ELIASHBERG THEORY
AND THE HIGH T. OXIDES

By .
Frank Marsiglio, B.A.Sc., M.Sc. _

A Thesis N
Subm:’tt.cd to the Facully of Graduate Studies
in Partial Fulfilment of the Requirements
jior the Degree ‘
Doctor of Philosophy

McMaster University

March 1988 -

e e

(¢} Copyright by Frank Marsiglio 1988.

3

. \P.



~

DOCTOR OF PHILOSOPHY(IOS:) _ McM-\STER UNIVERSITY
(PHYSICS) | Hamilton, Ontario -

TITLE: Ellashberg theory and the high' T oxides

AUTHOR: Frank Marmglio, B.A.Sc. (University of Toronto)
M.Sc. (McMaster University)

SUPERVISOR: Dr. J.P. Carbotte
‘NUMBER OF PAGES: viii, 188

i



i

ABSTRACT o

The Eliashberg theory of supereonductivity has b'geq very successful
in accounting for properties of conv_'ention.al materials. The price for this suc-
cess has been a lack of understa.nding of exactly what features of the input".
pnrametefs affect the superconduc-ting properties in significant ways. The
first part of this thesis is concerned with the identification of an important
parameter in the study of thermodynamic, ;:ritical magnetic ﬁeIt;I, and elec-
tromagnetic properties of a supercoﬂductor. The Ba.rdeen-Cooper-Schreiﬁ'er'
(BCS) theory of superconductivity produces laws of corresponding states,
t.e., various properties are predicted to have universal values. We have stud-
ied the devia-tions from BCS theory due to retardation effects, which are
embodied in Eliashberg theory. These deviatiohs, or corrections to BCS, can
be well understood and characierized by a single simple parameter, 7. /ur,,
to be deﬁn;ed later. Attention has een focussed on reproducing numerical
(theoretical) results, since for most’conventional superconducting materials,

experiment agrees with theory at the 10% level.

"

The second half of the thesis has been largely motivated by the re- .

cent discoveries of the high-T. oxide materials. We have applied Eliashberg-
theory almost entirely in an inverse manner. That is, with lit'tle knowledge of ‘
the microscopic parameters for these new materials, we have investigated the
relationships between various macroscopically observable properties, based
on model spectra. The model spectra have been of three general types, the
conventional category, spectra based on a combined phonon-exciton mecha-

nism, and thirdly those based on relatively low frequency exchange bosons.

We hav&:alled this latter category the very strong coupling regime. It was

.
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Abstract

hoped that measured properties could uniquely specify the type of spectrum
responsible for the superconductivity in the high-T, oxides. At this point in
~time this goal has not really been achieved. Too many uncertainties exist

in"the experimental properties, a situation which has been aggravated by

. a lack of single crystal data. Moreover, various kinds of measurements on

the same property often give very different results. At the same time the
theory needs to be improved upon. For example, anisotropy ought to be
incbrpora.ted into our results, siné the single crystals are displaying large
anisotropies. Nonetheless, some -interesting signatures for the various s;pec-' s’
tral regimes have been obtained, and these are presented in the latter Half

of the thesis.
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- D ~© Chapter 1

Intro

o

duction

-

The phenomenon of superconductivity has recently re-emerged as a -

topic of intense interest following the initial discovery of a ‘“high-Tc”' material
by Bednorz and Miiller,! early in 1986. Within a year, sszseq{ient discov-
eries followed,?345 and by February, 1987, T, the critical tém[;érature,qt
which a material begins to superconduct, had attained valu;:s close to 100K.
Since then, reports and rumours have abounded, with claims of 7. = 155 K8
240 K,?"B-9 and 1:oom tempefa.t_g;e.‘.f’ The past year has seen intense efforts
worldwide in an attempt to both produce materials with even higher T, and

to understand the mechanism at play in these new materials. Innumerable
Y

theories!! have been advauced in efforts to explain both the normal stafe and -

superconducting state properties in these oxides, although success has been
hampered on the one hand by lack of sophistication in these theories, and

" on the other hand by the presence of dongi}ti‘ng experimental dat'a?.. Added

. to this is the nuisance that most experiments up to the time of this writing .

-
-

<



2 - 1 Introductioif

have been performed on poncrysti;.lline samples of varying quality, and this
fact hn's also contributed to the confusion present. At the time of this writ-
ing, single crystals have been grown, and experiments are being redone. It
is_alre.ady clear, for example, that the 90K materid,-YBa;CU367_v, is quasi-
two-dimensional. (The “y" in the material formula indicates that the number
of oxygen atoms present is slightly less than 7.)

 As far as conventional materials are concerned, the microscopic the-
ory of 'éup‘erconducti\-rity, discovered by Ea.rdeen, Cooper, and Schrieffer!?
(BCS) in 1957, describes quite well the features of the superconducting state.
The BCS theory recognized that electrons were attracted to one another
through the exchange of phonons, and in the £>resence of this attracti-on,
* which: they modelled through a potential, the energy of the normal state
could bg l_owered by requiring the electrons in the Fermi_ slea. to “condense”
into a new state. Physically, the origin of this attractior; can be seen most
simply from a real space picture (although it should be emphasized that the
pairing occurs in momentﬁn?;l;ace). Fig. 1.1 shows an electron propag’ating
through a lattice of ions. The ions in the immediate vicinity of the electron
‘are polarized (due to simple Coulomb forcés). Moreover, the time scale on
which the electron moves is roughly determined by the Fermi velocity, vr,
whereas, the time sca.le.for the ion is determined by the speed of sound. The
Bohm-Staver!® relation illustrates that the latter is tjrfaically a percent of
_the former. Hence, a region of positive enhanced charge remains long after
the electron has moved on, and serves as an attractive center for a second
electrdh. The dynamics of this interaction was mimicked to a small extent by

an attractive potential which acted on electrons whose energies were within

hwp (a typical phonon energy) of the Fermi surface. More precisely, it is the

]



1 Introduction ) ’ 3

quasiparticles of Landau’s theory of the normal Fermi liquid which undergo
condensation. These quasigarticles were coﬁsidered to already include, for.
example, small correlation effects which were present in the normal state,
These effects, which can be quite large with respect to the attractive effects

discussed above, were assumed to undergo no change as the material be-

- -

- came superconducting. Hence, the subtle difference between the two states

was deemed to lie in the pairing correlations that srise from phonon ex-

change. Moreover, the Landau picture assumes that the inverse life-time of

‘the quasiparticles is much smaller than the eﬁergy of the quasiparticle, so

that a one-to-one correspondence with the free electron gas excitation spec-
trum is maintained.

BCS theorﬁnjoyed remarkable succ;ess, as far.ns a qualitative de-
scription of the superconducting state was concefried. However, it became
clear that quantitative discrepancies with experimental results existed, éspé-

cially for the “bad actors"¥, Pb and Hg. In the meantime, Eliashberg!® had

- extended Migdal’s'® earlier work on the normal state electron-phonon inter-

action to the superconducting state. In both these works a formal Green's

function approach!™!® was employed; the electron self-energy in the super- .

conducting state is calculated by summing an infinite set of diagrams arising
from the electron-phonon interaction. These are illustrated iﬂFig. 1.2. Proper.
accounts of the retarded nature of the interacton is considered through use
of phonon propagators, although the phonon self-energy is generally not cal-
culated from first principles. Rather, the phonon spéctral function is. taken
from experiment. The important function in Eliashberg theory is, how..vever,.
a?F(w), w.hich can either be calculated from first principles (after fitting the

phonon spectral function
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'Figure 1.1 An electron propagates through a lattice of ions and polarizes
the ions around it. This results in a.net positive region of space (the original

electron has long since departed from the v1c1mty) to which a second electron

'—is attracted. The net effect is a phonon-induced electron-elestron attraction.

(Note that this is a real space picture and hence not to be taken too literally.)

r
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1 Introduction ' 5

to experiment) or measured in tuﬁneling experimeé:;{:;a, as will be described
later. In principle, a? F(w) is also dependent on the wavevectors of the elec-
trons engaged in the exchange of a phonon, although t}i dependence is
usually weak and has been ignored in the remainder of this thesis. Sophis-
ticated arguments to jﬁstify this procedure in the case of phonon exchange
have been given in .‘a.n excellent review by Allen and Mitrovié.!?

A direct Coulomb intweraction between electrons will lead to a re-
pulsion which will tend to offset the phonon mediated attraction to some
ex_teﬁt. This interaction is practically instanta.nequs, and fortunately can. be
modelled fairly well by use of a single parameter, u°. This parameter is'often
treated phenomenologically as it is difficult to calculate Coulomb mterac-
t1ons also enter through screening processes, but are mcorporated mto the
theory either through use of experimental results (for a? F(w)) in which they
are already contained, or through band structure calculations. ‘

The important point of the preceding paragraphs is that the mi- -
crosopic parameters which enter into the .simplest theory of Eliashberg are
a?F(w) and u*. We will not discuss further origins of the theory as excellent
reviews exist on this sub ject.1®-22 Later the basic equations will simply be
utilized. Unfortunately the equations require nuinerical solutions. This would
not be so unmanageable except that the independent variables are effectively
infinite in number. In practice a?F(w) is described by a number of bins (say

100) but this number of variables is still too large. The systematlcs of
what does matter can be understood a little more clearly in one of two ways.

One approach is to identify/m_;l'e parameter which'will in general be

a functional of o F(w), which contains the essence of why one a?F(w) is

\

-
r



6 _ B - - ' . 1 Introduction

Figure 1.2 Schematic illustration of the electron self-energy dve Yo vir-
tual phonon exchange. The double line indicates that the fully renormalized
Green's function is to be used; the single line is the normal state one electron
Green'’s function. The self-energy is used to calculate the former and hence
the problem is a self-consistent one. Note that phonon (wavy) lines never
cross one another — these diagrams would correspond to vertex corrections

and are small as is assured by Migdal's theorem.
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aiﬁ'e;ent from another, and then study various superconductiﬁg i):operties as
a function of this parameter. This has long been the goul of many theorists
ln the field of‘ superconducthty, more in the context of a T.-equation, in
terms of some parameter, usua.lly the mass-renormalization parameter A=
Jo? 2a*F(v)dv). We concentrate instead on properties which are given by
numbers within BCS theory, such as ;fﬂ- (twice the ratio of the gap edge to
‘the critical temperature). This has an advantage in that one can use a strong-
coupling parameter which is zero in the BCS limit, and expand any unknown
in terms of this parameter. These kix‘lds of calculations will be described in
Chapter 2.

Another 'approach fgllows the standard procedure that one carries
out when faced with a complicated 'functio_n: take a derivative. Let us write
a’Fw)= 4 f; a;6(w—w;). Here N is some large number such that the function
is well i'eprelss_e;ted. The index i enumerates the bins and w; the Bin frequen-
cies, in monotonically increasing order, and the a; represent the coupling
strength at each frequency w;. The a; represent the independent variables
in the theory, so that, for example, 7. = f(ay,4z,...,ax). The quantities of
interest then become the partial derviatives, %—E'f, i =1,...,N. The partial
derivatives are more useful than the total derivative, since it is useful to ask
how T, c}’)anges when the coupling to the phonons at one particular frequency

is increased. The more elegant mathematical representation of this compila-

tion of partial derivatives is the functional derivative, which is defined

1 6Q . Qo’F(w) + eb(w = Q)] - Q[a?F(w)] C
§a?F(q) o5 p (1.1)

where Q is any property that is a functional (denoted by square brackets) of

2F(w). Note that (i) the derivative is a function of 2, the frequency at which
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the coupling has been perturbed, and (ii) the dimensions of tle derivative are
[@/9), and not simply [Q]. It will be seen also in Chapter 2 that the functional
derivative can yield very useful information about a particular i)roperty.
Chapter 2 deals mainly with properties of superconductors for con-

ventional xﬁa.teria.ls. The recent distoveries of high-T, materials now raise the |
questions; (1) can these materials Be described simply according to the re;ults
of Chapter 2, (2) if not, can they be described within Eliashberg theory at all,
and (3) if the phonon mechanism fh.i.ls, is it possible to describe them with the
Eliashberg-BCS framework using perhaps an alternative mechanism? These

) .
questions can be answered in part, as will be seen in Chapter 3. Unfortu-

nately, however, there are limitations to the conclusions one can present.
‘Modifications of the theory to incorporate various effects such as axiisotropy )
d strong energy. dependence are possible but have been iénored in this

“thesis. These modifications have been investigated previously, though not

in the context of these new materials. The other limitation arises from the .- -

discrepancies and uncertainties which exist in the experimental_litérature a.t.
the present time. Single crystal’ data may improve upon this situation in the
future.
A summary is provided in Chapter 4.
Five appendices are included. The first describes an exact procedure
for analytic continuation of the gap function. The second outlines the deriv'ca:-
» tions used in obtaining strong coupling corrections. The third lists sources
of spectra.l-functions used in Table 1 and in the figures in Chapter 2. The
fourth briefly describes the functional derivative of the specific heat j11ﬁp,

and the final appendix illustrates a method for solving asymptotic limits.



'Chaepter 2

' o Strong Couphng
B o y Effects

2.1 SUPERCONDUCTING PARAMETERS

4

The Eliashberg equations have generally been found to be'a.c':uc.urate | s
at the 10% level®* for most conventional superconductors. Thére is no
question that for this class of sﬁperconductors, sc‘)me of whose elements are
listed in Table 1, Eliashberg theory is a valid and accurate description. It is
not the pom -ot this chapter to improve on this theory Rather we would like

to improve a fea.ture of the theory, na.mely that it is entirely numerical. One -

generally overcomes this d1ﬁicu1ty.by solving everything analytically, but this

A~

#——r
- linear and thus far have not been solved even in linear form, and even for the

. is easier said than done. The Eliashberg equations are complicated and non-

~ simplest model spectrum, a?F(v) = A§(v — vg). (Wu?® and coworkers have
actually obtained an exact series solution for T, provided that A> A, where A

is a material dependent parameter however, the solution suffers frorn the fact
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that the coefficients require numerical evaluation for a practical calculation.)
Approximate solutions for T. and other superconductmg properties abound
in the liternture. These share the common feature that one or two simple
functionals of a? F(v) are deemed to be important and approxlma.te solutions
are found which’ depend only gn these functionals. Some of the most W1dely

used functxona.ls are, for example,

A= 2/ QF(v),' . - (2.1)
Wz [ Farre)n, (2:2)
wlnsexp{i A = dv ’F(u)lnu}, * (2.3)

A= jo " dvalF(v) . (2.4)

It has become standard practice in the literature to weight averages with 7.

This has the advantage that averages are then automatically renormalized

since
o0 2 . a
/0 dpaFw)=1. (2.5)
/Equation (2.3) defines the Allen-Dynes?® parameter win, which will be used

extensively in this chapter. Eq. (2.4) defines the area under o?F(v) which-
gives a measure of the strength of the electron-phonon interaction. If thé
coupling was absent only the phonon spectral distribution, F(v),would re-
main and the resulting integral is normalized to the number of phonon rdodes
in the system. One more functio;na.l should be mentioned as well, the first

moment of a®F(v):

€
1]

uz)'—l.muaz Vv
_fo dvaF(v)v . (2.6)
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The importance of this parameter is seen from the definition of (:u"F(u):An

F0) = NO Y [ 5 [ S| 0o\ 50 - wigo) . (21

where

VK -k),, (2.8)

. . . B, 1 L
g(k,k ;o) = —1'6'((:;,0) ) (k’ — k) [W]

in the case ‘of plane w;a.ves. We have used 4 = 1 and will use kg = 1 for
the remainder of this thesis. Here, k — ' = £+ G, where G is a rc:ciprécﬂ
lattice vector, E (¥') is the initial (final) momentum of the electron, and 7 is
the phonon wave vector. N is the total number of ions, M the mass of the
-ions, and &7, a') is- the polarization unit vector of the mode'(f}',or). In Eq. (2.7)
N(0) is the single spin density bf electron states at the Fermi surface. ¢ is.
the phonon branch index. Finally, V(¥ - k) is the Fourier transform/of‘ihe
effective potential of a single jon seen by an electron. Fig. 2.1 illus}trat’.es the
process encompassed in Egs. (2.7-2.8) diagrammatically. An electron wit
wave vector k emits a virtual phonon with wave vector § and branch ind;aaé
‘s and scatters off with wave vector ¥'. The coupling strength of this process
is given by g(k,k;0). A similar virtual absorption occurs on the other side.
Hence ‘g(fc', ko) occur's twice in Eq. (2.7), and is the reason for the notation
o? F(v), sometimes written o?(v)F(v). -

What is clear from Egs. '(2.-6:2.8) is that & is independent of the
phonon spectrum. Without knowin; ,hdw hard or soft the spectrum is, &
gives an indica.tion‘oi' the strength of the electron-ion potential. Even more,
useful in this regard is the McMillan-Hopfield parameter,?! n = 2M&, which
removes the ion mass dependence as well. Note that & is not an average -

phonon frequency, as it has units of [energy]?.
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Figure 2.1 Virtu'a.l exchange of a phonen between jwtFelectron states. See

text for explanation.
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Clea.rl¥, a vast number of parameteérs are available for use in descr‘i!‘)j-' |
ing macroscopic superconducting properties. Which parameter(s) is.('a'.re.)
most useful? There is no deﬁnitive answer to this question; however, in this
thesxs we will describe two approaches to a solution of this problem In the
first, a strong coupling pa.rameter,“ T, /w, is 1dentxﬁed and formulas for var-
ious properties, such as the gap ratio, %::1‘!; (to be deﬁned later), are derived
in terms of this parameter. In the end, two constants are ﬁt}fed- to numerical
data. The success gf this appgbach is demonstrated by the fact _tha.t a sim-
ple formula does indeed describe the trend for ffﬁ (and other properties)
for many materials as'a function of T./wr,, regardless of the shape of their
spectral functions, a?F(v), and their values, of u*. Thus, ;:"—::,‘!; is an almost
universal function. of T,/w1n. |

The second approach focuses on lower and upper limits for supercon-
ducting properties imposed by Eliashberg theory itself. The critical temper-
ature, T, , is the obvious property to study in this respect. Allen and Dynes?
made it clear that Eliashberg theory imposes no limitations on T; the limi-
tiations exist on the microscopic functions which enter Ehashberg \teory
However limitations may exist when T, is referenced to a mxcroscoplc param-
eter (with dimensions of energy, of course). Allen and Dynes discovered the

L]

(2.9)

limitation,
T.
- 1/2 -—

This is useful because the electron-phonon interaction strength cannot phys-
ically exceed a certain value so that Eq. (2.9) is a limitation on T. . The

equality occurs in the limit that the phonon frequencies go to zero (A —~ ).

i



14 2  Strong Coupling Effects
Lecavens?” derived the result,

’ % <0.231 (2.10)

Here the equality occurs for A = 1.14, a much more physical regime. A little

later, Leavens®® was able to derive what the most useful parameter for T,

was, from amongst the infinite parameters:’
‘/n-l-l
w(n) = [%(w“"'l)] . (2.11)

It turned out that most were useless, that is, ipeqﬁa.lities of the form n—;"(}ﬂ <eoo
were derived. However, for A < 2.5 (the conventional regime), Eq. (2.10)
imposed a more severe lirfiitation than Eq. (29) For large A, the oppqsite is
true. l\roreo‘.rer3 it still remains that the parameter X itself is useful when ) is
srnall,‘ i.e., in the weak coupling regime. This is true in spite of the fact that
T,L}l"?e shown to be independent of A.?® These results are true for u* =0,
. and are readily ggnera.lize& for non-zero u*. The fact that Eq. (2.10) holds
in the physical regime is motivation to seek a simp'le T. equation. Indeed,

Leavens and Carbotte?® had (earlier) found the semiempirical formula
T.<0.1484 12€2<25, 01<p" <015, (2.12)

gave quite accurate values of T, . Since T < (0.16 - 0.176) A 8 for this regime
of u*, it can be noted that in nature materials with a given area under a® F(v)

achieve near optimum values of T..
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2.2 STRONG COUPLING CORRECTIONS

(i) Introduction

The result of a BCS-type analysis'? was that many supcrcon'ductiné
properties were described by universal constants, Amongst these, for e"x-
ample, are ,—f-ﬁ‘-ﬂ— where Ag is the zero- tcmperature gap edge defined as the
energy above which the quasxpart:cle density of states, D- (.;) is non-zero;
the no_rmahzed specific heat jump, —f;%l, where AC(T,) = -—T—héﬂ is the
specific heat jump which.occurs at T , and yo = 223N (0)(1 4 A) is thco Som-
merfeld constant. For T, small compared to a typical phonon frequency, 1T
is the-normal state specific heat. Oiherwise, there are corrections (beyond

“the (14 M) renormalization) due to the electron-phonon interaction. The re-
duged critical magnetic field is he(0) = T:I%Z((%)Tﬁ' where H.(TY is the critical
magnetic field above which éuperc’onductivity is destroj'ed for type I super-
conductors. \Iam superconductors are type II, the difference being that a\
.perfect \Ie:ssner Ochsenfeld effect (perfect diamagnetism’ or flux expulsion)
occurs only up to an applied field, A, beyvond which a mixed state occurs
in which flux penetrates the material in ﬁl.arnents. This continues to oceur
up to an uplz;er critical field, H.2(T), beyond which ‘the superconductivity is *
destroyed. We will present results involving the upper critical field as well as
electromagnetic prope-rties.

It is of interest to know what the effect of strong coupling is on the
\'afﬁes of these superconductiﬁg ratios. Stroné coupling is perhaps somewhat
of a misnomer. that we will continue to use nonethele.ss. The term “strong

coupling” can be used within BCS theory for the case that N(0)" (V" is the

model potential uesd by BCS: N(0)V 7+ X = x*) is not small (weak coupling).
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These kinds of corrections to weak coupling BCS theory Tave been investi-
gated by Swihart,? for example. It was found that in the limit N(0)V — oo,
%}; = 4, and no higher. Also investigated were various nonseparable forms
for the attractive (and repulsive) potential which presumably included some
rctardation effects. These latter éffects a}fre fﬁlly incorporated into Eliashberg
tlu:’ory. Also included, however, are lifetime effects due to damping from
phoﬁfm efnission. We will not present a derivation of these equations here;

excellent reviews!®% already exist for this purpose. The equations are:3!

Alien)Z(iwn) = 7T Z [’\(""’n iy ) = (Wc B(w, - l‘*‘ml)] \/ A'f‘iz':()l )
\ (2.13)
and .

Z(zw,,)-1+— Z Ay, = wn)\/Tz(zu— (2.14)

The A(iwy)-are the Matsubara gaps defined at the Matsubara frequencies,
twy = inT(2n=1), n = 0. £1.£2,..., Similarly, Z(iw,) are the renormalizatior_;

fuctors. The electron-phonon spectral density, a?F(v), appears through the

-~

;\(:) = /:o M (2_15)

2 _.-2
v = .

; relation,

L 4
.
and p*(w.) is the Coulomb pseudopotential with cutoff w.. Tpe—"r&.lue of this
cutoff is typically 5~10 times the maximum phonon frequency. Physically,
the cutoff for the Coulomb interaction should be of order the Fermi energy.

Er. but as Morel and Anderson®? first showed. this cutoff can be scaled down

to w,.. with a result that the potential is renormalized: (

HlEF)
I+,u(EF)Iu(%:1) ’

polwe) = (2.16)
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These equations have been written in the isotropic limit, often referred to
as the “dirty” limit. This latter name is perhaps not so appropriate; when
impurities are introduced into a material the anisotropy that is present will
be washed out so that the isotropic equations are applicable. This assumes, .
however, that the “dirt” eﬁ_'ects.a.re incorporated into the spectral function;
otherwise corrections to the equations in o’r-de-r to account for the impurities
are required. However, T. , the gaps, and for example the free energy differ-
ence remain unaffected. Electromagnetic properties and upper critical fields
do depend on impurity concentration. Eqs. (2.13-2.14) are the Eliashberg
~ equations written on the imaginary axis. Most of the computations in this
thesis were done using this formulation. Note that all quar‘xtities involved are
r‘ea.l,j.,z.md simple summé.tions are required for iteration. This will contrast
rema:'ka.bly with the “real axis” Eliashberg equations, about’ which we will
have ;‘nbre to say later.

The disadvantage of the imaginary axis formulation is that the terms
. in the equations do not represent physical quantities. Generally, an analytic
coptinuation to the real axis is req"uired for this purpose. Although the quan-
'tities‘in Eqs. (2.13-2.14) are all real, upon analytic continuation the gap at- B
tains an imaginary part and lifetime effects become somewhat more apparent.
The retardation effects can be seen through Eq. (2.15). Note that if a typical
pﬁkonon frequ?ncy satisfies v >» v, where iv,, = i2rTm is a Matsubara boson
frequency, for values of “m” which are relevanf to superconductivity through
Eq. (2.13), then a good approximation would be A(ivm) = A(0) defined in
Eq. (2.1). A cutoff is also required for convergence. This is the “renormalized
BCS” approximation often referred to a.s. the A% model.l? Retardation effects

have been disregarded to the extent that the frequency (and hence response
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time) of the phonon is considered high compared to superconducti'vity energy
‘scales. Note that retardation is subt.ly included through the required cutoff,
however; i.e., the response is not instantaneous. Upon evaluating Eq. (2.14)
(with care — see, foj example, Ref. 33) one obtains Z,(= Z(iws)) = 1+ A
which is simply the zero temperature nﬁss renormalization. Eq. (2.14) then,
which exists even in the normal state, describes the renormalization of the
jﬁlectron propagator due to the electron-phonon interaction. The renormal-
ization is affected slightly by the fact that the electrons are not in the normal
state, i.e,, the order parameter (A, = A(:’u.Jﬂ))‘ is non-zero. A non-trivial so-
lution to Eq. (2.13), (it is coupled to Eq. (2.14)), gives the su‘perconducting '
order parameters, A,. This equation can be looked upon as describing an
“anomalous renormalization” of the electrons, one whicﬁ chaﬁges their state
from normal to superconducting. Applications of the A% model show that

the order parameter is independent of the Matsubara frequéncy (except for

a cutoff). Eq. (2.13) becomes:

N
A €
’\1+—_=7rT §‘ ___1.._._‘ (2.17)
s m=—Ne41 VWi + Au(r)

Here Ag(T') is the gap or order parameter (since analytic continuation of a
constant is a constant), which remains a function of temperature. The T,
equation is defined by linearization of Eq. (2.17); the zero-temperature gap

is defined through the prescription!” for T — 0:
dw
Wy — W T mE .—'-/—é— . (2.18)

The cutoff N, is given by N, = [2%'2' + %] , where the square brackets indicate

“nearest integer”. These sums and integrals can be easily performed, with
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the result that:

T.=1. 13wcexp( 1+ ) : ‘ (2.19a)

A-ps
L+A ) | (2.19b)

Ho = 2w, exp(

An obvious consequence is

2A¢

E‘ﬁ =3.53 . ) (2.20)

Note that both T, and Ao givg a measure of the strength of the supercon-
ductivity in the material. Also note that the expressions for T, and Ag are
noﬁa.na.lytic in A at A = 0. This illustrates that no finite perturbation theory
could have pr.oduced these results; an infinite sum of Feynman Yiagrams is
required. The cutoff frequency occurs as a prefactor in both expressions. It
is generally of order the Debye frequency of a material, and serves to se't the
energy scale for ‘the superconducting parameters, T. and Ao.

