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T ABSTRACT

Vs

The adaptive control of 1linear discrete timeqt

-

multivariable systems is considered. A unifying survey of
a-numb&r of adaptive control strategies is présented. The
) =

'_various algorithms are shown to be gpecial cases of a more

r s

general algocithﬁ. The state space design of gelf-—tuning

controllers is cqnsidered in detail. 7Two new algerithms

for sgsFe space pole

aésignmentfeelf—tunins control are

proposed. . The first algorithm follows an explicit

w

. L .
was usgd for joint parameter and state estimation of an

approach, thﬁs a modification of the bdotstrap estimateor

innovations ﬁodgl. The resulting segéiiuning controller
~ )

is more efficient computationally thanﬁége methods basged

on block canonical forms\since a minimal real;zation can

be adopted. The gecond algorithm may .be regardéd as an

implicit pole agsignment contréller. The recursive

predicticon error algorithm is used for joint parameter and

state estimation in the controller canonical form. ' The

main contribution of 'this approach 1is that on-line
computation of transformation matrices is avoided. The
subsegquent computation of controller parameters is

trivial, and the resulting self-tuning controller is

robust to over—parameterization. To demonstrate a

practical application, the second algorithm was used to

design a robust autopilot for a simulated nonlinear model

i

iii
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of a Royal Navx frigate subjectéd to sea disturbances.

- The autopiléot was fourid to perform well for both the §.

Lag

daurhe‘keepiné and course changing modesg.-
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CHAPTER 1

1. INTRODUCTION

1.1 Background

The design of efficient contrdliers for physical
systems‘ requires an accurate _a priori knowledge of the
system dynamics. In practice however this information 1is
often not available since many systems are ;oo cgmplelﬁto
analyze. Also the*® systeﬁ' may be noniineér and  time
varying, in which case the linearized system parameters
will alter Jith time and set point changes. .Such problems
may be tackled by designing controllers which can adapt to
any detectable changes in the system dynamics.

The subject of adaptive control has received a great
deal of attention since the 1950°s. In" a recent survey
paper Agtrom [1l0], noted that over 1500 papefs have been

published on the topic.

Early work on adaptive control concentrated on model

referenée controllers (MRCsS ). Such controllers were
originaly designed for continous time models, based on
deterministic theory [29,57,70,74,81,92]. Later vpapers

[28,58,60,68], have applied model reference Lechniques- to

discrete time systems. The techniques have been extended to
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improve their performance in the stochastic environment in

e

[25,26,58,59,61].

Since th; early 1970'? however, the availability of
efficient micro—computers has made self-tuning céntrol the
more popular method for adaptive control. The two methods
are by no means Vunrelated. Several unification papers
(2,3,4,26,28,29,35,36,58,59,60,61,67,68],  have derived
general adaptiwve control algorithms for which the'various
discrete time model reference and self—-tuning control
algorithms are special cases.

Self~tuning control may be divided into two distinct
steps. Firstly, a recursive estimation algorithm is used
to estimate the unknown system parameters. At each
gampling interval the currént estimates are used to
calculate the controller parameters. The assuhptipn that
the estimated parameters are equal to the system parameters
leads to “certainty eguivalenca' control [9.161].

The- term “gelf-tuning’ applies if the resulting
contreoller parameters would converge to those values that
would ha;é been obtained if ihe system parameters were
known exactly.

The minimum .variance éﬁntroller of .Astrom (2,131
would lead to unbounded control for inverse unstablé (no;—
minimum phase) systems-‘ This is a severe restriction,
gince Buqh systems often occur in sampled data systems even

whep the underlying continocus time system is inverse stable



(Astrom et al. T121). -

Clarke and Gawthrope. [22] extended the minimum

-~ - .

variance‘controller by weight1;§ the control varigble. thus
making the gelf—tuning controller (STC) more wide{y
applicable. Their technique however is not foolproof. The
closed loop system stability would depend on a diophantine
equation relating the weighting pelynomials to the unknown
system parameters. Si;ce the p;rameter adaptation is doﬁe
implicitly it is not known =& priori how to choose the
weighting polynomials to .givel satigfactory c¢losed 1loop
perfomance. - '

Other techniques for dealing with non-minimum phase
systems include linear quadratic gaussian (LQG) control a?d
pole assignment:_ LQG control inveolves the solution of a
matrix 'Riccati equation 'or alternatively a spectral
fqﬁtorization algorithm, both of which require iterative
salutions hence aré unsuitable for on-line control, due.to
the limitaﬁion on ;omputing time imposed by the -samp;ing
intervals._. Furﬁhermore. the choice of weighting matrices

. )
.is problem dependent. U -

\ I

Recent work on adaptiveacoptrol héglﬁhﬁz been focused
on pole assignment objectives [14.30,31.32.41,100.101).
This approach has two main attractions. Firstly, it gives
a simpie Bolutio:‘ te the control of non-minimum phase
systems. Secondly, degirable closed 1loeop performance

characteristics are more eagily specfied via  pole

configuration than by the selection of  weighting-
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-

'polynomials such as proposed “in [22), or pf weighting
matrices for ‘LQG control.- T ) -
Eérly-.work on pole assignment self-guning control
concentrated on systems -répresen;ed by . auto—-regressaive
moving average with -auxilary input (AéﬁAX) models. The
techniqqe: involve pn—line ‘ solution of poelynomial
equation;. The method wés extended to multi;input/multi—

-~

output (MIMO) systems by Prager and Wellstead ™ [84].
X . & . ‘.

However, the computational‘coﬁplexity of on-line solution

of polynpﬁial equations has recently 'led te interest in-

state space based methods.

State spaée self—tuning pole assignment controllers
‘for single—input/single—output (SISO0) systems have beeﬁ
proposed by Tsay and Shieh [97] and Warwick [98,99]. The
attraction of state sp;ce methods is that the SIS0 case can
be easily extended to MIMOR systems. Also the main
computﬁtional load in contrailer design is in the inveréion
of a controllability matrix which has a much_smaller
dimeneion than the Sylvester matrix [50], associatef with

-

the sSlution of polynomial equations. ) . '
The techniques héye been extended to MIMO systems by

Benzanson and Harris [18] and Shieh et al.__[88]. Hesketh

[43], has proposed a MIMO pole‘ass;gnment STC which uses

input/output data for feedback instead of state estimates.

r

1.2 Contents and contribution of this thesis.




The main effort of_ the " esearch reported . in - this

theais 1= the investigation of. the relative advantages to

be gained in adaptive_control. by the careful sgselection of

modeldl representation, jdentification algorithm and control

law. - i

L 3
it was found that two joint state and parameter

estimation ;algorithms when combined with pole'assignment
. \

control result in more efficient algofithms for staté épace
§TCe than those reported in [18.43.84.88.97.98.99]:

The- first method’ employs =2 modification of . the
original . bootstrap estimator (BSE) proposed in [33,34,85].
The original algorithm-would not converge in the presence
of significant disturbancg noise [l.?3,9431 A modification
was | suggested{_ sufficient conditions for convergence were
derived and the techniqué extended to’ MIMO systems. The
main contribqtion of the state space .gTC based on the
modified BSE is that the canonical form adopted 1is a
minimal reélization hence rédsults in smaller dimensional

system matrices than the block canonical forms adopted in

[18543.88.89.90]. thus régucing the computational effort in

jdentification and_subsequent control}er design.

The need for on-—line computation of. transformation

-

matrices is the major drawback the state space STC s from
two points of view. Firstly, the techniques involve on-—
line matrix . inversion which ig wundesirable from a

computational point of view. Secongdly, gince the inverse

of a controlla&ility matrix is required, the method cannot

-



be applied'to over—parameterized systems.\'This is a sévere

regtriction on the practical usefulness of adaptive pole

placement, .since very often in adaptive control, the exact"

model order is unknown or may be time varying. -«

-

To overcome the problem of on=line computation of
transformation matrices,  the flexibility on  model
represenpation offered by recursive prediction error (RPE)
methods was employed to der%ve a joint state and parameter
estimation algorithm in the controller qgnonical form.
Since in this cénonical .form the computation of the
feedback gains becomes trivial the resulting algorithm_ may
be reg;}ded with some justification as an implicit adaptive
(direct) pole placement algorithm. The overall algorithm
égﬂ-robust to over—parameterization and more efficient
computationally when applied to MIMO systems than the
algorithmé proposed in [18,43,84,88].

To demonstrate a practical appIicatioq_of the state

space STC, an adaptive autopilot was designed for a
simulated nonlinear model of a Royal Navy frigate,
subjected to sea disturbances. The autopilot consisted of

an RPE algorithm for Jjoint state and parameter estimation
followed by nonlinear state feedback for pole assignment
and nonlinear cémpensation. The proposed autopilot thus

overcomes some of the problems encountered in designing

adaptive controllers for ship manocevering,  such as

encountered in [5,6,7,8,11,51,72,73,86].
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. Chapter 2 is of a tutorial - nature hence in that
. : : .

chapter the geqéral theory of gdaptive control is discussed LI

from a unifying point of iview. Thus the discrete tiﬁe

model reference controller and ﬁhe. various self-tuning
- :3 . -

contfollers are shown to be special cases of a moreAgeneraL

algorithm. The polynomial approach to pole shifting and

its extensian to the MIMO case are discussed in this

section. o C~

Chapter 3 introduces state space self-tuning pole

assignment controllers, and.the various proposed extensions
to the MIMO case. An improved algorithm based on the
. -

'modified BSE 1is inEroduced and simulatioh results are

presented.

In chapter 4 the 'general theory of recursive_

prediction error estimation is discussed. This technique

. . : . o
-was used to design a state space STC " based on pole

assignment for SISO .systemg. Simulation results are
preseqted to show the effectiveness of the proposed
algorithy on non-minimum phaserland over—parameterized
systems. The techniques ‘developed in chapter 4 are

extended te the MIMQ case in chapter 5 and simulation
~
results presented.
Chapter 6 discusses a practical aﬁblication to the

design of a ship autopilot with simulation results. -

Conclusidns and suggestions for further work in the general
area of adaptivg pole placement are discussed in chapter 7.
A : J
R .

-
.
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CHAPTER 2

2. UNIFICATION OF MODEL REFERENCE AND STC;?LGORI%HHS

2.1 _Introduction ~

The pioneering works on STCs. were done by Peterka
[82] and Astrom and Uittenma;k [13]. The methods combined a
recursive ‘least squares ¢RLS) algorithm with a minimum
‘variance contrélYer. “Since then STCs based on other design
c:itéria such as ‘weighted control action” (hlarke and
Gawthrope [22]) and pole‘placement techniques(Wellsgead'etJ
. al.-[100,101]) have been reported. ‘ v
‘ ) Simultaneéusly. much work has been done to improve.
the performance of discréte timé ﬁRCSi in the stochastic
environment [25,26,58,59]. “Thus the resulting algorithms
for sgochastic MRCs may infact be interpreted as pole-zero
Placement self-tuning controlle}s. This has.led te several
att;mpts to unify the two approaches b} deriving gener;l
algorith&s for which the various STC and MRC algorithms are

special cases.

2.2_A Generalized Algorithm For Controller Design.

Consider a SISO system represented by the ARMAX model

P | -kd_", -1 T =1
) ) N z B (= )ut + C (= )et . (2.1a)



- : 9
where yt,ut are the output and input vaniables'respectively

. S
,and t is the discrete time variable. eg ig a Gauseian white

noise sequence with mean E[et]=0 and variance E[et2]=§.

. @ Ly
Also E{.]) denotes the expected value. kd3l, denotes the

integral periods of delay in the system. A (z_l).B (z’l) and

c (z*l) are polynomials in the backward shift operator z—l.
and are giveﬁ By ' .
Ty _ ‘-1 - na
A (z "nh=1+ a; =z + .. .3z {2.-1b)
’” _1 - L4 L4 _1 -~ ‘_nb
B (z 7)) = by +b, z + .. . bz (2.1a)
‘. =1 ~ =1 - LT _=ne
C(z ") =1%¢c, 2 + . . . ¢C z (2.1d) .-

1 nc
Then a genefal controller may be designed for 2.1 by

considering the optimization problem

Bm(z 1) amCz" 1) 2 :
Min { ¥ - ——7"u + ——u_ } (2.2)
u t+k% Am(z 1) r.t Am(z 1) t
Subject to (2.1) -

a

Where Bm(z‘;). Am(z—l) are polynomials defining the dynamics

> - ‘ > - ;
of a desired reference model. u is a given input sequence

r,t

and\Qm(z_l) is a weighting polynomial. /’

4

8]
2.2.1 Mcdel reference control.

-

An algorithm for discrete model following control may

be regarded as a special case of (2.2) with Qm(z‘l) = 0.

The optimisation problem may then be solved in two steps.

-

(i) Predict the wvalue of Y rkd at time t



~ ¢ (z™h 8 (@ HF @ )
\ = ———Y, + — u T(2.3)
?§t+kdlt ¢zl ¢ T t .

where G (z_l) and F (z-l) are given by the equation

ey =A@ Eh - 2% (z™h (2.8
The prediction error is then given by
‘ | . '
“ '  Brikd T F Lz "Je, . ya (2.5
. . Brnlz 1) - :
(ii) Set v = —— - (2.6)
t+kd Am(z 1) r,F .
_ Thus .the closed loop system is given by
¥ Bm(z™h) .y |
¥, s Ty ¢ +F (z e (27> - -
t+kd” Am(Z 1, r,t - - t+kd
the control law to achieve this is given by
u, = Bm(z—l)C (z-l) U~ G (z—l) Yy (2.8)
amcz— 18 (z HE @ h 2z e (z .

~

2.2.2 Minimum variance control.

Minimum variace control is achieved by selecting
am(z"1) = Am(z 1) =1

The closed loop system then reduces Lto
r. _1

Yerkd = YUr,t + F (z e ikd (2.9
and the resulting control law is given by
. L4 —_ r —
6 (z7h) ) ¢ z™H o
W, = - 7 Ve *. 7, 1., -1, ' (2.10)
£ s e r zhy F B @ hHF (2 1y "r.t . g
& .



11

,

Thus a condition for bounded control is that B (z) must have
all roots inaide the nit circle.. The same restriction

applies to the model reference contfol in view of (2.8)f

2.3_Pole—zero placement control.

