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ABSTRACT

The use of NMR spectroscopy in inorganic ch.mistry

is growing steadilu as high-field, (I1ultinuclear,

sophisticated NMR spilctrometens become more readilu

available. NMR of transition metal complexes is developing

rapidly as metal nuclei as well as nuclei of ligating atoms

become more popular candidates for NMR experiments.- In this

• thesis, dunamic, multinuclear NMR spectroscopy has been

-

, .

carried out on various complexes of CobaltCIII) and 2nCII)

as well as dn free ligand molecules found in these complexes.

The' secd\d:-sPhe~e hydrogen-bonding interacti'~n\with

the heXaCyanOCoba~tateCIII)anion of substituted phenols,

anilines; and benzoic acids has been studied by monitoring
•

Co-59 NMR chemical shifts and linewidths. Anelysis of the

chemical shifts in o~der to estimate equilibrium constants

has been attempted. The second-sphere cgmplex with

para-nitrophenol has also been studied by measu.ing H-1 and

C-13 T.'s. It is shown that the lifetime of the complex is

longe. than its .otational co••elation time indicating a
<;;

complex of possible mechanistic significance.

The hexanit.ocobaltateCIII) anion has been studied

by Co-59 NMR, IR and Raman spect.oscopies in the solid

state and bU Raman, Co-59..• N-1'f and 0-17 NMR. and UU-vis, ..

iii
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~pect.oscopies in solution. A compa.ison of the ~olid-~tate

and ~o~utiory .e~ults has shown,that all ~ix ligands a.e

N-bonded. The p.ima.y decomposition step is concluded to be

aquation with a lifetime of about th.ee minutes. A charge

t.an:fe. mechfnism is suggestBQ_to explain this anomalo~sl~

high .ate of .eaction. Analysis of the Co-59 NMR chemical
r

~hifts and optical data of .elated compounds shows that the

ligand-field stength of the nit.o ligand is ma.Kedly

va.iable. An empi.ical model haS been developed fo.
oJ '

p.edicting Co-59 chemical shifts of nit.o-containing

complexes and fo. complexes containing ligands with
"

diffe.ent o.bital .eduction facto.s. Anomalies in the field

depende~e of the second-o.de. quad.UP~Je effect in the
~ ,,'

polyc.y~talline Co-59 NMR of sodium ~altinit.it~ a.e

discussed. The shielding anisot.opy of the Same compound is,

~how~to be less thao 10 ppm.

The'fi.st application of the r~p'method has been

made to a ,metal nucleus. Co-59. Scala••elaxaticin in

cobaltinit.ite and t.i~ethylenediaminecobalt(III)has been

studied using this technique. P.oton T~p measu.ements have

also been 'ca••ied out to study scala••elaxation in f.ee

thiou.ea and tn Zn(tu)~(C1D4)2. The advantages and

disadvantages of this method a.e discus~ed~

.',
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Chapter 1

Introduction

1.1.1 Basic Iheory of NucleaR Mapnetic Resonance

In this brief opening section, some basics of NMR

theory will be presented. A nucleus having non-zero nuclear

spin (I > 0) when placed in a magnatic field, Bo (Iesla).
\

experiances B net torqua and begins to precess about the

axis (z) of the field with a characteristic frequency. Vo,

given by the formula: Vo - Yo . Bo , wh~re Yo is the

gyromagnetic ratio (MHz/I) which is different for each

is?tope. As well, for say 1-1/2, the +1/2 spins are raised
. .e;""·
../-i;n energy relative to the -1/2 spins so that by the,-

,~-, .
Bblt~mann distribution law there will be an excess of -1/2

•
spins and a net magnetic moment'from all the spins will

•
result leading to a net longitudinal megnetization along the

.)

z-axis at equilibrium. In contrast, the'x-y or transverse

component of the magnetizatio~bezero at equilibrium

since'there is no net phase coherence perpendicular to ,the

field. Ine detection of Nuclear Magnetic Resonance is

accomplished by applying a radiofrequency field, B•. In

simple terms. absorption of energy will occur when the

frequency of the applied field matches the resonant
•

frequency, vo,'of the spins under 'observation. One ~n then'

lA



calculate the chemical shift (8) of the signal .elative to a

p.eas9igned .efe.ence signal f.equency (v~_~):.

• • 8 (ppm) •
Vo

6
x 10 ppm

(
As well, the linsshape of the signal can yield

impo.tant info.mation. ro. a discussion of the types of

lineshape~ obtainable in solid-state spect.a, see eh. 5.

solution, in the absence of indi.ect spin-spin coupling,

•

In

one

usually obtains a single line with Lo.entzian lineshape.

