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ABSTRACT

~An experimental study of the dynamic properties of the qlasi-one>

dimensional magnetic materials CsMnBr3 and CSM“o,agFeo_1iB been

3
carried out. In addition, some theoretical® and computer simulation work
was pe;formed on aspects of the statig behaviour of selected one-dimensional
magnetic systems. ) _

I CsMnBr, is a one-dimensional magnetic insulator. Its magnetic
behaviour.can‘be described by a Heisenberg antiferromagneti; chain system
with weak easy plane anisotropy. A truly one-dimensional system cannot
sustain long-range order at any non-zero temperatufe, although short-range
correlations can be stréng at low temperatures. We used néutron scatter-
ing techniques ?o examine bé&h the delocalized (spin wavé) and localized
(soliton) excitations of CsMnBr3 in its paramagnetic pha#e at low tempera-
tures. Our results of the spin wave response compare favourably with
recent theory_of co-operative excitations in the absence 6f long-range

order. OQur measurements of the soliton response is in qualitative agree-

‘ment with the relevant theory. Soliton-1ike spin configurations could also

\De ajrgct]y observed in the results of a Monte Carlo simulation on a system
rep?esentative of CsMnBr3. _

We also used the Monte Carlo method to examine static spin correlation
Tengths within the XY to Heisenberg crossover temperature regime in 65MnBr3. .
‘ We measured the magnetic excitation spectrum of the magnetic impurity

chain system CsMnoongeo_}1Br3 at low temperatures by neutron scattering

techniques. .The response was qualitatively different from either.CsMnBr3 or
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previously studied magnetic vacancy chain systems and showed marked host

-

‘mode-impurity mode 1nter§Ftion effects.

Finally we utilized the computational ease afforded by bne.dimenéion
to examine the strengths of biquadratic exchange interactions in selected

Mn+2 chain systems, including CsMnBr
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k o ABSTRACT FOR THE NON-SPECIALIST

This thesis contains severai studies of some spétia] magnetic ma-
terials at low temperatures. In certaiﬁ"c1aéses of mafeFials, magnetic
moments form at the atomic level in the Sp]ids. These magnéfic moments
can be thought of as tiny bar magnetfﬁ}ocated on thé indiyidua] atoms. At
high temperatures these atomic magﬁéts flip about wild]y and do not seem
tb take any notice of how the magnets on neighboufing a;oms are behaving.

At low temperatures, -however, the direction any partfcular_magnet points
is very Sensitive to the arrangement .of the directions which the'magnetg
close by to it are pdinting. In many magnetic materials a preferred direct-
ion for the atomic magnets to ﬁoint appears at sufficiently low tempera:
tures and a magnetic structure js said to have formed. If the temperature
is raised the magnets are therma11} Jjostled about and the,magnet{c structure -~
Wil eventually bfeak:agwn. However this thermal jostling of the atomic
magnets'occurs‘on]y by ceftain'typés af motion of the magnetS known as
normal modes. The experimental sections in this thesis concern themselves
with examining these normal modes in the magnetic materials CsMnér3 and
Csﬁho.ngeO.]TBr3. ' _ ..
" These two materials are interesting because the atomic magnets con-
tained in theh are arranged in straight lines. For this reason they are
referred to as one-dimensional magnetic materials. "This is in contrast £o

most normal magnetic materials where the atomic magnets fill up three-

dimensional space evenly. When the atomic magnets are arranged in straight

1
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lines, the ways in whfch the magnetic structure is broken down, the normal.

-

-

modes, become ext?emely gfficient. So much so in fact, that a true mag-
netic sstructure can only form at absolute zero temperatures where no thermal

jostling at all is presént.

»

Because the atomic magnets are arrangéd in straight lines it is

also éhsigr to imagine the possible_orientations of the magnets é]ong the
Tines than it is when Ehe magnets fill up three-dimensional space evén]ye
This 15 because there are fewer dimensions to worry about. We have taken
advantage of this greater simplicity in trying to model some of the mag-
netic behaviour of these materials. This has _been done both by fheoretical
calculations and by use of a computer. ‘ '

The thesi; is thus made up of both experihenia] and théorética1 types

of investigations of one-dimensional magnetic materials.
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o~ CHAPTER 1 - Y

INTRQPUCTION
S aa

1.1 Why is One-Dimensional Magnetism of Interest?

A—co-operative syétem is comprised; of many constitwents all of
whichare somehow coupled to.each other, and their behaviour_is governed'
by their collective motion and normal modes. There are many examples in
nature of such systems; however due to the relative simp]icity of’ the .
manner in which the constituents are coupled as well as the rich variety
of co-operative behaviour possible, magnetic maéerials have b;come proto-
typica1-co-operative systems.

The congtituents in magnetic matéria1s are the magnetic moments
“formed by the unpaired atomic e]chrong at the atomic sites in solids.
These moments can interact with each other via several exchange mechanisms ~
as well as via the real magnetic dipole interactions. The type of exchange
interactions present in a material depend on the electronic environment
present in the matériaf. Insulators, with no free, pobile electrons can
support only the direct exchange and superexchange mechanisms. These both
require the overlap of the magnet;; electron wavefunctions with éither tﬂe
magnetic electron wavefunction of a neighbouring atom;, or the electron
wavefunctions of an interveningfdiamagnetic atom, respectively. Thus these

interactions tend to be very short range; usually nearest neighbour in-

~ teractions are sufficient to understand the phenomena.

1



Magngtic phenomena in metals are complicated by two features: First- ¢
1y the magnetic moments themée]ves can be thought of as localized at atomic
sites only in special cases (such as somq}“we11 behaved" rare earéh metals
and alloys). 1In other céses the same electrons respon§fb1e for magnetism
are also involved in conduction. Seconq1y the presence of the conduction f
electrons meansrthat'exchaﬁge interactions can be'éf much longer range than
in insulators. e .

The moment formation problem in metals notwithstanding, we would
expect the s;atistica1-mechanics of magnetism in insulators to be an easier
challenge than that in metals. This is because, for the same type of s;stem,
there are fewer variables of relevance in the insulator prob1em,due t0o the
short range of the interactions.

. The Heisenberg Hamiltonian;

= v Ii,§)8..5. 1.3
H Ry (1,318, -5, (1.1)

or some modification thereof, is freduently used successfully in understand-
ing magne;ic systems. The contribution any one magneti; moment oOr s$pin, §i’
makes to ﬁhe Hamiltonian in such a model dep;nds on the relative orientation
of this spin to all the other spins, §jy for which the exchangg constant,
J(i,3), is appreciable. It is these relative orientations which the statis-
tical-mechanical treatment of this system must consider. Clearly if the
range of interactions is shorter, then there are fewer relative orientations
of iﬁterest in the problem, and this should simplify the treatment af the

L ]
nroblem.

By the same toke¥, if the spatial dimensionality of the system is

reduced then there will be fewer variables o7 interest. In the extreme case

-
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.of ﬁ one-d1mens1ona1 system with short-range interactions there will be only

" two ne1ghbours and the’ theoretical treatment of th1$ co-operative system

A/" -

© should be as tractable as possible. This is jndeed the case as there have

been deve]oped ‘several exact solutions to the static behaviour or thermo- .
dynamics, of certain one-dimensional models. The treatments of the dynam1cs

(the spectrum of fluctuations or excitations from the_ﬁround state} of these
systems have not afforded exact solutions. However this problem is still

simpler than its higher dimensidna] counterparts and this allows considerably - '
more scrutiny of the premises of the theory. ' -

In addition the f]uctuation; of the system take on a much greater
1mportance in understanding the phenomena of the one-dimensional system.
This is because a disturbance (1 e. fluctuat1on, impurity etc.) at any one
site is much more disruptive to the flqw of information or correlations in
one dimension than in higher dimensions. Informat1on pyopagat1on in two
aed three-dimensional systems has many paths around any one particular con-

-

stituent in the co-operative system. In one dimension with short range
1nteract1ons, information propagation from one side of thelsystem to the
other involves every constituent in the system. Hence a f]uctuat1on at
any one site can disrupt the flow of the information and break up the cor-
relations along the chain very effectively.

The importance of the fluctuations or excitations in these systems

has the consequence that a truly one-dimensional system with short-range

interactions does not display long-range order at any finite temperature.

" This is in contrast to most "normal® (i.e. three-dimensional) magnetic

materials which display long-range magnetic order over an extended tempera-



ture range. The absence of Jong-range order means that theoretical treat-

" ments involving the presence of an order parameter cannot be used, and this
greatly complicates the treatment of the excitations. For example linear |
spin-wavé theory relies on the preéen;e of a magnetization or sublatticé
magnetization and so should not be applicable. In addition it represents

a failure of the standard mean field theory technique. Mean field thgory
essentially ignores, or averages over the fluctuations in a system. Thus,
as mean field theory fai1s,\§he fluctuations should be dealt with explicitly
jn order to understand this éagnetic behaviour. Again this ds in contrast
to three-dimensional magnetic materials in whith much of the phenomena éan
be reasonably described within a mean field theory context.

One-dimensional magnetism has been of interest to the experimentalist
as well. Good quality single-crystals of magnetic materials whose magnetic
properties are sufficiently anisotropic that they can be considered as
being one-dimensional in the proper temperature regime, have existed for

roughly fifteen years. A healthy push-pull relationship between theory

and experiment has existed and continues to exist today in this field. Novel -~

phenomena which are expected to be absent or marginal in three-dimensional
magnetism have been seen 10 be markedly prese;t in one-dimensional magnetism,
and this is the main reason for interest in one-dimensional magnetism.
Excellent reviews of phenomena involved iﬁ one-dimensional magnétism
are given by Birgeneau and Shirane (1978),.Steiner et al. (1975) and articles

contained in Bernasconi and Schneider (1981).

-
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1. 2 The D1rect1on of the Thes1s

This thes1s represents a study of the dynamic and some static mag-
netic properties of CsHpBr3 and CsMno_ggFe0_1]Br3. These two mater1als will
-be é;;cribed jn detail in the next section. There is a:very pronounced
anisotropy in the strength of the magnetic interactions, and this allows us
to consider them as quasi-one-dimensional magnetic systems.

The thesis conta1ns two types of work. First, ine]ast%c neutron-
scattering studies of the magnetic dynamics of CsMnBr3 and CsMn 89Fe0 ]]Br3
in their paramagnet1c phases-will be presented. Following a chapter which
describes neutron scattering techniques and the formalism involved in mag-
netic inelastic neutron‘scattering, three neutron studies will be presented.
Each of these is contained in its own.chapter.‘ These are "Paramagnetic Spin
Nayes.in CsMnBr3“ in Chapter 3; "Solitons in CsMnBr3" in Chapter 4; and
"Spin wave§ and Local Modes in CSMnﬁ.89F90.11Br3“ in Chapter 5.. _

Short accounts of this work hagg appeared or will appear in scientific
publications. These publications are: )

Chapter 3 _
1. M.F. Collins and B.D. Gaulin, 1984, J. Appl. Phys. 55, 1869.
2. B.D. Gaulin and M.F. Collins, 1984, Caa. J. Phys. 62, 1132.

3. M.F. Co1]ins'and B.D. Gaulin, 1984, Magnetic Excitations and Fluctuations,
Lovesey et al. (editors), p. 12, Springer-Ver1ag,'Ber1iﬁ.-
| Chapter 4 |
1. B.D. Gaulin and M.F. Coi1ins, 1985, Can. J. Phys. 63, 1235.
" Chapter 5 |

1. B.D. Gaulin, M.F. Collins and I. Sosnowska {to appear in Physica B).
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s The second .type of work involves examining the static correlations
End configurations of several quasi-qne;dimensioné1 magnetic insulators with
- ‘particu1ar emphasis on CsMnBrB. This work proceeds Wain1y by a classical
Monte Carlo simulation. Chapter 6 of the thesis describes briefly the
principles involved in the simulation itself, as well as some problems as-
sdciated with the computer simulation. Then two results are presented in |
Chapters 7 and B. ’
| Chapter 7 concerns itsédf with the relevance of higher order, speci-
fically biquadratic, exchange processes in several quasi-one-dimensional
systems. Chapter 8 uses the Monte Carlo simulation to calculate the spin
- correlations in a model one-dimensional system. Spin configurations are
*also generated as a function of temperature and these resuIts'tie in with
the neutron results on so]itdns in FsMnBr3 presented 1in Chapter 4.
Once again short accounté oflthis work will appear in the scientific
literature. These pub]ica%ions will be: o
Chapter 7
B.D. Gaulin and M.F. Collins (to appear in Phys. Rev. B).
Chaptgr 8 |
B.D. Gaulin and M.F. Coliins (to appear in J. Phys. C).
A short introduction to each topic is attempted at the beginning

of each chapter.



1.3 The Character of CsMnBr, and CsMnO.SgFe0.11§£

CsMnBr, crystallizes in the hexagonal space group Pséfmmc1nithjattice

constants at T=70K of ¢ =.6.439 A and 2 = 7.56 A. A diagram of the crys-
tal 'structure is shown in figure Al. As can be seen from the diagram, the

2 jons running along the

crystal is essentially comprised of chains of Mn+

hexagonal c-axis. Between any two Mn+2 jons are a triad of Br~ ions. The

¢s” ions lie out in the cell and serve to isolate the chains from each other.
This material is electrically inﬁu]ating and the unfilled d-shell

at the Mn"'2 site gives rise to a‘localized magnetic moment. The Hund's w»A

rule ground state which corresponds to the Nn+2 electronic configuration

yields an $ = 5/2, L = 0 moment at the Mn+2

site. These moments can inter-
. e
act relatively strongly via the superexchange mechanism utilizing the in-

tervening triad of diamagnetic Br~ ions along the chain. Interactions be-

2

+ . . . . ﬂ
tween Mn = moments on neighbouring chains involve a much longer and more

complicated superexchange path and hence these interactions are much weaker
than those a]oné the chain. The ratio of the strengths of the interactions
along to between the chains is believed to be ~ 470:1 (Breitiing et al.,
1977), and this is the origin of the material's one-dimensional nature.

Of course at sufficiently Iow_témperaturesthese weak interchain
interactions will precipitate a phase transttion to a three-dimensional
magnetically ordered phase. For CsMnBr3 this occurs at 8.3K (Eibshutz et
al., 1972). Above this temperature CsMnBr3 behaves as a one-dimensional
magnetic insulator. Spin wave energies in the three-dimensionally ordered
state have been calculated by Oyedele and Collins (1978) and measu?ed by

Breitling et al., (1977).

IS



figure Al: The crystal structure of CsMnBr3 and CsMn.BgFe_”Bry
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The L=0 nature of the Mn+2 moment means that-the 1nteract1ons be-
tween the moments will be isotropic to a good approx1mat1on This is be-
cause the moment only has 2 contribution from the 1nterna1 spin magnetic
moments of the electrons in the unfilled d-shell. These are not affected
by the crystalline environment and thus 1n the absence of the exchange -

- mechanism, there is no preferred direction or-plane for the magnet1c moment:
| Isotropy, or anisotropy, in the spin 1nteract1ons 1s usua11y d1scussed in
terms of the following geméral Hamiltonian:

- XX . oYeY ' Z.2 . (1.2)

One can-see that equation'(i.Z) is a'special case.of (1.1), the Heisenberg
Ham1iton1an in one dwhenswon with nearest neighbour intehactions only.
. For the moment let us consider \Yl;f 1. Then it is clear that if J>0 the
magnetic system can Tower its energy by hav1ng all spins align parallel
to each other, and these are referred to as erromagnet1c interactions.
If J< 0 the magnetic system can lower jts energy by hav1ng nearest neighbour
spins align antiparallel to each other and these are referred to as anti-
'ferromagnetic interactwons ]

Now let us conswder the antiferromagnetic.case J<0. If y=1, then
eaeh of the spin components S ,Sy,S (where x, ¥ and z are orthogonal axes)
contribute equally to the energy of the system and the_interact1ons are

termed 1sotrop1c or Heisenberg-like. Should we have y<1 then two of the

components .will be more 1mp0rtant to the energy of the system'than the third,

Y
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S?, component and the 1nteract1one will-exhibit-xf o: p1anar anisotropy:
Shou]d we have v> ] then one component of .spin, Sz,‘is nore important to
the energy than the other two and the 1nteract1ons w111 exhibit Ising or
un1d1rect1ona1 an1sotropy C]ear1y the greater the d1fference of v from -
unity the more pronounced the anisotropy w111 be, however the an1sotropy
w1]] a]ways man1fest jtself at sufficiently Tow temperatures -

" Now returnung to our d1scuss1on of CsMnBr3, the .leading order ex-

-

change 1nteract1ons between Mn 2 moments along the chain are antiferromag-
net1c. The very weak exchange interactions. between Mn ? ions.on adjacent
chains are also ant1ferromagnet1c These interactions. are actually electro-
stat1c in orug1n, that is, they are the consequence of. the Pauli: pr1nc1p1e
(Ferm1 statistics) on: the e1ectrostat1c energy of two Mn *2 configurations

overlapp1ng on.a diamagnetic Br atomic conf1gurat1on In add1txon to this

. isotropic or Heisenberg—1ike‘exchange interaction, there is a real magnetic

interaction. These are the magnetic dipole interactions of the form: ~°
-jg— {~1 35 3(5 r )(S r )} . (1.3)
13 ~

As real magnet1c interactions, these interactions will be much weak-
er than the exchange interactions (at least along the chain}.. However the
second part of the equation introduces some anisotropy inte the system.

This interaction falis off with distance onTy'as.r3, ;nd thus in general
it is a long range interaction. However in one dimension this is not very
important as the strength of the second nearest neighbour interaction is 1/8

of the first nearest neighbour interaction strength. In three dimensions

the long rangé nature of the dipoles does introduce difficulties.
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The 1ead1ng order exchange 1nteract1on ‘acts so as to align nearest
ne1ghbours ant1para11el to each other The d1po1ar 1nteract1ons then act
to estab11sh an easy p1ane perpend1cu1ar to the- chain ax1s, or r1j in equa-
tion (1.3) - Thus the low temperature paramagnetdic "structure“ of this sys-
' tem~coasists of a Néel type configurat1on of spins 1y1ng Wlﬁhlﬂ,a plane
perpendicular to the chain axis. Two simpiified Haﬁi1tohians will be used
to describe CsMnBr3 in ‘this thes1s They ate equivalent at TOQ temperatures

" and the d1fference is not thermodynam1ca11y relevant at high temperatures

2SS, AL (D)
Hy = - ? 31244 f(si)
- . 2¢2
HZ = -2 ; 51 i+l G ; 51 i+] -

e —
e

Relevant parameters for CsMnﬁré are J.= -0.88 meV and & = 0.03 meV, which
eorresponﬁs to lylr 982 in equation (i 2). The material (CH3)4NMnC13,
tetter tnown as TMMC, is very similar to CsMnBr3 and has been studied-
extensive1y It is also esseéntially comprised of Mn2+ jons arranged along
"chains and the two compounds have very similar nearest nexghbour Mn 2-Mn+2
separation distances along the chain. We frequently refer to work on TMMC
throughout the thesis.

As was previously mentioned, exact solutions exist for the static
behavipur of certain one-dimensional models. We will make great use of one
of. these in eiamining both the.statics and dynamics of CsMnBr,. This is
Fisher’ 5 solution (Fisher, 1964) of the one-dimensiona] classical ueTEEnberg
model, with nearest neighbour 1nteract1ons oniy:

The model Hamiltonian is that of equation (1.2) with iyl =1 and

the spin magnetic moments are now classical vectors, Si‘ which can take on
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_any or1entat1en in space This is relevant for CsMﬁBr (or at Ieast aspects .
“of qts behav1our) due to the re]at1ve1y weak annsotropy in the spwn interact- '
ions (171 .982) as well as the re]at1ve1y:1arge S = 5/2 moment present RS

' at the Mn ¥ s{te The correspondence pr1nc1p1e asserts that one should re-

| cover classical mechan1cs from quantum mechan1cs as the quantum numbers of
a system in quest1on become large, The § = 5/2 quantum number may not ap-
pear that large, however with (25+]) 6 possible or1entat1ons with respect
to some axis of quantization it is a reasonable approx1mat1on to treat the
system as classical.

Fisher solved for the thermodynamics of his model classical Hamil-
tonian by allowing the breceding.spin alang the chain §j_},to'define.the
pb]ar axis fon-§é (where §j = §j/|S]). This allowed him to calculate both

the partition function
do. [ do do,,
= | 0| ... | N .
ZN - J’ 4 J a4 j 4n exp [K :': §i §i+1]-‘

and the static spin pair correlation function -

) doy, '
<S.-S, 32;]JJ ---[—ss

.

b | —1+£ 4n w iITiHL

x exp[K I S -5

where K = ZJ‘/kT

1+1I

He then solved for the various thermodynamic properties of interest inc?uding

-

the susceptibility.
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as well as the correlation length along the chain
- .

€= zhiéothf33 - x]

- u_-‘-'
'ﬂ

in uniggfof the MnTZ-Mn 2 3 separat1on\d?3tance where the correlation length
is defined by

<SitSieg> ~ exp(-

yrij

‘This quantity gives a characteristic distance beyond which correlations can
£ goes as }.
. -v .
which explicitly shows the absence of long range order (non-infinite correl-

be thought of as being weak or absent. At low temperature &

ation length) at all temberatures above absolute zero.

Thorpe solved exactly for the static properties_gf_the random clas-
sical Heisenberg chain containing two tyﬁes of moments and three different
nearest neighbour exchange interactions (Thorpe, 1975). We shall make some
use of this in our study of CsMn0 89Fe0 ]] ry- This material, grown by
ourselves using Br1dgeman techniques, is descr1bed in more detail in Chapter
5. Eleven percent of the Mn 2‘ha\.fe been replaced by Fe 2, c0mpared to
CsMnBr3. To the best of our knowledge, the subs}itution is randdﬁ along

'3
. . . *2 . .
the chain. The concentration gradient of the Fe 2 impurities along the

length of the crystal was determined by an absorption study performed on
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.'sma11 selected pieces -of the c&ysta] at the Institu;e for Materials Research,

at McMaster University. Our results show that the concentratibn gradient
~ over the full length of the §ing]e crystal used,-is less than 1;5%. |

The mosaic spreads of both CsMnBry and CsMny goFey 1,Bry single c;ys- -

tals are shown in figure A2. These .were both obtained by examining the
002 Bragg reflections of neutrons by'each crystal at the McMaster spectro- .
meté}l(E-Z), N.R.U. reactor,‘Chaik Ri%?r. As-cap be-seen from this ;iagram, '
F@e‘qdality of the QsMnU'ngeO.]]Br3 crystal is»betfer than that of the
CsMnBr3 crystal. The CsMnBr_'3 single crystqj is made up of three large
sing{e'crysta]s, very closely aligngd, as well as other smaller pieces also
c]ose}y aligned. 0ne>of-these large pieces is mudh'bigger than the other
two. The mosaic spread of the crystal is then ~ 2° (FWHM). The
CsMnD_BgFeb_118r3 single cr}stai is comprised of two very closely aligned
single crystals, ohe o% which is much ]argercthan the other. The mosﬁic

spread of this crystal is ~ 0.5° (FHHM).
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- MOSAIC SPREADS OF SINGLE CRYSTALS
¥ SCANS OF 002 REFLECTIONS :
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Figure A2: The mosaic spread of the two samples CsMnBr., and
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C'__;Mn.sgf-'e.”BrB. The CsrjnBr3 sample has an effective

mosaic of ~ 2° while the superior quality CsMn gste 718r3

crystal has a mosaic spread of A _35°
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_— S CHAPTER 2
 NEUTRON SCATTERING

2.1 The Neutron as a Probe of Condensed Matter™

S1nce re1at1ve1y strong sources of neutrons became ava11ab1e fol-
1oning the Second World War {via the development of nuc1ear reactors) the
neutron has become the most powerfu1 probe for exp]or1ng many 1nterest1ng
'propert1es of condensed matter: To understand why this is so, we must -
eonsider three basic properties of the neutron. The neutron is a nucleon
which carries no e]ettric charge. It has a magnetfc dipole moment of d
Mo T - 1.9I.uN, where My is the nuclear magneton.  Finally, tt's rest mass
is such that its de Broglie wave1ength satisf{es‘the equatidn E = B].SO/A?
‘with E in'meV and A in A. | |

As a nucieon with no Eharge the neutron will interact weakly with
- condensed systems. To'a good approximation, it wi11'interact only via.a
very short range nuclear interaction with the nuclei in the terget, or mag-
netically with magnetic moments in the condensed system. This -implies
two things. Firstly, a neutron beam will bathe the entire target system,
as opposed to preferentially interacting with the surface as do most other
:probes. Second1y, the subsequent analysis can, for the most part, con6Etn
itself w1th single scatter1ng events only.