To overcome the restriction to minimum phase sy;tems.
it is essential to prevent the cancellation of unstable
zeros. Astrom and Wittenmark [14] proposed a éole—zero
Placement controller which retains the unstable =zeros. The
technique is a special case of (2.2) with Qm(z—l)=0.
c'(z'1)=1. and e =0. |

' -The reference model ig replaced by
B™(z yBm(z 1)

. .
¥ = 1§ (2.11)
r,t Am(z—l) r.T

where Bf(qu) is obtained by factorizing B (z—l

B (z™!y = stz lys (27 ))

) as

The polynomial B (z) has zeros outside the restricted
stability area hence may not be cancelled. ,

The above algoriﬁhm is essentially a servo controller

and would not perform well for regulation when applied to a

nonJEinimum Phase system, since for et$0 the transfer
function relating w, to e, is
¢ (z™H .
U, = = = . (2.12)
t B (z 1) t
o >

-

which would give ubounded control if B (z) has zeros outside

—



the unit circle. ‘_ -

-

The extehded-minimum variancé éontrolle; proposed by
Clarke and Gawthrope [21] considers the entire coast function

(2.2). Using the definitions

am(z—1ye (z™H) fez-ly + z %%z"h |
- T = — 1 (2.13)
A (z ) A (z 7))
wez=ly = 8Tz HFeTh + amez" e (z™h (2.14)
£ z~ly = —¢ (= hHe = ™H (2.15)
the control law to minimize (2.2) is then given by
-1 -1 PP | .
H(z )ut + G(z )yt + E (z )ur.t =" 0 (2.16)
giving the closed system
| k48 (z"HyEmz™H)
Y., = T+ _ _ L —T U +
t B (z 1)Am(z 1) + A (z 1)Qm(z 1) r.t
H(z™h) ‘
e . (2.17)

8 (z Hamiz™hH + acz- Hamz™H

The closed loop stability thus depends. on the zeros of

8z yamczl) + £z Hamz™h = Tz (2.18)

thus all the open loop =zZeros are retained provided that T(z)
and B’(z) have no common factors.

The technique is appl}cable to both regulatory and
serve control’ The method 1is h;wever not foolprogf. Since
adaptation is done implicitly it is not known how to' choose

the weighting pqunomials Am(z_l) and Qm(z-l) to give

satisfactory performance. Alternatively one could use some



-

) ' - . - -
approximate (estimated) values of A (z

.. update Am(z_ly

and Qm(z )

) 13

15' and B’(z_l) to

1 1

for . a given T(z ). Such an

_algorithm was proposed .in [3,4].

. The -pole placement*controller

-

[97.,98] overcomes

‘specified by the

explicitly.-

¢ iz H s Fiz bu, + Bm(z"lﬁu
Y T t r,t

" —
1 . and

© _where F (z 7

[T
-<.relfationship

L4

A

nt € na

.

nf

. where nt,nf and ng are the’

*(zil)

AN ] respectively.

then given by

the, above problem in that T(z )

designer

* —_
G (z )

(z_l)F*(z_l) + é'(z_l

Thé

of Wellstead et

1

al.
is

and pole placement is‘ done

The pole shifting control law is given by

=0 (2.19)

1

Asatfsfy- the Diophantine

> B

6 (z™h) = y  (2.20

¢z yTz”
+ nb + kd - nc

mna — 1l-

nb + kd - 1 .
. _1' ]
orders of T(z ), F

(z y and

resulting closed loop system is

B (z™H)

- — —u (2.21)
¢ 2"yl T

2.4 Multivariable pole placement control.
L

The controller

sections 2.2 and 2.3

systems.
minimum

extended the

design

Berrison [(20] and Kevieczky et al.

variance

algorithms described in

-~

have been extended to multivariable

(52]

have

techﬁiques of Astrom to
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e

14
multivariable systems. Koivo [53] and Favier [36] have
extended the techniques of Clarke and Gawthrope [22] to

multivariable saystems. Prager and VWellstead [84] have

~ extended their Pole placement contrd‘éer to multivariable

\
systems. : -

General algorithms similar to the SISO cases of 2.7

may be derived for the MIMO cases (Favier et. al. [36]). oOf

h Y

immediate. interest however is the multivariable pdle
placement controller.

Consider the MIMO system represerited by the ARMAX

model s

"~

facz"Hiy, = (scz"hHju, + tccz™hHy e, (2.22a)
where .. ‘
-1 g " ~na :
(a(z )] =1 Az T+ . LAz (2.22b}
. ' N N
[8cz"1)) = z_kd(Bo + Bz 4L ..Bnbz_nb) (2.22c)
[c(z™3 )] = 1 + ¢~} 4 ¢ ,he : (2.224d)
1 e Che .

also I is an mxm unit matrix and Yt’Ut are m dimesional

output and input vectors respectively. Ai'ai and Ci are mxm

dimensional matrices which determine the dynamics of « the

system. For simplicity it is assumed that the ne. of inputs

= the no. of outputs = m, although the wvarious algorithms

may be extended to the more general case. e,

dimensional vector gaussian white noise with mean E[et]=0.

is an m

with covariance E[etet]=n, where A is an mxm matrix.

b
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The explicit pole placement‘regulator'may be extended

to MIMO systems ({81,102]) as follows. .Select the contro;

law

U, = —(6¢zT IRy | (2.23)

the controller parameters are obtained by solving

(az"H1r™H 1 + az"hHitez"h = tezhirrz"n

(2.24)

where [T(z-l)] is the desired closed loop mode polynomial

matrix. The closed lcop system is thus

Y, = [F(z-l)}[T(z_l)]—let (2.25)

The main computational load of the method is the solution of

(2.24) which may be written in matrix form as

\

-— — frr

I 0 Fy 5, - Ay ]
Al . o }kd . .
0
. -8 . .
. I .0 . an
A . - 6o |=|- - A, (2.26a).
A -B .0
na -B 0
nb .
L Ana -Bnb_ __Gng_ L D5 © _
(nb+kd) x m na x m

where Si are the coefficients of [S(z_l)] given by

Lyy = ez DTz (2.26b)

ns = deg{ [S(z_l)] 1

{S(z"

As shown by Prager and Wellstead [(81] the

implementation of the control law (2.23) would require the



- 16

inversion of the polynomial matrix '[F(z_l)]. The

-

alternative te this would be to compute  the pseudo-—

commutative polynomial matrices

1 1

(e hy ez = ez hitFh (2.26¢),

The control law may then be implemented as
(Fez"bv, = te="hy, (2.264)

The main computational load in the'controller design

-

thus involves the inversion of an

[m{na+nb+kd) ]x{m{na+nb+kd)] “matrix for the solution of

- ".[_"-
(2.26a) and also the inversion of an [m(nffng)]x&g&pf+ng)]
matrix in the sgsolution of (2.26c). The solution of (2.26c)

may be side stepped by the the technique proposed by ‘Gong
‘-\‘-‘_' N

MWei Bo [35.36] which implements (2.23) by introducing an
intermediate vector variable.
Apart from the large coﬁputational load, the explicit

pole placement algorithm requires knowledge of the exact
L]
.. S m—— - .
model corder since over—parameperization would mean that

[A(z_lll and [B(z_l)] have common factofs hence the

Sylvester matrix in (2.26a) would be singulaf. However in
self-tuning control’' the estimated parameters [3(2_1)] and
[ﬁ(z-l)] are stochastic, thus the probability of pole-—zerc
cancellation is on the set of measure zero. However near

o~

pole—zerc cancellation can lead to severe ill-conditioning,

thus result in [F(zﬂl)] and [G(z_l)] having large

coefficients [38].
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2.5 Parameter adaptation.

Self—-tuning control employs GLhe certainty equivalence

principle of.[9.16]. which allows for '‘the separation of the

+

adaptive control problem_into two independent problems. Tﬁe
13 ’

firat.step involvés the estimation of the system parameters.
The second step involves the mapping of the estimated -system
parameters into the controller parameters by any of the

various proposed controller design techniques. The overall

structure of the adaptative controller is as shown in figure

2.1.

o

u .PROCESS > Yy

PARAMETER
ESTIMATOR

Yo

CONTROLLER
PARAMETER
CALCULATICN .

¥ £(8)

! .« | CONTROLLER

Fig. 2.1 Schematic diagram of a parameter adaptive
controller.

——

-~

The choicg of model structure and the identification

b

algorithm .adoptedmuére important. Careful choice of model
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structure could make “‘subsequent controller design very
S

gimple. For the special \casb "where the ﬁapping from the

~estimated system parameters to the controllef‘ﬁﬂ&pmetera is

the trivial mappirng, the algorithm is referred\.td as
“implicit™ or "direct™ adaptive control. Otherwise the term

"explicit” or "indirect"” adaptive control applies. _
. P c

2.5.1 Explicit adaptive control. 4 ‘ ™~

For explicit adaptive control the recursive least
squares algorithm.. is ofter employed for parameter

adaptation. Thus considering the model structure of (2.la},

we assume that

¢ z”h =1
then defining
{
L4 ”» r ” T
8 = [81!-'°vanalb1v--'obnb] w

+.

b

= [-vy -y u e ey . ]T
t =17 t—na’' t-kd'”’ 'Tt—nb-=kd

the elements of 8 are the estimated parameters of (2.2a)

which may be biased due to assuming the nosie term ‘to be :

white. The RLS algorithm may be implementéd as follows.
.

-

T
e, = Yy = ¢ %1 , (2.27)
P $ ‘
. L, = —t (2.28)
A e P %
6, = 8 + L€ C(2.29)
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YA (2.30)

T

. . Pt—1¢t¢tpt—1
R
. t t'e=1%t

where ‘Pt ‘dg an (na+nb)x{na+nb) covariance matrix with

K

:PO = gI, o>>0. ©_ is the current estimate of the parameter

t

vector &, also lt ig a variable forgetting factor given by

-

gﬂt.

>~ 1000 -
Y = the mean value of stz over a given period.
The variable forgetting factor‘allows the tracking of:

time varying parameters yet prevents t@p exponential growth

- of the cpa?riance matrix- [24,37,42.101]. The numerical

N

properties of the basic RLS algorithm may be greatly
improved by using various factorization techniques to update‘
the ;ovariaﬁce matrix ([19,661).

At each lsampling interval the egtimated (possib;y
biased) parameters are uged to calculaté the controller
para;éters as if they were exact. The gelf—tuning

principle, if it holds for ‘the controller desigh selected,

would guarantee the convergence qf the controller parameters

o ‘
to their correct values. .

The self-tuning principle has been proved for various
controller designs. Self—tuning has been shown to occur

(Astrom [9]) for the STC basged on minimﬁm variance control.
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Clarke and Gawthrope [22j have proyed the self-tuning
principle for.their extended minimum variance controller.

Prager and Uellatéﬁd have also shown self-tuning to occur

for the STC based on explict pole placéﬁent control [84].

4

2.5.2 Implicit adaggjve.pole placement.

’ 'Sevéfal imp1i¢it adaptive pole placement tecﬁniques
have been proposed [2210.13.36.39.46.47.48.49.i01]. However
from a unifying point of wview, the basic idea behind many éf
these methods is the use of the RLS algorithm to solve the
Diophantine equation (2.205. To do this (2.20) is

\*- -

multiplied by an auxilary signal. The wuse of different

auxilary signals give rise to the various propgsed

algoritms, i.e. by the partial state (10,47,48], by Y

[2,49] or by u, [49]). .

t

Consider the relationship’
-1 ’ - - * - -
iz = Friz ha™h + 67 e (2.31)

where the coefficients of A(zﬁl) and B(z—l) have been
previously estimated by RLS. DMultiplying (2.31)-by~“yt gives

the following implicit algorithm.

-1 L T,f .
T(z )y, = 8_ ¢ (2.32)
“_wWhere - ~
T )
8. = [fl""fnf'go""gng] .
£ _ -1 -1 -1 -1
¢, = [a(z Yy o--.A(Z XYy _nerB(Z VY. .--.B(2 )yt—ng]

* — -
also fi and gi are the coefficients of F (z l) and G*(: 1)

respectively.
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Thus the controller parameters may?be estimated from (2.32)
using the RLS algorithm. The above implicit pole placement

technique results in a billinear estimation problem since

the data vector ¢: " involves the estimated system

parameters. The bilfinear estimation problem may however be

converted into a linear estimation problem with twice Ehé

number of parameters [10,30,46].

Convergence problems have been reported with implicit

~—

adaptive pole placément controllers, especially in

connection with their reduced order behaviour [47].

*

4

5

2.6 Concluding remarks.

Self-tuning controllers . were traditionally designed
"for systems represented by ARMAX meodels. STCs based on

pole assignment offer a feasible solution to the adaptive

control of non-minimum phase systems, where model reference
type controllers would give uUnstable control. However
explicit pole placemént involves on-line solution of

polynomial equations which is computationaly undesirable for
adaptive control. |

Alternati;gly the use'of implicit alg;rithmé' results
in the E;timation of a large number of parameters which can
be equally unattractige. The above problems be;ome ., even
more acute when the methoq§ are extended to MIMO systems.

One way to get round some of the above problems is to

approach adaptive poie placement from the more natural state
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space approach. Techniques baﬁsdjon such an appreach will
be the main focus of tQis thesis.

N

P
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- CHAPTER - 3

. . ‘ s

3. STATE SPACE SELF-TUNING CONTROL via POLE ASSIGNﬁENT;

-

.1 'Backg C L0
3 } a? round f\:\\_—\\ﬁ/’

Self*tuniﬁg- pPole assignment control based on

polynomial modeling was discussed in chapter 2. 1In the SISO

case these tecﬁhiﬁueS' have proved Eo be very successful.

For the MIMO cases héwever, the computational complexity of
N i

on-line golution of polynbmial matrix equations has recently
N "~

-~

led to interest in state spaéé based methods.

Uarwick_zi9é.99]. Tsay and™ Shieh [97] have proposed -

state space pole assignment STCs  foy SISO systems. The

- ~
techniques have been extended to MIMO s?spemé by ‘Benzanson

and Harris [18], Shieh et.  al. ([88]. Heéke&h‘ [43] has

Y

'prOposed a MIMO state space STC based on input/output data.

The MIMO techniques proposed in {18,43,88,89],

adopted state space models based on block canonical forhs.

-

Such "pseudo-canonical”™ forms are useful in the absence of

a priori knowledge of the Kronecker structural indices

(21,83} of the 3system. This however results in system

matrices with larger than'midimal dimensions. Furthermore

all the techniques proposed above require the system model
to be transformed on-line to the controllable canonical

form. This in view of the large dimensions of the matrices

23
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involved, results in excessive computation. In some cases

[18,43,88] this can lead to a similar computational load, as

the methods based on polynomial matriceé;

The MIMO state space pole assignment STCS proposed
in [18,43,88] may be sqmmed. up as foilows. Assume the
system to be reﬁresented by the MIMO ARMAX model (2;22); At
each sampling interval the parameters of -(Z-Zi) are
estimated by the ELS algorithm. Tﬁe egtimated paramgters

are then used to oﬁtain the one step prediction estimates of

" the gpates via the state space innovations model thus

- 1

-
. R (3.1a).,
~ ~ .
Yee1 = CoXer1 | o3l
0 A
- . n
I An—l
Ae = o L : (3.1d)
0 I A, .
B T c + A
nb n n
Bnb—l Cn-l * An—l‘
. . o '
Bo = : , Do = . (3.1le)
B T
)
9,
_P | LFI + Al B
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where -
..'_ ) : R !
Ai'cizp' for na,nc ¢ { &« n = max(na,nb+kd,nc)

The computation of the pola'aesignment feed back law then

involves the following steps.