Eq. (2.20) was one of the first predictions!? of BCS theory. Measure-
ments* on Al and Sn provided experimental verification of this predictic;n.
However, it became readily apparent that several superconductors had gap
.ratxos that exceeded 3.53 by 30 % or more. Pb ang Hg were prominent in this
respect and became known as “bad actors™.!* This dxsagreement remained
unresolved until full strong coupling predictions were provided?? for Pb. Sim-

ilar statements can be made for other properties: -“% = 1.43, h(0) = 0.576,

™
-,'—;'% = (.168 all give universal “BCS constaats” for some thermodynamic
properties. Additional constants will be given for critical magnetic field and

electromagnetic properties as we go along.

Mo
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iit) Thermod namic~Properties
y

oy

Geilikman and Kresin3® first derived an approximate expression for
' Y

7?:;_1':' of the form
' ::; ‘= 3.53 [1 +5. 3(T‘) ln(%)] ~ (2.21)

in which @ is some phonon energy ‘which is not sharply specified in the

theory and remains uncertain. The approximations-used were to some extent
uncontrolled so that the range of validity of Eq. (2.21) is not known.
Mitrovié et al.,24 using an entirely differerit approach, presented a
new derivation of an expression similar in form to Eq. (2.21), starting from
the real axis equations (see Appendix A). They included strong coupling
corrections in the Z—cha.nné? (Eq. (A3)), but omitted contributions from the
A-ci’mnnel (Eq. (A2)). The result was a formula, similar to Eq. (2.21):
ff;,’ =3.53 [1 + a(‘?{') In (-A%)] _ (2.22)

Here  is. some suitably defined average phonon frequenicy. Mitrovié et al,*

made the choice Q = wi;. @ and 3 are consta.ngs which they dctermiryd semi-
phenomenologically from nun‘nericaJ. solutions to the .Eliashberg equation‘s,
for ma.ny.lknown supercon'ductors. Efﬁcient.solution was possible. by solving
-on the ima'gin-a.ry axis, and analytically continuing to the real axis by use

of Padé approximants, a technique first described by Vidberg and Serene.?”
" i
The gap edge is defined by:

ReA(w = Ag) = Ag . (2.23)

At zero temperature, this definition coincides with the qualitative definition
given earlier, i.e., the energy above which N(w) is non-zero. This method of

solution is reviewed in Appendix A, along with- an exact method used for
] .
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“

extracting more detailed information than the gap edge. The final equation

-

is given by Eq. 23 of Ref. 24:

:—B“}—"c = 3.3 (1 +‘12f5(§—;—)2 In %) . (2.24)

’ ie 'Geilikrr-m.n-Kr‘esir_l:“‘-:”3 type formulas were derived in a subse-

' quent paper® for various thermodynamic ratios. We should also note that .

>~ in the Russian literature, the original work® was followed up by Masharov4®

and Kresin and Pa.rkhp‘menko.,“1 in discussing thermodynamic and critical
magnetic field properties. : .

As our starting point, we used the Eliashberg equations on the imag-
inary axis, given in Eqs. (2.13) and (2.14). We igho_re p° from the start. (It
can be kept, as in Ref. 39, and retained as an extra parameter; however the

" benefits are minimal, at the cost of an extra parameter. Note, moreover, that
in the strong coupling parameter, T./w,, the T, is to be regarded as coming
from experiment. It contains, therefore, some effect of 4 already.) The model

we use is a step-function approximation on the imaginary axis: ,

Alwn) = {0‘30(“ f;’:;::jg (22 ':
Z{wn) = { Zo(T) ||‘:: || Sue (‘2.?5b)

Here, wo represents roughly a few times the ma.ﬁcimum phonon frequenc& in
-the system. Note that, for self-consistency we would require A(iw, — iwm) to
be independent of n. This would reduce to the A% approximation. Instead,
~ we evaluate Egs. (2.13) and (2.14) at n = 1. Thus, A, i3 tﬁg constant gap
in Eq. (2.25a). The procedure is outlined in Appendix B. Essential to the
approximations used is the requirement, ‘_ln'f: < 1. We have also assumed

that wo is sufficiently large that *= <€ 1. Expansions near T; and at T = 0
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are required. In order to calculate thermodynamic properties, the Bardeen-

Stephen*? formula for the free energy difference (Fs ~ .FN) is required:

25 _,ngm[\/m o [20) - 20|

(2.26)

" Techniéal Remarks Regarding Table 1:

"1) References for the spectra used can be found in Appendix C.

2).T. is defined. A value for u” is then calculated with a cutoff of 6 times the L

maximum phonon frequency in the spectrum. Two values are obtained
depending on whether the Z-channel is summed exact] LS «2(T) calcu- |
lations) or summed approximately (thermodynamlc CJ ations). This
discrepancy has since been removed; the cha.nges in the calculated prop-
erties are no more than ~ 1%.

3) We have'investigated the dependence of propert:es on the T, value used
It is very weak.

4) Note that:

&

_ (.. T2 ACT)\
~"‘(°)‘( HHO) T ) ‘

5) Extrapolated values near T, were obtained through fits to cubic polyno-’

- mials. Values for T = 0 were obtained from ¢ = 0.1 values for properties
which behave exponentially at low temperatures, e.g. the gap edge. Otherwise
they were obtained from quadratic fits, e.g. H.(0).

6) Note that w(T) = A73(T). Also

() £0) w0
T | y},(Tc) I §(T.) T. | y‘:’(Tc) !

7) We have used t* = 100 meV to represent the dirty limit. In fact there is -
still some impurity dependence at this valuye, but it is small.

8) Note that k(0) = h2(0)/h.(0).

9) We have used a sharp cutoff on the imaginary axis. To be: -completely
accurate we should use the same cutoff on the real azis as was used in the
inversion process, or use the appropriately smeared cutoff on the i 1mag1-
nary axis. For our purposes this is of no consequence.
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Table 1 Superconducting Properties of. Conventfonal Materials (Part 1)

» Material T u'(N =6) A w Area Wnar  Tefwin
(meV) B (meV) (meV) (meV) -

" Al 0.1017 0.147 043, 2550 574 414  0:004
Y 0.4621 0.223 0.80 14.78 676  33.1' 0.031
Ta e 0.3862 0.121 0.69 11.06 418 209 0.035
Sn 0.3233 0.116 0.72. 840 -342 188 0.038
Tl 0.2034 0.132 0.80 : 4.45  2.00 - 10.9 0.046
Tlo.eBio. 0.1983 0.113 0.78 415 ° 1.86 10.5 .0.048
In 0.2931 0.116 0.81 ~ 583 - 274 158 0.050
Nb (Butler)  0.7931 0373 1.22 1388 935 269 0.057
Nb (Arnold)  0.7931 0.186 1.01 1283 725 283  0.062
- V,Sicl 1.4741 0.142 1.00 21.11 11.80. 49.3 ,0.070
V,Si (Kihl)  1.4132 0.139 1.00 19:88 10.76° 445 0.071
Nb (Rowell)  0.7931 0.118 0.98 1069 620 285 0.074
Mo 0.7586 0.071 0.90 9.95 : 547  33.0 0.076.
. Pbo4Tlog 0.3966 0.115 1.15 417 274 110 0.095
La 0.4340 0.040 0.98 437 256 150 .0.099
V3Ga 1.2931 0.090 1.14 1254 856 37.0 0.103
* NbzAl (2) 1.2070 0.082 1.20 10.6¢ 7.51. 357 0.113
Nb3Ge (2) 1.7240 0.238 1.60 1517 13.3¢ 313 0.114
PbosPlo.s 0.5086 0.125 1.38 427 335 109 0.119
“Pb 0.6198 0.144. "1.55 483 403 110 0128
'NbjAl (3) 1.6121 0.22% 1.70 1252 1272 357 0.129
Pbo.aTlo2 0.5862 0.121 1.53 432" 371 109 0.136
Hg 0.3612 0.124 162 - 247 264 143 0.146
Nb3Sn 1.5603 0.156 1.70 10.68 10.69 ~ 28.7  0.146
Pbyg.oBig, 0.6595 0.105 1.66 433  3.98 9.9  0.152
NbsAl (1)  1.4138 0.127 170  '9.06 9.32 357 0.156
Nb;Ge (1) 1.7240 0.088 1.60 10.80 10.33 343 0.160
PbogBio, .  0.6853 0.111 1.88 399 - 421 11.0 0.V
Pbyg.7Bios 0.7284 0.109 2.01 401 446 104 0.182
PboesBioas | 0.7716 0.091 2.13 385 4.60 10.1  0.200
Pho.sBio.s 0.6026 0.136 3.00 1.88 - 430 131 0.320
" Ga 0.7379 0.174 2.25 3.04 6.15 270 - 0.243
PborsBio2s  0.5957 0.136 2.76 2.07 420 104 0.288
Bi 0.5267 0091 245 - 164 353 140 0.320

e

3.



24 \ ‘ 2  Strong Coupling Eﬂ'ects

Table 1 Superconducting Properties (Part 2)

Material ~ Tofwin 222 -}:,r,% AC(T)  p(0)

Yo T

Al 0.004 3.535 0.168 1.43 0.576
Y 0.031 3.675 0.162 1.63 0.550

- Ta . 0035 3.673 0162 1.63 0.550

Sn 0.038 3.705 0.160 1.68 0.544 -

Tl 0.046 3.753 0.158 1.74 0.538

Tly.eBio.s 0.048 3.769 0.157 1.76 0.536.

In ©0.050- 3.791 0.156 1.79 0.533

Nb (Butler)  0.057 3.876 0.153  1.94 0.517
Nb (Arnold)  0.062 3.883 0.153  1.92 0.521 B
V3Si-1 0.070 3.933 0.150 1.99 0.515
V,Si (Kihl)  0.071 3.935 0.150 2.02 0.512
Nb (Rowell)  0.074 3.964 0.150 1.97 0.518

Mo | 0.076 3.968 0.150 1.98 0.518
- Pbg.4Tls . 0.095 4.134 0.144 2.24 0.497
" La 0.099 4.104 0.145 2.14 0.506
V3Ga 0.103 4.179- 0.143  2.24 0.499
" NbsAl (2) 0.113 4.248 0.141  2.33 0.492 .
. NbsGe (2) . 0.114 4.364 0.137 2.61 0471
Pbo.cTlo. 0.119 4.352 0.137 252 0.479
Pb 0.128 4.497 0.132  2.77 0.466
NbjAl (3) 0.129 4.461 0.137 2.54 0.479
Pbg.sTlo. 0.136 4.505 0.13¢ 2.69 0.470
Hg 0.146 4.591 0.13¢4 2.49 0.488
Nb,Sn 0.146 4.567 0.134  2.64 0.474 )
PbgBiga 0.152 4.674 0.130 2.86 0.463
Nb,Al (1) 0.156 4.617 0.13¢  2.61 0.477
Nb,Ge (1) 0.160 4.601 0.13¢  2.59 0.479
Pbg sBio.2 0.172 4.843 0.127 2.92 0.462
" PbgsBipas 0.182 4.968 0.125 3.01 0.460
Pbg 6sBig.as 0.200 5.081 0.125 2.98 0.462
Pbo sBig.s 0.320 5.194 0.147 2.16 0.500
Ga 0.243 4.722 0.150  2.04 0.509

Pbo.7sBio.2s 0.288 5.119 0.143  2.27 0.494
‘Bi 0.320 4.916 0.153  2.03 0.506
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Table 1 Superconducting Properties (Part 3)

; £{0,tt=0) y1(0) IAL))
M"t";“ﬂ Telwin  girem=oy Ti(ToN  Tely (TO)]

-

Al \ \, 0.004 1.330 0.376 0.500

Y 0.031  1.293 0351  0.454
Ta 0.035  1.202 0352  0.454
Sn 0.038  1.286 0.346  0.445
Tl 0.046  1.278  0.340 . 0.434
Tlo.sBio. 0.048 1277 0338  0.431
In 0.050  1.273 0334  0.425

Nb (Butler)  0.057  1.261  0.321  0.405
Nb (Arnold)  0.062  1.260 0.322 . 0.406
V3Si.l 0.070  1.253 0.315  0.395
VaSi (Kihl)  0.071  1.251 0314  0.393
Nb (Rowell)  0.074, 1255 ,0.317  0.397

Mo 0.076 1.254 0315  0.395
Pbo.4Tles 0.095 1.233  ~0.204 0.363
La 0.099 1.244 0301  0.374
ViGa 0.103 1.23¢  0.294  0.363
NbsAl (2) 0.113 .1.228 0.286  0.352
" NbyGe (2) 0.114- 1211 0.271  0.328
" PbosTlo 0.119 1215 0274  0.333
Pb 0.128 1195  0.260  0.310
NbyAl (3) 0.129 1219  0.269  0.328
PbosTlo2 0.136 1.204 0.262  0.316
. Hg 0.146 1.215  0.269  0.326
Nb3Sn 0.146 1.214 0262  0.318
Pbo.¢Bio., 0.152 1.193 0253  0.302
NbzAl (1) 0.156 1.217  0.262  0.318
NbsGe (1) 0.160 1.218  0.262  0.320
PbygsBio.2 0.172 1.193 0245 ©9.293
" Pbg1Bio.s 0.182 1.186  0.239  0.284
Pbo.gsBio.as 0.200 1.194 0237  0.283
Pbo.sBio.s 0.320 1.359  0.250  0.340
Ga 0.243 1.342  0.274  0.368

Pbo.rsBig.gs 0.288 1.326 0.252 0.333
Bi 0.320 1.380 0.265 - 0.366
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Table 1 Superconducting Properties (Part 4).

Material  Tefwa  p°(N =6) ha(0,0) he(0,100) £(0,0) K(0,100)

Al 0.004 0.000 0.727 0.690 1.26 1.20
A A 0.031 0.219  0.725 0.667  1.32 1.21.
Ta 0.035 0119 0,725 0.666  1.32 1.21-
Sn 0.038 - 0.114  0.725 0.662  1.33 1.22
Tl - 0.046 0.130  0.726 0.658  1.35 1.22 -
TlosBio.s 0.048 0.112  0.727 0.659  1.36 1.23
In 0.050 0.114  0.727 0.657  1.36 1.23
_ Nb (Butler) 0.057 0.363  0.724 0.648  1.40 1.25
Nb (Arnold)  0.062 0.182  0.728 0.652  1.40 1.25
V,Si.1 0.070 0.140  0.729 0.651  1.42 1.26
V,Si (Kihl.) 0.071 0.136 0.727 0.646  1.42 1.26
Nb (Rowell)  0.074 0.116  0.737 0.659  1.42 1.27
Mo 0.076 0.060  0.737 0.659  1.42 1.27
Pbo.Tlog =  0.095 - 0.112  0.739 0.647  1.49 1.30
La 0.099 0.039  0.743 0.657 147 1.30
V,Ga 0.103 0.088  0.746 0.658  1.50 1.32
NbsAl (2) 0.113 0.080  0.748 0.656  1.52 1.33
Nb;Ge (2) 0.114 0.231 0.743 0.643 ° 1.58 1.36
PbosTlo.4 0.119 0.122  0.750 0.649  1.57 1.35
Pb 0.128 0.139 0.756 0.643  1.62 1.38.
NbzAl (3) 0.129 0.219 0.760 0.664  1.59 1.39
PbosTlo, 0.136 0.118  0.760 0.652  1.62 1.39
Hg 0.146 0.123  0.791 0.690  1.62 1.41
Nb3Sn -~ 0.146 0.151  0.769 0.670  1.62 1.41
PbgoBig. 0.152 - 0.101 0.777 0.661 . 1.68 1.43
NbsAl (1). 0.156 0.124 _ 0777 ~ 0679  1.63 1.42
Nb,Ge (1) 0.160 0.085  0.774 0.679  1.62 _ 1.42
Pbo.sBio.2 0.172 0.108 0.796 0679  1.72 1.47
Pbo.7Bigs 0.182 0.105 0.813 0.691 1.7 1.50
Pbg.gsBio.as 0.200 0.087  0.827 0.709  1.79 1.53
Pbo.sBio.s 0.320 0.133 0.800 0.793  1.60 1.59
'Ga 0.243 0.171 0.763 0.745  1.50 1.46
Pbo.75Bio.os 0.288 0132 0.803 0.774  1.62 1.57

Bi 0.320 0.08_9 0.762 0.767 1.51 1.52
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Table 1 Superéonducting Properties of Einstein Spectra (Part 1)

A wi we T Tfun pop 290 SEL h(0)
(meV) (meV) (meV)
0.4 20.0 150 0.4767 0.024 3.58  1.49 0.166 0.566
0.6 13.3 150 0.7526 0.056 3.75 176 0.158 0.536
0.8 100 150 0.8768 0.088 3.98 215 0.147 0.501
1.0 8.0 120 0.9213 0.115 4.24 2.56 0.138 0.474
1.2 6.7 120 0.9258  0.139 4.48 2.89 0.131 0.459
1.4 5.7 120 0.9135 0.160 ‘4.71  3.11 0.126 0.451
1.6 5.0 120 0.8939  0.179 4.92 3.26 0.122 0.448
1.8 44 120 0.8714 0.196 5.11 3.34 0.119 0.447
2.0 4.0 120 0.8483 0.212 5.29  3.38 0.117 0.449
Superconducting Properties of Einstein Spectra (Part 2)
= ni’,i;(f’%cn .ﬂﬂg(% hea(0,0)  hp(0,100) £(0,0) k(0,100)
0.4  1.311 0.368 0482  0.726 0.678  1.28 1.20
0.6 1.277 0339 0432 0.723 0.655  1.35 1.22
0.8 1.240  0.304  0.378 0.722 0.636  1.44 1.27
1.0 1.210 0.276  0.33¢  0.731 0.629  1.54 1.33
1.2 1.188  0.257  0.305  0.749 0.63¢ 1.63 1.38
1.4 1.173  0.244 0286  0.773. 0.647 1.7 143 .
1.6 1.164 0.235  0.273  0.799 0.665  1.78 1.49
1.8 1159  0.228  0.264  0.825 0.686  1.85 1.54
2.0 1.158  0.223  0.259  0.851 0.709.  1.89 1.58
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Figure 2.2 Specific heat jump ra.t.io f = AC(T.)/ 7T, vs. Tc/wln The
dots represent the a.ccv:ra.te resul\ts from the full numerical solutions of the
Eliashberg equations. Experiment tends to agree to within 10%. In increas-
ing order of T./un,, the dots correspond to the following systems: Al, V,
Ta, Sn, TI, Tlo.gBio_l,\In, Nb (Butler), Nb (Arnold), V;Si.1, V;3Si (I{ihl.),
Nb (Rowell), Mo, Pbo.4Tlys, La, V3Ga, NbjAl (2), NbyGe (2), PboeTlo., .
Pb, NbjAl (3), PbosTl.2, Hg, Nb;Sn, Pbo_gBio_l, NbzAl (1), NbyGe (1),
PbysBiga, PbgosBiga, and -PbggsBigas . The drawn curve corresponds to
7T

AC(Te) — 1.43(1+ 53(%‘;)2 In 7). See Appendix C for origin of spectral func-

_ tions.
-
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along with the thermodynamic formulas:

'

TEAF
BC(T) = -5 (2.27)
and .
H(T) = [-8rAF| (2.28) -

From Appendix B, for T' near T, we obtain the expression (¢ = T/T.):

L. AC(T)
= 1-¢ . 2.2
e =fya-ng (220)
where
_AC(T) T\, [ ,
f= T = 1.43 (1 + 53(wm) ln(3’1’;)) (2.30)
"and

= —srr(1 () (L (231
g = =3.77 7 - n .07, . (2.31)

The forrﬁ of these expressions has been derived and is similar to that used
previously.34041 In addition, we have spe'ciﬁed an average phonon frequency,
Win, and fitted coefficients to numer_ical data. The data are listed in Table 1.
The derived expressions are plottet;n in Fig. (2.2) and (2.3) along with, the nu-
rgepical,data: Experimental data have been omitted, although the I.Zliashberg
theory results are generally accurate to within 10 %. The origin of the spec-
tral functions used in these calculations.is described in Appendix C. Note
- that there is some .sca.ttez:, especially amongst the A15 compounds and Hg:
In the case of Hg, there is a very lcm: frequency peak in the a2 F (v) spectrum,
so that the assumption v » T, for all important v has broken down. Also
note that the results from amorphous mdterials have not been ’plotted. They

are not well described by these formulas at all. They are included in Table I:
e

4
it 1s seen that their values for _—:— are near 0.3 . This value is hevond the limir
n

f -
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Figure 2.3 ' Plot of g (see Eq. (2.29) in text) vs. Tc/wln for a“"s.‘elected
number of systems. Dots correspond to the resultg extracted from humerical
solutions for D(t) = 'l:T:((%)l — (1 —=1%) vs. ¢, using tlkEliashberg.'equations. In
increasing order of T, /wi,, the dots correspond to TI, In: NbaAl (2), NbyAl
(;3). Nb3Sn, PbgoBio.1, NbaAl (1), PbggBig.2, Pbo;Big3and PbggsBig 5. The
drawn curve corresponds to g :—3.77(1 + 117(;"::—)2 ln(,—f&}:)). The fit is

remarkably good, considering the constraints on the coefficients.
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2.2 Strong Coupling Corrections , , 31

of validity of formulas (2.30) and (2.31) (and others to be presented later).

More importantly however, the spectral shapes'bf a?F (v) for these materi-

"als is such that they are not well described by an Einstein spectn’;m with

frequency vg = wy, of the material. The opposite tends to be true for the
crystalline materials. Coombes and Carbotte'®™ have analysed shnpé de-

pendence in detail. Some of the scatter is also due to variations in g~ In

any event, the point of these expressions is to describe the general trend of

superconducting properties as a function of strong coupling, The result is a

',, continual increase from 0 (BCS) to 0.20 . Note that there are signs of sat-

uration, and in fact, later it will be seen that as the coupling is increased
further, A—_)Cn-(irz‘l will decrease to values below 1.43 . -

The physicalfeason behind the increase can be traced to the gnp
opening up more rapidly just below T. as the coupling 'str:ength is increased. .
The specific heat jump, which is a measure of steepness of the ascent of the
gap, will increase as well. The subsequent decline alluded to in the prévious
paragraph is not physical; it is a result of having used +o instead of the
Grimvaﬂ""’ ¥(T.) (see alq;%\Eq. (2.54)). More will be said about this choice
later.in the thesis. «

A calculation of other thermodynamic propérties requires a knowl-
eé’lge of strong coupling corrections at zero temperature. The pro\cedure is
simi‘;ax" to that near T, , and is also outlined .in ApM B. The resu.lt for

the gap ratio is readily obtained:
2:0 3 /T ) (q,, )] ,
=3.58311+1253| — ) In[=])|. - (2.32)
keTe 7 [ O(.-.-l., RV A 4
{
We have use the same fit as Mitrovic¢ et al.*! This result is plotted in Fig. (2.4).

along with numerical data. Note that data from more A135 compounds have
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been included, and has increased the amount of scatter slightly. However,
overall, the fit is very good and the trend is well described by i;lq. (2.32). The
shape dependence of %A#: has been stydied by Coombes and Carbotte*® and
more recently in Ref. 46 . In Ref. 44 it was noted that shape dependence was
much more prominent f(;r _;—-‘—% than for ;"B—‘}."E. This conclusion is supported by |
the increased amount of scatter in Fig. (2.2) relative to Fig. (2.4). Also fote
that the trend shows no sign of saturation, as was the case for _;‘_Tc_: It will
be seen later, in fact, that ;‘%95 saturates only in the limit of MIL_ — 0. We
should also add that amorphous compounds have once again been exclucfed,
| as they are not well described by Eq. (2.32) for the same reasons given earlier.
;I‘he enhancen_'lent of fﬁ!: with increased coupling can be understood by the
folloxing simple agument: as the coupling strength increases both 7. and
Aori:Irea.se. Hox.vever, the detrimental effect of thermal phonc‘u'xs is also felt
more strongly by T, , whereas A, is unaffected since it is a zero tcmperatgre
.p.ropert'.y.20 The result is a larger inclre::l.se of Ay compared to T, .

Also derived in Appendix.B are expressions for two more commonly

Y072 Tc)’ (‘-‘-’ln)) -
—— = 0. —-122( = 2.33
7(0) 0168(1_ (% nln T (2.33)

h;(g)=0.576(1—13.4(£)2In(3?%;)) ) D

These expressions, along with numeérical data, are plotted in figures (2.5)

used ratios:

and

and (2.6). The first ratio is rather well described by Eq. (2.33). The second
exhibits considerably more scatter. Both show indications of saturation. The

important point, however, is that the trend for realistic spectral shapes is
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L]

Figure 2.5 ‘ '_I‘he ratio ﬁ,z(% vs. T,fwin. See Fig. 2.2 for identification of

. . . 1
materials. The curve corresponds to ﬁ%% = 0.168 (1_— 12.2 (;E:—) In (?ﬂ')) .

