditioning factor p 0max/0min' If we ha~ two equivalent 

multistructural mode-Is, the best conditioned one is the model with the 

lower conditioning. factor. 

6.2.4 
• 

We may summarize the structure selection procedure for 

continuous-time multivariable system [84J in the following steps: 

f 

I., Start with any pseudostructure. 

2. Integrate the differential equations of the assumed input-

output ·...,del. You may:. use as integration tools, the block' 

pulse functions, trapezoidal pulse functions or cubic 

spline method, .which approximlites the OriginJ:. functions 

from the given-"data 'samples with variouBt degrees of 

accuracy_ 

3. Arrange the observation matrix with the samples of the 

input-output i~tegrals [a9J, and perform the least squares 

algorithm. 

) 



4. Compute, every M iterations, the complexi ty of the joint 

random variables «~I!)' !) and follow the ill-conditioning 

test as demonstrated in Section 6.2.2. 

S. If the structure passes the test go to 4 • 

. 
6. If the test indicates ill conditioning, switch to an 

adjacent pseudostructure and compare with the selection 

criterion (6.9). If a better conditioned parametrization 

is found go to 3 to arrange the new information matcix. If 

the tested structure has the. least conditioning factor then 

no better l!seudostructure can be found. New analysis is 

\ advisable to change the order of the system. 

6.3 Results of S!.ulation 

To illustrate the applicability of the p,!"oposed procedure it 

has been tested on a simulated two-inputs two-outputs fo~rth-order 

.continuous-time system. The input and output signals have been sampled 

at the rate of T. - 0.07 sec providing 500 input-output data samples. 

The input-output model of the system is 

rJl. + 1.60+0.6 
I r" (,,- _ rn 0.5 D + 0.2 ·1 + 2.6 0+1.1 , : ul (t) 

r 

>G." j 
I -- I 

! 

lU2 (t)J 

I 
I 

02 + O.SD Y2 (t) I -1 - D -0.5 J 

, 
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The integrations have been done with the cubic splin~ integration 

method. 

6.3.1 Noise-Free Case 

Start the procedure with the three possible pseudostructures of 

the system (3,1), ,(2 ,2), (1,3) and see the ability of the procedure to 

decide when the tested parametrization is ill-conditioned and should be 

changed. ' The example illustrates the new selected structure which have 

a better c~nd1tioned parametrization as seen in Table 6.1. 

Table 6.1 Structure selection in noise-free ease 

Pseudostructure 3,1 1,3 2,2 
I 

No. of iterations 100 40 500 
before change 

No. of test calls 5 2 25 

2.83 X lOll 61188660.4 0.06 
Complexity 

lOll 1.86 x 10-9 0.00009858 1.830766 X 

C.F. 14.69 12.95 3.57 
(conditioning factor) 

Decision Switch to adjacent structure No change 

C.F. (2,2) 2.53 1.4536 
(conditioning factor) 

Decision Use pseudostructure 2,2 

No. of iterations 1.00 460 
, 

" 

0.06629 17780.908 
COMP 

1.3673 7020.769 

Total execution 15.006 15.819 14.761 I 
time in sec. I , 

I 

'l 
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6.3.2 'Mle Noisy Case 

To test the structure selection procedure in presence of nOise, 

five percent zero mean white noise was added to the outputs of the 

tested system. The addition of noise did not affect the selection of a 

well conditioned parametrization for the system as seen in Table 6.2. 

Table 6.2 Structure selection in noisy ease 

PseudostructuTe 3,1 1 ,3 2,2 

No. of iterations 60 60 500 
; 

I before change 

No. of test calls 3 3 25 I 
2.8377 x lOll 0.06129 0.06 

Complexity 
1.339 x lOll 0.84955 0.00139 

, 
2~218 C.F. 54.97 3.425 

(conditioning factor) . 
Decision Switch to adjacent No change 

pseudostructure 

C.F.-·(2,2) 1.66817 4.082 
(conditioning factor) - , 
Decision Switch to 

I , pseudostructure 2,2 

No. of iterations 440 440 
,. 

