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ABSTRACT

In order to assess the structural characteristics of a pavement-subgrade system,
non-destructive, in-situ tests together with backcalculation procedures are widely used.
Traditionally, the analytical models adopted for this process are deterministic, however, in
reality, the quantities involved in the problem may be random variables. Neglecting the
variable nature of the system parameters, e.g., highway material properties, may affect the
reliability of the pavement response prediction. On the other hand, inverse solutions to
pavement problems are often ill-conditioned and sensitive to the input parameters. Past
experience has shown that the estimated values of a backcalculated parameter by different
agencies may vary by several orders of magnitude, representing a high level of uncertainty
in the estimated parameter. Unless the uncertainty is quantified, practitioners are forced to
resort to higher safety factors, which is neither economical nor always conservative.

The present study investigates, rigorously, the behavior of a pavement-subgrade
system from a stochastic point of view, and addresses the sensitivity of response variation
to variations in layer properties. The results of a forward analysis are utilized to establish
a relation between input and output statistical moments in order to interpret the pavement
deflection data stochastically. The proposed framework in this research allows one to
quantify the uncertainty level in backcalculated system parameters. It also provides a tool

to infer the accuracy of the pavement performance prediction based on mechanistic

models.



For the purpose of introducing the stochastic approach, the perturbation technique
is applied to an idealized, two-layered, pavement-subgrade system for the case of: (a) a
static solution based on Odemark definition of equivalent layer thickness; and () a
frequency domain solution to a single degree of freedom (SDOF) system using an
impedance function. The methodology is then extended to a stochastic finite element
framework in order to analyze boundary-valued problems of more complex geometry and
distribution of material properties. The perturbation method is a mean-based, second-
moment analysis for the second-order accurate expected value, and first-order accurate
cross-covariance function. For the dynamic analysis, viscoelastic response of the
pavement is obtained by using the periodic-load analysis approach and Fourier synthesis.

Based on the results of the simulations, it is demonstrated that, the sensitivity of
surface deflections is significantly higher to the subgrade properties than those of the
surface and base layers, both in a static and a dynamic analysis. Consequently, it is
concluded that, the low dominant frequency of the falling weight deflectometer (FWD)
load limits the capability of this test in characterizing surface layer properties. Using the
concept of coefficient matrix, it is illustrated that, the low sensitivity of deflections to
surface layer properties can be interpreted as a high level of uncertainty in the estimated
pavement moduli in a backcalculation exercise. It is indicated that uncertainties in
backcalculated parameters often result in an unacceptable pavement performance
prediction. Moreover, the physical behavior of the layers are identified by finding the

contribution of each layer to the total deflection response of the system using the notation

of contribution ratio.
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Chapter 1

INTRODUCTION AND BACKGROUND

1.1 General

Pavement characterization is important for the allocation of funds and resources to
maintain and rehabilitate the deteriorating highway infrastructure. The key element in the
success of any pavement management system responsible for making preventive and
corrective decisions is a proper assessment of the present status and an accurate prediction
of the future performance of pavement structures. Characterizing pavement properties
plays a critical role in both activities. Pavement properties are also important in the
structural design of overlays. In recent years, attention has turned to the use of
fundamental analysis of pavement response to load in evaluation of pavement performance
for design purposes. The prominent advantage of this method, usually referred to as
mechanistic design procedure, is its flexibility in handling new design conditions, e.g., new

construction materials, heavier axle loads, etc. However, mechanistic design necessitates



the determination of pavement layer properties. Accurate estimates of these properties are
required for making realistic predictions of the remaining pavement life.

Pavement property evaluation can be achieved by means of either destructive
methods, e.g., laboratory tests, or nondestructive procedures, e.g., distress surveys and in-
situ response measurements. While surface distress surveys provide information which
can be used to locate potential problem areas, a more detailed testing program is required
to assess the overall serviceability of a pavement. There has been a constant move
towards more rational methods of identifying pavement layer properties by improving the
measurement devices as well as data interpretation techniques. In recent years, the most
common method of pavement characterization is through nondestructive testing and
backcalculation of data.

Although nondestructive tests provide quality information, the interpretation of
data still remains problematic. This is due to the limitations associated with the
mechanical models incorporated into the backcalculation procedures (Stolle et al. 1988),
and the uniqueness and ill-conditioning of inverse solutions (Stolle and Hein 1989). The
net effect of these limitations is to increase the uncertainty associated with the values of
the estimated in-situ mechanical properties. Such uncertainty contributes to reducing an
engineer’s confidence in his/her ability to properly evaluate structural integrity of the
pavement and to estimate its remaining life. This study addresses the uncertainty

associated with backcalculated layer moduli, and identifies the accuracy of their estimates.



1.2 Nondestructive Tests

Nondestructive tests (NDT) have gained popularity among engineers and
researchers because of their advantages in comparison to laboratory tests. Some of the
advantages, which are listed by Houston et al. (1992), are: very low operational cost;
short test duration; no disturbance effects; and full-scale model test. The fact that a large
volume of soil is tested accounts for heterogeneity in materials, an important factor which
is overlooked in small scale laboratory tests. Furthermore, for some nondestructive tests,
the geometrical and stress conditions are similar to those of the real traffic loads. Owing
to these desirable features, Houston and coworkers have concluded that the use of NDT is
an appropriate approach to characterize pavement materials for routine pavement design.

A variety of nondestructive testing procedures have been developed which may be
categorized into two main groups: seismic techniques (associated with time
measurements) and surface loading techniques (associated with deflection measurements).
An example of the first category is the Spectral Analysis of Surface Waves (SASW)
described by Nazarian and Stokoe (1984). The main drawback of seismic methods is the
difference between the test and real pavement loading conditions. Consequently,
correction factors to test results are required to account for, for example, frequency
dependence of elastic moduli (Lytton 1989).

Surface loading techniques, which have gained wide acceptance due to their
relatively simple operation and automated data collection, are classified based on the mode

of loading: (a) static or slow moving; (b) vibratory; and (c) impulsive. The earliest



deflection test methods such as Benkleman beam and California traveling deflectometer
used quasi-static loads to deflect a pavement. The Dynaflect and the Road Rater are
examples of vibratory loading devices. Although both devices impart steady-state
dynamic (harmonic) loading, the Road Rater, which is capable of generating a wide range
of loading frequencies, is preferred over the single frequency Dynaflect. Amongst the
most common devices applying impulse load are the falling weight deflectometer (FWD)
devices. The advantages of an FWD device is its ability to apply heavy loads, perform
muiti-point deflection measurement, and closely simulate the loading history associated
with a moving wheel. After a thorough comparative study of different nondestructive
tests, Hoffman and Thompson (1982) have recognized the FWD as the best
nondestructive test for simulating pavement responses under moving wheel loads. It has
gained favor among highway engineers as an empirical tool for assessing pavement
integrity and performance.

An FWD generates a transient load by dropping a weight onto a spring-loaded
plate resting on the pavement surface. The resulting load pulse resembles a half-sine
wave. Deflection measurements can be taken at the center of the loaded area and at a
number of points, referred to as offsets, outside the loaded area by means of velocity
transducers (Nazarian and Bush 1989), commonly known as geophones. The details of

the test are described by Sebaaly et al. (1985). A schematic of the FWD device is

illustrated in Figure 1.1.



1.3 Backcalculation of Pavement Properties

While an NDT is a powerful pavement evaluation tool, its primary drawback is the
absence of a comprehensive interpretation technique for collected data. The analysis of
NDT data requires the estimation of layer properties from measured deflections, for which
no direct analytical solution exists. The lack of a direct solution has forced the
development of iterative techniques, which are based on using a mechanistic model
together with estimated values for the properties, and then comparing the computed and
measured responses. The comparisons are used to update the estimated properties. This
general process, which is repeated until a good match is achieved, has been termed
backcalculation in the technical literature.  Several researchers have presented
backcalculation methods for estimation of layer properties, in particular, the layer moduli.

One of the earlier backcalculation methods makes use of the closed-form solution
for two layers developed by Scrivner et al. (1973) based on Burmister’s layered elastic
theory (Burmister 1943). Swift (1972) developed an equation, which he called
“empirical”, and then established a graphical method for determining the moduli of a two-
layered pavement (Swift 1973). Like the Scrivner’s closed-form method, both “empirical”
and graphical methods give two solutions to the problem, thereby demanding expert
knowledge to choose the correct answer. A multi-layered solution technique based on the
least squares method has been provided by Yin Hou (1977) for the backcalculation of
layer moduli. Other researchers have developed backcalculation procedures based on the

equivalent layer theory introduced by Odemark (1949). Two of the equivalent layer



methods, which have been developed by Ullidtz (1987) and Lytton et al. (1979), account
for nonlinear stress-strain relation in the subgrade. Numerous microcomputer methods
have been developed to backcalculate layer moduli for multi-layered pavements. Based on
the description by Lytton (1989), the features that all methods have in common are
ilustrated in Figure 1.2. Some of the more popular microcomputer backcalculation
programs are MODCOMP (Irwin 1983), the “- DEF” series of programs (Bush 1980),
and MODULUS (Uzan et al. 1988).

All of the above mentioned methods use a static analysis to interpret deflections,
even though the deflections most often originate from a dynamic test. Many researchers
have, however, discussed the importance of using a dynamic analysis and the consequence
of neglecting inertia on the backcalculated results, see e.g., Mamlouk and Davies (1984),
Sebaaly et al. (1985), Siddharthan et al. (1991), Zaghloul et al. (1994), and Stolle and
Peiravian (1996). Dynamic backcalculation was introduced by Mamlouk (1985). He used
a backcalculation program based on a discrete layer approach to dynamic analysis of
pavement developed by Kausel and Peek (1982). Ong et al. (1991) used a finite element
based dynamic backcalculation program called FEDPAN to backcalculate layer moduli
from surface deflections. Uzan (1994) presented two dynamic backcalculation approaches
in the time and frequency domains for estimating pavement material properties. A
simplified two-layered approach incorporating Odemark’s definition of equivalent
thickness was developed by Stolle and Peiravian (1996).

Although a dynamic analysis approach is another step towards a comprehensive

backcalculation algorithm, many existing approaches tend to utilize only peak deflections



to estimate properties. There are, however, other procedures which make use of the
whole recorded deflection history to estimate layer properties. Among such procedures
are system identification (SI) methods for finding the characteristics of pavements, as
described by Glaser (1995). In these methods, the complete input and output signals are
analyzed to identify the properties of the system, usually referred to as filter. An example
of such methods is applied to analysis of surface wave spectra (Nazarian and Stokoe
1984). Other backcalculation techniques have also been developed which rely on the
previously gathered information. The most recent methods utilize knowledge-based
systems (Chou 1993) and artificial neural networks (Meier and Rix 1995). While artificial
neural networks are powerful mathematical tools for curve fitting, they cannot easily

accommodate the physics of the problem.

1.4  Accuracy of Backcalculated Properties

Like any other experiment, pavement characterization using a deflection
measurement and a backcalculation process is susceptible to errors, the existence of which
affect the accuracy/uncertainty of the estimations, i.e., layer properties. Unfortunately, a
significant characteristic of most pavement inverse solutions is their sensitivity to small
changes in input data. Stolle and Hein (1989) have shown that, owing to the nature of
multi-layered stress analyses involving a pavement structure, the backcalculation solution

is greatly influenced by the quality of the measured deflection basin. They have



demonstrated that a small variation between the actual and assumed response can lead to
considerable differences between the predicted and actual moduli, meaning that errors in
measured deflections may have a substantial impact on the outcome of a backcalculation
exercise.

There are several sources of error which are introduced into the process of
deflection measurement and backcalculation, some random and some systematic in nature.
The main sources of random errors, which can be reduced by repeated measurement or
calculation, are measurement errors (both force and deflection), and the spatial variation
of layer materials and geometry. On the other hand, systematic errors, which can not be
eliminated or reduced by repeated experiment, are mainly introduced by the assumptions
made with respect to the deflection calculation model and its assumed constitutive stress-
strain relation. Traditional methods use a static, linearly elastic model. Neglecting inertia
and nonlinearity when interpreting data gathered by a dynamic-based testing procedure on
a nonlinear system accounts for part of the overall systematic error. Some other common
assumptions leading to systematic errors are uniform load distribution under the plate,
perfect seating condition, and neglecting depth, stress, temperature, and moisture
dependency of material properties. Another source of error, which may be random or
systematic, is due to the uncertainties in estimating input values required to perform the
backcalculation analysis, e.g., layer thicknesses, Poisson ratios, etc.

Many studies have addressed the effect of errors on backcalculated properties.
Uzan and Lytton (1989), for example, performed an analysis of the errors involved in both

the nondestructive testing data collection and the modeling of a pavement structure to



investigate the effects of the errors on the backcalculated layer moduli. Since they only
used one backcalculation method in their study, the effect of systematic errors due to
different backcalculation schemes was not considered. However, in another study, Lytton
(1989) reported the results of different backcalculation exercises and demonstrated that
scatter in estimated moduli may extend over several orders of magnitude. Chou and
Lytton (1991) also indicated the discrepancy among the backcalculated moduli by
comparison of the results performed by different agencies. While they attributed the
differences mainly to systematic errors due to using different types of NDT devices,
backcalculation methods, and input parameters, they concluded that errors significantly
affect the outcome of a backcalculation exercise. Siddharthan et al. (1992) investigated
the variation in deflection measurements to find the effect of such variation on the
backcalculated moduli. They have shown that for a relatively uniform site, the coefficient
of variation of the backcalculated surface layer modulus may reach as high as 65 percent.
They also used the backcalculated moduli to evaluate the performance of pavements and
noticed that the propagation of errors resulted in a wide range of uncertainty level in the
pavement life prediction.

While efforts have been made to reduce the errors by employing new test devices
and improving interpretation methods, the total elimiration of uncertainties in input data
due to errors is not conceivable. To account for such uncertainties in an analysis

procedure, the only rigorous way is through a stochastic approach.
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LS  Stochastic Analysis

Statistically based techniques of data analysis have been introduced in the civil
engineering practice with the objective of developing a more rational approach to the
design and evaluation of constructed facilities. In the past, it has been common practice to
analyze structural systems by assuming that system parameters are exactly determined.
However, since such an ideal situation is rarely encountered in engineering reality, the
need to address uncertainties in the design is now recognized. The stochastic analysis in
the broadest sense refers to the explicit treatment of uncertainties in any quantity entering
the corresponding deterministic analysis.

The complete solution of a stochastic analysis is obtained by calculating the
probability density function of the response. Knowledge of this distribution function
provides all the required statistical information about the random response. In practice
this is not always possible in view of the complexity of the calculation and the limited
information about the statistical behavior of input random variables. Thus, a stochastic
analysis often means to determine a limited number of statistical properties associated with
the solution. Among the most useful properties of a random solution are the statistical
moments, particularly the expected value and the covariance function. Such stochastic
description avoids the details of the spatial distribution but retains a measure of the
uncertainty associated with the spatial variability.

Different methodologies can be adopted to quantify response uncertainty by

calculating its statistical moments. Monte Carlo simulation (Thomas 1971, and Harr
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1977) relies on directly simulating an experiment. In this method, a set of random
numbers is generated first to represent the statistical uncertainties in the structural
parameters. These random numbers are then substituted into the response equation to
obtain a set of random numbers which reflect the uncertainty in the structural response,
and should be statistically analyzed to produce a qualification of the uncertainty.
Perturbation method (Kleiber and Hien 1992) is the most widely used technique for
analyzing random systems in engineering (Ghanem and Spanos 1991). This fact is mainly
due to the mathematical simplicity of the method. The perturbation scheme consists of
expanding all the random quantities around their respective mean values via a Taylor
series (Benjamin and Cornell 1970) to formulate a linear relationship between some
characteristics of the random response and the random structural parameters. Among
other methodologies are Neumann expansion (Adomian 1983), Karhunen-Loeve
decomposition (Karhunen 1947 and Loeve 1948), Rosenblueth’s method (Rosenblueth
1975), and hierarchy closure approximation (Bharrucha-Reid 1959).

Although different stochastic approaches may be employed in an analysis
procedure, for the practical application of statistical methods to structural analysis, such
techniques should be implemented into efficient and powerful computational methods.
This is because uncertainties are usually spatially distributed over the region of the
structure and must be modeled as random fields. Also, the structures themselves are
frequently too complex to be analyzed by analytical techniques even in the deterministic
case. Therefore, the need for an effective numerical tool to deal with a broad class of

stochastic structural problems becomes evident. The stochastic finite element method
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(SFEM) provides a computational tool to combine the complexity of large engineering
systems with uncertainty models that accommodate random characteristics. While
different statistical techniques may be incorporated into a finite element framework, the
perturbation approach seems to be both theoretically sound and computationally feasible
to combine with finite element analysis. In this approach, the system characteristics are
defined in terms of not only their mean values (first-order statistical moment), as is the
case for classical finite element method, but also their higher order statistical moments. In
turn, the results of a stochastic finite element analysis includes the expected value of the
response as well as its higher order statistical moments. Most often only statistical
moments up to the second order are calculated due to the impractical computing efforts
required to find higher moments (Nakagiri and Hisada 1982).

Many authors have developed and adopted the stochastic finite element method for
the analysis of systems characterized by uncertainty. Among many contributors, Cornell
(1975), Contreras (1980), Vanmarke and Grigoriu (1983), Hisada and Nakagiri (1985),
and Shinozuka (1985) have provided significant contributions to the SFEM development.
Within the geotechnical area, this method has been used for the settlement analysis of a
shallow foundation (Brzakala and Pula 1992), the prediction of differential settlement
(Baecher and Ingra 1981), soil-structure interaction (Dasgupta 1985), slope stability
reliability analysis (Ishii and Suzuki 1987), and for complex geotechnical systems (Righetti
and Harrop-Williams 1988). Also, more recently, Ghanem and Brzakala (1994) have used

this method to account for geometric randomness in layered geotechnical media. No
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reference has been found, however, which addresses the application of SFEM in pavement

deflection analysis.