4 .
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well ‘described by these formulas. Note, moreover, that the deviation from
BCS behaviour is relatively small (~ 20%) in A.(0), as compared to, sny

240
kpTe®

(iii) Electromagnetic properties

Electromagnetic properties were first discussed (within BCS theory)
in Ref. 12 . Nam*’ later extended many of the ca.iculations to the strong
coupling form. General derivations are provided in Ref. 47 and hence will
be omitted here. More recently, Blezius and Carbotte*® have studied elec-
tromagnetic properties of strong coupling superconductors with impurities
through functional derivative and optimum spectrum techniques. We wish to
include here strong coupling formulas of the type discussed in the previous
section.

Within linear response theory, the current density is written in the
form:

Ju(§iw) = —Ku(§, w)A*(qyw) . (2.35)
A¥(q,w) is a vector potential component, and K,,,(§,w) is the tensor kernel.
The properties discussed here are expressible in terms of K, (q,w). For ex-
ample, the frequency df.:pendent penetration depth is given, for the case of

specular reflection, by the expression*®4”

MT,w) = 3/‘” dg Lt . (2.36)
© Jo q* + E&s:ﬂ

What is often quoted as the penetration depth is the zero frequency limit

of this expression, M(T') = limg..g A(T,w). Moreover, simple expressions are

possible i; limiting cases. In a superconductor which is dirty, the mean free

path (€) of the electron is greatly reduced due to the increased scattering

probability so that the response to an external field is local. A local response

R

.
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<

Figure 2.6 . The ratio h,(0) vs. T./un,. See Fig. 2.2 for identification of ma- -
' 2
terials. The curve corresponds to h.(0) = 0.576 (1 - 134 (f‘_—) ln(ﬁg.:)) .

|
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implies that § is null; i.e, the integfation- in Eq. (2.36) is impoxfmt ‘near
q = 0. K(g,0) can be expanded near ¢ = 0 with the result:*’
Y

b A 17% | '
2T) = [4WN‘T > m] . (2.37)
n=l O n

In Eq. (2.37) the subscript “£” indicates the local limit. The normal state
conductivity, ow, is given by oy = IN(0)e?vkrn, where 7y is the lifetime
due to normal impurities and vr is the Fermi velocity. The local limit is
generally characterized by £(0) > £, where £(0) is the zero temperature
coherence distance, to be defined later. £(0) is roughly the distance over
‘which electrons pair. ;
When non-local effects become important, one must use either the
Pippard (extreme type I) or London (extremé type II) limits. The Pippard
limit is characterized by A « £(0) and is determined through Eq. (2.36)
where most of contribution comes from the region ¢ — oco. The result is:%7

L
4 [3r%n = A )73
Ap(T) = — [——_eeTZ m] : o (238)
=1 n n '

For the London limit, A 3> £(0), and again we use ¢ — 0 to obtain:*’

A(T) = [—er 0)ev? 1(2.39)

1Y e
One more useful quantity is the electromagnetic coherence length, which #s

defined bzio

. ¢K(q,0) 3= 2
i = 2.40
) m K(0,0)  46(T) ( )
with the result:*’ 2
e SIS
n=1
£(T) t;F' z..{‘-'?:::‘*?-"‘ X (2.41)

n=1 n+on
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Figure 2.7 The ratio E{(% vs. T,len See Fig. 2.2 for identification of mate-

Wa 40T,

- 2
rials. The curve corresponds to é%% =133 (1 —0.835‘:—0.75 (Iﬂ) In —“”-L) .
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Reductions of these equations within BCS theory or the A%* model are
stmightforwa.rd and will not be presented here. The strong coupling cor-

rections to Z, n.nd A, are given in Appendxx B a.nd it is straightforward to

]

calculate the strong coupling correctlons to the qua.ntltles presented here.

We note, moreover, that useful ratios are amd T it = ¢, L. Here

e 410
g(rayr md '(r
¥(T) = A7*(T).. This form is useful since A(T) diverges nearJ.. These lat-

- ter ratios have been defined in an/alogy tq the reduced critical magnetic feld,

L]

he(0). hMoreover, the experimentally accessible muon spin relaxation rate is
proportional to y;(T). The Pippard ratio has been omitted since the appro-
priate quantity to define in this case would be z,(T) = Ap(T), and one can

a

easily show that :
5(0) _ _ v(0)

Te(T] ~ Tyl |

The numerical data for the three ratios i is presented in Figs. (2.7-2.9). Note

(2.425

that it is apparent in all three afases, that the corrections from BCS are
negative and seem to deviate linearly. We have thus 'a.llo:rj ourselves the
freedom of another parameter so that a linear term i}ydreser;ted in

the fits to the data. In Fig. (2.8) we also show a curvé obtained from an_

Einstein spectrum with u* = 0. It appears to display no linear term, and so is-

consistent with our general derivationis in Appendix B, which, after all, were

* modelled after such a;pectmm. The effect of a realistic shape and/or finite

p", has been to procitice a linear beha.vioxfr, s0 we have (pheriomenologicallx)

included it. The expressions we have obtained are-

Y

2 i ' ..' ‘
£0) _ 33 (1 _083%e 0.75(-’&) In & ) . (243)

€T o o) oo
ve(0) ( T, (T)’ u,,,)_ |

e x 0376(1 - 1.5—~T76| — | In—} ; 2.45

ATe AN o o) PaT (2.45)

and
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-

5, . - 1] - 9 . . .
>~ Figure 2.8 The ratio Er!-:i((—?)'c—)[ vs. T./un,. See Fig. 2.2 for identification of

materials. Note that Ga has also been included and deviates substantially
from the trend. The solid curve corresponds to Flle"(gi)'_)T =0.376 (1 - l.SMIr- -
. e|ve(Te n

L]

7.6 (f‘;) 2ln -‘ﬁ?‘-) Note that a Iinez;r term has been required for an accurate
fit. The dashed curve corresponds to a series of Einstein spectra with ue,
_ the model spectra upon which our derivations are based. The trend is quite
similar to that of the real materi-a.ls. Note, however, that the initial decrease
from BCS is more quadratic, and hence no linear term would be re:luired.

Thus, it appears that the effect of the realistic shapes used has been to

produce a linear correction below the BCS value.
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- 2 (0) . T.\?
L ) c c Win
o =051-2—-11{—] | 245
Ty, (T)] ( - (u,.,) o 4.51;) (245)

Once again, there is some scatter -in the data, although the gen-
eral trend is well described by the formulas. Note moreover, that the exact
50 S . !

ye(0)  _ £(0) - w(0)
Ty (Te) &(Te) Telye(To))

- is not observed by the relations (2.43-2.45) to lowest order in T, /w1y, 50 that

relation:

(2.46)

the ftxll expressions must be used.

. The discussion so far has focussed on the clean limit; i.e. no impuri-
ties are present To include normal (: ¢. non-magnetic) impurities, the terms
wt+7:;':-4_3, m must be added on the right-hand-side of equations
(2.13) and (2.14), respectively. t* = 2—'1,?, where 7y is the lifetime defined
earlier. It is then easy to show that the solution A, is in fact independent .
of impurities. This is in accordance witl; Anderson's theorem,*! which states
that T is \ihaﬂ'ecfed by normal impurities. The imphfi‘ty dependente is con-
tained in Z,. Thué, for example, the local penetration depth remains the same’
in the dirty limit (¢+ — 60) This is expected sincesthe dirty limit assumption
(€ ‘ 0)) is already built in. In the dirty .1ix.nit, A :;:A;, so that the
London penetration depth becomes equal to the local penetration depth. The
coher.ence distance becomes especially simple: £{(T') =~ & = vpry = ¢, tbe
mean free path of the electron. Thus, as expected, the distance over which
an electron can carry information about an exterpal field becomes limited by
its mean free path.in the dirty limit: Note that this coherence distance con-

trasts with the Ginzburg-Landa.ﬁ coherence distance, which, as all coherence

distances associated with critical phenomena do, diverges at T = T,.
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Figure 2.9 The ratio Eﬁ%ﬁ[ vs. T,_./wh, See Fig. 2.2 for identification

of materials. The solid curve corresponds to Fr#%,—)[ = 0.5 (1 - 2£s -~
c|¥r e a

. 2 ‘ )
11(&) mﬁ;-) L
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Finally the Pippard limit rémains the same, although anomalous, due to the

1

exponent —% rather than —2.

(iv) Upper Critical Magmetic Field

Type Il superconductors are of special interest since théy are the most
technologically useful. Even in the mixed phase, i.e. with both normal and su-
perconducting material 'pxl'esent, they are capable of carrying supercurrents
while supporting high magnetic-fields. A study of the upper critical mag-
netic field as a function of temperature a.lmouhté to a study along the phase
boundary between the normal and mixed superconducting phase in the H-T
plane. The first theoretical descriptions were based on the Ginzburg-Landau-
Abrikosov-Gorkov®?=* (GLAG) theory. Werthamer and co-workers35=%" de-
veloped a set of equations which determined Hc:.l(T, t*) for all temperatures
and all impurity concentrations, and included Pauli spin pz;xamagnetism
and ele;ctron spin-orbit scattering. These equations were cast at the level of
BCS theory, as far as the electron-phonon interaction was concerned. Later,
Werthamer and McMillan®® generalized this approach to Eliashberg theory.
Recently Schossmann and Schachinger®® have formulated a st;&mg coupling
theory valid for any impurity concentration. We will neglect Pauli limiting

here. The equations, formulated on the imaginary axis, are:*?

- o0 ) ] . .A(iwm) "y
Aliw,) = me;m [A(:wn — iwy) — p 0w, — lwml)] NETE w‘t:_.-.'?a)
. n—1 7
Oiwn) =wy + 7T (A(O) +23 ,\(ium)) + wt¥sgnw, (2.47b)
m=1
with

- X(@n) = -'2— fw dq e~ tan™! [qwﬁ] (2.47¢)

[4 4
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Figure 2.10 The reduced gquantity h.(0,tt = 106meV) vs. T./wi,. See
Fig. 2.2 for identification of materials. Two curves are drawn: the solid one

] 2
corresponds to h.,(0, 100) = 0.69 (1 —1.5% +2.0 (&) In ﬁsﬁ) . The dotted

curve corresponds to h.(0,100) = 0.69 (1 - fr -3.2 (;T‘:)zln soﬂ'ﬁ) Mor'e.
‘over, the data corresponding to Einstein spectra differs significantly from
either of these two curves. Note that the corrections from*BCS are very
small. Also, the ;rariation in possible parameters used in the fits indicates
that the scatter in the data is much too large to be described by a single
curve. It is cledr, however, that there is 2 small decrease initially, followed

by corrections which are positive with respect to the BCS value.

b -
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‘wherc a(t) = eviH (D). Tl:le tildes indicate that the gaps and frequencies
are renormalized quantities. It is perhaps useful to illustrate the dirty limit‘
of these equations, first derived by Rainer and Bergmann.?! Equation (2.47b)
becomes dominated by the impurity term, which bec&nes large, so that the

- inverse tangent function in Eq. (2.47c) can be expanded so that x(d’),.) 2,

Iwnt 3I_'&I’ Upon substitution mto Eq. (2.47a), we obtain,

.

A, =nT Z [A(m,,, iwy) — p8(w 1u,,,|)]l_ ' (2.48)

where the subscript “0” signifies that the impurity term is absent in Eq (2.47b)
and p = 1 ﬂ+ Ha(T). Eq. (2.48) is in general a T, equation with a pair-
- breaking effect (caysed by p) present. Maki®® has enumerated posmble pair-
bx:ea.king mechanisms. In the limit p — 0, we recover the standard T, equa-
tion obta.inedr by linearizing Eq. (2.13). Eq. (2.48) is valid for all temper-

* atures. It is custc;ma.ry to present results for the reduged upper critical
field, he(0,t*) = FI%% Strong coupling corrections are derived' in
Appendix B. We find, for the dirty limit (t¥ — o0), that there is consider-

i able scatter in the numerical data (see Fig. 2.10). We have included ctirves
which correspond to two very different sets of parameters, and neither do a
wery good job of describing the data (although they do describ.e the trend).
Moreover, the curve corresponding to an Einstein madel (with u* = 0) dif-
fers significantly from the drawn curves. In a sense this failu;'c is not too
surprising, because the deviations from BCS being described afe less than
7% in most cases. Formulas of this type are not expected to be better than
10 % usually. Moreover, note that in the modest strong coupling regime the

correction is negative, but then becomes postive as T, /uy, exceeds about 0.2 .
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i t

Figure 2.11 The reduced ratio h(0,t+ = 0) vs. Tc/wh, See Fig. 2.2 for
idﬁ‘x{t}ﬁcation of materials. The curve corresponds to _hcz(U,O)'= 0..727(1‘—

2 ' .
2.7(:&) In 5%’*;:) Note that there is a very tiny initial c'lecrease from BCS

&s T, /wi, is increased above 0.

-
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This is the first case of such behaviour encountered so far, and can be nscribed
to the non-univerial behaviour of the functional derivative® of h.(0, 0o).
The situation is far better in the clean limit, as Fig. (2.11) illustrates.
Here again the correction actually changes sign; however, the initial decrease
in 'h,,g(O,t"' = 0 is sufficiently small (the functionﬁl derivative is almost
universal) that the data follow a speciﬁc‘trend, which is well described by

the expression:

: 2
hea(0,tt = 0) = 0.727 (1 -'2.7(%) In ﬁ%) o0 (249)

" Note that a linear term is not required for a good fit. Also, the trend is

such that as I},)wh,\increases beyond 0.2, k»(0,0) is increasing. Hence, the
deviations from the trend when amorphous materials (see'\ ‘able 1) are used
are quite large, - _

It is also useful to study the behaviour of the Ginzburg-Landau pa-
rameter K1(T,t*) = %%, which is a measure of how strongly a type-11
superconductor deviates fron; type-1 supe::conductivity. In Fig. (2.12) the ra-

tio k(0,t* = 100meV) = JULL=I0K g plotted versus T /uwrn for material

. spectra. We have also found that tht_z curve

k(0,¢* = 100) = 1_.2_(1 +2.3 &5_1..) In Of‘,’,'}) T(250)

. describps the numerical data quite well. Note that altheugh k(0, 100) is ob-

tained| througlt’ A(0, 106), the inaccuracieg. present in Fig?(2.10) do not
appear in Fig. (212) ls¢, we have found no need for a linear term in fitting
the data in Fig. (2.12). .The clean limit values of .(0) derived in section (ii) of

this chapter have been used, since it is easily shown that h;(O) is independent
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gure 2.12 ‘The ratio ¥(0,t* = 100meV) vs. T./wr,. See Fig. 2.2 for

.identification of maters
l :

| 2
2.3 (M-T’-») ln'ﬁg.—) . Note that a linear term is not needed'for a good fit.
L . e .

. The curve corresponds to &(0,100) = 1.2 (1 +

C
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of impurity concentration. In Fig. (2.13) the numerical data for k(0,¢t* = 0)

have been plotted as a function of T./wr,. The expression

2
k0,1 = 0)‘=1.26(1+12(f—;) 1n;"“n) C(2.51)

describes the data quite well, and, though not shown, the result for an Ein-

stein mode is well described by Eq. (2.51) as well. This was also true for the
dirty limit, -

(v) Application of Strong Coupling Formulas

We conclude this secl_:ion. with some brief remark_s about a straightfor-
ward application of the form'ulz.is derived in the p'revidus sections. More will be
said in Chapter 3. The moébt compelling evidence in favour of the Eliashberg
theory of superconductivity is perhaps the inversion accomplished through
the measurement of the current-voltage (I-V) characteristic in a tunnelling
junction.®*® The idea is the following. A trial a?F(w) is assumed, and the
tunnelling density of states %{(%} calculated. It will in general disagree with

.Athe measured density of states. Hence, a?F(w) is adjusted in an iterative
fashion until agréement is reached. This procedure is usually a very reli-
able determination of the microscopic function, a?F (w). The Coulomb pseu-
- dopotential u* is then obtained by some requirement, for instance, that the
measured gap edge is obtained theoretically. In this fashion the microscopic
parameters from which all superconducting properties can be calculated are
known. This procedure may seem circular, except that :the expérimentally
measured (I-V) characteristic is used only up to a frequency which is the
maximum phonon &equencyp(wm) in the spectral function. However, once
a’F(w) has been determined in this way, %%1 can be calculated beyond wmas

and compared with experiment, The agreement for Pb, for instance, is
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Figure 2.13 The ratio k(0,t* = 0) vs. T, /uwr,. See Fig. 2.2 for identification
S 2
of materials. The curve corresponds to k(0,0) = 1.26 (1 + 12 (&) In %.':)

- . ‘
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excellent.? That it is phonons which are mediating the interaction is sup-
ported upbn comparison with measured phonon density of states obtained
through nedtron scattering experiments. We should also add that theoretical
calculations® % of a? F(w) are possible, and these generally agree fmrly well
w:th the measured functions, wh.ere companson is possible.

Unfortunately, however, tunnelling junctions are sometimes difficult
to fab-rica.te, and hence for some materials an a?F(w) spectrum does not ex-
ist. Moreover, for the same reason, the gap edg'e‘is unknown as well, Hence,
over the years many formulas™®=" have been devé‘l;ped, which t;stimate the
gap edge given-thermodynamic properties, since these are often rr;ore easily
measured. The formulas in the previous | gection allow much more accurate
determinations. Thei!pa.i'ameteuf%’ ig’ still unknown, but can be deter-
mined through one #1easurement; for‘example,n§the specific heat jump,
from Eq. (2.30). Eq. t2.32) then allows for an accurate Yetermination of the
gap ratio, %f.: In Fig. (2.14) we<plot ,;—‘—%.versus ff]’!: for many crystalline
spectra. The solid curve is determined through equations (2.30) and (2.32).
Once again, amorphous materials tend to ruin the simplé relation somewhat.
What is clear however, is‘ that with little error, the specific heat jump of a
matenial uniquely determines the gap ratio, provided the material is crys-
talline, and has a value of ﬁ‘.’ < 0.2 . A relaxation of this latter coqdition
will cause some problems as will be seen later in Chapter 3. Similar remarks
hold for the other properties discussed (with the exception of h.(0,0)). In
~particular a plot of k(0,0) versus oo is shown in Fig. (2.15). In this case
the coefficient in the logarithm was fitted to 2, the same number as that used

for 'f—:—,‘!; (see Egs. 2.32 and 2.51).
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2

Figure 2.14 The ratio _,%‘:: vs. k—";%. the t;hat there is an almost unique
relationship betwggn these two qunnti'ti'es'f;r crystali‘ine materials. The amor-
*  phous materials }'uin this universality. The solid line corresponds to solutions
based on Egs. (2:30) and (2.32), and of course re.presents the numerical data

quite well. The dashed line represents solutions for Einstein spectra with

p =0 ' -
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In this case, then, it 1/9 easy to derwe the 1dént1ty - \
20 ' -
kBTc = 2. 9k(0 0)-0.15 (2.52)

-

which is also 1llustrated in Fxg (2.15). The agreement with numerical dota of
knolrn materials is excellent. In Ref. 73 a similartype of analysis has nlIowed“

improvement of the Toxen™ relation.
/ J | - |
2.3 \FUNCTIONAL DERIVATIVES AND OPTIMUM o
SPECTRUM ANALYSIS :

n

(i) General Remarks ) -

‘ ‘
Does coupling to all phonon modes enhance T,? This important ques-

tion was first answered by Bergmann and Rainer™ through a functional
derivative caiculation. They calculated ,—f%m and found a.‘ positive definite
curve which peaked at a frequency Q== 7L, and fell to zero as {2.— 0 and
1 — oo. Furthermore, they were able to prove.that (for‘ pt = 0) gﬂ.“m—) is _
always\pgsnwe definite (regardless of what base spectrum one starts with).
Hence, within lihea: reéponse, since the change in T, due to a small changé

in a?F(w) is given by : ’ ' :

[, T ., e
AT, = L 40 e F@) s (2:53)

then T, is always enhanced by additional coupling to any phonon mode.
This important result also indicated that T; could grow'without bound, since

increased c;upling would always increase T, . This will be shown more clearly
ﬁ-—-.\ ) N .
later on. The limitation on T, would have to come from lattice instability,

for exaxnpie, and not the theory of superconductivity.

-

Functional derviatives of other supez¢onducting pro;;prties were cal-

culated by Rainer and Bergmann,® by Carbotte and coworkers,7s8533.486!
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@',

Figure 2.15 The ratio k(0,t* = 0) vs. 22 Eqs. (2.32) and (2.51) suggest
that %}: = 2.9k(0,0) - 0.15. This curve is drawn with a solid line and

describes the data extremely well.
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and by Sachdev et al. .* It is difficult to make general statements ﬁbolut t:hese
results. In all cases functional derivatives tend towards zero as the frequency
becomes larger. Similarly, one would expe;t' that as & — 0, Eii?(Tﬂ — 0,
where @ is any property. This can be looked upon as a consequence of An-
derson’s theorem,®! since Iow. frequency phonons behave like static impurities.
“There 'a.re, however, several exceptions to this rule. First, when anisotropy is
included limg_q FaTqu'(-(ﬁ = do00. This is due to the fact that anisotropy affects
all superconducting 'properties. It is also well known that addition of impu--
rities washes out anisotropy. Hence, adding zero frequency phonons (which
is likt;._ adding impurities) causes a change in Q so that limg .o E'az_quﬁ # 0.
In fact the behaviour af, low frequency will in general be F&QW ~ L. The
resbonse calculated through a formula like Eq. (2.53) is not infinite however,
since in physical syster;xs, Ad’F() ~ Q° where n = 2(1) for crystalline
(amorphous) materials. A second exception arises because Anderson’s theo-
rem is not applicable to rﬁany superconducting properties (transport prop-
, erf'.ies and upper critica magnetic ﬁeldé)._ Many of these properties depend
on impurity concentration so that for the same reason as above, rfFQ(—ﬂ'; ~ L
as {2 — 0. (Note however, that in the dirty limit, the functional derivatives
will tend to zero once again, since adding dirt to an infinitely dirty material
changes nothing.) Finally, the zero frequency behaviour can be introduced
artificially, by defining a non-physical quantity. This can be exemplified by -

considering the specific heat jump, A—f.%‘l. The denominator, 7. is often

‘taken to be the normal state specific heat. However, Grimvall has shown

that4®
Y(T) =78 (1 + .[om 2%"02}“(:;)2 (T)) (2.54)

v
/
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Figure 2.16 Plot of the functional derivative of the specific heat difference,
§ AC(T ] .

Tk Py VS- w/T, for Pb, for various reduced temperatures. Note that as w —
0, the derivative approaches zero as well, in contrast to the situation when

~o is used instead of Y(T}).