The reiationship between the neutron's energy and 1ts wavelength

means that neutrons of thermal (v 25 meV)senergies (as are copiously

16
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préduced in reactors) have wavelengths of the order of ;:;Etroms and
~ frequencies in the terahertz region. These 1ength and t1me (27/w)
'.sca1es are ext?éﬁgT} well matched to those of spat1a1rand temporal corre-
" lations in condensed matter. By using what are now standard mpderation |
techniques (hot and cold sources), thé energy spectrum of neutrons emerg-
ing from the feacfor can be merd up and down to some extent, allowing
the frequency range of 10 10 to 1014 hertz and corresponding wavelength
range of 30 to .5 A° to become available for experiment. The new generat1on
of spallation neutron sources (Rutherford Laboratory, U.K. and Los Alamos)
 shou1d.extend the_frequency scale at the high or epithermal end consider-
ably. fhus_neutron scattering techniques can contribute to the under-

~ standing of stﬁtic.and dynamic correlations in condensed matter, both

atomic and magnetic, on a very wide'1ength and time scale.

‘9.2 The Meutron Scattering Cross-Section
| The theory of neutron scattefing has been very well treated by
séveral authors (Squires, 1978 and Lovesey, 1984) and only those elements
of the theory pertinent to understanding the experiments will be discussed
here. We are interested in the magnetic correlations 1in several materials,
but let us first considefltwo Timiting cases of scattering; coherent and
incoherent scattering.'

For the most part we examine in this work the normal modes of simple
magnetic systems where the degrée of magnetic order is sufficiently high
so as to give riséto the concept of an excitation from a co -operative
ground state. The co-opegative nature of the system means that wavevectors

_ can be associated with théAépatial correlations in the system and a magnetic
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Brillouin zone'reﬁains a useful conéept. We tﬁen expect ?ﬁﬁ?1magnetic
neutron scatter1ng from this. system to exhibit pronounced 1nterference .
effects from the different correlated const1tuents of the co-operat1ve
system. This type of scatter1ng is referred lo as coherent, and well-
def1ned structure appears in. the wavevector dependence of the scatter1ng
H1th1n the same samp]e the neutrons will interact with the target-
nuc1e1 This 1nteract1on depends partly on the 1nteract1on between the .
neutron magnetic moment and the nuclear spin (if there is one) Let us
jgnore the presence of 1sotopes of the elements in the samples. - At any
temperatures ‘of interest here, these nuclear spins will be,ﬂ1sordered and
thus part of the nuclear“;ZEtter1ng will show no interference effects.
Any ma;eria] Qith consfqzeeht nuclei with non-zefo niciear spin will
disefay this nuclear incohefent scattering;.which of course will have no
or very'1ftt1e wavevector dependence asgoeiated with it.
Consider now the cross section for -neutron seattering by an arrange-
ment of magnetic homents on a Bravais 1attiee with the moment'give; by

'gd-times the total angular momentum J. The cross-section is given by

-

2
2 (yr.)° 1 _
"0 _ 0 _k_ nrl A A

S0RET < 2th |0 N{ 7 93 R > (8,595

x T exp(iQ-2) {? <exp(419-§0(0))exp(ig-ggkt)>
2 . i

. m—

x <Jgi0)Ji(t)>exp(—iwt)dt



In this express1on ro and Y are constants such that (Yro)z 292 barns/sr
The N magnetic sites are at equ111br1um pos1t10ns 2 with poss1b1e d1sp1ace-'
ments from equilibrium, u (t), at t1me t. ’

The wavevector transfer of the scattering event is def1ned as the
vector difference. between initial and scattered neutron wavevector,

Q= ko- 1. It is often conven1ent to cons1der the wavevector transfer te?-'

lative to the magnet1c or nuclear zone centre. This reduced waveyector

q = Q-1, where T "is a reciprocal 1att1ce vectdr, enters naturally in most

theories due to the periodicity of the 1att1ce. The enetgy transfer of

fé scatteting évent iS‘defined_by the difference between incident and

scattered neutron energ1es fw = E;- E%. ,
"'-. N - /
F (Q) is the magnetic form factor and represents the Fourier trans-
fonn of the spatial d1str1but1on of the scattermng centre A term such as

this is common to a11 scattering cross-sections and in our case ‘the scat—

tering centre is the distribution’ of magnetic (unpa1red) d-electrons at

*2 op Fe'? s1tes This quantity falls off with 1ncreas1ng lQI and

the Mn
the measurable magnetic response is 11m1ted to the re1at1ve1y sma11 |Ql
regime. |

If we neglect the effects of havina the atoms hpt at their equili-
brium sites,land replace the total angu]ar momentum Ji(t) by Si(t) (as
we will be mainly interested in spin dnly systems) we can write the cross-

section as . ' ‘ A L

LIk k 2 d-B
29 ek g% ¢ (6.0 Q gls (0,w)
k0 of af =

|
with \
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saﬂﬁq;m) ='g J“ exp(iQ-Ejexp(—imt)<Sg(0)§E(t)>dt .
. Lio T : _

The physics of the system under investigation is contained in the

dynamic pair torre]ation function S(g,w) or its Fourier transforms7 It is
: at this"level that theory ahd experiment will normally be compared.
~We restrict our consideration to the usual condition that SGB(Q,m)

is zero for a #'B, where o and B are ofthogonal axes (x,¥,z). - The effect
.of the Loreﬁiz factor, égx(éas-ﬁaﬁs), is to pick out ﬁhose-dynam{c corre-
lation functions <Sg(0)sg(t)>, for which « is perpendicular to the

wavevector of the écattering event. This is to say we observe the spectrum _
6f spin_fiuctuétipns lyin; in a plane perpendjcu1ar to Q. Thuslﬁe can
write |

( 2 1 i

g _ ~k .2 an
To5ET ‘--C 0 F (Q) qu $T(Q,uw)

~

If the system has eigenstates, |n> of its Hamiltonian with energies
%mh, which are known either exactly or approximately we can write
$%Qu0) = 771 £ exp(tiw /KT)<n]s%(Q) {m>

f,n

x <m|Sa(-g)|n>§(w-wn+wm)

where Z is the partition function and $%(Q) is the Fourier transform in
space of the spin operator.
In some cases the eigenstates and eigenvalues are not known even

approximately and this treatment is inappropriate. If a sufficient amount

-
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of information regarding the cor;e1ations in the system is known, theories
can still be successful in descr1b1ng the experiment by using a phenomeno-
Jogical equation of motion. This is the route we have used for example,
in describing our spin wave measurements in the paramagnetxc reg1me of
. CsMnBr3 by a-genera112ed Langev1n eqyat1on approach to the dynamics of this
system.

Another approach is, in some approximate‘way, to solve for.the equa-
tion of motion of some components'of spin. The dynamic spin pair éorrela-
tion fugction may then ber.calculated classically by summing or integrating
over_all'relevant variables {which mayrinclude velocities, for example)
weighted by the usual Boltzmann factor. .This can then be Fourier trans-
formed to produce Saa(g,m). This method 55 used in our examination of the
out-of-easy plane soliton response in CsMnBré.

Before 1ea§ing this section we should mention that an equivalent
description of the scattering (which is sometimes more useful) can be made
in terms of the-imaginary, or energy absorbing, part of the generalized
susceptibility. It is related to Sau(g,m) by the fluctuation-dissipation
relation which connects the spectrum of fluctuations in a system to the
possible dissipafion or energy absorbing processes in that system. -Thus we

can write

x"(Qw)
$%*(Q,u) =
- A T n(1-expl- hm/kT))
The 1mag1nary part of the suscept1b111ty is related to the real part of
the suscept1b111ty by a Kramers-Kronig re1at1on and the limit of Q and w

going to zero in the real part of the susceptibility yields the static



susceptibi1ity. A useful comparison of static,sUsceptibi1ity'and neutron
measurements can be ﬁede (ajthough.it is more cdﬁp]icateﬂ than that'Sketched
here) using this result (Jackman, 1983). s 0

In addition to the coherent magnetic scattgrtng there w111 also
be coherent nuc]ear scattering due to the norgal modes of the 1att1ee the
phonons. Th1s scatter1ng can be ‘distinguished from the magnetic scatter1ng'
in several ways. Firstly, while the-1ntens1ty of the magnet1c scatter1ng
fa]1s off_ with increasing |Q| due to the form factor, that of one- phonon
scattering will increase as (e Q) , where € is the eigenvector of the
particu]ar phonon In add1t1on for ant1ferromagnets, the nagnet1c Br111nu1nl
. zone is a d1fferent s1ze than the nuclear zone. Finally, the translational
order of the nuc1ear }att1ce is usual]y broken up thermally on a different
temperéture sea]e from that of the magnetie lattice. For example jn'the
erysta]s.considered in this work, magnetig corre]atiohs are lost—for tem-
peratures greater n ~ 100K while the crystals melt at roughly 900K.
Hefce temperatu§§£§::endent scattering (in the neutron ehergy Toss mode)

below say 100K can be identified as magnetic in origin.

2.3 The Practice of Neutron Scattering

The two quantities of interest in characterizing a scattering event
are the momedthm transfer, hQ, and the energy transfer 4w of the event.
The neutron triple axis spectrometer, shown in schemat1c form in figure
Bl is a spectrometer designed to allow a systematuc study of selected
regions of Q and w space. . This particular figure corrésponds to a double
_monochromator spectrometer. The McMaster spettrometer_(E-Z) at_the N.R.U.

reactor, Chaik River, is such a,speetrometer. A phbtbgreph of the spectro-

‘e



Figure Bl:

Schématic of McMaster triplesaxis spectrometer."

A
B
C

—

“hole in reactor wall

double crystal monochromator

monochromatic beam

_beam incident on specimen

beam gate

fission chamber monitor
Soller-slit collimators
sample aﬁg]ing apparatus
counter angling apparatué
helium counters

parafin and cadmium shielding barrel

analysing crystal

This figure was taken from Locke (198])

—

/i



77

. §o
\ "




meter in operation is shown in-figure B2. The more'popular form of this

spectrometer has only a swng1e monochromator ' .-'-*‘\_

-

- 'The spectrometer makes yse of the Bragg refiect1on cond1t1on,

= 2ds?n6

'_1n order to select neutrons of a particular wavelength and direction.‘ The
) phys1ca1 orng1n of thms condition is ‘shown in figure B3.. .

Referr1ng to figure Bl one can see that the spectrometer will accept
a "white" (ie a Maxweilian d1str1but1on of neutrons centred on the energy
-correspond1ng~to the temperature of the moderator) beam of neutrons mov1ng~
in the proper d1rect1on towards the f1r§f\monochromat1ng s1ng1e crystal.
Neutrons of wave]ength nx will be diffracted by atomic p1anes of spacing-

d in the f1rst crystal. The second crystal is set so-as to accept the
neutrons diffracted from the first at the proper angle am-(for nx neutrons)
~and reflect this in a similar way towards the sample. At each stage in

the path of the neutrons, col.limatoﬁ, or soller slits (guides with wails

' “lined with neutron‘aosorbino material) can be inserted to better define
the‘beam's direction. At this point the incident neutron's energy (neglect-
ing n# 1) and. momentum have been established.’

The beam thenAimpinges on the sample -which, in the case of single
~crystal studies, is moonted_on a'rotatable table with the sample's crysta1-
lographic axis in some known'positiOn relative to the direction of the
incident beam. After interacting with the samp1e the scattered neutron
will go off in arb1trary directions, however the detector arm of the
spectrometer is set so as to accept neutrons scattered~1n the horizontal
plane at angle ¢ to the 1nc1dent direction. This beam ot scattered neutrons

may be passed through soller slits and then ailowed to impinge on a s1ng1e
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Figure B2: A photograph of\the author at the McMaster spectfométer,'on
| “the £-2 gate of the N.R.U. reactor at Chalk River Nuclear
Laboratories. The neutron beam enters from- the right of the
picture after having been ref]eéted off a doub]e¥cfysta1
monochromator. The sample is mounted in the ;}psed-cyc]é
. displex-type refrigerator-in the centre of the picture,
‘which~i§ secured to the sample table. The spatteréd neutrons
o then_enter the detector chamber (the authbr is resting his
right hand on it) which contains the analyzer crystal and
thé 3Hg detector. ‘

-
.
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crystal analyser at angle 8, to some appropriate set of planes with spacing
_ ; A . . _

dy in the analysing crystal. A high efficiency He3 neutron detector will
bé set so éé fo acceptﬂnédtrqns'of energy nA"diffracted from the crysta]! ’
The angle the detector must be set at; reiative to the d{rection of the .
transmitted neutron beam, is 26, in order to ;é;is%y the.éragg condi%igpu_.
This then estab]i;hes (again ﬁeg]ecting n#1 in the Bragg conditiond/the_ ]
éqafEEred néutfon beam's energy and momentum. Thus by adjust%ng the angles
in the scattering geométry (em,¢,w. GA.and ZBA a'particu1ér Q‘and w can
bé investigated in a crystal. Usually the §ingle crystal gamp]e is aligned
in such a way that the scattering plane (typically horizontal}, defined as
the plane spanned by Ep and 51, contains relevant high syﬁﬁetry crystal-
\;;graphic directions of the sample. '
Information regarding the physics of the syéteﬁ under stﬁdy is then
'derived‘ffom the relative intensities of scattered neutrons measured-at
different posifions in Q and w space for some set iricident number of neutrons,
or monitori‘count. _This mohitqg;couﬁt is peffonﬁed-by passing thé incident
beam through a ]ow—effiéiency_fission neutron counter. As ideally the
efficiency of the %ission counter is proportional to I/v0 « 1/k0.;if the
| measurements are made’ by keeping |k1| constant'(ag are all those.reported
hére), the perfaqtor E;—in the cross ;gction yiélds onTy.a conqtént and
these relative intensit{es give relative strengths of FZ(Q) 'itlsaa(g,u)_.
. Q

Two methods for systematica]ly getting this information are commonly

used. The first and most common method is constant Q. Here the séattering
geometry is manipulated such that the energy transfer is mapped out for

some fixed point in Q space. Clearly not all of energy transfer space can

o
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be covered for'qome fixed g‘ and fixed constant scattered neutron enetgy
(a-constant-incident,energt).. The amount of this parameter space which
is of.infg:;st to the experimenter {nf1uences his choice of spacing for®
both monochromator and ana1yser as these determine poss1b]e a11owed wave-
1engths of neutrons such that the tr1ang]e g = ko-kI can be'formed

-~

The second method is the Constant Energy method in which the scat-

ter1ng geometry is manipulated such that some region in Q space 15 exam1ned'

'for 2 given energy transfer. Once: again parameter space is 11m1ted by the

condition that a closed triangle satisfying Q= 50-51 must be formed for
any scattering event.

An important consideration in the design of any experiment is the
re;o]ution of the spectrometer and how it can be manipulated. WMe usgalfy
speak~loosely in terms of specific anelengths of the neutrons and precise

~angles of incidence relative to some planes in a perfect crystal. However
- due to a mosaic spread in all the crystals involved in the eXpertment
(ahalyser,_monochromatot and sample) end 10 the divergence in angles that

" a neutron path may follow from one interaction to another ih the spectro-
meter,-both the wavevector and energy transfer of a scattering event in a
rea1 spectrometer are accepted w1th1n some characteristic range, QU AQ
and wy = du 0" | | b

" These characteristic ranges can be manipulated in several ways. Use

of a smalier constant scattered energy (for example) increases the energy

~resolution of a given measurement. Crystal monochromators and analysis

mak1ng use.of planes with larger d spacings can be used to achieve this end.

Also the angular dxvergence of some path in the spectrometer can be re-
.‘q

7
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str1cteo\by us1ng narrower so11er slits to define the beam d1rect1on. It
_is also 1mportant to note that 1mproved reso?ut1on of 2 measurement COmes |
at the expense of twme,requ1red to get the same integrated intensity.
Therefore tight co11imétion'and small mosaic spreads in the crystals may

1mpede the exper1menter in h1s attempts to understand the phys1ca1 system.

e

_The choice of components in the spectrometer should. be matched to the prob- ¥

lem under investigation and to which reg1ons of g,and w space are of

J

1nterest b

These effects have been considered in detail (Cooper and Nathans,
.1867). -The treatment that resu]ts is that the_1ntenstty of. scattered
neutrons is related to the cross section by a convo1ut1on with the reso]ution
-functjon, R(QO+AQ W +om) of the spectrometer which depends on all the
prev1ously ment1oned parameters Thus the re]evant quant1ty t0 compare
with experiment is not the theoretical cross section, but

-

1(Qgswg) = h(gowg,m0+m)S(QO+AQ,mO+'Aw)aAgaou' . _ T

_ £ _ s -2
Table Bl contains the values of the experimenta1 parameters enéering in
the resolution-ca1cu1at10n for each of the experiments.

Consideyationmusta]so be addresseo to the Bragg_condition being
satisfied fon all neutrons of waveTength nh.with n>1, as well as the
possﬁbi1ity of contributions to the measured spectrum where the scatter1ng
event in either_the monochromator or analyser is not an elastic Bragg event.
These are both -common problems in practice.

-

The first of these, as pictured in figure B3, varies in importance

~
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& " TABLE Al

EXPERIMENTAL PARAMETERS NHICH DETERMTN_"THE
RESOLUTION FUNCTION -

) . ) . . . I . B \\___H\.
Crysté1_, E ) - Sfattering plane - d-spacing Mosaic épfead
Monachromator Cu 220 . o l.27er ' .33°

_Analyser | " Graphite 002 3.35 820
CsMnBry =~ : - - o v 20
- o . ) _ .

._CsMnO_ngeo_]1Br3 | - _ - - ~ .5
Collimation
Hordzontal - Vertical
inipile g = 5.7° ' By = 5.74°
~ mono-specimen oy = .7° 81'= 1.729
spécfmen-ana]. ey = .7° 82 = 1.72°
‘anal.-detector 1) ay = 4.76 By = 28.650
. ) ] o
2) ag = 2.36 , By = 28.65

1) A1l experiments except those on CsMn0 gg" €9.118 '

2) Csf-ln0 89 eq. ]]Br3 exper1ments.
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according to where the first order (n=1) neutron wavelength is, relative to—
the distribution in.wavelengths of neutrons impinging on the-crystal. The
conditions %3-% etc. cofrespond to 4, 9E, etc., thus if the number of

neutrons with energy larger than the first order neutrons ‘is 2 monotoni-

cally decreasing function of energy, then there will be many more first
order‘neutrons"comp;red with higher order neutrons. If this is nqt'the _
case, then it bécomes a mpfe serious problem. . | |

Some materials will transmit‘mosk neufrons incident on them within
some relatively ﬁarrow énefﬁ&‘rdﬁﬁe and be quite opaque for most other
' energies. Pyrolitic graphite is one such material with a neutron "window"
at about 14.5 meV. When a beam of neutrons of co&stant energy is desired,
J(as.our experiments with constant scattered neutron‘energy) guch a mé- <
- terial can be placed in the beam tp e1imin$te contrihutidns to the measured
'intgnsity due to A/n with n>1 wavelength:neutronsr

The second of these considerations,.pictured in,figure B4, will
‘enter whenever one is intergsted in the diffusé (ie. non-e{;stic) response
- of the sample. The origin of fhis problem7is thaf*any processes invoiving
two elastic eQents plus 6ne diffuse event-in tﬁe three cfystq1s“(monochroma-
for, analyser énd samplie} w111:contribute foqghly fhe same intensity.
Analysis always- assumes the elastic events do not occur ia the sample.
However should condifioﬁs for a Bragg scatter in the sample either pre- *
ceeded by a diffuse 'scatter in the monochromator or followed by a diffuse
scatter in the‘analysis which then allows this process to be counted |
occur,then the analysis may bécdme confused. The most .likely cause of a

diffuse scattering is an incoherent nuclear elastic event. This process:

has little g or directional dependence, does not change the energy of the

»



Figure B3:

3

-

© BRAGG .REFLECTION CONDITION .
7 nN = 2d sinB . -

The Bragg reflection cohdition for neutrons scatteréd off
atomic planes with spacing d between them is shown. Con-
structive interference occurs when the phase difference

between the waves, 2dsing, equals some integer times the .

wavelength. It is clear that A/n neutrons will also be

reflected by higher order (ie. n> 1) processes.

s



“1nc1dent neutron and can be relat1ve1y 1ntense. Events of this type can

be identified by a d1agram as Figure B4, and 1t depends on 3 co1nc1dence_

" of parameters in the scattering geometry Thus by chang1ng the constant s

—

scattered energy. value th1s type of .event should disappear.
-Considerations of the type ment1oned above are not proh1b1t1ve to

any exper1ment but they must be kept in m1nd when ana]ys1ng data.
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F;gure Bd:

Two scattering events which yield spurious scattering

~ SPURION SCATTERING EVENTS

4

are shown.
in one case an attempt to observe scattering at §1= EO]- E]a
ering at the mono-

chromater which yields a2 spurion at Q3 =k - k]z; The second
- - - 0z 1
= K

case shows an attempt to observe scattering at 92' K™ -k
which is complicated by incohereht elastic scattering at the

analyser which also yields a spurion at Q3.

is complicated by incoherent elastic scatt



'(_:HAPTER 3
PARAMAGNETIC SPIN WAVES IN CsMnBry - \

-

3.1 Introduction

The Tow temperature.phase qf'most magnetic materials is one which the
madnetic moments in the system align together such that there is a.net'mag-
netization or sub1att1ce magnetization present in the absence of an applied .
field. The excwtat1ons from this magnet1cally ordered ground state are .

usually called spin waves or magnons. These spin waves physically corres-

' pond to the coherent superposition of a single spin deviation from the or-

der parameter vector {magnetization) over the entire crystal.' As has al-
ready beep mentioned, the oathologfcal nature of-the excitations aﬁd
fluctuations in a truly one-dimensional system is sufficient to prevent
the appearance of long- range order, and thus an order parameter, at any oo
temperature above abso]ute zero. For this reason,‘the discovery of well
defined normalrmddes across most of the magnetic Brillouin bone in
(CH3)4NMnC1 (TMMC) (Hutchingset al. 19725’and CsNiF3.( Steiner and Dorﬁer,
1973). was 1n1t1a11y somewhat of a surprise. o
Th1s section descrnbes a neutron scattering study of the inelastic
spectrum of CsMnBr3 at low temperatures within the paramagnetic phase.

The data are used to extract 1nformat10n as to the anisotropy of thex spin

. 1nteract1ons and to compare with recent theory wh1ch descr1bes spin waves

in the absence of-long-range order. .. ‘ p -t ' - e

34 o



3.2 The Neutron Scatter1h§'EXperiment

.- -

\ ‘ : R . . Y .

Neutron measurements were made with. the.. crystaT mounted 1n a c105ed-
L

',cycle d1sp1ex type refrigerator wnth the (hhi) p1ane in the scattering.

plane. Datawere taken in the constant Q mode, pr1mar11y along Q (0 0 2) .

with t'running from 1.0 to 1 5. The scattered neutron energy was held
- constant at 14. 65 meV and a pyro11t1c graphite filter was p]aced in the

'stattered beam to remove higher order contamination. The samp]e could be

-

. maintained-at any temperature atfBe a minimum of TSK

At the 10west temperatures there were peaks in the neutron scatter-
ing which were essentially limited in their energy widths over most of
the magnet1c zone onTy by the resolution of the spectrometer. At small

wave-vectors (qc < 0.1) the peaks took on cons1derab]e width: and at the

* zone centre on]y d shoulder to the scattering is present The energy

attr1buted to the centre of these peaks is plotted aga1nst their reduced

. wave vector in figure C17

3.3 Results and Low Temperature Analysis

Conventional spin wave theory is applicable for a fully ordered
chain and this has been applied to the case of "a one-dimensional system

with nearest-neighbour antwferromagnet1c exchange interactions and long-

. range dipolar 3nteract10ns by De1tz,et al. (1974). In one d1men510n the

dipole sums converge rapidly and the predictions of this theory are
plotted for CsMnBr3 in figure C1. The theory produces two branches of ex-
citation which are nearly degenerate except near the magnetic zone centre
The two branches correspond to fTuctuatﬂons within and perpend1cu1ar to

the easy plane, which, as was prev10us1y mentwoned, is formed as a result
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Figure C1:

ol 02 03 04 05

The measured spin wave dispersion of CsMnBr3 at T = 15K
is shown. The solid lines are the predictions of linear "
spin wave theory-as derived by Walker et al {1972) for 2
classical one-dimensional magnetic system with Heisenberg
exchange and dipolar interactions. The zero temperature
theory is exact and ‘predicts two branches of excitation

corresponding to fluctuations within and perpendicular to

- the dipole-induced easy plane.