1.6  Objectives

The objectives of this study are to investigate the effect of variation in layer
properties (non-homogeneity) on the stochastic response (deflection and its variation) of a
pavement-subgrade system, and to quantify the anticipated level of uncertainties in the
estimated system properties backcalculated from surface deflection measurements. To
achieve these goals, the statistical variation in the surface deflection is calculated given
random variations in layer properties. The variation in deflection due to a variation in
layer property provides a measure of sensitivity of deflection relative to that property.
Moreover, a random variation may be viewed as an uncertainty in the estimation of a
uniform property. For this reason, when examining the effects of randomness on the
deflection, often comments are made with regard to the uncertainty in the backcalculated
parameters. To perform the analysis, a stochastic finite element framework based on the
perturbation technique is adopted. The computer program developed for the analysis is a
mean-based, second-moment algorithm for the second-order accurate expected value and
first-order accurate cross-covariance. A linear, elastic idealization of the highway material
properties is considered since the effect of nonlinearity is small given the relatively small

increase in the existing gravity stresses, and short duration of the FWD loading.
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With respect to the stochastic characterization of a problem, a layer is assumed to
be defined by a statistically homogeneous random field; i.e., the mean and the variance of
the random layer property (e.g., the elastic modulus) are constant throughout a layer.
Furthermore, the random property is assumed to be perfectly correlated within the entire
layer. Variation' in layer property, which may be attributed to either the inherent
variability of the property, or the sampling and testing errors (including human errors), is
presented by a coefficient of variation (CV). The values of the coefficients of variations in
this study are often assumed to be 10%. This value is only used to demonstrate how
stochastic procedures can be implemented to identify sensitivities, recognizing that
variations in all parameters are neither necessarily equal nor are they equal to 10%. To
emphasize the stochastic behavior of pavement systems and simplify the interpretation of
the results, two-layered pavement systems are mainly considered, acknowledging the fact
that real-world pavement systems usually consist of more layers. The selected values for
system parameters such as layer properties are only for illustration purposes and by no
means define any restriction on the applicability of the approach to other configurations.
It is also important to realize that the thesis presents a framework for analyzing a class of
problems in pavement engineering. Consequently, examples are given only to demonstrate

the type of information that can be obtained when working within the introduced

framework.

! In the text, the term “variation” is often used in a general sense and refers to the uncertainty

associated with a quantity represented by a variance, coefficient of variation, or scatter in data.
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This thesis is organized into five chapters. Following this chapter, which is mainly
dedicated to problem identification and the scope of the study, Chapter 2 contains the
analysis of deflection sensitivity to variations in layer properties within a static framework.
In Chapter 3, the dynamic approach to the deflection analysis of pavement structures with
random properties is discussed. The observations made in Chapters 2 and 3 are then
utilized in Chapter 4 to comment on the anticipated uncertainties in the estimated
pavement-subgrade properties backcalculated using measured surface deflections. Finally,

Chapter 5 gives a summary and highlights some of the conclusions.
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Chapter 2
STOCHASTIC ANALYSIS OF PAVEMENT STRUCTURES UNDER STATIC

LOADS

2.1 Introduction

Although most of the recently developed, non-destructive, in-situ tests make use of
a dynamic load in order to better simulate a moving wheel load, the static approach to
pavement analysis and backcalculation of its properties is still common among
practitioners. In this chapter, the inclusion of stochastic considerations in the static
analysis of pavement structures is explained. The scalar equations pertaining to the
stochastic analysis are derived, then matrix equations leading to a stochastic finite element
framework are presented. To introduce the application of the stochastic method, a
simplified solution to the pavement-subgrade interaction problem is considered first. The
stochastic analysis is performed and the results are compared with those of the Monte
Carlo simulations to investigate the accuracy of the perturbation method. For the
stochastic finite element analysis, a two-layered pavement system is studied first in order

to clearly demonstrate the behavior of a simple model from a stochastic viewpoint.
17
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Simulations are carried out for different geometry and material property configurations of
the model to predict deflections, as well as their variations when variations are assumed in
material properties or geometry of the layers. Also investigated, are the effects of
simultaneous variations in input random variables on the variation of the response.
Toward the end of the chapter, a more realistic model consisting of three layers is
considered. The results of simulations for this model are compared to those of the two-

layered model and conclusions are drawn. Finally, the results of the stochastic analyses

are related to the physical behavior of the systems.

2.2  Taylor’s Expansion Method

The implementation of the Taylor’s expansion method in the stochastic analysis
and the form of the equations derived depend on the nature of the response function for
the system. The stochastic equations are presented in the following sections for two main

function categories; i.e., continuous, and discrete.

2.2.1 Continuous Function of a Random Variable

The Taylor’s expansion of a function u(b) with respect to its variable b around b,

is defined by



19

ull (b)

ub) = ulo) +u' (o), &b +— =1y, Ab2 +A (2.1)
in which
Ab =b-bg (2.2)

In Equation 2.1, the prime represents differentiation with respect to b, and notation

119

b, indicates that the quantity is evaluated at by. One may consider u to be the

displacement of a system and b one of the system properties. For a small Ab, the
expansion can be truncated after a few terms which provides an approximation to u(b).
Assuming that b is a random variable with by being its mean value, neglecting terms higher

than second order, and applying the expected value function to both sides of the truncated

expansion yields (Kleiber and Hien 1992)

ull (b)

THRILY var(b) (2.3)

Efu(b)] = u(bg) +

in which var(b) is the variance of random variable b.
To find the variance of function u(b), the first order approximation of u(b) is

considered. By taking u(bp) to the left-hand side of the equation, squaring both sides, and

applying the expected value function, the variance is approximated as
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var(u(b)) = [u'(b)|, I var(b) (24)

When calculating var(u(b)), the expected value of u(b) is approximated with u(by).
The definitions and properties of the expected value and variance functions (Helstrom
1984) given in Appendix A are used for the derivation of Equations 2.3 and 2.4.

For the case of a multi-variable function, u(by,...by), Equations 2.3 and 2.4 may be

extended to provide
1 nn b,
Efu] = u®o) +5 2 2> ), 5, covtbi,by) @)
i=1j=1
and
nn b
var(u) = 3. 3 @), @)y, covibi,b)) @56)

i=1 j=1

in which cov(b; , b;) is the covariance of b; and b;, and u® denotes partial differentiation
with respect to b;. To simplify the notation, the dependence of a function to its variables

is not shown.
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2.2.2 Discrete Function of a Random Variable

When dealing with a discrete representation of a function, direct differentiation
may not be possible. In such cases, to derive the equations for the expected value and
variance, the following approach is taken.

Consider a matrix equation in the form of

K()u() = Q) 2.7

This equation may represent the equilibrium equation of a multi-degree of freedom
system where K(b) is the stiffness matrix, Q(b) is the load vector, u(b) is the displacement
vector, and b is a system parameter such as elastic modulus. For such a system, since the
stiffness, and in general, the load are assumed to be functions of the system parameter b,
the displacement will also be a function of b.

Suppose b is a random variable, therefore, it may be written in terms of its mean

value by and a random perturbation Ab as given in Equation 2.2. Assuming Ab to be

small, and replacing the second order truncated Taylor’s expansion of K, u, and Q about

bg in Equation 2.7, one gets (Kleiber and Hien 1992)

(Ko +K'Ab+0.5K" Ab?)( ug +u'Ab +0.5u" Ab% }=Qp +Q'Ab+0.5Q"Ab2  (2.8)
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where the subscript zero denotes that the quantity is evaluated at by, and prime implies
that a function is differentiated with respect to b and evaluated at by. Again, to avoid the

notation from becoming too complex, the dependence of K, u, and Q to b is not

mentioned.

Expanding the left-hand side of the equation, and collecting terms of the same

order gives a set of three equations from which the values of ug, u', and u" are obtained

as follows

up = Ko7'Qp (29)
u'=Ky Q' -K'ug] (2.10)
u"= K {Q"-K"uy - 2K' '] (2.11)

It should be mentioned that differentiation of K and Q is defined by differentiation
of each of their members with respect to b.
Considering the truncated Taylor’s expansion of u, with analogy to the procedure

outlined previously, the expected value vector and the covariance matrix of displacement

are given by

E[u] = ug +05u" var(b) (2.12)
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and

cov(u) = (u')var(b)(u')" (2.13)

in which (u')! is the transpose of u'. As before, when deriving Equation 2.13, the
expected value of u is approximated by ug.

For the case of a set of p random variables, and a deterministic load, Equations

2.12 and 2.13 change to the following forms (Kleiber and Hien 1992)

Elul=ug + iéjzzsijcov(bi,b i) (2.14)
and

cov(u) = A cov(b) A® (2.15)
in which

Sij = K KP XK'K %)y ij=l,...p (2.16)
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and cov(b) is the covariance matrix of the set of random variables b, with cov(b; , b))

representing a member of this matrix, and cov(u) being the covariance matrix of the

random displacements. The superscript b; beside a prime refers to partial differentiation

with respect to b;. A is an n x p matrix consisting of p column vectors defined as

a; = Kg'K ™ iy, i=1,...p @2.17)

with A' being its transpose. The parameter n represents the number of degrees of

freedom.

2.3 Correlation Between Random Variables

The covariance matrix of the input random variables, cov(b), consists of the
variances of the random variables located on the diagonal, and the covariances of each
pairs of the variables as off-diagonal members. These off-diagonal covariance terms

represent the correlation between each pair of random variables through the following

relation

cov(b;, ;) = pyjy var(by) var(b ;) ij=L,...p (2.18)
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in which gy; is the correlation coefficient between b; and b;.

Based on Equation 2.15, the diagonal terms of cov(u), which define the variances

of the displacements at each degree of freedom, may be written as (Kleiber and Hien

1992)

p p P
var(uk)=Zaldzvar(bi)+ZZakiakjcov(bi,bj) k=1,...n (2.19)
i=1 i=lj=1

j#i

in which ay; is the ki member of matrix A.

Using Equation 2.18, Equation 2.19 may be written in terms of the correlation

coefficients as

P p P

var(uy ) = D ay;2var(b;) + 9. 2 aagpvardy) Jvarlb;)  k=l,.n (2.20)
i=1 i=1j=1
J=i

One should note that, if variation exists only in one random variable b;, then

var(uy) due to variation in b;, which is denoted by var(uy )lbi , is given by

var(ug )|b; = ai2var(b;) k=1,...n 2.21)
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In calculating var(uy) from Equation 2.20, two extreme cases may be considered:
) There is a complete positive correlation between all pairs of random variables b;

and b;. Then py=1 for all ij=1,...p, and Equation 2.20 becomes

p
var(uy ) = (zlald,/var(bi))z k=1,...n (2.22)
i=
or by using Equation 2.21
p
var(uy ) = ('Zl var(uy )|b; ) k=1,...n (2.23)
1=

(i)  There is no correlation between any pair of the random variables b; and bj. Then

p;j=0 for all i,j=1,...p and i#j, and Equation 2.20 becomes

P
var(uy ) = X ag2var(b;) k=1,...n (2.24)
i=1

or
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var(uy ) = ivar(uk)lbi k=1,...n (2.25)
i=1

Equations 2.22 and 2.24 may be expressed in terms of the coefficient of variation

p p
CV(ug) = 2.digCV(b;) = X CV(uy )|b; k=1,...n for =1  (2.26)

i=1 i=1

and

[p p
CV(uy) =, |2 [dCVO? = | DICVu b2 k=l..n for pg=0  (2.27)

i=1 i=1l
in which

dyi =2y E[b;] k=1,...n, i=1,...p (2.28)
Eo] = .
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2.4  Stochastic Approach to Simplified Pavement Analysis

To illustrate the application of the Taylor’s expansion method in stochastic analysis
of pavement structures, a simplified approach to the pavement deflection analysis is
chosen. For a linearly elastic, semi-infinite pavement system consisting of a surface layer
and a subgrade, the surface deflection at a distance r from a concentrated load P is

approximated by Boussinesq-Odemark method as (Ullidtz 1987)

where h, is the equivalent thickness defined by Odemark (1949) as

€p
he=0.9hy3 — (2.30)
S

and QQ is the shape function

1 .2(1-v)

r
Q(Tl:) e + R (2.31)
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in which

1
R=(1+GT 232)

In the above equations, ep and e are the elastic moduli of the pavement and subgrade,
respectively, hy is the pavement layer thickness, and v = v, = v; is the Poisson ratio of both
pavement layer and subgrade. Strictly speaking, w is the deflection at a depth of h, from the

pavement surface, however, if the vertical strains in the pavement are small, this deflection can

be used to approximate the surface deflection. The assumption is valid only if ep is
considerably greater than eg and the pavement is not too thick.
Now, if the subgrade elastic modulus e is a random variable, the surface deflection w;

will also vary randomly. Using Equations 2.3 and 2.4, then the expected value and variance of

deflection w, are obtained in terms of the mean value and variance of e;. The same exercise
can be carried out assuming ep to be a random variable, and finding the expected value and
variance of deflection in terms of the statistical moments of e

For a sample problem, where P=40 kN, ep=4000 MPa, e=100 MPxa, hp=0.15 m,
and v=0.45, the variation in w, in terms of its coefficient of variation is calculated for two
separate cases: (a) only ep is allowed to vary randomly; and (b) only e is allowed to vary

randomly. The results of the simulations are illustrated in Figure 2.1. The figure indicates
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that, the variation in deflection under the load (r=0) is almost 1/3 of CV(ep), when the
pavement varies, and 2/3 of CV(eg), when the subgrade varies. These values were

obtained by a simple, first order error analysis (Stolle and Jung 1992), thereby confirming

the results from the analysis procedure developed in this study.

2.4.1 Effect of Higher Order Terms

If random perturbations are not small, the truncated Taylor’s expansion should include
higher order terms to provide acceptable accuracy. To illustrate the effect of higher order

terms, the Taylor’s expansion of w, with respect to e is truncated up to the fourth order and

the expected value function is applied to both sides of the equation to give

" " (AN}
W w w

Elw ] = wyo +—— var(eg) + ;! M3(eg + '4! M* (e (2.33)

where M?(eg) and M*(e,) are the third and fourth order central moments of the random variable
e, respectively. If the probability density function of eg is symmetric, the third order central
moment will be zero; ie., M’(e)=0. Furthermore, if e, has a normal distribution,

M(eg)=3var(e,)’ (Taylor 1982) and Equation 2.33 becomes



31

e e
W w

E[w ] = wyo + — —var(eg) + ———var(ey)’ (2.34)

The variance of w; is calculated as before, except that the statistical moments of eg up

to the fourth order are taken into account here, giving
2 3 ] 2 ] e
var(w) = (wy' ) var(eg +[7(we" )"+ W' Wy Jvar(eg)? (2.35)

In the derivation of Equation 2.35, wy is used as an approximation for E[w,].

Calculations were completed to compare the second and fourth order perturbation
method solutions. Simulations were also carried out using the Monte Carlo technique in order
to evaluate the accuracy of the perturbation methods. The Monte Carlo solutions were
obtained using 1000 sets of results which were calculated by varying e via a random number
generator based on a normal distribution.

Figure 2.2 shows the results obtained from the second order perturbation, fourth order
perturbation, and Monte Carlo simulation techniques. Comparing these curves indicates that,
for this problem, the effect of the higher order terms in the Taylor's expansion is small for
CV(ey) of 15% or less. However, the difference between the second and fourth order schemes
becomes considerable for values of CV(ey) greater than 20%. This observation is in good
agreement with that reported by Brzakala and Pula (1992a). By comparing the coefficients of

variations from the fourth order perturbation and Monte Carlo technique, it is clear that higher
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terms than fourth order are required if CV(e) exceeds 25%. Furthermore, it appears that
truncation leads to an underestimation of the coefficient of variation of the response. In other

words, the actual variation of the response is higher than that obtained by using a truncated

Taylor’s expansion. A similar conclusion is made by Shinozuka and Yamazaki (1988).

2.5 Stochastic Finite Element Method

To perform a stochastic finite element analysis for a quasi-static situation, the Taylor’s
expansion approach in the form of Equations 2.14 and 2.15 was incorporated into a finite
element program. The code was validated by comparing the results of the stochastic finite
element simulations with closed-form solutions for some sample problems. A FORTRAN
listing of the program, along with the input and output files for a simple two-element axial
problem with random material and/or geometric properties, for which the solution is given in
Kleiber and Hien (1992), is presented in a separate document (Parvini, 1997).

For an SFEM procedure, the discretization of a problem is exactly the same as that of
any ordinary finite element method. The difference lies in describing material and/or geometric
properties in terms of stochastic variables. These values are often defined by expected values
and variances rather than by deterministic values as is the case for a traditional finite element
analysis. It is important to recognize that, when there are more than one random variable, the

covariances of the variables, which show their correlations, must also be provided as input.
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This can be done by introducing the covariance matrix of the random variables. It should be
pointed out that, the derivatives of a stiffness matrix with respect to random variables are
calculated on the element level, and the resulting matrices are assembled in the usual way,
taking into account the compatibility and equilibrium principles. Also, in order to
calculate A defined in Equation 2.15, the derivatives of the stiffness matrix with respect to
all random variables are required. Therefore, for each random variable it is necessary to

have memory at least equivalent to what is required to store the stiffness matrix.

2.6  Sample Pavement Problem

Figure 2.3 defines the geometry of a typical multi-layer pavement-subgrade system
consisting of a hot mix surface layer, a granular base and a subgrade which is supported by
a bedrock. Each layer is defined by its properties such as thickness, elastic modulus, and
Poisson ratio. Material properties are assumed to be linearly elastic and isotropic. The
default expected values of the pavement, base, and subgrade elastic moduli are selected to

be €,=4000 MPa, ;=300 MPa and e;=100 MPa, respectively, with Poisson ratios of
vp=0.35 for the surface layer, v;,=0.40 for the base, and v4=0.45 for the subgrade. The

selected values for the pavement properties are consistent with typical resilient (elastic)
moduli and Poisson ratios for hot mix asphalt reported in the literature (Huang 1993).

The subgrade modulus corresponds to the values often encountered when interpreting
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Ontario FWD data (Stolle 1992). The default thickness of the pavement and base layers
are assumed to be 0.15 m and 0.30 m, respectively, with the depth to the bedrock H=7.35
m. A 40 kN load is considered to be applied uniformly over a circular area of radius
a=0.15 m. Although the applied load of an FWD test is of an impact nature, elastostatic
analysis is completed in this chapter in order to emphasize the response characteristics
associated with the stochastic nature of the problem. The inertial effects of dynamic

loading on the variation of response are discussed in Chapter 3.

It should be noted that, unless stated otherwise, the values of the parameters given

in this section are used for all the simulations.