, 

0.06 20075.7 
COMP 

1.4 8120.63 
j 

J. 
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6.4 Discussion 

Overbeek and Ljung [82J proposed a computationally more expen-

sive selection criterion in their identification in multistructural 

state space forms (6.1O). It is based on computing the complexity of 

the state co~ariance matrix of the tested structure, then an organized 

search for a structure which will have more independent rows for the F 

matrix is conducted. The complexity of the new state covariance matrix 

is calculated and compared with the initial one until a better condi-

tioned structure ,is found. 

x(k+l) Fx(k) + G e(k) 

. . 
y(k) ,- Hx(k) + e(k) 

" 

(6.10) 
~ 

Their procedure was later criticized by Guidorzi [93J. He 

" argued that the iterative computation necessary to obtain P (the state 

covariance matrix) can prove to be time-consuming in on-line identifi-

cation particularly when the model with the best conditioning is 

requested. He then proposed the fast transformation and selection 

crit&r1!?n described in section 6.2.3 and Appendix B and used in this 

chapter. However, the structure selection algorithm of Guidorzi lacked 

an important part and that is how to determine the sui table time to 

change the structure of the system? Otherwise, we have to test 

repeatedly all the possible structures to select the best conditioned 

one. This will also be time consuming specially when the order of the 

, . 

• 



sys tem is high. To overcome this problem Beghell1 and Guidorzi [76J 

imposed on the data more analysis. Model and structure identification 

was performed on 200 samples every 75 samples. Structural 

identification have been performed by the 'range error test' [76J which 

selects the most suitable ones for the system under consideration, and 

the switching is done only between a limited number of structures. 

In the procedure proposed in this chapter a criterion which 
. " 

detects ill conditioning is presented in section 6.2.2 and hence we can 

save all the· effort of repeated model and structure identification. 

When the chosen structure starts to give an ill-conditioned parameter-

ized, then at this moment alone that the switching between the adjacent 

pseudostructure begins until the structure with a smaller conditioning 

factor than the initial one is foun~. 

6.5 Concluding Jleaaru 

A step-by-step procedure for identifying th~ structure of 

continuous-time multivariable system is presented for the representa-

tion in the input-output form. This procedure is suitable for both 

stationary and non~stationary systems when a change of structure occurs 

while the order of the system remains constant. It uses. the over-

lsp,l'ing mul'tistructural parametrization approach to choose a better 

conditioned parametrization to the multivariable system whenever 

ill-conditioning is detected. The switching decision is based on the 
~ 

complexity principle which provides a good monitor for the conditioning 

. of the parametrization as well as the suitability of the tested 
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structure. The inclusion of this criterion in the selection procedure 
'! 

answered the question of .!rhen to switch to another pseudost~ture. 

This leads to the reduction of the time required for comput"ti:~] when 

compared with other structure selection procedures. The overlapping 

parametrization principle allows to obtain the new parametes values of 

the new-selected structure with the aid of a similarity transformation 

with no loss of information • 

", 

'-

.~ 

-, 

/ 
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CllAPTER 7 

CONCLUSIONS 

The major effoct in this thesis has been directed towards the 

problem of identification of continuous-time systems from input-output 

data. The identification with the direct approach converts the 

original differential input-output ~~de~ to a linear algebraic model 

convenient for a direct solution. It has been s~own that based on the 

available samples, the input and output signals can be reconstructed 

with approxim~t1ng functions. The system differential equations, can be' .' 

integrated using these approxima,tions and the 'results used for esti-

mating the parameters of the model. The system identificiation problem 

of multivariable systems consists of three main steps, order determina-

tion, structure selection and parameter estimation. In this thesis the 

three parts of the problem were addressed and studied. New approaches 

were developed for the structure selection and the parameter estimation 

of continuous-time systema. Order determination procedures previou?ly 

used' for discrete-time systems were applied for the first time for 

continuous-time systems. These algorithms find their direct applica­

tions in digi tal adaptive control, digi tal simulation of continuous-

time systems as well as the identification of the system through 

samples of the input-output data. 
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A comprehensive survey is presented in Chapter 2 to discuss the 

identification of continous-time systems from sampled data with the 

direct and the indirect approaches. In the indirect approach a 
" 

discrete-time model is obtained from the samples of the observations 

then a corresponding continuous-time model is derived. The advantages 

and the problems of the two approaches were discussed. 