.



of th1s type of Iong-range 1nteract1on A rotat1on of all the.sp1ns together
w1th1n the easy p]ane costs zéro energy, wh1le a rotatuon out of the easy

: plane must sthI _overcome. the an1sotropy energy assoc1ated with the di-
-po]ar forces Thus the in- p]ane quctuat1on branch goes to zero energy _

at zero wave vector wthe the out-of- p]ane branch goes. to some f1n1te ener-
gy at the zone centre ; " - - ' '

Compar1son between th1s zZero- temperature theory and our exper1ment

'showsthat the an1sotropy energy gap at q =0 .is sI]ghtIy.Iarger than pre-

d1cted by the d1pole sums anne ,The ca]cpIation predi;tf a zone centref
— energy of ].2 meV wh1Ie we measure an energy‘of 1.7:.2'meV. It Is in-
teresting to make this same analysts for TMMC. In th1s case the: Mn-Mn
distance along the chawn is aInost exactIy the same as in CsMnBr3 thus the
::strength of dmpolar 1nteract1ons shou]d be almost the same. However for
TMMC, the experiment (Heilmann et aI » 1979) shows the zone centre mode
at 0.8:0.1 meV while 'the theory caIcuIateS‘a gap of 1.0 mev

As Mn +2 orresponds to an S-state Hund's ruIe conf1gurat1on addition-
21 anisotropic interactions of the form‘D I (Si) -are expected to be very

i

small. Terms of this type have been considered for both CsMnBr and TMMC

3
by Edgar et’al. (1980) and Kalt et al. (1983) respectwve]y In both cases
they ca]cu]ate pos1t1ve values for D,.although larger for CsMnBr3 than

for TMMC. This pos1t1ve vaIue for D tends to re1nforce the dipolar easy
‘plane and thus raise the energy of the zone centre gap to 1.5 meV in the
CanBr3 case and I.Ilmev for TMMC. This brings the expected gap energy

for CsMnBr3 within uncertainty of ‘experiment but Ieads to an even greater

discrepancy between theory and experiment for TMMC; It should be pointed

-

v

Ce
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\ .
out however, that this ]ast term in “the Ham11ton1an is hard to ca]cu1ate
/ ~
with confidence as it is so small for the “Mn*2 configuration. 7

The two modes are degenerate at the zone boundary w1th energy 4JS
where J is the nearest neﬂghbour exchange constant Zero teoperature ’
Aana]ys1s oy He11mann_et al: (1981) showed that-the gap energy at the zone '
centre for sucﬁ_a system'i%fgivén approximately oy ;‘

. D -7
e o

- T
LR

- for anisotropy of eroitreny strength D in a Hamiltonian of the form

H=-20 15350

2.2

-0t 5151-1- .
i

.Thus our exﬁeriment yields the parameters ¢ and D in the Hamiltonian

J
b

—0.88:,0] meV

0.033:.009 meV . o ~-
This D value is ao\effective ptanar anisotropy parameter thch is set -
by the_gxperﬁmentai spin wgve energy at the zone centre.

T:o.constant Q scans at Q= (0.6,0.691-.0) and Q-= (0.1,0.1,1.0)
are shown in figure C2. These are at the same one-dimensional wave vector
(Qz= 1.0} but Fhey~sampie different weights of the in-olane and out-of-
plane fluctuations. It is c1eer that the scan at Q = (0.1,0.1,1.0)
shows only & shoulder while that at Q. (O 6,0.6,1.0) shows™a sharper
structure at roughly 1.7 me¥. In add1t1on there is more magnetic 1ntens:ty

present in the Qx = 0.6 scan than in the Qx = 0.1 scan despite the de-

pression of the intensity by the magnetic form factor of the Qx = 0.6

K



Ce 39

- 300t

200

100

1 b 1

Counts

300

l o
200 - M
OO i .
O L .
. Energy (meV)
Figure C2: Constant Q scans at the mggnetic zone centre (Qz = 1.0}

at T = 21K_are shown. The upper pamel at Q = (0.6,0.6,1.0)
shows more of 2 peaked structure than the Q = (0.1,0.1,1.0)
scan and this we take as evidence of the out-of-easy plane
polarization of this damped mode at ~ 1.7 meV. '
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"scan Ve take this as evidence that the shoulder and peak at the megnetie

-
-

zone centre corresponds to a damped spin wave'model.which is preferentially

out-of-plane, or zz, in polarization. . _ e

\

:Yle do not observe the second predicted branch wh1ch goes to zero
energy at zero wave vector and corresponds to f]uctuat1ons u1th1n the easy
plane. Magnetwc scatterwng is observed be]ow the gap mode at 1.7=.2 meV“
at the zone centre but no peak‘or shou]der js found. This is not in dms-‘
agreement w1th the jdeas of theory, as this predicted mode is for T=0
while our experiment is performed at T = 15K. | _

The spectrum‘of the two types of tluctuations are\expected to‘disp]au
qua]ttatuve1y different temperature dependence near the zone centre for |
two reasons. F1nst1y the in-plane corre]at1ons have a much larger charac-
teristic length than do the out-of-plane corre]at1ons at Tow temperature,
but this length is much more tegperature dep!ndent than for the out-of-p1ane
oase‘ This will be discussed in more detail in a subsequent section. More
1mportant]y however, their dispersion relat1onsnear the zone centre are
very different with the out-of-plane f]uctuat1ons energy coming in flat
at the zone centre wh1le the in-plane flyctuations go to zero energy
11near1y w1th Q.- .

'The terms maonetic zone and zone centre have been (and will continue
to be) used freely in the discussion. At finite temperature though the
.ideal system is paramagnetic and thus what we refer'to as the zone centre
js actually the maximum of x{(q) whioh occurs in sheets across {hhg} with

2 odd. The correlations, while not of infinite range, are sufficiently

long so that the concept of a magnetic zone remains valid. However we
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must th1nk of the zone as only being def1ned to w1th1n 1/& where £ is

.the correlatwon Tength He have a]ready seen that F1sher s exact solytion

for £ of the c13551ca1 He1senberg modei inone dimension produces a Env /T

at small temperatures Thus it -is 1nf1n1te in the limit of Zero tempera-

ture {Tong range ordery and hence the magnetic zone'is exactly def1ned
At 1nf1n1te temperature the correlat1on Tength is zero and the magnet1c
zone is not defined at a1I - |
At Tow temperatures it is convenient to think of the sp1n wave res-
ponse com1ng from a superposition of mismatched magnetic zones where; the

degree of mismatch is 1/§. This is shown for each spectrum of f]uctuatmons

in ‘figure C3. As the temperature is raised the m1smatch 1ncreases and

the intrinsic w1dth of the neutron response as measured in a-constant Q
experiment would increase. However in the case of the out-of-plane spectrum
at small mismatch, sPpin waves of the same energy are mixed together due
to the flatness of the dispersion at the tone centre. Hence a sharper

(relatiue to the inijane‘spectrum),response is expected and it should give

2 better measure of the lifetime of the spin wave-due to the thermal popu-

lation of other excitations.

Now let us examine the spin waves in the middle of the zone. If

‘'we choose spin waves of wave vectors where the two branches are almost de-
. 2 : ‘

generate (qC > 0.15) and'exemine the fluctuations witpin tpe easy piane
(9|lc) the dipolar anisotropy effects on the spin dynamics should be small.
A detailed comparison betueen the theory of spin dynamics in 2 Heisenberg
chain system and our neutron measurements would then be relevant. It is

clear that this theory must be qualitatively different than conventional
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MAGNETIC ZONE' MIXING ARGUMENT FOR SPIN WAVE

_ ENERGY WIDTHS o

’
]
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Figure C3:
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" The diagram displays the argument by which the out-of-easy-

plane fluctuations should appear sharper in energy than the
in-plane fluctuations near the magnetic zone centre. Also
as £~ 1/T at low temperature it is easily seen how all the
spin waves broaden in energy as the temperature is raised.
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11near sp1n wave theory as no order parameter vector about’ whzch the -

spins can oscillate (th1nk1ng c1ass1ca11y) now-ex1sts.

3.4 Resu]ts and the Genera112ed Langev1n Equat1on Approach to Spin
Dznam1cs . -

The theoretica] approach which we will apply to the probiem of spin
-dynam1cs in the absence of an order parameter will be the generalized
Langev1n equation approach due originaily to Mor1 (1965 a,b). It was
applied first to magnet1sm by Lovesey and Merserve (1973) and to the one-
dimensional Heisenberg chain by Lovesey‘(1974){ It is sufficiently
general though that it can be applied to many diverse problems-such as
- density fluctuations in liquids (Lovesey 1973).

It is'convenient to wr1te the dynamic structure factor SGQ(Q w),
in terms of a function which has n1ce~ana1yt1c propertjes. Fua(g,w)

(Marshall and Lowde, 1968).. The two are related by

$(Q) = x(Q) —= F Q) - (3.1)
- T [1-exp(-w/kT)]

7 '
A phenomenological equation of motion is written for-one component

{which is arbitrary for a Heisenberg system) of the d}namic spin pair
correlation function which is Fourier transformed in space

aS&d(Q,t) e
—r— - | dEK(Q, ISP, E) + f

0

,t)

1.0

L

This Langevin equation of ‘motion is similar to what one might expect for
a particle experiencing Brownian motion. That is that the variable under

question, Saa(g,t), is being randomly jostled about by some random force,
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) f(Q t), whw]e 1t has some short t1me memory of corre1at1ons in 1ts env1ron-

. ment wh1ch are bu11t 1nto thee:heory by the as yet unspecified nemory

function K(Q, t 1) ' o

In terms of the re]axat10n funct1on {the frequency Four1er transform

k4 -

of F(g,w)),.F(g,t)‘one can wr1te;

- t ) . . . . .
2 e | d@EDRD T B2y

.0-'

-

which has the considerable advantage'that it nd longer involves the random
force f(g,t). ’
The Laplace transform of equation (3.2)-1s partieuiar1y simple (drop-

ping references to the arp{trary components)-

F{Q,t= 0) )
Q.s) = - ;
T sK(Q, ) K(Q.s) 7

t
—

"The memory function, K(Q,t),'sat1sf1es a similar equat1on of mot1on -
" in terms of a higher order memory functaon which also sat1sf1es this type \
of equat1on in terms of st111 hwgher order memory funct1ons The result

_i{s that a continued fraction expression for F(Q,s) can be wr1tten

F(Q.s) = :
v s k1 (q,t=0)
s + ————41——C?r-
KM/ (Q,t=0)
s + . S —

If all the K(n)(g,t=0) functions can be constructed then F(g,s) is

known ahd the scattering can be understood completely by using the relation



,‘nF(g,m)_v:‘Re'{i?(g,i@i

) C]earTy th1s ana1ys1s is- 11m1ted by two factors ?%rst how many -

' K(n)(Q 1-0) funct1ons are known, and sec0nd how can- th1s continued fract-
10n express1on-be truncated -They are. somewhat 1nterdependent as the

' _number of K(n)(Q t ) known will- determ1ne where the truncation must be

" made. T : '1" o .-

The short ‘time expansuon of F(Q t} can be wrutten as

o 2, 4 4. - -
F(Q,t) = 1 - ; ;? + L Z? > e

where <™ is the nth frequency moment of F(g,w)-defﬁned'by

\ }
- <wn,> = rmnF(Q',m)dm . ' o

6 _ —c0

Theﬁ tﬁe function F(n)(g,t=0) .can be expressed, in terms of <u?>. In turn
'_the'nth frequehCy moment is_expréssib]e in terms of products of up to the
n spin static_ correiation fuﬁctione (MarshalT and Lowde, 1968)‘ Ultimate-
1y the dnff:cu1ty in ca1cu1at1ng these static correlat1on functwons is
'what limits the process.

| For the classical Heisenberg chafn the first three {non-zero) static
correlation functions are known exactly at ail temperatures. This forces

the truncation to be at either the third or fourth Tevel (or pole).

The relevant relations are:



.
- - - tor -

. K(]‘)(Q -t-o) =' <.L;)2> ‘ :-' . < -7 . L ‘ . - . w = .
K(Z)(Q t_o) = <w4'>./<w2>. _ <tt)2> -
: - T =~ . ) N o o . '.‘-‘
6 - 2 ' 2 2 -_ -- ) ‘ .-:

>/<w > -"<m4> "/-<w >}

{<w!

]K(:”) (g;t=o')

2, and. <> @ are given in Lovesey (1974) and for .

,Exact express1ons for <w
<w6> in. Tom1ta and Mash1yama (1972 and 1974) Approx1mate Tow tenperature ex-.
pressions are given for the moments through to <w10>(;y H. de Raedt (1979) A

To avo1d ‘possible confus1on we shoqu point out that in th1s theoret1ca1 '}

" work the zero temperature zone boundary frequency of the spwn waves is

. def1ned as wzg = &' w1th ' = /§I§¥TT . Thus the exchange constant is <

not 0.88 meV but " rather 0 74 meV. Of course this is. a matter of definition -

- -

only. - SR . g -

| The other consideration is how the truncation of the continued fract-

~ jon must be made Lovesey (1974) proposes to replace K(3)(s) by K (3) (0)

in the three po]e truncat1on of the theory which then gives' a closed form

‘ express1on for F(Q s) if-a closed form for K(3)(0) is known. This approxw--.

mation is Just1f1ed 1f K(3)(s) is. a slowly vary1ng function of .s or if

K(s)(t) decays rapidly enough compared to the time scale of the spin dy-

namics. * .
The only exact information we know about the memory function is that

it is a nonotonmca11y decreas1ng‘functioh of time_and that it eventually

goes to zero. That’1sle_t)|§ K{0) and K(=) = 0. Consisteht with this,

~Lovesey proposed a Gaussian form for K(t), which is



P = K(Z)(Q 10} v -

-

g

. K1) = (‘)(o t= O)exp{-'
S K

_Th1s forces the truncat1on at the thﬂrd 1eve1 or- po1e to use -

(3’cs) -~K(3)(0) ( K(Z)(q t=0)®

-L.

The resulting expressxon for F(Q,w) is

T K“)(QtO)K(z)(Q t=0) . e
'.TTF(Q,(;)) = #(

fo(e? (])(Q t=0)- K(Z)(Q £=0))12:k®(0) -k (g, t=011°

<

s

and within these approximatjbns the ;cattefing is ;ompleteix determined.
" De Raedt and De Raedt (1977) ahd_H. De Raedt (1979) propose a some-

what different truncation function and work to a higher level or pole ex-

~.pansion in the tontinued fraction. If we wish to work only with the

exactly known static correlation functions then we need only their trunca-
- . [4 .

~ tion functions or termination schemes‘ét the third and fourth levels. This

. particular work is done in terms of the 1mag1nary part of the genera11zed

susdépt1b111ty, which was previously def1ned and ;he truncat1on funct1ons

-

used are A . - -
- ; 0.5
s K(3)(S) = (<m4>/<w2>)
2 0.5
6 2 4 2
K(4)(S) - {<w >/<m > -22<m >+<m > }
: [sw >/<m > <w >]
@ -

The contention is made by De Raedt that qﬁ odd pole termination should
produce a non-physical central mode in $%*(Q,w). Thus an even pole termina-

tion should be mpée desirable in describing the experiments. We will now



. s
compd}e’tgg_neufron_groups with the predfetions'bf_the three forms of 'the .

) theory which‘we have just sketched. "These are the three pole coniinued
fraction express1ons due to Lovesey as well as the three 'and foir pole
expressions due to the De Raedts:, ; | | .

Qur experimenta]'xe§ults for spin waves éf Q = (0,0,1.15), Q = {0,0,1.2)

and Q = (0,0,1.3) are Shown aeza function of temperature in figures E4,.
'CS ehd 6. These wavevecters correspond to 30%, 40% and 60% of the way |
from magheeic 2ehe centre to zone'bou;aéryrresbectively. As g[lc.where c
is the chain exi;;”a11 these measurements sample f]uctuatioﬁs within the
easy plane. In addition all three are at suffieientTylTarge'wavevector
that the energy d%fference between in and out ef easy plane spin waves is
very small. Finél]yiit should be noted that as the temperatures of the .
measuremenfs are just Iower and larger than the_eharacteristif temberature
that defines the strength of ehe easy plane, T = ZOK'E’ﬁm(q=O}, we_exbect'
then fHEE“EHE‘EEEEE?%son to the theory of‘thegdynamics of the Heisenberg
chain is relevant. We will return to this gt;int later. -

The lineshapes of the neut}on groups are seen to be gquite sharp at
eur lowest temperature of ISKy with energy widths close to those deter-
mined solely by the spectrometer's resolution (~ 1 meV). The groups ald
broaden out ma%kedTy with increaeing temperature and the peak of the dis-

Xtributions for the QZ = 1.2 and 1.3 move to lower energy. The dz f_,l"IS
- groups show very ﬁitfle temperaiure renormalization ef their peak Ehérgies

*at all Neutron groups for spin waves at’ Q= (0,0,?.1), 20% of the way ‘o

\Eg/the zone boundary, are shown in f1gure C7. Here this trend continues
as the peak in the spin wave speptrqm moves up in energy slightly from

3.0:.2 meV. at 15K to 3.2:.2 meV at-35K. This change in energy is just
P——
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Constant § scans at Q = (0,0,1.15) as a functi®n of temperature

are compared with thé predictions of Lovesey's three poie
model and the De Raedts' four pole model of the dynamics of
the classical- Heisenberg spin chain.
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w1th1n our exper1menta1 sen51t1v1ty Neutron groups at Q = (0 0 1. 1) are -

e

too c1ose to the an1sotropy Jnf1uenced zone center response though to be

"used for compar1son to the theory of dynam1cs of the He1senberg cha1n

Upwards renormaTnzat1on of the sp1n wave. energy with’ temperature for -

-

- Tow energy (zone centre) sp1n waves is consastent w1th this’ theory Th1s
-, s due 1n part to the. form of the dynamuc structure factor equatuon (3 ])

. The theory so]ves for Faa Q w), which, for a given O is- some peaked funct1on ‘

of w. However 1f the peak’ in w.is suff1c1ent1y broad then'me prefactor W,

‘connect1ng F(Q w) and S(Q w) w11] d1stort the. peak causing an increase ‘in

1ntens1ty on the h1gh w s1de of the peak. Hence i F(Q w) does not pro-
duce a peak wh1ch fa]Ts to Tower w qu1ck]y enough the observed. S(Q W)

will d1sp1ay a peak movnng to h1gher energy w1th 1ncreas1ng temperature.

h

" This behav1our has been observed for low 9 spin waves in TMMC (Hutch1ngs

et al., 1972).

The resu1t1no theoret1ca1 curves for SCQ,w) are pTotted on top of the
data in . figures C4, C5 and C6. For the Q = {(0,0,1.2) and Q = (0 O 1.3}

neutron qroups <the theories with third po]e term1nat1on of the contwnued-

-
~

fraction due to Lovesey as well as the third and fourth po]e term1nataons

of the De Raedts are shown. For the Q= (0,0,].15) group only the three pole,

-

Lovesey, termination and the four poles De Raedt, terminations are shown.

In all cases the lineshape produced by the. theory is conu01uted with the

're$o1ution function of the spectrometer according to the method of Cooper

and Nathans (1967).

As the zone boundary ;pin waue frequency determines,J,.the only
disposab1e'parameter in the éomparison is the intensity of the theoretical
curve at one point and temperature. This is done by forcing all versions.

\ _ .- .
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Figure C5: Inelastic scattering at ¢ = (0,0,1.2) with temperatures
- of 15, 25, 35, 45 and 70K are compared with the predictions
of the Lovesey three pole mode‘l and the De Raedt three
and four pole models.
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Figure C6: Inelastic scattering at Q = (0,0,1. 3) with temperatures

of 15, 25, 35 and 45K are compared with the predictions of
the Lovesey three pole and the De Raedt three and four
pole models.
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~of" the theory to produce the correct 1ntens1ty of the peak in S(Q,m) at’
15K and Q = - {0,0,1. 2).

The ana1y51s suggested by the De Raedts (De\Baedt and De Raedt (1977)
and De Raedt (19?9)prroduces integrated 1ntens1t1es for the neutron aroups |
wh1ch do not vary’ with wavevector accord1ng to the exactly known X(Q)

' (F1sher {1964)). At 1ow temperatures in fact the integrated intensities
are found to be independent of wavevector. This is clearly due to an’ )
.omission pf the f{Q} factor in their ana]}sis, which does not affect the
peak pos1t1ons, lineshape or 1ntr1ns1c wavevector dependence on the 1nten-
sities produced by their formalism. We havé avoided this d1ff1cu]ty by
fitting this intensity at T = 15, = (0,0,1.2} and scaling the intensities

of the other wavevectors by the-exact form of x(Q) for the classical’

-

Heisenberg antiferromegnetic chain.

Clearly there are dfscrepanc{es petween the theory and the measured
neutron Tineshapes. However the theory does do several_things well. It -
puts the Tow temperature peaks.at roughiy the correct energy. It produces-
'-roughly the right'kind of low temperature width in energy (although this

is largely determined by the resolution of the ;pshtrometegj. Finally it
produces a peak which becomes overdamped end disappears on the correct
temperature scale.

The peaks however do not renormalize necessar1]y in the correct
direct10p (up or down in energy) with increasing temperature. Somewhat
-surprisingly the'higher order term{nation, the four pole termination, does
not produce ; better representation of the data than the three pole

-~

version of the theory.
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Figure C7:
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Inelastic scattering at'Q = {0,0,1.1) is shown as a function °

of temperature. The slight upwards renormalization of the
spin wave energy with temperature is predicted by the

generalized Langevin equation theory for low energy spin
waves.
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We Eonc]pde by Statin§ thai.the'Qualitatiye.ﬁéhaviour of the system
is reasonably we]} reproduced by-thé thgpry,_a]fhbﬁgh discrepan;iés in the’
quanﬁitaﬁ?@é comp§fison exist. :The level éf termination is found not to
have much of'an\effect, at least within the 1evé1 terminations examined’
here. The barticula} termination. scheme used is thoughﬁ to be at least" ]
| aé importsﬁt: It should be kept. in mi;d that the theory has no disposablie
‘harameters save for the intensity at one point in (g;ﬂu,T) parameter space.

We now turn to the question of the use of this theory in describing
the inelastic spectrum of TMMC. It was generai1y thought previously.that
the generalized Langevin equation.abproach was not successful in describ-

ing the response of a rea]lone-dimensional Heisenberg system. This was

on the basis of‘comparison of the theory to results of measuring the neutron

group 1inewidfh\offTMMC as a furiction of temperature (Hutchings and Windsor
(1977)) as well as the measurement of the‘“;ritica1 wavevector” in THMC
as a function of temperature (éhirane and Birgeneau (1977)). The critical
wavevector is the wavevector at thch the . spin wave response becomes over-
damped._that isiioses its péaked structure. The theory does not predict
gither of the experimgntal findinés cofrect]y and thus it comes as some-
what of a surprise as to how well it does in describing our data. We be-
Jieye the answer is that, although these other expériments are‘definitivé
experimgnts on TMMC, théy are not relevant for comparison with theor} for
the dynamics of a Heisenberg system. This is because they are at tem-
peratures sufficiently low (mostly T.< 10K} and at inappropriate wave-
vectdrg to sample Heisenberg-like fluctuations. The ﬁorklby Hutchings and

Windsor (1978) is at large reduced wavevectors but ai']ow‘temperature§
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. and Qavevectors far off the chain a;is; fﬁué:picking up a substantial
contribution'of out-bf-easy ﬁlane.f1uctgatidns'in thei%Aintensity. The
critica]‘wavevectqr work is at Tow teﬁpératures and very small reduced
yavefectors where the effects d;e to anisotropy are gréatest.

_This is not_fo say thaf the theory desqribes the measured response
of CsMnBr3 completely. There are rea1 discrepangies, but\the qualiitative
comparison'is quite,reasonéﬁ1e and it is perhaps unrealistic to expect

more considering how little information is built into fhe theory.



CHAPTER 4
"SOLITONS IN CsMn'Br3

4.1 “Introduction _

. The description of the paramagnet1c sp1n waves in CsMnBr3 in the
precedihg chapter represents the description of a spat1a11y deloca11zed
normal mode bf the Co-operative system. This js to say that the spin
wave excitation is cbmposed of. the correlated motion of many of the con-
stituent spins in the system at the same t1me The only 11m1t ‘to how
many spins are involved in this motion at. any one time is the correlation
length along the chain. In a system with long range magnetic order, the
spin waves represent égkaetely delocalized normal modes of the system.
~The c]assicaT description of such a spingwave ijs that of a single spin
deviation (fr0@\order).coherently diétributed”ovgr the Entire crystal.

One may then ask the question: Is jt possible to have an exci-
tation of the entire system (involving all the const1tuent spins' motion)
that is spatially localized at any one time? These are ‘known to ochr in
a spatially inhomogeneous co-oﬁerative system such as 2 system with de-
fects, but until recently, not in a homogeneous (or pure} system. The
answer appears to be yes, but jt requires the condition that a kink or
twist must be put intd the local order parameter. The absence 'of long

range order does not preclude the existence of a local. order parameter if

short range correlations are sufficiently.high within a given local area.

57
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The physical p1cture 1s a mov1ng doma1n wall connect1ng Tower -
energy stable (or ground) states. The excitation (the doma1n wa11) moves
along the cha1n thereby 1nv01v1ng al] the sp1ns in the mot1on However
“at &ny one t1me on]y some small. numbers of spins is 1nvo]ved in the
motion of this excitation. -

As opposed to- the spin wave, the moving domain wall is made up
of many spin dev1at1ons distributed over a few spins at any one time.
Thus, whereas the spin wave is a small amplitude or linear excitation,
the,mo#ing domain wall is a non-linear excitation. In'general this is
not very good for the prognosis of understendjng this excitation, because
even:if an equation of motion can be formulated it usually cannot be .
solved due to its non-linear nature Howevem there ex1sts a c]ass of

.