)

(1Y

Define the matrix A as P T

010 0 il
A = : 0 (3.2)
- .M . L
0 - I
[ Ta Tar 7 7 Ta

where the mxm dimensional matrices Ti are the coefficients

of [T%i—l)],the degired closed loop mode matrix polynomial.

since unlike

the SIS0 case AT ¥ A .
[ c

.“n;iif Transform the estimated system characteristic matrix
T Ao to'_tﬁe block controller canconical torm [87] by the
similarity transformation
-1 ‘
A = PA P (3.3a)
c o .
where
— =
¢ I Q0 8]
A = - (3.3b)
c .
n o I
A A .
L c,n c,n-l C.L
The transformation (3.3a) must be physicaly carried

out

The state feed back

law té asgign the closed loop poles to +the roots of [T(z—l)]
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ie then given by
Y
U, = G6.X (3.4a)
where
Gf = (0'---|0vI](Am - AC)P , (3-4b)
The transformation matrix P i3 unique and may be
obtained [18.88;90]- as follows Define the controllability

test matrix

T = (B ,AB,....aA" 18 ] : (3.5a)
[#] (4] (4] (4]
- P 1 N
| PLA, |
ip =] . (3.5b)
n—1
P A" |

where

P; = (0,...,0,13r} (3.5¢)

It is evident from equéticns {3.5c) and (3.3a) that
the computation of the feed_back gain matrix requires the
inversion of two nm x nm-matriees. Thus the computational
effort ig similar ‘to that of' the methods proposed in
[43,84]. .

The high dimensionality agssociated with block
canonical forms may be aveoided by adopting a modification of
the bootstrap estimator (BSE) proposed in {85,34] for joint

parameter and state estimation in the observable canonical

form. The resulting adaptive pole placement algorithm has



the following advantages over the methods proposed in

[18,43,88]. .

-

(a) Fewer parameters are estimated due to the minimal-
reallzation of the canconical form adopted.s -

(b)) The computatxon of the transformatiocon maﬁﬁhx 1nvolves

.the‘ inversion o©of an n x n controllability matrix

which has -much smaller dimeﬁsipns than . ‘the

‘econtrollability test” matrix [90] which has
dimengions nm x nm.
(). ,Aithough a transformation matrix 1is 'computed. the ’

) A A

N [ . - iy -
actual-~ transformation of the system characteristic
e o , ) .
fm:triihto“the controllable canonical form .is not

required. This is a significant saving over the

methods in [(18,43,88], since this avoids the second

matrix inversion to determine the inverse of th&

K

transformation matrix. -
¥

3.2 The Modified BSE.

The use of beootstrap algorithms for joint state ana

parameter estimation has been reported in [33,34,85)]. The
main advantage of the method is that the canonical forms
adopted, results in equation error type ‘estimation

algorithms. The method thus results in a pseudo linear
1

’

regression (PQR) type algorithm which is much simpler to

.

implement _than the exfended Kalman filter (EKF). This

i

advantage becomes even more .advantageoug when the method is

-t
»

applied to MIMO systems [34]. . ) R

- -

)

.
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The_ main drawback of the bootstrap algor;thms
proposed in [34,85)" is that it was derived in an ad-hoc
manner.'rThué conditions for gsymptotic convergence of the
overall algori;hm were not av;ilable. Recently it has‘beén
pointed out in [1,94] that the algoriﬁhm in its present form
would not converge in  the preéence_ of significant
observation and arivfnﬁwpoise.

Inh this thesis and alseo in ({79] the author has .
proposed sohe modific;tions to the basic algorithm in [8%5)]
to engure asympt&tie-convergence.of the parameten estimates."

to their unbiased values. Thus Ehe innovations model is

used to obtain the one step prediction state estimates, and

- v

an ELS type algorithm is uged for parameter adgptation.
Folliowing Lijung | et al. (63,64,65.,667 the ‘ordinary
differential equation’ (CDE)'approach may b? used to derive
the sufficient conditions for asxmptot}c convergence of the
egtimated parameters to thei; ﬁnbiased vglues.. see the
APPENDIX and also re?erencé [791].

h Consider the MIMO system represented by the state

-
.space innovations model

Xevl = Fo¥e + Gl X% - (3-62)
Yt = I{OXt + et . : - (3.6b)
where
F?o = [I?o i ] v i=1, . . . .,m
3 j=1, . . . ,m
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Faii(l)
- I
. A ni—l . - .
Fo.ii - i - (3-6C)
aii(ni)
— " -
" r _
1 a. . (1)
1)
8]
. .o= o ’ (3.6d)
0,ij - . . . T
a..(n,.)
L i3 g N
cT= (g & el 1 - (3.6e)
o To,17" "t®o it &y . .
< = [k k.. ok g (3.6f)
o c,1'" "rtThg,iv -t o,n :
. -
u
2
T : S
E{O = uz' _ (3.6g)
-1
uT
!.mJ
ii = nl + n2 + ... ni_1 + .1
\ .
n, + 0, + ..., nm = n (3.61)

n, are the Kroneker invariant indices [83]:, and are assumed
“to be known a Priori. a- survey of different methods for
estimating the. structural indices of transafer function

matrices may © be found in [(9l]. e = @ unit column vector
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with a 1 in the f ‘th row, taking ¢, = 1, f.e, n, =0.

go i are -m 'djmé%sional column vectors corresponding to

the transpose of the fows of the input matrix C;o. ko i
- ' N . ) ) ’
are m dimensional column vectors corresponding to the

transpose of the rows of the kalman gain matrix K-

The modified BSE algorithm may be \implemented

as f@llows. ‘ ’ =

(i) Define Lhe parameter vectors ) .
T T T - . T
Bi\.t - i:a:l.l"‘"ai."":‘gc".!.. v ' 8g .0 . 4n. -1
i i i
T ' T
'ko.z."°"ko.£.+n.~1} o . (3.7a5
1 1 1 .

where the a,

’

j'are the .non-trivial columns of of [I?i j] and

(ii) Define the data vectors T
Sie = Xy g Xy e Xm0 ¥ een,
- i m m i
T T. T . T. " _ '
Ut—l""'Ut—ni'et—l""'et—ﬁi} ) (3.7¢)

Let ei't be the current estimate of the parameter vector ei.

Then the parameter identifcation involves m decoupled RLS type

adaptation algorithﬁs given by

~

l: Estimate prediction error.

e T Yioe T YLt . (3.8a)

2: Compute adaptation gain
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P o i )
-l -
L, = ‘_l:*' L.t 1 (3.8b)
L] T
M vy ePy et
3: Update paraheter vector
O e T %kt hi it (3.8¢)
4: Update covariance matrix N ' -
-r <
L | Pioe—1bsi. 6% ePi, et
P, = = [P, - ] (3.84)
i,t A i,t=1 £ + ¢’1' P ¢
t ‘ t i.ti,t=1"i.,%

~

- The estimates of Yt required to construct the éi . are

-

obtained from the innovations model

- ~ '
Xewl = Fo,e¥e ¥ Go, e * Fo ke (3.7a)
- ~ A 3.9
. = X : -9b
’ Yt+1 }{o.t t+1l ) ¢ )
where Ero.t'c;o.t apd E:o.t are the current estimates of E?o
Go. and Ko respectively. - T
P. = a dim(8.) x dim(8,) matrix.
i.t i ) R |
L. = a dim(8_.) vector..
i.t i -
3 : ]
For.the specigl case where n, =..= n. =..= N_. P, = ..= P.
A i m 1
= ..= Pm; only one covariance matrix needs to be updated.

-

* -,
.
.

3.3 Pole Assignment by State Feedback.

In view of the separatidn'_theorem for stochastic

.control [9.16}, a pole assignment STC may be designed by

using the .parameter. estimates from the BSE algorithm to .

éalculétecthé controller gain parameters ~ in place of the

[
exact system parameters.

-

The feedback gain to arbitrarily assign the closed
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'ldop'pol$s of (3.6) may be computed ([95)] as follows.

(i) Define the controllability matrix

———
P

— n,-1 nm—l
i = [gl""F

o 8‘1'32,--.:5:'0 S‘m] (3-108)

=, is the i‘th column of C;o. The n, are assumed to be

known a—-priori as in (3.6f). -

I 8ince I ig nonsingular, we can compute

(3.10b)

—

\ .
the required control 1aw to arbitrarily place the <¢losed

loop poles is then- given by,

-

- A _ . .
Ut =fo‘It . . {(3.11la)
3 iy :
& -
where the feedback gain matrix Kf may Qe computed from

a4
T =1 -
Kf = Q ' {(3.11b>

_nmvl‘\ Fo.t)__
-n.
-1 S i

7.(z ) =1 —@a..(l)Yz —5="..—a..(n.,)= (3.11c)
i ii _— oo 1d i



The poefficients uiig.) determine the characteristic

polynomial of the closed loop system matrix

. E’c = [E?O + C;OKf] _ (3.11d) 4

.
=1
thus the polynomials ui(z Y are such that

w.z ) = T (3.11e)
1t !

" where

i

z“nccz"> = det(zI'= F) (3.11€)

The matrix Q is an m x m input transformation matrix defined

'bY -
NN IR O B |
Q = * ) (3.11g)
~ - L0 . . . .01 h
- where the eléments qi 3 may be dg}ermiped ag follows
n,-1
T i
= .1
qi,j ni[ETO E;J] {3.11hn)
i=1,.., ml
j = i+l ..., m

The inversion of the m x m matrix Q in (3.11lg) 1is

L

computationaly inexpensive since Q is an upper triangular

matrix with 1°s on .the leading“diagonal. Thus the inversion

process is simply a set of backward substitutions. Also

.- since ugsually m << n this inverse is relatively

\
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insignificant.

\ -

EJI'Simulation Regults 7 .

- To illustrate the STC proposed in this chapter, the

following system was gsimulated.

1.4.. 1 0.2 1.0 0.0 ||, , TN
. 1.t ~
X, = |-0-48 0 O X, + [1-3 0.2 .
0.22 0 0.75! . 0.0 1.0 2t
; s C[i.s 0.zl
1.t - - -
+|-0.48 0.0 (3.12a)
0.22 1.25|%2.t
- - \
T
EYl';‘_ 1 8] G < " e ¢ .
) P ’ t (3.12b)
. \jz'ﬂ' 0 ‘0 g &5 ¢
~ »lo.1 0.0
. EteeT] =
. 0.0 0.1
— - kY

The iopen loop characteristic equation of ETO is s

given by N ) -

M_(z) = det(zl - F ) = 23 _ 2.15z% + 1.486z — 0.36
- . . ’ f
giving open loap poles at
Sz o= 0.53 = 5 0.22, 1.01

thus the simulated system 1s open loop unstabie. it is also

.‘.;
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non—minimuh phase due the open loop zero at z = =1.3. The
above syupem satisfies the sufficient conditionﬁ for. the
hsymptotic convergence o¢f the modified Baotstrap egstimator.

derived in the APPENDIX, since

co- 1 1
Real'(—.'-:'l"—-)>0 .
l + 0.5z 2
ang -

1 1 ' =
"Real ( —————— -~ >0 «

’ 1 + 0.4z 2
"7 The <closed 1loop characteristic - polynomial  was

-

seiected to place all the closed loop poles at the origin to

give minimum time (dead beat) control, thus \

nc(z Yy =1

-—

The following initial conditions were asgpmed.'

N

$ 0“1, - 10°1
Pl.o = 1 Il Pz'o -
el.o = (0,0,0,0.0.1.0,0.0]
92'0 = [0,0.0.0-1.0;0] N
A = 0.9 o -
ja)

, 7
\ !
Figure 3.1 shows plotg of the cutput variables Y

-

l,¢t

and Y for the clogsed leoop system. The closged loob

2.t

variances of the output variables after_ settling down were

Var(Yl.t) = 0.67
Var(Yz't) = 0.23
Figure 3.2 shows plotﬁ of the control wvariables U and

l,t

U2 " The variances of the control variables were observed

e
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Fig. 3.1 Plote of the output .variables for the closed
- loop system (example 1)
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Var(Uu

1,y = 0.127 T

Var(U, ,) = 0.048

-

2,t .

thus the simulated open loop unstable, and non-minimum. phase

Bystem haa‘bqgn adaptively stablized by the algorithm with

reasonable .regulatory performance - and’ moderate cont}oL

action.

The estimation algorithm would coﬁverge'to the exact
s;séém pgiameters ‘with probabilty one.(Appénéix)._'ié the
input variables are sufficiently exeiting and the'sufficignt
onditions or the noise model are saE§§¥E§§it"ThﬁEJ'se§f;m
tuning woula octpf for the' above simulation subject to 
pe;sistency of the excitation?. which i; npt, guaranteed
undgr closed loop control: Howé;er thié is only a prablem-
when the’éétimatéd parameters have converged, thus 'methods
to keep the estimator oper to incoming information such as
the variébie forgetting factor and covariance reaéeting'
could be used to overcomé this problem. Otherwise dither
gignals should be injectea to ensure the pergistency of thé
input signals. .

The axact system parameters are

Bl = [1.4.—01ﬁ8.0.2.0.0,1.0.0.0.1.3.0.2,l-8.C.2.—0.48.0.0]
92 = {0.22,0.75,0.0,1.0,0.22,1.25]

The estimated parameters at t = 1000 were

81.1000 = [1.42.—0.56,0.26)—0.1.0.99,0.05,1.2Q30.07.1.72]

' . ®, 1000 = (0-23,0.74,0.0,0.99,0.1,1.08]

The above parameter estimates are sufficiently accurate for
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I
\ to be time varying.

.39
the purposes of adaptive control sznce we agsume the syetam
Figure 3 3 shows plots of the rates‘ of

convarggnce of the estimated ‘parameters as. measured by the

variables ENl1 and EN2, where

-.2 -
S |- - 9,1

. 1 1
. . EN1 = £
i . ‘_Iell

—— - 2 .‘ ' .- .

; ) - . lez.t - 8,1l ) .
; . ENZ2 =~ 2 -
- | S 28
| : . ;
j thus from figure 3.3, it is evident that . the estimated
\parémeters_ have - converged after about 150 -sampl;ng
\intervals. ’

-\ .
4

\ Figure 3.4 shows- plots of the

residual geguences.

Thé variances of the residuals after settling down were .
N - .

ﬁrund to be

‘Var<sl.t) = 0.12

Both sequences passed whiteness tests, based on the auto—.

correlation of the residuals.

il

Thus the estxmated parameters’
are ‘unbiased,

%
occured.

and hence self- tunxng may be assum to have

- it- was obsgerved in chapter 2, that adaptive pole

placement control based on explicit parameter identification

>
would give urisatisfactory performance when applied to over-—

L . .
parameterized systems, _since pole-zero cancellation would

causge the controllability (state

gpace approach) or

—

Sylvester (polynomial approach) matrix to be ill=conditoned.
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expifcit

Thus ‘although the

.pole placement

>

!

proposéd algorithm "and

other .

algorithms have been observed to

- [ ] ' . ’
ﬁork .satisfactorily for several simulated models, such

algorithme would give poor performance' when applie? tq,

‘uncontrollable - but stabilizable systems. To demonstrate

this

problem,

following.model.