2.6.1 Characteristics of the Finite Element Model

In order to analyze the problem by finite element method, the medium is divided
into a finite number of elements. Strictly speaking, when dealing with a stochastic analysis,
the whole structure should be analyzed using a three-dimensional finite element code as
the variations in layer properties are not necessarily axisymmetric. However, in order to
save computational time and to avoid a three-dimensional analysis, it is assumed in this
study that the effect of randomness in the horizontal plane is the same for all directions,
thereby allowing analyses with an axisymmetric finite element scheme. To satisfy the

boundary condition on the line of symmetry passing through the center of the loading area,
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zero shear conditions are defined along this line. The domain is subdivided into 1200, 4-
noded, quadrilateral, isoparametric elements with 30 rows and 40 columns, yielding 1271
nodes and 2430 net degrees of freedom. The mesh is chosen finer close to the load and
coarser as one moves away from the load. The nodes along the bottom boundary are fully
fixed, simulating the presence of the bedrock. In order to minimize the effect of an
artificial boundary (traction free vertical boundary) on the solution in the region of
interest, the domain is extended to 11.85 m away from the center line, i.e., 79 plate radii
away. A schematic of the finite element model is shown in Figure 2.4. Although a less
number of elements could be used to obtain accurate solutions for the static case, a fine
mesh identical to the one used in dynamic analysis is chosen. The reason for using the
same grid is that the author wishes to minimize the effects of discretization errors when
making comparisons of solutions. It should be recognized that there are more restrictions

on the maximum size of the elements in a dynamic analysis, thereby often requiring a finer

mesh than is necessary for the static case.

2.7  Simulations for Two-Layered Systems

In order to clearly demonstrate the general observations associated with the
stochastic analysis, the response of a two-layered pavement system consisting of a surface

layer directly on top of a subgrade (h,=0) is investigated first.
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2.7.1 Predicted Surface Deflections

Figure 2.5 provides surface deflections for deterministic elastic moduli
(represented by their mean values), and for a random subgrade modulus with a 20%
coefficient of variation. Since deflections are most sensitive to the subgrade modulus, as
indicated in Figure 2.1, only the effect of variation in the subgrade modulus on the
deflections is illustrated here. A similar exercise, which took into account the variation in
the pavement modulus, resulted in superimposed curves. As shown in the figure, a 20%
coefficient of variation in the subgrade modulus has only a small effect on the deflection
basin. Although the difference may be small, the expected value of deflection, E[u], is

always greater than the deflection calculated using the mean, u;. Recognizing that

deflection is a convex function in terms of the subgrade modulus, this observation can be
explained based on Jenson’s Inequality (Billingsley, 1995). Because of the small
differences in deflections due to variations in layer moduli, the traditional viewpoint of
neglecting the effect of such variations appears to be justified. Nevertheless, small
differences in deflection bowl shapes can have a large influence on the backcalculated
moduli, as will be illustrated in Chapter 4.

Figure 2.5 also shows the expected values of the deflections under the pavement
layer. For this relatively thin pavement, except for the points very close to the load, there

is no significant difference between the deflections at the top and bottom of the pavement
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layer. This justifies the assumption of zero straining of the pavement layer as was

mentioned in the previously presented simplified approach.

2.7.2 Variations in Elastic Moduli

i) Typical trend for variation in deflection

Although random variations in layer moduli do not have much influence on the
expected values of deflections, they do affect the statistical variations of deflections. In
this study, variation is often defined in terms of a coefficient of variation. The author
believes that this dimensionless quantity better represents the relative uncertainties in the
parameters.

The coefficient of variation of deflection, CV(u), is plotted versus the radial offset
in Figure 2.6 for two separate cases: (a) in the first case variation is only assumed in the
pavement layer; and (b) in the second case it is considered only in the subgrade. For each
case, results are obtained for three values of 5, 10, and 15 percent for the coefficient of
variation of the elastic modulus.

It may be observed that, when the pavement modulus is allowed to vary, CV(u)
under the load is the largest and decreases rapidly as one moves farther from the center

line. This trend is expected since most of the straining in the pavement structure occurs
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underneath the load. The distance from the load to the point where the effect of the
pavement property variation on CV(u) becomes insignificant is referred to in this thesis as
the pavement influence length, rp- The ratio rp/he for the configuration under study in
Figure 2.6 is 1.30. An important observation from a backcalculation perspective is that a
variation in the pavement modulus corresponds to a much smaller variation in deflection.
In other words, small variations in surface deflections have the potential to contribute to
large variations in backcalculated pavement moduli. This is consistent with the
backcalculation experience where it has been found that surface moduli are difficult to
predict (Lytton 1989).

The other set of curves is obtained by keeping the variation of the pavement layer
modulus equal to zero and changing the coefficient of variation of the subgrade modulus,
CV(ey). As shown in the figure, for a specific coefficient of variation of subgrade
modulus, CV(u) increases as one moves away from the center line until a radius of
approximately 0.9 m, after which CV(u) remains relatively constant at a value close to
CV(eg). Again this observation is consistent with the fact that deflections farther from the
load are mainly attributed to the straining of the subgrade (Uzan and Lytton 1989). Since,
for the first order perturbation method, response variance changes linearly in terms of the
input variance, and the effect of variation on the expected value is negligible, the increase

in CV(u) is also approximately linear with respect to the increase in CV(e) for both

pavement and subgrade variations.
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A comparison between Figures 2.1 and 2.6 confirms that the simplified approach
presented in Section 2.4 is capable of reflecting the sensitivity of the variation in deflection
to variation in layer moduli. This endorses the suitability of the simplified approach for

sensitivity analysis of deflection variation in quasi-static analysis of two-layered models.

ii) Effect of Bedrock Depth

The results of the previous analyses correspond to a particular pavement structure.
To investigate how bedrock depths affect variations in deflections when layer moduli are
allowed to vary randomly, simulations were carried out for three bedrock depths of 2.85,
4.35, and 7.35 m. For these three pavement-subgrade systems, first the expected values of
deflections are considered. Figure 2.7 shows that an increase in the depth of the bedrock
is equivalent to an almost uniform increase in the surface deflections. In other words, all
the points at the surface are similarly affected by a change in the bedrock depth.

On the other hand, when examining Figure 2.8, which summarizes CV(u) for the
three bedrock depths, one comes to the conclusion that the depth to the bedrock does not
have an important effect on CV(u), whether the pavement or subgrade modulus is allowed
to vary. Moreover, the pavement influence length, and consequently the ratio rpfhe, is
independent of the bedrock depth. It must be recognized that these observations are only

applicable to the quasi-static loading condition and the range of H considered here.
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iii)  Effect of Pavement Thickness

Three different pavement thicknesses of 0.15, 0.30, and 0.45 m were considered
and simulations were carried out to find the expected value and variation of surface
deflection when variations were assumed in the layer moduli. The expected values of
deflections are summarized in Figure 2.9. As shown in the figure, unlike for the case of
different bedrock depths, the decrease in deflection due to an increase in the pavement
thickness is not uniform for all the offsets. The change in deflection for the offsets close
to the center line is very significant while after a distance of about 1.2 m, there is almost
no change in the deflection due to the change in the pavement thickness. It must be

recognized that the offset beyond which the pavement thickness has a little influence on u

depends on h,.

Figure 2.10 indicates that for the case where the pavement modulus is allowed to
vary, the thicker the pavement the higher variation in the deflection. This result is not
surprising since strains within a thick pavement contribute more to the overall surface
deflection than the case for a thin pavement, particularly directly under the load.
Moreover, the pavement influence length increases for thicker pavements, while the ratio
rp/he stays constant for all three pavement thicknesses. For the case where subgrade
modulus varies, on the other hand, CV(u) decreases as the result of an increase in the

pavement thickness. which can be explained using the argument given for the previous
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case. In summary, the results are consistent with what one would expect; i.e., as hy

increases, the importance of the pavement to the overall behavior of the system increases.

iv) Effect of Pavement Modulus

Simulations were also completed to study the effect of changing the pavement
layer modulus from ep=4000 MPa to ep=8000 MPa on E[u] and CV(u). The results for
the expected value and coefficient of variation of deflection are summarized in Figures
2.11 and 2.12, respectively. The trends observed in these figures are similar to those
observed in Figures 2.9 and 2.10. The sensitivity of the deflection and its variation to the
changes in the pavement modulus, however, seems to be less than that related to the
changes in the pavement thickness, as will be illustrated rigorously later on when hy is
allowed to vary randomly. This is not surprising if one considers the relation of w, to hy
and ey in Equation 2.29. From a backcalculation perspective, the low influence of ep on
CV(u) compared to that of hy, suggests that if hy, were to be backcalculated, it would yield

a more reliable quantity than backcalculated ep-
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v) Effect of Subgrade Modulus

The effect of the subgrade modulus on the expected value and variation of
deflection is investigated by carrying out analyses for three different cases. For the first
two cases, the mean value of the subgrade modulus is assumed to be constant and equal to
es=100 MPa and ;=200 MPa, respectively. For the third case, the subgrade modulus is
assumed to be variable in order to more accurately simulate the real situation where
subgrade moduli change with depth. The following relation is used to take into account

the change in the modulus of a granular subgrade as a function of depth (Yoder and
Witczak 1975)

M, =3.846 %57 (2.36)

where M, is the resilient modulus of soil in terms of MPa and & is the sum of principal
stresses in terms of kPa. It should be noted that for linear problems, the resilient and
elastic moduli are identical. Relating the sum of the principal stresses to the depth (for a

soil with an assumed friction angle of 30 degrees and unit weight of 20 kN/m?), the

following approximate relation is obtained

M, =502z%7 (2.37)
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in which z is the depth in meters.

To apply Equation 2.37 to the problem, the subgrade is divided into six layers of
1.2 m thick. Each layer has a uniform modulus which is calculated from Equation 2.37
based on the depth of the bottom of the layer. This results in a subgrade modulus ranging
from 60 MPa at the top to 200 MPa at the bottom with an average around 140 MPa.

Simulations were carried out for the above three cases and the results are reported
in Figures 2.13 and 2.14. Figure 2.13 illustrates the expected values of the surface
deflections. These deflections for the case of variable subgrade modulus are higher than

those for =100 MPa at points close to the load. For points at larger offsets the situation

is reversed. This pattern is observed because a large portion of the deflection at close
points is due to strains in the upper part of the subgrade where the elastic modulus is less
than 100 MPa. For large offsets, however, the straining takes place mainly deeper in the
subgrade where the modulus is greater than 100 MPa. For subgrade modulus equal to
200 MPa, the expected value of deflection is almost half the value corresponding to

e;~100 MPa, especially at points located far from the load. Nevertheless, given the

sensitivity of the deflection bowl shape to the manner in which the subgrade is modeled,
this example clearly demonstrates why it is necessary to accurately model a subgrade when
backcalculating layer properties. Unfortunately, systematic errors associated with
modeling can lead to large errors in estimated pavement moduli.

By examining Figure 2.14, which provides information about CV(u), it may be

concluded that the solutions are not very sensitive to the value of the subgrade modulus
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when the subgrade is uniform. Even when the pressure sensitivity of e is taken into

account, one observes that CV(u) patterns are similar to those for the cases of uniform

subgrade conditions, although the magnitudes are influenced somewhat.

vi) Simultaneous Variations in Layer Moduli

Up to this point, the effects of variations in elastic moduli were considered
separately for the subgrade and the pavement. In the real world, variation in modulus may
exist simultaneously for all layers. For such a case, the elastic modulus of the pavement
and subgrade may or may not be correlated. In this section, the effect of simultaneous
variation in both layer moduli on CV(u) is investigated for two extreme cases: (a)
complete correlation (p=1); and (b) no correlation ( p=0), realizing that for other levels
of correlations, the results will fall somewhere in between. Figure 2.15 summarizes the
results of the simulations assuming a 10% coefficient of variation for the pavement and
subgrade layer moduli. The results are illustrated for pavement thicknesses of 0.15, and
0.45 m. The figure shows that, for p=I, the accumulated CV(u) is independent of the
radial distance and pavement thickness, with a constant value almost equal to 10%. On

the other hand, when p=0, CV(u) due to variation in both moduli is close to the value of

CV(u) for which only the subgrade modulus varies. A deviation from this tendency occurs

for the case of thick pavement at locations close to the load. This may be explained by
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considering the low effect of variation in the pavement modulus on CV(u) at far distances,
but the increasing effect of the pavement on the response close to the load as thickness
increases.

Simulations with other pavement-subgrade configurations give similar results
confirming that, CV(u) is almost equal to CV(eg)=CV(ep) when the elastic moduli of both
layers are allowed to vary and p=1. For p=0, the CV(u) curve tends to be close to the
one associated with the case when only the subgrade elastic modulus varies.

In the previous discussion CV(u) was directly obtained by assuming variations in
both layer moduli and carrying out the simulations. However, the same results could have
been obtained from the results of the simulations when layer moduli varied separately by

using Equations 2.26 and 2.27 (for the case of p=1 and p=0, respectively).

2.7.3 Variations in Other Properties

In the previous section, variations in deflections due to variations in layer moduli
were calculated for different pavement configurations. There are, however, other
pavement properties which affect surface deflections, e.g. Poisson ratio, and layer

thickness. In this section, CV(u) due to variations in layer Poisson ratios, and layer

thicknesses are found.
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i) Variation in Poisson ratio

Figure 2.16 shows CV(u) due to variations in Poisson ratios. When the pavement
Poisson ratio varies, CV(u) has a trend similar to that when the pavement elastic modulus
varies. When the subgrade Poisson ratio varies, however, CV(u) increases almost linearly
with radial distance, with a value of about 10% at a distance 1.8 m away from the load.
This means that, although the influence of the subgrade Poisson ratio on the surface
deflection is often considered negligible (Baecher and Ingra 1981), the effect of its
variation on CV(u) can be important at locations far from the load. The curves associated
with simultaneous variation in both layers are also plotted for p=1, and p=0. Unlike for
the case of varying elastic moduli, when p=1, the accumulated CV(u) is not constant.
For p=0, the accumulated CV(u) is close to the CV(u) due to CV(vy) alone. This is

similar to what is observed when considering variations in elastic moduli.

i) Variation in layer thickness

The values of CV(u) when the coefficient of variation of either the pavement layer
thickness or subgrade thickness is 10% are summarized in Figure 2.17. The results given
in this figure are consistent with those reported in Figures 2.7 and 2.9. They confirm that

for locations close to the load, the sensitivity of the deflection variation to the variation in
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the pavement thickness is much higher than its sensitivity to the variation in the subgrade
thickness. At larger offsets, the opposite is true. Also, a comparison of CV(u) due to
variation in the pavement thickness in Figure 2.17 with that due to the same level of
variation in the pavement modulus in Figure 2.6 suggests that, deflections are almost three
times more sensitive to the pavement thickness than to its modulus. This observation
agrees with what is reported in the literature (Stolle and Jung 1992). As before, results
are also provided for the case when variations exist in both layer thicknesses. Unlike the
case of variations in elastic moduli and Poisson ratios, CV(u) due to variations in both
layer thicknesses (for p=0 and within a distance equal to Tp) is close to CV(u) when only

the pavement thickness varies.

2.7.4 Simultaneous Variations in All Layers’ Properties

In the real world, variations may occur simultaneously in all of the material and
geometric properties of the layers. To find CV(u) in such a case, one way is to carry out
the simulations by taking into account all the variations. The other way, which is suitable
when CV(u) due to separate variations of the properties are available, is to combine the
existing results using relations such as Equation 2.20. It should be noted that in order to

apply Equation 2.20, the correlation coefficient (o) between each pair of the random

properties must be known. Whenp equals either one or zero, Equation 2.20 is simplified
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to Equations 2.26 and 2.27, respectively. To illustrate the application of these equations,
the situation when there exists a 10% coefficient of variation in the elastic modulus,
Poisson ratio and layer thickness of the subgrade is considered. To be more realistic, the
elastic modulus and Poisson ratio are assumed to be completely correlated, while no
correlation is assumed between the layer thickness and the other two material properties.
Another case, where a 10% variation is assumed in all the material and geometric
properties of both layers (with the above mentioned correlation pattern within each layer
and no correlation between the layers) is also studied. Figure 2.18 summarizes the results.
A comparison between the two curves once again emphasizes the dominating influence of
the subgrade on the surface deflections. Moreover, the figure shows that an overall 10%
variation in the properties of both layers results in a variation between 13 to 21% in the
surface deflection. From a backcalculation viewpoint, the information provided in Figure
2.18 may suggest that the expected variations in estimated parameters are always less than
those observed in measured deflections. However, when backcalculating layer moduli,
random variations in other input parameters (e.g. layer thicknesses) are often neglected.
Thus, variations in deflections translate only to variations in the moduli. This results in
higher levels of uncertainties in the backcalculated values, especially for the pavement

layer. Unfortunately, it is not possible to separate the contribution to uncertainty for each

layer parameter.
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2.8 Simulations for Three-Layered Systems

Pavement-subgrade systems usually have more than two layers. In order to add an
additional level of complexity to the pavement problem, the three-layered model shown in
Figure 2.3 is considered in this section. The characteristics of this model are identical to
the one defined in Section 2.6. Simulations were carried out assuming that the coefficient
of variation of the pavement, base, and subgrade moduli were equal to 10%, however, one
at a time. The results are summarized in Figure 2.19. Based on this figure, CV(u) due to
CV(eyp) is slightly larger than CV(u) due to CV(ep), while it is much less than that due to
CV(ey). Also, the curve belonging to the variation in the base layer has a similar trend as
that of the pavement. This indicates that the sensitivity of the deflection variation to the
variation in the base layer is the highest close to the load and becomes negligible as one
moves farther away. If the stiffness of the pavement layer is increased, the value of CV(u)
due to CV(ep) increases, as was observed previously for the two-layered system.
However, for most of the points on the surface, this increase is accompanied with a
decrease in the value of CV(u) due to CV(ey), as illustrated in Figure 2.20. This
observation is consistent with the experience that surface deflections are insensitive to
thin, softer layers located under a stiff layer.

Compared with the two-layered model, the curves corresponding to the variation
in the pavement and subgrade are almost unchanged in pattern, except that they show a

small decrease in the magnitude of CV(u) at offsets close to the center line. The
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comparison is more clearly presented in Figure 2.21 where the contribution of CV(u) due
to variation in each layer modulus to the accumulated CV(u) is shown. The results given

in the figure are for the case where layer moduli are completely correlated in pairs ( p=1).