- non-linear d1fferent1al equat1ons of the form

32¢ 1 3 2 a3V
mv-_

2t o2 %

‘0)
N |

that have exact so]ution; for many choices of V(¢). These are equations

of motion for soliton bearing systems. A eonstraint'must be placed on the
" form of thelpntentia] term V(o). This is that V(¢) must have mdre than

one minimum. Clearly not all eauaticns satisfying this constraint have been
investigated. The one that will be relevant in the remaining discuseion

is reterred to as the Sine-Gordon equation. In this case V(¢) has an

infinite sequence of degenerate ground states. The Sine-Gordon equation

of mot10n isg .
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The'physics of this equation of.yotion is(best conSTdered w1th
reference to.figure'bl-' The system is descr1bed by asstgn1ng a value to
' ¢ for every pownt (continuously) along. the chain, z. The behaviour of
- ¢ is governed by how it moves on its energy surface V(¢) For the dta- ‘
gram V(¢) = -C0S¢, and the ground state of the system is represented by
having ¢ take on values for’ every po1nt along the chain such that 1t 11es
in the valley of the corrugated energy surface V(o)

If we wish to credte a local excitation which departs from the
ground state at a part1cu1ar po1nt and returns to a- grouhd state at some
other point, then there are two ways we can do th1s . These are referred
to as the dlss1pat1ve'wave and- the soliton. 1In the case of the dissipa-
tive wave, ¢ takes on va]ues at some point Zy» such that it no longer
11es in"the valley of the energy surface but climbs up the side of this
surface. There it executes arbitrary ‘motien without Crossing over the
_energy hump to the next va]]ey of V(¢), and at some point, 25, it returns
to the same valley and holds this value for all other po1nts on the- chain.
In the case of the so]1ton ¢ takes on values such that it leaves the
va]]ey of V(¢) at some point Zy. It then takes on values such that it
climbs up the side of the energy surface, crosses over the energy hump,
and returns at_some po1nt 25, to values such that it lies in the adjacent
valley of V(¢) to the one in which it started.

Itis well known that any Ioca11zed distirbance can be made up
of an infinite sum.of its Fourier components. If left to develop in time,

each of these components will evolve at a3 characteristic velocity. This

]
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" then giﬁes'rise'toudissipatéoh or ”spréaq{ng out" of a disturbance as the

-fastIFouriér components evolve more quickly than the slower ones. Ehis

tan:be pictured for figure D1 by imagining each configuration of the’

§§stem to be represented by a rope lying on a'éorrugatéd‘surface. The

time evolution of such .2 system can be imagined by thinking of grabbing
" - .

,e1ther end of the rope and pu111ng In the case of the dissipative wave

_the result would be that one\\bu¥a take up the s]ack of the rope and the

configuration would end “up 1ooking much 1ike the ground state. The local-

ized excitation would‘have dissipated.

The same proceés coufd be imagined for the soliton. However, the
~ boundary cond%tioﬁs of one end lying in one valley and the other in an
adjacent valley of the surface, preclude the localized excitation from
dissipating regardiess how hard the rope is pulle&f"This iﬁ'because at
some point the rope must c}oss from one valley to another.

Physical descriptions of the physics of solitons, with particular
emphasis to particle phys1cs are given in Rebb1 (1979). _ An excellent
review of solitons~in"condensed matter phys1cs is given in B1shop et al.
(1980). Specific discussions of solitons ip condensed matter physics are
contained in Bernasconi and S;hneider (gditors, 1981) and Lavesey et al.

(editors, 1984). ° - ’

4.2 Solitons in Condensed Matter

The soljton was put forward as an excitation of the strongly
fluctuating condensed sjé!Em first by Krumhansl andﬂgchrieffer (19753.
The relevant ideas had .previously been introduced in several other areas

of physics. The first concrete >suggestions for which systems may bear

LY
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solitons and the direct calcu]at1on of observab]es, was due to Mikeska (1978).

In th1s work he cons1dered the ferromagnet1c chain system with easy pTane
- anisotropy and a field app11ed wrth1n the easy p]ane e
In the intervening time between 1978 and the present, c0mprehen51ve
exper1menta1 1nvest1gat1ons have been undertaken of several candidates for
so11ton bearing systems Csd1F3, TMMC, CsCoBr3and CsCoC13 as we11 as the
polymer po]yacetyﬂene. For the magnet1c systems the most detailed informa=
tion on the spin dynamics-due-to,the presence of solitons comes from neutron
scattering results. CsNiF3 is an S=1 ferromagnetic chain system with a
'relat1ve1y strong (compared with either CsMnBr and TMMC) easy plane aniso-
\tropy at Iow temperatures. A S1ne-Gordon sol1ton 1s expected to resu]t
from the application of a magnetic field within the easy piane (M1keska,
"1978). The mot1on of the spins along the chain as a soliton passes by is
dep1cted in figure 02 The spins 11e w1th1n the easy p1ane and point a]ong
.the field direction on either_ s1de of the sbliton. The spins rotate by 27

b

within the_easy-plane as the so11ton passes. Initial neutron work (Kjems
‘:‘

‘and Ste;ner, 19?8) was comp11cated by the presence of two magnon scatter1ng
fReiter, 1981) However later work identified a so11ton signature wh1ch
requ1red the presence of sdme out-of-easy plane fluctuat1ons (Kakura1 et
al., 1984}). - In addition interesting soliton stability phenomena were in-
vest1gated as a funct1on of f1e1d (Kumar, 1982).

The app11catlon of a magnet:c f1e1d within the easy plane of TMMC
a1so results in a Sine-Gardon soliton. These sp1n dynamics, which are the .
ant1ferromagnet1c ana1ogue of those JUSt described for the ferronagnet ”’ .
CsN1F3, are a]so shown in fmgure DZ In this case the spins rotate within

the easy p1ane by T S0 that each sdb]att1ce of’ sp1ns exchanges orientation

»

- - . : . /\ N
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a) -XY-LIKE SOLITON

b) 27 XY-LIKE SOLITON -

1l

T o :

Figure D2:  Spin cqnfigurgtjon “taken up by soliton bearing systems. The
w_XY-11ke go11toq as been observed in TMMC. The 2t XY-like

soliton {with shggt modifications) has been seen in -CsNiF5

while Ising-like sglitons have been seen in CsCoC]3.
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before and after the soliton. The ground state conf1gurat1on of the sp1ns‘
on either side of the soliton is that .of both sub1att1ces spin-flopped
perpendicular to the field direction within the easy p]ane. Clear s;gna-
tures for the presence of solitons jn this system have been observed in
neutron scattering results (Regnaglt et al. 1982 and Boucher et al., 1985).

N CsCoBr3 and CsCoCﬁ3 represent Ising-1ike antiferromagnetic chain

systems with S=3. As such they can exhibit infinitely narrow solitons in

the absence of any app]ied field as shown in figure D2. The equations of

motion for the spin dynamics do not map onto a soliton bearing equatxon of

_motion but are rather “topo]og1ca1“ so]xtons which represent propagating

.

domain walls connecting ground states. These propagating modes were in- .

vestigated in detail theoretically by Villain (1975) and experimentally by

Nagler et a1 (19823
' -
The so]1ton of 1nterest to ourse]ves in CanBr3 and zero field is

-

dep1cted in figure 03 The mot1on of spgns com1ng out of the easy plane,

can be mapped onto a Sine- GordOn equation of mot1on (M1keska 1980). The '

_spins come out of the easy plane, reach full def1ect10n out of the plane

and then return to the easy piene such that the twd'seblattices have inter- .
changed positions within the easy plane. As, in this system, tnere 12
isotrbpy within the. easy plane, there appears at first sight to be an
analogy between these solitons and the “pulse" solitons of the purely
Heisenberg chain (Tjon and Wight, 1977): However this is not the‘casew
as the method of arriving at %his soliton solution is exactly the same as
for the CSNiFé and TMMC cases in applied fields. This is to mep the spin
dynamics of some spin component (nr retated quantity) onto a Sine-Gordon

equation of motion.
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OUT-OF-EASY PLANE SOLITON

5\

Figure‘D3: The spin configuration, taken up by an antiferromagnetic chain .
system with easy-plane anisolropy, due to the presence of an
out-of-easy-plane soliton. This mode, predicted by Mikeska

' (1980), is the subject of our investigation of CsMnBr3. The
easy plane is perpendicular to C.
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4 3 Theoret1ca1 Treatment of the An1sotr0p1c Heisenberg Ant1ferromagnet1c
" Chain:

" The ultimate ‘aim of this treatment, due to Mikeska (1980}, is to
map the eQua;ion of motion for a parameter of the system onto a Sine-
Gordon_equation. In order to do this, 3 fokimatjon; fof_treating the real
quantum mechanicaIngins'as classical vectdrs and treating tﬁe diséreté
lattice as a continuum field must be made.

The Hamiltonian is

H=-2025.-S,,, +AL -(sj?)2 . (4.1)
: i i :
The relevant ﬁarameters for CsMnBr3are 4JS = 8.75 meV and '¢ﬁ73'=
- The classical Spin field can be written in terms of four para-

meters; - 0(z,t), 8(z,t), ®(z,t),d(z,t). 'This-ig.as

~
-
.

(even (z,t) = :S{sin(ete)cos(o:¢),sin(@:e)sin(¢£¢),cos(eze)l. L (4.2)
odd ' '

Four parameteré are necessary to account for differences between the Néel
state (211 nearest neighbouf spins being aptiparalle1) andthe_rea1 Tow
temperature ground state. ’ '

The continuum approximatiﬁn is appropri%te when the spatial varia-
tion of “the spins is not large, which should apply at low temperatures.

Explicitly the continuum approximation means -that expansions making use of

{a é%) << 1 30<<1 3 ¢sin@ << 1 (4.3)

can be made, where a is the Mn-Mn separation d1stance along the chain.

Applying these expansions (4.3) to the results of subst1tut1ng (4.2)
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into (4.1) gives a ;ontinﬁum Hamiltonian of _,~

. R |
_ p,ea tqicl | dz .30 2
 H=C+ |J|S‘ S5 48 -

- "

) 2 o ' LT - . ‘
. + sinfe((3H)” + 46%) + T%T lcos2e+62(1-2c0s20)1} .

- The equations of motion for the four parameters can then bé derived from

the principal Poisson bracket for the polar representation of a spin

" vector. This is (Villain, 1974)

: z =
(S0 3 =6

Thé resulting equations of motion are thén'examined for permanent profile
solutions. These are solutions which depend not on space and time inde-
pendently, but rather on $=2z-ut where u is a characteristic velocity. E
In addition boundary conditions consistent with a%@roﬁnd state-localized

disturbance-ground state configuration are imposed. These are

sind (at infipity) =1 : ¢
5% (at infinity) = 0

»

. With this taken into account a Sine-Gordon equation of motion results for

the parameter n == - 20
2 -

) 3—% = mesinn

3

a -

0 |e
o

The space time solutions to these equations of motion are
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‘ ' 2 -0.5

cos®(z,t} = sech((] -‘EEJ -m(z-ut-zo)]
c :

| | | T (s
o{z,t) = 0 ¥ ﬁ,sign(z-z -ut)/2 '

Ignoring the smal} angles ¢ and 9, the dynam1c confmgurat1ons of the
chain so described correspond to 3 ]oca11zed dwsturbance moving with
velocity u, centred at z = 20+ut. On e1ther side of this "k1nk“ i

well ordered Néel-type ground state conf1gurat1on of spins lying w1th1n
the easy plane. “The d1sturbance is a large fluctuat1on of the s% com-
ponent of the spin field separating ground state configurations which
are m out of phase with respect to each other. The parameter m enters
~the theory as the parameter which character1zes this soliton bear1ng '
x;stemf As such it is referred to as the soliton "mass" and 1t Sssgiven
by m = JA/J. The energy of this configuration *is’4~JS2 (- —20 e
In order to make contact with experiment we need to know the

Fourier transform (FT) in both space and time of the re]evant dynamic

spin paijr coeeelation fuﬁction.
FT<s3(£)S5(0)> ~ FT{(-1)" <cos@ (t)cose,(0)>} .

At low soliton velocities, u, this calculation is ana1ogous to that for
thg/Sxx dynamic structure factor x||H} for the planar antiferromagnet in
a symmetry breaking field applied within the easy plane (M1keska ]980)

Hence we have

§22 2

“(q, ) = (88/(cq,cosh“L) )exp(-88m) - )

<ep(am?/(Zed) . (.5)
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In this expression the distance between nearest neighbour spins, (c/2),

has been set equal to unity_So that

Q, = [2-(nz-Q)] - ' \\ ) R

with 2-Q in units of 2/c and ¢ = 43S, 8 = 19152/2KT) and L = (mq/2m).

It should be noted that the theory treats the-soliton as a local- _
--..,_______’f . N
jzed excitation connecting ground states and thus ignores all interaction

effects with either spin waves or_additiona1 solitons.

4.4 The Neutron Scattering Experiment

\

" The strategy.for extracting a signature of the presence of solitons

in CsMnBr3 from a neutron scattering experiment depends on four charactér-

istics of the excitation. The motion of ;he spins as a solit sses by
'"is to undergo a large flucthatioh in their oqt—df—easy plang or S/ com-
ponents. Next, the soliton involves a large change in angular mbmentum
from the ground state; and thus the neutron canriot create or destroy a
soliton as it can (fﬁr examplei a spin wave since the neutron is a spin i
1/2 particle. Furtﬁer, this implies .the measured response will depend
on the poﬁu]ation of solitons present at a_g+ven temperature and thus the
scattering should be thermally activated. This is only true within the -
non-interacting soliton picturé. Finally, the form of the Szz(qz,w)
dynamic structure factor shows that the soliton response is pe;ke&‘about
the m&gnetic zone centre, q,=0. . | ‘ ' ”

The first two gf'these characteristics introduce some experimental
difficu]t&! As tﬁe soliton response occurs in the Szz(qz,m) structure
factor, the.out-of-easy-p]ane fluctuations must be separated ffom the
in-plane fluctuations. This can be accomplished bj making two measurements

over the same range of q, and o values but at sufficiently different Q
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vectors that each measurement samples a dlfferent comb1nat1on of in- p]ane

fluctuations, Sxx(q ,uﬂ, and out-of-plane’ f]uctuat1ons, Szz(qz,m)

subtraction a]gor1thm can then be emp?oyed to determ1ne the two dynamic

structure factors. The experimental problem is due to the‘phenomena of
se]f-absorpt1on in the sample. This 1s that in different, scatter1ng geo-
metr1es the rate>of absorbing.neutrons from the beam by the nuclei in
the sample w111=nn'pr1nc1p]e be different for a non-spherical sample.
Thergfore thelsamp]e in the two different écattering gepmetries hay be
exposed to different effective neutron'fiuxes, or alternatively, the
sample will present a differéht éffective volume to the experiment in
different geometries; This is clearly more important for samples with
high absorption cross sections, however it must {and will be) considered
when the absolute magnitudes of f;o measurements are directly compared
or subtracted;
The fact that.the neutron cannot creaté or destroy a soliton

means that the response will be centred on zero energy transfer. The ex-
perimental problem here islﬁhat'the scattering intensity due to nuclear
incoherent events also appears in an intense,'approximately gaussian
distribution of scattering éent;;d on zero energy transfer. This scat-
tering appears in all of reciprocal space as it is inéoherent, and it
must be separated from the magnetic scattering of interest.

| Our solution tg these prob1ems is shown in figures Dé and D5,

Constant energy scans for energies below the Spin wave branch with zone

- centre energy of 1.7 meV, were made across the magnetic zone centre. Two

such measurements were made as shown in figure D4. One at wavevectors

F
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Figure D4:

7

(0o0) © (110)

The scattering geometries (to scale) involved in measurements
at g] = (-0.75,-0.75,0.85) and 92 = {-0.1,-0.1,0.85). The

~thin lines emanating from Q] and Q, are typical paths the

constant energy scans would take. ¢1 and wz are the angles
between the relevant Q and the hexagonal axis that determine’
the relative strength of in-plane and out-of—p1ane cprréiations
in the scatfering.
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CONSTANT ENERGY SOLITON. SCANS RELATIVE TO'
SPIN WAVE RESPONSE FOR CsMnBry -

— 10.0 meV

>—
L)
=
=
]
1
CONSTANT
ENERGY .
SCANS hw = 05 meV I
R 3 -7 ZONE -
‘ ZONE .
\ 5 : CENTRE . BOUNDARY
i : ‘ d:=1-° : ‘ ' T =15

Figure D5: The constant energy scans are shown relative to the spin wave
response of CsMnBrg. The out-of-easy-plane spin wave res-
ponse does not extend below ~ 1.5 meV. In-plane fluctuations
are present below this branch, but the response does not show
an inelastic peak in either constant Q or constant energy-scans.

o
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( 0. 75:‘0 75,0 ) and another at Q, = {(-0.1,-0. 1,0 ) and both at
'the same set of constant energy transfers. Th1s means that both exam1ne
the spin f]uctuat1ons at small energy transfers and across the magnet1c
zone *centre (Q T 0} but each measures a different comb1nat1on of in- - \
plane and out-of—p?ane fTuctuat1ons These part1cu1ar wavevectors were

chosen for the relatively "clean" background (absence of strong spurwons

etc.) as well as that they are at suff1c1ent1y d1fferent Q wh11e still
being at values of |g| such that the magnetic form factor does not ad-
versely affect the intensity of the scattering tdo much. |

Constant energy scans were'employed S0 that.the scans could ride
on top of the incoherent‘duc]ear intensgity, which depends onjy weakly
oh g, and then nick up the magnetic scattering as we scanned across the
magnetic zone centne at Qz= 1. The alternative is to perfohm two measure-
ments, one with and one without magnetic scattering in eonstant 9 scans.
The intense nuclear incoherent scattering would then have to be subtracted
out. This was felt to be an 1nfer10r method, as the scattering to be
subtracted is both intense and has marked energy space structure to it.

These scans were performed at temperatures above 15K. Once again
the sample was mounted in a displex type closed cycle refrigerator nith the
,fh h ¢} plane lying in the scattering plane. Other experimental details
are given in table Al.

The-scattering cross section can then be written as

820

2o F 2(0) [{(1+cos2

¥) $%(q, w)+sinusT(q_u))/2
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or ~ for Mn_«2 is known (Bacon, 1962) We can then write

. f Iatto; - -0. 1) NF (o)sxxt o)

. o .74

-~ -

where v is the ang1e between the cha1n axis ‘and Q Tﬁe magnetic fofu.fact-

T ——

-

~

Int(Q, = -0.75) ~ vefsz(Q'){(1+;osza[)s**(qz,m) | (a.6) .
+ sinzw'szz(qz,m)}lz

In writing this we have approximated w(Q = -0.1) = 0 and have
allowed for the effect of self absorpt1on by 1nc1ud1ng an effective voiume
factor in the‘Qx = -0.75 1ntens1ty. As a1ready mentioned the CsMnBr3
single crystal is cy1indrica1'in shape with the cylindrical axis be1ng ,
approximately para11e1 to the ¢ aXIS Knowing the geometry of the crystal,

we now have a cons1stency check on- the effective vo]ume factor. A neutron

trajectory across the crystal in the Qx = -0.75 geometry goes through

-0.1 geometry. Thus

"

more of the crystal than a trajectory in the Q,
the chances of absorptxon are greater in the Q - -0:75 geometry and
'consequent1y tHis should be compensated for; thus v ff > 1. However,‘
’examination of the nuclear incoherent background in the vicinity of these
geometries shows no-tendegcies of this kind. This was also checked on
scans made on the same crystal and a different spectrometer (Chalk River's
N-5 Spectrometer). Thus Veff = 1 was assumed in all subsequent analys1s

Typical raw data of the constant energy scans are shown in figures
D6 and D7. The data was f1tted to'!h anaﬂyttc expression for 2 Gaussian

peak near Q = 1.0 (represent1ng the magnet1c 1ntens1ty) plus a background.
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It is thus of the form ' | . RS
Int = A*B(Q,-Qp) + c(Q,-05)° + Dexp(-£(Q,-Q,)%)

Thq_fitted curves are also plotted on the relevant f{éuées with the
raw data. It i$ these smooth curves that are manipulated further in all

subsequent-analysis.

Figure 06 shows the two scans at 15K and again at 47K. The marked
drop off inlintensity of the gaussian part of the scattering demonstrate&
that it is magnetic in chéracter, as no lattice property varies on this

temperature scale.
I} is éasiTy:seen that by using equations (4.6) we can arrive at

the desired separation of polarizations.

5% (q,o0) = 12 Int(Q, = -0.75,u)F2(q")
- (T+cos™)Int(Q = -0.1,u)F3(Q)1/§1n%
o Mg = It = -0.LwrF 2y

where the contributions to the intensity due to background are not included.

4.5 Results and Discussion

—

.e) LOQ Temperature Results {T= 15K)
\The intensitie; at 15K of Eﬁe separated po]arizations of the dynaqis,’
structure factor, SZZ(QZ,u) and Sxx(Qz,w) are shown as a function of energy
transfer %n figure D8. It is clear that there are strong qualitative dif-

ferences between the energy dependencies of the polarizations. The $%%

-



Figure D8: Szz(oz,m) and Sxx(Qz,m) are shown as a function of energy
at 15K. They are both drawn on the same scale and th;L-

lines are guides to the eye. The stroﬁh qualitative dif-

- . - . ‘
ferences in_the energy dependencies are clear. The rise

hY

in intensity at 4w =.1.5 meV for Szz(Qz,m) is due to a

damped spin wave ai 1.7 meV and at the zone centre.
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1n§gns1t1es fall-off sharply with- 1ncreas1ng energy transferrfrom~Q:Sfmerd~—__—-"—* -

to 1.25 meV. Oyer the same region in S*X the 1ntens1ty»1ncreasg§~mono-

o

ton1ca11y ‘ : :
As demoristrated in Chapter 3 of this thesis a damped zone- centre
spin wave is present at 1.7:0.2 meV. This spin wave was shown to be

preferentialiy s%Z in polarizatien. Therefore the rise in intensity of

' s%? at an energy of 1.5 meV is cons1stent with the approach to this spin
wave from below in energy. This same study showed that an additional
spin Qa&é branch, primarily s** in polarization, shouldexist below thé'
observed branch at low temperatures. At 15K,-though, this branch is ex- -
pected to be over-damped for smai] wavevectors. The behaviour observéd
in the % intensity'for energies of 1.5 meV and below could arise from

G. _ this over-damped mode.

The mon-interacting soliton theory provides a good qualitative
description of the observed behaviour of $%% below 1.5 meV. The theory
provides intensity <in the o polarization alone which falls off sharply

~-with both increasing q, and energy; .exact1y-what is observed. As has

~ . already’ been mentioned, the aqalysis on othe% candidates for magnetic

’ soliton bearing systems, TMMC and‘CsNiF3 has been gomp1icated by the
demonstration (Reiter, 1981) that mu1ti;spin wave processés can produce

" a neutron response very similar to what is expected from solitons. This
is bgcause both the so0liton response and the huItispih wave response are
poiarized along the equilibrium spin direction. In the présent case the
equilibrium spin direction lies somewhere within the easy plané‘whi]e the
soliton response is Bqlgrized perpendicular to this plane. ngce they

cannot be confused. ' ) »

——



Lé% us now compare our‘measuned SZZ(Q ,w) at 15K and below 1.5 meV
g
with the non- 1nteract1ng so]1ton theory quant1tat1ve1y Figur 9 shows ' -

the 1ntegrated intensity of our measured s? (Q ,m) plotted aga1nst the

numerical integration over q, of M1keska S express1on, equation (15).

The overall peak of the “theoretical curve has been adjusted to best fit
our three data po1nts. 1t can be seen that the theory overest1mates the
intensity at'%b =.0.5 meV and underest1mates the intensity at fw = 1.0 meV
but correctly predicts the treﬁa,of the results. g

In figure D10, the detailed Tineshape of the theory {the solid line)
js compared with our measured lineshape. The theory contains no adjustable .
parameters as even the sca1: is set by the choice of scale for the inte-

grated intensity. The 11neshape of the theory contains-a sharp double-

peak etructure which 3s not seen in the experiment. This is not surpr1s1ng

as the expe?imenta1 resolution has not been taken into account and would

not be expected to follow such sharp features.

The treatment of the resolution in this case is difficult because
of the subtraction of the two sets of data. There is not 2 theoret1cal
lineshape for s*X in this region and thus, two convolutions of theory are
not possiblef: We have attempted to treat the reso]ut1on of the spectrometer
in an approximate manner‘by-considering the effect to be the convolution
of the soliton cross section at the scattering geometry which receives the %
s22 contribution. That is that Q = (-0.75,-0.75:Qz) alone. This is to
say we have neglected the effect of making the subtraction of the convoluted
s*X response. Hence the resolution should be -somewhat further worsened

although we should have considered the most important part. This con-

volution was performed according to the method of Cooper and Nathans (1967).

1



{»

ALY

81

>

= 20k .

wn

Z o

W~

- .

<

[

w 10 -

= s

<{

: (ne

&)

tJ q

- A i

z:

= 0 o
oot
o X

<

Figure D9: The integrated intensity of the measured Szz(Qz.m) at 15K
is compared with the same for the non-interacting soliton
, . model due to Mikeska. There are no adjustable parameters

in the theory, save for the vertical scale which was set to
best describe our data.
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*

- o«
The 1ine shape of our measurements of Szz(Qz,w) at 15K is
compared with the predicted 1ine shape of the non-interacting
soliton theory due to Mikeska (the solid line). The broken
line is the convolution of Mikeskz's predictions with the
resolution function of our spectrometer. The overall scale
for the theoretical results is predetermined when the scale

of the integrated intensity in figure D9 is set. .