The aove system has a pole—zero cancellation

For

1 0.0
o 0.0 | X, 0.8 _0.2
0 0.75 0.0 1.0
g 1.8 0 . ]
l,t
~0.48 0O
0.22 1.25!1%2,¢
Y, ' 0o o - el,r.,j
Sl.t < X o+ .
Yot o 1] "t ey ¢
- 0.1 0.0
E[eeT] = \\
0.0 0.1 3

parameter

seleqtad as

the

adaptation

proposed  algorithm

1.0 0.0

the " initial

at =z =

conditions

was applied to the

0.8.

were
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Fig. 3.5 Plots of the output variables for the closed
loop system (example 2), showing thef-enset of
L1 i.nstabilit.y due to pole-zero cancellation
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{0,0,0,0,0.1,0,0,0,0)

1,0 © .
/\ .o ‘
— " % 8 = {0;,0,0,1,0,0]}
2,0 , B
. \ ” . N
- oxA = 0.9 T - -
o . N

- B . - ) . - . ) ‘/ \:\.
e : Figure 3.5 shows plots of the closed 1loop output

£

variables Yl g.- and ,12 Lo it can be observed from these
. L] r - -

pioté that _the wvariances ﬁof the output varigbfbs are

reasqnably small ';n .the. "early sampling- periéds. but

increases with time. This may be explained by the fact that
in the initial periods the controllability matrix iy
nohsinular since the estimated bargmeters are far from

their exact values. Howevef as the parameters converge, the
s . ) a - .
controllablity matrix becomes more and more ill conditioned

+

due to near .pole—-zero cancellation._ ot

d Figure 3.6 shows a&ots of the resulting control

-
I
'

‘..action.” Note that the closed-locop system does not become
'y . N .

unstable due to imperfect pole—zero cancellation (the
estimatg§ parameters are stochastic) and the saturation - of
‘ . = .

‘éhe_control variables. -
S .

\
. ) . .
3.5 Concluding Remarks o -

A state space self-tuning pole ﬁlécement controller
wasg proposed.which identifies the parameters of a M;MO atate
sﬁace innovations model directly. The proposed method has
the following advaﬁtages-ovér previously proposed_methods-
{i) * The‘metﬁbd si;esteps the need to firstly ideétify the

\ parameters of a polynomia; model and itg use to
] .

"‘\



- 46

construct a block canonical model. ‘Thus a minimal
\ . . . 7 . .
realisation can be adopted which reduces the number

\.of parameters to be estimated, if the structural

indices are known.

ii) The method of controller design adopted requires _ one

Ll

matrix inversion of order n x n whereas the methods
adopted in {18,43,88] would require two matrix

ipversions of order’ nm X nm.
- .
The main . drawback of the exblicit adaptive pole
. i . .
placement algeorithms- is the need to know the correct model

-

-order in'order te prevent pole—zero .cancellations:. This

drawback was demonstrated in the simulations section.

- -

Impliqit pole placemeqt is one way tp overcome this problem,
'howevér it was shown in'chapter Z.that this could.lead to a
billinear estimation problem.;-tﬁe convergence properties of
such- estimation algorithms are not wellr established.

~

Alternatively the billinear - estimation problem may be be

converted into an equivalent linear estimation\;? blem, but
this would result in .the estimation of a largz\:ghﬁgf'of
parameters'as shown in chapter 2. Some of the disadvantages
of explicit adaptive pole.placemept mentionea above may be

v

‘avoided by the algorithms proposed in. chapter 4.
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. , CHAPTER 4 : P

" 4.State Spice Self-tuning STC via Recursive Prediction Error

.iEétimapion. _ e . \\\“_“—;_ﬁ’#/// 

v

4.1 Introduction ' : .. . .

- - ' Adaptivg control wvia polg placement has proved to be

a3 very attractive method, due to the applicability of the

techniques to a very large class of systems. However the

.

various algorithms proposed suffer from one main drawback -
The Cmeutation 6f the controller gains require the
inversion of a Sylvester matrix (2.26a) or alternatively the

. ’ - ’
inversion of a controllability gatrix (3.10a), for the state

- -
space approach. The existence of the inverses of thege

matrices requires the absence of pole zere cancellations.

This is thus a severe restriction on the applicability of

‘ - |
pole placepent adaptive controllers, since wvery often in

adaptifé control the. correct model orders are umknowﬁ a
1 : . : -
priori. '

E

The design of pole plécement controllers can - be

eagily carried out, if the gsystem 1is modeled in the

controller canonical form [69]1. However

4

“equation error”’
type identification algorithms are'more easily associlated
with obserwvable canonical forms [31,77].

The adoption of a system model in the controller

47
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*

canonical form woﬁld lead to a nonlinear estimation problem. -

» -

The resultiné'nonlinear estimation prob}am may be tackled by

-

the extendedlxélﬁan filterﬂ[EKFj. by-treatiﬁs the unknown

. 1 . : _ :
system parameters as additional. states, and wusing the

standard Kalman filter alsorithhs: The EKF however often
producés biased parameter estimétes- and may sémetimeé
diverge if the 1ni£ial paraméter values .are not elose te
their correct values. |

The recursiée prediction error (RPE) algerithm for

jgint state and parameter estimation, was originaly proposed

by Ljung [63] and Moore et al. [7i] as variations of the EKF.

to guarantee asymptotic convergence of the estimated
pParameters to‘their unbiased values. It has been shown [66]

that when the techniques are apgligd té‘the state space

innovations model, the Kalman gain matrf%'becomes explicitly

"paramqterized. thus may be estimated on-line together with

the system parameters.

Thé RPE algorithm 1is equivalent to tﬁe off-line
maximum likelihood algorithm since they éoth minimize ‘the
same cost functioﬁ (4.5a). Thus.prov;ded the input signal
is bounded and sufficiently . excitingf the egtimated
parameters should converge te a local minimum of “(4.5a). If_'

the correct model order is known the estimated parameters

would converge to the global minimum.
An adaptive pole placement controller based on the
RPE esgtimator thus overcomes the main disadvantages of the

previous indirect adaptive pole placement controllers. The
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»

» \ - : N

Tresulting algorithm Qould "be less sgensitive to  over-
parameterization, ginge the 111~cond1ti&ning associated wi;h
irverting a-nearl;b singular ‘controllabilitz_ o;‘ S&lJeéter
matrix is avoided. Furthermore the computation of the
feedback gains becomes ﬁfivial in this canonicgl'form. Thﬁs
for large systems the computational savings of avoiding on-

line state transformation which involves matrix inversions,

more than offsets the extra recursive steps required by the

~*u

RPE method.

4.2 Structure Of The Innovations Model.

Consider an SISO system represented by the polynomial
model (2.1), in order to facilitate identification in cases.
where the integral time delay kd is either- unknown or time

varying, (2) may be represented by a more general model

azThye = Bz Du g + CzDe, . (4.1a)
where ' A
=1y =1 + a z_1 + ...a =z D {(4.1b)
Az 1 n
\ B(z")) = blz_l A+ ..ib T _ (4.le)
C(z_l) =1 + clz—l + ...cnz;ﬁ (4.1d)
n = max(na,nb + km - 1,nc)
km = maximum number of intégral periods of delay expected,

i.e. km » ka 3 1.

Following [97,98] (4.1) can be represented in the state’

space innovations form as
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_where
— - -
a, 1 0 0
-a, o] 1 0 .
F_ = . )
o ) .
—an v} 0 1 N
L ~3n o o 0
. B
- bz
F o= |-
) - B
bn—l + -
b.
n
X . 1
H, = (1,0, .. ,0]
. " B _
€1 T 2
€2 — 23
K = .
o
Cn-1 7 2n-1
a < 2n
Zt-= an n dimensional state wvector.
The above model 1is, however, in the

(4.2c)

(4.2d)

q4;2e)

(4.2e)

observable

canonical form. Assuming the nolse—free portion of (4.2) is

controllable, (4.2) may be transformed to the .controllable

canonical for using the similarity transformation



whare )
- . o1 )
J '_rcfro) ) _ . {4.3b)
‘ . P n._zG ’n_IG -
rc_= [GQ,FOGQ.ﬂ...FO o.F° o] (4.3c)

e

T _ +uT oTyT T n=2,T ', T\n~1,T
rT = ul,fTuT, .., (rDy" 24T, (TP 1uTy

i~ . :
Using (4.3) the controller canonical form of (4.3) is thus
Xppp = FXp + Guy + Key * : L4.4a)
Yy = HXp + ey (4.4D)
where ) ! } s
- 3 -—ay -an_) .—an
1 0 0 0
F o= = J—lFDJ (4.4c)
| © ! o | -~
1]
0
= = g1 )
. G = = J7 6 (4.44d)
o] -
k{l ]
k2
= | = g} '
K = | = J UK, (4.4e)
[
H=10by,b,,...,b 7 =HJI | _ (4.4f)
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X, = the-s;ate‘veéﬁof'dfstheﬁcont:ollgble canonical model.

.

4.3 Join§ Parameter and State Estimation RPB Methods
Following [66] the’ RPE method may be used - for joint
parameter gnd.state*éstfmationrof (4.4).' Define the cost

function - ‘ : ' : : SRS

- - 1 si . ' ?' . . Lo
V(o,y) = E{ — — + logy } . (4.58) .
2y - : e

where at ig the predicfioh or 'innovations sequence generated

vy 5 . o -
st = yt - yt i - (4-6b)
Y ‘ 'y .
Xpop = FOOLIX, + G(8 )u, + K(8, e, _ {(4.6c)
8
Kal
Yer] = “H(e )Xt+1 o . (4.6d)
and . . .. :
®& = a 3n pérametér vector of the unknownnelements‘of (4:4)
et = '‘the egtimated parameter vector at timé t

Yt = the predicted output at time t

>
]

£ the gstihéted state vector at time t.
V(8,vy) is the negative log—likelihood function, if we assume

.«.the-error sequence st to be Gaussian distributed.‘

Congider
' - ' &
Min V{(8,v) (4.7a)

e,y

Subject to (4.6b),(4.6c), and (4.6d)

Also define

4



i Yt- is the negative gradient of the prediction error. hence

provides a deacent direction for the recursive minimization :

of (4,7&). .In order to compute ¥ the following quantities .

need

A - ‘ :
W, = — X, (83] ~ (an n.x 3n matrix) T (4.7c)
_ de B . g
» V“L-“ : - - <
3 = ’ - ) e
D, = —(H(®X, Jlg - o (a 3n row vector) (4.7d)
38 t :
s ) ‘ . - . . ) )
M, = —[F@®X + G{8)u_ + Koe, Jlg _ (an n x 3n matrix)
R 1™ t € eie=8, (4.7e)
Then'wg may be computed from B ‘
_ T T ‘ .
¥, = TH(e)T + Dy (4.76)
where Ut gatisfies the dynamics
W, = LFC®) — K(OOH(OIIW, + My = K(8ID, L(4.TE)
The RPE algorithm for the recursive minimization of (4.7a)

. T . g.aT . . . o .

- fae dy \ -~ - 1\ :

Y, = - —L£l - = Qﬁ ‘ (a 3n vector) (4.7b)"
. de ‘de ~ - -

to'be determined.,

d

ig.the given by:

G.= [al....,an;bl,....bn.kl..-..kn] | {4.8a)
Dt = [0,-..,p.xl.t.f...xn‘t.O.....Q]_ (4.8b)
"xl,t}:"'_xn.tﬁo';"'o:Et ,0,..-,0
: 7 t \
0, ceer O, e -‘0 st,..,O
_ ' ' L T
- - ! .i
- - | | rd
0. .-y ol IO! O!tol ----- pst
— n ' —
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Compute prediction error

_ - e - A

= - 4.9
€, = ¥, Y ( a)
. . V\ - =
Update var(e) - ‘
. " 1 2 . A
Ye = Yyoy + --t[E't - Yt—'l} . (4.9b).
Compute adaptation .l.'r} . o B -.
P, ¥
L = -1t . (4.9c)
L. - . . -
- . T
) ‘ S A Y+ ¥ P Y .
Update parameter es;imates
L T8 =e e dlg D, - (4.9d)
iUpdate covariance matrix
. T .
. 1 ' P, .¥.¥.P
P, = —[ P, - et 5 (4.9e)
' e e R P Y
Predict next state estimates =~ -
r . e '
A . A - * ) f
Xt+1 = tht + Gtut + Ktet . (&.9E)A
Predict next output A
A Fad R -
Ves1 = Fefear L (4-98)
Ccmpute gradlent of (§€+1 - .
Wepp = (Fy - Ifth]“t + My = K.D] . (4.9h)
Comégte gradient of (;t+l)
T,T . T o (4.91)
Fearl = Weyy B + Be

{u
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\
where ﬁq have used the notation '
Fo = F(8,) : : _ _
_“'@ L .
N Gt = G(&t)
e = P00 :
) Kt = K(Bt)
DB — the stability region of the ‘predictor:
DS{Bi(F£ - Kth) is str;ctly_stable} (4.?3)
'Lt =z an n dimensional vectbr of adaptationegains
Pt = a. 3n x 3n covariance matrix. R

The time ﬁarying forgetting factor At ig generated by

the first order difference equation

-
-’

e = Aghpop + (L= A _ (4.10)

0 < Ao, usually i, = 0.95

The above fo:getting factog, ensures that the covariance
e |
matrix is open to incoming;data._ but asymptotically sets At

to unity. For cases wher; the input/output data ig not
peréisteﬁtly exciting, the use of the above forgetting

factor could lead to exponential growth of the covariance

=] -
-

matrix. For such cases the data dependent variable

forgetting factor described\in section 2.5.1 should be uged. -

' ~
From theorem 4.3 of [66] a necegsary @ condition for
‘ ; 2, dmlagt

the convergence of the eqtimated‘paramete;s et to the set
= . . | ) - .
d : .

D. = (8] —vV(e,y) = 0}

or to the boundary qg D + is that e, D, (at least infinitely

often). Thus ,td'ensure'the gstability of the RPE algor}fﬁ}.

de ' -—

-
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8, must be monitored and if necessary projected into the
~ stability region of the prgdictor (4.93).

The projectfon -'facility .may be fmplegented 'qs

-

follows. Define

s

F =.Ft - Kth ' - (4.11la)

then the characteristic polygpmial of F is given by
"M(z) = det(zI - F) _ _ (4.11b)
* ) ’ ] -1 . . :
=.(zn.+-plzn +,..;pn_1z + pn) ) ‘ (fullc)

The adaptation law (4.9d) may be implemented as :

BN

1: update parame;ers.ét-= et—l + Ltst

2:_ - compute F = Ft - Kth a
3: determine N(z) .= det(zI - F) i

4: 1f M(z) = 0,-for |z| > 1;: set 6, = 8,

Thus if a particular measurement would take et outside the
stability region it is simply -‘ignored. A ~more  refined'
algorithm would be to succesgively halve the corééction term
. -

Lgg» 111 6, is inside the sta?iiity region. Sté}'4 above
'involves testing to ensure that all roots of ﬁ(z) lie inside
the unit circle. A suitable algorithm for‘doiﬁg this basged
on the Jury;stability critgrion. is given in {55].