- .
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where

Yo 2 2 - "
o33 N(0) (2.55)

B =

. is the band density of states. The universal function Z (%) can be approxi-

ma.ted byﬁ'f —
1+ 2.6u + 16u?® . oud 4 4.1u?
~ 2 — -— . D]
- Z(z) = ®(9z°) , B(u)=- 1T 650 1.6u‘ WD) (2.56)
It is easy to show that limg_.q 3—;%7‘% =0 wherea.s limg—g 3;5—'15’(-5-)- Hence

AC

i Foy 88 illustrated ixLFig (2.18), goes to zero as 2 — 0, whereas the
analogue calculated in Ref 88, though similar in all other respects has the

AC(T
property: limg_.g 3&7;-"},—(5(5 —&, where

“a” is some constant. Some details of

these calculations are included in Appendix D.

| To illustrate the second exception,® Fig. (2.17) shows for two mate-
rials, Nb3Sn and Nb, the derivative §he2(0,t) where we adopt the notation®!
80 = g Ea_'-'f-"qf"rﬁ Note that as the impurity coqcentratioﬂ increases, the sin-
gularity near thg origin is pushed into the origin. In Ref. 31, whcr; the dirty

limit is taken analytically, they find limg—q §he2{(0, 00) = 0.
(ii) Relation to Strong-Coupling Corrections

Funrctional derivative calculations can aid in understanding why the

. strong coupling\ correction formulas of section 2 work well, but sometimes
fail. Critical to the success of these formulas is that the functional derivative
of a property has a simple, alniost universal shape, as a function of %, i.e. the
shape does not depend strongly on what base spectrum is used. A model

calculations®®® have indicated that functional derivatives of some properties

such as 6T, and § (%) are indeed well described by universal functions

-

fi
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Figure 2.17 Normalized functional derivative, §h(0,t%), for t¥ = 0.0,
10.0, a.rrd 100.0 meV for (a) Nb3Sn and (b) Nb. Note that the low frequency
node a.pproa.ches.'w = 0 as t* increases. In the extreme dirty limit of Rainer

’ r
and Bergmann the curve goes to zero from above at w = 0.
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~of % This results in the following simple picture. Imagine a spectrum de-
scribed by an Einstein mode with fréquency such that %f 2 20. This cor-

responds to the BCS limit (-g:_- < 0.05). With reference to Fig. ('2.16) for -

the speciffcfteat jump functional iifrimtive, for example, we note that if we

ot

could reduce g with fixed area, we would find ourselves in & region where
the functional derivative is la;'t"ger (keep T. ﬁxed,_td first order) so that the
changé:'in 5,%%1 described by a formula like Eq. (2.53) is positive, and —A,,—C};—:l
increases. Now one would calculate a functiorial dcrivativé for this new spec- |
trum. However, By hypothesis, the derivative is universal. The process can
be repeated, with tl;1e effect that, as %{1 decreases (f‘: increases), %%l‘in-

creases in a somewhat smooth fashion. A breakdown will inevitably occur
' as we lower Qg ginceswe will encoynter the peak area, which is sensitive to
details. Howeve::\llq:k’dcwn can occur for ther reason. In Fig. (2.17);
6he2(0,t%) is plotted for two different materials. The non-universality in the
dirty limit is readily apparent. For Nb (a relatively weak coupler), the high
frequency region of 8h.2(0,100meV) is negative; for Nb3Sn, however, it is
) positi\;e. Hence, as Qg is lowered, we expect h2(0,100) to decrease. This il.l-
deed occurs (see Fig. 2.10 as ;f:— increases from 0). However, at the same time
the functional derivative is itself undergoing a significant change; it is begin-
ning to change sign. Thus, at some point as g is lowered furtﬁer, he2(0,100)
should in€rease. This will continue to occur as Qg enters the peak.region in
the functional derivative. These statements are borne out by Fig. (2.10).
- However, since the functional derivative itself is dependent on the base spec-

trum used, we do not expect to see as smooth a trend, which is also the

case.
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- -

Figure 2.18 Plot of T,/A vs. wg/A for‘Einstein spectra located at frequency
wg with weight A, for various u*. TRe curves are universal and all exhibit a
ma.xifnum, indicating that an optiﬁmm spectrum e:'dsts. Also drawn is the
functional derivative of T, [A for the optimum Einstein spectrum for = = 0'1’. '
with wp = 1.3. Note that it is non-positive definite, 'obtﬂMné_é ;naximum
value (0.0) at the location of the optimum spectrum. Clearly, Tc/Atanﬁot

. be enhanced. X
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2.3 Functional Derivatives and Optimum Spectrum A’nalysis a1
(iii)) Optimum Spectrum Analysis

The concept of an optimum spectrum began with Leavens.?” He noted

that for an Einstein spec‘trum, the T, equation could be scaled such that

Z-1(%). (2:57)

t
- . . - ’
where f (%f) is a universal function. Hence, for a given area, vg could be

B}

" adjusted so that T. was maximized. 'Another way of saying this is that
the Einstein mode waé moved to a frequency at which the maximum of its
functional derivative occurred. If the mode were anywhere él-se, T. could be
increased by moving it towards the peak. In Fig. (2.18) we have illust:r:a.t;:d"B
the u;ivérsa.l fﬁnction f (ff) for various p*. To optimize T; (for say, u* = 0.1)
we could move ,F{‘ﬁnstein peak towards a value, f_};‘l 7 1.3, where f (Ef)
peaks. Also illust:ra.ted is 6 (Tj{-) for this ﬁartiéula.r spectrum. It is non-postive
dgﬁnite. This is proof that we have achieved the optimum value for %
This work has been extended to electromagnetic properties and ther-
modynamic properties by Blezius and Carbotte, upper critical magnetic
fields by Schossman et al. ® and R. Akis et al. ,* and to klf—f.: by Car-
botte et al. .°! The specific heat jump is interesting to study because éf-—o(.‘,?—:l
does indeed have a maximum at finite frequency. We hafi noted already that
.Fig. (2.2) seemed to indicate that %%‘l was satura‘ting. In fact it is easy to
show that as % increases, -‘9—%%1 decreases from its optimum value and falls
below the BCS value. In fict, as Z5(A) — oo, 9%:.!{51' o .92 Moreover,\.the
maximum value®® is between 3 and 4, depending on u*. We, should emphasize
that such beha,vio;ur occurs only because vy and not v(7.) has been used in

the ratio.
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Figure 2.19 The quictional.dérivative of the gap Ag to critical temperature
ratio, %Tn;’ for three deita,.ftfnction based spectrum labélled b:;f normalized
Eliashberg frequency wg/T.. The upper curve for which wg /T. = 4.7 is char-
acteristic of results found for real materials. As the Einstein frequency of the
base spectrum is lowered towards zero, however, the curves distort in shape
and become negative far much of the frequency range except for a pésitive
peak at ever lower value of w/T,. The progreésion is for the functional deriva-
tive curve to become negative definite for fug/Tc = 0 ;m't.h maximum exactly

at w/T, =0.
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However, this form is the most useful since it is the one used in experimental
analysis. The gap ratio %ﬁ- is of interest for the opposite reason. Upon low-
ering the frequency of the Einsteir; mode to the freqtiency of the maximum of
its fﬁnctiqna.l derivative, one finds, upon calculating the functional dcfi\fntivc
of the new spectrum, that the peak has shifted to a lower frequency. This
will continue to occur and in fact one must approach the limit MIL‘(/\) — co
id order to ﬁnd the optimum-:—f—%. For u* = 0, we find numerically® that
the maximum value is about 12.8 . A sequence of functjonal &erviatives for
several Einstein modes is shown in Fig. (2.19). Note that the’ magnitude,of
the peak in the functiona:l derivative is decreasing as the'mode frequency

’

is lowered, and will approach zero only as the frequency at which the peak

4
occurs approaches zero. '

(iv) A T. Equation

In this final section we provide a suggestion for yet another T equa-
tion to add to the large list of existing formulas. Our motivation comes from
the strong coupling corrections derived in section 2. It is clear there that
;Tf: is an effective strong coupling parameter because it has minimized the
scatter of data due to different spectral shapes. Hence, in analogy to those
ratios, we can study the “ratio” %- as a function of h—% Demanding consis-
tency, we can then solve for T, in terms of A and wy,. Note that we bypass
the usual parameter A, in favour of these two. Of course in the case of an
Einstein mode they are related, A = &’%. For our purposes we fix ourselves at'
p* = 0.1, and consider several material spectra. As first shown by Coombes
and Qarbotte,*® under ti:;e transformation @?F(v) — a*F(v), T. — I,

Wa A
wyy — _andA—v_r.
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A3

Figure 2.20 Plot of T./A vs. T /ur,. The solid curve represents an Ei__nsteiﬁ
spectrum with g* = 0.1. 'Also illustrated are curves for various real spectra:
Pb(- - - -), Nb (----), V(= - - -) and NbgSn and NbyAl (= - - --). Note that
the curves describing sﬁectra coﬁesponding to realisli:ic shapes practically

form a universal curve. Eq. (2.61) fits the center of the band quite well.
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- This enables us to plot curves for various spectral shapes over a whole range of
;E’;. Thesé are illustrated in Fig. (2.20).%8 If we exclude the Einstein spectrum
as well as the amorphous materials, then as anticipated the various curves
t_érid to form a rather tight band so that %- is an almost universal function
of M-I'-n What functional form should we attempt to fit? {i\ motivation comes
. from the exact T, equation. In Eq. (2.48), YJith p = 0, the tl.'zmsforma'tion

A, = I%:T yields the set of equations 3 .._, KumAm = 0, where

m=1 .

Knm = A(twm —iwn ) +Aiwm +iwn )= 24" —8nm | (2m—=1)+2(0)42" T A(i27T)
) ' mi=1 .

(2.58)
The solution is det(K,, )} = 0. Using a trial vector,*® A,, = 1, we find

) 2.‘1!/5'
W = 2.59).
L= o Ty (2:59)
for an Einstein spectrum, which can be rewritten
To :
Ly (2:60)

7.
" (2)
A fit for a(u*) and b* tended to reproduce the curve in Fig. (2.20) ob-

tained from an Einstein spectrum, which differs considerably from the band

of curves corresponding to material spectra. The form,

0.053(&) 5 |
= m (2.61§

“1n

w23

fits remarkably well, however. Given w1, and A one can determine T, on a

pocket calculator from the simple equation:

' A
y® +0.1025y — 0.33— =10, (2.62)
unn :
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where y = (%)%. We have restricted ourselves to x* = 0.1 . TheA ﬁ_tted
coefﬁcients would require some simple u* dependence in order t;> remove
this restriction. We have adopted a simpler approach for the purposes of
comparison. In practice, T. and a’F(v) are given; p* is then- calculated
for consistency. To test Eq. (2.61) we have regzi.rded ch: #* = 0.1, and
Ba’F(z}) as given for any materiﬂ. The parameter B is then determined for
.cons;istency. Table 2 illustrates the resul.t. Another shortcoming of Eq. (2.61)
is that it has the incorrect a.szymﬁtot'ic;'iﬁ\mit'.26 for an Einstein spectrum. It
was shown in Ref.' 26 that as A — o0, T, ~ /Avg. H‘ence at some large value
of T;/uan, we expect Eq. (2.6'1) .to break down.

——

. Table 2. Comparison of approximate T, values obtained using Eq. (2.61)
with numerical T, values, ﬁsing u* = 0.1. The areas and w;, values were
obtained from the spectral functions ( see Appendix C). The agreement is
reasonably good considering that the entire range of possible strong cou-
pling values for conventional materials is covered. Note that Hg has .the
worst z').greement due to its spectral shape (i.e. low frequency phonons). The

~

agreement in the case of amorphous Bi is fortuitous.

L
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Table 2
Material Te(meV) T, (approx.) Diff. (%)

\% 0.4621 0.5107 11
Ta, 0.3862 . 0.3785 2
Sn 0.3233 0.3371 4
T1 0.2034 0.2016 1
TlosBios 0.1983 - 0.2024 2
In 0.2931 0.3068 5
Nb (Butler) 0.7931 ©0.7315 8
Nb (Arnold) 0.7931 10.7456 6
V,Si-l 1.4741 1.3787 — 6
VaSi (Kihl.) 1.3276 1.1699 12
. Nb (Rowell) 0.7931 0.8255 4
Mo 0.7586 0.8185 8
Pbo.4Tlos 0.3966 0.3897 2
Le | 0.4340 0.4486 3
V3Ga 1.2931 1.3357 3
Nb,Al (2) 1.2069 1.2166 1
Nb,Ge (2) 1.7241 1.0312 6
PbogTlos 0.5086 0.4992 2
Pb ' 0.6198 . 0.5882 5
NbyAl (3) 1.6121 1.6657 3
PbgsTlo2 0.5862 0.5747 2 .
Hg : 0.3612 0.4210 17
Nb3Sn 1.5603 1.5864 2
PbosBio.s 0.6595 0.6527 1
NbsAl (1) 1.4138 1.4725 4
. NbyGe (1) 1.7241 . 1.7647 2
PbosBio.» 0.6853 0.6904 1
Pbo.Bios - 0.7284 0.7364 1
Pbo.esBio.sz 0.7716 0.7867 ~ 2
Pbo.sBig s 0.6026 0.5944. 1 .
Ga 0.7379 0.8413 14
Pbg 7sBio 25 0.5957 0.6023 1
Bi 0.5267 0.5281 ~0
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Chapfer 3
High T. Oxides

3.1 HISTORICAL INTRODUCTION

The “modern” (as of Nov., 1987) era of high duetivity
e “modern” (as of Nov )/:ra. o 1g/T,_..5upercon uctivity
began early in 1986, when J. G. Bedndrz and K7 A. Miilter! succeeded in

3.1, which sh
5 which s oWLonset,

obtaining the resistivity curve displayed inX
critical temperature of near 30 K. The sample they worked with was reported
!:o be Ba,Las_,Cuso;(a_y), but was in fact multi-phased and polycrystalline.
Later that year several groups?3# had substituted Sr for Ba, and T, had
increased to the 40 K range. Meanwhile, the superconducting phase jn the
original compound was found to have the composition, La;_,Ba,CuOZ,, with

z vdrying from near zero to approxima

>

~ Inspection of the periodic t

Barium (A = 56) and Lanth
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ultiphase sample of Ba-La-Cu—O obtmned ea.rly in 1986 For low cur-

?
rent densities the ¥nset is clearly above 30 K ..

i
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3.1 Historical Introduction

_Jmn
this simple observation, the Houston—AlnbamLa group® suceeded in obtaining
90 K supérconductivity in a mixed phase Y-Ba-Cu-O compound system in
early February, 1987. (Th;e supercondh.cting phase was later to be identified
as YBa;Cu307_,). Even before the elements of the compound were disclosed
in the 2 March issue of Physical Review Letters, reports had appeared in the
Pe_ople’s ba.ily in China that T, ~ 100 K had been observed in a Y-Ba-Cu-O
system. As a result of this r::port, researchers in both the United Sta.tzrs and
Japan succeeded in producing the 90 K superconductor as well, in February.
Once the Letter appeared on 2 March, the material was being synthesized in |
practically every lab in the world. This discox;ery has a special significance
in that the liquid Nitrogen temperature barrier (77 K) had been bréken, and
some experiments were already being carried out without the use of liquid
Helium. Since these “early” dt;ys., some published and many unpublished

_reports have appeared, claiming T, ’s of sign‘iﬁg:a.‘ntly higher value than 100 K.
However, z-xt the time of this writing, the general concensus appears to be that
the maJ;imum reproduceable T, is T. ~ 100K.-

The “old age” era of high T. superconductivity actually began in
the rmd-1960 s when M. Cohen™ suggested that superconductw:ty would_
occur in semlconductmg materials. The\ﬁ.rst ox:de superconductor, SrTxOs
(T. < 1K) was subsequently discovered, to be followed by truly “high T, "
superponducting oxides LiTi;O4  and BaPbBi0,,% discovered in the mid-
1970’,5. These compounds had T, ~ 13K, which is rather high, considering |
the low carrier concentrations in these oxide superconducting materials. This
latter fact motivated a great deal of interest in the oxide superconduétors,. E

culminating in the discoveries of 1986.
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All of the developments described so far have been experimental,
At the same time, many theoretical proposals!! were put forth to explain
the high T. oxides. The numerous proposals ¢an probably be classified un-
der two general headings: BCS-like and non-BCS-like. The first category
incI.udes m:y theory in which the superconducting electrons are thought to
pair via the exchange of some. virtual boson; this boson has been idenitified.
in conventional materials to be the phonon, We have regarded the proposals
that come under this heading as involvii;g different mechanisms, in the sense
that the boson which mediates the electron-electron attraction differs from
mechanism to mechanism. Possibilities included plasmons, spin fluctuations,
excitons, demons, ete, The second category is of course quite vag;ue‘in name,
but is perhaps best exemplified by the resonating valence bond (RVB) theory
first proposed by Anderson®-% in 1973. In these theories electron-electron
correlations are déémed to be so important in the normal state, that a BCS
description based on éuasipnrticles in the normal state is inappropriate. In
the RVB, for example, it is thought that a superconducting condensate occurs
through a Bose condensation of charge carriers, which are bosons because of
. the environment they find themselves in (résonating valence bonds). The
RVB theory has only recently received much attentign, and so suffers the
disadvantage of being in its infancy, whereas theories .of the first type have
been relatively well studied. In the remainder of this thesis we will discuss

only theories of BCS-type.

3.2 GENERAL REMARKS

Eliashberg theory is based on the calculation of the electron self-

energy due to the emission and absorption of some boson (see Fig. 1.2).
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L

Hence, Eliashberg theory in principle is applicable to all BCS-type theories;
However, the infinite sum of diagre.ms indicated in Fig. 1.2 is only a subset
of all possible diagrams. The neglect of all other diagrams (“vertex correc- |
tions”) is justified by Migdal’s theortlern16 which ensures that contributions
from these corrections are O(ﬁ)% (or O(%%)) where m is the electron mass
and M is the ion mass. This approximation is extremely accurate in the case
of phonon mechanism, since wp € Er. However, oi‘;her boson mechanisms in-
clude “electronic” bosons whose characteristic frequency is O(Ef) and hence
the use of Migdal’s theorem will be suspect. One can nonetheless proceed to
investigate the consequences!™ of Ehashberg theory in the same spirit that
resulted in BCS theory. For the time bemg, experiment may be able to decide
on the correctness of this approach. ‘

What is the need to introduce another mechanism? As has already

by

been mentioned in Ch. 2, Eliashberg theory imposes no limit on the maximum

attainable T, . However, crude estimates based on the phonon mechanism

have been proposed in the past!o119? yielding T™* < 35K due to lattice

instability. Hence, observation of a high T, alone justifies the search for an
alternative mechanism. At the same time one must be wary of maximum 7T,

- arguments. They have been wrong before and they will possibly be wrongA
again.

The standard argun}ent-in favour of some (usually) higher frequency
electronic boson mechanism uses Ea. (2:19a) for T, . It is clear that for
the same value of A, an increase in w, (to O(Ef)) from wp will result in a
substantial increase in T, . Again, one must be wary with this naivela.rgument

- for reasons already mentioned.
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Figure 3.2 Plot of ff‘,ﬂ: vs. Te/win. The solid curves are for Einstein spectra
with u* = 0.0, 0.1, and 0.2. These curves are universal, and indicate that, for
given T./wy,, 4" causes f—:-f;‘- to increase. Also shown are various scaled real

spectra, with p* = 0.1. They are universal in th¢ sense that they represent

spectra which have been scaled by an arbitrary ajnount along the frequency
axis. Note that they form a rather tight band asfa function of T./w,. The |
materials are Pb(- — ~), Nb(.--.), V(- =), and Nby and NbzAl(—--—.).
The various symbols represent the 6—funct'ion spectra dje'scribed in Table 3

as follows: &, A = .75; w, A = 1.0; m, A =26,0,2A=230,A=29 A, A=44,

SN
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With Lnowlcdge of the value of T, only, there is little one can de-
termine. Fig. 2.20 111ustrates this point cle’trly One can obtain 7. of any
magnitude simply by adjustmg Win a.nd A independently. A system \;:th a
given T. could then be described by parameters corresponding to any pomt
along the umversal curve in Fig, 2.20 . Howev‘:zr, Fig. 3.2 illustrates the gap
ratio ,3—:-}!: vs. ;% for a variety/ of spectral shapes and u*. This figure empha-
sizes what was already discussed in Ch. 2 and Ref. 46: 25 is an almost
universal function of ~, regardless of shape. Given -390— , figures-(2.20) and
(3.2) together prov:de us with the data required to determine win and A, the
fundamental parameters characterizing o? F(v) (recall A ~ 24 ). In Table 3 we
have included several model spectra. consisting of Emste:n spectra and th’e
scaled Pb spectrum. Several poésibili?ies are illustrated; the first entry, for

| example, would be representative of an a?F(v) which is comprised largely of

phonons which represent the oxygen breathing modes in these oxides. The

strong coupling pa.ra.meter, is then very small, and ,‘——7’1- (and other
Freq. of Area A T /win r’ﬁ“
§—fns. (meV)

60 23.1 ) .03 3.7
30,60 20.0 1.0 08 4.0
10,60 22.7 26 23 3.5
10.20.30 18.4 2.3 20 3.2

10,20 . 19.0 2.9 24 5.6 ’
10 21.9 4.4 .30 6.4
Pb(y = 1) 32.3 12.4 62 8.0
Pb(})” 18.3 2.3 21 3.2
Pb(1) 18.1 1.4 12 1.4

- Table 3 Summarx of model spectra used in Figs. (2.2) and (3.23). '
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superconducting ratios) attains a value close to its BCS value. Model spectra

. with even hi_gher médes will yield BCS results, and would be representative

of say, an exciton model. Models with even lower frequency phonon modes

are representative of a’F(v)'s with strongly renormalized oxygén breath-".

-
ing modes, as well as spectra with acoustic modes in a more conventional

frequency regime. One immediate consequence of these models is the ffﬂ-

-attains values = 5 or higher. It is seen how an accurate measurement of

kB Tg

remains more or less constant at A ~ 20meV. This value is not so unreason-

able, though it is unprecedented; the A15 campounds have values of 4 £ 13.

However the A15's are known to have large densities of states. Thus, using
Eq. (2.192) one sees that the electron-phonon couplling must be very large.
These remarks have been made ;_,vith respect to the 35 KK superconductor. The
effects become even more pronounced for the 95 K superconductor. It can
be seen for example, on the basis of Fig. 3.2 that 2 BCS gap measurement
;-ulcs out the phonon rhechanism completely, since phonon modes generally
cannot exceed0100 meV. A phonon r5EChani§m would invariably require large
values of ﬁsrj; and an area A 2 50 meV would be required. The possibility
of a lattice instability \'\rquld have to be seriously considered.

The amount of inlformation one can glean without a knowledge of the
underlying spectral function is somewhat limited, although if one is fortunate.
it may be possible to pin dowﬁ the characteristic boson frequehcy. which is
of obvious significance. In the next section we will delineate the quantitative

predictions based on Weber's calculated a*F(v) spectrum® and thenréturn

to further considerations based on model spectra. .

222 can decide between these two possibilities. Moreover, the area required’
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3.3 PROPERTIES OF Lal,,,,.sm_.sc‘\xo.."

Based on the first-principlés energy band results of L. Mat :eiss,‘“é' .
+ (LSCO)
[ lattice. dy-

W. Webei;ﬁo.has calculated an a?F(v) spectrum for Laj..Sr.Ch
in the framework of the non-orthogonal tight binding theory
namics developed by himself and C. M. Varma.® This framework is highly
sophisticated and had already proven to be quite succcssful in descrxbmg the
A15 compounds. In LSCO he found that the materm.l bordered on a lattu:e
instability, achieving, with p* (w, = 540 meV) =013,a T, ~ 35 - 40 K. The
spectrum is 1llustrated in Fig. 3.3. Promment features are (i ) a very large:
peak at w ~ 10meV, and (ii) coupled phonon modes extending c;ut to be-
yond 80 meV. The high frequency range isidue to the low oxygen mass, Usirllg
this spectrum we have calculated many superconducting properties, based -
on the isotropic Eliashberg equations.’® For most pfoperties‘no adjustable
parameters are involved. Some properties, h_c;\;e{rér, simply scale with either -
N(0) or v (a notable exception is H(T') with Pauli limiting, nlthough.tl.le
dependénée is weak). The scaling enables us to choose values of N(0) and
vg for the purpose of presentatioﬂ.l A‘s experimental determinations or the-
oretical estimates of these ﬁuantities improve in the future, one can ‘easily ’
incorporate the imiarovements into the -results ®e present withput further
numerical work. The reduced properties will remain unchanged. Calculated
ratios are presented in Table 4 (see last coluﬁnj. There is nothing unusual
about the calculated values. The various properties have values characteristic
of -the strong coupling regime as described in Ch. 2. Unfortunately, nature
has conspired to be somewhat secretive about the high T, oxides. Properties

involving =g have not been measured because + is difficult to obtain.
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F}gure 3.3 The electron-phonon spectral dehsity a’F(w) for LSCO cal-
culated by Weber. Some of the parameters corresporiding to this spectrum

are: A = 22.04 meV, T, = 3.09 meV, wy, = 13.876 m&, A = 2.606, and
p(we = 450 meV)=0.13. , S . . %
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. issufficiently high that the normal state specific heat is dominated by the
phonon contribution. Furthermore, the critical magnetic fields are so large
that at low temperatures it is impossiblé to force the material to become
normal, and hence measure o. Quantities in vlving upper critical magnetic
fields suﬂ'er from the same difficulty; such a high field is unnttmnable at
| low temperatures The data obtained on electromagnetic pmpertws is in-
sufficiently accurate for thie ratios defined to be evaluated experimentally.
Finally, 01.11' last hope, the gap ratio, has been measured by many groups

(sce Table 5). Unfortunately, there remains considerable controversy about

Property BCS 6" =050 6§=0.25 §=0.0

GE 383 4.0 4.4 5.3
Boz 0.0 0.14 024 0.8
AC(T. -
-—f%zl 1.43 L7 21 28,
A 0168 0133 0140 0.124
h(0) 0576 | 033 052 048
he2(0.0)"  0.727° 0.77 0.81 0.8
ha(0,100) 0603  0.715 0.74 © 0.78
k(0,0) 126 140 1.56  1.83
£(0,100) _1.20 1.30 142 163 -
£{0.e¥=0)
T ‘,+_0, 1.33 128 14 1.21
0 .t : -
?ﬁﬁj(—}?; 0.30 0.43 037 0.29
0 - -
Ty 0376 0.335 0.30 024

Table 4 Summary of theoretical results obtained for § = 1.0 (pure ekci-
ton or BCS), § = 0.0 (pure phonon) and & = 0.25.0.5 (combined phonon-
e\cxton)

6= Ar/ Aot

- — y=2 . ) (lo.cal liguit)
wW(I)=AT) 0= {L { London limit}

" no Pauli limiting
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the experimental value of the gap in Lajg5Srg.15CuQ,.

' Far-infrared measurements tend to give value:;.; of the gap ratio close.
to the BCS value (with one exdffption) \;vheret;.s tunneling measurements give
values which are rather higher, although some measurements now give val-
ues closer to BCS. Both types of mesaurements display somewhat anomalous
features: the far-infrared measurements give considerable absorption below
twice the gap edge where there should be none. Moreover, the presence of
phonons obscures the analysis somewhat. The tunneling measurements tend
to be quite erratic, even from measurements at different spots on the same
sample. Anomalous structure is also seen in_the [XV characteristic, about
which we will have more to say later. The theoretical value of 5.3 obtained
from Weber's spectrum would certainly be compatible with some of the tus-

neling measurements.

The specific heat jump, AC, has also been measured by several

groups, and as is apparent from, Table 5. there is considerable disagreement
for this measurement as well. It is cleat that there is considerable sample de-
pendence in..these measurements. This is also exemplified by the fac£ that the
normal state resistivity is (anomalously) linear in temperaturerdown to T,
alth.ough in some measurements there.is an upturn before the sample goes su-
perconducting. It should be kep;: in mind timt almost all experimental resullté
reported here were obtained from measurements on polyerystalline sarnples.'."'-
There is also increasing evidence that while the superconductivil‘:y is bulk. it
ts by no means 100 % bulk. There seem to be both metallic and irisulat{ng
components present. Moreover. the granularity of the samples varies from

sample to sample. and this feature is known to affect many superconducting

properties.'?*=19" Nonetheless. we car proceed to investigate the consistency
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-

of the data in the following fashion. On the basis of the results q.uoted in

Table 5, we choose a value of A_C;%I_d = 17 mJ/ mole K. 'Usi:‘lg the calculated

value ,ﬁ% = 2.8 (see Table 4), we find 9 = 6.1 mJ/ mole K2. Equation (2.55)

allows us to extract the band density of states. A more useful formula to use
f { .

is: : - b
states 0.212 mJ
N(O)[ev —fu. -_sp_in] BT moleK’]

We find N(0) = 0.36 =122 This value should correspond to the band

eV~f.u.—apin"

(3.1)

structure density of ;tates. We have assumed that the important electron-
" eIectrori correlation effects have been included in the band structure calcula-
tion. The band structure density of states for LagCuO.; has been obtained by
several groups.'® There is general agreement that N(0) =~ 0.65%.
Freeman et al.'®* and Papaconstantopoulis ‘et al.'%¢ have used a rigid band
model to include the effect of doping. They find for La, g5Sr0.15CuQy, N(0) =
0'9¢:V—uft.:+—sapin and N(O) = 1.1ﬁf—"_—"—pi; respectively. Hence there is a dis-
crepancy of a factor of 3 for N(0). It may be argued that this rules out such
a large va.lus_of A for I;al_gssro_mCuO4. However, as has been alluded to al-
ready, the measured value of % may be lower than the “ideal” value due
to effects of granularity, anisotropy, and a significant non-superconducting
fraction. We note that Phillips et al.!7% have attempted to account for this
latter effect. ' . :
The upper critical magnetic field has also been measured near T, by
many groups. Again as Table 5 indicates there is significant variation not
only from sample to sample, but also depending 6n whether the onset or

midpoint of the resistivity drop is used. Strictly speaking the onset point

should be used, but the polycrystalline samples and the poésible fluctuation

L3
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Table 5 Summary of Data for LSCO
A0T) _mi s | HL(T) | % Ng(Er)
7.6+ 1.8° 2.4° 2.2 - 5.0° 0.66°
20 = 5° 1.6 —2.7° 1.51% 0.6 (0.95%)"
16.8¢ 2.5¢ 1.7° 0.65°
8.84 2.9 — 4.5 2.7 —6.0¢ 0.82¢
22 — 26° 52-9.1° 0.3],4 L° 0.62 (1.08%)¢
11/ < 4.5 1.8/ 0.83/
9.9¢ 5—8.7° 2,139 1.03¢
104+2%  4.07-4.78" 1.3 — 4.0
6.5' 4.5 — 5.8 2t
' 3-6 2.1 0.1
3.5 ~4.0% 2.2F
0.7-2.7 2.0 - 3.7
8 —18™
2.6"
1.3+£0.2°
514
4.7
T+2"
2(c = azis)’

See Refs. (179-183) for columns (1-5), respectively. 4

sfates
eV —Cu—atom—apin

units are:

b with doping: z = 0.15

t  with doping: z = 0.15
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Summary of Data for YBCO

83

Table 6
AC(T,) mJ 248,
Te moleK? v kpTe

NB(EF) " glates

eV =Cu~atom—apin

18  3.240.3°
15.5° 3.5+0.3
13¢ 2.0¢
1.32¢ 3.54
16¢ 3.7-56°

7! 1.6 — 3.4°
11429 2.3-3.57
23 + 54 2.5 —4.29
13 1.3+ 0.2%
11.37 3.3
20% 3.2

11%

45-6.0 L'
3.9-48]|°

4.8™

3.8 —4.5"

10°

137

3.97
3.2+04"
7131
3.5¢
5£0.2*
3.441.57
4.8+ 0.5v
~ 8T

7.5Y

, . 3.9°
3.8

. 1.3(50%)°
3(10%)°
2.5(50%)°
1.2(7)°

2.4(7)°.