Three approximating functions were proposed 'recently in the 

Ht~ture [371. [48] and [52]. They are the block pulse functions, 

trape oidal pulse functions and cubic splines. It has been shown in 

Chap er 3 and Chapter 4 that the cubic splines method is superior to 

the other two methods in the noise-free ~ase. When the observations 

were contaminated with noise the three methods gave identical parameter 

estimates. Since in practice both the accuracy of the estimates and 

the computation time ar,e important, the" trapezoidal pulse functions 

method is recommended., It hi'S the advantage of being easily incor-

porated in anyon-line, algorithm. It,also uses the actual data values 

unlike the bl.ock pulse functions method which requires an extra arith-

metic operation. 

It has been shown that the direct approach suffers some serious 

difficulties such as inaccurate parameter estimates and correlated 

residuals in presence of noise. A study was conducted in Chapter 3 for 
; 

the single-input single-output case and then ex'tended for the multi-

variable case in Chapter 4. The study revealed that the errors in the 

asproximation result in correlated residuals and that the approximate 
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integration give birth to an integrated noise term instead of the 

expected series of non-correlated random shocks. 

Based on this new information, it was possible to deduce that 

the error term resulting from the combination of the two factors i~ not 

a white noise series as was implied in all the previous work conducted 

in this field. 

A' new approach is presented to overcome the combined effect of 

the errors in the approximation and additive white noise on the identi-

fication of continuous-time systems. The method consists of modelling 

the combined error term. The errors were absorbed by the error model, 

thus providing good parameter estimates and uncorrelated residuals· of 

the system under consideration. Extensive simulations were conducted 

in order to illustrate the merits of the new procedure. The method 

J 
worked successfully for different noise levels (10% and 20%) compared 

to 1.5% reported previously in the ·literature wh~n no IlIOdelling was 

used. The modelling of the error in the propos.ed algorithm has been --
done using the time series method. Another advantage of the proposed 

method is its insensitivity to the choice of the sampling interval. It 

has been tested with systems sampled at different sampling intervals 
• 

and' the results showed a considerable improvement in the estimated 

parameters and their accuracy as well as the whitening of the 

residuals. 

Order determination is the first part of the identification 

problem and it is generally done off-line. Three order determination 

tests have been studied in Chapter 5 and used to identify the 
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structural indices of multivariable continuous-time systems in the 

transfer function form. Two ,of those t,,\sts are applied for the first 

time for continuous-time systems as the author is aware. The three 

methods are: the instrumental variable method for model order identi-

fication, the instrumental determinant ratio test and the residual 

error technique. The sampled input-output signals have been integrated 

with the cubic spline technique and the information matrices have been 

reformulated to suit the new interpretation of the data. The three 

order determination tests have been compared according to the computa-

tion time, the number of input-output samples used to indicate the 

correct order and their robustness to added noise. The residual error 

technique was found to present a good compromise between all these 

factors. 

Multivariable systems unlike single-input single-output systems 

can be represented within different structures • The problem is to 

• 
choose, one which will give a well condi tioned parameterization. In 

Chapter 6 a new procedure is presented to identify the structure of 
~, 

continuqus-time multivariable systems in the-. input-output form. This 

procedure, is suitable for both stationary and ,no.n:\ltationary systems 
, 

when a change in the structure occurs, while the order remains 

constant. It uses the con~pt of overlapping ;parameterization to 
'-1 

choose a better conditioned parameterization for the multivariable 

system whenever ill conditioning is detected. 