The linewidth is' equal to (wT~)-~. if inhomogeneity in the
•

applied field is subt.acted. T2 is known as the spin-spin

.•elaxation time and .ep.esents the time constant fo. the

exponential decay of x-y magnetization. A simila. time

constant fo. the decay of z-magnetization back to its

equilib.ium value is known as the spin-lattice .e4axation

time, T1 •

Two basic. types of NMR spect.omete. have been

In the ea.ly days of NMR, thecommonly used.

wave (cw) method was/usuallY implemented.,

continuou~

In this type of

.spect.omete., a fai.ly emall B1 field was used and eithe.

the applied magnetic field kept constant and f.equency swept

th.ough the a.ea of .~sonance o. vice ve.sa. The signal was

then detected in a seconda.y coil a ••anged to detect

transve.se magnetization. A new method was developed some

.~

time later. In this me~hod, a strong B1 Field is

over the space of 1 - 100 pS and then turned ofF.

applied

•This

-.

t so-called pulse of en~rgy excites all the spins in the

1B
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sample and the free precession of the resulting x-y

magnetization is again detected by a receiver coil. Since a

Fourier Trensform is required to produce a spectrum in the

frequency domain, this method is known as the FT method .

1.1-.2 Historical Introduction to Some Important Conc~pt§ in

Nuclear Magnetic Resonance

Nuclear nagnetic Resonance (NMR) experiments were

first carried out by two groups of physicists working
"

independently, F. Bloch's group at Stanford (Bloch et aI,

19~6;_ Bloch, 19~6) and R.u.pound~,aa~t M.I.T. (Purcell ~t aI,

19~6). It is interesting to not~~t one of these

~~periments was carried out on solid paraffin wax and that

solid state N~R of metals and alloys was already well
. ,,,-

developed by 1953 CBloembergen and Rowland, 1953).- One of

the original motivations for NMR research was the deter-

mina'tion of nuclear magnetic moments previously determined

only by atomic beam measurements (Abragam, 1961). However,

it waB fairly quickly noticed that gyromagnetic ratios were

dependent on the environment of the nucleus. The first

~xample of such an effect was discovered by. Knight (19~9), , .
. who found an appreciable difference in the resonant,

frequenci~s of pure metals compared to those in ionic

salts. Large shifts of a purely chemical origin were

discovered independently by Proctor and Vu (1950, 1951) and

by Dickinson (1950a) for several nuclei with the largest

•

-
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effects (almost 1%) being obse.ved fo. Co-59. Chemical

effects on nuclei with smalle. shift .anges such as H-l we.e

not app.eciated until the development of high .esolution

spect.omete.s in which the field inhomogeneity was .educed

'to a ve.y ~mall f.action «1Hz) of the total field

st.ength. With thi~ development, spin-spin couplings of

small magnitude could also be detected. The fi.st example

of such La coupling was detected by Practo. and Yu (1951), in

SbF. whe.e the 5b resonance was thought to be a qUintet

(actually a septet).

The effect of motional narrowing on NMR spectra was

soon appreciated~s the temperatura dependence of linewidths

in l~quids and solids was observed. Relaxation phenomena

were described first by Bloch (Bloch, 19~6; Wangsness and..
Bloch, 1953) who introduced the phenomenological relaxation

equations incorporating. as parameters T., the so-called

syin-lattlce relaxation time and T2 , the spin-spin-relaxation time. A detailed theory for dipole-dipole

relaxation in liquids was worked out by Blcembergen,/ Purcell

and Pound C19~8) and Kubo and Tomita (195~). Sinc~ then,
(

elucidation of relexation mechanisms an~ development of

relaxation theories for many different situations has become

<.....
~

- ..;

an important'component of NMR research (Spiess, 1978). 'Also
•

a good deal of effort has been put into improving the
,

accuracy of relaxation time mea,Lrements both through

~echnological advances inim~Ving instrument design

J
and in
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developing new expe~imental methods. In pa~ticula~, two

impo~tant methods o~iginated in the ea~ly days or NMR,

namely the method or spin echoes due to E.L. Hahn (1950)

and the method or ro~ced t~ansito~~ p~ecession o~,

measu~ement or ~elaxation in the ~otating r~ame (TIP) due to

I. Solomon (1959). The ro~me~ has p~oved or g~eat

impo~tance in the development Or two-dimensional (2D)NMR
~

(Bax, .19B2) while the latte~ is well known ro~ studying slow

molecula~ motions in the solid state (Look and Lowe, 1966).