2.3 ,0.46 - 0.71 L¢
4.6(10%)°

0.6(0%)

1.25(7)/

3.8(50%)¢

1.0(1%)

2.35(50%)*

0.37 1 (50%)°
1.95 [} (50%)'
2.2(50%)
1.8(50%)*

2.2 - 3.6(50%)"
1.75(50%)™
5.3(10%)™

31,0.9 L (100%)"

1.27(50%)"

4.7(90%)"

. 1.9+0.2(7)
1.3(50%), 5(onset)"
1.9(50%)*
2.9(50%)"
5.3(90%)¢
3+£0.3(7)

1.5%
0.56(0.43)(0.261)*
1.1(0.92 — 0.97")°

—

See Refs. (184-187) for columns (1-4), respectively.

*y=0.1, fy =0.2,

by = 0.5
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above T, complicate this simple pr.escription. Moreover, aniso’tropy now plays
a more significant role, as very recent measurements'®!* on single crystals
indicate. We proceed nonetheless with the.isotropic theory, noting that simple
modifications are required to treat an anisotropic electron gas.1%8

Table 4 indicates that the reduced upper magnetic field changes very
little from the clean to dirty limit, so that an estimate can be obtained for
‘the upper critical magnetic field at T = 0. We find H,(0) ~ 40T. Pauli
limiting is an effect which takes into account the fact that in high magnetic

felds there is an energy gain due to the Zeeman splitting of the up and down
spin electrons, whicl; drives the superconductor normal sooner than it would
otherwise. The effect at these fields is small and amounts to a lowering of
H(0) of_less than 5%.

Itl is not possible to verify the measuremgxits near 7. directly, since,
as the line following Eq. (2.47c) indicates; the Fermi velocity vg is re-
quired. One can of course deduce a value for vr, by the reverse proce-
dure. Taking H!,(T.) = —1.5% obtained by Kwok et al,'8* we deduce
(vr) = (0.3-0.7)x 10 m /s where the range of values indicates the dependence
on impurity content (clean-dirty). The measured slope can also be used to

give an independent estimate of the Sommerfield 7o, through the relation®’ .
H;2(Tc) = —4.48 x 104 Yo Pltem WH::(TG) [OCK_I] (32)‘

Paem 18 the residual resistivity in 2 cm. The factor NH.(T:), first introduced
by Bergmann and Rainer,™ takes into account strong coupling effects. It re-
mains within 30% of unity for a moderate strong coupling material and so
is not an important factor in this regime. The problematic factor is ppan.

Normally, the residual resistivity is found by measuring the zero temperature
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normal s-tate res?stance; in this manner, the phonon-assisted resistance is re-
moved. This i_s impossible, however, in the oxides; moreover, extrapolation is
" difficult—the linear resistivity behaviour is not well understood, and some-
times there is a sharp rise just before T, . In some resistivity measurements,
the extrapolation would cause p(T' = 0) to be very near to zero, which is
not understood, Kwok et al.'®'® used p(T.) in their analysis and obtained
Yo & 4.9 mJ/ mole K?. A linear extrapolation to zero temperature gives a
resistivity of just more than half that at T , so that we get 7o ~ 8 mJ {/ mole
K? (nu, = 1 for LSCO®). This is in reasonable agreement with our previous
estimate for ~,.

We note in passing that, using the expression given in Ch. 2, the
Ginzburg-Landau parameter, K(7.) can be determined from critical mag-
netic field measurements. The value obtained is K,(T.) = 63, indicating tl:at
the material is strongly type-II (A 3> £(0)).

The electromagnetic coherence length, £(T) can be obtained from the
e::cpression in Ch. 2, and the value of vr deduced above from H',(T,). We find
£(0) =35 A, in the clean limit. The tiirty limit value is simply € = £, the n{ean
free path of the electron, and a lower bound would be'® 2 24, the Cu-O
bond length. Note that this coherence distance is not a correlation length in
the phqse_trafhsition sense—it does not diverge at T = T, for instance. The
value obtained in the clean limit is significantly different from that obtained

s

using_ the BCS expression, £EC5(0) = 7.7y in this case ‘EE%P = (.65 .

Note, however, tht; reduced quantity %%l = 0.83 which is not very different
from the BCS value of 0.75 .
We have also evaluated the London-limit penetration depth {clean

limit) AL(T), and, using the values of vr and N(0) quoted above, we obtain

TN

i
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Figure 3.4 The temperature variation of the London penetration depth
for ﬂSCO (solid line) compared with that for Pb (dashed line). The S-shape

is indicative of strong coupling. The BCS curve (not shown) is negative with

]
r

a minimum value of -0.21,
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AL(0) ~ 2950 A. [The BCS value would bt; 2700A.] These estimates are in
the right range, as Table 5 indicates. To illustrate the differences from BCS
due to strong coupling most clearly, it is best to calculate the pénetrgtion
depth deviation function, D (t) = (f{,—%) —(1—1t*), in analogy to the often
used magnetic field deviation function. The subtracted term is the prediction
of the two fluid model.''? In BCS, both deviation functions are negative
deﬁmte Dy(t) has a minimum at a value Dpin(t) a2 ~0.21. Fig. 3.4 illustrates
Dy(t) for La; gsSrp15Cu0y and Pb. Note that in both cases the curves are
S-shaped. It is hoped that improved muon spin relaxation experiments can
decide.between c\liﬂ'er;ent possibilities through such a plot.

Before closing this section, we should also mention the important
isotope effect measurements whicil have taken place.!'!'!!? Oge group'!! finds
Bor = 0.16 £ 0.02, whe:;e Bi = —fl—‘:-&, and M; is the i** element, in this case
oxygen. The other group!'? finds a similar result, but with a much larger
error margin. The naive isotope effect coefficient one expécts 188=05.1tis
normally argued that this can be reduced due to finite y*. In fact, when large
values of A are present to produce such high T, 's, the reduction in B due to
p* is very small. Another important point is that here a partial isotope effect
is involved, i.c. only oxygen atoms aregreplacec O isotopes. Her‘x\ce the
simple fact that wpp ~ M -¥ no lon‘gexrﬁolds sincé p\honon modes in general
involve all the :E‘cin}/s in the unit cell. Rainer and Culetto!!® have analysed
in detail partial isotope effects and Ashauer et al. '™ have found that under
the assumption-that phonon modes that are due to the oxygen atoms can
}be isolated from the rest at high frequency, a small isotope effect is not
unexpected. The most fi<goi-ous manner in which to compute a theoretical

estimate for f,; is for Weber to recompute a’F(w), using O'® in place of



88 ‘ 3 High T, Oxides

O'® to compute the phonon dynamics for LSCO. He has done this,'"! and
finds B,- =~ 0.30 . Another effect that has not been mentioned so far, but has
been included in Weber’s calculation is that phonon frequencies are generally

renormalized by the electron-phonon interaction. (In fact Weber®® uses as a

lattice instability criterion the requirement wy, > 5meV.) The simple rule )

that wpp ~ M -4 applies to unrenormalized phonons. The effect of a mass
change to strongly renormalized phonon frequencies will in general be quite
cornpiicated. Hence at this point it is difficult to say whether the measured
" isotope effect rules out the phonon mechanism. We also note that in NbiSn,
a well established electron-phonon superconductor, 8 = 0.08,!1% in signif;icant
disagreement with that expected from simple arguments. -
The'e:xperimental data is sufficiently vague that few conclusions can
be reached about the validity of Weber's a?F{v). Most important in this
regard will be a repeat of experiments on single crystals, along with a the-
oretical analysis which includes anisotropy. In the ensuing sections however,
we will continue our analysis based on the isotropic Eliashberg equations, in

two extreme regimes, weak-coupling and very strong coupling.

3.4 VERY STRONG COUPLING REGIME: %2 1

The tunneling experiments (see Tables 5 and 6} on both LSCO and’
YB;;Cu;,OTw (YBCO) indicate that the gap ratio ;;%f’.: may be very large.

As was mentioned in Section 3.3, ff}“- increases as A or M-I“ increases. Hence

it is of interest to study the regime % 1 for the high T. oxides. Further

¥
motivation comes from the simple observation that Z= x 0.22 for LSCO. In
_the absence of a calculated o?F(v) spectrum for YBCO (Weber!'® has since

produced a calculation whith yields only a very low T, ) one can assume

Y

v
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a spectrum having the same shape as the LSCO.compm.'md., but ofrcourse
with coug.ling stfength scaled to give T. ~ 90K. This immedintely gives
k ~ 0.6, and, in fact mode softening is 'expcc‘tcd, due to renormalizition
from increased .electron-phonon coupling, so that even.la.rge.r & is expected.
Of cour.;e, we have assumed that a lattice instability has not occurred first,
which at present is in conflict with Weber's findings.

Unfortunately, the agalytic approach used in the previous chapter can
no longer be used, as there is no small parameter with which one can expand
~ solutions away from BCS theory. Hence.we have proceeded numerically,'”
using the scaling theorems developed in Ref. 43. We have taken twc/) spectra,
- that of Pb and tl;at of Weber's a?F(v) for LSCO, and -coqs'ltructed models
of the form o L |

o’ F(v) = Ba*FO(bv) , : T (3.3)

so that both T. and uy, can be adjusted independently. Here, o’ F(v) refers
to either of the two ba.se'spectra. In practice, only B need be adjusted so
that a universal curve for a particular spectral shapé can be obtained for
many properties as a function of the strong coupling parameter T, /wy,. This’
“universality” pa:_r.a.llels the stri:I:{ universality found in Ref. 91 for Einstein

spéctral functions. There it was found that \ _
=) !

7 24, T,
=g =2 . (3.4
- o - o(2), (3.4)

where g is a universal function. For a realistic specttal s}xape, “vg” is replaced

by “wra” and the same unii'eré‘\fhify holds asleng as the spectral shape remains
y Y . g :

' the same, within the scalings iniplied by Eq. (3.3). Fig. (3.5) illt‘{strates f;‘-’-ﬁ:

—y

‘,

.

i
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Figure 3.5 The gap ratio, 25 vs. I‘- for two spectral function shapes, that
of Pb and LSCO. Note that in the 3 very strong coupling reglme, 3—@'- continues
to rise above the BCS value. The shape dependenca. is more pronounced in

th:s regime; however, the qualitative feature of increasing 2—‘5"- seems to be
shape-independent. !
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as o fuqctiori of T./uwy, well intia the very stfong coupling regime.- As can
be scen from the figure, ffz“.; continues to increase to values 8 ~ 10 for

" T: ~ wi. Note that the independence on spectral shape-\;rhich existed in the
regime % < 0.2 (see Fig. 2.4, Fig. 3.2, and the initial pc;rtion of Fig. 3.5) no
longer remains in a quantitative sense for M-I': ~ 1. However, qualitatively the
main feature is the same regardless of shape: %Tf!: increases with increasing
strong coupling. Although not apparent from this figure, we will show later
on that ;’BQT“; actually saturates with increasing ﬁ The effect on almost all
other properties is drastically different. Fig. (3.6) illustrates the norrr'mlized
specific heat jump f = A—S‘J%—d as a function of % Note that the enhancement
due to strong c?‘upling ceases at ‘_—% ~ % As % increases beyond this point
F - the normalized speciﬁc'heat Jjump becomes lower in value, to a point where f
becomes les's than thé BCS va.lt.xe, 1.43 . As was already mentioned in Ch. 2,
this decrease does not represent a physical process. It occurs as a result of the
normalization denominator we have used, ,T.. .This deriominator is often
associated with th normal state_electronic specific heat .at T, . However,
when electron-phonpn coupling be;:ornes important, Grimvall*® has shown
that the normal state electronic specific heat becomes Cy{T') = v(T)T, where
4(T) is given by Eq. (2.54). For moderate electron-phonon coupling, as in Pb
or Nb3Sn, ;;he effect at T, is an enhancement of less than 20% and hence not
so important. However, as -E'_- approache's'unity, the renormalization begins
to diminish to zero, as we would expect, since at high temperatures the
. ﬁhonons will have no effect on the electronic specific heat. Hence, as MI'-
increases, ,?—(QT:L)T—.}E will saturate to 2 maximum value in the same manner as
%1‘!;, since y(T.) will reach some constant value. However, the behaviour of

f will be different from the previous ratio, since 23 MI““increases, A increases,
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Figure 3.6 Plot of %(1%1 vs. % As ;'E:- increases beyond the conventional

regime (fi- ~ 0.20),"the normalized jump decreases to values lower than the’

BCS value,

‘\_ | .
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and thus vy continues to'increase.

It is more useful, however to use f rather than the more physical ra-
tio, because in practice, it is very difficult to extract 7(T) from experiment.
In conventional materials, an applied magnetic field causes the sample to
become normal, and the specific heat can be measured down to low tember-
atures. At low temperatures the phonon contribution itself becomes frdzen
out, as well as the renormalization to the electronic contribution. Hence, thc;
specific heat will become linear in temberature. The conventional plot of %
vs. T? will have an intercept which is taken to be (and is) 7o. In the high
T. materials, this procedure to extract Yo (never mind y(T)!) is impossible
because of the hi‘gh' magnetic fields required to make the sample become nor-
mal. However, attempts are made to extract v, thrrou'gh other measurements,

\)d(:h as the upper critical magnetic field, through the use of Eq. (3.2). Note

that it is then o, and not +4(T.), which is obtained.

ate strong coupling effect (a lowering' from the BCS value of 0.168) is reversed
in the very strong coupling regime, as is illustrated in Fig. (3.7). The reason
1s the same as before; o is used instead of ¥(T'). Equation (B48) allows us
to calculate h.(t), t < 1, as well in the vef}' strong coupling limit; it will
N saturate to some constant value; this reflects the fact that the low temper-
ature blehaviour of the thermodynamic critical field as a function qf strong
coupling is qualitatively the same‘as. the behaviour near T, . Finally, we il-
lustrate the thermodynamic deviation function. D(t)l = z—cﬁ}l - (1 =¢%), in
Fig. (3.8). The plotted points indicate the minimum and/or maximum }'alue
of the D(t) curve {as a function of ¢) for'each i value. .\.'ote that for some

values of I= the curve in Fig. (3.8) is double-valued. indicating that the Dit)

4

TN . 2 .
In a similar way we can study the ratio ﬁ%oh}' Here again the moder-.
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Loy

Figure 3.7 Plot of 7;93% vs, 5;':- in very strong coupling regime. The trend
has reversed, as it did for the jump, and values above that of BCS are found

in this regime.
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curve is S-sﬁaped. In the BCS regime (& ~ 0), only a minimum is present,

indicating that D(t) is negative definite. As is well known for strong cou-

.plers such as Pb (& = 0.128), D(t) becomes p-os.itive definite, as is shown

in Fig. (3.8) (since only a maximum occur-s)'. Hoﬁevét, in the very strong
coupling regig_le, the curve becomes nega.'tive _def_inite once again, with a min- .
imum value which can greatly exceed (in db_solute value) the minimum value
found in BCS theory. Thisisa very strong sig‘qz}tgr;e for very strong coupling.
~In a similar manner, the upper critical ma;g;létic ﬁ;:ld,“" the Ginzburg-
Landau parameter K, g’),"” and the electromagnetic properties!*® have been
studied in the very strong coupling regime. We illustrate some results for
Hcg(T)b, referring the reader to references 119 and 120 for a further discussion
of the other properties. Fig. (3.9) illustrates ng_ (T, t*) for the two spe_t‘:tra.l'
'sha.l-)es for T =0, T. and t+ =0, 100meV. The st.rdng coupling correction

parameter 7 is defined®! _ S
Hoa(T, t*) = qu (T, 1) HES(T, t+) . (3.5)

Again, the moderate strong coupling trend is reversed in the very strong
coupling regime, where the correction to the BCS value becomes less than
unity. Note that at T, , the curves representing the clean (¢* = 0) and dirty
(t* = 100 meV) limits merge in the very strong coupling regime indicating
that the resuit is independent of concentration of impurities. This is ex-
pected because as & increases, the typical phonon frequency decreases, and
the phonons behave more like static impuritjes, so that the “clean” limit cal-
cuIaFion will actually look “dirty”. At T = 0, this is no longer true because

the phonons are frozen out so that there ought to be a difference .

»
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Figure 3.8 Plot of the maximum or minimum (or both when it is S-shaped)
of the critical magnetic field deviation function vs. % In the very strong
coupling regime the curve becomes negative definite with minimum values

-

which exceed the BCS value in absolute terms. ' ’

o
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between the strong coupling corrections in the clean and dirty limits, ns there
oy
is. Note, moreover, that the BCS expressions® exhibit & qualitative difference

LI
as 1= increases.
“n

-Another important effect of very strong coupling is exhibited 'in
Fig. (3.10), where h.(t,t*) is plotted as a function of reduced tempera-
ture, t, for the same two impu:ity concgntrixtions. It can bhe seen that as :E‘_-
inoreases, the curves develop a large positive curvature, cont.rnry to the nega-
tive curvature observed within BCS theory. The zero temperature behaviour
is more clearly illustrated in Fig. (3.11), where h.2(0) is shown versus &
for t* = 0 and 100meV. The quantitative aspects of the cur¥es depend on
the spectral shape used, as is clear from the two examples we have uéed.
However it- can be seen that generally, as -41;, increases, hcg(O,t"‘) increases
also. The t* = 0 curve for LSCO shows an. exception to this rule, where
he2(0,t% = 0) begins to decrease slightly with in¢reasing % Moreover, the
increase is much greater for ¢*" = 100meV than for t+ = 0 when % 2.1
The inset displays this more conviﬁci_ngl_v, where h.2(0, t*) is plotted versus
t* for ¢t* ranging over four orders of magnitude. When % is large (as it is
here ~ 1) the “dirty limit” is only achieved when t* becomes very large.
This is exi)ected on the basis of BCS theory, where it can be seen!?! that the
relevant impurity parameter enters via the‘expression: “

f+

() = 5= (3.6)

aT(1+A)

+

If the “dirty limit™ is designated by (t+)* 2> 10. for example, then as -_E:-

increases. A increases and the appropriate ¢+ will also have to increase. The
= .

inset also clearly shows that in this case the difference between clealn and

dirty
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ngure 3.9 (a) The strong coupling correction parameter, MHa (1%, T) is
displayed for T = 0 and T = T}, and for ¢+ = 0 and 100 meV. ‘Not{: that all
the correction p'ara‘xﬁetefs display the same quali!:ative trend. In the convén-
tional strong coupling regime (I‘- S, 0.2), all the corrections are grea.ter-than
one, and modest. However, in the very strong coupling reglme (IL = 1), the
corrections differ substantially from umty, and are less than one. No sxgmﬁ-
cant quahtatwe difference is noticeable between t* = 0 meV. (b) The same
results are displayed as in (a), but for a Pb spectrum. No quahtatwe change
from (a) is observed\:ndxcatmg that the results noted in (a) are not very |

model dependent.
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limits is greatly enhanced over the difference obtained in the BCS limit.

One of the main results of ‘thi‘s section is that while oﬁly one value of
% (~ 0) will produce a BCS value for 2:7'.* in general two values are possible
for most other ratios. Thus, BCS type results, fbr.lexﬁmp.i'e“‘;‘ c:m _Be achieved
in two ways; (1) the conventional way, with ML. ~ 0, and (2) with .\:;sry strong
coupliﬁg, & > 0.3 . However, the gap ratio measurement is critical, as its
value will rule out one of these two cases. |

We also note that there are additional reasons for Eonsideri‘(xgrthe
very strong coupling limit. The normal state resistivity is roughiyl 7li‘ng‘a.r
as a function of temperature, which indicates?! that fﬂe boson causing the

scattering is low in frequency compared to the temperature. (Note, however,

that Gurvitch and Fiory'® have analysed the linear dependence to imply

that A must be small.) Moreover, Deutscher'?? has analysed some of the
.available data and has found that the .Ginzburg criterion yields a l;road
critical region for the oxides, so that the critical behaviour should resemble
that of superfluid He* rather than that of conventional superconductors.
Some of the more recent data on specific heat,!™ for example, is however,
very mean field like. This can be recovered from Deutscher’s analysis provided
strong coupling effects are important, and hence would suggest indirectly that

the high T, oxides are in the strong coupling limit.

3.5 COMBINED PHONON-EXCITON MECHANISM

'Exciton superconductivity was first suggested as a theoretical possi-
bility in 1964 by Little’®® and Ginzburg.!?* The idea is very similar to that
involving phonons. Fig. (1.1) still applies, except that the polarization is not

due to a movement of the ions themselves, but rather to movements of
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Figure 3.10 (a) The reduced upper ;rii:ical magnetic field, in the clean
limit, is d.isplayeél as a function of reduced temperature T'/T.. We show .
curves for three systems in the very strong coupling regime for both Pb and
La, 85519 {sCuQy. For Pb thgy can be characterized by % =114 (systém 1),
% = (.86 (systf;rn 2), and “% = 0.57 (system 3). For La; 55rq.15CuQythe
scaled spectra have (—E:- = 1.19 (system 1), % = 0.83 (system 2), and
MI‘-_ = 0.60 (system 3). Also shown is the BCS result, for comparison. Note
tha.t- in the very strong coupling regime the curves have developed a large
positive curvature, & feature missing in the BCS model. Alsc; note that for
Pb the value of h,(0,tt = 0) is still increasing as “l;: is increasing above
unity, whereas, for LSCO h.2(0,¢* = 0) has attained a maximum value near
£f_— ~ 0.6 and is slightly decreasing as % increases further (see Fig. 3.11).
(b) The same results are displayed as in (a), but for impuritj‘r parameter

tt = 100 meV.
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electrons (say on the ion cores). This polarization will result in a net pos-
itively charged region of space to which a conduction electron will be at-
tracted. Little'?® envisioned a one-dimensional geometry with conduction
| chains along side “exciton” chains. The two types of electrons (conduction
and those that produce the excitons) are then physically separated from one
another. Ginzburg considered a two-dimensional geometry with a metallic
layer sandwiched between two dielectric layers. This geometry was lt;ter in-
vestigated in detail by Allender, Bray and Bardeen,'® within the Eliashberg
formalism. There are ﬁ:any object‘idns to the ;den of excitonic superconduc-
tivity, which have been neatly summarized be Little.'® We will not reiterate
them here, but simply gc_ﬂze that many can be ow;.rcome under the proper
conditions. Perhaps the most serious problem is that vertex corrections may

t,1?8 since the ratio of the electron mass to exciton mass

* become importan
* is no longer small. We will nonetheless proceed, following Allender et al.,'®
and ignore this complicatidn.

The most compelling reason for considering excitonic supercbnduc-
tivity is associated with this last problem, in that the meciiating boson (ex-
citon) now has an electronic ene;-gy scale. Hence, in the simple BCS picture,
T. will be significantly enhanced (see Eq. 2.19a) because the prefactor is
now wey » wp. Theoretical work!?"~!3! has also suggested‘the possibility
of excitonic superconductivity in the high T, oxides. Several experiments
have indicated that e.xcitoz-ls may be playing a role in these materials. Far-

infrared optical measurements!3?~134

reveal an increased absorption at high
frequencies (0.44eV in YBCO and 0.37eV in LSCO), which may be due to

an exciton mode being present. Moreover, the presence of the increased
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-

Figure 3.11 The reduced upper critical magnetic field at zero tempera-
ture, h.2(0), is shown for the scaled spectra as a function of E:-, for impurity
parameters t* = 0 and 100 meV. All curves show a modest decrease below
their respective BCS values as -Ei— increases beyond BCS in the very strong
coupling regime. Note that the difference between t+ = 0 and 100 meV be-
comes much more pronoun;:ed as -E‘: i;:lcrea.ses (although a value of MI‘. exists
in the intermediate strong coupling regime for which there is no diﬁ'erence). .
The striking enhancement of the difference between the clean and dirty limits
in the v;:ry s'trong coupling limit is illustrated in the inset, where the dirty
limit deviates from the clean by roughly 100%, as compared to 5%"in the
BCS model. '
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absorption has been shown!3*!3 to be strongly correlated with the presence
of sul;erconductivity in the material. ( The ‘peak’ has since disappeﬁreld'
in single crystal measurements.'*** However, the significance of the a.nomn-
lous: “Drude-like” absorption is still ’controversial.”“)' Meanwhile, most far-
infrared and some tunneling measurements indicated a BCS value for the gap

ratio (see Tables 5 and 6), which, as we have argued earlier, implies that the

. | mediating boxn is electronic in origin. Finally, measurements of the isotope

)

effect _ha.v}e suggested that the superconductivity is not phononic in origin.
Measurements were first performed!313 for YBCO samples with %0 re-

placed by 0. No isotope effect was observed. A subsequent measurement!3?