A switching criterion 1s presented based on the complexity 

principle which provides a good moni tor of the condit'ioning of the 
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parameterization as Well as the suitability of the tested structure. 

The inclusion of this criterion in the selection procedure answered the 

question of when to switch to another pseudostructure. This leads to 

the reduction of time required for computations when compared with the 

other structure selection procedures [76J. The latter procedures all 

lack a switching criterion. 

7.1 Suggestions for Furtber IIesearcb 

1. The choice of a suitable sampling interval is an essential 

" 

requirement in system identification. All identification 

procedures such as the direct and the indirect approaches are 

based on the fact that the sampling interval' has been selected 

properly. But when the system is treated as a black box and 

there is no info""':tion about the system time 
... 

cons tants we 

cannot predict a suitable sampling interval beforehand. Sinha 

and Puthenpura [21J have developed a criterion to' determine the 

optimum sampling interval from the. input and output data. It 

is based on the common rule that the sampling interval T. 

should be chosen such that 

(7.1) 

) 

".'J 
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where Af 1s the magnitude of the largest eigenvalue of the 

continuous model. Since A f are not known a priori, they [21] 

used a bilinear transformation to map the area inside the unit 

circle so that it can be spread out to the entire left-half of 
() 

the ~plane 

z + I (7.2) W - ---
z - I 

• 

• 
,so if z - efl the corresponding point in the w plane is given 

by , 

w - WI + j w2 (7.3) 
-:-

,-

and 
e2n _ 

1 and 
we 2n sin B 

wl - w2 -
e 2n 

. . 
-'F cos B + I e 2n. _ 2en cos B + I 

They proposed to place the poles at a distance 

R - 5.00 • (7.4) 

SimulatiOns in Chapter 3 showed that the 
• 

equality tn 

equation (7.1) is not suitable for the identification wi th the ,. 
direct approach by approxilllllte integration. It resul ted in a 

.0, 



\ 

• 

2. 

3. 

, ' -

>:.---

large sampling interval value and hence inaccurate parameter 

estimates are obtained. 

A DKlre appropriate choice for this case 1s the rul~-of-

thumb proposed in this thesis. 

L-
0.05., Af T "' 0.1 

If we use the upper limit the value of R becomes 

! 

e-0 • 1 + 1 ~.6) R 20.00 
e-O .1 - 'I 

,~ "V' -, 
This will be more efficient than Sinna' lind ~uthenpura [21 J 

in the direct approach specially'in the noisy case. 