The coefficients of {z) may be generated }ecursively
by using.Leverie;’s algorithm'A(23) of [50]. 'Unfortunately.
Léverier's algoritﬂm is computationally inefficient for
large matrdces. However, -~ by exploiting the special
structureg of E,K. and H, NM(z) may be determined ag followe:

: ’

M(z) = det(zI - F)det(zI + (zI ~ F) 1kH) (4.12a)
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: = atz) 4 Hoady(al- BX T (4.12D)
- uging (A33) of (501 P
| H adj(zl - F)K = (8(z)8(z)Imod alz) . = (4.12e)
where N - -
Lo atey =2RAGTH S (4-12¢)
fs<g>»a;b1zﬁ‘1'+ ceb LT (4a1ze)
N _1 ’ - .
N s(z)y = 6.27 0 + ....8) ~ O C4.12€F)
. . _
J; 7 B B 2
_ 8, 1, ay . 2.1, Ky
. - 0. 1. I S B8n-2 o ) '
. = . N . (4_1.2‘3)
] ° R I R

hY

also (B(z)é(z)) mod a(z) stands for the remainder after the

 division-of (B(2)8(z)) by al(z). . _ | .

4.4 Pole Assignment Self-tuning Control by State Feedback

In view of the .separation, theorem for stochastic

control [?]. the STC algorithm may be implemented‘ as

follows. Each iterartion-of the joint parame;ef and state

estimation algorithm is followed by the state feedback faw

o

n :
u, = fot_+ K.y, : A ~ (4.13a)

Ke = [al,....an] - [y, ---sa,] ‘ (4.13b)

where' al....,cn are the coefficients of the degired~closed

loop mode polynomial Am(zfl) and

-1 : - - | T
Am(z Yy =1 + ayz 1 + ...a.z n e :4.13c)
Also Y ig a reference :input sequence' and Kr i a feed

v B ' o
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fqrwa;a gain;A_To-ensure steady state efrér to a step input,

K. is selected

n N
. 1 + T @ ; :
Ti=1 i n
Kr'= = . ;~_bi¥0 i
n i=1
! b, '
i=1 b

The closed .loop output sub ject to thelabove cdhtrol law ié

- then

vy = HC2IZF=6K . 1ok y_ « H(ZI-F=6K.) 'ke] + e, (4.14a)
which reduces to
Blz"ty D(z" 1) :
Y, = v———K y + —e (4714b)
t - - -
. M= bt L AnETh -
whefe
* bz7ly = 27 (g(z)s (2)). mod az)} + ASz"H) | (4.140)
_'-“ := ; + alz-l +‘.-.- dnz—n . — (4.14d)
alz) = znﬁm(z_l) : ' (4.14e)
S8 (z) = 6 2™y 5 (4.14F)
. n IR | - T
. 7] [ a7 ]
61 1, S| y %n—1 k1
. 0. 1,.' °~1 . - an_z -
= A C ) _ S (4.1l4g)
s, | 0, 0,. -+ - 0,1 ] Kp,
For pure regulation, i.e ¥y = 0, the statiohﬁry variance of

r

the output Y¢ ¢an be evaluated from (4.14b) thus
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., <y fo@pEh = ~
- e = : ' — — . (4.14R)
2wy v A_(2)A_(z ) =z : . :

P

A recursive algorithm to compute the above integral is given

-'_“ in [55].;.Forfdead beat ‘contrbl. A;(z'l) = 1, i.e. all

- -closed ’ loop Hbles are placed at the origin. Equation

(4.14h) then reduces to

-

2

S =7¢1 + a2 + a?y : 4 14;)
T oy s b edpdeedy (4.14%
‘. The control action for the rggplqtory mode <can be
related to e, by -
_ rez~D) .
- 7u; =.;———:T;et_l T " ) ) (4.143)
: o'z . . ,
) where
r(z™d) = 272 (Cu(z)é (z))Imoda(z)} -  (4.14k)  ~
w(z) =-(al—c1)znfl + oaieean (an—an)' _ Fea.141)

and hence thé)control_action variance may be computed from

2 v- r(z)r(z-l) dz - -

u X -1 (.4.14m)
2n] Am(z)Am(z Y = : - ’

4.5 Simulation Results

To demonstrate the effectiveness of the proposed

algorithm, the feollowing system was simulated.

yt—l.éyt_l+0-63yt_2 = ut_1+1.5ut_2+et+0.5et_1 (4.15a)
. &y ™ (0,0.1) X
The‘above system has poles at z=0.9, and z=0.7 and is non-
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minimum  phage. Using' (4.3) the above model mgy-be put in

- the observable canonical form.

—
.
o
Pt

N
.
o
N
.
Jd

Z, + u, + : e (4.15b)

"y |-0.63 o - {1.s ~0.63 A

[l.O]Zt + e (4.15c)

«
o
Il

t

_'On transfrormation to the controllable canonical form we'i%t

1.6 =-0.63 e 1.026

X - x -+ u -+ e . (4.15d)
1l I o | % jo| ® Jo.716] © -
- Ye :[1..0,1.5]}(t + e, ... (4.15e)

thus from (4.8a)

@ = [—1.6.0.63,1.0,1.5.1.026.0.716]T

Figure 4.1 shows the‘open loop response of the system _with

u, = 0, and Yr = 0. The uncontrolled system gave an cutput

variance
o T e
. Var(yt) = 9.68 -

Both the desired c¢losed loop poles were placed at the origiﬁ
to obtain dead beat contral; thus .

Am(z_l) = 1

The gtarting values ‘ were chosen as
90 = [0.01,0.01,0.1.0.01.0-0;.0.01]T
Poi‘ 10.1 -
AO = 0.96

The input sequence y was selected as a square wave

sequence with mean of 2.5, amplitude of 22_5 and a period of
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100 sampling intervals. Figure 4.2 shows the closed—loop

response}' superpoqed on the inéut seéuence Y- After

gettling down the closed ioop output'variance was- |
. Var(yt - yr) = 1.43

The theoretical. value obtained via (4.141) is a; = 0.78.

The discrqpancy may be éttribu;ed to the combined effects of -

inexact parameter estima;es, and the transient rgsponsgh to

)"r-

——

The projection algerithm implemented in section 4.4,
ensureg.tbe stability of the predictor paﬁrix [Ft- —_ Kth].

Under _closed loop control howeverﬁﬁ the stability of the

ovgrall algorithm would ‘also depend on the dynamics of
. : py :
[F + GKf] which is uncertain, even if [Ft + GK¢] is always

stable. Thus to prevent the algorithm from biowing up in

the initial stagés when the estimated parameters are far

T

from their correct values, it was found necessary to hard

1imit the control wvariable, thus

—_S(ut)S

Fiéure 4.3 shows a plot! éf the control action. After-
gettling down ﬁhe‘cohtrcl action variance was
Var(ut) = 0.2?
The estimated parameters at t = 500 were

' Bgpe = [—1.67.0.68.0.91:1.48.1.92.0.81]
Figures 4.4 and 4.5 show plots of the. estimated system and
Kalman gain parameters respectivegb. It may be notioced from

these plots that the estimated parameters never really
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settle down.f This is due to closed loop 1dent1fiability

problema; whzch cause the estimated parametere to be ecaled;

by - b1L~ If the; input signal ig made persistently exciting

- - -

‘"the eastimated. parameters ) convergee‘_ mere_ ‘ rapzdly.

Alternativel}..if a good _estieeﬁel,ef bl:ie esed and the,
cprreeeondidg 5ia§ohal'elehen£ of;P; is eet to a low Qaiue.
the estimated parame;ers.hgain converge rapidly.

Figufes"4-6 and 4;7 shoﬁ plets _ef the :eegdual

sequence €, and its autb-cbﬁfelation function respectively.

The confidence bounds on- the eutofcorrelation sequence'
i ... ) . ) - . . P T N
represent the 95% conf idence :1imits. Thus the,reeieual

i : . -\
sequence may be passed as white noise and .hence the

resulting estxmated perameters as - unbiased.
To demgnstrete tha applicab111ty of the algorithm to
over—parameterized systems, the : following  model was

simulated. I ~

‘ (1 = 0.9270(1 = 0,727 Yy, = (1 0.7z Hu

+ (1 + O.Sz_l)et

t-1

the above sgystem has a.pele—zere cancelation at z = 0.7,
thus the traditional indirect poie—placement controllers
cannot be applied sucessrully due to the iWf-coditioning in

the controller design algorithms. .

The above system is equivalent to the state space

-model
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' | 1.6 1] 2.1
Z = o Z, + u, + . e
. t+1 ~ | 0.3 0| bt |-0.7| % |-0.63] °
Sy =101z, ve
‘ e ® (001 1oL T

The simulated system is uncontrollable, since the pole at -z

= 0.7 cannot be ghifted. ﬁ%hia pole is hpwéver well , damped.

It was required that the poleé at-z = 0.9 be ghifted to the

origin to'imprbvefthe,tranéien; regponse: - -
. - At - - . T

-The starting values for the adaptation process were

v
- -

. chosen as:

.o 4

e,
PO -_—10 I ’

e, = [0.01,0.01,0.1,0.01,0.01,0.01]

Figures 4.8 and 4.9 show plots of thé .output and control
variables npspectivelf. AIE'is_evident'from these plots that

gsatisfactory regulateory action. has been achieved without the

- saturation of the controller’ variables .experienced in

. . o , ° ;
section 3.4. Thus the  state space &{TC based on the RPE

gives a dramatig improvement over " other indirect adaptive

- .
pole placement algorithms for gystemg with unknown or time

yarying'model orders.' For such systems an uppér bound on

the :model order_  could be used‘and the aigorithm proposed in

this chapter maf Se.&ged to get. round the resulting ill-

L

conditioning of the controller and estimation algorithms.

féié Cohcluding Remarks ' : - -

-

a2 . -
T e The state sSace STC is an effective way to adaptively
. e N ) -

-
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’

control non—-minimum phase systems. The main _disadvantage of
the previpusly_reported methods,  and the algor}thm prﬁposed
in chapterAB, is the on-line computatioh‘of trénsfbrmation
matrices. This 'ﬁas due to the fact that tﬁe then exigting

_alkorithms fér Joint state and parameter aatimatipn required

‘"demonstrated that recent algorithms .for Jjoint state and’

parameter estimation such as proposed by [66], may be uged:

for joint state and paréméter estimation in the controllable
eaﬁonical }orm. This overcomes the main d;awbgck of the
previous state space STC’s. ‘
Intuitively the modified algoriigm_ should be less
sens?tive to Voyer—p;rameteriza;io?. ‘ since the ili_
conditioning;associated with the inversion .of. a nearly
singular controllablity matrix is avoided. Simulation

~

results presented in ﬁhis chapter .show that the proposed

algorithm worked well when it was spplied to a system with a

-

stable pole-Zero cancellation. &

The RPE method is equivaleéent tp the off-line maximum

likelihood method, gince minimize the same

- 4

objective function (4.6), ?Thus the parameter estimétes are
asymptoticaly unbiased. This suggests that éelf-tuning
wquld occur if the model order is‘known‘é—priori. A further

advantage of the proposed method is that the matrices of
partial derivatives are sparse ‘and . have very - simple

structureé hence are eagily cdomputed on-line. The method

special canonical forms. _AIn this <hapter-, we have



s
can be eeaily_eiééhdgd to MIMO systems.

‘the main focus of chapter 5.

72
This extension _is

r



- ' CHAPTER 5

5. MULTIVARIABLE STATE SPACE STC VIA RPE ESTIMATION

L
.

5.1 Introduction ) ' -

In section 3.3 an explicit adaptive STC-b;sed on the
state_ space model and BSE estimation was proﬁosed. The‘
limitation of such algorithms to controllable systems was
demongtratéd by simulations. Using ‘the estimation

L

techniques discussed in chapter 4 however, a médified
version of the MIMO state sapce STC of 3.3 may be developga\\
to side étep the éh—line transformation of the state vector,
thus making the MIMO state .space. STC more widely applicable.

Using the BSE estimator the observabil}ty i?dices ar;
aééumed’ to be known, the eéﬁimation is don;l in' the
ocbservable canonical form. The ¢ontrollability indices_can
then beAdetermined. and the_ pole assiéhment coﬁtrol law‘
implemented by ﬁransforming the system to ;he controilable
canonical form; Uniike the SiSO cagse the controllable
canenical realization of the system characteristic matrix is
not the transpo;e.of its Qbservable canonical realisation.
Thus the computational savings in avoiding " this
transformatioa is of great significance.

Using the RPE estimator the contrbllablity indices are

assumed to be known, the estimation is done in the

73



controllable canonical form. -Pole assignment control can

then belimplementea quite easily. The modified algorithm

has a further. advanfﬁge in -that-it %3 easy- to select by
inspectéon. a f;ed‘ back matfix ;o decouple the ‘syséem
dynam%cs as seen by the inputs. Héwever'some cross coupling
terms may be unayoidable if eross coupling terms are present

in the system output matrix.

The algorithm proposed in this chapter and also-in

[78] is applicable to unstable but stabilizable and or_ non—‘

minimum phase systems. There is however a restriction that

the number of inputs have to be equal to the number of

-

outputs.

S.2 MIMO Parameter and State Estimation by RPE Hethoﬁp

Congslider the MIMO system, modeled in the state'spacé

[

innovations form.

xt+1 = cht + GcUt + Kcet ' (5.1a)
Yt = cht + et (5.1b).
where
Fc = [Fc. .] (5.1¢)
i, 3
i=1l,....,m
jJ=1,....m
0 0 0 —L
In.—l ! Fc. o
1 1.]
Fc:. . 2*J
i3
0 0 0
aii(l)-- éii(ni) &ij(l)" aij(nij)

S



Gc = [ug ’--.u.’_m] ’ Kc = [kl_...'km]

- T

» . .bl
t -

H =
. = .
. T -
m
aij(,) are scalar parameters which determine the

dynamics of Fc‘

bz are n'dihensional row vectgfs corresponding to
the rows of Hc' . |
Ei are n dimensional veétors corres;gpding to the
.columns of the Kalman gain matrix Kc-
uli . is a un%t.column vector of dimension n, with a
s l in the Li'th row, where
- ) ) li = nyp + ... Dy
ny + .0y + ..np =N .
ny .aré the‘ cohtrollabiliéy\indices of the system

which must be estimated a-proiri. However due "to the

.

robustness of this alsdrithm to over—parameterization, over—

estimation of these indices would not cause unstable control

as would bg’the cage for the algorithms presented in chapter
;. .

The RPE estimation algorithm may then be generalized
to the multivariable case as follows.

Consider

Min V(O,A) = Hin{sZA_lct + logiAl} (5.2a)

9,A 8,A {

[
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et ie a vector prediction error sequence given by
st = Yt - Hc(e)xt o - (5.2b)
X )% + & (8)U_+ K_(O - (5.2
xt+l-_ Fc( ) t + c( ) et c( )st - . 2¢)

where © 1s a parameter vector containing the unknown
elements of (5.1).
Define ' _ : L

r
-

de d :

¥, = —(—TE)T = (— EHc(exxt(e)]qT (a dim(8) x m matrix)
de de : (5.3a)
- . .
The'.golu@ns of the matrix Vt represent the negative

gradients of the elements of the innovatioﬁs vector st with

. respect to the parameter vector 6.

d ex ‘
W, = —[X_(8)] (an n x dim(®) matrix - (5.3b)
t t
de - . .
] . N - .
Dt = ——'[Hc(e)xt]lB - 8 (an n x dim(8) matrix) {(5.3c)
a9 . t :
-t a A , - .
M = —{F _(@X,_ + G _(&)u, + K (&e_Jl, _
t S c t o t c t B = at (5.3d)
- Q {an n x dim(8) matrix)
Let )
T T T, T T.
0 = [al--a .-am.bl..-bm.kl---km]
where )
ag corresponds to the unknown rows of the Fc matrix.