The figure indicates that, while CV(u) due to simultaneous vanation of all layer moduli is
almost the same for the two models (with an approximately constant value of 10%) its
components coming from different layers are not the same. This is obvious owing to the
contribution of an additional layer to CV(u) in the three-layered model. Hence, it may be
concluded that, adding more layers to the pavement model, when their properties are
correlated, decreases the sensitivity of CV(u) to CV(e) of each layer. This observation has
a very important consequence from a backcalculation viewpoint. [t suggests that trying to
get more information by including more layers in a backcalculation model will increase the
uncertainties associated with the estimated parameters. For a more realistic case when the
layer moduli are assumed uncorrelated ( o =0), the resulting CV(u) for the two models are
shown in Figure 2.22. In such a case, overall, CV(u) for the three-layered system is
slightly less than that of the two-layered model, except at larger offsets.

By changing the material properties and thicknesses of the layers, simulations were
carried out on other configurations of the three-layered pavement model. Although the
magnitude of the variations in the deflections were different in each case compared to the
corresponding case for a two-layered system, the trends observed in the curves were
similar, thereby confirming the previously reported observations with regards to the

sensitivity of deflection variation to variations in layer properties.
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2.9  Physical Interpretation of CV(u) due to CV(e)

For a multi-degree of freedom system with p random elastic moduli, the coefficient

of variation of deflection at degree of freedom k due to variation in random modulus e;,

CV(uk)|ei , can be related to CV(e;) by

€

V(i = (%‘l;—)cwei) 238)

in which u;‘ is the deflection contribution of all the members with elastic modulus e; to

the total deflection at k® degree of freedom, uy. The ratio of uy to uy' is called

contribution ratio in this thesis. Furthermore, when all the random moduli are completely

correlated with the same coefficient of variation, one may get
CV(ug)=CV(e) (2.39)

The details pertaining to the derivation of Equations 2.38 and 2.39 are provided in

Appendix B. Equation 2.38 may be written using a slightly different notation as
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CVGulei _ v (2.40)
CV(uglle uf '

where e is a subset of the p random moduli, with the e in uf and CV(uy )le implying that
deflection and its coefficient of variation at degree of freedom k are the contributions from
the members with a modulus which is included in e, respectively.

To illustrate how Equations 2.38 to 2.40 may be utilized to interpret the results of
the stochastic analysis, the two-layered system discussed in Section 2.7 is considered
again. Given Equation 2.38, the information shown in Figure 2.6 with respect to the
simulations where CV(ep)=10% suggests that the contribution of the pavement layer
deflection to the total deflection of the system is greatest close to the load, and becomes
insignificant farther away. For the case where CV(e)=10%, this contribution has its
highest value at points far from the load. Also, regardless of the location of the point, the

subgrade deflection has always a higher influence on the total deflection when compared
to that of the pavement layer. One may wonder why the ratio ui‘ / uy , and consequently,

CV(ug )les /CV(es) are greater than one at far offsets. The reason may be explained by

the fact that, due to the Poisson effect, the pavement layer expands farther away from the
load. This is indicated in Figure 2.5, if one pays a close attention to the curve associated
with the deflection under the pavement layer. The expansion of the pavement means that
its effect on the total deflection is out of phase with that of the subgrade, i.e., the

pavement layer has a negative contribution to the surface deflection. Therefore, the share
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of the subgrade deflection becomes greater than the total deflection of the system. Since
the absolute values of the deflections are used to calculate the coefficients of variations,
CV(u) is always presented as a positive quantity, even if the deflection ratio is negative.

In Figure 2.15, the curve associated with simultaneous variations in both layer

moduli with p=1 indicates that, the accumulated CV(uy) is equal to CV(e), which is

consistent with Equation 2.39. The physical interpretation is obvious, noting that the sum
of the contributions of the pavement and subgrade deflections should be equal to the total
deflection.

To examine Equation 2.40, another set of simulations were carried out where the
subgrade was modeled as six separate layers, each 1.20 m thick, with the same elastic

modulus for all layers. Analyses were carried out when CV(e) for each layer was assumed
to be 10%, one at a time. The ratio of CV(uy )|ei for layer i to CV(u) when the entire

subgrade has a 10% variation is plotted, along with the ratio of the E[u] associated with
layer i to that of the subgrade. For all the layers, including the first, third, and sixth layer
from the top, which are shown in Figure 2.23, a close pattern between the two sets of the
curves may be noted. The difference between the patterns may be attributed to the
approximations introduced when calculating CV(u) by truncating the Taylor’s expansion,
and using ug instead of E[u]. Figure 2.23 also indicates that deflections at points close to
the load are more sensitive to the moduli of the upper layers, while further away, the

moduli of the lower layers mainly influence the deflections. The observations made in this
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figure clearly demonstrate the close relationship between the results of the stochastic

analysis with the physical behavior of the system.

2.10 Concluding Remarks

The results of the simulations using an elastostatic framework indicate that, surface
deflections are more sensitive to the variation in the subgrade modulus than to the
variation in the pavement layer modulus. It is also noted that, the deflection sensitivity
does not change significantly as a result of a change in the value of the bedrock depth and
the layer modulus, given the range of the values under study. The pavement thickness,
however, does have an influence on the deflection sensitivity to the variations in the layer
moduli. While similar trends are observed for a three-layered pavement system, the
magnitude of the deflection sensitivity to the variation in the pavement layer and subgrade
modulus decreases when compared to that associated with the two-layered system.

The notation of the contribution ratio has been introduced in this chapter. It is
shown that, by using this notation, one can establish a relation between the ratio of the
responses and that of their corresponding variations. The contribution ratio can be
effectively used to find the stiffness contribution of a group of members in the overall

stiffness of the structure, as is addressed in Appendix B.
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Chapter 3
STOCHASTIC ANALYSIS OF PAVEMENT STRUCTURES UNDER DYNAMIC

LOADS

3.1 Introduction

In order to account for the inertial effects associated with a time-varying load
applied to a pavement structure, a dynamic approach to the problem is inevitable. This
includes the case when one wishes to model a pavement structure subjected to a dynamic
load of a non-destructive, in-situ test, such as the FWD test. Neglecting the effects of
inertia, which are generally important, introduces systematic errors (Mamlouk 1985, Ong
et al. 1991, Zaghloul et al. 1994). When performing error analysis, the presence of
systematic errors is particularly important since it is difficult, if not impossible, to
distinguish between the uncertainty associated with random and systematic errors. To
reduce the effect of systematic errors in the stochastic modeling of pavement structures
under the FWD load, the dynamic analysis is employed in this chapter. First, the general
formulation pertaining to the elastodynamic stochastic analysis of a single degree of

freedom (SDOF) system is presented. Three dynamic schemes namely, time domain,
67
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periodic-load analysis, and frequency domain are briefly introduced. To illustrate the
application of the elastodynamic analysis of stochastic systems, a SDOF system is analyzed
using the frequency domain solution. The matrix version of the periodic-load approach,
which is later used in the dynamic stochastic finite element code, is then derived.
Following that, multi-degree of freedom (MDOF) models of pavement systems are
analyzed within a dynamic stochastic finite element framework. Simulations are
completed for two-layered simplification of pavement-subgrade systems, as well as, three-
layered models. Finally, the effect of loading frequency on the stochastic response of the

pavement is investigated through a frequency sensitivity analysis. Wherever necessary,

more detailed information is provided in the form of appendices.

3.2 General Formulation

The general form of the equation of motion for a single degree of freedom system

characterized by mass m, damping c, and stiffness k is given by

mii(t) + cu(t) + ku(t) = f(t) 3.1

in which f{t) is the dynamic force and u(t) is the displacement of the system. A dot over a

u denotes differentiation with respect to time, t. For a system with a random property b, it
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may be assumed that the mass, damping, stiffness, and the applied force are functions of
the random variable. Therefore, the displacement, and consequently its derivatives with
respect to time, are also functions of the random variable b. Approximating the
displacement by a truncated Taylor’s expansion and using the same procedure as that

outlined previously, the expected value and variance of the displacement may be written

(Kleiber and Hien 1992)
1 .
Eu(t,b)] = u(t,b) + S u(t,b) var(b) (3.2)

var(u(t, b)) = (u(t,b) )? var(b) (3.3)

In these equations, var(b) is the variance of random variable b, the prime denotes
differentiation with respect to b and all quantities are evaluated at mean value of b; i.e., at
bo. Similar equations may be derived for the first and second temporal derivatives of u in
order to find the expected value and variance of the velocity and/or acceleration of the
system. However, in this study, the focus is placed on the displacement of the pavement
as it is the most important response in a pavement analysis.

For the cases where closed-form solutions of a problem exist, the case of a single
degree of freedom system under harmonic load for example, the derivatives of the

displacement with respect to b can be found directly by differentiating the displacement
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function. Therefore, the expected value and variance of the displacement can be readily
calculated from Equations 3.2 and 3.3, knowing the solution to the equation of motion.
When there is no closed-form solution of the problem, to find the derivatives of the

displacement, the equation of motion is differentiated two times with respect to random

variable b, yielding

(mi+mi)+co+en)+ku+ku)=f (3.4)

(Mi+2mi +mid )+ u+2ct +ci )+(k'u+2ku +ku')=f" (3.5)

It should be noted that the arguments of the functions are not shown to avoid

congestion and maintain clarity. Rearranging the terms in the above two equations results

in

mii +ci +ku =F ' (3.6)

mi +ci +ku =F

(.7

in which
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F=f-(mi+ca+ku) (3.8)

F =f —-(m'ii+cu+k u+2mi +2ca +2k'u) (3.9)

The forms of Equations 3.6 and 3.7 are identical to the equation of motion,
therefore, the derivatives of the displacement with respect to b can be found using the
same solution scheme used to find u in Equation 3.1, provided that the derivatives of the
system properties are available. Solving Equations 3.1, 3.6, and 3.7 and replacing the
resulting values in Equations 3.2 and 3.3 provides the expected value and variance of the
displacement. As with deterministic analyses, there are three approaches for solving
stochastic-based dynamic problems; time domain analysis, periodic-load analysis, and

frequency domain analysis.

3.2.1 Time Domain Analysis

In the time domain, one of the procedures to transform the second order
differential equation of motion into a simple equation is step-by-step integration. In this
method, the response of the system is calculated using a time marching scheme. This is

done by expressing the derivatives of the displacement at each time step in terms of the
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displacement and its derivatives in the previous steps. The relations between the
responses at different time steps depend on the assumptions made for a specific solution
scheme. There are many step-by-step schemes available. Based on the assumption of a
constant acceleration equal to the average of the values of the accelerations at the
beginning and end of the time interval, the displacement at time step n, denoted by u,,, may

be obtained from (Humar 1990)

Ku,=F, (3.10)
in which

2 4
K-k+Atc+At2m 3.11)
and

2 . 4 4 .
Fp =1y '*‘C(Z?un-l +tipg)+ m(ZtTun-l +Xt'un-l +lp.1) (3.12)
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where f;, is the force at time step n, and At is the constant time increment. For a stochastic

system with random variable b, the displacement at time t, may be expressed in a general

form of

up(®) =Ry {m,c k fy,up (), 05.1(0),d5.10)....ug ), tg(b),dg(b)} (3.13)

in which R, is a function defined at step n. To find the expected value and variance of

the displacement from Equations 3.2 and 3.3, the function should be differentiated two
times with respect to b at each time step. An examination of Equation 3.13 reveals that,
as the solution proceeds through time, the form of the function in terms of the random
variable, and consequently the differentiation process, becomes more and more
complicated. On the other hand, if approximations are applied at each time step in order
to simplify the form of the function, an accumulation of systematic approximation errors
could jeopardize the accuracy of the results.

Another point to consider, when carrying out stochastic analysis in the time
domain, is the fact that the results of the analysis do not generally reflect the direct
influence of the frequency components of the forcing function on the response of the
system. This concept is important when studying the sensitivity of the stochastic response

to the frequency characteristics of the dynamic load.
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3.2.2 Periodic-Load Analysis

The periodic-load-analysis method is used when the forcing function is assumed to
be periodic. In such a case, the force is expressed in terms of its discrete harmonic

components and the solution to the problem is attained by superposition of the solutions

to these harmonic components.

i) Harmonic Load

Consider once again the equation of motion for a single degree of freedom system

as given in Equation 3.1. If f{t) is a harmonic load, then one may write

f(t) = fe'™ (3.14)

and the response of the system, which is also harmonic, would be (Clough and Penzien

1975)

u(t) = te™ (3.15)
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where U is determined from

At
el
i
i

(3.16)

in which f and T are the load and displacement amplitudes, respectively, and w is the

angular frequency of the harmonic load. k is the dynamic stiffness defined as

kK=k-mw? +icw. (3.17)

For a system with random variable b, one may write

E[u(t)] = E[T]e™ (3.18)
and
var(u(t)) = var(t) (3.19)

where the expected value of U, E[U], and its variance, var(i), are calculated from
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E[i]=0+ -;-ﬁ"va.r(b) (3.20)

var(@) = (') var(b) (@) (3.21)

As before, the prime denotes differentiation with respect to the random variable

and all quantities are evaluated at mean value of b. T andd may be found in the same way
as was demonstrated for the static case from the scalar versions of Equations 2.10 and
2.11, using complex arithmetic. The reader should be aware that the complex variables
must be transformed into real and imaginary components in order to perform the analysis
in the real space for practical applications. Given that T =x +iy, based on the properties

of the expected value and variance functions in the complex space (Miller 1974), the

coefficient of variation of U may be calculated as

yvar(i) Jvar(x) + var(y)

CV@) = =
© =" JEIXI? +E[y]?

(3.22)

Appendix A summarizes some of the important formulae, and properties of the

expected value and variance functions in the complex space.



ii) Periodic Load

For a periodic forcing function, f{t) can be expressed in terms of harmonic
components. The decomposition of a periodic function into a series of harmonic
components can be accomplished using a Fourier series expansion (Chapra and Canale

1988). The exponential representation of Fourier series expansion is given by

+© .
fity=f Ycpe'™ (3.23)
n=-w
in which
1 T —-iw t
Cn =Fp (f) fit)e ™ Walde (3.24)
2zn

and w, = K The parameters f and T are the amplitude and period of the forcing

function f{t), respectively.

For a linear system, the overall response is obtained by superimposing the
individual responses due to each harmonic component of the forcing function; i.e., for a

periodic load given by Equation 3.23 then
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+o® .
ut)= Ycpupe™! (3.25)
n=-o
in which
f
u, = 3.26
" k—mwn2+icwn (3.26)

u, is a complex-valued quantity which may be expressed in terms of its real and
imaginary components as Up = Xp +iyp, and u_, = x, —iy,.

Now, if there is randomness in one of the system properties, then u,, and
consequently x, and y,, would be random functions of that random property. For such

a case, the expected value and variance of the displacement history in the exponential form

is represented, using the properties of these functions in the complex space, as

Eu®]= YcqElugle™ = 3 cp(Elxy]+iElyJje™! 3.27)

n=-o n=-w

s 9 iw, t woty & iw,t_iw,t
varu(t) = ¥ Tcov(cpuae™ ™, cpupme™nt) = Yepeme™rte™atcoviuy, upy)

Nn=-o00 M=—0 N=-—0

(3.28)
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In Equations 3.27 and 3.28, the Fourier coefficients of the forcing function are

assumed to be deterministic quantities.

iii) Trigonometric Representation

For practical purposes, f{t) is usually expressed in terms of trigonometric functions

as follows
ao ® ®
fit) = 2t 2.a,c08(Wqt) + 2 bysin(wyt) (3.29)
n=1 n=1
in which
2 T
ap =7 [ fit)cos(w o t)dt n=0,1,2,... (3.30)
0

2T
b, = T (j) f{t)sin(w 4 t)dt n=0,12,... (3.31)
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2

The coefficients a, and b, are related to ¢, by cp= and

ap +ib i
C.p= Lz—l-—“- (Chapra and Canale 1988). Replacing these values in Equation 3.25, and

expressing u, in terms of its real and imaginary components, yields

u(t) = 370,(0 + z {an[xncos(wnt) — ¥ aSin(w )] + by [xpsin(wqt) +y ncos(wnt)]} (3.32)
n=|

In deriving Equation 3.32, the definition e™ = cos(wt) +i sin(wt) is used.

iv) Even Functions

For the case of an even function, the trigonometric representation of the forcing
function by Fourier series expansion only includes cosine terms (b, =0). Moreover, if the

forcing function is approximated by the first N components of a Fourier series, Equation

3.32 becomes

a9 N .
u(t) = ?xo + 2 {an[xncos(wnt) - ynsm(wnt)]} (3.33)

n=|
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For such a case, the expected value and variance of the response in the real space

are as follows
ag N .
E[u(9)] = —"Elxo]+ 3. {an[Elxpleos(w nt) - ELy o Jsin(w ,1)]} (3.34)
n=1
ao2 N N ‘
var(u(t)) = Tva.r(xo) + Z Z aja {cov(x j»X1)cos(w jt)cos(wyt) + cov(y j¥1)sin(w jt)sin(wlt)
j=0l=1
- cov(x,y1 )cos(w jt)sin(wt) — cov(y j» X1 )sin(w jt)cos(wit)}
(3.39)
where wy = 27;,k for k=j, or k=1.
The coefficient of variation for any given time t is defined by
CV(u(t) = Y2U®) (3.36)

[Eu®]
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3.2.3 Frequency Domain Analysis

Frequency domain approach is conceptually similar to the periodic-load analysis.
In this method, which is also applicable for non-periodic loads, Fourier transformation
(Ramirez 1985) is utilized to transform the loading function from time to frequency
domain. It should be noted that, when dealing with numerical procedures involving
discrete operations, the numerical Fourier transform is identical to Fourier series

approximation presented in the previous section. The frequency domain solution of
Equation 3.1 may be obtained from Equation 3.16 by replacing f with the transformed
function f'(w). The dynamic stiffness, often referred to as the impedance function in the

frequency domain, is calculated using Equation 3.17. The statistical moments of the
response can then be found using Equations 3.20 and 3.21.

In a frequency domain analysis, the expected value and variance of displacements
are functions of frequencies, thereby allowing one to compare the sensitivity of the

response to the variation in system properties at different frequencies.