The proposed on-line 'thm for structure selection and the 

<.,. 
a~gorithms for ___ 1lftxalfl,e t e r estimation of multivariable 

I 

continuous-time systems are easy to 

requireme~s' for 'data are small 

algorithm with the trapezoidal pulse 

use. Since the stor~e 

and the~dentification . ~ 
funetions requires few 

ari thmetic operations. they may be i,mplemente'd in real tim.. on 

~~~~' The direct application of this app~~oaCh could 

\~:.~~':-:h::eld of robotics and computer aided manufa uring. 

Despite their attractive features for identification ' poses. 

• 
the input-output form and -the transfer function ftlTm require 

'-

i 
" 
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the approximate integration to be performed several times 1n 

order to solve the systems differential equation •• This 

results 1n some deterioration in the parameter eHtimates. The 

direct ideqtificntion in the state 
/ 

space form presents a 

pr.omising alternative for higher" order systems. As we see in 

equation (7.7) 

~ ~ Ax + Bu (7.7) 

the approximate integration is done only once. 

Shrindhar et al. [35] were the first to use the spline 

-. 
technique in cO?function with the Kalman estimation procedure 

to gener",~e required state variables and to minimize a perfor-
1r • : 

mance index With respect to the system parameters. - . 
However: the problem with the' state space form is the 

additional ,burden of estimating th~ state variables. The 

convergence of bootstrap algorithms of the combined state and 

parameter' estimation has not been theoretically justified. 

However, when ~ach stage of these two stage algorithms is 

treated- separately the convergence of each stage can be argued 

if the other one satisfies 

conve~ce of the overall 

certain properties. Generally, the 

algorithm is not obvious '[22]. This 

aspect has to be further investigated • 

.. 

) 



APPENDU A 

THE COMPLEXITY CRITERION 

I. The Concept of eo.Plexity 

Definition: Complexity is a measure of the diff~rence between 

a whole and the noninteracting composition of its 

components. 

If we decompose a system S into two subsystems SI and 5:2 which 

are the simplest possible components. we can consider the complexity of 

CI(S) of the system S to be given by 

(A.I) 

where R( ••••••••• ) signifies interaction between the arguments and 
n 

where we considered I CI(Si) - O. n is the number of the simple com­
i-I 

ponents of the system. 

Consider the two d.iscrete random variables X and Y with ·out-

and (n .y2 ••••• Yn). respectively. Let the joint 

probabilities be given by 

Pr[X - xi. Y - Yjl Yij 1 - l,2, .•. ,m, j - 1,2 •... ,n 

151 



.--, 

The marginal probabilities are then 

n 
Pr[X - xi] Pi I 

j-l 
Yij. i - 1,2, ..• ,m, 

,,-

m 
pr[Y - Yj] qi L Yij. j - l,2, ... ,n, 

i-I 

Define two independent random variables X*. Y* with the same outcomes 

as X and Y. r~ectivelY. then 

pr[J Xi. Y* - Yj.] pr[X* - Xi] • Pr[Y* - Yj] 

Pr [X - xtl • Pr[Y - Yj] 

'152 

• ',I 
.' 

1 - 1,2, •.• ,m, j - 1,2 •... ,n 
'.? 

There would have been no interaction between X and Y if they had the 

same joint probabilities as X* and Y*. Thus a measure of the interac-

tion between X and Y may be the degree of fit (or discriIllination) 

between the probabi11ty distribution of (X. Y) and that tilf (X*. Y*). 

.' 
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For this purpose the Kullback-Leibler' s information for discrimination 

I • '" ~ will be employed [94]. This yields 
\ 

m n 

R(~':Y\ - L I Yij ~ In 
i-I j-l Piqj 

m n 

I I Y ij In Yij 
i-I j-I 

m n 

I I Yij[ln Pi + In qj] 
i-I j-I 

m n 

I I Yij In Yij 
i-I j-I 

m n 

I Pi In Pi - I qj In qj 
i-I j-I 

- - I(X. y) + I(X) + I(Y) 

- I(X) - I(X/Y) 
,-

- I(Y) - I(Y/X) (A.2) 

where I(·) is the entrop,. of 'a random variable (or of a probability 

distribution) defined by. Shannon [95]. 

'\ 

• 