-

Then an algorithm for the recursive minimization of (5.2)
given by %

1l: Compute the innovations vector

is

*



- -

N . 1
g, = Y — Y
2: . * Update cov(e_) .
Vi€ e :
. ~ T
Mg = A +'1F9t5t T A
. \ R '
3: Compute adaptation gain matrix

e T —X
By = Pe ¥ Ophy + ¥ePe )

4 Update parameter estimates
Qe = 8¢y + Lesrlle, e p
CH Update covariance matrix
’ ! ’ T | T 1
P, = ;—[Pt_l - Pu_ Y% PeoiOpAy + ¥ P ¥ ]
t
6: . Predict next state estimates
A A
X = .
e+l = FeoeXe * Gg,eUe + Ko e
7 Predict next output ]
A LA
Ter1 = He,eXesl
-~
8: Compute gradient of Eﬁt+1) .
W - K - - -
ee1 = EFo ¢ = Ko fHo oWy + M Ke,ePe o
I Compute gradxgnt of (Yt+l)
T T T
{ Yool = VeiitHe e T Dena
Where we have used the notation .
Fc.t = Fc(Bt) ‘ ]
Gc.t = Gc(et)
- "
Hc.t'_ Hc(et) | s
Kc.t = Kc(et)
Lt = an adaptation gain matrix of dimensions
dim(6) x m i
Pt = the covariance matrix.-qﬂ dimensions

77

(5.4a)

(5.41)

(5.4c)

{5.4d)

(B.4f)
(5.4g)
(5.4h)

S (5.41)
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- S '
dim(@) x dim(@) with P_ = oI, ¢ >> 0.'
Dé {e the atability regién of the predictor:
\ Ds{el(Fc - KCHC) is gtrictly stablg} (5.43)
The projection of~ the estimated parameters into  the

stabilityl regién is required for tﬁe asymptotic convergence
ofrthe RPE iestimator. an§ may 'be' impieﬁented via the
"projection ,algorithm described in sectioé 4.4, The
characteristic polynomial | of the prgdictor matrix
[Fc - KCHC]_ cannot Dbe ‘determined via equations (4.12) for
the multivariable case. It .may however be determined

numericaly by using Leverier’s algorithm.
T

Define

. Hc(z) = detfzI - Fc + KCHC)

det(zI - Fc)
LI Plzn-l + "'pn—lz.+ pn.

. _ i
- 'I'i = trace(Fc)

then the coefficients pP; can be determined recursively from

’ 1

Py == (®iaTy P2t Y -een Ty Ty

where

i {1,..-,n}

5.3 Pole Assignment Control Law ' )

Using the certainty equivalence principié [9,16] the

'STC algorithm may be implemented by following each iteration

.y

of the joint state and parameter_estimation algorithm by the



atatg feedback la#

~ v

U, = K%{\ Ky
~ Uy = —KpXy + Kp¥p
where -
KF = [KF-.]
1]
i=1,...m
j = 1l,...m
KFli = [aii(l)-cii(l).--aii(?i)—qii(ni)]
Ke = [aij(l).L.aij(nij)]
13
izj
aij are the estimated system parameters.
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(5.5a)

(5.5B)

(5.5¢)

(5.5d)

aij are the desired closed loop dynamic parameters.

With the above control law the <closed 1loop

asymptotically becomes

.

' Fe = Fo - GKp
where
Fc = ;Fc.zgl
- '—'0 T
In.—-l
Fe ii =/

0

a.. (1Y ... e..(n.)
ii iiti

— — .
c.ij = (0]

L

A

system

matrix

(5.6a)

(5.6b)

(5.6¢c)

(5.64)

Thus thg closed_loop characteristic polynomial is given, by



m - .
nezy = [] w,(2) - (5.7a)
. i=]1 . - o
where .
. . ni_l ni
v (z) = (—a; (1) —cii(ZJZ..u~ﬁEE(hi)z +z ) L5.7b)

N

YR is a rgference input wvector, KR is selected to ensure

that for a constant YR' EIYt} = YR' thus _
-1. -1 . ‘
Kg = [H (41 - FOT 6] . (5-§a)
> _1 ) i
| det[Hc't(I - Fc) -Gc] 2 0 . (5.8p)
Alternatively, if the cross-coupling terms ‘in the output’

‘matrix may be neglected, (5.8a) reduces to

KR = diag(KR(ii)} £5.8¢)
where
o
b - ; Qix(J)
. j=1 : ny¥...ng v
Ko(ii) = - ’ I H . .20
R c,1,)
Ry+...ng j=n1+..:ni_l+1
z ' Hc ij
d=ny+..ung g+l | . (5.8d)

Hc i3 represents the 1j°th element of the Hc matrix.

- Thé cverall closed loop system is. then given

1 . -1
GCKRYR + [Hc(zI - Fc) Kc + I]et (5.9a)

Yt = Hc(ZI - Fc).
For regulatery action the output covariance matrix may be
computed {9] from )

o Covy = (I + E%HcFéKc][HCFéKC]T)A (5.9b)
. . i=

*for dead beat control
"Fé =0 - i (5.9¢)

thus (9b) reduces to



Lo . n_l } \ol - . >.'.‘ ‘.' L
- Covy = (I + x[% 1.*11( 1EH f-‘iKc]T)A o (5.94)

For a mult;variable system the requ;red feedback gain

- ra

'maé;ix -] arbxtrar11y place the _closed—loop po}eg fh non-—
uniq;e. Thus the rema1n1ng degrees of freedom after clbs;d—
loop pqle assxgnment. may be used to gatisfy cther design
criteria such as decoupling, ©or the reduction of the
‘sengitivity of .the closed-loop s?stem to par#metef
variatiog. 'In this algorithm this extra design freedom was
uéed_ to @ecouple ‘the sys;em dynamics as seen by. the 1nputs.
However cross—coupling zeros may be unavoidable if there are
corfespondi%g terms in the system output matrix. Attempts

to cancel such <Teros may lead teo unstable control in non—

minimum phase systems.

5.4 Simulation Results

~To illustrate the method, the following system was

simulated.

0 10 00 0.716 0.3

Uik ®1,¢
X = | -0.63 1.6 0 X, +|1 0 +[1.026 -0.3
£+l t Uz.t ) 2.t
0 -0.2 0.8 o1 -0.2 1.3
(5.10a)
1.5 1.0 O ey . . ) .
Y, = L X, + A B £5.10b1)
0 o 1.0 e, 7 ' :

A

i
m
~
i
o
—

i
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' The above model has poles at z=0.9, z=0.7 and 'z=0.8,  and is
non—minimum phasg. The exact parameter vector is thuas: -~

= [-0. 63 1.6,0,0,-0.2,0.8,1.5,1.0,0,0,0,1.0, 0 716,1. 026

o

-
-

- —0.2,0.3,-0.3,1. 39T

2 - -

.jhe matrices of partial derivatives*are then:

o |o o o
| }
AT l
t o ] ;Iel e 1160 ¢
» [ ¥
T
F) | X 1 © o 1 |
o ol lo o o
D = - ! t { |
t o o1o ! if o

wheré
O =000 . ’
: te e o .
The desired closed loop °system characteristic matrix was

selected as

' 010 _ -
A 3 ’ _ ' ~
Fc - 0 0 0 i - . “ )
000 _ )
to obtain dead beat control. _The‘closed loop system is also

effectively decoupled since fghere are no cross—-cgdupling

£+

terms in the system output matrix Hc’ . . -

To méintain stability during the initial stages of

the adapgétion. it was found necessa}y to limit the cont:o{

signals to . -

1
,I.

e



-5 - 5 .
- e [} eu, €017 : L
I -5 S ) - .
However as pointed out in {187, -this could lead to control

.

.signals which are not persistently. exciting. This was

noticed in 'the simulations, but was oﬁgrcome by adding -a

dither signal vector- to the limited control signal. Thus
~ . " l
U.. = —K_Fxt + KRYR' . .

Ut = U.r + DTH

where DTH is a vector of dither signals each of variance 0.1l.

If a fairly accurate guess of the open ‘loop gain

parameters is available and the corresponding elements of PO

are set to a low value, the initial values of the control

~

variables are not so excessive. The limiters may then be

removed, thus making the injection of the dither signals

redundant ..

The uncontrolled system -i.e with U, =0, gave the

output variances:

Var(Yl) = 18.58
.Var(Yz) = 3.74

Figure 5.1 shows plots” of the output variables for the copen

doop systeﬁ.

The initial values were

~

6, = [0.01,...,0.01]

P

5
10 &
<]
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Ao = 0.95

The esﬁimated valﬁes after 500 sampling intervals were
8590 = [-0.613,1/589,0.004,0.017,-0.227,0.798,1.497,0.964,
.—0.002.0.059.0.0034.1.00,0.71@.0.826,—0.212.0.272.

-0.387,1.212)% :

and after settling down, the closed loop output v§riances
. . £

were

—

R, 1.
Var(Y2 - YR,Z) = 1.56.

Var(Yl - Y

W
L
L]

N0
~J

-

The theoretical values computed from (5.9d) are'given by

0.8l -0.02
Covy = ]
-0.02 0.27
The large discrepancies are obviously due to the effects of
the transient response to the set point changes, and the
injected dither signals.

Figure 5.2 shows plots of the output variables fo}
the closed loop systém. supe?pcsed on the command signals.
The observed control action variances were

Var(Ul) =.1.85
Var(Uz) = 4.64

The observed variances of the control actien includes the

-~
-
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effects of both regulatory and servo action, hence are
appreciably” higher than would be expected for pure

regulatory actionf/ Figure 5.3 shows plots of the control

e

variables.

" To study the rate of convergence of the estimated
=
parameters and states, the following quantities were

~

Plotted. Figure 5.4 shows a plot of

2
nefetu .
GAMA = >
161
Figure §.5 shows plots of
X, X, 8
R N - B
A GAMA X = ——2%
’ TR E
© \
From figures 5.4 and 5.5, it is evident that the norms of
- »
both the state and pargmeter vectors have reasonably

converged to zero after after 500 sampling intervals.

Figureé 5.6,5.7 and 5.8 show plots of the estimated

system and .  Kalman gain parameters whilst Figure 5.9 shows

plots of the residual sequences. To check the adeguacy of-

the estimated parameters, the auto-correlation functions of

the residuals were compu;ed- Figure 5.10 shows plots of the
auto—-correlation functions of the residuals. From the plots

it is evident that the residugl-sequences may be accepted as

v

white with 95% confidence, hence the estimated model may_be

accepted as adequate and thus .implying that self—-tuning has

occured.
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5.5 Concluding Remarks
. -
In this chapter we developed an efficient algorithm

B '. .
for ‘the suboptimal control of MIMO systems with unknown

parameters and subject to unknown stochastic disturbances.
B

The .algoritm proposed is more efficient computationally than

either ¢the po}ynomial matrix approach or the previously

\"-_-’/
.

_réported state space based olgorithms. due to tﬁe large
oomputational sivings in avoiding on—line transformation of
the system matrices. Althodugh the estimation algorithm
reouires more steps, this extra computation, mainly to
determine the gradiont matrix ¥ need‘ not cause excessive

computation since the matrices of partial derivatives are

sparse and have very sxmple structures- .

-

Since the 1nversxon of a. controllability matrix is°

avoided, the proposed_ algorithm ig more applicable to
uncontrollable but stablizable systems. . aS shown by the
simulation results for the SIS0 case in section 4._ Thié
robustness to over—parameterization is further reinforced by
the fact that for an over-paramoterized system it 1is known
[66] that provided the control and output signals are
bdunded and suitably exciting, the parameter estimates would

converge to a local minimum of (5.2a).

A noticeable drawback of the proposed algorithm is

-
— +

thelneed te project the esﬁimated parameters into the
stability region of the predictor. This involves finding the

characteristic .polynomiél of an nxn matrix and the

4
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monitoring of its stability via " the Routh—Schur or Jury
stability tests. - However in many applications less refined

projection algorithms such as keeping the parameter

estimates within some & priori selected limits are often

encugh to prevent divergence in the initial stages.

AX%



6. AN ADAPTYIVE AUTOPILOT FOR NONLINEAR SURFACE SHIPS

~r

6.1 Background

In recent years, a large number of publications have
appeared on the application of'adaptivé.control techn{ques
to ship steering. ?he reason for interest in adapt;vé
auvtopilots is that the ship and disturbance system is
inherenély nonlinear and time varying. Such cﬂa;acteristics
make it difficult for bridge officers to optimally adjust
the settings of the PID type controllers, traditionally
employed in ship autopilots. ' )

Several authors, Astrom [11], Kallst;om et al. [5113,
Lim et al. [62], Mort et al. [72,73] and Quevedo et al. [8é6]
represented the nonlinear and time varying ship and
disturb;ﬁce system by linear stochastic models. Various
self-tuning controllers were tﬁen degigned for these models.
The philosophy behind such an appféach being that, on—line
identification should be able teo track the effects of time
varying system parameters, thu; cdnfer a high degree of
adaptability on the auvtopilot.

The various STC autopilots proposed were found to
perform ﬁéll during c;;rse keeping, when the ship is

egsentially operating in the linear region. However, for

ship mancuvering, which requires large course alterations

~

97
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-

with‘correspondiﬁg latée rudder angles, the STC was found to
perform .unsatisfactorily. .Ashworth and Towill (8] and’
Ashworth [7] have shown that the main reason- for this poor

performace, is that the main mode of nonlinear behaviour was

egsentially . complete, before the identification algorithms
could sufficiently adapt to it. This restilted in large

overshoots to step changes 'in ship’'s heading.

~

In a recent paper Ashworth and Towill [8] proposed an

- w
inverse nonlinear compensation scheme to approximately
cancel out the effects of the nonlinearity. The resulting

system could thus be approximated by a linear time wvarying

-
- ——

system. Thus this would suggest that an ideal adaptive

_ I _
autopilot should consist of a two tier control scheme. A

nonlinear compensator to reduce the effects of the

nonlinearity, followed by a self-tuning controller to handle
the resulting linear time 1:rying system. This should allow

the controller to perform optimally during course keeping,
=

course changing, speed alterations, or when in the proximity

of' canal walls and passing ships.

.

. .In this chapter and also in [80] the author proposes
an adaptive autbpilot based on state space self-tuning

-

control with pole aséignment.' and neonlinear compensation.

- The novelty of the proposkd method is that the structure of -

the state space model adopted allows the separation of the
system model into a linear dynamic system and a nonlinear
control input. A nonlinear state feedback scheme could thus

be designed which cancels out the effects of the
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nonlinearity, and simeytaneously. arbitrarily places the

. -
closed loop poles for the “resulting 1linear time wvarying

gsysten. R .