The TIP method has been used to a lesse~ extent in liquids,
,

a situation which this thesis attempts to help ~ed~ess.

1.~ IDt~oductioD to Dynamic NMR

- One or the two p~incipal applications Or TIp in
,

liquids 'has been in the study Or chemical exchange. The

study Or this behaviou~ by NMR belongs to the area known as

Dynamic NMR (DNMR) Spect~oscopy which we will now brierly

review. The best known type or DNMR is that in which

chamical processas with modestly hig~activation ba~rie~s

lead to the exchange Or sites with dirre~ent chemical shi~ts
" .

(Johnson, 1965; Binsch and Kessle~, 1980). The te~m 'sites'

here is commonly derined to be either nuclei. with dirr~ren~

•
chemical shirts or, ir coupli~g eXists, energy levels within

the coupling pattern. The errect or' a time-dependent

process on an NMR spectrum is easy to understand ir one

considers that rrequency, which is basically the crucial

,

• •



v8riable in spectroscopy, is in units or the inverse Or

time. To put it another way, the rrequency dirrerence or

two sites in e molecule, Sv, can only be o~erved ir the

liretime or that state Or the molecule is appreciably

longer than the inverse or Sv. Classical DNMR concerns

'. "-itselr with the study or spectra in which the two times are

or the same order or magnitude.

The rirst published example or a bona ride case Or

DNMR was that Or a study Or compounds· eXhibiting scalar
\

coupling (Gutowsky at aI, 1953), The absence Or scalar .
coupling in the H-1 spectrum Or HF, HBF4 and HPF. and in the

F-19 spectrum Or HF and HBF4 led to the proposal that,

although the coupling constants were likely 18rge enough to

be observable (600 Hz in HF), the presence or rapid
. /

intermolecular exchange Or rluori~s would lead to

modulation Or the coupling, rendering it unobservable.

This was conrirmed ror HF by preparation

anhydrous sample in which acid-catalysed

or a rigorously
~

exchange was

errectively retarded and the H-1 - F-19 coupling was

ob~erved (Solomon and Bloembergen, , 1956) , ·A theoretical

description Or this erract was accomplished by a rairly

straightrorward modiricationor the Bloch equations by

C.P. Slichter (1978). However, the rirst ~etermination by

NMR Or an activation energyror a che,ical exchange process
/

was ror a dirrerent type or process namely iDternal rotation

'abo~t the C-N bond in N,N-dimethlyrormamide exchanging cis

•
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and t~ans methyl g~oups (Gutowsky and Holm, 1956). We will

not desc~ibe the analysis involved he~e since it is

well-known and explained cogently in many basic t~eatises of

NMR (see e.g. Pople et 'aI, 1959). Mo~e detailed and

tho~ough t~eat,ents of all aspects of DNMR may be fou~d'tn a

numbe~ o~ ~ec4rnt books including e highly info~mative
"'T'

t~eatise edited by Jackman and Cotton (1975) as well as

sho~te~ books by Kaplan and F~aenkel, (1980) and by Sandst~om

(1982). Regula~ ~eviews of DNMR studies and indeed of
$

,11 aspects of NMR may be found in "Annual Repor:ts on NMR
\.

Spect~oscopy" edited by G.A. Webb (1968-), "NMR Basic

P~inciples and P~og~ess" (Diehl et aI, 1969-), "P~og~ess

•

in NMR Spect~oscopy" (Emslay et

Magnetic Resonance: Specialist

aI, 194iji-)" "Nuclea~
~. ~

Pe~iodica1 Repo~t" (Ha~~is,

.'

1971-) and "Advances in Magnetic Resonance" (Waugh, 1965-).

A fa~ lass used and less unde~stood type of DNMR is
,

that in which the exchange p~ocess studied occu~s at a ~ate

compa~able to the ~otational co~~elation time(s) (Tc) of

the molecule(s). In this way the spin-lattice ~elaxation

time T. is affected as well as the spin~spin ~elaxation time \'

T2 and thus measu~ement of T. in pa~ticula~ can give ~ate

info~mation not obtainable f~om the classical DNMR method

he~eafte~ known as DNMR-I. The second type of ,DNMR, known

now as DNMR-II, which has been ~eviewed ~ecently by

P. Laszlo (1979), allows the measu~ement of ~ates ve~y. much

faste~ than by DNMR-I since the exchange lifetimes, being




















































































































































































































































































































































