The'requtjng comparison of the cdnyd]utéd cross section with.our
data is also shown in ?igure D10 with the dashed line being the t_:o;n{o‘iuf:ed
cross-sect%ﬁn. Again- the overall scale of she theory is set by the scale
‘of the integrated-intensity plot. We see immediately that the double-
peag\structure is no longer present ana the comparison to the_thedretica]

—

Tineshape is reasonable.

The measuréa w1dth (1n Q space) is still s]1ght1y w1der than the
convoluted theory pred1cts There are two possible causes. First, there
is the possible effect of thé_subtraction on the resolution, and second

-

the intrinsic lineshape may differ from the prediction of the non-interact-
ing sheory: //// i - _
Although the former will certainly contribute to some extent, the
latter appears to contribute as welis This is based on the discrepancies
also present in the integrated int;nsity plot. These discrepancies would
likely arise from interact{ons with delocalized excﬁtations {spin waves,
undamped and otherwise) such that the true description of the system is nof
that of a moving kink- connecting two ground states but rather a moving kink
-connect1ng two smal] -amplitude exc1ted states 7
Desp1te this, the model does three th1ngs well in descr1b1ng the
data at 15K. The_trend qf the integrated 1ntans1ty.as a function of energy
transfer is correct. The widﬁh of the response in Q space is approximately
correct. Finally the po1arizatiqn of the response, Szz; is correct. These
successes of the'non-interacsiﬁé'so]iton model in describing our data are

impressive.
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b) E1evated Temperatures (T > T5K)
The temperature dependence of the 1ntegrated 1ntens1ty of
zz(Q -ﬁb = 0.5 meV) is shown in figure D11. The peak 1ntenswty of the
11neshape decreases monoton1ca1]y w1th 1ncreas1ng temperature while the
width 1ncreases monoton1cal1y over the same range. Thus the integrated

intensity of the peak decreases only slightly over ‘this rgnge.in tempera-

, ture. - .

{ Exam1nat1on of the expression for S z(q ,w), equation (4.5},

shows that this behavuour cannot be described by the non- 1nteract1ng
soliton model. The 1ntens1ty is predicted to vary as T 1exp( cT™ )
Hence there shou]d be a sharp rise in intensity w1th_temperature.

The non- 1nteract1ng soliton picture can be §fsrupted'in two ways’

with increasing temperature. F1rst1y the approximation of the d1po1ar

anisotropy as a single ion term which causes the creatiomof an easy

- plane will break down as the correlation length along the chain decreases.

However as most of the strength of the dipole sum along the chain comes
from first nearest neighbours, this will not break down until relatively
high temperatures. Secondly the soliton will integact with a thermal
bath of other sulitons.and, most importantly, spatially delocalized spin
waves. The statistical mechahics_of interactihg Sine-Gordon solitons
has been studied theoretica1ly (Sasaki, 1984) ‘but this*is expected to
be less important than the effects of the spin waves, as the solitons are
spatially localized and thus can avoid each other much of the time.

) The dynamic consequences of the sol1ton-sp1n wave interaction have

been exam1ned for the ferromagnet1c cha1n in an applied field. It was

. previously known that the spin waves are inmodified plane-wave states due

~—
=~ -

.\-
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Figure D11: The observed integrated intensity of Szz(Qz,ﬁm = 0.5 meV)
is shown as a function of temperature {in Kelvin).



to the presence pf the static soliton (Rubinstein, 1970).--The-spin waves
then act to;jnhibit the central peak due tp'the soliton response and
Allroth and Mikeska (1980) ca1cu1ate a temperature damp1ng of-the non-
1nteract1ng soliton-induced central peak that is Tlinear in temperature.
The case of the ant1ferromagnet1c chain has not been cons1dered.

While it is encouraging that spin wave-soliton'interactions can
dampen the consequences of the central peak's temperature dependence, and
thus better describe our findings, it is clear that a damp1ng proportional
to temperature is too little to produce an approximate]y flat dependence
of the integrated intensity, with temperature._ We have, therefore,
chosen perhaps the simplest phenomenongical approadh poSsib]e‘uhich is
to give a temperature dependence t6 ‘the parameter_characterizing the
soliton-bearing system, the' soliton mass, m. -

Tpe integrated intensity can be fitted at each temperature by vary-
ing the soliton mass and the resulting temperature dependence of the soli-
ton mass is as shown in figure D12. It is seen that the mass rises almost
Tinearly with temperature. Tt shouid be recalled that the soliton mass is
gtven by the ratio of the spin wave energy at the zone. centre to that at‘
the zone boundary and that the low wavevector spin waves renormalize up-
wards (De Raedt and pe Raedt, 1977, and Chapter 3 this thesis) with tem-
perature betpre they damp ocut a1to§ether The zone boundary spin waves
on the other hand show little temperature dependence at all. Thus an up-
wards renorma]1zat1on of the mass is consistent with this result. l

A comparison is made between the theoretical lineshape, EOnvoiuted

with experimental resolution, using the temperature dependent soliton mass
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Figure D12: The apparent temperature dependence of the soliton mass is
shown. This temperature dependence was ascribed to the mass
in order to describe the temperature dependence of SZZ(Qz;ﬁn =
0.5 meV) shown in figure D11. An upward renormalization
of the soliton mass with increasing temperature is consistent
with the upward renormalization of the-spin wave energy
near the zone centre.
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and our measﬁrementsifn figure D13. The agreement bétween the two is
clearly good. | '
| This concludes the description of our neutron investigations of
solitons in CsMnBrs. However Monte carlo simulation work in Chapter 8

will provide .2 different perspéctive on the relevance of solitons in an

anisotropic Heisenberg chain system. This later section will address

points on the viability of the soliton model in different ranges of

S
temperature, as well as the question of stability. ¢

[




89

110 24nfiL} up umoys se A3jsuajuy pajedbajul ay} Yjjm jusu
-gaJbe Bujpainbaa Aq 33s st AJoadyjl ayj Joj dLeIS 1e91349A YL,
ainjeaadwa) jo uoijouny e se ‘UOLINj0Sald J4233woua328ds ay}
y1tM PaINLoAuod A4ody} uojj(os pajiipou ayj pue (AdW §°0

= 3=chvNNm 30 adeys auj| ay) uasmMlaq apuw S uosisedwod ¥y g0 aanbt4

’

. Zp -
| opcl . 80 aC| 80 A2l 80
.N__ T MWMN\) I T I T T _/\9 T T 7 o

i V.—N..—‘ . [ . . . : .IOO.?
3 0S
NG2
., | | . doos
] A2W GO % Gl | ooz

ALISN3LN!



CHAPTER 5
SPIN WAVES AND LOCAL MODES IN CSMn0;89F90:1]Br3 -~

.-

5. Introduction

It has long been apparent that the presence of impurities in mag-
netic systéms produces interesting physics (waley and Buyers, 1972; .- -
Birgeneau et al., 1984). The range of co-operative phenomena found in
these_systems is quite impressive. Areas of interest have included pefco—
1étion of correlations (Cowley et al., 1980), competing interactions and
anisotropies (Fishman and Ahardny, 1978), and'much recent work on quenched
random fields (Yoshizawa et al., 1982 and Aharony, 1985). |

fhg presence of impurities in one—dihensiona] magnetic insulators-
produces particularly pronoqﬁced effects. This is for essentially the
same reasons as why thermal fluctuatiohs are so important iq one dimension;
_that is because for short-range interactions and a one-dimensional systém
‘ there is only one possib]e'path'from one side of the sample to the other.
Therefore,‘for example, the percolation ]%mit for magnetic vaEancies is
full concentration. This is to say that any magnetic vacancies at all will
preclude the possibility of long range ordér even at ze}o temperature, and
the system is broken up into isolated finite patches.

Each magnetic site feels a mean exchange field from only two near-
est neighbours. This‘is as opposed to two and three-dimensional systems h
where the number of magnetic sites contributing to tﬁe mean exchange field

“on any one particular magnetic site is considerab]y higher. This'lequ to

‘90
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strong bost-modéfimpufity-mode coupling effgcfs which afe not seen in higher
dimensions. This has consequences o; the experiment to be presented here a
for CsMnG.agFe0.]1Bf3. It means that si?ple theoretical approaches, such
as the single ion approach, will not provide an adequaté description of the
dynamics of the impur{ty and host moments. In sPite of this, this is speci-
fica?]y what we will use to start to analyse our data. Ve will then ex-
plicitly see the breakdown of the singie jon approach and infer sfrong’/
host-ﬁode-impurity-mode coupling from this analysis. As such the theoreti-
cal analysis contained in th{s chapter is less complete than in any other .
part of this thesTs. However, the observed behaviour is qualitatively very :
different from either “pure" CsMnBr3 or any magnetic vacancy or "weak link"
pneQdimensiona1 system, and therefore is interesting in its own r}ght.

Two one-dimensional impurity systems_have been previously studied.
by neutron scattering techniques. These are the quasi-classical Heigenberg
system (CD3) Mn Cu, . Cl, (Endoh et al., 1981) and the quantum Ising-1ike
system EsCo#Mg]_xC13 (Nagler et al., 1984). In the latter case the Mg+2
ion is strictly diamagnetic and hence the system is a co11ection of isolated

patches. In the former case the cu*e

jt represents a "weak link" system, although much of its behaviour can be

jon carries a small moment and thus

understodd in terms of diamagnetic imburitigs. .
| In CsCong]_xtlé there is no impurity mode as the impurity is a
magnetic vacancy; th]e in;(CD3)4MnxCu1_xC13 ;ﬁe impurity mode would be
expected to be very weak.' However there would be e#pected to be a one.
dimensional "surfacef mode present in both'caées. This is §hown schematical-

2

1y in figure E1. The magnetic host ion (either Mn ¢ or Co+2)borderin§ on

a vacancy would feel a different mean exchange field than a host ion sur-
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" rounded by other host“ions. In fact the one-dimensional surface jon would
feel one half the mean éxdhange*%ieid ﬁeit by the Host ions. We may then
expect two branches oﬂxcitations to be present. Qne o:F fhesé would be a

- host mode resem§1ing the 'spin wave spec;rum'of the-pure sysfem} while the
other would be a new surface mode. .If the single ion-f]ucéLations.of these
two types of magngti: sites (host and‘surface)’do not interact with the
other mode appreci$b1y, then we would expect‘the magnetic zone boundary
excitation frequencypratio (for host to surface) to be Eyo to one.

" The experimental picture is- very interesting. A surface mode was

. fbupd by Nagler et al. at roughly one half the zone boundary spin wave
'freqﬁency in CsCong1_fo3, whilé no ad?itiona1 mode was found at all for )
the (CDB)&MnxCu]_xC13 case by Endoh et al. What, at first glance, appears
to be very different behaviour in the two compounds can actually be under-
stond by tonsiderfng the host-modg-surface_ﬁbég coupling and how the host
mode dispersion dépends on spiﬁ;himensionai{f;. For the pure Heisenberg
antiferromagﬁetic chain the spin wave dispersion is #w = 4J$ sin(qcn) where
q. goes"from zero to 0.5 on going %rom the magnetic zone centre to zone
Boundari. Thgre;ére in (CDB)4MnxCu1_xC]3 the single ion fluctuation of
a surface Mn+2 spin can lower its energy considerably by coupling to zond
centre Qost spin waves. Iﬁ this one dfmensiona1 case this coup1ing.wi]i

" be very strﬁng as the f1uctuatio:'of the surface-Mn+2 spin represents the

‘ disruption of Ha]f ofthe mean” field felt by its nearest neighbour host
Mh+2 spin. Physical]} this means that the surface spin cannot fluctuate

without the host spihs rotating with the f]ucfuation,”thereby driving this

: y
surface mode frequency below the lowest host mode frequenty to zero. This,
]

- "
[1
\
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does not occur in higher dimensions as the host mode-surface (or impurity)
mode coupling is much weaker. This is becaﬁgé the f1uctua;i0n of a_surface-

. . . . ; . . >
magnetic moment in higher dimensions represgnts the disruption of only a

* small fraction of the mean exchange field felt by its nearest neighbour host
‘ , L _ . , X
magnetic moments. )

. The same phenomgnonbtcursin the Ising-1ike system CsCong]_xCIS,
however the host spin wave dispersion for a purely Ising system is flat
at fw = 4JS. This is modified somewhat in CsCong]_xC]3 by transverseﬁspin
contributions in the Hamiltonian, hdwever the qualitative idea_is the same;
there is a large spin wave gap{gven at the zone centre. This means that
the surface mode cannot lower its energy by coupling to low energy zone
centre hosE spin waves as in (CD3)4MnxCu]_xCT3, because there are none.
Thus the surface mode indeed appears at roughly one half the, zone boundary
host spin wave energy.

"The point of this discussion is that the strong host mode—impur{ty
mode coupling present in the Héisenbergw1ike impurity chain system invali-
dated the single ion description of the surface mode. As the single ion
_apprdach'treatslgge‘modes as non-interébting, the failure.of this approach
is evidence in itself for this strong coupling.

The subiect ot our experimental investigétion is CEMn]_xFexBr3 with
x = 0.11. The crystal wag described in Chapter 1 and can be thought of as
being ma&é up of chains of magnetic sites along the hexagonal c direction,

2 with 11% Fe+2 randomly interspersed.

In this case the impurity-itse]f, Fe+2, is believed to carry a large mag-
!

89% of which are occupied by Mnf

netic moment on it. Thus the physics of this system should be qualitatively
different tham that of the two systéms previously described. A qualitative

single ion picture of "this system produces three branches of excitation;

TN



- 6;e corLespond1ng to the host Mn *2 modes © one fo the Mn+2 surface mode and
one to- %ﬁeimmpur1ty Fe’ 2 mode This is shown-also schematically in f1gure E1.
~An 1nvest1gat:on of the single ion propert1es of Fe *2 in almost -
exactly the same crysta111ne environment as the present case has been car-
ried out for RbFeBr3 (Lines and E1bshutz:.1975). Thi4 study found that
Fe+2 in this environment efhibits relatively strong easy-plane anisotropy
due to its orbitally unquenched angular momentum. Numerical-values were
producedifor the'single jon parameters appropriate to Fe+2 in this environ- b
ment, and we will make use of these in our preseﬁf study. .
A static susceptibilify study of this crystal has beén carried out
in collaboration with C.V. Stager. The data.areconsispent with an anti-
ferromagnetic MB—Fe interaction on the basis of a comparison to an exact.
treatment of the static behaviour of the classical impure chaiﬁh(Thorpé,
1975). ‘¥;; strength of this interaction is difficult to ascertain from
this measurement. Possible Fe-Fe interactions are even harder to determine;
bﬁt théée ére nof'imgortént in our study due to the small proportion of Fe
moments which would find themselves bordering anoeher Fe moment in this
crystal. l

. ) J -
With this in mind, we can write the Hamiltonian for this system as

-

P
n

T I(1,i41)8,+5, + 1]
: S;°3

(W52 T lseL) - (80)
1

— {1

in this expression

J (Mn-Mn) = -0.88 meV

J {Mn-Fe) < 0
A = T73.02 meV
A= 9.92 meV
S§n=5/2 SFe=2 LFe:]» LMn-O
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The.Hungs rule ground state of Fe'Z is S = 2 and Ly = 2, but as we will see, \
it is convenient to use this L=1 asefgnment due to the sp]ftEjng of the

2L#1 states by the crystal field. ) K . | K

The remainder of .the chapter is organized as follows. First our

——

neutron scattering results will be pr:esented and contrasted to the pure
CsMnBr3 case. Then a sihgle ion analysis of Fe+2 according to the appro-
priate single.ion Hamiltonian‘derived f;bm equation (5.1) will be performed.
The results of this analysis w1111ﬁhen be confronted with experiment and

qualitative conclusions will be drawn from, this comparison.

5.2 The Neutron Scattering Experiment

We measured the inelastic magnetic response of CsMnO_BgFeO.]18r3
at temperatures of 18K and 25K across the megnetic zone by neutron scatter- -
ing techniques. Once again the measurements were made on the McMaster
‘ spectrometer (E-2) at fhe N.R.U. reactor, Chaik.R%ver. 1

The single crystal sample was cylindrical in shape with an estimated
volume of 15 cm3 and e mosaic spread of 0.5° (FWHM). It was mounted in a
closed cyc]e refrigerator with its hhg plang lying in the scatter1ng p]ane
Measurements were made in ;he constant Q mode with “the scattered neutron
energy fixed at 14.90 meV and a pyrolitic graphite filter placéd in the
scattered'beam to remove higher order contamination: Other experimental
details are given in table Al.

As before the magnetic zone centre corresponds to Q = 1.0 in scans
of the form (h,h Q } and Q = 1.5 corresponds to the magnetic zone boundary.
Scans aleﬁg.(0,0,Qi) sample fTuctuatioﬂs w{thin the'eesj (basal) plane

and out of pgane flqctuatgbhs are picked up by scattering geometries such
~
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that Q is not parallel to the c axis, such as §'=.(-.75,-.75,Q,). Constant.

Q scans for Q, = 1.55§n§ 1.05, 1.15, 1.2, 1.3, and 1.4 and 1.5 are shown in
ﬁégurés E2 to E6 respective]j..;Two excitations are clear in most ?f these
scéns with the clearest view of the two modes together being in tﬁé‘g_=
(0,0,1.3) sdan at 18K in figure Est' The énergy of these excitations is
plotted as a function of wave vector aéross the magnetic zone for §cans

which sample in-plane fluctuations only, in figure E7. Also plotted on

‘this graph is the measured spin wave dispersion in‘pnreJCsMnBr3 as report-

» -

ed in Chapter 3.

The spectrum of CSM"0.89F80.11Br3 is markedly different than tha;

of EEMnBrB. Most notable of these differences is the appearance of a,

strong—inten§ity new mode which is ffat at the mid-spin wavglbaqd energy
of 4.5+0.3 meV. The connectivity of the two branches of exéitation is
difficult to determine where they “cross" at Qi = 1.15; and thus this was
left out of figure E7. If we refer to the portions of the excitation
branches going to 10.0:0.3 meV at the zorne boundary and going to zero

enerqy at the zone center as being host-like, then this host-like behaviour

is clearly different than the spin wave response in pure CanBrS. The

zone-centre response does not appear to be he?ding to the anisotropy gap

value of 1.7+0.2 meV as in CsMnBr3 but réther seems to be going to zeroi‘

. enefgy. In addition the zone boundary host-like response is lifted up

above that of 8.8 meV found in CsMnBry to 10.0 meV.

Very interesting effects are fouﬁd when out-of-easy plane fluctuat-
ions are sampled. The.clearest effects are seen in figure E5 which shows
scans at @, = (0,0,1.3) and Q, = (-.75,-.75,1.3). The.two modes are of
roughly equal intensity at g]-= (0,0,1.3), however at Q, = (-.75,-.75,1.3)
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Figure E2: Inelastic scattering at T = 18K at the magnetic zone centre,’
- =:(-0.15,-0.15,1.0) and 10% of the way to the Zone boundary,
g-= (-0.15,-0.15,1.05}. The lower energy mode at Q; = 1.05
~ has dispersed under. the incoherent elastic peak at Qi = 1.0.
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Figure E3: Inelastic scattering 30% of the way to the zone boundary at

0, = 1.15. The scans atQ = {0,0,1.15) sample fluctuations
within the basal plane while the Q = (-.75,-.75,1.15) has
substantial contribution to its intensity from out-of-plare
Tluctuations. This is the wavevector at which the two modes
“cross"”. e
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Figure E4: Inelastic scattering 40% of the way to the zone boundary at
Q,=1.2and at T = 18K and 25K. Two unresoived modes are
present in the T = 18K scan while thermal broadening at
T = 25K is sufficient to hide this structure of the scattering.
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Inelastic scattering at 60% of the way to the zone boundary,
Q; = 1.3. Two modes are clearly resolved.in the Q = (0,0,1.3)
scan at T = 18K. The scan at @ = (-.75,-.75,1.3) reveals an
interesting polarization dependence to the scattering. Note
that the intensity of the lower energy mode drops off strongly
as out-of-basal-plane fiuctuations are sampied, while the
upper energy peak relaxes to slightly lower energies. .
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.the lower energy mode at v 4.5 meV s orqstica11y reduced in intensity
compared with the higher energy host-]ike mode. One would expect a re-
duction in 1ntens1ty on going from 01 to QZ due to the.fall off of the
magnet1c form factor, however both modes fall off ‘equally due to this
cause. we therefore take this as evidence that the lower’ energy mode at

«4.5 meV is strong]y easy-plane- 11ke This suggests that it is. the 1mpur1ty :

mode due to Fe2

which we know displays marked p]anar anisotropy 1n this
environment. .

" An additional 1nterest1ng effect which is clear from compar1ng
the same two. scans Q.I and 02 is that the higher energy mode softens in
energy from 7.8+.3 meV to 7.3+.3 meV as-out-of—p1ane fluctuations are
.sampledl This can also. be seen in scans at Q= (0 0,1.15) and Q=
(-.75,-.75,1. 15) at T = 18K shown in f1gure E3. We have not established
the nature of the.softening of'thesetmodes. However a plausible explana-
tion is that what we have referred to as the host-Tike mode is‘actua11y
the superposition of a host and a surface mode of similar, but not 1dent1ca1
energ1es This surface mode is also strong1y easy-plane- ~like as it arises -
from motion of the spin in the exchange field of the strong]y easy-plane-
11ke impurity moment. Thus as out -of-easy-piane-fluctuations are sampled,
the surface mode’ 'S intensity falls off quickly, 1eav1ng predominantly the
'host mode present, which fTuctuates at a s11ght]y lower energy

The impurity and host modes are most distinct in energy, at the zone
_bounoaryv Unfortunately due to the flatness of both modes' dispersion,
~and the fact that x(Q)}, the wave vector dependent susceptibility, is at a
minimum at the zone boundary, these modes are difficult to observe. Thgse//
are shown in figure E6. Thus it is difficult to see if the upper host mode

is actua11y comprised of two .modes or not.
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. Figure E7: The dispersion of the-magnetic excitations in CsMn0 89Fe0 nBr3

" at T = 18K for wavevectors Q = (0,0,1+qz) is shown. The solid
lines are guides to the eye showing two modes. The dashed 1ine
is the spin wave dispersion of CsMnBr3 taken from Chapter 3.
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. ; fThe-maQnetic eoné centre response is shown in figure E2. Both modes .
are clearly visib]e-at‘Q = 1. 05 while the 1ower energy mode'is not seen
at Q = 1 0 the zone centre Th1s is con51stent u1th two modes one of”
wh1ch is go1ng to zero energy at zero wave vector while the other-1s dis-
persionless at 4.5 meV.. In the pure-psMnBr3 system an out-of—eesy piane
Spin wave was observed near 1.7 mev. A pIaus}bIe exp]dnatjdﬁr;¥#ihe dif-
fe;ence between the pure system' s spectrum and that of CsMn0 89 0:]]Bf3
is that the strong_p]anar anisotropy of the Fe *2 moment 1ifts the out-of-
pilane, long wave]engih (zene'centre) spin wave up to 4.5 meV.

H Re1aiive1y strong temperature effects can be seen on the modes as”
the temperature*is raised from 18K to 25K. This can be seen for mid-zone
spin waves in fiQQE;s Ef;iE4 and E5. It appears both modeﬁ‘are"affected~n_
by the temperatUEe as seen 1in ffgure E5, ‘the only scan where they can be
observed separately. We expect the host spin wave branch to display
thermal broaden1ng at least as severe as the spun wave response in CsMnBr3
as discussed in Chapter 3). —_ . .

-~

-

5.3 Single Ion Analysis ~ i
As we mentioned. we are greatly aided in our analysis of Fe'® in

this environment by a previous study of Fe+2

in Rb?eBr3 by Lines and .
Eibshutz. Their work is re]evant as the local environment of Fe +2 is vir-
tually the same in both crystals. '

We will d%;cuss the level scheme of Fe+2'in a single ion picture___
in two ways. First a'qualieative description of splittings will be given;

and then a detaited full Hamiltbnian diagonalization will be employed to. -

produce the eigenstates and their splittings according to equation (5.1).
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* The Ee conf1gurat1on with six "g" e]ectrons resu]ts 1n a Hund s

rule ground state of § = 2 LH = 2. However the actlon of the cubic part . ond

of the grysta] fweld on the orb1ta1 angular momentum is to sp11t the N

(2L +1) ="5 1eve]s into an upper orb1ta1 goub]et and a 1ower orbutal

tr1p1et-_ The sp]1tt1ng of the doublet and tr1p1et is suff1c1ent1y large ~ -

to make the doub]et not thermodynan1ca]1y re]evant for the temperatures

_wh1ch we _are 1nterested in. Thus we can-define a new f1ct1t1ous orb1ta1

angu]ar momentum L=1, as there are now (2L+1) 3 thermodynam1ca11y rele-
vant states. However w1th1n this triplet of states the matrix elements of
real 'LH-are -1 ttmes the value of equivalent matrix elements of L. In’
add1t1on matrix e]ements of (L )2 are 3 twmes those of (Lz)2

The coup11ng of spin_ and orbital angular momentum together via the
sp1n orbit coupling parameter, A, leads to (25+1)(2L+1) 15 levels to

be dealt with. As Fe'? is a more than half filled shell, the interaction

. should act such that spin and real orbital angular momentum can lower

- their energy by‘a1igning parallel. Of course this implies that spin and

Tictitious orbital momentum can lower their energy by aligning antiparallel.
Thus the ground state mill be a J = S-L =7, tr1p1et with an excited state
quintet, J = 2, and septet, J = 3. This accounts forwthe 15 levels.