6.2 Mathematical Modelling of Surface Ship Dynamics
The anal?tical treatment of surface ship equations of

" -—-_.__\ N
motion in 8ix degrees of freedom has been extensively

discussed (Comstock ([23], Nicholson [753>)- THe standard
nomencléture and _ sign convention for manoevering in the
horizontal plane, negiecting the cross—coupling ;ffectg of
héave, pitch and roll is shown in figure 6.1.

The lateral egquations of motion (sway and yaw) for’
surface ships, when expressed in nondimensional terms with
‘forces and moments expanded as a Taylof's series to include

first order derivatives may be expressed’ as .-

» " . 'o f’ '_. ’ I R
(m ‘I‘;r ) Yg v _ Yv (Yr mu )|V
Na.' L4 _ L . ..r' r
v (Izz Nf) r Nv Nr v
~ Y; _ oY
N { , 18 + w (6.1)
Nd N )
h .' f' '. L F' : 4 :' " r
where Yv ,'x’_V 'Yr'Yr'YS,’Nr'Nr’Nv ,Nv _and N 5 are

1 -

the first order hydrodynamic derivatives of the particular

force or moment component with regpect to the subscripted

degree of motion. ¥ and NY represent the effects of
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“ i -
: : . . m = mass of ship
+X , u . .
Izz = moment of inertia
‘N about the vertical
. axis
’ N = moment component
about the vertical
axis
. . v = yaw angle
+N +Y, .
v v r = yaw rate
r L
& = rudder angle
u = foward wvelocity
in x—axis
: v = drift velocity
‘ along y-axis
X , Y = force components
along x and y-dxes
, . ‘ .

Fig. 6.1 Nomenclature and sign convention for lateral ship
manoevering (the ° after a variable denotes a . .
nondimensionalized variable). )

o '.
. L9 -
,.—--:" ht
.\. (’4\ o
-
P -

?
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environmental disturbances such as wind and waves.
: —_—

Eliminating v from (6.1) the differential equation

relating yvaw to rudder deflection may be writkten as

o TN

1 1 1 K,
Ve l—+ o+ v = (T8 + &) (6.2)

- L 3
' Ty T2 T, T, T,T;

s

where T,,T,,T; and Kg are related to\:the hydrodynamic

derivatiwes by

Kg 7 N, ¥s = Y, N
TIT2 (YG'_— m )(Né - Izz) - (Yf - m xG)(NQ’ - M XG) - ~
- g
’ - LA . 2y I
(NQ - m.xG)Y s~ (Yv — m )N 5 -
.T3 = L4 -, 'd ,
NV Y5 - YV N6 . -
1 L Yﬁ'(N . = T Xgu ) — N v (Y - MU )

T\ T2 (Y,” — m YNL - 1..) - (Y, - m X I(N" - m x6) )

zZ

(Y. = m YN — m Xcu )y + (Nf - I Y,
(i_ . i—) _ ﬁ%(Yf - m XN - (N, —m XY . - mu )

,

Bech [17] noted that during a manoevre the coefficients

1 .1 K
[— + —3J, —5— and T, all remain constant for a given shiR’s
T T2, T, T 1 .
speed. The coefficient however was found teo bary rapidly.
T, T '
142

It 5is well known from ship trials that the steady stabte yaw
-t .
rate is related to the rudder deflection\5§
Jf' § = H(¥) : {(6.3a)

For a slender ship H(¢) may belapproximated by the cubic

k]
\
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pelynomial :
H(#) = ulv “+ 02¢ (6.3b)
Bech [17] suggested that the steering equation may be more

accurately represented by the nonlinear equation

1 1 K_ - S .
. OV (— )+ H(B) + (T,6 +8) (6.4)

H¥) 1is thus assumed td acdcount for the net effect of all
. - .
the nonlinearities in the steering model. The coefficients

v, and v, in (6.3b) may be nbtéinéd from ghip trials by the

-, K . (S
Dieudonne - spiral test for directionaly stable ships, or the

,reversed‘spiral test for directionaly unstable ships (Bech

(17]). The parameter v, {g known to remain fairly constant,
but v, iz time :varying due to the effects of changes-in
loperating conditions, particuiar}y caused by water depth
variations, (Nicholson [75]).

For the purposes of c¢ontroller design, 3 may be
neglected (Mort and L%nkens [72.33]). thus (6.4) may b;

approximated by

ﬂ' <+ 'JI"I- K’H : = ’ .
8. g (%) Kgd (6.5)
where -
: 1 1 . . K
a = — + —, K_=
T g
T T, T,T,

Using (6.3b) an essentially linear state space model

- - ~

with a nonlinear feedback term may be obtained for (6.5).



/// ) 103

- — . —1— L .
v —ar —stl 0 v |+ K . (& —3»2*:)
g .
v|= 1 0 ol v . (6.6a)
L* 0 1 Of| v
v o 0 1ll¥ A
» ¥ o 1 ofle |~ | . (6.6b)
\}
or more compactly
Z = AZ + b(é - vzia) (6.7a)
- \
y = C,Z : (6.7b)
y = C,2Z _ (6.7c)

where -

y = ¥ v
L Z =%
y = ¥ v

also (6.7b) and (&6.7c) are obtained by appropriately

partitioning (é6.éb).

For the purposes of digital control, the sampled data

equivalent of (6.7), assuming Zero order sample and hold is

given by =
Zt = th—l + GUt—l (6.8a)
Y, = clzt | (6.8b)
Yt = CZZt (&6.8¢)

where
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zt = *t ’ : yt = *t' yt = *t . . L]

\

N3 : '
AT . T A(T_=1) )
F=e °  26=1(fge % dtlb 16.8d)
. i3 ' i
‘Ut = Gt - vzvt - (6.8e)
. T, = the sampling interval.

The ef;ects of wind and wave disturbances have been
modelled extengively by ~various impirically derived sea

spectra (Comstock [23]). However for. the purposes. of

N N
adaptive control Astrom {11] has demonstrated that the

o

effects of - the sea disturbances .may be adequately

-

S
represented by the moving average noise term .of . an ARMAX

model. Thus the nei' aeffects of all the qxternal

disturbances (Gind and waves) may be incorporated into the

"state space model by adopting the innovations reprpsentation

(4.4}, thus

Z. = FZy_y + GU._y + Key (6.9a)
’ Yy = €12, + e - (6.9b)
Ve = CZZE _ (6.9¢c)

The above model incoroorates the effdcts of steadv state

wind disturbances. since F has a vole on the unitScircle.

The discretized state space models (6.8) and (6.9)
are not in any special canonical form. Thus in order to

obtain a parsimonious model for the purposes of

identification and control (6.9) may transformed to the

t 4 . . .
controller canonical form, using the nonsingular

i

RN

~— :
N

~
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tranaformation

At R
where
-1
r: =
X

. |10

e 1
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" {6.10a)
g

(6.10b)

(6.10c)

(6.104d)

:The transformed system may thus be written as

xt = cht—l + GcUt—l + Kce
yt = HCfx% * €t
Yy = chxt i
where _Pc.Gc.Kc.and Hcl
H has no special form.
€2

. , Poie Placement STCs

to ship auto—-pilot design (Quevedo et al. [(86]).

that paper

empioyed.

the

Ppolynomial

have been

t-1

used to adaptivel} Place the poles

simultaneously

\

of

.

successfully

(6.11a)
(6.11b)

(6.11c)

have the general structure of (4.5).

appliéd

However in

approach to pole placement was

The state space STC developed in chapter 4 may be

cancel®' out the effects of the nonlinearity,

this may be done easily as follows.

(i)

loop poles.

N

(ii) The

Compute Ut

egquivalent

from (4.13a) to assign the

(6.11), and
7]
desired closed

rudder deflection to achieve Ut and

hence ensure the linearity of (6.9),

-

$

t

-3
= Ut -+ \)zq;t

is then given by

(6.12)



- 106

it {s assumed to be avallable from rate gyros, with a

tolerable amount of measurement noﬁse. Alternatively, if -

the nominal values of H_  are knowh-it may be egtimated a
2

"*6.9c). The parameter Vo isg assumed td be known a priorli
‘from spiral tests, hence not estimQted‘Sn—line.

‘The cancellation of the nonlinear dynééiés nee? Bnlx_
be approximate. Ashworth [7] has demonstrated tha£v.y2ry

™~
FR N .
significant 1Tprovements to the transient response may be’
[ I

-
-

obtained, eve& when the nonlinear compensation’ is™ only
approximate. The closed loop system subject to the control
ﬂ}aws (4.13) and (6.12) with imperfect cancellation of the

4
neonlinearity may be represented by the Lure’ type nonlinear

sampled data system [102]

-

X, = FoXp_y + G fC¥ 1) + Keep (6-13a)
yoo= H_ X, (6.13b)

Fc is the desired closed loop characteristic matrix. f(wt)

represents the remaining nonlinearity due to imperfect
—

cancellation.

Using Tsypkin’s criterion (102], the suff?cient
conditions for the stability of (6.13) may be sgéted asg
\ r
follows. ' ' !
Define
8 (z)

th(z) = Hc (zI - Fc) Gc = _— i {6.14a)
2 Am(z) ~



Gpe(2) > e

£(v,)

+

Fig. 6.2 Lure’ representation of the closed loop system with

" imperfect cancellation fo the nonlinearity. \

-

then if the zeros Am(z) lie' inside the unit disc, the origin

of (6.13) is asymptotically stable in the large, if

0 ¢ 3 y
EC¥) € Kooy d £C¥) > 0 (6.14b)
Ye : d¥
and
___1 * . .‘.
| Real [1. + &g aptl - 2 )6 ¢ (2)] + 1_ > 0 (6.14c)
' Kstab
for
lz] = 1 and St ab 3 0.

thus (6-14) shows that even an approximate cancellation of
the nonlineérity'such that ]f(@t)l £< IH(@t)l. considerably

increases the stability margin of the closed loop system.

-

6.3 Simulation of ship and sea disturbance model *©

To test the effectiveness of the proposed autopilot,
a discretized a discretized version of the frigate model

. . R
used by Mort et al. [{72), was simulated as shown in figure

-
—

A

6.3,
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5 —~— ZOH g - v
. . s8{(s + aT) g

H(¥)

Fig. 6.3 Digcretized nonlineaf frigate model.

K. = 0.107
.8
ar = 0.11
HGP) = 9-429 + 2.24%

‘ L
Figure 6.4 shows the &-% characteristics of the frigate

ﬁodel. Using & sampling interval of TS 2.0 gecs., thé

above model corresponds to the sampled data state space

’

model - ' -
I o
"0.246 ~ -0.049  0.803 1
X1 = |2 o 0 X, + [0 u (6.15a)
< 0 1 o] o}
y, = [0.111,0.333,0.0981X,  (6.15b)
¥, = [0.141,-0.015,-0.131X, . (6.15¢)

To introduce the effects of sea disturbance, we first

consider the equivalent ARMAX representation of (6.15) thus

-1 -1 -1
A(z Dy, = Btz U, _, + Clz ey (6.16a)
where
Taczly = 1 - 0.24627% + 0.049z72 ~0.803z " (6.16b)
« B¢z~Yy = 0.11 + 0.333z% +,0.098272 (6.16¢)

-

the disturbance term could then be simulated by selecting an
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an abpropriate noise polynomizl. For this simulatioen  the

‘noise polynomial was arbitarily selected as

=1 2

ctzly =1 -0.727% 4+ 0,12 (6.16d)
the innovations repreSentatién‘of (6.16) \is then
- - - r- T .
0.246 -0.049 0.803 1 -0.484
xt = 1‘ 0 0 xt_l + |0 Ut—l + 1=-2.281 e
0 1 0 0 | 3-663
_ - L. =
(6.17a)
Yy = [0.111.0.333,0_.098]}(t + e, (6.17b)
oo ot _ ’ .3 .
. . Ut—l = 6t—1 - 2.24wt_1 ] (6.17c)
S ¥ . . R
*t—l = [0.141.—0.015,—0.()’13]]{{:_1 (6.174)
6.4 Selection of closed loop polegs to meet autopilot
4 . .
performance criteria. ”_ '_
An autopilot has two baaic functions.
(i) Course Keeping: this is }egulatofy action to minimize

the heading errors from a given reference course.

However tight control: could lead to excessive rudder
o action, which increases rudder ' induced drag. Thus
for course keeping a suitéble performance index which
minimizes the :propulsion losses due to steering,
(Norrbin [761) ﬁay be written as

\

1 N
I

' 2 2
J, = 1lim - [y, =¥ ) + 0 6] (6.18)
1 New N t=1 t r Wt
vr is a desired réference coursge, and S, weights the

/I
L~
K-

14
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rquer action relative to the course error. The
optimal choice of 9., would -depend on the. particular

ship and on the operational and environmental
N -

4

conditions.
(i1i) Course Alteration: This is essentially aerQo.act?Bn:

to transfer the ship from one heading to another.

L2 -

During course alteration, especially in congested
waters and canals, safety requirements are the ﬁost
importaét facters. Thu; the ship shpuld be
tra;sferred to the new course in minimum time, with

no overshoots or undershobts. This suggests a

performance criterion of the form

- ‘ 1 Nf 2 .
J2 = — I [yt - $_] ~(6.19)
r .
Nf t=1 :
i.e. the rudder deflection is not penalized. Nf is a
a suitable transit?on period. The ogtimal choice of

Nf depends on the dynamics of the particular ship.

Tiano et al. .[96] have suggested that Nf should be

.chosen in such a way that the course alteratioq_is

executéd at a constant rate of tﬁrn.

For ann autopilot based on pole assignment coﬁtrol,
the closed loop pole configuration, should be selectea to
minimize the cost functions (6.18). and (6.)39) for the

appropriate mode of operation. Quevedo et al. [86]

suggested that all the closed loop poles be placed at a
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gsingle.point on the real axis, thus

- -1.3
Azl = (- zez™H (6.20a)
0 ¢ z45 <1 {6.20b)
Thie should ensure that there are no overghoots or

undershoots to a step change in ships heading. Placing =z
closer to Ehe origin should ensure fast response, thus
optimizing (6.19) as closely as possible. _Obv%ggsly the
ship may not achieve deadbedt control, due to limiting rate

of turn and saturating rudder deflections.’

6.5 Closed loop simulation results

For closed loop simulation studigahihe model (6.17)
was simulated, subject to the.STC Qescribed in chapter 4.
The STC was implemented in two modes. For course keeping,
the closed 1sop poles were all placed at zgy = 9.4. Tkis'

2
corresponds approximately to the minimum values of both o

— .
2 . I

and %4 from figure 6.5. For course changing, the closed

loop poles were. placed at = = 0.2, to ensure faster

o}

response.

- The results of two simulation runs at differen£ noise
jevels are presented in this thesis. For run no. 1, the
disturbaﬁce was selected as_g¢=(0.0.01), *r was selected as

© alterations of

a sgquare wave gsequence representing 40
course. Such large course alterations would obviously take

the system outside the linear region. Figure 6.6 shows a

plot of the ship’s heading superposed on the demand
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refetence” course for run no. 1. A sisnifican{) undershoot

was observed at the first course alteration. This was due

to inaccurate parameter estimates at t = S00 secs. No
significant overshoots or undershoots were_ apparent at
subsequent alterations of course.