.reported a small isotope effect of B, =~ 0.05, where Box = —;‘ﬂ"%. The

subscript “oz” indicates that only oxygen a&n‘ns are fei:la.ced. Measuye-
ments on LSCO samples revealed much higher isotope effects with one group
reporting'!! B, = 0.16+0.02 and thé other reporting!?0.15 < 8 < 0.35. On
the basis of Weber’s calculation,!!! the éxpected isotope effect is 8o, = 0.30,
so that a discrepancy exists with the first result. Note, however,as we have
already mentioned, this theoretical estimate can be significantly reduced!!*
if more higher frequenfy oxygen phonon modes are participating in the:
electron-phonon interaction. Infthe meantime, the isotope effect in Ba.PbBiQf
has been measured!*® to be §,, = 0.22 . One would like to think that the same
r;echanism is causing superconductivity in all three of these compound's',, so

140,141

we are led to investigate a combined phonon-exciton mechanism. The

case of a 96 K superconductor has been treated in Ref. 140, using the model:

1 1 :
GQF(L’) = EAph Wph 6(!! - wpl,) + 'é'z\u Wex 6(!/ — u,_.,) (36)

~
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where Apn (Aex) i8 the electron-phonon (electron-exciton) electronic mass
renormalization. The two Einstein modes have been placed at frequencies
wph = 8 meV (to simulate the phonon sﬁectrum) andwe, = 500 meV (to sim-
ulate ti’xe exciton spectrum). The coupling strengths were then varied such
' that f;‘; spanned the range from 0 to 1 j\m = Aex' /\phj. We will slimply
report briefly on the results found there. The full isotope effect, gap ratio,
specific heat jump and critical magnetic field properties “\rere calculated as
a function of fl‘: It was found that an isotope effect of 0 < § < 0.05 was
" not very restrictive, x e. a large ra.ng‘e of ;{‘-";- was possible. Furthermore cal-
culation of the various superconducting properties resulted in values very
_close to BCS values, and hence, would make & éombin;;l mechanism difficult
to be distinguished from a pure exciton mechanism through exﬁeriments. It
is noteworthy, however, that in all the properties calculated, the trend as a
function of decreasing e 32 (from the “BCS” value of 1) was qualitatively sim-
ilar to the trends observed in the very strong coupling regime. This indicated
that v;rhile rﬁost of the T, (about Qb K) was caused by the “exciton” peak
at wex = 500 meV, the thermodynamic and critical magnetic field p;'operties
were largely affected by the phonon peak at w,, = Sme{/, which, considered
on its own, gives the rati’o f‘_— z~ 1, which is in the; very stroné coupling
regime. Note, howevar, that f—:‘% remained relatively BCS-like for the range
of 2 for which 8 < 0.05 .
Because of the relatwely large 1sotope effect observed in the LSCO
. compo d, the effects of a combined exciton-phoron mechanism are much
more 1p. erestmg to study. Moreover, the detailed calculation of a?F (v) by
1\r‘keber69 a.llows for & more detailed ca.lculat:on although we follow the pre-

vious exa.n;ple and model the exciton mode-by the same Einstein spectrum
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located at wy, = 500meV. The relative weightings of qthe phonon and ex-

" citon contributions are then adjust.éd keeping T, = 36K. We hnlg:sed

p"(we = 1.53eV) = 0.15 . The results for the isotope effect coefftsient,
Box ure illustrated in Fig. (3.12). Note that when only phonons are.present

(-j“:‘; = 0), Box is near 0.275, wherea;s, when only excitons are present, the

isotope coeflicient approaches zero, as is expected. We have used Weber's

calculated spectrum with 80 replaced by 0 in the pln.;xes. While there is a
small added effect from replacement by 80 along the cl{a,ins, ‘([3;';*‘3 = 0.03)

_we have been unable to include it in dur calculations. Allowance for this

will be made later on. Also note that had the isotope coefficient been mea-
sured to be near zero, the phonons could not have played a significant role,
B . n(

since the increase in §¥ from zero is relatively steep (compared to that for

the 96 K superconductor —see Ref. 140). Note that the value 'forbt}_xe pure

"phonon case would be slightly higher, except that there is a u* present. The

small maximum near j‘:: = 0 is indicative of the fact that as A, increases

from zero it initially has the effect of representing a negative y* and hence

tends to cancel somie of the effect of the existing u*. The manner in which

~ the isotope effect was calculated followed the method used by Rainer and

Culleto.!*® They kept the cutoff in the A-channel fixed, and simply shifted
the frequencies in the o? F(v) spectruin downwards in ifverse proportion to~
the square root of the mass change. This method cqutrasts with the more

complicated procedure?:142.143

of referring the cutoff to the phonon spectrum
: o

so that 4" acquires an artificial mass dependence through its cutoff. We have

the added advantage of having Weber’s more accurate calculation of the °

phonon frequency shifts at our disposal as well.



106 ' 3  High T. Oxides
. | \ -

Figure 3.12 The isotope effect coefficient Boz V8. i‘;, with p* = 0.15 fgr
the combined phonon and exciton sll)ectrux.n. This calculation uses Webef"s
spectral functions calculated with and without oxygen replacement in the
Cu-O planes. The eﬂ'ect%\ep.lacement of 0 by 80 along the chains is
very small. Note that the experimentally rﬁeasured value f,; = 0.16 £ 0.02

gives rather stringent constraints on the possible value of %f: within this

model. -
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Fig. (3.12) allows us to decide on the ratio 61' Aph t0 Aeg in LSCO on
the basis of the isotope effect measurement!!! alone. lTa\king into account the
axial site oxygen isotope effect we require fox = 0.14 in Fig. (3.12), which
dctermines ;\’1“: a2 0.5 . This choice will depend somewhat on our choice for‘
i" and wex, as well as the manner in which we sirr;l).ly_ scaled Weber's a?F(v)
spectrum. However, for definiteness and for purposes of illustration we fix
;\' = 0.5 and investigate other properties.

Fig. (3.13) displays the gap ratio, 75, as a function of #*, Again
in the pure phonon case, we have simply Weber's spectrum, so that the
results of section 3 apply, and ;33—%‘- = 5.3 . In the other extreme a purely
excitonic mechanism implies th;a.t ﬁf = 0.006, so that a BCS reév.'ult will
be achieved (see Fig. 3.2). Our choice of ;A:l- implies that %}; = 4, which
is certainly in the thick of things, as far as experiménts go (see Table 5).
Note that this and ensuing results will differ slightly from those of Ref. 141,
where the choice of A“- ~ 0.4 was made based on the calculated full isotope
effect. The normalized specific heat jump, -A—g@ , is illustrated in Fig. (3.14).
,\m = 0.5 implies %% = 1.7 . Again, here we cannot check this against

experiment, but instead rely on it to determine y,. We use once again the

experimental value A—C;g&l =172 K, (see Table 3) so that v = 10 m‘;‘:K, To
detcimme the dens:ty of states we need to know A¢,.. Fig. {3.15) illustrates
Aph vs. 2=, from which A can be determined for 2= = 0.5 . We find
Awr = 0.9 . Using Eq. (3.1), we find N(0) = 1.12 5=2=—. This value is
far more consistent with the values 0.95'%% and 1‘.08"’3‘e determined through
band structure calculations than the value determined directly from Weber’s

" spectrum (0.36 in the same units), and hence lends support to the combined
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= _ | l
\ - .
Figure 3.13 Plot of ﬂn— vs. —‘L 1 for the combined phonon-exciton model

conszdered in the text. A cho:ce of —"- = 0.5 implies ffg: 2 4 which is in

better agrgement with far-infrared meagurements of the gap edge._.

-
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r

. ‘ |
plionon-exciton model for LSCO. The degree of agreement can be varied,

however, by adjustment of choice of -}:l- and by variation of 4*, not to mention
' the choice of the experimental value of A—c;g‘l. What is ;:lea.r, however, is tim.t
"! signiﬁca.ni improvement has been achieved over the pure p}‘mnon model.
Theoretical calculations for the reduced upper critical magnetic field
h2(0) are also presented in“Tabl;a 4. We have ignored Pa‘.ul;,. iimiting, as it
o was found to play a minor role.!®™ The experimentally accessible quantity is,
however, H/,(T.), and variots measured values are given in Table 5. Most.
of these have been taken on polycrystalline samplds. The measurement of
Hidaka et al,“‘“. for example, clearly demonstrates the anisotropy of a single
crystal, which we hav?_ assumed has been averaged‘over iﬁ the polycrystalline
samples. There is a considerable variation in the slol;es, which may be due

A
\,‘/&0' impurity dependence of the sample involved, as well as the choice of onset

or midpoint, as previou§ly mentioned. b

| One can write H;(T.) = Fla*F(v), u*,t*])/v}, where F is a func-
tional ‘completely deterrei_ned by the model spectrum, Coulomb pseudopo-
tential and impu;'ity content. If we fit an average slope (say 2 L), we find an
// ‘ aver}ge Fermi velocity, vrp = 0.14x10°m/s for ¢+ = 0 and vr = 0.58x10°m/s
for t+ = 10:::;‘/ , a fairly dirty value. For completeness we have presented

results in Tgble 4 for the reduced Ginzburg-Landau parameter k(T), and the

reduced thermodynamic critical field, k.(0).
Electromagnetic properties have been calculated for the combined

phonon-exciton mechanism. In Fig. (3.16) we plot the deviation function for -

. . \
the London penetration depth D.(t) = ;{% — (1 = t*), as a function of

reduced temperature for the case f“: = 0.5, as well as the cases A, =0
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. Q <

Figure 3.14 Plot of -A—_i%l vs. ;\”-‘:; for tthe combined phonon-exciton model

considered in the text.

.
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(pure phonon) and Ay, = 0 (pure exciton, BCS). The differences betwwn
the three cascq are quite promounced, a.lt.houg'n thcﬁg types of curves nre
generally not uniquely determined, as they are unpunty dcper’;dent as well,
However, if LSCO can be established as being i_n one of the impui'ity Iimit;;,
then distinction of the three cases ba.sed on these types of curves may bl‘e’
possible.. Using the Fermi veloc1ty quohed above for the clean hmlt and the
density of states N(0) quoted earlier, we find the zero tempera.ture Londv\
penetration depth, Az(0) = 2400 A. The zero temperature electromagnetic
coherence length is found to be E(O) = 294 which is compa.ra.ble to the cell /

Bize in these matena.ls

Finally, one very important consequence of a comi;ined_ exciton-phonon
model was first indicated in the woxl'k of Kus and Carbotte. 144 They found
that even when the phonon coupling is relatifely/.smpll, the I-V (chnracteris—
tic at low frequency displays a large variation when a high frequency peak is
p;cscn? Tunneling xyeasuremé'nts,at higher frequencies are difficult so that -
such a high frequency peak (as caused, for example, by a high frequency
bptical phonon, or somé electronic excitation) would rem;a.in undetected..'ln-
version procedures would then inevitably fail. T‘his has al_;ea.dy happened
in the case of Ba(Pb,Bi)0;.'** We expect a siniilar} problem in the case of
L5CO, assuming it i3 described by a combined phonon-exciton model.

While the possibility of a cou;bine‘d phonon-excitoq,u{odel looks very
.promising the existing expe;'imental information is not sufficieht to rt}le out
either the pure phonon or pure "exciton™ (BCS) case. In particular Schoss-
mann et al. ' have examined the former. Arberg et al. **® have considered

—_——

the latter case and find consistency with their experimental results.

' v
s
/,—— ,

) ¥
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Figure 3.15 Plot of A, vs. -}‘-";'for the combined phonon-exciton modet

considered in.the text.

ORI
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3.6 VERY STRONG COUPLING REVISITED
14
(i) Asymptotic Limits '
o~
In section 4 of this chapter we discussed the possibility of the high T -

oxides being in the very strong coupling regime, % 2 1. In this section, we k
pursue this pggsibility further, and examine the behaviour of superconducting
properties in the limit A — oo. This exercise,.though somewhat theoreticgpl,
will help elucidate the effects of strong coupling, while at the same time will
equip us with some useful limiting values, \ |

The first work on asymptotic limits was done by Allen and Dynes.?®
They found that in the limit of T. > vg, where vg is the freqﬁency' at which

-

the Einstein spectrum is located, T, is given by:

T, = 0.258 \/Avg . R X))

Noting that A = v_ﬁ’ Eq. (3.7) says two things:

|

1) If the Einstein ﬁ:equency is held fixed, then T. & VA, and grows .with

increasing A.
2) If the area is held fixed, then T, « Jz, and decreases with incréasing A.

The optimum spectrum analysis for T, described in Ch. 2 implicitly keeps A
fixed while varying A, so that the optimum A is some number of order unity.
Conversely, if vg is held fixed, the optimum A will be infinity. In studying
ratios such as %32: % and ﬁ%,a‘g however, qne finds that they depend only on
A, so that the optimum spectrum is unambiguously defined. In their search for
aﬁ optimum spectrum for %Iﬂ.:, Carbotte et al®! found that ff"—.fi: continued

to increase as A was increased. They showed that :—;I.": approaches a universal

number in the limit A — oo, since Ay & v/ Avg has the same asymptotic
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Figure 3.16 Plot of Dy(t) vs t for the pure phonon case, for ,\if; = 0.5,
" and for the pure exciton case, in the clean limit. Very accurate data on the
penctration depth could discern these possibilities. Additional complication

arises, however, due to impurity dependence.
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behaviour as T, . The proof used is not entirely rigorous, as is explained
s . 1
in Appendix E. However, numerical .xyot\‘k,has verified the result. Hence, the

important result is that %ﬁ- could not increase indefinitely with increasing

strong coupling was demonstrated. We have found ﬁ%‘!- = 13. It is im-
‘ ° | max .
portant to note, however, that nonzero u* and realistic shapes tend to reduce

this value, and furthermore that this maximum value is achieved only in the

limit A — oo. In fact, for the Einstein spectrum used in Ref. 91, ff% ~ 9

For A = 20. Such a large value of A is most certainly beyond the physical
regime for, phonons; beyond this limit the exercise is more academic, un-
less perhaps very low frequency electronic gxcitations are responsible for the
superconductivity .

An analytic estimate was also given in'Ref. 91, and is improved upon

147

in Appendix E. Kresin'*’ has also provided an analytic estimate; he finds

ff% ~ 13.4, which is surprisingly close to the numerical gdsult. On the other
hand, we note that Bulaevskii et al.**!*® claim that ﬁ%‘.: o VA and hence
never reaches a maximum. While we of course discount this claim, it‘is to
some extent irrelevant; a practical limit appears to be %ﬁ- = 10.

Other asymptotic limits!*® follow through an analysis similar::\o that
giv-en in Appendix E. The free energy difference, Eq. (2.26), becomes, near

T. , for vg — 0,
AF
N(0)

where a is a constant. Thus, using Eq. (2.27), we find,

. {AC(T.) b
— ] = = : 3.9
f\l}-nc}o( ‘TOTC ) /\ ! ( )

=aAvg(l —t)? | (3.8)

where b = 19.82 was determined numerically. The reduced thermodynamical

critical field, h.(t), is also found to display the behaviour,

—
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Figure 3.17 Plot of h.(t) vs. t in the limit of A = o0. The curve has -
pronounced positive curvature with the zero temperature value unciear. We
believe that it is (pathologically) infinite, reflecting a q:.lalitativé difference
in.sca:ling with A at T = 0 (as compared to T > 0) for k(T), which is not

present, we believe, for Aq(T).
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lim he(t, A) = g(¢) (310)

where g(t) is a universal function of reduced temperature, and is displayed in

Fig. (3.17). Our analysis here in inconclusive, however. We have been unable

to extend our calculations to below ¢ = 0.01, and it is not clear whether g(t =
0) is finite or not. A theoretical analysis at T = 0 is prevented by the di’ﬁi&ulty
mentioned in Appendix E. Similarly, the.ﬁpper critical magnetic ﬁelds have
not been analysed analytically, although it is known numerically®*143:89 that
he2(0,2T = 0) —const., and hg(0,t* — o0) x /A in the}wmptotic limit,
Finally, the electromagnetic properties are readily studied in the asymptotic
regime. From Eq. (2.39), we note that lim) .o y2(t) = % for t > 0 and “ar”
a consta.nt.. Note, however, that limy_. ye(t) = - Moreover, Eq. (2.41)
yields for the coherence.length, limy_. £(t) = 3& Note that included in
these .constants (ar,a¢, a.) are bare masses and Fermi velocities, and not

- dressed quantities. The asymptotic beha.vioﬁr will clearly differ depending on
whether bare or dressed (v;- = 5, m"=m(1+ ), N(0)" = N(0)(1 + A))
properties are used. ’

‘The coherence length lends itself to further study, analytically, since

. . =T :
A11{1;1; Z(iw,) = W A, T>0. (311)
Hence,
. vp -1 :
= - . 3.12
fm it =o7y T>0 (3.12)

Note that in the dirty limit we found in Ch. 2 that £(¢) = 2—:%,.50 TX has
taken on the role of impurities, as we have already argued it should, since low
frequency phonons are really like static impurities. Note that finite tempera-

ture is important, as indicated by the presence of “T™ in the correspondence.

4o
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Figure 3.18 Plot of Re A(w) (—) and Sm A(w) (++++) vs. w pro‘duced from
an Einstein spectrum with wg = 8 meV', and A = 1. The.*stra.ight\da.shed line
is the curve f(w) = w. See text for an elucidation of the features of these

curves.
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Figure 3.15 Plot of A, vs. %f:‘-'for the combined phonon-exciton model

considered in the text.
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3.6 VERY STRONG COUPLING REVISITED
(i) Asymptotic Limits '

-~
In section 4 of this chapter we discussed the possibility of the high T, -

oxides being in the very strong coupling regime, ;—% ~ 1. In this section, we-‘
pursue this po.tssibility further, and examine the behaviour of superconducting
properties in the limit A — oo. This exercise, though somewhat theoretical,
will help elucidate the effects of strong coupling, while at the same time will
equip us with some useful limiting values. \ |

The first work on asymptotic limits was done by Allen and Dynes.?®
They found that in the limit of T, > v, where vg is the freqﬁency at which

the Einstein spectrum is located, T. is given by:

T, = 0.258 /Avg . - @D
Noting that A = };‘[ Eq. (3.7) says two things:

1) If the Einstein frequency is held fixed, then T, « VA, and grows .with

increasing A.
2) If the area is held fixed, then T, :}x, and decreases with increasing A.

The optimum spectrum analysis for T, described in Ch. 2 implicitly keeps A
fixed while varying A, so that the optimum ) is some number of order unity.
Conversely, if vg is held fixed, the optimum A will be infinity. In studying
ratios such as fff.: 91 and %,33 however, ong ﬁnds that they depend only on
A, so that the optimum spectrum is unambiguously defined. In their search for
: a.n optimum spectrum for -;%Tﬂ:, Carbotte et al?! found that ,;—q’.lif continued

to increase as A was increased. They showed that f?“% approaches a universal

number in the limit A — oo, since Ay & v/ Avg has the same asymptotic
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-~

Figure 3.16 Plot of Dy(t) vs t for the pure phonon case, for ;'\:; = 0.5, .
and for the pure exciton case, in the clean limit. Very accurate data on the
penctration depth could discern these possibilities. Additional complication

arises, however, due to impurity dependence.
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behaviour as T, . The proof used is. not entirely rigorous, as is explained
in Appendix, E. quevér, numerical .\eyo‘f'k‘ha.s verified the result. I-ience, the
important result is that %Tﬂ: could 1;ot increase indefinitely with increasing
strong coupling was demonstfﬁted. We have found ;?7“.: LR 13: It is im-
portant to note, however, that nonzero ,u“a.nd realistic shapf:s tend to reduc;:
this value, and furthermore that this maximum value is achieved only in the
limit A — oo. In fact, for tfle Einstein spectrum useld_in Ref. 91, f—:—“#: ~9
for A = 20. Such a large value of A is most certainly beyond the physical
regime for, phonons; beyond this lirn‘.it the exercise is more academic, un-

less perhaps very low frequency electronic excitations are responsible for the

superconductivity .

An analytic estimate was also given in'Ref. 91, and is improved upon
in Appendix E. Kresin'¥” has also provided an analytic estimate; he finds
ff:fi: ~ 13.4, which is surprisingly close to the numerical regult. On the other
hand, we note that Bulaevskii et al.9%' claim that %]‘!: VA and hence
never reaches a maximum. While we of course discount this claim, it ig to
some extent irrelevant; a practical limit appears to be f—f—}‘; = 10.

Other asymptotic limits'*® follow through an analysis similar ?o that
giveﬁ in Appendix E. The free energy difference, Eq. (2.26), becomes, near

T., forvg — 0,
AF

m =agAvg(l —t)? (38)

where a is a constant. Thus, using Eq. (2.27), we find,

. AC(T.) b
— ) = — ; 3.9
’\ILIEO( 70Tc ) A ' ( )

where b = 19.82 was determined numerically. The reduced thermodynamical

critical field, h(t), is also found to display the behaviour,
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Figure 3.17 Plot of .hc(t) vs. ¢ in the limit of A — oo. The curve has -
pronounced positive curvature with the zero temperature value unclear. We
believe that it is (pathologically) infinite, reflecting a qlxa.litative difference
in lsca.ling with A at T = 0 (as compared to T > 0) for he(T'), which is not

present, we believe, for Ag(T).
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. - l P
lim ho(t, A) = g(t) (3.10)

where ¢(t) is a universal function of reduced temperature, and is displayed in

Fig. (3.17). Our analysis here in inconclusive, however. We have been unable ~

to extend our calculations to below ¢ &2 0.01, and it is not clear whether g(t =
0) is finite or not. A theoretical analysis at T' = 0 is prevented by the difficulty

mentioned in Appendix E. Similarly, theﬁpper critical magnetic fields have

* not been analysed analytically, although it is known numerically®?148.8% that

hea(0,tt = 0) —const., and h,(0,t* — oo0) /X in the)'suymptotic limit.

Finally, the electromagnetic properties are readily studied in the asymptotic

‘regime. From Eq. (2.39), we note that limy_.. yz(t) = % for ¢ > 0 and “a.”

a constant. Note, however, that limy_ ye(t) = - Moreover, Eq. (2.41)
yields for the coherence:length, limy ., £(t) = > Note that included in
t-hese constants (ag,ae, a.) are bere masses and Fermi velocities, and not
dressed quantities. The asymptotic behavioﬁr will clearly differ depending on
whether bare or dressed (v;- =5y m*=m(1+ 1), N(0)" = N(0)(1+ A))
prbperties are used. )

‘The coherence length lends itself to further study, analytically, since

. . T -
4\15-—[{:9 .Z_(;wn) = '—:é‘\/T—M/\ y T>0. (311)
Hence, ’
) v -1
=—— . 3.12
im0 = 255 T>0 12
Note that in the dirty limit we found in Ch. 2 that £(t) = 5—'—;—%;,.50 TA has

taken on the role of impurities, as we have already argued it should, since low
frequency phonons are really like static impurities. Ndte that finite tempera-

ture is important, as indicated by the presence of “T” in the correspondence.

[+
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Figure 3.18 Plot of Re A(w) (—) and SmA(w) (++-+) vs. w produced from
an Einstein spectrum with wg = 8 meVl, and A = 1. The'straight dashed line

is the curve f(w) = w. See text for an elucidation of the features of these

curves,
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4
This enalogue is made clear if we note that in Eqs. (2.13) and (2.14), we can

include the impurity terms added later by writing a?F(v) as the sum of the

two terms: '
?F(v) = a3, F(v) + o} F(v) (3.13n)
where
o} F(v) = ﬂ;ﬂ . (3.13b)

For an Einstein spectrum, this gives exactly the correspondence suggested
above. At T = 0, however, the situation changes dramatically, We find
. TA
lim Z(iw) = ——=——, T =0 3.14
fim 2(i0) = =2 (3.14)
_ -and hence ' '
lm£0)=F , T=0 (3.15)
A—oo T 2rA T T T | '
so that A has taken on the role of impurities. This is also seen by referring
back to Eqs. (2.13) and (2.14) written at T = 0, so that
o F(v) = t* lim . (3.16)

L.
will generate the impurity term when used in Eq. (3.13a). Note that here

the correspondence is a little more awkward and an operator has been used.
However, in both Eqs. (3.13b) and (3.16) the important requirement is that
the phonon frequency is forced to zero. The qualitative difference btlatween
the T = 0 and T > 0 correspondence arises due to the fact that -therrna.l
phonons are present at T > 0. The low frequency expansion for the Bose
function is then included in Eq. (3;.13b) whereas it is not in Eq. (3.16).
This type of discontinuous behaviour exhibited by the Eliashberg
equations at T = 0 has been noted before in other contexts. Karakosov et

al.,'*® for example, noted that the gap function on the real axis exhibited
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Figure 3.19 Plot of %((%)l vs. w for an Einstein spectrum (A = 1, wg = 8

meV). The peak is roughly where the gap is located. The additional peaks

arise from multi-phonon scattering,
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the behaviour at low frequency:

Re Alw)  w? -~
Y Aw) ¢ w T>0 (3.17a)

but at T = 0, this became, for low frequnecy,

ReA(w) = ¢

Ym Alw) =0 T=0 (3.18a)

.
-

where cis a positi\-re constant and Qm A(w) is identically zero right up to the
gap edge. At low temperatures this has 1itt:.le practical consequence, since,
despite the frequency dependence at w — 0, a constant value for the gap is
achieved very quickly. ‘ |

Finally, we wish to discuss the quasiparticle density of states, in the
asymptotic regime, Ay € wg, where wg is the frequ.en.t.:y. of an Einstein
spectrum which we use, say; to model some material. Figures (3.18) and
(3.19) display th_e gap function on the real axis, and %((-‘E—;}, respectively. Note

several things:
i) The gap function becomes negative even though u* = 0.

ii) The zero crossing occurs at roughly wo = 2wg + A,.

iii) The gap function is relatively flat in the region in which the gap edge is
defined.

iv) Although not readily apparent from these figures alone, both the gap
function and %((%% contain an image of ®F(v), in this case, an Einstein
spectrum.

v) %((%} is zero up to the gap edge, there is a square-root singularity at w = Ag

_and there is structure at multiples of wg (= 8 meV).