83

3.3  Frequency Domain Analysis of a SDOF Pavement Model

Consider a simplified, two-layered, pavement-subgrade system subjected to a
dynamic FWD impact load f{t). If the problem is represented by an idealized single degree
of freedom system, then the impedance function may be defined by Equation 3.17, in
which m, ¢, and k are the equivalent mass, damping coefficient, and stiffness of the
pavement-subgrade system, respectively, and w is the angular frequency. The frequency
domain solution of the displacement for such a system can be obtained from Equation
3.16, provided that the material characteristics of the SDOF system, and the Fourier
transformation of the idealized FWD impact load are available. If there is randomness in
either the system properties, or the applied load, then the expected value and variance of

the transformed displacement may be calculated by Equations 3.20 and 3.21 in terms of

the angular frequency.

i Characteristics of the SDOF System

Assuming a linearly elastic, semi-infinite, and incompressible subgrade, the
equivalent stiffness and damping coefficient of the system may be related, using curve

fitting techniques, to the properties of the pavement and subgrade for low frequencies as

described by Peiravian (1994); i.e.,
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k =0.677 eg(0.81h2 +a2)!/2 (3.37)

3
¢ = 0.73kh, "eﬁ (3.38)
S

where h, is defined by Equation 2.30, a is the radius of the circular loading area, and eg
and p, are the subgrade modulus and density, respectively. The inertial effects of a

pavement-subgrade system are accommodated mostly by the damping term of the SDOF
approximation. The equivalent mass affects the calculation of the natural frequency of the
system, but tends to have a relatively small influence on the prediction of the displacement

history as the response is dominated by dissipation through radiation damping.

i) Fourier Transformation of the FWD Impact Load

Figure 3.1 shows a typical FWD impact load history measured at the center line of
a loading plate. The impulse duration is about 0.03 second with a peak pressure of about
566 kPa, which corresponds to the pressure induced by a 40 kN load uniformly distributed
on a circular area with a radius of a=0.15 m. This load history may be approximated by a

half-sine load, defined by the following function
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= * a? 0 (3.39)

in which f;=40 kN, and t3=0.03 s. The idealized forcing function f{t) is also plotted in
Figure 3.1. Review of this plot suggests that the half-sine load is a good approximation

for the FWD load.

The Fourier transformed of f{t), shown in Figure 3.2, is given by

By foto (e'im° +1)
™) = (22 ~ o))

(3.40)

The curve representing the magnitude of the transformed function suggests that,
the frequencies mostly contributing to the impact load are located in a range between zero

and 300 rad/s.

iii)  Results

Calculations were completed using the pavement system properties discussed in

Section 2.4, together with p,=2.0 Mg/m®. For the selected properties, the values of the
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equivalent stiffness and damping were found from Equations 3.37 and 3.38 as k=93x10°
kN/m, and c=243x10° kg/s, respectively. In order to determine the sensitivity of the
solution to the equivalent mass, results are obtained for three different m values. These
values are in the range backcalculated by Peiravian (1994) using real FWD data. As
before, analyses were performed by first allowing the subgrade modulus to vary 10%, and
then the pavement modulus by 10%. The results are summarized in Figure 3.3. The
figure shows that the variation in the displacement due to a variation in the modulus of
each layer depends on the frequency and the equivalent mass of the system. Scrutiny of

the results indicates that, overall, as w increases, CV(u) due to CV(ep) increases, while
CV(u) due to CV(ey) decreases. This means that, at higher frequencies, the influence of

the pavement layer on the response becomes more significant, which is not surprising if
one considers that wavelengths associated with high frequencies approach the pavement
thickness. The figure also shows an amplification in CV(u) when the loading frequency is
close to the natural frequency of the system. For example, for the case of m=1000 kg, the
coefficient of variation of the displacement is magnified at frequencies close to w=300
rad/s. The significance of these observations, from a backcalculation viewpoint for the

response of a pavement-subgrade system subjected to a dynamic load which spans a range

of frequencies, is addressed in Chapter 4.
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3.4  Matrix Formulation of Periodic-Load Analysis

The matrix form of the equation of motion for a muiti-degree of freedom system is

given by

Mii(t) + Cu(t) + Ku(t) = f(t) (3.41)

in which u(t), and f(t) are the displacement and load vectors, and M, C, and K are the
mass, damping, and stiffness matrices of the system, respectively. As before, a dot over u
denotes differentiation with respect to time, t. If f(t) is periodic and is expressed in terms
of a Fourier series expansion with N+1 components, the solution to each harmonic

component of the load is given by the matrix equation

Kpii, =f n=0,..N (3.42)

in which fis the vector of load amplitudes, U, is the complex-valued vector of the

displacement amplitudes associated with the n® component, and K, is the dynamic

stiffness matrix defined by

K, =K-Mw,? +iCw, n=0,...N (3.43)
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The matrix form of the solution to each harmonic component in the case of a
periodic-load analysis is similar to the matrix form of the static equilibrium equation,
except that the static stiffness matrix is replaced by the complex-valued dynamic matrix.

The stochastic solution of the time-dependent displacement for a system involving
randomness is obtained using the matrix versions of the previously derived scalar
equations. For the case of an even periodic forcing function, if U, = x, +iy,, then the

expected-value vector of the displacement is given by

Efu(®)] = a701'3[!0 1+ él{a alE[xy Jcos(w 1) - Efyg Jsin(w, 1))} (3.44)
in which

E{x, ] = Re{E[ii, [} n=0,...N (3.45)
Elyp] = Im{E[ii, |} n=1,..N (3.46)

The covariance matrix of the displacement is derived from Equation 3.44, using

the definition of the covariance function in real space, as
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cov(u(t)) =

2 N N
a ) .
%cov(xo,xo )+ Z Z aja) {cov(xj, x| Jeos(w thcos(wt) + covy,y) )sin(w ;t)sin(w t)
j=0 1=l

—cov(xj,yp)cos(w,tlsin(wt) - cov(y . xy )sin(wjt)cos(wlt)}

3.47)

in which a covariance matrix such ascov(x.yy) is given by

cov(xj,y1) = [Ag]jcov(b)Ay ], (3.48)
where [A]; and [Ay]) are nxp matrices consisted of p column vectors defined via
[Ac]j = [Re(ay]j), ... Re(ap|i)] i=0,...N (3.49)
[Ay]; =[Im(ay]l), ... Im(ap|D)] I=1,..N (3.50)
in which a;|n is a vector which is associated with the n™ harmonic, obtained by

ajln = K, 1R, iy i=1,...p, and n=j, or n=I (3.51)
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As before, p corresponds to the number of random variables in the system with
cov(b) being their covariance matrix. The similarities and differences between the
dynamic and static analysis equations can be appreciated by comparing Equations 3.44 to
3.51 with 2.14 to 2.17. For a load of single frequency, the dynamic approach is virtually
identical to the static one, except that real mathematical operations are replaced by the
ones in the complex space. For a periodic loading containing several harmonics,
additional steps involving the superposition of the components and accounting for the

correlation between various harmonic components must be introduced.

3.5  Dynamic Stochastic Finite Element Method

To establish a dynamic stochastic finite element code suitable for the analysis of
pavement structures, the periodic-load analysis is adopted in this study. The reason lies in
the simplicity of the method as well as the potential for frequency sensitivity analysis. As
was indicated previously, the discrete equation of motion for each harmonic component of
a dynamic load is similar in the form to the matrix equilibrium equation. This similarity
can be taken advantage of when converting a static stochastic finite element code to solve
the steady state elastodynamic problems. The most important modifications include,

converting the real space arithmetic to the complex space one, and substituting the static
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stiffness matrix with the dynamic one. Of course, one must also account for the
correlation between the various harmonic components.

The dynamic stiffness matrix, defined in Equation 3.43, includes the mass and
damping matrices in addition to the static stiffness matrix. The stiffness and mass matrices
are constructed by assembling the element stiffness and consistent element mass matrices,
respectively, taking into account equilibrium and compatibility. Theoretically, the
damping matrix, which reflects the damping properties of the materials as well as the
dissipation of energy due to radiation away from the source, can be formed using the same
procedure. When forming the damping matrix, this study assumes that material damping
is hysteretic in nature and radiation damping can be accommodated by using special
energy absorbing mechanisms at artificial boundaries. More details for the construction
of the damping matrix are presented in Appendix C.

The output of the dynamic stochastic finite element program for the n® harmonic
includes Efii, ], and a set of p vectors a;ln, i=1,...p. Replacing these values in Equations

3.44 to 3.50 for all harmonic components provides the expected value and covariance of

the displacement.
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3.6 Periodic-Load Analysis using Dynamic SFEM

Let us now consider the multi-layered representation of the pavement structure
shown in Figure 2.3, again. The material and geometric properties of the system are
identical to those described in Section 2.6. In addition, all the materials are assumed to
have a density of 2.0 Mg/m’, with a hysteretic damping ratio of {'=5%, a value suggested
by Richart et al. (1970) for soils. The condition at the artificial boundary located on the
far vertical face of the problem is defined by transmitting boundary in the form of
horizontal and vertical viscous dampers to simulate the stretch of the problem to infinity.
Unless otherwise stated, this configuration is used in carrying out the simulations.

The characteristics of the finite element model, e.g., the number of nodes and
elements, element type and size, and location of the artificial boundary, are exactly the
same as those defined for the static case in Section 2.6.1. It should be noted, however,
that solutions to dynamic problems are very sensitive to the mesh size and the location of
artificial boundaries, even when transmitting boundaries are present. In order to confirm
the suitability of the selected finite element model from a dynamic analysis perspective,
simulations were completed on different mesh configurations in terms of the number and
size of the elements, and the location of the transmitting boundary. The results of the
analyses, which are summarized in Appendix D, support the suitability of the model used
for carrying out this phase of the research. The details of the finite element model along

with a schematic presentation of the grid are also provided in this appendix.
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The uniformly distributed dynamic load, defined by Equation 3.39, is considered to
be transferred to the pavement surface by means of a circular flexible plate with a radius of
a=0.15 m. In order to perform a periodic-load analysis of the pavement structure
subjected to an impact load, the load is expressed in terms of its harmonic components.

This is achieved by employing a Fourier series expansion. The details of the process are

provided in Appendix E.

3.6.1 Simulations for Two-Layered Systems

Similar to the static case, a two-layered pavement model (hy=0) is first analyzed to

concentrate on the behavior of the system from a stochastic viewpoint. Unless stated
otherwise, when carrying out the simulations, a random variation is introduced to the
elastic modulus of each layer, one at a time; ie, two separate cases are usually
considered: (a) in the first case, the coefficient of variation of the pavement layer modulus
is assumed to be 10% with no variation in the subgrade elastic modulus; and (b) for the
second case, the subgrade modulus is assumed to have a coefficient of variation equal to
10% with no variation in the pavement modulus. This is done to establish the importance

of the effect of modulus variation of each layer on the uncertainty of the predicted surface

displacement.
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(a) Deflection

Figure 3.4 shows the deflection histories at three offsets on the pavement surface
as well as the idealized FWD load history used for the analysis. As one might expect,
owing to the dynamic nature of the load, there is a time lag between the peak load and the
peak deflections. The increasing time lag between the load and peak deflections at
increasing offset indicates that a wave is propagating through the pavement-subgrade
system. The relative high rate of attenuation of a peak deflection is partially attributed to
the material damping and the geometric characteristics associated with a wave propagating
from a point. It should be noted that, displacements almost fully damp out before the end
of the load cycle, thereby confirming the choice of the loading period.

For the interpretation of the pavement deflection measurements, the common
practice is to use only peak deflections. Thus, the emphasis is placed on reporting this
quantity. To investigate the effect of the variations in layer moduli on the surface
deflections, the curves connecting peak deflections at each offset are plotted in Figure 3.5.
A comparison of the deflection profile calculated using the mean properties (the uo curve)
with that taking into account a random variation as high as 20% in the subgrade elastic
modulus (the E[u] curve) indicates that, like the static case, the effect of random variation
in the subgrade modulus on the expected value of the deflection is negligible. Similar
results are obtained when a comparison is made assuming a 20% variation in the pavement

elastic modulus, thereby, allowing one to conclude that the effect of variations in layer
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moduli on the surface deflections is insignificant. A comparison of the peak deflection
profile with the static deflection basin reveals that, for this specific problem, the static
analysis underestimates the deflections coming from a dynamic load. This clearly
demonstrates that systematic errors are introduced when using multi-layer elastostatic

analysis to estimate layer moduli from FWD data.

() Variation in Deflection

i) Effect of Bedrock Depth

The effect of variations in layer moduli on the variation of peak deflection is
investigated for three bedrock depths of 2.85 m, 4.35 m, and 7.35 m, keeping the
pavement thickness at a constant value of 0.15 m. The expected values of peak
deflections, E[u], are presented in Figure 3.6. This figure shows that changing the
bedrock depth in the above range has a little effect on the peak surface deflections,
especially for the points close to the load. A comparison between the curves associated
with the static and dynamic analyses may imply that, owing to the higher sensitivity of the
static solution to the bedrock depth, proper estimation of H is more important for the

analysis under a static load condition than under an impact one.
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The coefficient of variation of deflection, CV(u), was calculated for two separate
cases. For the case where a random variation of modulus exists within the pavement,
Figure 3.7 shows that CV(u) at larger offset is negligible This observation is similar to
that of the static analysis and suggests that most of the deflections at large offsets are due
to the straining of the subgrade. Moreover, since the curves corresponding to the three
different bedrock depths are almost on top of one another, the depth to the bedrock does
not seem to have an important influence on this set of simulations.

When a random variation of modulus is assumed in the subgrade, it is observed in
Figure 3.7 that CV(u) is much greater than that of the case where the pavement modulus
varies. However, unlike the static analysis, for which the curves are almost superimposed,
the patterns of curves belonging to different bedrock depths are different and show an
overall reduction in CV(u) as the depth to the bedrock decreases. This is related to the
frequency-dependent characteristics of the pavement-subgrade system. As the bedrock
depth is reduced, the natural frequencies of the system change, thus also the relation
between the frequency content of the load and the response of the system.

The fact that CV(u) due to CV(e) is substantially higher than CV(u) due to

CV(ep), suggests that the dynamic response of the system is dominated by the properties

of the subgrade, a characteristic which is also observed for the static response. The

similarity of the results may be explained by the importance of the low frequency

components in the FWD impact load.
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ii) Effect of Pavement Thickness

An exercise similar to that in the previous section was performed, with pavement
thicknesses of 0.15, 0.30, and 0.45 m and a constant bedrock depth of 7.35 m. Figure 3.8
shows the results of the expected values, while Figure 3.9 summarizes the results
regarding CV(u). A comparison between the two sets of curves belonging to the static
and dynamic analyses clearly indicates that the change in the expected value due to a
change in the pavement thickness is similar for both cases.

The CV(u) curves associated with varying the pavement modulus in Figure 3.9
also indicate a trend similar to that displayed for the static analysis (to prevent congestion,
the resuits of the static analysis given in Figure 2.9 are not included in Figure 3.9). In both
cases, for example, the magnitude of CV(u) increases as the result of an increase in the
pavement thickness suggesting that the effect of the pavement layer on CV(u) becomes
more significant as the pavement thickness increases. The increased value of CV(u) due
to CV(ep) for a larger hy, explains a lower level of uncertainty in an estimated elé,stic
modulus of a thick pavement in a backcalculation process, as is illustrated in Chapter 4.
On the other hand, unlike the static case, CV(u) due to CV(eg) does not change
remarkably as the pavement thickness changes. An important observation is that the
changes in CV(u) associated with the variation in the pavement modulus are larger for the
dynamic case, whereas those corresponding to the subgrade modulus variation are larger

for the static analysis. This may partially be explained by the fact that, for the static
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analysis, more of the subgrade domain contributes to the observed surface deflections,

thereby there is a greater shift in CV(u) due to CV(eg) when hy varies

The observations made so far may be explained by considering, for the moment,
the wave propagation through a semi-infinite media. For such an idealized case, most of
the energy is transmitted within a depth corresponding to approximately one wavelength
of the propagating wave (Miller and Pursey 1955). Given a dominant FWD excitation
frequency in the range of 0 to 200 rad/s (0 to 30 Hz) and typical shear wave velocities
within subgrades, the corresponding Rayleigh and shear wavelengths exceed 4 m. These
wavelengths are considerably greater than the thickness of a flexible pavement.
Consequently, one would expect that the significance of the pavement properties on the
variation of deflection should be small for thin flexible pavement structures, but grows as

the pavement thickness increases.

iii)  Effect of Pavement and Subgrade Modulus

Simulations were carried out for different values of the pavement layer and
subgrade moduli. To be consistent with the static case, two values of 4000 and 8000 MPa
for the pavement modulus, and values of 100 and 200 MPa for the subgrade modulus
were considered. The results of the simulations associated with the selected pavement and

subgrade moduli are given in Figures 3.10 and 3.11, respectively. Comparing these
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figures with corresponding figures in the static case indicates a similar overall behavior
with respect to the effect of the layer moduli on CV(u). The only significant difference is
noticed in Figure 3.11 for the curves belonging to the subgrade variation. As discussed
with respect to changing the bedrock depth, the dynamic analysis response is sensitive to
the frequency content of the load relative to the natural frequencies of the system.
Whether one changes e or H, the net result is a change in the stiffness of the system which
in turn affects the natural frequencies. Consequently, the sensitivity of the response to the
subgrade modulus, represented by CV(u), changes. On the other hand, a relatively
constant CV(u) for different configurations of the pavement layer suggests that the

pavement properties play a lesser role in the dynamic characteristics of the system.

iv)  Simultaneous Variations in Layer Moduli

The assumption of separate variations in either the pavement or subgrade elastic
modulus was made in the previous sets of the simulations in order to demonstrate the
effect of each variation on CV(u). The case of simultaneous variations in both layers is
considered in this section. As for the static case, simulations were completed assuming:
(a) complete correlation (p =1); and (b) no correlation (o =0) between the layer moduli.

The results are summarized in Figure 3.12 for a 10% coefficient of variation, and
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pavement thicknesses of 0.15 and 0.45 m. When p =1, the results suggest that Equation

2.26 is applicable in the dynamic analysis. Also, the relatively smooth CV(u) curves
corresponding to the thin and thick pavements resemble the static case. However, unlike
that case, the value of the accumulated CV(u) changes as the pavement thickness changes.
This observation may be expected based on the results shown in Figure 3.9. For p =0,
the effect of simultaneous variations on CV(u) is close to that when only the subgrade
modulus varies, whether the pavement is thin or thick. This is similar to what is observed
in the static case. Again, the difference between the curves for the points close to the
load, especially for the thick pavement, is attributed to the relatively high influence of the
pavement variation on CV(u) in this region. It should be noted that, similar results could
be obtained, if Equation 2.27 is used, indicating that the simultaneous effect of variations

may be accounted for in the dynamic case by using the equations derived for the static

analysis.