In this qua]1tat1ve discussion 1et us Jjust concern ourselves with
the ground state triplét. This d1scuss1on can bhe fo]lowed most eas1]y with
reference to f1gure E8. The act1on of the non-cubic part of the crystal ~
field can be considered .by the application of a trxgona] distortion para-
meter, A, relevant for this env1ronment As one can see by reference to

the Hamiltonian, equation (5. ]ﬁl the action of this term is to suppress

~
N -

1 "0"
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components of orbital angular momentum and by virtue of the spin-orbit
coup]ing,_spin.angular momentum in the z direction. Thus it'imboses,strong

easy plane anisotropy. Choosing the quantization axis as the z direction

.5it-is cIear:that the J% =.0 level wi]f be the gfound state with an excited

~_state, 9% = =1, doublét. The splitting, given by Lines and Eibshutz on the

basis of the terms in the HaﬁiItonian cons?déred so. far, of ﬁhe ground
state,and‘excited state doublet is roughly 1.5 meV. It is clear that this
is too little to produce an impurity mod® at 4.5 meV.

Fina11y_we must consider the éffect of the exchange interactions
with neighbouring Mn*2 moments. As opposed. to the other terms in the

Hamiltgnian, the exchange term is not a single ion interaction. However

-1t can be written aﬁ & siﬁgle ion term which approximates the Ffull e§changé;
. . X )
. but the analysis may then only be relevant at the zone boundary where a

spin may fluctuate indeﬁenﬂent]y.' This, of course, assumes non-interacting

2

modes. Therefore we treat the Mn® -Fe+2 exchange in this mean field ap-

2+ .

proximation and include a teFﬁTHMFx-SFégiﬁfthe‘Hami]tonian. The Mn
qphent Tives predominqﬁt]y within the eésx plane at low temperatures, and

this will be reinforced by either an antiferromagnetié or ferromagnetic
2

Mn+ -Fe+? intergction, as the'Fe+2 moment also displays easy-plane aniso-
tropy._ ‘

The action of the mean exchange fieid on this 1owesf triplet of
states. is also shown in figure E8. The gqgﬁnd sgé;e singlet which has
J% = 0 will now rotate to align itself within the éasy plane with fhe mean
exchange fig]d. If we now choose this X axis as the quantization axis,
then the ground state becomes J* = 41. _The other two degenerate states

(in the absence of exchange) must take on J¥ = 0 and -1. The action of
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“the mean fie]d:on these states is to raise the energy of the 3= étaté
3 while not affectiﬁg the J%%= 0 state, thu% breaking their degenerécy.f
| It should be c1ea;vthat the askigﬁhentébfithe J*% values are

' approximqte and qua]itative'oﬁly: pf’éoufse'considerab1e mixing oflthe

-states wi]1'occur which will Be treated- in fulT preseﬁtJy However th1s

does g1Ve a physical p1cture of the behavuour of the- Iow Iy1ng states of

+2

Fe'© in this environment. <

We have diagonalized the following single ion Hamiltonian

: H= - HeSE e a8+ AlssL . . (5.2) .
|a] = 13.02 meV
IA| = 9.92 meV

within the (2L+1}(25+1) = 15 iéve1 basis |L%,5%>.  Here L caﬁ take on
values +1 and 0 while S% can take on values *2, :i and 0. . The values used
for [a] and |A] are the same as used in équation (S.i) while the mean ex-
_change field, HMF’ was.adjﬁsted sd_that the lowest energy transition from
the ground state was 4.5 meV.

. The Hamiltonian matr1x is given in table Bl with the matr;x elements
in symbolic form.  The 15x15 matrix diagonalization is straightforward w1§h
standard‘computer library routinés. The eigenvectors and eigenva]ues.of
the Hamiltonian, such that the 18we§t trans{tion from the ground state is
at 4.5 meV, are giveh in table Bé. l

The ground state is given by (to leading order)
_ 0> = .28[1,0> - .44[0,1> + asl -1,2> - 21,2

while the f1rst excited state is (also to leading order)

.
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1> = .56{0,0> - .66]-1,1> = .4811.-}> + .15[1,1>
-aﬁe the strength of the mean exchange term required to produce ‘the correct
‘ sp11tt1ng is Hye = 2.6 hev
A neutron can exc1te dipole trans1t1ons between states, thus 1t is

of interest to sée.whdt the matrix elements of S?, s and S” are between

the 1owesﬁ states.

<1|s%|0> = 0.0 .
<1}s7j0> = 0.33 =
<1|S7|0> = -2.05 . i

Hence, there is clearly a strong transitionuposeib1e‘due to S .

This is exbected as the ground‘state cofresponds strongly to a fully a]igned

(SZ = 2) moment with the mean exchange field. Thus the first ‘excitation is
expected to'be an S~ tran51t1on
The components of spin along the ordering d1rect1on for the lowest

triplet of states are

-

<0}s%]0> = 1.68 o -
<118%|1> = 0.22
<2|s%{2> = =1.39

which again -is as expected and consistent with our earlier qualitative

e

discussion. ‘»_

The mean exchange field strength of Hm = 2.6 meV yields an apparent

+2 : : .
exchange constant according to
-

. -Ho = 4J(Mn.-Fe)SMn

value for the Mnfz- Fe

This produces J(Mn-Fe) = -0.26 meV as compared with J(Mn-Mn) = -0.88 meV,
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‘Hamiltonian Matrix (symmetric) for Fe+? in CsMno;égFeoli]Br3
ILZ.SZ> basis _ ' - '

1M,

——N .
| 10,05, [1,-1> =7x < e - e -2 —-
<0,0| D ‘
<-1,1|  -AsL,D/2+L-HM . :

<1,-1]  “AxL,0,L+D/2+HM
<1,0|  0,0,0,D/2

<0,1] ' 0,0,0,-AsL,D-HM
- <-1,2| olggoao,-B*L;Dkz+2*L-z*HM |
<-1,0] 0,0,0,0/2,0,0,D/2 _ P
<0,-1]  0,0,0,0,0,0,-AL,D+HM |

<1,-2| * 6,0,0,0,0,0,0,-B+L,2%L+2*HM+D/2

1) 0,0/2,0,0,0,0,0,0,0,-L-HH+D/2

<0,2  0,0,0,0,0,0,0,0,0,-B*L,D-2¢HM - -

<-1,-1] 0,0,0/2,o,o,o,o,o,o,o,of-L+HM+0/2

<0,-2|  0,0,0,0,0,0,0,0,0,0,0,-BL,D+2%HM

<1,2| 0,0,0,0,0,0/2,0,0,0,0,0,0,0,-2+L-2+HM+D/2

<-1,-2}  0,0,0,0,0,0,0,0,0/2,0,0,0,0,0,-2+L+2%HM+D/2

A=V3 - B =/2 cC=4%
L=X=-9.92mV - spin orbit coupling
D=4=13.02meV - trigonal distortion

HM = HMF = 2.6 meV - mean‘exchange'fie1d

. -
1
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The eigenvectors and'gigenva]ués of Fe'

. EXPLANATION OF TASLE B2 . =~

/o T

~—

2 given'in tabTe B2 are

labelled according to the following schémé. The lowest energy. eigen-

. vector is given.by |0>'and the highest by |15>. The listing=is of the

-

. following

form, eg.

10,0>
|-1,1>

[1,-1>
|1,0>

\\
|0,1>

-T2

1-1,0>
[0,-1>
|1,-2>
|1,1>
[0,2>

1-1,-1>
[0,-2>

{1,2>
[-1,~2>

eigenvalue -

0
-.11677
.00325

- 26.56 meV

The basis states are [L%,5%>.

~
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10>

10.00000_

-.00000
0.00000
.23947
-.43590
85583
-.06614

.03658 .

- (02899

:00000
<:00000
0.00000
0.00000
-.N677

.00325

-26.56
17>

. 13351
.20135
-.25710
. Q0000
.00000
.00000

.00000
.00000

B N B v I B e

.01429
.10157
-.61523

.69750
-.00000
0.00000

5.84

.00000.

Eigenv

j1>

- .55542
.65586
.47651
.00000
-00000
-.00000
0.00000
-.00000
.G0000

- 14601
-.06867
.08582

[ 2 B I |

-7 ~-.02983

.00000
0.00000

-22.01

{8>
0.00000
-.00000
0.00000

.19080

.17048
-.09541
-.00188 .
-.0739%
-.03027
-.00000
-.00000
0.00000
0.00000
-.95845

.02021

21.79

TABLE B2

ec

3 .
tors and Eigenvalues for Fe

in CSM“o_ngeo,]] Br3

RES

'~0.00000
.00000
0.00000
. 10555
-.01002

-.10875 -

-.37600
.50318
-.75650

-.00000-

.00000
0..00000
0.00000

01794 7

.09877
-=18.31

9>

-.31506 0.
.00000 -

.00000 -.
.26564 .
.6 0.

.22783
-.18895 0
.00000 -.

-.02488
-.19544 O
-./00000
0.00000

. =.00000

0.00000

-00000
.71289
.58095
.05563
.11450
-.00000
0.00000

oo

25.03

[3>

.13304
.46199
-.61599
-.00000
0.00000
.00000

~ 0.00000
.00000
.00000
-.41204
.39355
.22212
-.12421
.00C00

0.00000"

-6.86

2.

N

0.00000
+ -.00000
0.00000
-.564580

.34641.
.36626

- .40393
-.06771
-.38660
-.00000
-.00000

~ 0.00000

0:00000
-.08537

[10>
00000 -.

40982

27.73

[11>
62791

.35222

27590
00000
00000

.00000
.00000
.00c00
-.12242  -.
.00000 -.
.00000  -.
.00000
.00000
.22531
.20877 0.

00000
30225
18940

.34272
.40108
.00000

000Q0
30.20

.06566
. -6.77

[12>

0.00000
.00000
0.00000
.29973
.30761
-09408
.33656
.37502
.01104
-00000
.00000
0.00000
0.00000
.05944
-.74102

31.45

112b
|5> . . | 6>
-.06583 0.00000
. .39678 - -.00000
-.34112 0.00000
.00000 -.36724
0.00000  .34829
-.00000  .22273
0.00000 . -.62393
~.00000 .32924
-.00000 .42749
.44818 -.00000
-.67410 -.00000.
. .21028  0.00000
-.14954 0.00000°
-.00000 -.07296
0.00000 -.09192
-1.50 S1.27
113> [14>
-.39764  0.00000
-.18372 .00000
.31100  0.00000
.00000 19112
0.00000 .16316
.00000 .04592
, - 0.00000 .39093
-.00000 .56429
-.00000 .28041
-.09087 .00000
-.04797 .00000
-.63247  0.00000
-,54848  0.00000
.00000 .02240
0.40000 .61997
. 34.39

34.49
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2_re*2 coupling is. substantially weaker than the

which says that ;he,Mﬁ+ -Fe.

Ma*2-Mn*2 coupling. o .

5.4 ?iscuésion ; - _- B
Thus'far we have treated only the sjngle'ion beha?iour oflthe Fe+2
' impurity iBn. Bgt this actUaT1y has serious ramifications for the behaviour
of the‘Mn+2 surfacg,ions as well. bur final point of the single ion analy-
sis was that thé‘Fe*z-Mn+2 exchangé coupling was substantfa1ly'weaker than
the I-1n'i'2-l-1n'f--2 coupling. The natural prediction to make from this is that
the Mn+2 surfgce mode behaviour, or alterations to the host mode due to
surface e%fecfs, shoqu be such thaf the eﬁergy of these fluctuations is
Towered. Yét as we have seen, the zone boundary host-like mode is raised
up in energy in CsMny gofeg 11873 0 10.0 ﬁev from 8.8 ﬁev in CsMnBr,.
?hége two effects then are not consistent with each other, afcording to
" this single ion analysis. |
In éddition to this is the lack of dispersion for the Fe2+ impurity

mode. The proper energy splitting.could only be qchieved on application of
| the exchange field due to neighbouring Mn+2 jons. This would be expected
.to change the nature of the impurity mode to co-operative from single-ion-
like and thus from dispersionless to a mode with dispersion. This can be
precluded by weak matrix-elements for the ground to excited state transi-
‘tions, however we have seen that this is not the case. -

A plausible physical picture of this system whi;h addresses the

inconsistency present in the single ion analysis is as follows. The
frequency of the‘zone boundary impurity fluctuation is pushed fo Tower

energies by the host mode-impurity mode interaction in this crystal. How-
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ever, ft'is not suppresséd so much that it goes to zero frequency as does the

1 +2 . +2

‘surface mode in (C03)4thCu This implies that the apparent Mn “-Fe

T-x""3"
--exchange constant derived from single-ion -analysis will be considerably low-

er than the actuél Mn+2-Fe+2 exchange constant, with tﬁe actual Mn+2-Fe+2

exchange being considerably stronger than the Mn+g-M 2 exchange. The.zone

boundary surface mode then will also be at a higher frequency than the Mn *2
host mode even after host mode- surface mode 1nteract1on has been taken into
account. -Th1s argument is shown qualitatively in figure E9. The strong

*2 impurity mode frequency then makes it appear dis-

supgressionof the Fe
persionless. Hybridization of the two modes may also occur so that they
do not cross, with the nature of the modes changing from Mn-like to Fe-like
as the mode progresses across the zone: '

This qualitative model would then account for all the features we
.havé observed in CS”“o.agFeo.11B”3' It is impdrtant to note that our in- -
formation on the surface mode behaviour is not very complete, coming only
from the polarization shift of the higher energy branch of excitation at.
Qz = 1.3. The physics of this model is then considefab]y‘Aifferenf than
for either of the two one dimensional magnetic vacancy systems described
earlier. - Here the two new modes would Tlie outside the host spin wave band
in a non-interacting mode picture. They would both be suppresséd by the
interaction with the h°§EJF°de’ however the impurity mode suppression must
be considerably stronger than that of the surface mode.

The model notwithstanding, we take the inconsistency S}ésent in
the single-ion analysis as evidence that substantial mode-mode interactions

are present in this system. The opening remarks of this thesis mentioned
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Figure E9:  The interacting mode model is shéwn: In the absence of mode
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interactions three modes would be present with the Fet2
impurity mode of highest energy at the zone boundary. The
effect of tre inseractions is to strongly suppress the
energy of the Fe'¢ impurity mode. -although not to zero
energy. The Mn*2 surface mode Js also suppressed to an -
energy close to the Mn*2 host mode at the'zone boundary. Our
single-ion calculagions, which do not consider mode interact-
ions, as well as our measurements are consistent with such

a picture. . -~ _

£
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~ the failure Of COnvent1ona1 mean f1e1d ana1y51s for one d1men51ona1 systems,
.and thus we shou1d not be too surpr1sed by this result It is a1so con-
sistent with results on (CD3) Mn Cu1 xC13 in wh1ch the host mode also

has predominant1y;Heisenberg spin symmetry.



L cHAPTER 6 -
' * THE MONTE CARLO METHOD |

-
>

The thermodynam1c propert1es of co-operat1ve systems are on1y
“rare]y understood in terms of exact so]utions E;amp]es from magnetuc .
systems include the,One-d1mens1ona] c1a551ca1 Heisenberg and XY systems
with nearest neighbou? interactions only. These are particuﬁar]y simple
_examp]es df co:operat{ve phenbmena'becéuse all‘thg constituents in the

, co:opératiye gystem afe_identica] and are localized at 1atfice sites’
i& spa;e;' In éﬁ&%&ibn 6n1&'6he ihtefaction is relevant (fhat béﬁﬁééﬁ.
a spin and its nearest neighbours) and the Jatticé is only confiected to® -
ltﬁe ihteractipns in so far as it determines thé number and relative
orientation of neafest neighbours. Of course . there are other relevant
contr1but1ons to the relative s1mp11c1ty of any part1cu1ar mode] _how=- -,
-ever relaxung any of these ‘already. ment1oned c0nd1t1ons greatly compli- \
cates the understand1ng of a co~-gperative system, e11m1nat1ng the pos-
sibility of exact so1ut1ons |

Most models of co-operative systems_o% cﬁrrent interest violate
at ]eas; dne'of these conditions. For 'this_ reason it is very important-
. to dévglop ﬁumerica1 qnd pérturba£ive techniqdés to generate‘approximate'
so]utiqns.' With the.growing'ava{]ability of relatively hfgh speed com-

puters, ‘the computer simulation has become the approximate_Qgchnique of

117
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: cho1ce in. many areas of condensed matter phys1cs. As opposed to per;'-
turbation techniques the computér simulation treats a11 1nteract1ons

Ed

' exact1y, although it does not calcu1ate all observab]es exactly,--'s\

L

' The Monte Cario method utilizes pseudo= random.(hereafter referred
to as random) number generators to exam1ne the phase space, or thermo-
dynam1ca11y relevant phase space, of some system and “thereby calculate
thermodynamic quantities.V The applicability of the Monte Carlo method

~is not_]imited to this aim, as has been well documented (B#nder, 1984).

* Theathermal average.of any particular guantity, A, can be calcu-

Jated by exam1n1ng many’ d1fferent random conf1gurat1ons, v, of the system
- and numer1ca11y evaluat1ng the energy, Ev, of these conf1gurat1ons

according to.the mode] Hamiltonian. The average is then g1ven by

LAY

Y]

z AuexP{TFv/kT}

A
z exp{-Ev/kT}
v : -

<A> =

_ This 1's referred to.as "simpw;sampling" as the distributi_on of
points sampled in the system s phase space is uniform. Because the distri-
bution of any such quant1ty in equ111br1um is strong]y peaked about 1ts
.thermodynam1c average va]ue (Goodstein, 1975), this is not a very effect1ve
way of going about the calculation, as most of phase space does not contribute
appreciably to the average In'practice it is only emp]oyed if the number of
‘degrees of freedom of the system is small

A much more effective way of going about the ca}culat1on is via
T1mportance sampling" or the Metropol1s (Metropolis et al. 1953) algorithm.

According to this aTgor1thm, "the configurations themse]ves are generated

with"a probability weighted according tothe Boltzmann factor. Thgs means

N



that the thermodynam1ca11y relevant reg1ons of phase space are pFE?EFE;ttally .
sampled The therma1 average of some observabie 1; then calculated from a.
straight average of the values extracted from these conf1gurat1ons, v'o.
That is as- . o L . L
| <A>=F Av—' o
o M
where n is the number of configurations used in the aterage.
The Monte Carlo work contained in this thesis proceeds by the
‘Metropolis algorithm for a classical spin chain. The difficu]ty-invd]ved
. in these prob]ems, is the consideration of the effects of 1nteract1ons
wh1ch couple the spins to the crystal]ograph1c Tattice. Spec1f1ca11y these
Yare- dwpo]ar and s1ngIe ion an1sotropy terms in the Hamiltonian which induce
the formation of an easy plane. Thus the angle a spin makes relative to the
Iattjce is also impertant to its energy, in addition to themgng1e determinec
by-thérre1ative orientation of a pair of sbins This extra angle does not
enter problems 1nvo]v1ng either bilinear or higher order exchange and in
fact precEaﬁe; the possibility of exact treatments fbr systems containwng
- both exchange and 1nteract1ons that couple the:spin and the lattice.
5 A]though these “anisotropic 1nteract1ons are weak (compared w1th
; *__the bilinear exchange 1nteract1ons) the effects on hoth the stat1c_and_
dynamic croperties of the magnetic chaih are expected to be quite profound
at Tow temperatures. The next two chabtere investigate three of these
éffedts -Ih the next chapter, a Monte Carlo simuTation cf the maghetic chain

1nvo]v1ng dipolar interactions in addition to both b1]1near and b1quadrat1cex-

change 1nteract10ns1s compared to the exper1menta]]y determ1ned suscept1b1]1ty

- . AN -
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of CsHhBr3 The re]at1;2_lmportance of the h1gher order;- b1quadrat1c ex-
\ o

" change mechanism for CsMnBr3 is currently of interest (Fa]k et a] , 1985}

‘~and the simulation provides a fresh perspectwve on this subJect

In Chapter 8, the spin corre]at1ons and conf1gurat1ons wmthnn
tha XY to He1senberg cross-over temperature reg1ma are examined for the
an1§2350p1c He1senberg chain. In this regime tha characteristic correlation
lengths in "the two symmetry d1rect1ons behave very d1fferent1y and these
can be determ1ned from the sxmu1at1on. The cross-over behav1our‘can also

‘be observed directly by p]ott1ng the conf1guratwons as a function of tem-
-

-]

perature.. These conf1gurat1ons are examined for the presence of out-of-
easy p1ane.so]1tonaa (Chapter 4, this thesis). -
| The speci?;é algorithm followed in a1i the-simulations con-
sidered in this thesis-is J%aplayed in flow diagram form in tabfe.CI.
ring of N épjn vectors, all of length §: are started off in some configura-
tioQ. This configuration for the ensemble of spin vectors can be either
random or have varying degrees of order associated with it. A single spin
vector is chosen at random from\;he ring aﬁd replaced byﬁa new spin vectdf'
of the same length Eut a random arientatian. Thg'difference.in energy, A],
between the ensembie of spin vectors yithﬁthe new spin vectof present and
that with the old spin vector preéent is calculated on the basis of some
model Hamiltonian. The new spin is then either kept or discarded according
to whether yet “another random number between zero and one is larger or
smaller than exp(- A1/kT), the Boltzmann factor, where T is the temperature.
If the new spin lowers the energy of the ensemble of spins, A] < 0, then

it will be kept. However if it raises ;haﬁéaergy of the ensemble it may

still be kept, but the probability of this happening is weighted by the
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.Bo]tzmann‘factor. This who1e process is referred to as one Monte Car]o step

per'spin (MCsfspin). ] .

- Many such MCS/sp1n are executed and the process 1s stopped at

various points to calcu1ate some observab]es of the ensemb]e (for examp1e

N
'the net moment 1n some d1rect1on) 0bservab1es are then samp]ed from many N

dtfferent ensembles and their average value can be calculated to produce a

thermal average of the observables. .In add1t1on the conftgurat1on3>of an

ensemb]e can be exam1ned directly, y1e1d1ng "snepshots" of the‘system at

dwfferent temperatures : S ' : oo

However the simu]ation.cannot treat an arbitrarily ]arge‘system'
or execute arbitrarily many MCS/spin. Thus the observables are not caicula-
ted exactly even though the 1nteract1ons are considered exactly Two very
important. concerns must then be checked’before the results of a s1mu1at1on
can be trusted. These are finite size effects and equilibration times.

One d1mens1ona1 systems w1th short -range 1nteract1ons are
-part1cu]ar1y well suited to study by the Monte Carlo method. - This is due.
to the absence of long-range order which implies that relatively few con-
stituehts are necessary to effect%vely represent an infinite co- -operative v
systeu. If we consider the c]ass1ca1 Hexsenberg nha1n with a nearest-
neighbour b1]1near exchange of Jd = -0'88 mE?“{whikh is appropr1ate for
CsMnBr3), then Fisher's solution (Fisher, 1964) gives the corre]ation length
as 70 Mn-Mn spicings at 2.5K. . Thus a system of 600 Mn sites compr1ses rough-
Iy 9 correlation lengths and finite size "effects would not be expected to

be much of a problem at this temperature.
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- Both of these concerns are of course most 1mportant at Tow

~

temperatures as the corre]at1on lengths are longest wh11e the probab111ty

of rep]acrng a spin vector is least. Equ1]1btatzon t1me prob]ems can be

checked by a. variety of techn1ques For example, the average value of some

observab]e shou]d not depend on the system s starting conf1gurat10n Usaal-

Iy the f1rst number ofoCS/sp1n are executed without using these ensembles

1n the calculations of some observable. This allows'the system to come

into equ111br1um before observables are emp]oyed in Jthe average. Thus there

shou1d be no difference between the average value of an observab]e taken
.from a system started off in a random configuration and one started off in
a fuify ordered configuratidn A]so some exper1mentat1on can be carried
"~ out on the dependence of an average value of an observable on the number
of MCS/spin executed before the calculated observables were used in the
average. £ ' ' . ' _ o
% A 51m11ar techn1que can be used to 1nvest1gate finite SIZE ef-
fects - Any intensive variable must be 1ndependent of the size of the
system. Thus exper1mentat1en can be carried out on” whether a change in
size causes a difference in the celculation of intensive variables. o

A mére difficult problem is assidd?hg‘SOme uncertainty to a
‘ca1cu1ated observable. If there is no correlation at ai] between a set‘
of configurations from which N observables, A, were ca1cu1ated then the
uncertawnty 1n the average va]ue is

@ (N T AT - (2 A2 (Na1)) 05
i i _
(Binder,-]984). The urobTem is.that it {s not‘efficient te use only those
\

Y
\

'Y
-

5y

i’
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conf1gurat1ons which are separated by a suff1c1ent-number of MCS/spin such
jthat the confxgurat1ons aresent1re1y uncorreIated. Th1s express1on is
then used desp1te the poss1b111ty of correlatfon*between the configurat1ons,
with the understanding that 1t 1srapprgx1gate only. N

- . o : ———

Of course, what d1so can be done is to\estimate uncertainty

from systématic'disc;:;ancies bétwéen the. Monte C;rlo results as a function
of some variable, and any reasonable Tit to thé,functiona1 fo;m of the same
.results. In addition many model Hamiltonians have 1imi;ihg exact results
éssbc}ated-with thém. '?or éxémb]e, the zero and_ihfinﬁté femper&tdre be-
haviour of sohe facets of the model may be known exactly. | If this is the

case it gives a very important cons1stency check, as well as some 1nd1cat1on-'

of uncertainties associated with the simu1atiqn.

oy
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* CHAPTER 7 . .
'."BIQUADRATIC EXCHANGE FROM SUSCEPTIBILITY DATA IN
CL&SSICAL ONE-DIMENSIONAL HEISENBERG SYSTEMS
7.1 .Introduction
! Thé'interaction.between S-state ﬁagneficlmoménts in solids is most
often representéa by the Heisenberg Ham%]tonian (equation (131)) which is
bilinear in spin operators. This provides a good dgscriptioﬁ of many mag-
‘hétiblsystems;' Howéiér ft ha§*1ong been realized that the Hamiltonian
shoqu contain terms of higher order_in the spin operétors:° The physica]‘ ’
origin gf these higher order terms is twofold. They have been shown to -
be ﬁresent as a direct conseduence of fhe-superexchaﬁge mechanism (Huangg
~ andAOrbach, 1964). 1In addition, and what is believed to be more important,
. is the fact that any magnetostrictive ' system with a bilinear Heisenberg
interaction.between spins and Hooke's law type interactjon between atoms -
can be represented by a Hamiltonian with an effective interaction biquad-
ratic in épin operatorg (Néel, 1954 and .Kittel,-1960).