These images of the Einstein mode arise from multiple phonon scattering.

r
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Figure 3.20 Same as for Fig. 3.18, but with A — co. The va.riabléé‘ used are
actually-scaled variables (i.e.A(@) = %’E’ and w = 7:;-'3) The intersections
of the Re A(@) with the line y = © (for Ym A(@) = 0) define “gap edges”.

. [}
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The same functions are plotted in Figures (3.20) and (3.21) for A — oo
(they have been normalized to v/Avg, of course). Note the sharp structure
which mainly reflects the fact that an Einstein spectrum has been used.
However, the multiple peaks present in Fig. (3.21) are puzzling at first, since
wg — 0, and hence they cannot be due to muitiple phonon'scattering. They
in fact represent multiple gaps, as can be s:een from Fig. (3.20). The equation,
|Re A(w)| = w is now satisfied at several points, as is shown. The zero crossing
now occurs at 24, and there is continued oscillation with decreasing period
beyond this point. The structure in both figures is now on a scale of A,,
the gap edge; it has in effect taken over the previous role of wg. A simple
explanation of this is due to Kivelson.’® In the A — oo limit, the coherence
distance becomes very small so that Cooper pairs are much more tightly
bound in real space (see Eq. 3.12). Hence, tl"xere ought to be an incfea,sed
density of states at 34, 54, etc., corresponding to the fact that one or
more Coope;' pairs are being excited into particle-hole states as a single
electron tunnels across the normal superconducting barrier. In a simple BCS -
picture, these excitations cost (2n — 1)Aq, n =2,3,4,.... We find peaks in
the tunneling density of states at value of enex:gy somewhat less than these
muliiples. This no doubt is due to life-time effects which come in as A — oo

and are absent within BCS.
ii) High T, Oxides

Some reports'®™185P have appeared presenting results of tunneling
characteristics which display structure at 3A, and 54¢. This would suggest
the possibility that A is very large in the high T, oxides. It should be noted,
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Figure 3.21 Same as for Fig. 3.19, but with A — co. Note that peaks occur

because of the mull;iple gaps present (see Fig. 3.20) and not due to phonon

scattering.
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however, thttt this structure is expected to appear as long as Ao"):~ Wwg, S0
that this eﬂ';':ct will appear in the very strong coupling regime (and not only
when A — o) discussed earlier. Figure (3.22) illustrates ag I-V' chnmcteﬂftlc
for an Einstein spectrum with wg = 3meV and A = 30. 7. was cullculnted'
to be almost 3meV 80 that I’- ~ 1. The gap edge is 14 meV. Multiple peaks
are evident in the figure. Note that we have used ¢t = 0 3i in order to smear
out the artificial structure (on a scale of~ 3 rneV) Einstein mode; th:s would
in practice be smeared out by the effects of a realistic spectrum. In Table 6

we have listed some of the experimental ;roperties of YBCO. As was the

case with LSCOI, there is tigte a spread in measured vtes of %&.._\vith‘

the same trends as in that case; far-infrared values are CS-H’kt; wherens
tunpeling values are quite high..;\gain, there is no i.’re‘quency‘ below which
zero absorptivity is observed in any of the fa.x:-'infmréd measurements as is

e :
required by Mattig'Bardeen-theory.!! Similarly the tunneling measurements

-

are not sharp! as mentioned abové, anomalous structure is seen in the I-V

characteristic. In'light of the lasyéult of the lprevious section, this ttrutture

may be 1nterpreted as ev:dence for strong coupling (in the sense€ A > 1).
-&t this stage, however this is somewhat speculatn e, since many tunnelmg
characteristics do not dfplav structure, and an anomalous background is
unaccounted for. We will pursue thj anah sis in any event. For the spectrum
with A = 30 shown.in Fig. (3 2), 2—9‘4‘- 29-10, which agrees with some
of the tunneling results. Many specific heat measurements have also been

d .
;. Then. using thtorenc‘xll\

g:'rformed. the resu_lts of which are listed in Table,6. Let us conshder as given
. ACIT, -
average measured value of 5—%—1 =15 =l

moleCu—-A'?"

v

vy
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30 (T = 3 meV, g = 14 meV). Multiple peaks due to severa
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. t . .
Figure 3.22 %%'vs. w for an Ei.nstein spectrum withwg = 3 Se.V and A=

‘gap edges”
remain even for this finite value of A. We have used ¢ = 0.3 to (artificially)
smear out some of the structure (on a scale of ~ 3 meV) due to the Einstein
peak. In reality this would be smeared at low temperatures due to a realistic

spectral shape being used.

v
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. ' _ ;
obtained f = %‘;—:1 values we can calculate the electron density of states
at the Fermi surface, N(0), via Eq..(3.1). With f = 1.43, N(0)(1 + A) =

2.2 S'\Tl—cfxfm' Table 6 also lists some values of N(0) calculated from

band structure. With A ~ 0.5 we would obtain N(0) ~ 1.5 T Y

ev—Cu=atom=-spin

* agreement with the upper limit of the calculated values. Higher values of A
™

would violate the BCS assumption (see-Figs. 2.2 and 3.23). With f = 2.8,

NOY1 4+ A) = 1.1 —statee _ Choosigg A ~1.5-3.0 gives N(0) ~0.28-

ev—=Cu—atom-—spin "’

0.45 st  which agrees with' Massidda et al’s™™ valyes including

ev—~Cu—atom=—1upin’

‘doping. Finally, to represent the very strong coupling limit, we use the A = 30

spectrum, Then, f = 0.6, so that N(0)(1 + A) = 5.3 G mom—oom and
hence N(0) ~ 0.2 ;“-c..f.‘:f———.,”;:;ﬁ- This is just below the range indicated by

Massidda et al.’s!®™" calculations with doping.

On the basis of the existing data, thén, it is not possible to favour one
or the ;Jther. of _theée possibilities. Many uncertainties exist in the analysis
itself. The bulk spétiﬁc heat capacity should I;e used, whereas most of the
measurements were performed on polerystalline samples with as low as’25%
Meissner effects_at low temperatures. This would :seen tb'indicate that only
a qﬁa.r.ter of the samples was superconducting and thus § f should be used in
the anal:;rsis; Moreover, Deutscher et al.1%8 ha.;rq noted, that granularity in a
sample tends\o reduce the sgeciﬁc heat jump. Finally, anisotropy, is known

.to reduce the jump as well. All of these effects point toward larger 7o values
than is obtained in this analysis, and hence larger mass renormalization,
which would favour the very strong coupling limit. However, Fermi liquid
effects have been ignored, and these may also Rla.y a large role in contributing

to a mass renormalization. Fina.ll:.-r, the Hisagreement in values for N(0)

>
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-

Figure 3.23 (a) Plot of A vs. &; refer to Fig. 3.2 for the legend. As ;T:-
increases, A becomes more sensitive to the u" value. Note that Iarge_ values”
" of A reﬁuire large fi— values; cdnversély, small values of A are tied to small
values of f“: (BCS regime). (b) Plot of A vs. % for scaled Pb and LSCO

spectra, with u* = 0.1.

-t



Tc /(.ui'n



50.0

40.0

30.0

20.0

10.0

VU —— La-SrTCu-O
.............. Pb




3.8 Very Strong Coupling Revisited 120

produced by band structure theorists is also disturbing, and prevents this

sort of analysis from being quantitative, at this stage.

et r——
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| - Conclusions
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_In the first part of this thesis, \;ve derived strong coupling correctiéns
to BéS universal constants. It was found that a semiphenomenoclogical ap:
prdach worked quite well, so that, rather than evaluate integrals requiring
detailed information about a? F(v) for each material, averages of the spectr‘;l
moment were defined, in terms of a single parameter, T /uwin. Coefficients were
fit on the basisof r tic spectral shapés available. A more sophisti‘cated' ap-
p1_‘oa.ch could hayé been ﬁsed;' however, this }Xfuld have defeated our purpose.
We wished simply to describe the trends of properties semi-quantitatively as
a function of strong coupling. We found that all the corrections were of the
form, |

az + b:t‘:2 In(1/cz) l. (4.1}

.

where z = T./uwn,. In many cases the linear term was absent.
The expression (4.1) signifies the fact that a single parameter could

describe quite well strong coupling properties. As an immediate consequence,

131
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this implies that various pfopertiés are simply related to one another. Hence,
. our analysis allows estimates of the gap edge basec.g on thermodynamic mea-
s ements, for example. A new T equé}‘;’ibn was obtz‘a.ined phenomenologically;

itlhcuracy and simplicity are satisfactory in light of the regime it covers.-

- All known goﬁventional-materia.ls, with thé-exception oi' amorphous
materials, are found to fall in the regime where the strong coupling exp;_n-y
sion used is valid. With the discovery 6f the high-T. oxides, however, the
possibility remains that their T./w, values fall outside the regi'me cieec-ribed
by expressions of type (4.1). On the basis of a spectral function calculated
by W. Weber, we have tried to evaluate the degree of agreement wii_;h experi-
ment. Inspection of Table 5, however, exhibits the variation in the measured
properties. Moreovér, the Sommerfeld constant v is crit‘ical to our a.nalyéis,
and, at the same time, very difficult to measure. Disagreement by a factor of
abp'ut three has been found for the density of electron states, although this
can o_nly be considered serious after some of the measurements have settled
down. Single crystal measurements may provide more uniformity, although
our calculations should be extended to include anisotropy. Large anisotropy
in the é{ectron' gas alone could cause a significant non-constant density of
statés at. the Fermi surface. No doubt an ani;sotropic electron gas will also
manifest itself in an anisotropic electron-phonon interaction so that sup
conducting properties will also be affected by the resulting anisotropic gap-

The high T.'s observed in these ma.terialg have motivated us to ex-
plore the very stl;ong coupling regime, in which the parameter T, /uw, can take
on values of about unity. Many signatures of this regime have been found.

The gap ratio will be very large, while, at the same time, the normalized

specific heat jump will be less than BCS. The correction to the upper critical
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magnetic field will be less than unity. Iﬁoth of these possibilities will drasti-
cally affect estimates of 70; based on BCS formulas. Anom;xlous structure is
expected in the quaaipa.rticlt; density of states, and it is intriguing that a few
groups have observed structure of the Jnature we would expect, Fina.lly-‘the.
- deviation functions will be quite .unique, indicative of anomalous curvature
in the temperature dependence of several properties.
In light of the various measured isotope effects, we have also investi-
gated a combined phonon-;xciton mechanism, where by “exciton” here, we °
_mean some high frequency electronic excitation which mediates as electron- -
electron attraction. In both LSCO and YBCO, this possibility would be dif-
ficult to detect on the basis of thermodynamic and magnetic measurements
alone. In the fox:mer, the effect of an added exc‘igr:‘mecha.nism is to mimick a.‘
pure phonon mechanism with a higher characteristic frequency. In the latter,
the isotope effect is almo:'-}t nil, so even if phonons are partially responsible,
the predicted propertie's would be very BCS like. Nonetheless, the interesting
result that values of %}1 below BCS coulci be obtained \:vith the addition
of a few low frequency phonons is surprising. It indicates that while the exéi-
ton comp;o.nent'is most responsible for the high T, the phonon component is
drastically aﬁ'ectin‘g the thermodynamic pr‘opertie's. In the case of LSCO, the
precision of the isotope effect measurement looks promising, but the other
measurements have to settle down before a quantitative analysis as we have
suggested can be taken seriously.
The most prominent effect of the combined phonon-exciton mecha-
nism, however, was noted sevéral Iyea.rs ago. Kus and Carbotte!4 found that

a high frequency peak, which is not observed in tunneling, would nonethe-

less enhance the low frequency part, so that inversion attempts would have

—/j
z
.
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the tendegcy to fail. At the present, however, tunneling junctions of a high

enough quality for inversion have not been fabricated.

Y



Appendix A
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We review here tlie variety of methods available for solutior of the
Eliashberg equations. The standard formulation120 utilizes the Fourier series
representation of the electron Green's function which is determined through
-Dyson's equation:
G B iwn) = G5 (B iwn) = T(Friwa) (A1)
G~!, G5! and ¥ are two component matrices in the Nambu!5? formalism.
Self-consistency leads to the two equations written in Ch. 2, Egs. (2.13---
2.14). However the procedure was often employed?:153-155 of analytically

continuing the equations themselves to the real axis. The resulting equations -

are written:19:156

/urz - A’\(u’) ]

RY _A(_'-—'_)___)“%_-w_),u
_2T“(wc)/_m¢~sie(m E_, i (42

A(w)Z(w) = --/_c; du'fdr;azf'(v)[(w-{-' ié,u,w')“—]tc (_A(u')_.__)

-~ +
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and ‘)

Z(w)s 1 - 5/ dw’/ dv a® F(v)(w + i6, v, u") sn(
o0 0

A(w') ) (43)

wa —_ A'I(uf)

where
Np)+1-fw'), N+ f(w)

. noo
I(w+ib ) = Wt ib—v—w wHibdv—u’

(A4)

It is'to be understood that “w" always has 2 small positive imaginary pari:.
The branch of the square roots must be chosen such that the real part has
the same sign as w. Note th;'-,\.t we ha.ve'adopted a model for t':hé Coulomb
self-energy which has a sharp ‘cut-oﬂ’ on the imaginary axis, so that, fol-
lowing Leavens and Fenton,'$¢ we write the Coulomb part in Eq. (A2) in a
nen-standard way. The functions in (A4) are the standard Bose (N(v)) an‘d
Fermi (f(w)) functfo.rxs. These equations can be iterated to solution at any
temperature; in particular, the linearized version yiélds the critical temper-
ature, T, . Note that gap and renormaliza.t.i-on parameters, A{w) and Z(w), -
respectiv\lely, are complex, and prir"lcipal value integrals are required. This
makes this method of solution somewhat cumbersome, numerically.
| ‘In the early 1970’s, the “imaginary axis Eliashberg equations” were
first solved numerically to determine T, 1577 and subsequently to determine
" the thermodynamics.®® As can be seen from Eqs. (2.13) and (2.14), only nu- .
merical summations are required, and all quantities involved are:rea.l, mak.-
ing their numerical solution relatively fast. Moreover, many superconducting
properties can be determined by a direct summation of functions of these
solutions. 4742
There are, ho“lrever, disadvahtages with this formulation. The physics
“is obs;:ured,_ and, mpreover‘several important’ properties cannot be deter-

mined directly from imaginary axis solutions. Most notable among these is
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_ . the gap edge, defined by Eq. (2.23), for which A(w), with w on the real axis,
is required. Transport properties?® also require real axis solitions, F inally,
tuﬁneling inversion procedures®? require a real axis formulation as well.

Some of these problems were alleviated a few years ln.ter by Vidberg
and Serene,!®® who constructed an analytic continuation of the imaginary
axis solutions using Padé ;;érqximants. Thnt; such a procedure is possible ‘
in principle was assured by a theorem of Baym and Mermin.!%? We briefly
outline the methodology of this procedure, following Mittovié et al.2* The N-
point Padé Approximant to a complex function u(z) of the complex variahle
z, whor;e N values u; (i = 1,...,N) are given at N complex points z; (i =

1,...,N),is defined as a continued fraction:

ay

Cn(z) = 1+ ax(z - z;) (43)
W GJ(Z— 22).
) \ 1+ aN(Z.—IZN-n)
| such that _
Cn(z)=ui, i=1,...,N. " (486)

In our case, the z; are pure imaginary, and are in fact the Fermi Matsubara
frequencies, iwy, n = 1,.:.,N. The u; are the Matsubara gaps, A(iw,}, the
renormalization function', Z(iwy), or any combination thereof. The coefficients

a; are given by the recursion

allzgl'(zll) ) gl(zl') =uJ ) i=1|--'7N (A7)

:fip-lfzp-l) - Hp—l(-?)
- zp—l)gp—l(z)

LY

9x(z) =
*
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It can be shown that €
ona) = 8 (49)
where Ay and By are polynomials given bSr the recursion
’ 1;1,.4.1(2) = Ap(2} 4 (2 = zn)app14An(2), n=1,...,N -‘1 (A10a)
Dasi(2) = Bal2) + (2 = 2n)ans1Baot(z), n=1,....N =1 (A10b)

and Ag = 0, A; = a), Bo = By = 1. This algorithm turns out to be quite\_
efficient numerica.lly; However, accurate solution is required on the imagi-
nary axis, and even then the algorithm works well only at low temperatures.
Futhermore, the analy:tic continuation is accﬂrate_only for low frequencies.
In particular, the zero temperature gap edge, Ao, is reproduced very accu-
rately. The quasliparticle density of states, hbwever, is not reproduced véry
well, particularly in.the phonon region, so that this procedure has never bee:n
used, for example, to iﬁvert tunneling data. The Vidberg-Serene procedure
has been improved upon recently, especially by Blaschke and Blocksdarf!®®
" dnd Leavens and Ritchie.!®! Theqla.ttér authors, in particular, were able to
perform analytic continuations near T. for a Debye model spectrum; the
accuracy requirements for the sol_ﬁtion on the imaginary axis were extremely
stringent, however. ' \

In the remainder of this section, we outline an exact method for an-
alytically continuing the imaginary axis solutions, which has been developed
very recently.’? We note that Eqs. {A2) and (A3) aremally valid for w
anywhere in the upper half of the complex plane. This follows from a general
consideration of the analytic prol:;erties of Green's functions.!® The integra-
tion can be performed over ‘u’ through contour-integration by noting the

)
following: : O
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w = iwn, We recover the imaginary axis equations (2.13) and (2.14), since
f(v = iw,) = -~N(v). There are many other fascinating properties of the ga;:;
* and renormalization functions that one can infer from Eqs. (A11) and (A12).
For example, the normal state Zy(w) is analytic in the upl;er half plane with
poles in the lower half at w = dvg - iw,, n = 1,2,3,... (we are considering an
Einstein spectrum to represent a?F(v)). These pblcs are no longer present in .
the superconducting state, but have been replaced by branch cuts associated
with the square root singularities at the gap edge. At finite temperature, the
singularity moves off the real axis into the lower half plane, which is why -
the square root singularity iﬁ the quasipar”t-icle density of states becomes
smeared. At zero tempe;'ziture, simpliﬁcatidns ocpur; N(v) = 0, and F(v~w) =
8(w — v), a step function. The equations are t};en no longer iterative but can '
be solved by construction from w = 0. Moreover, in the case of an Einstein
spectrum, a*F(v) = A§(v—vg), and, for typical spectra the solutions are such
that the gﬁp edge, Ag < vg. This implies that the gaf)_ edge, for example, can

be obtained by a single summation of imaginary axis quantities. No iteration

is necessary. S

For realistic spectral functions the solutions are obtained at non-zeré‘
temf)era.ture by numerical iteration. The quantities involved are ;:omplex, E
but there are no principal value integrations required. Morcover, the term
coming from the imaginary axis acts as a forcing term, so that in general
only a few iterations are required for convergence. The overall savings in
time compared to direct solution of Egs. (A2) and {A3) is about two orders
of magnitude. Results are reproduced at the 1% level,}¢? aithough it is not
clear which numerical solution (that of Eqs. A2-A3 or Eqs. A11-412) is the .

more accurate.
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1) For a complex function f, (/) can be written Re(f) = X(f + f), where
the‘asterisk denotes complex conjugate. Furthermore, the quantities in
brackets whose real parts are reciuired, in Egs. (A2) and (A3), are not:h-
ing more than the energy integrated- Green’s functions, and these retain
the property of being analytic in the lower hz;.lf planél. Hence the contour
of integration should .be closed at +co by a semicircular arc in the up-

per/lower half plane depending on where the Green"sj function is analytic.

2) This implies that contributions come from two sources only, through
Eq. (A4). The first is from the denominators in Eq. (A4); the second

is from the Fermi functions, which have simple-poles at w’ = inT(2n - 1),

i.e. at the Matsubara frequencies.

Upon evaluation of the residues we obtain the two equations:

AWZE) = 7T 3 [Me = itom) = 47w — )]

fia2 2
mMm==00 ""'m + Arn

_ o0 ) ' Alw —v)
+ HT/O. dffa F(V){[i\r(ll)'f‘f(y_&')] \/(L\J"—U)z . AQ((J—V)
- - Alw + v)
+ [N(u)-i-f.(u-l-w)] Ty —A2(u+u)} (A11)
and
iﬂ'T = . “Wm
2 =14 77 3 Mes i)
{w—=v)

i'I = 2 i L
+w‘/c, dv o F(U){[V(V)+f( w)]\/(u_v)z_AZ(u_y)

+ [(N(v) + flv + )] \/(u+lf;i:)2(u+u)} . (412)

Note that w can now be interpreted as the real axis variable, “w + 1§", or

as being anywhere in the upper half of the complex plane. In particular, for
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The :physical processes which are occurring can be scen from Eqs.
(A11) and (A12), especi-t;.lly if we use the identities of the type:!83

N L= f(v +w)]

N+ v tw) = === (A13)

Then for example, Eq'.' (A12) becormes, for an Einstein spectrum,

| zrrT =
Zw)=1+4+ — Z Mw = iwy) ———— A"’ . :
. ms=-—o00 wi, t

{[1 # N )] {1 S0 = v)) e

—vg)? - A%(w — vg)

ird
| + [1- ()]

(w4 vE)? — A¥w + vE)

+ N(vg)[1 - flve +w)] ———“’—’”’-@_—} : . (Al4)
Clearly the last two terms correspond to quasiparticle scattering procgs‘es

with the emission and absbrption of a phonon, r_e‘spectively.
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Derivation: of .
Strong Coupling
Gorrections

In this appendix we outline in detail the derivation of strong coupling
corrections. It is divided into two sections. The first describes the derivation
of thermodynamic properties. In the second section critical magnetic field

properties are derived.

B.1 THERMODYNAMICS

(i) T~T.
Eqs. (2.13) and (2.14) are expanded ndar T. (small Ap,):
N
. _leﬁzeﬁ)%
oan)aen) =T 3 M i) (1-358+350) W
TrT = 2
Zs(wn) = Zn(om) + — f 2w dv o* F(v)
n Jo

o SEN Wy 142 348

« 3 ey i ta) 9

m==-Nog+1

r
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Here the subscript S (¥) means superconducting (normal). Also, No = 38541
enumerates the Matsubara frequencies in the sums. However, the convergence
is sufficiently r.apid that No can be replaced by infinity. The summations are
folded to the domain (0,00]. In the Z-channel (Eq. B2), this procedure results

in sums like;

i L 1 14— mn Y B3)
AT\ e T B0

m=1 ™

Noting that w, = wT(2n.;.-1), and only small n is required, one see;/t-l'mft/

terms of O(Zl'f)6 have been neglected, consistent with our assumption, T, < v.

" These terms would contribute however, in the free energy formula (Eq. 2.26),

to Of {‘)2, and hence should be retained. However, for the sake of simplicity,
and since coefficients will be fitted to numerical data in the end anyways, we

have dropped them. The required sums are:

— 1 1 ‘
el L Ay (&
and
o0
_ 1 4wl w? .
V; = 4rT mzzjl TG taT (B5)

Here, a2 = 12 + w3, and i = 1, 2, 3,.... In-accordance with the remarks made
above, only i = 1, 2 are required in Eq. (B4) and all i can be neglected in

Eq. (BS). These are readily evaluated in terms of digamma functions:

2 1.13a, 1
U1 = E (In -TB% —_ 5) (B5)
- _T743) 1 '
T i (56)
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¢(3) is the rRiernann zeta-function ({(3) =~ 1.202-..). It is easy to show V; =
0(%)*. qu (B2) becomes:

| * 1 113/ + w2 1
— 2
| ?S(Wn) - ZN(Un) = ""AO(T) / 2vdya3F(u) (U’ +w2)2 []n no_ _]

A,,(T) (C(3) / v dv o? F(v) —————

Ty (B7)

( 02 4 42)2 +w2)2

At this point we also write the expansion for the Bardeen-Stephen free energy

formula: 9
AF FN 188 14

- 145 14

. O M,fzz”("’"‘)(rl T 5:,)

-2xT Z [Zs(m) - ZN(m.)] (lA—z - éﬁ—j—) . (B8)

As will be seen below, the va.na.tmn of ZN(wm?l-h m is\ﬂot large. In the

first sum we can safely replace Zy(m) by its cbnstant value at say, m = 1.
Howeve:: in the second sum, thae first term is npn-convergent with a constant
value for Zs(m) — Zy(m), and hence, the n-dependence must be retained in
Eq. (B7). It will be dropped, however, in the a.rgument of the logarithm, to

facilitate the calculation. An identical expansion can be performed for Zy(n),

-

with the result:
Zn(wa) = 14X = Y(aT)[(2n - 1)? — 1] / 2udua=F(u)f— (B9)

The constant value to be used in the first term of Eq. (B8) now depends on

our choice of n. For n = 1, there is no strong coupling correction; Zy =1+ A,

which is the A% result. For higher value of n, a strong cduﬁling ggrrection .

results. We prefer to use the former valuk, since it is exact for n = 1. This is

seen most readily from the exact equation for Zy(wn):

Zn(on) = 1+ L (x0) 42 Z A(m)) . (B10)

m=1

kgT 2]
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In fact, our choice for Zy will be consistent with our use of the zero tem-

perature Sommerfeld constant, 4o in the ratio %&?ﬁ This choice also omits

strong coupling corrections arising from electron-phonon coupling at non-

zero temperatures, as described by Grimvall*® and Kresin and Zaitsev.878

Similar remarks apply to the®A-channel. Eq. (B1) can be reduced to:

Zs(n)Ag = Ao /0 - 2vdva® F(v)[Py+ Q1 — LA3(P +Qa) + 2AY(Ps +Q'a)j (B11)

where .
_ X 2xT 1
\ AL a -
I
~and N . .
0 2T 4wl '
P = . . B13
UEE Ay (719
These sums are: {
_ 1. l13a, («T)
Pi= pin - O (Blda)

CT® 1 1 L,
B ioria  a T (B14b)

P28 L T 1 (Bldc)

T 16 (rT) a2 4 (nT)? ad
2 -~
- o Q= %’5 (B14d)
1 L >
Q:=Q3=0 pry (Bl4e)
¢ 'We evaluate Eq. (B11) for small n (specifically, n = 1) and define

N 2oy 1, 113

a(T) _/Q 2vdv a®F(v) ~ In *oT (B15a)

and

T)= [)w2udu e.?f‘(y):—4 : (B15b)
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The gap equation (B11) becomes (using Zs(n = 1)):

1= F(T)+ AXG(T) + A (T) (B16)
. , ) | ,
where, .