3.6.2 Simulations for Three-Layered Systems

To take another step towards having a more realistic pavement model, three-
layered pavement systems are included in the simulations. The configuration employed in

the analysis is similar to that presented in Section 2.6 for which hy=0.30 m. As before, all
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the materials are assumed to have a density of 2.0 Mg/m®, with a hysteretic damping ratio
of £=5%. It was previously pointed out that, for each random variable in the stochastic
finite element analysis, it is necessary to have computer memory at least equivalent to
what is required to store the stiffness matrix. This, along with the fact that the bandwidth
of the stiffness matrix increases due to the complex arithmetic in the dynamic analysis,
imply that the computer memory requirements increase substantially when compared with
those associated with the conventional deterministic finite element modeling. It has been
the author’s experience that 32 Megabyte RAM is not sufficient to solve the problem in
the dynamic mode for the case of a three-layered model with three random variables.
Therefore, it is essential to use out of core storage devices.

As for the case of the two-layered model, different configurations of the three
layers were considered. Based on the results of the simulations, the overall conclusion
which stems from the analysis is that the behavior of the pavement layer and subgrade in
terms of the deflection variation are generally similar to those observed in the two-layered
case. The effect of the variation in the base layer modulus on CV(u) is found to be close
to that of the pavement layer, which is not surprising if one considers the similarities
between these two layers in terms of the thickness and location with respect to the
subgrade. The simulations also indicate that adding an extra layer decreases the individual
effect of variation in a layer modulus on CV(u). As was previously addressed in Section
2.8, the consequence of this observation from a backcalculation viewpoint is important. It

implies that by adopting a more complex model in terms of the number of layers, there is a



102

potential to increase the uncertainty of the estimated moduli in a backcalcultion analysis.
To provide an example, the results of the simulations assuming a 10% coefficient of
variation for the pavement, base, and subgrade moduli, one at a time, are illustrated in
Figure 3.13. One may notice that the trends observed in the results of the static and

dynamic analyses are virtually identical.

3.7  Frequency Sensitivity of Deflection Variation

In the previous sections, the FWD impact load was decomposed into harmonic
components each having a different associated frequency, and the pavement response and
its variation were obtained by superimposing the expected values and variations of
harmonic response components.  Although the resulting response histories are
combinations of the harmonics weighed by the Fourier coefficients, certain individual
components may have a more significant effect on the overall behavior of the system than
the others. This is particularly true for those harmonics associated with large participation
factors.

In this section, the change in the value of CV(u), which now refers to a variation in
the deflection amplitude, is investigated as a function of the loading frequency using the
two-layered model. This is achieved by looking at the results of the variation in deflection

amplitude for harmonic excitations with frequencies ranging from 0 to 200 rad/s, twenty
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increments in all. Appendix E shows that this frequency range corresponds to the
dominant frequency content of the impact load. Once again, the two separate cases, first a
variation in the pavement modulus, and then a variation in the subgrade modulus are
considered.

When a variation is assumed in the pavement modulus, the results indicate that the
statistical variation in deflection amplitude is not sensitive to the frequency in this range.
However, when the frequency range is extended to 500 rad/s, there is an indication of a
slow increase in CV(u) with increasing frequency. Simulations carried out for other
models having bedrock depths of 4.35 and 2.85 m gave nearly identical observations.

For the case where a variation is introduced in the subgrade modulus, the
magnitude of CV(u), which is found to be confined generally to a band, is not very
sensitive to the frequency. At w=60 rad/s, however, a non-uniform amplification in CV(u)
is observed as shown in Figure 3.14. For the other two models with H=4.35 m and
H=2.85 m, similar amplifications occur, but at frequencies equal to 90 and 140 rad/s,
respectively. To confirm that the observed behavior is independent of the choice of the
finite element mesh, simulations were also carried out using other finite element
discretizations of the same problem. The same results were obtained.

By examining the eigenvalues of the dynamic stiffness matrix of each model, it was
found that the frequency at which the behavior of the system deviates significantly,
happens to be close to the second natural frequency of the system. At this frequency, the

dynamic characteristic of the system changes, thereby, the sensitivity of the deflection to
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the variations in the layer moduli shows a different pattern. The significance of the second
natural frequency may be due to the fact that the modal direction factor in the vertical
direction associated with this frequency is higher than that of the fundamental frequency.
The reason why an amplification does not occur when random variation is assumed in the
pavement modulus is attributed to the characteristic that pavement properties do not
contribute significantly to the natural frequencies of the system (Chang et al. 1992).
Although the behavior of the variation in deflection in the vicinity of the natural
frequencies of the system may not be of concern for the FWD test, where a range of

frequencies participate in the response, it may be important for tests performed at a single

frequency.

3.8  Simulations at High Frequencies

Since it is known that measured deflections are mostly influenced by pavement
layer properties at high frequencies (Heukelom and Foster 1960), the behavior of the
system under a high frequency equal to w=1000 rad/s (which is not in the FWD dominant
loading frequency range) is also considered in a separate analysis. In order to fulfill the
recommendation given by Lysmer and Kuhlemeyer (1969) with regard to the element size
when high frequencies are involved, the maximum element size of 0.15 m is used

throughout the mesh. This results in a 8.85 m by 5.85 m model for 60x40=2400 elements.
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The results of the analyses for the cases of variations in the pavement and subgrade moduli
are summarized in Figure 3.15. The main observation is that, not only does the sensitivity
of CV(u) to CV(ep) increase significantly, but it also exceeds the values corresponding to
the subgrade modulus variation. This observation may be explained by noting that
characteristic wavelengths can approach the thickness of the pavement structure at high
frequencies. Thus, the response depends more on the properties of the pavement, and the
effect of the subgrade variation on the variation of surface deflections diminishes.
Procedures such as spectral analysis of surface waves (SASW) make use of this property
to characterize pavement-subgrade systems; see, e.g. Nazarian and Stokoe (1989).
Although one might suggest that tests performed at higher frequencies may be
more suitable for determining the moduli of pavement layers, it must be recognized that,
for frequencies where the wavelength approaches aggregate size, interpretation of tests or
simulation results based on continuum mechanics may not be appropriate. Furthermore,
test results would be very sensitive to minor flaws in pavement layers, and the frequency

dependence of elastic moduli would become an important factor (Heukelom 1960).

3.9 Concluding Remarks

The dynamic analyses performed in this chapter were carried out using the

periodic-load-analysis method in a stochastic framework. The introduction of a
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frequency-based stochastic approach made it possible to easily modify a static algorithm
and use it for dynamic analysis of a layered problem.

The results of the dynamic deflection sensitivity analysis show trends that are
similar to those observed when performing analyses with the elastostatic model. This
observation indicates that the dominant frequency of the FWD impact load is not high
enough to completely capture the characteristics of the surface layer. For various
pavement-subgrade configurations, it is illustrated that a change in a subgrade property
has a higher influence on the surface deflection sensitivity to the variation in the subgrade
modulus when compared to the case of the static load. It has also been demonstrated that
by using a high frequency (1000 rad/s), the sensitivity of deflection to the variation in the

pavement layer modulus increases significantly, indicating that high frequency tests are

better capable of identifying pavement layer moduli.
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Chapter 4
EFFECT OF VARIATION IN DEFLECTION ON ESTIMATED PAVEMENT

PARAMETERS

4.1 Introduction

Pavement surface deflections are widely used to backcalculate pavement-subgrade
system parameters, namely layer moduli. In the two previous chapters, the coefficient of
variation in surface deflection at a point k, CV(uy), was calculated given the coefficient of
variation in layer modulus, CV(e;), by performing a forward analysis. It was shown that
the sensitivity of CV(uy) to CV(e;) depends on the layer i, which has a random variation in
its properties, as well as on the location of point k on the surface. Although emphasis was
placed on the random variation around a mean value, the assumed coefficients of
variations of deflections and layer moduli may also be interpreted as uncertainties with
respect to their actual values. Therefore, defining the relation between CV(uy) and CV(e;)

in terms of the location of the layer and the location of the deflection measurement is

desirable from a backcalculation point of view. This is because such a relation can provide
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information on the expected level of uncertainty in backcalculated moduli, given the
potential uncertainty in deflection measurements.

The information obtained from forward analyses given random properties, also
provides hints with respect to the sensitivity of solutions to systematic errors. This is
justified if one considers the systematic errors as a perturbation of the prediction by a
model relative to the actual behavior of the system. By treating systematic errors in terms
of “equivalent” random variation, it is possible to account for the observed spread of a
predicted response relative to the measured one.

In this chapter, the results of a forward analysis approach are utilized to make a
statement regarding the uncertainty in backcalculated moduli, whether the uncertainty
stems from random or systematic errors. First, a relation between the coefficient of
variation in deflection at a point on the pavement surface and the coefficient of variation in
one of the layer moduli is established. Then the relation is extended to a matrix form to
include the case of deflections at a set of points and all layer moduli. The relation, which
is defined by a matrix referred to as variation coefficient matrix, is examined for the
simplified approach presented in Chapter 2. The variation coefficient matrix is calculated
thereafter based on the results of the dynamic analyses in Chapter 3. Next, the
uncertainty associated with the backcalculated moduli is investigated using real FWD data.

Finally, the effect of uncertainty in the estimated parameters on the predicted performance

of pavement systems is discussed.
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4.2  Variation in Layer Moduli due to Deflection Variation

In Appendix B, the relation between CV(uy )lel and CV(e;) for an elastostatic

system is defined as

Ly Ve

4 = (5™ "oiey) “1

where uy is the total deflection at the k™ degree of freedom and ui" is the deflection
associated with the members with elastic modulus e;. Equation 4.1 indicates that the ratio

of CV(ug )|ei to CV(e;) is related directly to the ratio of the deflections. This equation

can be expressed from a backcalculation viewpoint as
CV(e;) = 515 CV(ugle; (4.2)

in which & = 1/dy is referred to, in this thesis, as the contribution ratio. Equation 4.2
shows that, if the contribution ratio is known and the variation in deflection is attributed to
the variation in modulus of a specific layer, then one can obtain the variation in that layer

modulus.  For practical purposes, contribution ratios may be obtained by finding

CV(ei)/ CV(uk)lei via a forward analysis for different pavement configurations. The
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resulting curves then may be used to comment on the value of CV(e;), which represents
the uncertainty in e;, once the variation in deflection measurements are known in the form
of CV(uy)le; .

To illustrate the procedure, the results in Figure 2.6, obtained for a two-layered
system, are considered. This figure provides the values of CV(uy) ep and CV(ug )|es for

selected CV(ep) and CV(e;). Referring to Equation 4.1 and using the definition of the

contribution ratio, the values of Okp and &g are obtained by calculating the ratios of the

corresponding CV values. These values are represented in Figure 4.1 by bars for the
configuration under study. It should be noted that, since CV(u) is almost linear in terms
of CV(e), the contribution ratio may be considered independent of CV(e), therefore, all
the three levels of variation in Figure 2.6 result in the same ratio.

Figure 4.1 shows that, while the contribution ratio for subgrade is almost constant
and relatively small, that associated with the pavement layer is large, especially at far
offsets. This means that variation in deflection would lead to much higher magnitudes of
variation in the pavement layer modulus when compared to that of the subgrade. For
example, a 10% variation in the surface deflection at r=0.30 m would give either 12%
variation in the subgrade modulus, or 53% variation in the pavement layer modulus. For
larger offsets, the difference between the two numbers increases drastically, as one might
expect.

Similar exercise was performed for the remaining two-layered configurations

discussed previously. The range of anticipated variation in the pavement and subgrade
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moduli are plotted in Figure 4.1. As one can see, the range corresponding to the subgrade
is quite narrow, whereas that for the pavement is wide. These ranges provide information
about the level of uncertainty one may expect when backcalculating the pavement or

subgrade modulus of a simplified two-layered system with properties similar to those used

in this study.

4.3 Variation Coeflicient Matrix

43.1 Variation Coefficient Matrix for the Simplified Approach

The simplified approach presented in Section 2.4 is considered again. Assuming that
there is no correlation between the pavement and subgrade modulus (p =0), based on

Equation 2.27

CV(w;)? =d p2CV(ep)? +d2CV(es)? (4.3)

in which
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IfEquation 4.3 is defined at N different r values, variations in deflections can be related

to variations in layer moduli by means of a matrix, called variation coefficient matrix, as follows

CV2(w) =D CV2(e) (4.9

where CV2(w) and CV2(e) contain the squares of CV(w,) and CV(e), respectively, and D is
the Nx2 variation coefficient matrix with elements dp and dyg, r=ry,...1ry. Inverting Equation

4.4 yields

CV2(e) = G CV2(w) 4.5)

where G = [D'D]'IDt with D* being the transpose of D. It should be noted that,
application of Equation 4.5 without paying attention to the assumptions made to derive
this equation may lead to erroneous results. This will be demonstrated subsequently.

For the configuration given in Section 2.4 and the three offsets of r=0, 0.3, and 0.9

m, Equations 4.4 and 4.5 are expressed as
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2
CV(woyo) 01119 04449 Ve, )2
CV(wg3)? } =|00245 07110 { P 2} (4.6)
CV(e,)
CV(W0.9)2 0.0002 1.0295 ]
and
s CV(wop)?
CV(e,p) [ 9.0778 -0.2368 - 3.7595 " “n
= W03 .
CV(e,)? | L—0.0928 04122 0.7267

CV(woyg)2

A clear pattern in the elements of matrix D in Equation 4.6 may be recognized.

Comparing the numbers in the first and second columns, one can observe that CV(w,) is
much more sensitive to CV(e,) than to CV(ep). It may be tempting to seek a pattern in

matrix G, too. However, one can not make a general comment based on any such
observed pattern. Based on Equation 4.7, if a uniform deflection variation of 10% were to
be assumed for all three offsets, the variation in the pavement and subgrade modulus
would be 22%, and 11%, respectively. The relative predicted levels of uncertainties in the
layer moduli are consistent with the results of a first-order error analysis given by Stolle
and Jung (1992). On the other hand, the magnitudes of the uncertainties are much less
than those reported by Lytton (1989). This can be attributed to the fact that his study
implicitly includes the effects of systematic errors which are not taken into account in

Equations 4.6 and 4.7. A similar exercise was carried out using other characteristics of
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the two-layered model. For example, when hp=0.45 m, the values of the coefficient of
variation change to 18% and 13% for the pavement and subgrade, respectively. This
indicates that a systematic error in the pavement thickness would have a direct effect on
the uncertainty as expressed by the CV of the backcalculated moduli. As expected, the
possible coefficient of variation of the estimated elastic modulus of a thick pavement is
less than that of a thin one. However, for both thick and thin pavements, the CV of the
pavement is greater than that of the subgrade. One may observe that, unless the thickness
of the pavement is known accurately, considerable error in the backcalculated ep should be
expected. It is for this reason that Stolle and Jung (1992) preferred estimating the

equivalent thickness he rather than elastic modulus e, when analyzing FWD data.

It should be realized that, implicit in Equation 4.5, a variation in deflection is due

to variations in the layer moduli; that is, CV(w,) is a combination of

CV(w,)lep andCV(w,)les. This means that, in general, CV(w,) is a function of r.

Although a constant value for CV(w,) was selected in the previous set of simulations,
other arbitrary values which are not consistent with the pattern in CV(w,) may provide
unreasonable results. In practice, where there are other sources of variations, the equation
may yield negative values for CV(e)>. A negative value for CV(e)’ may be interpreted as

an unacceptable result owing to the existence of other sources of error which are not

compatible in pattern with that of the variations in the layer moduli.
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4.3.2 Variation Coeflicient Matrix for the Dynamic Analysis

Appendix F provides details on the construction of the variation coefficient matrix for
the static and dynamic analyses. It is shown that the form of this matrix is identical for the
static and dynamic cases. In the latter case, however, the variation coefficient matrix is time
dependent. Since only peak surface deflections are often used in practice to interpret the data,
the variation coefficient matrix is constructed based on peak deflections, which do not
necessarily occur at the same time. This introduces an approximation to the variation
coefficient matrix.

Based on Appendix F, by considering only the vertical degrees of freedom on the
pavement surface at offsets of 0, 0.3, 0.6, 0.9, and 1.2 m for the default configuration of the

two-layered problem defined in Section 3.6.1, one obtains

r 2 b ~ -
CV(m) 0.1036 0.4414

2

CV(u) 0.0345 0.6206
{CV(u3)? +=|0.0013 0.8912 {
CV(uy)?| [0.0018 1.1299

0.0002 1.3610
CV(us)| L 1.3610 ]

4

e )2} 48)

CV(e_,.)2

Consistent with the results for the elastostatic case, the coefficients corresponding to
the subgrade modulus in the second column are considerably higher than those in the first

column, which are associated with the pavement layer. This observation reflects the relatively
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high sensitivity of CV(u) to CV(e) when compared to its sensitivity to CV(ep). Also, the
decrease in the elements of the first column moving from the top to the bottom, indicates the
low sensitivity of the deflection variations at large offsets to the vaniation of the pavement layer
modulus. If one were to assume that uncertainties associated with backcalculated layer
properties can be accounted for in exactly the same manner as the effect of random distribution
of elastic moduli, then, from a backcalculation point of view, this equation implies that the
uncertainty in the predicted modulus due to the uncertainty of measured deflections is higher
for the pavement layer than for the subgrade. This observation is consistent with that reported
by many researchers; e.g, Mamlouk and Davies (1984), Stolle and Hein (1989), and
Siddharthan et al. (1992). One could also interpret this finding as implying that perturbations
due to modeling errors would have a much greater influence on backcalculated pavement

moduli than on backcalculated subgrade moduli. This important point is addressed in more

detail in the following sections.

44  Accuracy of the Backcalculated Parameters

In the process of backcalculating moduli from measured deflections, there are a
number of potential sources of errors which will eventually affect the accuracy of the
backcalculated results. The observed relation between the coefficients of variations of
layer moduli and those of the response may, however, be utilized to infer on the accuracy

of the backcalculated moduli obtained from measured surface deflections.
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Figure 4.2a summarizes the process of estimating layer properties via a non-
destructive test and a backcalculation exercise. Owing to the presence of random and
systematic errors at the measurement stage, there would be a scatter in the measured
deflections. The scatter in the data may be characterized by a variation with respect to the
mean value. This type of variation is referred to as measurement variation in this study.
Given the measured deflections, the layer properties (better described as system
parameters) are estimated in a backcalculation procedure.

