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ABSTRACT

• '/An experimental study o~~he dynamic properties of the

•

.'

-
dimensional magnetic materials CsMnBr3 and CsMnO.89Feo.liB 3 been

carried out. In addition" some theoretical' and computer simulation work

was performed on aspects of the static behaviour of selected one-dimensional. ~

magnetic systems.

CsMnBr3 is a one-dimensional magnetic insulator. Its magnetic .

behaviour can be described by a Heisenberg anti ferromagnetic chain ~ystem

with weak easy plane anisotropy. A truly one-dimensional ,system cannot

sustain long-range order at any non-zero temperature, although short-range

correlations can be strong at low temperatures. We used neutron scatter-
'.

ing techniques to examine both the delocalized (spin wave) and localized

(soliton) excitations of CsMnBr3 in its paramagnetic phase at low tempera­

tures. Our results of the spin wave response compare favourably with

recent theory of co-operative excitations in the absence of long-range

order. Our measurements of the soliton response is in qualitative agree-

'ment with, the relevant theory. Soliton-like spin configurations could also
,

'be directly observed in the results of a Monte Carlo simulation-on a system
; .

representative of CsMnBr3.

We also used the Monte Carlo method to examine static spin correlation

lengths within the XY to Heisenberg crossover temperature regime in CsMnBr3.

We measured the magnetic excitation spectrum of the magnetic impurity

chain system CsMnO.89FeO.llBr3 at low temperatures by neutron scattering

techniques. The response was qualitatively different from either.l:sMnBr3 or
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previously studied ·magnetic vacancy chain systems and showed marked host

mode-impurity mode inter~tion effects.

Finally we utilized the computational ease afforded by one.dimension

to examine the strengths of biquadratic exchange interactions in selected

Mn+2 chain systems, including CsMnBr3"
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ABSTRACT FOR THE NON-SPECIAllST

This thesis contains several studies of some special magnetic ma­

terials at low temperatures. In certain 'classe6 of materials, magnetic

moments form at the atomic level in the ·sol ids. These magnetic moments

can be thought of as tiny bar magnets located on the individual atoms. At• I

high temperatures these atomic magnets flip about wildly and do not seem

to take any notice of how the magnets on neighbouring atoms are behaving.

At low temperatures, however, the direction any particularmagnet points

is very sensitive to the arrangement.of the directions which the magnets

close by to it are pointing. In many magnetic materials a preferred. direct-
,

ion for the atomic magnets to point appears at sufficiently low tempera-

tures and a magnetic structure is said to have formed. If the tempera~ure

is raised the magnets are thermally jostled about and the magnetic structure '-
..' .- ./
··w.ill eve~tually tireakc.(jown. However this thermal jostl ing .of the atomfc

•
magnets occurs only by certain 'types of motion of the magnets known as

normal modes. The experimental .sections in this thesis concern themselves

with examining these normal modes in the ma9netic materials CsMnBr3 and
-

CsMnO.89FeO.llBr3·

. These two materials are int.eresting because the atomic magnets .con-

tained in them are arranged in str~ight lines. For this reason they are·

referred to as one-dimensional magnetic materials. 'This is in contrast to

most normal, magnetic materials where the atomic magnets fill up three­

dimensional space evenly, When the atomic magnets are arranged in straight
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lines. the ways in which the magnetic structure is broken down. the normal.
.-

modes. become extremely efficient. So much so in fact. that a true.mag­
. t

netic ,structure can only form at absolute zero temperatures where no thermal

jostling at all is present.

Because the atomic magnets are arranged in straight lines it is

also easier to imagi~e the possible orientations of the magnets along the

lines than it is when the magnets fill. up three-dimensionfl space evenl:y;

This is because there are fewer dimensions-to worry about. We have taken

advantage of this greater simplicity in trying to model some of the mag­

netic behavi our of these material s. Thi s has. been done both Ity theoreti ca1

calculations and~y use of a computer.

The thesis is thus made up of both experimental and theoretical types

of investigations of one-dimensional magnetic materials.
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CHAPTER 1

INT'ml!UCTION
- -i-i: .

,

1.1 Why is One-Dimensional Magnetism of Interest?

A co-operative system is compriseQ~of many' cons~ts a..ll of

which are somehow coupled to.each other, and their behaviour "is governed

by their collective motion pnd normal modes. There are many examples in

nature of such systems; however due to the relative simplicity of":the

manner in which the constituents are coupled as well as the rich variety
\

of co-operative behaviour possi.ble, magnetic materials have become proto-

typical co-operative systems.

The constituents in magnetic materials are the magnetic moments

'formed by the unpaired atomic electron~ at the atomic sites in solids.

These moments can interact with each other via several exchange mechanisms

as well as via the real magnetic dipole interactions, The type of exchange

interactions present in a material depend on the electronic environment

present in the material. Insulators, with no free, wobile electrons can

support only the direct exchange and superexchange mechanisms. These both

require the overlap of the magnetic electron wavefunctions with either the

magnetic electron wavefunction of a neighbouring atom, or the electron

wavefunctions of an intervening diamagnetic atom, respectively. Thus these

intera'ctions tend to be very short range; usually nearest neighbour in­

teractions are sufficient to understand the phenomena.



2

Magnetic phenomena in metals are complicated by two features. First­

ly the,magnetic moments themse]ves can be thought of as.localized at atomic
,

sites only in special cases .(such as som~ "well behave.d" rare earth metals

and alloys). In other cases the same electrons responsfble for magnetism

are also involved in conduction. Secondly the presence of the conduction

electrons means that exchange interactions can be of much longer range than

in insulators.

The moment formation problem in metals notwithstanding, we would

expect the s~atistical mechanics of magnetism in insulators to be'an ea~ier

•
challenge than that in metals. This is because,-for the same type of system,

there are fewer variables of relevance in the insulator problem.due to the

short range of the interactions.

The Heisenberg Hamiltonian,

\

•

i , j
H = " J(i,j)S.·S.

_1 -J
(1.1 )

or some modification thereof, is frequently used successfully in understand-

ing magnetic systems. The contribution anyone magnetic moment or spin,S.,. _ _1

makes to the Hamiltonian in such a model depends on the relative orientation

of this spin to all the other spins, ~j" for which the exchange constant,

J(i,j), is appreciable. It is these relative orientations which the statis­

tical-mechanical treatment of this system must consider. Clearly if the

range of interactions is shorter, then there are fewer relative orientations

of interest in the problem, and this should simplify the treatment of the
Coo

problem.

By the same toke~, if the spatial ~imensionality of the system is

reduced then there will be fewer variables ef interest. In the extreme case






























































































































































































































































































































