To see this consider the Hamiltonian

o 2 aJ . .

H.— k(a-ao) - 2(J0 + 53-(a-a0))§i-§j ‘ (7.1)
for two spins §i and Sj separated by a distance a. Minimizing the Hamil-
tonian with respect to the separation distance, a, between the spins we
get

= - - (3dye .
= 0= kla-ag) - (5)8;°S;

ala>
A E:
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_which gives ‘ .
o IR oy .
‘(?"ao) =k (a

J —‘ .:‘4'.
a)S S i ]

and replac%ng'th{s in the Hami?tonian (7.1) giveé -

‘*.*'-'2‘3'051 S5 . ( )(S S) B (7.2)

C}Hwhere we have assumed (——JZ}S a constant. It is imnortant to ndte that |
as k must be.positive, the b:quadrat1c term must give a negat1ve contr1-

. bution to the total energy.

Interest in bwquadrat1c exchange 1nteract1ons has been present-
throughout the last three decades. However it. resurfaced after somewhat \
of an experimental dormancy recently, due- to d1rect spectroscop1c neutron
" measurements of the tran51t1ons between Mn +2 pair and tr1ad levels in the
| magnetic system CsMn0 28Mg0 728r3 (Falk et al. 1984 and 1985). -This system
_ has the 'same crystal structure as CsMnBr3 and is .a. very good representat1on

of a onejdwmenSIOna1 magnet1c system Inc1us10n of diamagnetic Mg - 2 ions

+2

in the crystal matrix at the Mn = site means 1t is very easy to ISolate

magnetically pairs and triads of Mn +2 ions. _

Since these measurements show ‘that b1quadrat1c exchange effects
are éppreeiab1e=in CsMnBr3, we seek here to investigate whether b1quadratic
‘exchange effects can be discerned jn the magnetic properties of pure one-
dimensional magnetic systems consisting of unbroken chains of Mn+2 ions.
It was po1nted out by Falk et al. (1984), and is somewhat 1ron1c, that
the most powerfu] probe for investigating the deta11s of magnetic systems,
neutron scatter1ng, js inappropriate for observing effects from biquadratic

exchange in these pure systems. This is because the biquadratic exchange

term has the same spin symmetry as the bilinear term and hence, to 2 good -



' exchange term alone. -

7. 2 The C1ass1ca1 He1senberg Cha1n

‘*.approx1mat1on, the 1ne1ast1c spectrum can be represented by an effecf1ve

- .

e As ment1oned in Chapter 1 of this thesas, F1sher so]ved exact?y '

for the stat1c behav1our of the, one- d1mens1ona1 ¢lassical He1senberg system

with nearest‘ne1ghbour exchange,'nn 1964,. The suscept1b111ty is g1ven by

-

- g uBN(S(Sﬂ)/3kT)(1+U)/(1-U) N )
where L - L e e el e e e e o ) - i i
© u = coth %--:x - | (?-4) - )
“and . | N : |
= kT/(235(S+1),

-~

‘with 9 =-2 for a spin only system, us-the Bohr magneton, k BOltzmann's

COnstant and T the temperature

KT X- depends,on1y on the ratio kT/J for given S and we have p1otted

'_this'in f1gure Gl for an ant1ferromagnet (J< 0) with S = 5/2 ThiS is com-

pared with the experimehtelIy-determined susceptibiTities of the quasi-one-
dimensional mater;els CsMnBry (Eibshitz et al., 1977 and Fitzéerald et al.,
1982), (CHy) NMnC15 (THMC) (Dingle et al., 1969 and Walker et al., 1972)
ang CHyNH MC1-2H,0 (MMC) (Simizu et al., 1984). It is immediately ap-
parent that the values for MMC lie cons1stent1y below those for CsMnBr3 and
TMMC, which are re1at1ve1y well described by Fisher's expression.

The authors of the MMC analysis e1aim that the discrepancies can
be'aceounted for by an approximate correction (Weng and Griffiths; un-

published) which reepgnizes the finite {hence quantum mechanical) nature of

- S5, MWe hive also shown this approximate result in figure Gl by using the

~
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Plot Of this unpublishedSvork used by Sinuzi et al. (1984). This plot is

consistent with the‘approxjmate theory's'USe by Fitzgera]d et al. {1982)

in their ana1ysis of'CsMnBr3 As all three of the systems cons1dered have
5/2 this correct1on shou]d apply equally in a11 cases. He are Ted

to the conclusion then that the systematic d1screpanc1es are not pr1nc1pa1-

ly due to quastum effects but rather to small def1c1enc1es 1n the Ham11ton1an

1tse1f

7.3 The C]ass1ca1 He1senberg Chain with Both B111near and Biquadratic
Exchange

B1quadrat1c exchange as well as bilinear Heisenberg exchange can be

included in the ana]ys1s by cons1der1ng a Ham11ton1an

-

H = -2J5(S+1) T {§.-§. + afS.+S )2} o (7.5)

where .the sum is over nearest neighbours a1ong the cha1n and the vectors

S are c]ass1ca1 un1t vectors whuch can take on any orientation 1n space

-
-

This model Hamwlton1an has been cons1dered by severaI authors

' (Luu and Joseph, ]971,\L1u and Joseph 1972 and Nagata and’ Yamamoto 19?7)

in addtt1onuan equ1§a1ent form -

- -

2

(s1 Si (7.6) .

-

CH =208 (S.-S. .} - 4K
iosveIml

alsa_occurs frequently in the literature. \ The relation between the bi-
.quadratic exchange strengths, K and.a, use

-

= Ja/ [25(S+1)]

-

_,'-’

in these Hamiltonians is J/
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appea11ng way of produc1ng agreement between the ca]cu1ated and measured -

suscept1b111t1es In a11 three cases the theoret1ca] express1on wlth bi- :

h A 11near exchange a]one déscribes the measured suscept1b111t1es at h1gh tem-
‘peratures where sp1n correjations are sma11 but overest1mates “the suscep- .

-t1b1]1ty at low temperatures where the spin -correlations are h1gh Because -

it goes:as (S *Ss ]) rather than (S S ]) the b1quadrat1c term 1s most

-1mportant at low temperatures .and re1nforﬁ§s the. ant1ferromagnet1c interact-

< jons thus reduc1ng the suscept1b111ty and bringing theory and exper1ment

into agreement . o ) S

Liu and Joseph (1972) have soived exactly the static behav1our of

\..

the Ham1Tton1an with b1quadrat1c exchange included as we11 as the more -

general model Hamiltonian (Liu and Joseph, 1971)

SER{CINY

‘where f(S S +]) is a well behaved function of the 1sotrop1c product

S S 4] thus including 1nteract1ons of h1gher ordel in the spins as we]].
" The solution for the suscept1b111ty of the Hamiltonian w1th bi-
quadratic exchange included {(equation (7.5)) is of the same form as equa-
tion (7.3) with -
. E! 1 o .
= = !
Fsim@ewlgay ) 1 g
& (2a) ’
Ja .exp(zz)dz : |

Where a (ax)'o's(l-ég)IZ

(ax) 02 (142072

o
1l
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The resu1ts of f1tt1ng th1s express1on to the exper1menta11y -deter-

o~

m1ned sxngle-crysta1 suscept1b1l1t1es of CsMnBr3,,TMMC and MMC are shown

rn f1gure GZ and the top pane] of f1gure G3. ‘Atso shown for compar1son 1n‘-i"

B al] three cases is the best fut to the exper1ment of F1sher S express1on
(equat1ons (7 3) and (7 4))

In a]l three cases the f1t 1s c1ear1y super1or when the express10n
w1th b1quadrat1c exchange is oSed -This 15 espec1a11y pronounced for MMC
and CsMnBr3 as the exact express1on for ‘the classical system with b111near\\

’ exchange a]one does not describe the suscept1b111t1es we11 for temperatures
such that JS{S+1) > kT that is be]ow where the suscept1b111ty “turns over":
The best f1t w1th b111near exchange alone is better for TMMC However a
~ better Fit st11] can be ach1eved us1ng the express1on w1th b1quadrat1c
..exchange IR T,

-

The b111near and b1quadrat1c exchange values taken from the best

fits are: ' B
CsMnBry : J = -0.785 meV K = 0.0040 meV (& = -0.089)
MC i = -0.2535 meV K= 0.0019 meV (o = -0.13)
TMMC . J = -0.55meV K = = -0.05) .

0.0016 meV (a

1

Biquadratic exchange'nakes.the Targest-re1ative contribution in MMC and

the smallest in TMMC, however the magn1tude of the b1quadrat1c exchange 15.,-

u

1argest by a factor of two, in CsMnBr3

The'1nc]us1on of higher order exchange effects, particularly bi-
- cubic, as calculated by Liu and Joseph (1971) could a]lev1ate the s11ght
discrepancy between experiment and‘%heony which treats b1quadrat1c exchange
in MMC.' A bicubic term in the Hamxltonuan of the form +K' (S1 .S, ]) with

K'>0 would be necessary to aga1n reinforce the antiferromagnetic interact-
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jons ‘and further 1ower the theoret1ca1 suscept1b11rty values. However these
‘1nteract1ons wou]d be expected to be most’ 1mportant at 1ow temperatures _

: where weak an1sotrop1c d1poJar and ‘singie 1on 1nteractions become dom1nant

At 1ow temperatures the meaSured suscept1b111t1es d1sp1ay an1sotrooy -

| with x(HIIc) > x(H]c)» where ¢ is the chain axis. This. is due to the weak

e d1p01ar and single ion an1sotrop1c 1nteract10ns which tend to make the plane

/ﬁgrpend1cu1ar to ¢ an easy plane. The Ham11ton1an we have considered thus

T

“Far conta1ns no such terms and’ hence we expect our resu]ts to 11e somewhere
between the two ¥ va1ues at these temperatures, which they do. Approx1mate
theories which deal with th1s an1sotropy have been deve1oped both for_the ‘
-bilinear. Ham11t0n1an (Walker et al. 1972) and the Hamiltonian with both
b111near and b1quadrat1c 1nteract1ons (Yamamoto and Nagata 1977). However
it was found that for the cases we c0ns1dered a more favourab1e c0mpar150n
to exper1ment was afforded by a Monte Carlo calculation of x for CsMnBr3
The Monte Carlo ca]culat1on treats all the interactions exact]y, as ex-

plained in the preceding chapter. These resu]ts will be discussed Jn\the

next section. - : , ' _ . \\\\\\\\;H
Of course, each of these materials undergoes a magnetic phase tran-

sition to a.three-dimensionally ordered state at_sufficient1y Tow tempera-
ture. This is due to the weak inter-chain interactions as a tru1y one-
dimensional system with short-range'interactions disp]ays no long-range
order for T>0. Hence all our analysis is restricted to temperatures.at
which the inter-chain correlatdons are believed to be' negligible and these

weak three-dimensional interactions average out, this is above ZTN.
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-

7 4 Monte‘tario Treatment of CsMnBr,

“In ‘order: tb destribe a real system, the Ham11ton1an sh0u1d conta1n
dipo1ar 1nteract1ons and single ion an1sotropy terms. In this case there 1s
no exact so]utwon for the suscept1b111ty, and we have.used the Monte Car1o
method I ' : f - 2 ) L

-

CsMnBrs alone was treated in this way; because the anieotropy is

stronger than in TMMC (Chapter 3, this thesis) and more important]y because

deta11ed spectroscop1c information regard1ng the strength of the b1quadrat1c

exchange term is ava11ab1e for CshMn Mg,  Brs only (Falk et a]., 1984 and

- 1985). ' |
The Ham11ton1an

2 . Zo2
) § 5131+1

- 4K ? (§1 §1+I

+ 2ugH“ > s?
h |

was used in the simulation, with parameter values of J = 0.}65 meV, K =
0.0040 meV.and § = 0.03 meV. H™ represents a magnetic fie1drapp1{ed‘a1ong
the o direction As weé will see these parameters are appropriate for
CsMﬁBr3. Exper1mentat1on w1th other parameters was a1so carried out.

The Monte Carlo calculation proceeded by the Metropolis algorithm
for a chain of.c]assicaT_spin vectors, as deseribed in the preceding chap-
ter. Qur results, which are shown in figures G3 and GS are for a systeé
of 1000 -spins where we heve executed 4000 MCS/spin. The firet 1000 MCS/
spin:were performed without'usieg the confjgurations in determining the
average value of the observable: in this case the observable is the in-

duced moment along the field direction.
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F1n1te s1ze effects are not- expected to be 1mportant for th1s 1ength
of chain’ at the temperatures we are cons1der1ng F1sher s so]ut1on of the
statics, of the cIass1ca1 one- d1mens1ona1 He1senberg system. g1ves a corre]a-
s t1on length of- about 10 Mn-Mn spac1ngs at ZOK (our 1owest temperature con-
s1dered) for an exchange interaction strength appropr1ate for- CsMnBrBt Thus
our system represents 100 correlation lengths at 20K and of course more.
at higher temperature. Just the same we experimented wtth doubling and‘
tripling the size of the‘system'fof selected values of temperature and field
and no chahge ia the determination of the observables was found.

As already stated, eeui1ibration can be Ehecked at 1ow'temperatuies
by 1ook1ng for dependencies in the observables on drast1ca11y different
starting conditions. Towards this end, we examined systems started off
compietely at random,as well as those started off 1n a completely ordered
state. ~The ordered state .corresponds to a11 spins lying within the easy
plane {perpendicular to'the chain ax1s) and exactly ant1para11e1 to both
of their nearest ne1ghbours. No difference was found in the determtnat1on
of the suéceptibi]ity as a function of temperatdre between either starting
configuration. In addition some experimentation was carried out on the .
“oumber of MCS/spin performed as well as the number executed before con-
figurataonswereinc1aded in~the thermoﬁynamic averaging.

The susceptibility is derived by calculating the average 1nduced
moment along the field d1rect{on for three different strengths of f1e1d
10 kgauss, 17.5 kgauss and 25 kgauss. Each of these calculations is,

‘done independently with different random start1ng configurations for ‘each

value of field. The approximate uncertainty of each induced moment is

calculated according to equation {(6.1). These values for the induced moment,

) 3



along with'their apbroximate'encertainty;ahep10tted Versue'applied tieid
and the best f1t straight line wss fitted to the data, . subJect to the con-
. stra1nt that the 1ine passes thr%ugh the or1g1n A typ1ca1 p1ot is shown '
“in fiqure G4 In alI cases the straight line f1t Wwas very good 1nd1cat1ng
that the f1e1ds chosen were not so high as to 1nduce non-linear f1e1d de-
'pendencieson the susceptibilities. 'Of course, the suscept1b111ty_1s given
by the slope’ of the induced moment versus field plot. o _ .

With all our information taken -into-account we estimate that our
determ1nat1on of x is accurate to within ~ 1,5x]0 _uB/(G-sp1n),'a1most
independent of temperature over the. range cons1dered

The results of the Monte .Carlo ca]cu]at1on far CsMnBr3 are pletted
along wwth the expervmenta]Jy measured x(T) in the lower panel of figure
G3. Ciearly.the descriptigh 6f.tha;experimeht by the calcu1ation is very

-goqd- 'Ihe splitting between the susceptibilities measured with H:elong

the. chain axis and'perpenqicu1ar to it-are in agreement with the caIculatioh

to within the quoted aceurecy
F1gure G5 shows the two mea5ured suscept1b111t1es (1n the two
-symmetry directions) at 20K on]y We have p]otted the results of the Monte
Carlo simulation with bilinear exchange of 0.775 meV (very close_to'the
value of 0.785 meV used in figure G3) and dipo]ar interactions of 0.03 meV
{as in figure G3) hut we gradually "turn on" the biquadratic exchange jn-

teractions. Agreement with experiment can only occur for 0.003 <K< 0.006

meV for H perpendicular tocand 0.0035<K< 0.0085 meV for H along c. These

values are consistent with the value K = 0.004 meV obtained frqm the best

fit to the full temperature dependence of x obtained in the preceding sect-

“ion, which ignored anisotropic interactions.

t
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Figure G4:

H (kG)

Typical data from the Monte Carlo simulation is shown for
fwo different temperatures and trial parameters in simulating
CsMnBr3. The error bars originate from the approximate
expression given in the text and the divergence in the high
and low siope line fits to the data give the quoted uncertain-
_ty of ~ 1.5x10-7 ug/6 for the susceptibility. It is seen
that no non-linearities in the induced moment with applied
field could be detected over the field range considered.
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The susceptibility per site in the two symmetry directions,

as determined from the Monte Carlo simulation, are compared
to experiment for CsMnBry” at'T = 20K for different values

of the biouadratic exchange. For J = 0.775 meV and a dipelar
interaction strength of & = 0.03 meV, the biquadratic ex-
change interaction lies in the range 0.0035 meV< K< 0.006 meV.



. 5 D1scuss1on

- - . . . - - ) -

:'b "~ ur d1scuss1on focusses on two pounts Firétly,lhow can we recon- .
~ cile the Hamljton1an parameters known from neutron scattétﬁng‘neasurenentsQ 
cf-the_spin @aves in- these compounds, to those determuned by ana1y51ng the-
éusceptibiTities3 To: the—best of our- know]edge, no. deta11ed sp1n wave .
nmeasurements:have‘been de on MMC, hence our. d1scuss1on will concern only -
CsMn§r3 anH fMMC' Second1y, how does our determ1nat10n of the biquadratic _
‘exchange‘eneréy in CsMnBr3 compare wwth d1rect spectroscop1c neutron measure-‘
.ments made on CsMn Mg1 Br3 by Falk et al.? |
The determ1nat1on of the nearest ne1ghbour exchange constant is -
complicated by one factor. This_is that the Néel state is not the quantum-'
mechantca1 ground state so.that zero pqint'mction extsts even at 7= d.
This has beén'investiga%ed by several authors (Anderson,*]ész and Oguchi,

1960) and it results in the spin wave: d1sperswon reTatlon being written (for

-nearest ne1ghbour b111near exchange anne) as

fiw = -4JR$ sh'n(qcn) - - - (7.9)
with R = 1.07 for s = 5/2. |
CTassica11y the Néel state is the‘gtbund state (ell spins anti-

parallel to nearest neighbours) and R=1. These resuItgrfor the correction

-
-

factor, R, assume an ordered-state which actuaT1y does not exist for our
case. . ' |

There is only rough agreement hetween the bilinear exchange constant
fonnd in either TMMC or.CsMnBr‘3 taken from the best fit to hjsher's clas-
sical e;pression for the susceptibi]ity-using bilinear exchange alone cnd_

the value taken from the neutron measurement of the spin'wave.dispersion.



g These va1ues are -0 569+ 005 ‘meV- and -0 82* 01 for TMMC and- CsMnBt3 respec- '

'f t1ve1y However the.ma1n po1nt we have made 1n this chapter 1s that th1s

'A_express1on for the suscept1b1T1ty does not f1t the exper1ment for kT <"‘

‘.JS(S+1) for the two cOmpounds. w1th the effect more pronounced for CsMnBr3

" than forTmC. © - T | _
The spin’ wave d1spers1on re]at1on‘for a system w1th both nearest
_neighbour b111near and-o1quadrat1c exchange haslbeen calculated by Falk
et al. (i984) TheyIQEt the‘eame expreseion'as given by eouation (7.9) .
'1 except that - J is repJaced by [d- -axs? l. We find that for both CsMnBr3

) and TMMC the exchange paFEmeters are cons1stent between the two methods

_of determ1n1ng them, suscept1b111ty and sp1n wave dispersion. However

" now we have the consrderab1e advantage of hav1ng the ca1culated suscept-

1b111ty descr1b1ng the measured suscept1b111ty at all temperatures consi-

dered

- The second point is how does our ana1y51s of b1quadrat1c exchange
{h CsMnBr3 compare w1th the neutron spectroscop1c measurements of Fa]k
etfa1.? “Fheir initial measurements were made by examining the exchange
sp1ittjngsqof Mh+?-pairs in CsMn;TéBMgO.7zBr3rﬁ As CsMhEr3 and CéMgBr3 are
isostructoral with essentially thelsame unit1ﬁﬂ} dimensions, the comparison
. of our work on CsMnBr3 to thefr work on CsMnd_28M90;728r3 is relevant.
On the basis of four observed transitions they obtained a very good

fit for the bilinear and biquadratic exchange coostants.c.They obtained

< .

‘!

-0.838+0.005 meV

,C
k
"

-~
1l

0.0022+0.0002 meV.

~ This gives biquadratic exchange which is roughly half that determined by us.

J



Subsequent work by th15 same group exam1ned trans1t1ons between Mn 2

11near tr1ads in the same crysta1 They obta1ned three measured transitions

' wh1ch they then fit-to three exchange parameters, now 1nc1ud1ng the next

nearest ne1ghboun.b1]1near exchange constant.- A1though/a un1que determ1nae
; tion of the exchange parameters could have been achieved, FaTk et a1. chose
'. to retam the bi quadrat1c exchange constar.dentmal to that determmed in

the1r Mn 2 pair work : They obta1ned a reasonab1e descr1pt10n although small "

d1screpanc1es are. present,_w1th . _ T

.-....

J = -0.816:0. 002 meV
- o Jt = -0.010:0.003 meV
.. K= 0.0022:0.0002 meV as before

- where J' is the next nEarest neighbour bilinear exchange constant. As before

this biquadratic exchange value js7a factor of two smaller than the one we

- determined.

. -

However if the unigue determ1nat1on of the three exchange parameters

is made from the three Mn+2 triad transitions observed then we obtamn

\

J = -0.771x.002 meV

K = 0.0042+.0002 meV

i

30 = -0.0132.003 meV .
. \}? . - -
which is in agreement with our analysws of CsMnBr3
Although we do not: understand why the strength of the biquadratic
exchange 1?1eract1ons should be greater in Mn 2 triads and pure CsMnBr3

than 1n-Mn +2 pairs, it is not unreasonab1e that both the bilinear exchange

gradient near the equilibrium atom separat1on, alJ/3a, and the stiffness
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S
“constant of a Hooke s law type 1nteract10n between nearest ne1ghbour atoms,

change as Mg~ 2 ions are replaced by Mn *2 jons. The- p1cture resu1t1ng from

our ana]ys1s prov1des cons1stency among our ca]cu]at1ons the suscept1b111ty

Sy
work and neytron scatter1ng work on the spin waves in the "pure“ CsMnBr3

as well as in the neutron spectroscop1c study of linear triads of Mﬁ+2

CsMn
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. o CHAPTERB
'CROSSOVER BEHAVIOUR AND SOLITONS IN AN
ANISOIROPIC HEISENBERG CHAIN
8. -Ihtroduction e -
‘The presence of. d1po1ar 1nteract10ns between magnet1c moments 1n
5011ds 1mp11es that we can ant1c1pate the overa11 1nteract10n to be aniso- -
trop1c even for S state magnetic moments we have already p01nted out that
-for the magnet1c che;gﬂéystems CsMnBr3 and TMMC the d1po1ar Jnteract1ons
result 1n the formatuon of an easy p1ane at suff1c1ent1y 10w temperatures :
| | A]%hough these an1sotrop1c 1nteract1ons are weak (compared w1th
the 1ead1ng exchange 1nteract1ons) their effects are be11eved to be qu1te
profound on ‘both the ‘static. and dynam1c propertnes of these mater1a1s at
low temperatures " As the temperature 1s reduced the system must cross-
over from be1ng Hewsenberg -1ike to being XY-like. Sp1n correlat1ons will
be different for spin components in the easy piane and perpend1cu1ar to-
the easy plane; neither correlat1on w111 be in accord with what is expected
fpr aptlassicaI Heisenberg chain. In addition, there is'the prediction-by
Mikeska of 'the existence of Jarge, non-linear f1uctuat10ns in the -spectrum
of out-of-easy p1ane fluctuations for such systems (see Chapter 4, th1s
_thesis). These Sine-Gordon solitons would not be found in the 1sotrop1c
Heisenberg system (elthoégh so-cailed "puise" so1itons may .be {Tjon and

Wright, 1877}}.