If the backcalculated parameters, namely the elastic moduli, are employed in a
forward analysis to generate the deflections, the predicted deflections would most
probably be different from the measured ones. This is mainly because of the systematic
errors due to modeling in the backcalculation procedure. If different techniques or input
parameters are used for backcalculation procedure, then the generated deflections would
indicate a scatter around the measured ones, as shown in Figure 4.2b. This scatter is
referred to as backcalculation variation in this study. It should be noted that, if more than
one measured deflection basins corresponding to a station are used separately to
backcalculate the moduli (instead of using only the mean value of the measured deflection
basins), the measurement variation will also contribute to the backcalculation variation.

Now, as illustrated in Chapters 2 and 3, variations in surface deflections can be
calculated given variations in layer moduli by performing a stochastic analysis, as shown
in Figure 4.2c. This type of variation is referred to as simulated variation in this study.

By comparing the measurement and backcalculation variation with the simulated

variation, it is possible to draw conclusions regarding the uncertainties in the estimated
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moduli. These uncertainties are a reflection of the errors, whether of random or
systematic nature, involved in the process of the measurement and backcalculation,
respectively. It should be noted that both simulated and backcalculation variation share
modeling systematic errors in the forward analysis processes. The impact of these errors,
however, may be considered negligible compared to the systematic errors in the

backcalculation process. To illustrate the outlined procedure, the following case is

studied.

4.5  Case Study

To demonstrate the level of uncertainty which may be expected in a
backcalculation exercise, FWD test data for Section A of Highway 7N, north of Toronto
is considered (Stolle 1992). For this test section, the pavement system consists of 140 mm
hot mix surface layer, 150 mm type A granular base, and 400 mm sand subbase. The thick
subgrade is mainly a silty clay. The FWD test results for the outside lane of Station S7
measured with a 300 mm diameter plate are considered. For this station, tests were
completed for four different load levels, with four tests in each level.

In order to investigate the effect of stress-dependence characteristic of elastic
moduli on the test resuits, the measured deflections are plotted in Figure 4.3 against the
applied pressure under the plate for all the tests. It is observed that, except for one test,

the data points associated with each sensor are located almost on a straight line, indicating
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a linear material behavior. This shows that the errors due to neglecting the stress-

dependence characteristic of elastic moduli are insignificant for the range of stress increase

in an FWD test, as was assumed previously in the analysis.

4.5.1 Uncertainty in Layer Moduli due to Measurement Errors

Since measured pressures under the plate tend to be different, even in one load
category, all the data are normalized to a pressure of 1071 kPa, which is almost in the
middle of the measured pressure range. Table 4.1 summarizes the test data in terms of the
measured pressures and deflections at seven different offsets, along with the normalized
values. If no errors were involved, one would have expected the same normalized
deflections at each offset for this single station. However, as shown in the table, the
numbers are different, which suggests that errors do exist. These errors can be both
random, e.g., measurement errors; or systematic, e.g., due to neglecting non-linearity and
stress-dependence of materials (not significant in this case), seating load effects, etc. No
matter what the nature of the error is, the consequence is a variation in the deflection,
denoted previously as measurement variation. The measurement variation, in terms of the
coefficient of variation, is calculated and plotted along with the mean values of the
deflections at different offsets in Figure 4.4.

Comparing the measurement variation in Figure 4.4 with the simulated variations

in Chapter 3, and noting that CV(u) curves are generally insensitive to the different
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configurations of the pavement system, one may notice that the observed variation is
almost equivalent to the variation in deflection, if a 3% variation were assumed in the
subgrade modulus. From a backcalculation viewpoint, this suggests that the effect of the
scatter in data is almost equal to a 3% variation in the subgrade modulus, given that there
is no variation in the other properties. If the scatter in measured data were to be
interpreted as a measure of variation in the pavement layer modulus, a much higher
variation would be required to account for the observed variations in the deflections. As
mentioned previously, a variation in an estimated modulus is an indication of the level of
uncertainty in that quantity. It must be stressed here, since systematic errors are present,
the uncertainty is expressed in terms of “equivalent” random error.

It should be emphasized that the deflection data belongs to a single station.
Therefore, the scatter in the data associated with each offset excludes the variation due to
the variability in material properties between stations. However, within the context of the
backcalculation, this scatter may be interpreted as uncertainty in the predicted value of the
estimated properties.

A similar exercise was performed by including data from an adjacent station (S8),
15 m from Station S7. The mean values and scatter in deflection did not change
significantly, which could imply that there is neither a substantial variability in material
properties, nor a difference in the level of measurement errors between the stations. The

consequence of this observation is to expect the same level of uncertainty in the

backcalculated moduli for these two stations.
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4.5.2 Uncertainty in Layer Moduli due to Backcalculation Process

Given the mean values of the measured deflections, the layer moduli were
backcalculated from the test data. To backcalculate layer moduli for this multilayer
pavement system, the computer program MODULUS4 (Scullion and Michalak 1991) was
employed. It was found, when taking into account all the layers, that the backcalculated
moduli were not realistic (a very high value for the pavement layer modulus and
inconsistent values for the other layers). The fact that inertial effects were neglected by
using an elastostatic backcalculation model may be responsible for the poor results. To
provide more realistic layer moduli and simplify the procedure at the same time, the
thicknesses of the base and subbase layers were expressed in terms of their equivalent
thicknesses of hot mix, using the concept of the equivalent pavement thickness (Ullidtz
1987). For the equivalent two-layered pavement system, the average modulus of the

pavement layer and subgrade were found to be ep=l724 MPa and e=145 MPa,

respectively. At this point it should be recognized that further systematic errors were
introduced by using the elastostatic data interpretation procedure and combining the
layers. Given the backcalculated moduli, deflections were generated via a forward
analysis procedure.

Let us assume, for now, that the mean values of the measured deflections are the
true representation of the actual deflections, in the other words, neglect the scatter in the
measurements. Then, if measured deflections are compared with the deflections generated

based on the backcalculated moduli, as one might expect, the two profiles would not be
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exactly the same. The deviation of the generated deflections from the measured ones can
be attributed mainly to the systematic errors, especially in the backcalculation procedure.
If we were to relax the assumption of identical measured and actual deflections, then other
errors, e.g., measurement errors, would also be responsible for the difference between the
measured and generated deflections.

Observing the difference between the measured and generated deflections (based
on the backcalculated moduli), simulations were completed using the stochastic finite
element model to identify the required variation in either the subgrade or pavement
modulus which could account for the scatter of the measured deflections about a
deflection profile defined by the backcalculated moduli. Figure 4.5 shows the actual
measured deflections from the FWD test along with the calculated expected values of the
peak deflections. The dotted lines illustrate the range of the peak deflection variation
associated with a 30% variation in the subgrade elastic modulus. Assuming no systematic
errors in the stochastic analysis for the moment, it can be seen that a 30% variation in the
subgrade modulus could account for the distribution of the measured deflections about the
expected values. From a backcalculation viewpoint, the observed scatter may then be
translated to a 30% variation in the backcalculated subgrade modulus, which provides a
measure of uncertainty for the estimated quantity. Since systematic errors do exist in the
analysis, the anticipated level of uncertainty in the subgrade modulus is also influenced by
this source of error. One must remember that for a given model all the errors associated

with the backcalculation process will be reflected in the values of the backcalculated

quantities.
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A similar exercise was carried out for the case where variation was introduced in
the surface layer modulus. For this case, as Figure 4.6 indicates, even a 30% variation in
the pavement layer modulus could not account for the scatter of the measured deflections
about the calculated values. Therefore, if the observed scatter were to be solely due to
the variation in the pavement modulus, a much higher variation would be required to
account for the scatter. From a backcalculation viewpoint, one could conclude that small
variations in surface deflections would result in a large variation in the predicted pavement
modulus. This would explain why in some cases estimated pavement moduli can vary by
several orders of magnitude, as is reported by Lytton (1989). Figure 4.6 also confirms
that, for points at large offsets, the variation in deflection is almost insensitive to the
variation in pavement modulus. Implementing this fact in the backcalculation procedure is
consistent with the experience where it is known that far sensors are not good candidates
for backcalculating surface layer moduli (Zaghloul et al. 1994).

Strictly speaking, the 30% coefficient of variation used in the analysis of this
section is not consistent with the assumption of small variation made when formulating the
SFEM. For a more rigorous treatment, higher order statistical moments would be
required. Nevertheless, the general observations are still applicable, only the magnitude
changes a little.

It should be emphasized that, in actual fact, many different factors contribute to
the scatter of measured data points about the calculated values. Nevertheless, no matter
what the sources of the error are, the consequence of their presence would result in

uncertainties in the backcalculated moduli. In some cases, however, systematic errors may
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cancel out one another, thereby, resulting in less uncertainty than that due to the

summation of their individual effects.

4.6  Uncertainty in Pavement Performance Prediction

Pavement performance prediction models are often based on the failure criterion
for either fatigue cracking of the surface layer, or permanent deformation of the subgrade

(Huang 1993). In both cases, the prediction model is usually expressed in the general

form of (Siddharthan et al. 1992)

N¢=aR” (4.9)

in which N is the number of load applications to failure, R is a representation of the
pavement response under the load, e.g., displacement, strain, etc., and @ and 8 are the
constants of the equation. The specific form of this equation and the values of a and 8

depend on the type of the pavement response used in the equation, and the assumptions
made to establish the relationship. However, in most cases, the absolute value of [ varies

between 2 and 6.

Applying the perturbation technique to the above equation and considering the

pavement response to be the only random variable, the expected value and the coefficient
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of variation of Ny in terms of the coefficient of variation of the pavement response, CV(R),

are given by
E[N(]= Nf0[1+ﬂ—(ﬁz'—l—)cvm)2] (4.10)
CV(N¢) =|8 | CVR) (4.11)

where N is the value of N calculated at mean value of the response. Equations 4.10

and 4.11 suggest that, if for example # were to be equal to -4, then the expected value of

Ng is greater than N¢, by a factor of [1+10CV(R)?]. More importantly, the variation in
N¢ is four times the assumed variation in the response.

For the cases where R is accessible directly through measurement, e.g,
displacement at a sensor in an FWD test, its variation is limited to those errors associated
with the measurement process, which also includes the variability in the material
properties. As was shown in the previous section, for a sample case, these variations were
around 2-3% for different sensors, which (for the assumed S value of -4), translates to a

variation in Ng less than 12%.

When R is not a direct outcome of a test or measurement on the pavement
structure, e.g., calculated stress or strain in terms of layer properties, it is necessary to

estimate these properties. When such parameters come from a backcalculation procedure,
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the uncertainty in these quantities are usually much higher than those associated only with
a measurement process. In the case discussed previously, it was illustrated that, the
uncertainty in the backcalculated modulus could be as high as 30°% for the subgrade, and
even higher for the pavement. Consequently, it is anticipated that the R value calculated

using these moduli would experience nearly the same level of uncertainty. This in turn

could result in an unacceptable variation of 120% in N.

Taking into account the high sensitivity of variation in the pavement performance
indices to variation in the response, along with the high level of uncertainty in the response
when it is obtained in terms of the backcalculated properties, one may appreciate why it is
difficult to predict pavement performance accurately. Moreover, the above discussion
clearly illustrates the advantage of the performance prediction models established based on

those quantities which can be measured directly in the field.
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FWD test data and the normalized values

Measured Deflections (microns)

Pressure Offset (m)

kPa 0 0.30 0.45 0.60 0.90 1.20 1.50

586 256 187 145 115 66 37 22

591 255 186 145 114 65 36 22

588 253 186 144 114 65 37 22

553 253 185 144 113 65 36 22

833 376 277 216 172 99 56 32

845 377 278 217 172 100 57 32

841 376 277 216 172 99 57 32

851 375 275 216 170 100 56 32

1071 471 349 273 217 126 72 41

1073 472 349 273 217 128 72 41

1077 471 349 273 217 128 72 41

1125 470 347 272 217 127 72 41

1561 687 509 401 321 189 106 61

1572 689 510 401 321 190 107 61

1561 689 509 401 321 180 106 62

1568 €88 508 400 321 189 106 61

Normalized Deflections (microns)

1071 468 342 265 210 121 68 40

" 462 337 263 207 118 65 40

" 461 339 262 208 118 67 40

" 490 358 279 219 126 70 43

" 483 356 278 221 127 72 41

“ 478 352 275 218 127 72 41

" 479 353 275 219 126 73 41

" 472 346 272 214 126 70 40

" 471 349 273 217 126 72 41

" 471 348 272 217 128 72 41

" 468 347 271 216 127 72 41

" 447 330 259 207 121 69 39

* 471 349 275 220 130 73 42

" 469 347 273 219 129 73 42

" 473 349 275 220 130 73 43

* 470 347 273 219 129 72 42
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CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary and Conclusions

To present a rigorous, systematic treatment of the effect of random variations in
layer properties on the deflection response of a pavement-subgrade system, a stochastic
approach to the pavement deflection analysis was developed. Random variations were
assumed in layer properties and pavement surface deflections and their variations were
calculated in a forward analysis for different configurations of the system and loading
conditions. Owing to the perturbation nature of the approach, the variation in deflection
also reflects its sensitivity to the selected layer properties, thereby, allowing one to
comment on the sensitivity of the output to the input parameters. The fact that the
calculation of deflection variation in a stochastic analysis provides information which is
similar to that obtained when performing a sensitivity analysis by solving many different

configurations of the problem, demonstrates one of the advantages of the stochastic

approach over traditional sensitivity analyses.
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Based on the forward analyses, the following observations and conclusions are

made:

1- The expected value of deflection, E[u], is always greater than the deflection calculated
using the mean. Nevertheless, the difference is small even for relatively large variations
in layer moduli. Although random variations in layer moduli may have a negligible
effect on the expected value of the deflection, they are significant when calculating the
vaniation of deflection.

2- For a two-layered model and a quasi-static load condition, the variation in deflection
due to variation in the pavement modulus is less than that due to variation in the
subgrade modulus. This indicates that, overall, surface deflections are more sensitive
to the subgrade modulus than to the surface layer modulus. The results also indicate
that the influence of the pavement layer on the surface deflection is limited to the
vicinity of the load, a distance referred to in this thesis as pavement influence distance.
The ratio of the pavement influence distance to the equivalent pavement thickness is
about 1.3 for the pavement-subgrade systems analyzed in this study.

3- The observed sensitivity of the deflection to layer moduli is not influenced significantly
by the values of the pavement and subgrade modulus, nor by the bedrock depth.
However, the pavement thickness does affect the level of the sensitivity. The thicker
the pavement, the more sensitive is the deflection to the pavement modulus.

4- A simplified pavement deflection analysis within a stochastic framework provides

results similar to those from the SFEM indicating that, the model is capable of
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reflecting the sensitivity of deflection to layer moduli for simple pavement
configurations under static loads.

5- A comparison between the results of the perturbation analysis with those of the Monte
Carlo simulations for the simplified approach reveals that, assuming a normal distribution
in modulus, truncation leads to an underestimation of the coefficient of variation of the
response. In other words, the actual variation of the response is higher than that obtained
by using a truncated Taylor’s expansion.

6- Dynamic analyses using an idealized FWD impact load yield trends and magnitudes for
the deflection variation similar to those of the static load condition. This indicates that,
in general, the variation in deflection is not very sensitive to the frequency in the range
usually encountered in an FWD test. Moreover, the response is primarily dominated by
the stiffness of the subgrade. In other words, the frequency content of the FWD impact
load is such that, like for the case of a static load, the characteristics of the pavement
layer do not contribute much to the surface deflections. However, for high frequencies
outside the range of an FWD load, the sensitivity of deflection to the variation in the
pavement modulus may exceed that of the subgrade modulus.

7- For a single frequency loading close to one of the natural frequencies of the system, the
variation in deflection due to random variation in the subgrade modulus amplifies.

8- The trends in the results associated with a more realistic, three-layered model are
similar to those of the two-layered model for the pavement layer and the subgrade. The
trend in the deflection variation due to the variation in the base layer modulus

resembles that associated with the pavement layer. The important fact is that, the
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magnitude of the deflection variation due to the variation in the pavement layer and
subgrade modulus decreases when compared to the values obtained using the two-
layered model, thereby indicating that the sensitivity of the deflection to the properties
of the layers decreases when additional layers are included in an analysis.

9- Surface deflections are more sensitive to the pavement layer thickness than to its elastic
modulus and Poisson ratio.

10- It is possible to derive a relationship between the results of the stochastic analysis with
the physical behavior of the system by relating the ratio of variation in the layers to the
ratio of their corresponding deflections. Using this relation, one can identify the

contribution of each layer to the total surface deflection via a stochastic analysis of the

pavement-subgrade system.

The results of the forward analysis were utilized to establish a relation between
random variations in surface deflections and layer moduli. By inverting the relation and
interpreting the variation as a level of uncertainty (or perturbation) in deflections and layer
moduli, the effect of uncertainties in measured deflections on the estimated properties was
addressed. This approach provides a framework for quantifying the uncertainty level in a
backcalculated parameter, whether the source of error is random or systematic.

From a backcalculation perspective, the following conclusions are made:

I- For a thin pavement under a low frequency loading, the uncertainty in the

backcalculated pavement layer modulus is much higher than that of the subgrade.
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2- The uncertainty level in a backcalculated layer modulus, and therefore the accuracy of
the estimation, may not change significantly due to the dynamic characteristic of the
FWD test. Consequently, a dynamic interpretation of the FWD data may not provide
more accurate estimates of the pavement layer properties than a static one.

3- Trying to get more information by including more layers in a backcalculation model has
the potential to increase the uncertainties associated with the estimated moduli.

4- The significantly lower level of uncertainty in the pavement layer modulus anticipated
by the simplified approach, compared to the uncertainty levels observed in practice
indicates that, the selection of the backcalculation model and its input values have a
greater impact on the accuracy of the results than the impact of the assumed random
variation in the layer modulus.

5- Uncertainties in estimated properties due to errors associated with measurement and
backcalculation processes propagate to pavement performance models causing

inaccurate, and often unacceptable, performance predictions.