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. In general for k random variables Xl 'X2 •.••• Xk; 

k 
I I(Xi) - I(X 1 ,X2 ,·· ,Xk) 

i-I 

1s a measure of the'lnteraction between these random variables. 

2. ~ Derivation of Kaklad's eo.plexity Criterion 

In system identification the desirable model . ... r 

has properties 

that are related to the parameter estimates e and and model residues 

'EN' .Ma~ad considered ~omplexity 

«EN/!) ,!). \ 

of the joint random variables 

Using (A.l) 

From (A.2) 

. . . 
I(,EN/!) - I«,EN/~/!) 

o. 

• 

, 
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. 
Regarding the complexities of (£(i)/~) and ~j; i • 1.2 ••••• N. and j • 

1.2, ••• ,k where k • dim i. as zeros, we get, 

... ...... ... 
R(£(J) •••• £(N)/~)'+ R(6 1 .6 2 •••• 6k) 

N . . 
I I(E (1)/~) - I(~/~) 

i-I ., 

... C 
k 

.. . . 
+ I 1(6 j) - I(~) (A.4) 

, j-l 

~ has a zero mean and the emPiri~l covariance matrix 

1,j - IJ2, •• ~.N 

where ~ij ar,e the 'estimated autocorrelations of the residuals 

N· 1 • 
- ~ [In 211 + 1) +"2 In det R (A.S) 

. 
I(dt)/~) 

11' 
- "2 [In 211 + 1) +"2 In reo) (A.6) 
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Using the estimated covariance Q for the actual covariance, we get 

IC.~) - f (In 2" + 1) + t In det Q (A.7) 

and 

( 
I(9i) • t (In 2" + I) + t In qii (A.B) 

, 
Using (A.7), (A.B) 

1 N I 
• 2 i~1 In reO) - 2 In det R (A.9) 

and 

1 ~ _ l In • 2 i:1 In qii 2 det Q \J (A.lO) 

where qii is the ith diagonal element of Q • . 
But C1(!) given by (A.IO) is not valid for discrimination 

another one value which depends only on Q and would not change under 

or~hogonal transformations is given by: 

C2(i) - ~ In «trace Q)/k) - t.ln det Q (A.ll ) 
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A simpler measure was suggested by Van Emden 1901 and has the form: 

. k 
~li 

2 k k 
C<.!!) 1. I In _ (tra~e 0) 2 I I ~lj (A.12) - +1< 

k i-I i-I j-1+1 

and .. ~, 

. N 
~(O) 

2 k k 
C(E.NI.~) I In _ (tra~e R) + i I I rij 

N i-I i-I j-i+1 

(A.13) 

. . 
To compute C(E.N/!), Maklad did not consider all r(i) up to i -

. . 
N - I. This is due to the stationarity of (~(t)/!), where r(i) should 

decay with increasing i. We now determine an upper bound for i. 

Employing Bartlett's results [96] concerning the variance of 

the estimates of . the autocorrelations of normally distributed, 

stationary time series: 

var [r(i)] 
.. 

" 1. I {r2(j) + r(j-i)r(j+i) 
N j_' 
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Since {rZ(i») is decaying, the dominant term in the'above expression is 

. 
var [r(i)] , N L rZ(j) 

j--

(A.14) 

1 , -
N 

In calculating C(£Ni!) , Maklad considered the first L correlations, 

where L is the first lag at which 

~Z(L+ Il <var [rei)]. 

Thus, Maklad rule will be 

[ 

1 k • 
COMP - - L qli-

k i-I 

k 

L 
j-i+I 

. ~ 

(A.I5) 

;' 

L 

L 
i-I 

(N - i) ~ (1) ] 



APPENDIX 8 

HULTISTRUCTURAL INPUT-QUTPUT KlDELS 

1. Equivalence Between Inpuc-oucpuc Models 

A linear time-invariant discrete-time system is described in 

the input-output representat.10n by [76J 

P(z) yet) • Q(z) u(t) (8.1) 

where tEZ, yet) is the m dimensional output vector, u(t) is the 

r-dimensional input vector, p( z) is a square non s1n~iar polynominal 
I 

/ 

matrix in z (unitary advance operator) and Q(z) is 
. , 

an (mxr) polynominal 

matrix in Z. 

For ~dentification purposes two input-output models can be 

considered equivalent when they describe the same external behaviour 

[76J. If the additional condition of sharing the same order is added, 

the following well-known algebraic condition is obtained [97J. 

The input-output models {p'(1': Q'(z)} and ·jP"(z), Q"(z)} are 

equivalent if and only if 

P'(z) • M(z) P"(z) 
(B.2) 

Q'(z) • M(z) Q"(z) 

• 
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where M(z) is an (mxm) non ~ingular unimodular polynomial matrix. 