-
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ho exact'solotions'eiist for“miked'ﬁeisehheré‘and'XY'systems'Cas\Ti

d1scussed in Chapter 7 th1s thests), hence 1t 1s usefu] to app1y numer1ca1

.techn1ques to these problems werhave app11ed the Monte Car1o method to

:exam1ne the features of the sp1n corre]at1ons w1th1n the crossover tem- S

:perature regton ~The s1mu1at1on prodhces two types of resu]ts In sect1on
:8 2 numer1ca1 ca]cu1at10ns of the spin correTat1ons in the symmetry d1rect-
-1ons are. shown In sect1on 8 3 th; crossover behaviour is ddrectly exam1ned
:'by Took1ng at "snapshots" of the conf1gurat1ons of the. ensembles of spuns
'a1ong the\cha1n as a funct1on of temperature These conf1gurat1ons are
-exam1ned for the ex1stence of out of-easy plane so]1ton Tike f]uctuat1ons

: Throughout we have used the Hamiltonian
. (81

+ 8 z s 51+1

= 'ZJ;§ﬂ§i'§i%1

| with'numeraca1 values of J = -0.88 meV and 6 = 0.03 MeV which are

'approprxate for CsMnBr3 (Chapter 3 th1s thes1s) Note that this Hami]tonian

is conswstent with equat1on (4 1) It is be]1eved however that the results

‘will have a more genera] app11cab111ty to other one d1mens1ona1 systems

8.2 static Spin Corre1ations

A spin:correlation length, Ed, can be defined according'to the equa-

L]
. -~
o

tion

Qe 1y
<Sisi+n> v exp(-hga )

where o is one of the erthogonal axes,'x, y or z. For easy plane symmetry
there are two correlation Iengths of interest','ax and Ez. Exact expressions

are known for the correlation lengths of both the classical XY chain (Wegner,

oy
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- 1964).and" the claseical Heisenberg'chain (Fisﬁer, 1964);. at low temperatures .- -

'they d1ffer by a factor of two for the same exchange parameters. \

The effect of anlsotropy on the sp1n corre]at1ons of -2 He1senberg

cha1n has been stud1ed via transfer matr1x techn1ques by two sets of authors ;'

f-;Love]uck et al. (1975) exam1ned the case where the- an1sotropy is’ s1ng]e jon :
like, _A E (Sz)z, and cou]d produce e1ther easy plane (+A) or easy d1rect-
-e1on (-A) an1sotropy Hone and Pires (1977) exam1ned'the_case of ‘the system:--
" where the an1sotropy takes the form E (S S ) and a'strength Speei%ic to
' l:TMHC Both sets of authors solve for the correlat1on 1engths in tenns of
‘e1genva1ues of the resu1t1ng e1genva1ue equat1on of. the transfer matrix

formalism.

The zero temperature properties of a classical system described by

eggation {8.1) are known exact]y; The spins will be antiparallel to near-

- .est neighbours and 1lie within the easy (x-y) plane. In a truly one-dimension-.

al system, long range order exists only at zero temperature. Thus it is not

-

. surpr1s1ng that only the in-plane (a=x) corre]at1on 1ength diverges at zero

" temperature, while the out-of-plane correlat1on 1ength is expected to go to

some, finite value, as at zero temperature the spins have eon&ensed {hto ;he
easy p]ane. These expectations are borne out by both studies but fhei also
find. a ma;imum for the out-of-plane correlation 1ength;at noqezero;tempera-
ture. i < |
" We have numerically calculated the static spin-pair correlation

funct1ons for both symmetry directions <ST 51+n e = x;z for n less than
twenty-five. This has been carried out for temperatures between 5K agd 50K
by & classical Hoﬁte Carlo simu1a£ion. The system censisted of a ring of

1200 sites started from a compietely random configuration of spin orienta-
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‘Tt1ons,' After, the f1rst 16, 000 MCS/sp1n had been performed 80 conf1gurat10ns, “_p "f
‘geparated by 50 MCS/sp1n, were used to ca1cu1ate the-averages Poss1b1e ef—
| fects of f1n1te system size and equ111brat1on times were dea]t w1th by'the
methods descr1bed in Chapter 6 No quant1tat1ve analys1s of the uncerta1nty -
: assocnated w1th the s1mu1at1on results in th1s chapter w111 be attempted

i Rather some est1mate of the uncertainty can be obtawned by exam1n1ng system-‘

at1c d1screpanc1es of the simulation= data from any reasonab]e fit to the

same data. The resu1t1ng corre]at1on funct1ons were f1t to the express1on

<s§s§}ns’= (-1)“150(1)]2exp(-n/EQ(T))

and E (T) as.well as S (T) were extracted from- the data.

Representat1ve .data and the correspond1ng f1ts are shown in f1gure ‘
ng- In all cases va1ues of <S8 S1+n> be]ow (2 ] /3 were not used in the gits
It is clear that the fits are very good even for correlat1ons beyond. the
character1st1c 1ength assoc1ated with this value ) _

We are fortunate in dea11ng with thns system that there are exact )
results for SG(T) in the 1imit of zero and infinite temperature, and it is
@ very useful check on the whole simulation to see how well our data be-
'_haves in these 1imiting cdndftions. At zero temperature the spins have
condensed into the easy piane, hence Sz = 0 for all i and <(S¥)2>= S(s+1)/2.

At infinite temperature the anisotropy is not thermodynam1ca11y relevant

and <(Si) > = <(Si) > = S(S+1)/3. . ~
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Figure H1: Represéntative data from the numerical calcu]atioﬁ of
(-1)"<s% $%, > for both in-easy-plane, o= X, and out-of-
easy-plane, a= 2, correlationé arg shown. The solid 1i2es

2 are the fits of the data to [S%(t)]zexp(-ns;](T)): vThe
. resulting S%(T) values are shown in Figure H2 while the

correlation lengths, eu(T), are shown in figure H3.
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T]?E'quantity S%(Tj,? Jk(s°)2> s plotted versus temperature in
fipure H2. It is clear that a very reaSOnab1e 1nf1n1te temperature extrapo-.
lation of % (T) is J§(S¢TTT§ wht]e it is d1so very reasonable 10 extrapolate
0(T) at zero temperature to VS(S¥1)/2. Our data show a monoton1c decrease |
of SO(T) u1th temperature, but the most dramatic drop in this quant1ty
R _with temperature must occur below 5K. We conclude that our data are con-
‘ sistent with these exact results and this important check on our simulation
is satisfied. . ' Co
The resu1t1ng\corre1at10n lengths as & function of temperature are
" ghown in figure H3. It is clear that there are large differences between
in-plane and cut-of-plane corre1at1on 1engths below 20K. As expected the
in-plane corre]atiOn'Iength appears to be proceeding towards a divergence )
at zero temperature while the out-of-plane correlation length seems tp be

§ e ——

. tending to a finite value at zero temperature. No maximum in the out-of- ,
plane correlation length J: found above 5K in the cimulation. This isin
apparent d1sagreement with the work of Honme and Pires, which showed a weak
maximum in the out-of-plane correlation length for TMMC at about -9K. The.
strength of the easy plane an1sotropy 15 greater in CsMnBr3 than ~in THMC'
-(Chapter 3, this thesis). The work by Lovelucket al. suggests that ‘this
should push the maximum in the correlation length to higher temperatures,
and thus such an effect should have been observable. ‘ -

’ It was pointed out by Loveluck et al. that the correlation 1ength‘

defined in terms of eigenvalues of equations resu1t1ng from the transfer ///75

matrix formalism do not produce exactly the same resu]t as that pbta1ned

using our definition. This discrepancy could then 1ie in the differing

e

~)
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Figure H2: Values of v (Sa)2> = Sg(T) extracted from the simulation
data are shown as a function of temperature. The lines
drawn are quides to the eye consistent with zero and
infinite temperature properties of the classical Heisenberg
chain with easy-plane anisotropy as described in the text.
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. ing experiment are the spin-pair correlation functions at a particular

-

’ K L . A" . 7‘- K ‘ .‘j’sa‘-?

* definitions of thezcbrrelation length. fHowever we do not see physically

why a- characteristic correlation length should fa11 off with decreasing

: temperature as the transfer matr1x formalism suggests—at Tow temperatures.

The exper1menta1 detenn1nat1on of the corre]at1on 1engths is very
®
d1ff1cu1t for the anisotrop1c cha1n.l For the isotropic He1senberg chain

the correlat1on Tength can be extracted from quasi-e1astic neutron scatter-

‘1ng measurements acfoss the magnet1c zone centre (actuaTTy, across the r1dge

of .the maXImum of the wavevector dependenit suscept1b1]1ty) This type

of ena1y51s has been applied to measurements on CanBr3 (Fitzgerald et ai.,
1982) end TMMt (Birgeneau et a].; 1971) in their paramagnetic regimes.

The problem resides in the fact that what is measured in a neutron scatter-

wavevector transfer, Q, and energy transfir, 4iw, for components of spin, a,

‘which are perpendicular to the Q'of the scattering event. Thus, if aniso-

tropy is present in a system,-a superposition of correlation functions is
usually measured and some average correlation length‘then extracted if-
analysis in terms of an isotropie Hejsenberg chaie:is.used. .

The correlation length extracted from quasi-elastic.neutron scatter-
ing data by Fitzgerald et al. 1§ plotted on tte same graph, figure H3,as
our results for the numerical extraction of the correlation lengths for

-

a Hamiltonian relevant for CsMnBr,. It-is clear that their results lie
between the two. correlation lengths at lower temperatures. -
Unfortunately there does not appear to be any easy way of determining
the two correlation lengths Tndependertly via quasi-elastic scattering.
To our knowledge the best treatment has been by Boucher et al. (1979) who

examined both the Heisenberg-XY transition of TMMC and also the XY-to-Ising
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transjtion in the same'compound on.app1icetion of a magnetic field in the
eesy;plane. .Here the theoretical corre1ation'functions.were averaged to--
gether to compare with:the one experimenta11yidetennined_character%sttc
corre1at1on 1ength f S T —_—

- The presence of the easy p1ane produces 1nterest1ng temperature
dependenc1es for some of the static sp1n corre]at1on funct1ons. Out of-
_easy plane spin components Wwill only appear at finite temperatures. Thus,
as opposed to -the in- p1ane corre1at1on funct1ons wh1ch all fall off‘w1th

1ncreg§3ng temperature, some of the out-of-pTane corre]at1on functions

will peak atffinite'temperature-as these correlations must be thermally

excited before they can fall off. This is shown in f1gure H4 for <s? S1+n>-

wfth n=4,5,6 as a function of temperature. A mild peak is present in

these plots at rong]y 17K.

8.3 prn Conf1gurat1ons and 0ut—of-Easy P]ane Solitons

The qualitative features of the crossover from XY to Heisenberg

behaviour can ‘be observed d1rect1y by ‘the Monte Carlo method. The s1mu}ation

" ¢an be run end stopped at will to allow "snapshots" of the system to be‘
made up as a function of temperature.

This is what is shown in figure HS. The, spin configuration in the
anisotropic Heisenberg chain is best specified by the angle the spin makes
within the easy plane and some indication of the component of spin comino
~out of'the easy plane. Thus what we nave plotted is the angle within the
easy plane made by one sublattice relative to an arbitrary zero angle, as
ne11 as the square of the reduced out-of-easy plane spin components, S?

averaged over two neighbouring spins on each sublattice along the chain.



Figure H4:

The out-of-easy-plane static correlation functions <S?S§+n>
for n= 4, 5 and 6 are shown as a function of temperature.
The lines are a guide to the eye consistent with the absence

of out-of-ehsy—pIane spin components at T = (.

Al
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 Figure HS:

‘v

Spin configurations are shown as a function of

temperature in the XY to Heisenberg cross over’.

regime. The angles whith one” sublattice. of spins

make within the easy plane are shown on the Teft.
.The sdua}g of the reddéed out of eaéy'bfane-spin
3componehts,-(5f/l$1)2, averaged 6Qer neiggbourjﬁg
.spins on gaéh sublattice, are shown 6n‘;he>rigﬁt.

" Two -jumps by T within the easy plane in the 12.5K

configuration are identified as out-of-easy-plane

solitons.
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The system used in the simu]at1on cons1sted of a r1ng of 600 spins w1th
the same Ham11t§h1an, equat10n (8. 1), as before. .The *snapshots" were
- taken after 20,000 MCS/sp1n.' Each ensemb]e of Splns was started in a

different random configuration In ann’ cases: 1t wWas assumed that nearest

ne1ghbour spins on the same sub1att1ce d1ffered in ang]e w1th1n the easy

. - plane by an angle Tess than or equal to w.. At Tow temperatures the conse-

guences of this assumption are not important however it leads to some
degree of arbférar1ness in the d1rect1on of easy- p]ane angle change for
temperatures above 15K. Hence these temperatures are not 1nc1uded in th1s

anaIys1s

Some-of the qua11tat1ve features of f1gure HS are qu1te c]ear

From the reduced out-of-easy p?ane sp1n component dlong .the chain, 1t 1s

c]ear that very little Sz components are present at 2 5K and 5.0K, but

- .

they become much more prevalent as the temperature is further ra1sed At
1 -~

15K 1t.1s qu1te common to have spins at-fu]] deflect1on out of the easy

.'plane. ‘ o .

‘The con?igurations of the angleimade within the easy p1ane areuduite
1nterest1ns At zero temperature the configuration is known éxactly for

such "a ‘classical system. The ground state is the Néel state with all spin

vectors lying within the easy ptane. At non-zero temperature it seems that -

' ':there are three types of'configurations present At low temperatures, T< 5%,

there 15 strong short-range order but long- range drift is present. This is

to say nearest- ne1ghbour spwns on the same sublatt1ce make almost exactly

+

* the same’ angle within the.easy plane, but over a long distance.this angle

-

can drift by several revolutions. At intermediate temperatures, T~ 12.5K,
o : ..

L .

22
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the conf1gurat10ns display short -range drift but no long-range dr1ft Final-

. .

ly at high temperatures, T> 15K the confwgurat1ons d1sp1ay both long and
short -range drift. _ : ) : o o ’
What is 1ntenesting here is that the intermediateltemperature regime
“Bears a strong resemblance to configuratione-deScribednby out-of-easy plane
so]itons in the anisotropic Heisenﬁerg chain as. propoeed by Mikeska (i980)‘
‘and discussed in-Chapter 4 of this thesis. The so]1tons in this model cor-
respond physically to propagating domain walls which connect ground state
conf1gurat1ons that differ from each other by the 1nterchange of the -two ‘
sublattices within the easy plane. The_mot1on of the spins as a soliton . -
passes by is:to come out“;f-tne easy‘pIane acquire 1arge deflection outr
of the®plane and finally return to the easy plane m out of phase wnth their
pren}bus ground state M1keska showed that the motion of a parameter re- .
-lated s1mp]y to S ~could be mapped onto a Sine- Gbrdon equation of mot1on
~in the classical eent1nuum limit. ' These solutions were discussed in -
Chapter 4_of-this_thesis and.are given\hy equation (4.4). If we suppress
“the tine dependence by setting it to zero,'the configuration'of_the angles
the'spine'make within‘the easy plane, ¢ in equation (4.4), in the presence

of a single soliton is

o(z) = ¢0 + grsign(z-zo)[z -

Here z is .the pos1t1on along the cha1n and 2, is the position of the soliton.
1

..Thus the long- range behavmour of the sp1n conf1gurat1ons shou]d be quite
&

regular if this model 15 re]eyant



out-of-easy’plane solitons. 2
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Exam1nat1on of the c0nf1gurat1on at T=12.5K. ‘shows something qu1te

c1ose to th1s descr1pt1on Large stretches of sp1ns, correspond1ng to

-,about 100 sp1ns, are present wh1ch make the same angle within the easy

p1ane (if f1uctuat1ons w1th1n the easy p1ane about this value are averaged

out) He c1ear1y see two Jumps of roughly b occurr1ng within the easy

p1ane in’ the f1rst one hundred sub1att1ce 51tes These regions. are-exam1ned '

1n-greater deta11 1n f1gure H6. "Both sublattices are plotted by add1ng
m™ to the ang]e within the easy plane of one sublattice relative to the
other. In add1t1on the (S /\Sl)2 values are p]otted for both sub- -

-

1att1ces

It s c]ear that two_major excursions out of the easy p1ane are

present in the conf1gurat1on for the region p1otted The centre of -the
<

large excurs1ons corresponds to the po1nts where the = Jumps w1th1n the
-

easy p1ane occur. Elsewhere there are of course f]uctuat1ons present but

~ some sense of a grOund state of spwns 1y1ng within the easy p]ane can be

perceived. We conc]ude that th1s conf1gurat1on d1sp1ays the presence of

*

Chapter 4 of this thesis describes neutron scatter1ng measurements
of the soliton.response in CsMnBrB. This work exam1ned\dynan1c spin cor-
relations near zero-energy transfer and the magnet1c zone centre and
showed a qualitative difference betueen the in;plane and out-dtfeasy plane
spectrum of spin f]uctuatwons At 15K, the out-of—p]ane fluctuations
could be qual1tat1ve1y descr1bed by the presence of solitons as described
by Mikeska (1980). The measurements at h1gher temperatures did not follow

the predwct1ons of the noninteracting sbliton theory. This is seen to

be cons1stent w1th the present Monte Cario results as the soliton p1cture

pd

"
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Figure H6: The section of the 12.5K-‘configuration which displays the
two out-of-easy-plane solitons is shown in greater detail.
Each sublattice is plotted for (SZ/|S|)2, while the angles
one sublattice of spins make within the easy-plane is plotted
. along with those made by the other sublattice by adding m
to the angles of one subtattice.
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appears to be’ v1ab1e only w1th1n a rather narrow temperature range 1n the
JXY -to- He1senberg crossover reg1on “At low temperatures there are too few |
out—of-p]ane f]uctuat1ons present to g1ve rise to so11ton 11ke behav1our,
~ while at high temperatures the easy plane is not therquynam1ca11y rele- '
jant.' The creation energy of a soliton inmghis system (at zeto ve]ocnty) |
is EO = 4JS.JT§737 40K while the character1 tic energy of the easy plane

s = 20K, " | ‘

A,

Ear1ierAwork-examining soliton configurations in Monte Carlo simd-
‘jations has been‘done for the’c]assica1 XY chain (Gerling and Landau,. 1984;
Staudinger et al., 1985). By utilizing 2 numerical calculation of the spin
dynamics of these configurations, these authors were ab1e‘to examine, in’
one case anyway, the important consideration of stability. These-consider-
ations have been taken up theoretically for other systems (F]uggen and
Mikeska, 1983; Wysin et a11 193§; and Etrich et a]z 1985). The most rele-
vant treatments for our work consider the classical?antiferromagnet with
'eaey plane anisotropy and a magnetic field applied within the easy.plane.
. Both Fluggen and Mikeska (1983) -as well as Wysin et al .{1986) examine the
out-of- easy plane soliton mode in this system and reach oppos1ng conclusions
as to its stab111ty at small f1e1ds. Fluggen and M1keska predict the out-
of-plane soliton is stable for all values of applied field. Wysin et al.
predict the existence of a critical field only abeve which can a static or
zero velocity soliton be stable. The stability criteria due to Wysin et a].
'change_according to the soliton's velocity, and moving out-of-easy piane
solitons can be stable at lower fields. The case with zero magneti; field

has not specifically been taken up. . ) ‘e



| In add1t1on there is some concern as to whether stable solitons:

' ;1n c0nt1nuum systems becomevunstab1e when th1s unphys1ca1 cont1nuum ‘con-
dition is relaxed and .2 d1screte 1att1ce system cons1dered Etrich et al
(1985) cons1dered the discrete ferromagnet1c cha1n with easy plane aniso-

- tropy and a: magnet1c field app11ed w1th1n the easy plane. They. found
-cons1derab1e mod1f1cat1on to the continuum modes with two in-plane static
sol1ton modes possible. These modes d1ffer from each other according to

. whether the so%wton conf1gurat1on is symmetruc with respect to a sp1n,

or the bond between.two spins. The “bond symmetrwc" soliten was found

to have the ‘same, stability as the in-plane so]ut1on in the continuum model,

however the sp1n symmetric" soliton was found to be unstable for a11

values of field.

«y

We were not able to examine the stab111ty of these soliton con-
f1gurat1ons in the same manner as Gerling and Landau.’ However we d1d allow
these same configurations to evolve for an add1t1ona1 208 MCS/sp1n Con-
siderable differences are of course oresent. However one out-of-easy plane
soliten configuration was still present in elmost exactly the same position
a1oog the chain.while the cther was s1ightly modified but a sirong fTGEr
tuation out of the easj olane eas clear at the “correct" position.

Also present in the var1ous configurations are excursions of the
spins out of the easy plane, without an accompany1ng Jump of the angle
made within the easy plane by the spins. It is not clear whether these
are the superpos1t1on of a soliton with other excitations or some unstable.

configuration. One of these which is part1Cu1ar1y close to satisfying

s
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the criferia for what we expect a soliton configﬁration to 1007

“shown. in fﬁgdre'H?. The difference between the two configurations, K-
Quréé‘HG_and H7; js clear;. the excitation shown in figure‘ﬂj'is clearly )
not-an out-of-easy-plane soliton, though its correct description may be

in terms of a soliton of some other type.

-
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Figure H7. A large fluctuation of spins out of the easy plane at 3K-
is plotted in detail. “The change of the angles made by -
o the spins within the easy-plane is not sharp and thus this
’ ‘ type of configuration is not identified as being soliton-
like. The nature of this type of configuration is not clear.
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CCHAPTER 9 T . -
CONCLUDING REMARKS |

.This thesis has 1nvest1gated severa1 interesting apsects of ‘the.

one- d1mens1ona1 magnetwc systems CsMnBr3 and CsMn0 89Fe0 1]B,r3.— The

nature of f]uctuat1ons and impurities in one-dwmens1ona1 systems was pre-
viously known to be patholog1ca1 to long- range order. The object of this.

thesis was not to demonstrate this fact once again, but rather to use

these systems, where the fTuctuat1on spectrum of the system is so 1mportant

in understand1ng the phenomena, and thereby hopefully contribute to the

overall understanding of the dynamics and hence the statistical mechanics

of magnetic systems."

Specifically we examined both the delocalized (spin waves) and

_Tocalized (solitons) excitations of the one-dimensional, weakly anisotropic, .

Heisenberg antiferromagnet'CsMnBr3 at Tow temperatures with neutron scat-

tering tectmiques. Spin waves could, be observed over most of the magnet1c
zone and the. response compared favourab]y with theory which cons1ders co-
operative excitations in the absence of long -range order. A strong quali-

tatlve difference was observed between the spectrums of in-plane and cut-of-

“easy-plane spin fluctuations at small energy transfer an& near the magnetic

zone centre at 15K. The out- -of-easy p]ane fluctuations could be qua}1tat1ve-
ly descr1bed by Sine- Gordon so11tons as proposed by Mikeska. Soliton-iike
p1n configurations could also be observed directly in "snapshots" of a

magnetic chain system representative of CsMnBr3, produced by a Monte Car1o

simulation.
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'This.same'Monte;Qer1e siuu1atibn elso'déﬁonstrateé the strong dff;';.
ference betueen_in;plane end out-of—eesyfpiane_correTEtion 1engths'wtthin
the He%senberg'to-XY'chs50ver temperature regimetfor a system such asﬁ
CsMnBr | | | | o

3 - b Y ° .
We measured the 1ne1ast1c fluctuat1on spectrum of the. magnet1c 1m-

-pur1ty chain system. CsMn0 89Fe0 11Br3 at low temperatures by neutron scat-

ter1ng techn1ques.- The response was markedly different from either CsMnBr3

or previously studied magnetic-vacancy chain systems. Our results indicate -
strongAhost_model-impurity mode interactions are present, which arise as

a eonsequenee_of the system's one dimensional hature. -

Finaiiy we utilized. the calculatignal ease afforded by one‘dimension

to investigate the strengths of b1quadrat1c exchange interactions in

several pure Mn ¥2 chain’ systems, 1nclud1ng CsMnBr3. Our results showed that

'b1quadrat1c exchange has-an apprecwab]e 1nf1uence on the suscept1b111ty of! -

some pure Mn *2 chain systems, and checked nicely w1th neutron spectroscqp1c

o

In conclusion, the rich behaviour observed in these ' simp]e“ one-

d1mens1ona1 co- operat1ve systems made for an 1nterest1ng set of tOpTCS of o
R |

study.

. oamT
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