It is important to realize that the above mentioned observations and conclusions

are limited to the governing assumptions and the configurations of the problems that were

studied.
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S.2  Recommendations for Future study

In this study, assumptions are made to simplify the presentation of the proposed
approach and to emphasize on the overall stochastic behavior of pavement systems.
Relaxing these assumptions will improve the selected pavement model by reducing the
systematic errors arising from the modeling procedure. In addition it will provide a more
realistic approximation of the actual problem. Some of the improvements that may be

achieved in the model and the overall research work are as follows:

1- Taking into account non-linear and stress-dependent properties of highway materials
and examining their effects on the stochastic response of pavement-subgrade systems.

2- Adopting a three-dimensional finite element model in order to allow one to consider
more complex pavement system geometries.

3- Using a higher order truncation of the Taylor’s expansion in the stochastic finite
element formulation to extend the application of the method to the cases of large
variations.

4- Applying the stochastic framework to interpret the results of the other nondestructive
tests, especially those operating at high frequencies, and studying the sensitivity of the
response to material properties for these other test conditions.

5- Investigating the stochastic behavior of systems at frequencies close to their natural
frequencies, and the consequence of observed amplification in the response variation on

the accuracy of the backcalculated parameters.
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APPENDIX A

STATISTICAL FORMULAS

Real Space

If x is a real, continuous random variable with p(x) being its probability density

function, then (Helstrom 1984)

E[x]= f:x p(x)dx expected value of x
Elc]l=c ¢ constant
Elcx] = cE[x]
N N
E[Y.x]1= D Elx,] x; random variable
i=1 =1
ELf(0)]= | f(x) pCx)dr ) a function of x
E[Ax]=0 Ax = x - E[x]
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var(x) = E[(x - E[x])*] = E[Ax?] variance of x
var(c) = 0 ¢ constant
var(cx) = ¢ var(x)

var(f(x)) = E[(f(x) - ELf(x)])’]

cov(x,,x;) = E[(x; - E[x;]Xx, - E[x,])] x;and x; random variables

cov(x, x) = var(x)

CV (x) = YY)

| P x]l coefficient of variation of x

Complex Space

If z, is a complex random variable given by z j =X +iy;, with its complex

conjugate defined as z; = x; iy ;, then (Miller 1974)

Elez;]=cE[z;] ¢ complex constant
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E[ézj]=zlE[z,]

var(z;) = E[(z; - E[z;])(z; - E[z;])] = var(x ) + var(y,)

var(cz,) = ¢C var(z,) ¢ complex constant with ¢ its complex conjugate

cov(z;,zp) = E[(z; - E[z;]0z¢ - E[2; D]
= cov(xj Xp) - cov(yj,yk) +i[cov(xj,yk )+ cov(yj,xk )]

N M N
2 2 cov(z;,Z) = var( D, z;)
j=lk=1 j=1
var(z,)
CV(ZJ) = [
E[z,]




APPENDIX B

RELATION BETWEEN DEFLECTION AND ITS VARIATION

A linear, multi-degree of freedom system with the characteristic equation given by
Equation 2.7 is considered. If there are p elastic moduli defined in the system, and all of

them are random variables with mean values equal to e;, i=1,...p, one may write

p
Ko =) K" B.1)

i=1

in which K® is the stiffness contribution of all the members having an elastic modulus
equal to e; to the total stiffness of the system, K. Accordingly, the total displacement of
the system, ug, can be decomposed to the contributions coming from the members having

elastic modulus e;, u® , as follows

p
up =Y u® (B.2)
i=1
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where

u® =Kg'K%u, (B.3)

On the other hand, based on the definition of partial derivative of K with respect to

¢;, it may be written

K € - — (B4)

Using Equations B.3 and B.4, the vector a; defined in Equation 2.17 becomes

=" (B.5)

with its k™ element associated with the k" degree of freedom given by

¢
Uk

g = (B.6)

-
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in which u;‘ is the k" element of u® . Replacing the value of 3y, from Equation B.6 into

Equation 2.28, approximating E[uy] by u;, one may get

dig = — (B.7)

With the new definition of dy;, the variation in deflection at degree of freedom k

due to variation in e;, given by the notation CV(uy )|ei , may be expressed by

(-

CV(uy)e; = (%l;—)cv(ei) B3)
or

CV(u)lei  uy
V) Cu) ®

Equation B.9 means that, the ratio of CV(uy) due to variation in ¢; to CV(e;) is
equal to the share of displacement from members having elastic modulus e;, to the total

displacement of the system. It should be noted that, as Equation B.3 implicitly implies, the

ratio of the displacements may be related to the ratio of the stiffnesses.
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For a special case where elastic moduli are completely correlated in pairs ( p=1,
for all i,j=1,...p), and have the same variation (CV(e;)=CV(e), for all i=1,...p), Equation

2.26, with respect to Equation B.2, results in

CV(uy) = CV(e) (B.10)

Replacing Equation B.10 in B.9 yields

CV(ug)le;  uf
V) ®1D

which means that, for the above mentioned conditions, the ratio of variations is equal to

the ratio of displacements when comparing a set of elements with elastic modulus e; to the

total elements in the system. Equation B.11 may also be expressed as

CVuilei _ vy (B.12)
CV(u)le uf '

where e is a subset of the p random variables. This relation may be utilized to find the
deflection contribution ratio of one layer to a group of layers, knowing the associated

variations in the deflections.
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As was pointed out previously, the deflection ratio may be substituted by the
stiffness ratio, therefore, allowing one to investigate the role of the stiffness of a layer in

the total stiffness of a group of layers, or the whole system, using stochastic analysis.



APPENDIX C

DAMPING MATRIX

Damping in a pavement system comprises of two types, material damping, and

radiation damping,.

Material Damping

Material damping refers to the internal energy dissipation due to frictional losses
occurring in materials. In this study, the material damping was assumed to be of a
hysteretic nature, which seems to better explain the damping behavior of soils (Mamiouk

and Davies 1984). As a result, the material damping matrix C was related to the stiffness

matrix K through a frequency invariant hysteretic damping ratio{ as follows (Wolf 1988)

K (C.1)
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Strictly speaking, this equation should be defined on the element level, and then
the resulting element damping matrices assembled to form the global damping matrix. In
this study a unique hysteretic damping ratio was assumed for all the material types, hence,

the dynamic stiffness matrix of the system was simplified to the form

Ky, =(1+2¢ )K-Mw 2 (C2)

Simulations were completed using 5% damping which is quite common for soils;

see, for example, Richart et al. (1970)

Radiation Damping

One important consideration in the steady state analysis of a pavement system is
radiation damping. In a semi-infinite problem, the energy transferred to the pavement
system radiates from the point of load application in all directions with no reflection of the
energy back into the system. With the finite element discretization of the real problem,
however, propagating waves are reflected at artificial boundaries, unless energy absorbing
mechanisms are provided at such boundaries. These mechanisms, which are referred to as
transmitting boundaries, absorb the energy and simulate the condition of radiation

damping of an infinite media where in fact there is a limiting boundary.
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There are different types of transmitting boundaries, e.g., infinite elements
(Zeinkeiwicz et al. 1983), consistent boundaries (Wolf 1985), viscous dampers or
dashpots (Wolf 1988), etc. For the purpose of this study, consistent viscous dampers
were used owing to their simplicity and relatively good performance (Chow 1985). The

transmitting boundary condition is formulated by Lysmer and Kuhlemeyer (1969) as

o=pvpl (C3

T=pvgv (C4)

in which, as indicated in Figure C.1,c and r are the normal and shear stresses,

respectively, u and v are the normal and tangential velocities, respectively, p is the mass
density, and vp and vg are the velocities of P-waves and S-waves, respectively.

The conditions given in Equations C.3 and C.4 are exact when body waves
impinge at a right angle on the boundaries. For inclined angles, they are approximate and
a small part of the total energy is reflected. Lysmer and Kuhlemeyer (1969) have shown
that nearly perfect absorption is obtained, if the incident angle is greater that 30 degrees.
In many cases, such as the case under study, the farther one places the artificial boundary
from the source of excitation, the more the incident angle will approach 90 degrees, and

thus, the better the viscous dampers will perform.
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The frequency independent coefficients of viscous dampers in the normal direction,

Cp, and tangential direction, c, may be defined by

Ch=PVp (C.5)

Cs = p Vg (C.6)

Based on the approach of Bathe (1982), the element damping matrix of a viscous

damper is given by
ct = [N'CyNdQ C.7)
Q
Cpp =T [ e 0 ] T c38
X = 0 Cs (€8

where N is the matrix of the shape functions with N* being its transpose, T is the
transformation matrix from local (n-s) to global (x-y) coordinates, and Q is the area of
the element. Element damping matrices are then multiplied by the frequency and mapped

into the imaginary part of the dynamic stiffness matrix.



159

Artificial

Boundary

Figure C.1  Transmitting Boundary using Lumped viscous dampers (after Wolf 1988)



APPENDIX D

PARAMETRIC EVALUATION OF THE MODEL

A schematic of the finite element mesh of the model is given in Figure D.1, with
the characteristics of the reference grid summarized in Table D.1. A series of simulations
were carried out maintaining material properties constant but changing the discretization

in order to confirm the suitability of the proposed finite element mesh for dynamic

analysis.

Table D.1 Characteristics of the reference finite element mesh

Direction | No. of Elements in each Size Category | Total No. of | Size of the

0075m | 015m| 030m |[060m| Elements | Model (m)

X Direction 2 18 10 10 40 11.85

Y Direction 2 18 5 5 30 7.35
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Size and Number of Elements

In order to examine the proposed finite element configuration with respect to the
element size and number, two other configurations were considered. The arrangements of

the elements for all three models are given in Table D.2. The following criteria were used

for discretization:

e Element size right under the load should remain constant.

¢ Based on Lysmer and Kuhlemeyer (1969), to obtain accurate results, the maximum
element size in the region of interest should not exceed one twelfth of the wavelength
associated with the highest frequency component of the loading. For this problem, the

recommendation dictates an element size not bigger than 0.15 m in the vicinity of the

load.

* To provide reasonable size of the domain and because of the computer memory

constraints with respect to the maximum number of elements, the element size farther

away from the load should be increased.
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Table D.2 Arrangement of the elements in the three models

Element Number of Elements
Size ’ Model 1 Model 2 Model 3
(m) X Dir. Y. Dir. X Dir. Y Dir. X Dir. Y Dir.
0.075 2 2 2 2 2 2
0.15 58 38 28 18 8 8
0.30 - - 15 10 15 5
0.60 - - - - 5 5
Total 60 40 45 30 30 20

* The overall size of all three models is 8.85 m x 5.85 m.

Simulations were completed for the highest frequency component (w=500 rad/s),
which imposed the highest restriction from the element size perspective. The results are
summarized in Figure D.2. The figure indicates that the difference in the deflection
amplitude for the first two models is negligible with a small deviation noticeable when

using the coarse grid. Similar observation was made when comparing the deflection phase

angle of the three models.
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Size of the Model

The distance of the transmitting boundary to the excited zone is an important
factor in the accuracy of the results. This is generally due to the imperfect energy
absorption of such boundaries. To find the minimum acceptable distance L of the
transmitting boundary to the load, the results of analyses for two models with L=8 .85 m,
and L=13.35 m were compared and reported in Figure D.3. Since the optimum distance is
usually defined in terms of the highest wavelength of the waves propagating in the media
(Lysmer and Kuhlemeyer 1969), simulations were carried out for w=50 rad/s. According
to the figure, the difference between the deflection amplitudes of the two models is very

small.

Based on the above observations, it was concluded that, the proposed mesh

specification would provide accurate results.

Effectiveness of the Transmitting Boundary

To examine the effectiveness of the transmitting boundary, deflection amplitudes
were calculated at low and high frequencies with and without the viscous dampers. For
each case, hysteretic damping was assumed either zero or 5%.

For the case of low frequency (w=50 rad/s), Figure D.4 shows that the presence of

viscous dampers at the artificial boundary is not significant for both cases of zero and 5%
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material damping. Moreover, the figure indicates that the value of material damping
makes almost no difference on the results of the analysis for such low frequency.

When analysis was carried out at high frequency (w=500 rad/s), the results were
different. By looking at the outcomes in Figure D.5, it is clear that, although for 5%
material damping the existence of the dampers was not important, they had a noticeable
effect when there was no material damping. The behavior of the system for the latter case
was completely different with and without the dampers. The observation may be
explained considering that, for a 5% material damping, the energy of the propagating
wave almost dissipates before it reaches the boundary, which is located relatively far from
the excitation source. The figure also shows that, unlike the previous case, at high

frequency, the presence of material damping does change the results of the analysis.
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Y

Figure D.1  Schematic of the finite element mesh for dynamic model
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APPENDIX E

FOURIER SERIES EXPANSION OF AN FWD LOAD

In this section, the Fourier series analysis is used to express the FWD impact load
in terms of its harmonic components. Theoretically, Fourier series analysis is only
applicable to periodic loads. In practice, the approach may be applied to transient FWD
impact loading, if it is assumed that the load history repeats itself after a long quiescent
stage which follows the short impulse. For a periodic load where the response is zero at
the end of each period, the steady-state response automatically includes the effect of zero
initial conditions. Such a condition is encountered for systems with high damping
subjected to a short impulse at the beginning of a relatively long period.

In order to simplify the resulting Fourier expansion, and consequently, the
equations for the expected value and variance of the response, the forcing function is
transformed to an even function, for which the Fourier expansion only includes cosine

terms. This is done by shifting the function back in time by an amount equal to ty/2,

however, when calculating the response history and the other time-dependent quantities,
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the appropriate change of variable t=t— t—;— must be applied to account for the assumed
shift in time.

The accuracy of the Fourier series approximation depends on the frequency range
of the expansion, and the number of harmonic components included in the range. To find
the proper range, one criteria is to look at the frequency extent over which most of the
power is contained for the impact load. As a tool, power spectral density analysis may be

used for this purpose. The spectra was found via Fourier transformation (Bendat and

Piersol 1980) using the following approximate relation

S=— (E.1)

in which S is the spectral density, F is the Fourier transform of the loading function, f(t),

andF is its complex conjugate. N is the length or the number of points in F. The Fourier
transform of f{t) was calculated by the Fast Fourier Transform (FFT) algorithm using
MATLAB Signal Processing Toolbox.

Figure E.1 illustrates the normalized power spectral density function. Based on
the results, almost all of the power associated with the idealized FWD impact load is
contained within the frequency range of 0 to 300 rad/s. This range was initially selected
along with a tentative ten harmonic components (Sebaaly et al. 1986) to model the half-

sine impulse load. It was found, however, that the range was not adequate to properly
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approximate the shape of the half-sine impulse. Extending the frequency range up to 500
rad/s gave an acceptable approximation, as is depicted in Figure E.2.

Another set of calculations, which aimed to provide the optimum number of the
components, revealed that when keeping the frequency range constant and decreasing the
number of Fourier terms, by increasing the frequency interval, the shape did not change
significantly. Nevertheless, to have enough frequency components in order to better
approximate the actual response of the system by the superimposed harmonics, eleven

components were selected. Based on the frequency increment of 50 rad/s (10 intervals in

2r
the range of 0 to 500 rad/s), the period was T= w—=0.13 s, which is long enough
i

compared to the FWD pulse duration of t; =0.03 s.

The normalized coefficients of the cosine terms in the expansion (ay/f with £=566
kPa), which were calculated using MAPLEV computer arithmetic package, are given in
Figure E.3. The Figure confirms that the coefficients associated with frequencies up to

500 rad/s are significant. Given the coefficients, the Fourier series expansion of the load is

then expressed as
ag L
fit)==-+ > ajcos[50n(t - 0.015)] (E.2)

n=1
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APPENDIX F

DERIVATION OF THE VARIATION COEFFICIENT MATRIX

Static case

The Relation between the covariance matrix of deflections and that of p random

elastic moduli is given by Equation 2.15 as

cov(u) = A cov(e) Al (F.1)

If it is assumed that random moduli are independent in pair, i.e., cov(e; , ¢;)=0 for

all i,j=1,..p and i#j, cov(e) becomes diagonal and Equation F.1 may be transformed to

var(u) = B var(e) (F2)

in which var(e) and var(u) are the vectors containing the diagonal elements of cov(e) and

cov(u), respectively, and B is a matrix whose elements are the square of the corresponding
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elements in A. If the elements of B are multiplied by the square of the pertinent mean

modulus and divided by the square of the expected value of deflection associated with that

element, Equation F.2 may be expressed in terms of CV as

CV2(u) =D CV2(e) (F.3)

in which CV2(u) and CV2(e) are vectors containing the square of CV(u) and CV(e),
respectively, and D is the variation coefficient matrix. From a backcalculation point of

view, it is desirable to invert Equation F.3 in order to relate variation in estimated moduli

to variation in measured deflections, which is

CV2(e) = G CV2(u) (F.4)

where G = [D'D]"Dt ,and D%is the transpose of D.

It should be noted that Equation F.3 may be adopted for a subset of deflections at
degrees of freedom which are of interest, e.g., vertical surface deflections close to the load.

However, to apply Equation F .4, variations of deflections for all degrees of freedom should be

included in the relation.
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Dynamic Case

As indicated in the main text, Equation 3.47 can be used to establish the relation
between the covariance matrix of deflections cov(u(t)), and the covariance matrix of layer

moduli cov(e). It was demonstrated in Equation 3.48 that terms such as cov(x;, yy) are given

by

cov(xj,y1) = [Ag]jcov(e)lA ;' (F.5)

with A matrices defined in Equations 3.49 and 3.50.

Assuming that the off-diagonal terms of cov(e) are zero, which means that there is no

correlation between the moduli of any two layers, Equation F.5 may be transformed to the

following equation

var(xj,y1) = [Byyl, var(e) F6)

in which var(x; , y) is the vector including the diagonal elements of cov(x;, y). The
elements of [Byy]; jare the product of the elements in A; by the corresponding elements
in transposed Ay. Replacing the variance vectors defined by Equation F.6 with the

covariance matrices in Equation 3.47, and factoring out var(e) gives an equation identical

to Equation F.2 in which B is defined by
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2 N N
B= aL[B!x ]0‘0 + Z Z a;a; {[Bn ]J,l cos(jwt)cos(lwt) + [Byy ]J,l sin(jwt)sin(lwt)
4 e F.7

= [Bxylj 1 cos(Gw)sin(Iwt) — [Byy | sin(jwt)cos(lwt)}

where ay is one of the N Fourier coefficients.
Using exactly the same procedure as that outlined for the static case, equations similar
to Equations F.3 and F.4 can be derived for the dynamic case, except that, as Equation F.7

suggests, the resulting equations are time dependent.
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