‘}-‘(T)— A, L1, _ (+T)?

T T+ " keT 1+A"(“(T)“ 30) (Bl?a}

AT (3 3 a(T b
(1) = 1+A3(§(T§=+2 ;1(-{-,)\ 3@ -5 (B17b)
J(T)= — B ¢(5) 93 ¢(5) b 63 ((3) b (B176)

1FA128(xT)Y 128 (aT)¥ 1+ X 32 (xT) 1+ A"

- The T. equation is given by 1 = F(T.), with the result:

£ - st -(M2)](1- Ly - 49) . (o)

This is not an accurate T, equatioh, but will prove useful later. The gap

“parameter (hea.r T. ) is obtained from Eq. (Biﬁ):
2 LF" G FJ |
AT = (T T, )(1 + (2 = - G = )T-T) ()

where it is understood that the derivatwes are with respect to temperature,
and the functions are all evaluated at T, . Eq. (B19), along with Eq. (B7), are
to be substituted /into Eq. (B8). Summationsin the second g::m are required,

but of the form encountered previously (U;). The result is:

1?(‘;) %(1 4:\'\)2 (45 K(T) + 343 L(T)) | (B20)
where ~
K(T) = Go(T) - ?‘1}% (e«(T) - c;(T) +4) (B21a)
atid i . .
\ LT)= 3 SolT) (4(7) - §) (B21b)



148 Appendix B

A new strong coupling correction, defined by

7 1.13v
kgT

o 1
¢(T) = f 2vdva®F(v)—In
0 . ) v

~ is required. The “0" subscripts in Egs. (B21) signify that the strong coupling
corrections in Eqs. (B17) have been dropped. The specific heat difference

near T, , is given by the thermodyna.mic formula:

AR
AC(T) = -T—a'_i""_. ._-.(_B23)
So that after some tedious algebra, one obtains:
AC(T) '
—_—L = 1-1t)g. B24
o =/t (B24)
To simplify the formulas for f and g, we write ‘ k’ '
_m % 2 1., L1y ar ), 113wy,
a(T,.) = wf,,/o vdva F(V)u2 In koTe ~ wh ]n' kT, (B25)

%
The first equality follows for a given spectrum from the mean value theorem

b
of calculus; e; can be chosen to compensate for the averaging. The second

equality follows from the definition of wy, (Eq. 2.3). Similarly,

»

az
b= 22 (B26)
wi, )
and Y
a3, Ll3w . 113w,
(T = " Mo S la oo (§27)
In Eq. (B27), the weak coupling T. equation can be used:
113w, 14X )
= . B2
In %aT. =73 (B28)

The result is an equation of the form:

E
*T.\? 1.13u1, 23
f: 143{1'{‘(%:) [len'—k';‘TT—ZQ—Fg]} . (.829)

kpT.

(B2é) .
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Note that for a é-function spectrum, the a;, 83 = 1, and.in fact we expect

that even for renlistic spectra, a; = 83 & 1. With this approximation, z; ~ 5.9,

"2;%5.3, and z3 ~ 0.2 . Hence, we drop the last term in Eq. (B29). Eq (B29)

becomes: |
- AC(T) T.\* [ wn .
o))
: el
where p
5 _[(_24_) _ 8 1.
ay=x*|{4+ 70) oy 7(,(3)03 : ) (B31a)

1 Faz+ rlhg0a - _c%i"slnﬂl‘ ZE TE)
by = 13 ‘exp .. (B31b)
- EECEE ST VY

Egs. (B31) are not used to determine ay and- b;. Rather, they are fit to

numerical data as described in Ch. 2. The result is a; = 53 and 8, = 3. Note

that for a; = 3 = 1,.Eqns. (B31) yield a; = 58 and b; = 2, remarkably close

to the accurate fit. Similarly, for g we obtain:

g=_-3,77(1+02(:_;)’l;(;:£)) . o BRT

L4

: bg‘= 2.9, whereas our estimates would be (fortuitously) ez = 117 and b, = 3.1.

(i) T =0

(1
At zero tempeka‘yure the Eliashberg equations are modified according
to the presceiption (2.18). The equation for Zs(w) is fold ﬁx‘mﬂomain

[0,00], with result that it'can be written:

&

& B@=1ts [ vaaFObe Al ()

where

1 |
B ,
= / m(mwo S

“where a; and b; are functions of a; and f;. The fitted values are a; = {17 and _
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N

and
. - .
. , dwiw 1
. Ay = j o e . (B3ub)
‘Here again a3 = w? + v*. The results are
1 Ad 2a, ' ‘
= 2 _ B, %80
A; 283 203 (ln Ao 1) (3353.)
and
1w? _ .
Ar=3o7- | (B35b)
]
Other contributions are of higher order. The net result is
' . ® wdva?F(v) 2Vv? 4 w?
= 2 § ———i -In ———
Zs(w) = Zy(w) + Ao./o 71 o) (1 Ip A ) (B36)
Zn(w) can be evaluated exactly:
' 1 [ ) w
: —_— — 2 )+ - —
. - ,ZN(w)_l-i-u/o 2dv a*F(i) tan I(y) . (B37)

Recall that we have used a constant model for A(w) and Zs(w). Hence it

-

should not matter at ‘what frequency we ev'alt:latfa Eq. (B37), as long as it is
lsmb.ll However there’is a dependence, and once again we will choose w = 0.
Then ZN(O) = 14 A, and there is no strong coupling correction. This is again
(n)' for example Note,
moreover, that for evaluation of the free energy difference, the w-dependence

for Zs(w) - Zn(w) must be retained in Eq. (B36) (except in the logarithm,

- once again). One can argue that a more appropriate frequency at which to

evaluate Z N(w) (and subseciuently A(w)) is Ay, the gap edge, since this defines
the gap edge. However, it must be'kept in mind that this calculation is on
the imaginary axis, so that corrections proportional to w? actually have the
opposite sign from&he correction on the real axis (since w? = —(iw)?). Hence

it is more accurate to evaluate at w = 0.
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The gaf)‘channel is treated similarly, with the result

Zs(0)Ap = Ap ‘/c:o 2vdy o F(v) (As + Ay) (B38)

where

® du! 1

o Jorifalaita - (B3%a)

Ag =

and
oo do' 4"

Ay = —_—— | -
“Ch Vrr R ar (B390)

"Evaluation of these integrals is straightforward. Combining with Eq. (B36)

evaluated at w = 0, we obtain

1+ Al
Ao=2%?xp[—(—§-—\-)](l+%f(a—- %b)) . (B40)
F'§

Here, a and b are the same functions (within BCS) as in the previous section

(evaluated at T = T.). Combining Eq. (B18) with (B40), we obtain

=) n()
=3.53(1 =) 1
aT. ( +aa(2) (i (B41)
where
a3 = (3(3.53)° + 7%)a; (B42a)
and _ :
1 £(3.53) + 472 | @y
by = . 16 342
3 ‘1.138‘@{{ 1G53y + 17 [ (B42b)

The values first fit by Mitrovié et al.?* are a3 = 12.5 and b3 = 2. The values
we would obtain by setting a; = 1 are a3 = 14.5 and b3 = 2.9, which again are
not much different from the best fit.

“The free energy difference at T' = 0 within the model (2.25) is written

AF i w?
TR 'f!‘*’(z”‘“’(\/“’”%*——,/mz -2) ,‘
+(Zs(w) - Zn(w)) (Jw? + Ag-u)) . ' (B43)
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In the first term, Zy(w) = 1+ A is used. In the second, Eq. (B36) must be used

to retain convergence. The integrals are easily performed with the result:

AF

NO) ~

_%(1+‘,\)A’(1—1-_*—_L’\-(c—a)) o (B44)

Then, using Eq. (2.28), and 7o = 213N (0)(1+ A), along with Eq. (B41), we

obtain
perso-o() (20
i) = 0108 (_1 “‘(wm In( 5.7 - (B43)
where
aq = 290, — 3.1a3 . (B46a)
_ 1 34.10:2 - 3.1&1 3. 1&3 lnﬁa)
1=113° ( 2.9a; - 3.1a3 (B46b)

'{he fits to numerical data give ay = 12.2, by = 3; the estimates are a4 = 26, by =
. L3 .

2.9, in error by a (more realistic) factor of 2. The ingredients are also present

to calculate the reduced thermodynamic critical field, £.(0) = T H, (T) We

obtain an expression: _
h(ﬂ)_0575(1—a5(T°) ln(”‘“)) (BAT)
Win bs T,
E 3
with a fit a5 = 13.4 and bs = 3.5 . Note that the properties 2%, ﬁ"’z% and h.(0)

are not independent. Rutgers relation provides the thermodynamic identity:

7 -d
T ﬁ) : (B48)

he(0) = ( ™ H20) YT

Our choices for the various coefficients do not satisfy Eq. (B48) exactly to
0(&)2. Hence, when manipulating the final expressions (Eqs. B30, B41,
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B.2 UPPER CRITICAL MAGNETIC FIELD
(DIRTY LIMIT)

(i) T~T.
We use the same model as in part 1, Moreover, near T, p(T') is very
small. A folding of the summation in Eq. (2.48) to positive m, gives fhe

expression:

(1 + A)Ao = Ao '[0°°'2U dVGZF(V){Pl + Q; - ffl(?g + Qg)} (349)

where -

-

¢ il Yt | (530:)

. and

o o2xT 402
Qi= Y > (B50b)

mz1 wm o2 (“J2 + a? )3

These are evaluated in terms of digamma functions, and expanded in powers

of (Z)%."The result is:

[

__1_ L13v. (zT)( 113 1
P, = (ln o7 -5) (B51a)
| _x (1 2T (xTP
] P= (u,‘ e ) (B51b)
. T 2 ) .
¢ = (qu) . _ (B51¢)

" Using similar definitions as in part 1 of this appendix, we obtain

1= F(T) + 2—2’.‘,’(%—)G(T) (B52)

where F(T) is given by Eq. (B17a), and G(T) is defined:

A d b

- =S e - 6T - (B53)

1+ 1+ A 1+ A
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A new moment is required, d = [ 24 a®F(v), and will lead to a strong
coupling term which is linear in & The derivative p'(T.) is easily obtained

from Eq. (B52). The result is:

T o' (Te)| = —-(1+,\)(1+22'-d+4 ,\; d* + (”":") (2a (T,,)- )) . (B54)

-

(ii) T=0. - ~

The same prescription is used as before; the limit w — 0 is used, with

the result: .
\ (1+A)Ao = Aq / 2w dv e F(W)I(v, ) . (B55)
0
whe‘r‘e |
., 1
Iwp) -_/0 dww’2+ v? W' + p(0)
Sl TA0 PO,
In _(0)+2 V:, i ]np(O)' (B56)
a.nd p(O) Usmg the T, equatton (BIS), we easily obtain:
r 2T, , 3{ n \?/=xT.\? 2'--(1rri"‘:)2 4?7 -1 4
HO)=3 21 {1+ 3¢ E(I{E) (T) ¢+ ( 4e?v “(T‘)—ﬁb)}
(B5T)

~ where v = 0.577... is Euler’s constant. Eqs. (B54) and (B57) are readily
combined; using (B25) and (B26) along with d = a, ﬁ, we obtain an equation

of the form:

[

2
hea(0,00) = 0.693 (1 L a,( T‘) in ) . (B58)
Wn Win '

bch

An Einstein model gives ay = 0.61, az = 11.3 and &, = 3.7. The fitted param-

* eters are cons:derably dxﬁ'erent as indicated in Ch. 2.
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B.3 UPPER CRITICAL MAGNETIC FIELD
(CLEAN LIMIT)

(i) T~ T

Near T, similar expansions as in the dirty limit apply since a(T)' is

small. We obtain the equation:

14A= /om 2udua’_F(u)[P1 + Q1 - L&(T)( P2 + @Q2))] (B59)

‘where the P; and Q; are the same as those defined By Eqs. (B12-B13). Using
Eqgs. (B14) we obtain:

1= F(T) + &(T)G(T) (B60)
whe;'e now ’
T @ AT b1 a(T)
O =-Gemia 2@ tiTm (861)

and &(T) = f’:\.} . We find:

12

T.|&(T)] = C(a)(m)’{1 + ("?)2 [(2 + ':F'cf(:?)") a(Te) -.g-b]} . (B62)

(i) T=0.

In the limit w — 0 we find:

14 A= &2(0) /0 " 20 dv o? F(u)I (v, 4(0)) (B63)
where
® dw o0 _ Gy
I(v,a(0)) ='/‘0 m./o dge™? tan"( auEO)q) . (B64)

I have been unable to compute this double integral. However, as was done
in Ref. 61, we use the approximation x(w) = &5 Z;, which was found to be

quite accurate. Here, the constant ¢ will contain strong coupling corrections
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1 3

and is given by ¢ = \/a(0)e~#~*. Within BCS, cBCS = 2¢-7T,. The integral is

N

2 2 2 2
&(0) = (g) e THT? [1 +/”—e-7'r.=E + ’-;-e-ﬂ'f (ﬂ;d)

now elementary. We obtain:

2 A A
2("";"1:‘)2 e~ 4 .,
+ = ((1 -= )a(Tc) -3t)] - (B65)
-vae.nce, hcg(AO,O) is of the form:
- T, T, : Win
hcg(0,0) = 0.727 (1 %-G;Mn - ag(wln) In szc) . (Bﬁﬁ)q

An Einstein model gives a; = 2.8, a3 = 6.25 and b; = 3. The parameters

- sy v L .
detérmined through a fit to numerical data are very different: a; = 0, az = 2.7

a.nd by = 20. We have found th_a.t the linear term is not required.

L
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‘Spectral Function Sources

We tabulate here the sources for the a? F(v) spectra.used in our cal-
culations. Most of the spectra come from a tabulation of Rowell, McMillan

and Dynes.

1) Al comes from a theoretical calculation of Leung et al.8 However, in Ta-

ble 1, BCS values have been used.

2) Several sources are available for Nb. Nb(R) comes from Robinson and
Rowell through private communication. Nb(A) comes from L. Wolf et al.

184 These have been measured fhrough tunneling. A theoretical calculation

(Nb(B)) comes from Butler et al8 -
. ' s
3) V has been obtained through tunneling by Zasadzinski et 'al.!%

4) Amorphous Bi and Ga have been obtained through tunneling by Chen ef

al.166

5) La is from Lou and Tomasch®? (tunneling).

157
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6) Mo is from Kimhi and Geballe'® (tunneling).
7) Nb;Sn has been obtained from Shen!®® through tunneling,

8) V3Si (Kihl.) has been obtained through tunneling by Kihlstrom.7® We
have scaled it to give A = 1 and used 7. = 16.4 K (rather than 15.4 K
- as measured by Kihlstrom), which is in better gaaement with the single

crystal T, value.

9) VaSi-1 was obtained from scaling G(€) obtained through inelastic neutron

scattering, such that A = 1, by Schweiss et al. 17!

¥

10)N53A1 has three possibilities; two of them ((1) and (2)) were obtained
from tunneling measurements by I{wo and Geballe;!”? the third (3)isa

phonon spectrum obtained by Schweiss et al. '™ and scaled to give A = 1.7.

11)Nb3Ge (1) was obtained through tunneling by Geerk et al. 1 whereas
Nb3Ge (2) was from neutron scattering data obtained by Miiller et al. m

to give A = 1.6 . u” has been fitted to giveT. =20 K. . .
12)V3Ga has been obtained by tunneling by Zasadzinski et al. 17

13)Finally, the spectra by Weber®®!18 have been obta.ined‘by theoreticé.l cal-

culation.
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Punctional Derivative of
the Specific Heat Jump

- We oulfline the procedure for calculating functional derivatives of the
specific heat jump, AC. The specific heat difference is given by AC :—_Td:‘—%é,
50 that thefree energy difference is required. However, the Bardeen-Stephen*?
formula (Eq. 2.26) is cumbersome, since, for complete solution of §AF, we
require JA;. and §Z,, which in turn require inversion of an i‘n.ﬁnite matrix.
Ra;iner and Bergmann3! circumvented this difficulty by noting that the Wada

formula. for the free energy,!® given by:

AF Wn
. N(O) ""QTFT n;@ Wn [—m — Sgn wn]
o ) w w
- (zT)? { [——n——m-—--— — sgn (Wawpm )].\(iw,, — W)
n.—-z-oorn:Z-oo VAEI'*"‘"?\ VA%l +w3ﬂ '

A, o
+ VAZ Wi \/Az +w2 [ (fon = fuim) = g ]} (en

159
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is stationary with respect to variations in A,, given the Eliashberg Egs. (2.13-
2.14). Hence, the functional derivative of the free e'nergy difference is given
simply by considering the expl&}cit a?F(v) dependence contained Withifl z\'(:'u,.—‘ '
iwm ). However, the free energy also depends on temperature. Temperature
is an externally controlled parameter, and hence has no dependence on
a?F(v),except that the temperature is always referred to T, for exampie,
", in the specific heat jump; AC(T) |z, It then becomes important as to what

the order of operations is,i.e.is T evaluated at T., and then. the functional

derivative taken, or vice-versa? It is clear that if one wishes to have

v (52

then it is necessary that T = tT, and we impose the commutation property,

___ & acm
T. T 6a2F(Q) 4T

(D2)

“  [t,8] = 0 (and not [T, 6] = 0). Let us define®4

1§ AC(T)
1= () (b3)
Then ‘
1 ) t d°AF
i 602F(n)(?? de? ) (D4)
__2 A0 4T t & AF (D5)

T. T, 8a?F(Q) 712 d3 $a?F(Q)

8In evaluating the last term in Eq. (D5), we must consider the T dependeng

of AF: -

AF _ _§AF T 9AF 4T,
§alF(R) ~ a2F(R) " T. 0T §a’F(Q)

(D§)

" The first term is given by Rainer and Bergmann;3! the second term is eas-

ily evaluated. We have used “§" to mean “partial functional derivative”; it
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diﬂ'erentia.tcs only explicit a? F(Q) dependence. The final exprcsion is:

7 Woldm + AR
wirem £ £ ([t e -

( 20 4 _T_‘_ A(iwn = fwm) 6T )
Q2 + (wn — Wi )? orT S a?F()

(D6)

The term inside the curly brackets can be evaluated frem a single solution of
the Eliashberg equations alomg with the solution of ﬁ{qm." The tempera-
ture derivative is then performed nurﬁerically, using a fitting routine.

" We note in passing that the same method is possible when considering
jhe functional derivative with respect to the freg electron density of states,
N(¢), using the generalization of Eliashberg theory with non-constant density

of states.



Asymptotic Limits

-

We present here some results concerning asymptotic limits. We begin

by combining Eqs: (2.13) and (2.14) into & single equation:

Aliwpy= 7T Y Miwm — iwn)

Alin) = 0 A (iwn)
D )

Vwd + A(iwg,)

where we have noted that the term m = n does not enter the sum because

(EY)

the term in the large parentheses is zero. Thus we can take the limit vg —

0(vg <« 27T) so that

. , 2Avg
and scale the entire equation by +/Avg. We obtain .
i, _ 2 A, - Q.ETB,.] '
Ap=7tT, = - =4 . E3
. Z(wn_%,,[\/&“% (E3)

m#En .

where § = Q/vAvg, and we have written T = tT.. Once we fix ¢, this is an

éqﬁa.tion with no material parameters, so that A, = f(t,iz,), where f is inde-

pendent of material parameters. This implies that the an.alytic ‘continuation

- 183
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satisfies .
[N} .
t = f,—.
) At) = /Aug S (1, =) (E4)
. Defining the temperature gap edge through X e

it then follows that Ag
of t. Hence, 3%9,(? = ¢o

can zero temperature be achieved with this restriction? The point is that

= /Avg g(t), where g(t) is some universal function

tant, provided that T » vg, i.e., t > /vg. How

we want to acl}ieve zero temperature behaviour, which does not nécessarily
entail solving T' = 0 equations. This is standard procedure for conventional
' mzla.terih.ls, where, utilizing the imaginary axis equations, we actually solve at
- t=0.1, and call this our zero ternperam-re solution. This is justified by the
.fact that the gap edge, for example, does not change (to ~ 6 - 7 significant
digits) when we use 1 = 0.05, or t = 0.025. The reason for this is of course,
well und'ersgood: the presence of a gap causes exponential behaviour. Simple
Boltzmann factors like e~#¢ Become ¢~PE in BCS theory, where £ = e+ A2
Hence, even as ¢ — 0, e=29/T remains. Forl example, in BCS theory, the low

temperature behaviour of the gap is given by!?”
A(T) = Ag — (2rAgT) /2 e=00/T (E6)

. where Ag is the zero temperature gap. Thus, when T < A, the second term
in Eq: (E6) switches ofi" very quickly, and zero temperature behaviour is
achieved. Within BCS, 28f = 3.53 so that the term is governed by the factor
e~175/t, to be compared with unity (the first term). At ¢ = 0.1, this is already
eight/orderé of magnitude smaller than unity, so zero temperature behaviour

has been achieved at even higher temperature.
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The analysis in Ref. 91 assumed this would be the case in the strong
coupling limit as ;.vell, without pro<')f. If it is, then T = 0 behaviour will
be achievéd for the case when =%/t is small, or t = 0.1a, where a is some
number. Then the conditions T » vg and yet T =~ 0 (behaviour-wise) can
be simultancously achieved, so that the proof will be applicable to the zero
temperature ratio, fff;. Clearly then, the important issue is the léw temper-
ature behaviour of the universal fanction, g(t), or equivalently, f(t,io,). We
have ﬁroceeded-numer';cally to investigate this function.

'Eq. (E3) was solved numerically in scaled form.®® In fact for ¢t = 1, 7,
can be determined in seconds; T. = 0.2584\/Avg, in agreement with Allen and -
Dynes’ * result. For low t, Eq. (E3) was solved'for An, forn=1,2,...N,.
As t is lowered, the number of Matsubara frequencies increases since the
temperature mesh becomes finer, and the A, tend to increase with decreasing
temperature, as is expected, since'the Sn art-: order parameters. We found
that at ¢t ~ 0.01, the size-of the gaps is no longer changing. The effect of
lowering th't.a temperatufe, then, is to fill in gap values at more Matsubara
frequencies. Hence, we are assured that zero temperature behaviour has been
achieved, as far as the imaginary axis calculations go, where now the solution
is a continuous curve (iw, — iw).

It rema.iﬂns to analytically continue A(iw) and Z(iw) to the real axis.
Here we can distinguish b:atween very low temperatures and zero tempera-
ture, which is necessary, since it is known that there is a qualitative diff'ereﬂce
in the solutions!*? (say, at w = 0). Inspection of Eqs. (A11) and (A12) reveals
that this occurs in two places. The first is in the summations, which are in-
tegrals at T = 0. The behaviour for w xT‘\w:ﬂ depend strongly on whether

T =0 or T > 0. However, this frequency region is unimportant. The second
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is in the Bose and Fermi factors. In particular, for T = 0, ¥(v) = 0. However,
for T > 0, in the asymptotic limit, lim,_o N(v) = ’;"/u and hence we get an
infinity. Since we a.re‘ interested in zero temperature, we put N(v) = 0, and
f(z) =8(~z), the unit step function. These conditib'nsd'epx:esent the freezing
out of thermal phonons, and the sharpening of the distribution of eleceron
states; respectively. Eqs. (Alll) and (A12) are then scaled according to

. A@)2(@) =rT 2 @_T) \/Ti—.T
. M=o m Wi 4 A2

. [4 A& - 7g) ~, '
+ T —_—(a;—sg)ﬂ-m(o—ﬁs (E7)

VE
Z(U) _ 1+l Z (w Mm)z wm \

oo VT + 8F,

W =g

+iT (E8)

vE /(& - 75) - AXG - 7g)
These equations do not obey exact scaling laws. This is expected since we
have found limy_. Z(u'.;) « v/ as Eqs. (ET) and (E8) indicate. Hence, we have
solved Egs. (ET) and (E8) numerically, using progressively smaller values of
g = \/-T The dependence on ¥g is linear at small &g, and hence the vg — 0
behaviour can be extrapolated. We find, in this manner, ffﬁ- = 12.8.
Note, that as an added bonus, we can combine (E7) and (E8) ar::c,i expand
for small vg. We find

ir A(u) - oA (@)

Ve - 8%@)

where A (@) = [A(G)Z(E))in/ Zin (D), and the subscript “in” refers to the two

A(‘;’) m("‘-’) +

(£9)

terms in Eqs. (E7) and (E8) which involve summations. Now at the gap

edge, @ = A(@) = Ao, so that for Eq. (E9) to remain finite, we require

A'(w = o) = 1. This gap derivative has been studied in detail by Coombes
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and Carbotte.!™ It is zero in the BCS limit, and increases for conventional
strong coﬁplcrs in a regular way.!” Here we find that in the very strong
coupling limit, it continues to increase to unity. This dependence is verified
‘bg; numerical calculation. . - !

To obtain an estimate of'the gap ratio in the strong coupling limit,

we use a square well model for the gap, but with a cutoff w, = QAO- rather

than wg (w. = Ag was used in Ref. 91) as suggested by Fig. (3.18):

_ [ A for w< 24 | .
Alw) = {0 for w> 24 . (E10)

For small w, Z(w) can be evaluated in the limit as vg — 0:

Ztw . 0)=1+24 dvE(VE J(vg))- 261 (El_l)
‘and the gap equation reduces to:
' Z(w ~ 0)_&0 = 2Avg AoJ(VE) ' (El'?)
where
J(u )_ /2Au du’ 1
8= )y Atk Jorr ol
1 T \/5 ve ) .
~V5A{2— 2 A} i (E13)

Combining Eqs. (E11) and (E12) results in Ao ~ 1.3y/Avg so that #4&- =~ 10.2.
This is in fair agreement with our numerical limit considering the crudeness
of our model. Note in particular that we have Allw=020)=0 and not unity

as is the case in th_e exact calculation.
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