As already noted. all the models (B. 1) belonging to the same 

equivalence class with respect to the equivalence relation (B.2)· have 

the same order and describe the same system. 

2. Input-()ntput Kultistructural Kodels 

According to BegheUi and Guidorzi [76J the pair !P(z). Q(z)j 

P(z) (i.j ~ t ••••• m) 

Q(z) ~ [qij (z) J (i - t ••••• m; j - t ••••• r) 

defines an input-output multist~ctural mod~ if and only if 

\ for i ~ j (B.3a) 

.. 

(B.3b)~ 

vhere Pi is the degree of the ith rov of p(z). 

The entries of a multistructural pair !P(z). Q(z)j will be 

denoted in the following way 

(B.3c) 

.. 

-
.. 

""' 
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(B. 3d) 

(B.3e) 

The integers ui (i - 1, ••• ,m) define the output pseudostructure for 

the considered multistruct~r~l input-output model. 

3. Adjacent P&e~o&trnctures Definition (Guidorzi (93) 
F 

The pseudo8t~uctures and associated 
1 

with the 

same system are called adj acent if there exist two integers A and t 

(1 ~ A, t ~ m) such that 

U"t - U't + 1 

u i - U'i for i * A, t 

4. Tr .... foraat1on AlSOrit!.o Be~ Adjacent HocleJ.& 

Denote by {p'(z), O'(z>l a multistructu,al model characterized 

by the pseudostructure {u'il, aod by {P"(Z>, O"(z)l an equivalent adja-

cent ,multistructural model characterized 
\-

.. 

by the pseudostructure {u"il. 

\' f 
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The transformation from the first model to the second can be obtained 

by means of the following elementary steps: 

Step I. Add to the ~throw of p'(z) its ,th row multiplied by z/a"~U't 

Step 2. Exchange the ~th row of P'(z) with the ,th one. ,Note that 

after these operations deg !p',,(z») • ui,+1 and deg !p'~~(z») 

• U'.t-l~ 

Step 3. The entries P'ij(Z). i~j, are tested with re:pect to ~~~( 
condition (B.3b). When U'ij ~ deg !P'ij(Z») < Uj • deg !Pjj(z»). 

Step 4. 

no operations are'performed. , , If after Step 2. 
, 

U ij the 

~egree of P'ij(z) is lowered by subtracting from the ith row of 

p'(z) its jth row multiplied by the ratio of the maximal degree 

coefficients in P'ij(Z) and p'jj(z). The previous operations 

are repeated until condition (B.3b) is achieved ~ all the 

polynomials P'ij(Z). 

'"' Note that the operations performed in this step 0/ n~t change 

the 
r 

output pseudostructure obtained in Step 2. 
. 

The tth row of P'(z) (i·I ••••• m) i8 divided by the coefficient 

of Z U'i in p'U(z). 
Q 

• 

After Step 4 all the polynomials on the main diagonal of P'(z) are 

monic. All the operations performed in the previous steps~o~,the rows . 

\ 
d, 

of P'(z) must be simultaneously performed also on the rows of Q'(z). J 

Now denote by {P"(z). Cl"(z)j.' the polynomial pair obtained; tl)e 

{p'(z). Q'(z)j and {P"(z). Q"(z») a;e equiv~ according to models 

'. 
I 

.. . , 
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r? 
condition. (B.2), and the multi9tructural modeJ ! P"(z), '(((z)1 exhibit" 

, . 
the new adjacent pseudostructure.. The 'unimodular matrix M(z) des-

. .1" 1-: • 
crtb1ng the performe.! transformatiolil, can be obtiU"ed, if desired, as 

r ,.. '. 
the product qf the unimode1.ar matrices descrtbing the elementary row -'. 
operations performed on P'(z)Jand Q"(z). 

The following corollary can be immediately deduced from Step I 

of the above algorithm. 

". 
Corollary 1 

, 
A model with output pseudostructure (~' i I can be transformed 

to an adjacent model with pseudostructure (~"~if 

parameter a'Ai~'t in the first mode~.is non-zero. , 

and only if the 

• 
Ileaad:: • 

The transformation of an .input"-output multistructural model to 

a different one. characterized by a non-adjacent outp'ut pseudostructure 

but belonging to, the same equivalence class. can be performed by means 

UI repeated applications of the algorithm. 

• 

>, 

'" 

\' 

:.,'., 

• 
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