Figure 6.7 shows the corresponding rudder defiegtions
for both regulation and serve action. For practical

purposes the rudder deflection was 1limited to :35°;- Thus

with =z, = 0.2 the rud%;r saturates for a few seconés;during
a course alteration ¢f 40°, thus 1limiting the speed of

resbonse.
Figuré 6&.8 shows a plot of th associated yaw rate

response. The ship was assumed to have a maximum rate of

_turn of 1.75°/sec. Hence from figu;e 6.8, we see that for a

gsignificant portion of the turning manoﬁvre. the ship was
turning at its maximum rate of turn. :

.The simulated.values of the estimated paraméters were

6T = [-0.246,0.049,-0.803,0.111,0.333,0.098,-0.484, ‘

~2.261,3.663]

The starting (assumed nominal values) values were chosen as
e: = (=0.2,0,-1,0.2,0.2,-0.2,-2,4]
the initial value of the covariance matrix was

. P_ = 50.01
o .

'

the estimated wvalues after Seb‘wére

93000 = [-0.322,0.1558,-0.831,0.0756,0.3534,0.0767,-0.114,

-1.254,2.716]

From figure 6.9 we see Lthat the actual gystem parameters
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could be estimated with rreascna&ieﬁgggyracy. The Kalman

-

gain parameters were however estimated less accurately. This

-

may be attributed to the effects of impérfect cancellation
- * .

of the nenlinean terms.: Thus additional (numerical noise)
noise is introduced, due to the Bffects of deviations from

the linearized model.

-

Figure 6.10 shows a plot of the residual sequence.

.

The marked increase in the prediction error at t = 500 secs.

‘was due to inaccurate parameter estimates at the first

alteration of course. However the resulting large
. N . 3 .
innovations caused the system to adapt rapidly, hence
improve the’ parameter aestimates._. S

For simulation run no. 2, the disturbance noise was

selected as e, = (0,0:1) i.e., ten times the y%;iance of run
no. 1. Figures 6.11 and 6.12 show plots of the heading
response and rudder deflections respectivel} for run no. 2f
From those plots it is evident tgat the proposed algorithm
performs wéll ﬁvin the prgsénce of éignificént sea
disturﬁﬁnces. However it was noticed from simulatioﬁs that
tﬁé rudder wvariance increases significanly if the ;aw rate
required to implement (6.12) is measured with significant
noise levels, but tﬁe perfqrmance is reasoéably acceptable

even when ¥ is estimated from xt via (6.11l¢c) using - nominal

t

parameter values.
To demonstrate its relative efficiency, the‘propqéea

autopilot was compared with a fixed gain PID contreoller.

=
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Noting that _the open loop characteristic equation already

- LI - '
contains an integrator i.e. A(=z ;) = A (z 1)(1—2 }). a PID
controller can be designed as follows.

X - -1 -2 |

the controller gains ma§ be determined rapidly [52,44,45] as

——Ttollows

p. + plz_l + pzz_?_= P (1 + a;z—l + a;z-z) (6.21b)

o
The <c¢losed loop system subject to the control law (6.21) is=s

thus ) .

ATTHIA - 2™« poazHy, = poazhHAT oy
+ czhe, ,f . (6.22)

Po can then be chosen such that
(1 - z71y + pOB(z—l)J = Am(z_l)

has suitably well damped poles. Thus (6.22) reduces to

-

P B(z™1) ccz™ly T
¥y = — + ~ L= (6-23)
t Am(z_l) r.t Am(z_L)A (z"1y *

From equation (6.23) it is evident that while the PID
controller is adequate for course changing, its regulatory
(course keeping) performance would depend on the pPoles of
a ¢z™) in addition to those of Am(z_l); Thus for some
parameter values this would not be a satisfactory controller
in the stochastic enviroﬁqent. Figures 6.13 and 6.Y4 show
plots of tﬁe ship"s heading and correspondig rudder action
respectively.

The.ship model was controlled with by the 3 term

controller (6.21) with
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_and - -

A"zl = 1 + 0.754z7 + 0.803277
which is assumed to be khown. Thus o
Amcé).='cz - 0.542 + 30.4)(z ~ 0.542 - 30.4)(z + 0.172)

the marked'iﬁcrease in overshoot to -goufse glteration was
attribﬁtg@ to a contribution of the under damped poles of

* —_ .
A (z 1) and the effects of ignoring the nonlinearity.

n

-The contribution of the nonlinear c;nCellation term
(6.12) fiﬁ reducing the over;hoot to a siep,change in course
directiog is demohstrated in figu;es 6.157and 6.1@, for ghis
simuiation a bole assignmént STC was used Lo place the poles.
of the 1iﬁearized éystem. ignering the effects of the
nonlinearigy. The plot of the.ship's heéding figure 6.16
.sﬁows that ignoring the naﬁlinear rate feedback germs leads -

to significant overshdots:to step course changes, which are

persistent even after the system has settled down.

6.6 Concluding Remarks

Sevéral adaptive control strategies have been adopted

»

for the design of ship autopilots. O©Of these the model

LY

reference type ctntreollers (Amerongen [5,6]), perform'well
during course changing, but have poor performance in the
stochastic environment. . . .

Self—tuning contrellers were found to confer a high
degree of adaptability on autopilots with respect to 8low

variations"in the system - dynamics, ‘ssuch as due to the

.
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effects of chgnges in. speed, weather"conditions or kthe
1ntefaption; of ‘proximaté objects such as shallow water or
S R .

canai walls. The STC"s have been used succesfully as course

keeping controllers. For course alteration however, .

nonlinear terms predominate. For such cases it is well known

that the STC doeg not perform well, since the iéentification
algorithms cannot track the Aoﬁlinear effeq;é faét enough.
In this chapter the author has presented a Suboptimé}
but robust self—tuning autopilot, whi;h uses a combipation
of linear state feedback to arbitarily . place the closed loop
poleé. and a nonlinear_fggdback terq Fo gompqugté‘for the

nonlineérity. The cancellation ‘of the ndnlinearity need

only be apéroximate. Ashworth [7] has shewn that even an

approximate cancellation of the nonlinearity, can reduce .

gignificantly the range of ~wvariation attributed to  the:

hypothetica}ly linear time varying éhip._hgprthermore.‘ the
effects of stabilizing feedback is to reduce the closed loop

3

sénsitivity to para‘eter variations. The effects of the

remnant nonlinearity appears as increased residuals and can

be handled by the adaptation algorithm..

A notable disadvantage of the proposed scheme is the

requirement for an accurate yaw rate sensor. However it was
observed from simulations that even an estimated yaw rate

using nominal parameter values gave ‘satigfactory

perfiormance. : )
In section 6.4 techniques were presented to aid the
) rY

selection qf' the closed loop poles to satisfy the quadratic
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performance indices traditionally used in the- design of
‘ . ‘ .
/"'—n
autopilots. . -

The choice of the simulated noise model was rather

gimple. This was for illustration purbéaes. However even if

-

a more elabofate filter is wused to simulate . the sea -

disturbance, the structure of the innovations model would
' %
remain the same. Hence the egstimation and control

-

algorithms would not be altered. .

~

Further " work remains to be done mainly on praEtiqal

implementation on an ocean going vessel. Related to this is

the investigation of micrp—computer implementation, amd the
ef fects of finite word 'lengths. ever since large
sam#ling intervals are envisaged. computétion times .should

not be a problem and hence double precision could be used on
. R
. smaller word length computers.

- -~



— CHAPTER 1

CONCLUSIONS o

-

The problem of the_ adaptive control of multivariable

systems using pole assignment techniqﬁes has been

investigated in some detail. Adaptive control algorithms

can be classified as ‘explicit” or “implicit’. Expliqit
. - £

adaptive control igﬂ,the more natural sclution to the

adaptive control problem. In such an-algorithm a -recursive . .
% T

e§timation algorithm is used to estimate the system
parameters on—line. At each sampling interval these

estimated parameters are used.to implq@ent a control law.
The computation of the controller gains could lead to. a
number of problems defending on the control law adopted.
(i) For noq—minimum phase systems zero ‘cancellation can
lead to.unsbun¢ed control. '

{ii) - Pole placement contro& avoids the problem’in (i) but
v
has the dﬁgadvantage that lack of knogwledge of the

exact model order can lead to over-—parameterization

and subsequefhtly to il1l—-conditioning and unstable

control.
= Alternatively careful selection of mpdel‘
representatiﬁn and identification algorithm,, could 1éad to
. s ;

. 129
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simplificatibn of . subsequent controller degign. The

-
v

particular case where the mapping from the estimated

parameters to the controller parameters is the trivial

. -

mapping may be termed “implicit" anptive control. v 3
) : . S

. ]
Implicit pole placement algorithms have beefi proposed

-

by various authors, however most of these: algorithﬁs were
derived in an ad;hoc manner. Since the resulting estiﬁation
algorithms'are nonlinear, various convergence problems have
been enéountqred with the implicit algorithms, particularly,
in"the presence of .gtrongly correlated disturbance noise.
When applied.to non—-minimum phase systems these algorithms
becom; even ‘more complex due to the need to gactorize out
the unstable zero;.

‘ ‘This thesis concentrates on the design of a class of
pole assignment self-tuning control alg;rithms based on
state space models. Although- such an approach has been
adopted for EQe-design of STC; by a numbgr of agthors. all
the previously reported approaches estimate the ?arameters
of an ARMAX model. Thé est{mated parameters_are then mapped
;qto a state space. model fof subsequent controller design;
For ‘the MIMO case the need to keep this mapping simple,
1ea§s to nonminimal reaiizations such as 'blo;k canconical”
forms.

In chapter 3 an explicit -adéptive pole placement
_ algorithm was derivgd for SMIMO systems. A staEe space model
in the observable: canonical .form was assﬁmed and a

modification of the BSE algorithm was used for joint state
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apd parameter estimation of this model. The proposed
algorithm invelves the estimationrof‘fewer pafameters. if
-the observability indices are known, than the algorithms

proposed in [18,43,88]. Subsequent controller design is
- . - \
also more efficient computationally . mainly ‘ due to  (the

reduction in the number of matrix inversions required te

- T

implement.the control law.

In £hapter 4 a modified algorithm was proposed " for
state space self—tuning control which retains some of the
advantages of both éxplicit and implicit adaptive control.

The state space model was assumed to be in the controller

canonical form, thus the computation of the controller

.

. parameters for pole assignment becomes trivial. The

proposed §1gorithm may phus’pe interpretgd as an implicit
controller.

'%he RPE algorithm was adopted for joint state and
parameter estimation. Thus uqlike the previously reported
implicit pole placemept controellers, sufficient conditions

for asymptotic converéencé af the’estimated‘ parameters are,
available.‘ These ceonditions ;equire that the estimated
parameters bf projected into . the stability region of phe
predictor. Thus the key to the success of the proposed
modified STC is the inclusion of a projection facility, such
a . projecti;n facility can be implemented quite easily as

- _ ) '
shown in chapter 4. In chapter S the technigques developed in

chapter & was .extended to the MIMO case, -and- simulation’

~
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ragults fdemonstrating_fthe effectiveness of the algorithm

)

were presented.

\\; To démonstrate a practical appli;ation. the modified
‘gtate space STC p;oposed in‘chapter 4 was used to design an
adaptive autopilet for a noniinear model Jf a Royal Savy
frigate. The novelty of the proposed autopilot is that the
model K structure épdopted allows the ship model, to  be
f;epa}atea- into a 1linear dynamic. system and a nonliaear
cdntroi input. A "moment allocation’ type co;troller éﬁﬁld
Ehﬁs be designed which uses nonlinear sta£e fgedback to

’ .
arbitarily place the closed loop poles and simultaneously

cancel out the noniinear’dynamics.

The cancellation of the nonlinearity need only be
approximate. Analytical treatment shows that even an

-

apﬁroximate cancellatiéh of the nonlinearity improves the
stability margin cogsiderably. Furthermore it is kno;n that
the effect of stablizing feedback is to reduge the closed
loop sensitivity to parameter variation. Thus tﬂe regidual

nonlinearity has only marginal effects on the closed loop
p

» I

system, and can be handled very effectively by the
adaptation algoritﬁm.

The proposed autopilot th9s overcomes many of the
[probrems encountered in the dgsign of an‘adaftive autopilot
which can pers?rm ef%icientl;. the conflicting tasks of
course keeping and course changing. The simulation results
presented show that ﬁhe proposed algoritﬁm performs

satisfactorily in the two operating modes in the presence of



significant sea disturbance.

£

7.1 Suggestions For Further Rggparéh
Sufficient conditions Tor—global convergence of

explicit STCs in a stochastic environment have yet to be

-~

. ——
established.< Some encouraging work done in this area for

continous time systems in [27.54] and Goodwin and Sin
[40,42] have suggested that global. stability can be ensured
by constraining the estimatéd parameters to within some

parametric distance of a nominal parameter vector. Thus

» -

some anélyticai investigation ‘of the effects of wvarious

innitial conditions and " projection algorithms would be

useful in this area.
L)

The algorithms proposed in chapters & and 5 were

found to perform well when apblied to overparameterized

1,
\
systems. This is mainly due to the elimination of on-line

matrix inversion in the conktroller -design. The reduced

order behaviour however, cannot be so easily analyced. The
reduced 6rder performance of  ,the pr;posed algo}ithm would
also depend on the signif}cance of :the negleEted dvnamics of
the cﬁntrolled system. Thus an_aﬁalyticalﬁand experiﬁental

investigation in this area, especially in comparison with

the observations made by Johnson et al. {46] for other
proposed implicit pole placement _aigorithms would be
important.

A wide “area of practical applications remains to be

inves;igated. especially the application to systems where

-
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the estimated states have physical meanings would make the
state spa;e_STC a more useful toeol than the polynomial
approach, sgince extra information would then be available
about the interﬁal states of the controlled system. i
The adaptive autopilot proposed in chapter 6 could be

extended to the MIMO case. Thus an adaptive contrpl

a}gorithm could be designed for ship ;Sontrol which can
combine }cll stabilization, speed and steering controls in
an optimal maﬁné?. inEorpogatins somé of thé MIMO featurés
developed in chapter S5 such as pa;iial_découﬁling.

A more elaborate simulation of the ship manouvering

. N .

equations, incorpeorating a more realistic'wave filﬁer could
be implemented. TQis would be a geood test for the reduced
order beha;iour of the proposed autopilot. e

Finally' the Eractical implementation of the proposed
autopilot, aﬁd its trial evaluatién at sea, is an area for
'further research. 'Closely asgsociated with nthis is the
hardware implementation, the choice of ia:.suitable micro-
computer, and the inveséigation’of computing times, sampling
intervals and the effects ?f finite word iengthsi ﬁowever
for ship steering long sampling times are. envisaged. Thus
double precision caﬁ. be used, heﬁce non of the above

considerations. are crucial to the practical usefulness of

the proposed autopilot.
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APPENDIX

Tl

PO

MODIFICATION OF THE BOOTéTRAP ESTIMATOR TO ENSURE‘

) ‘ - N ~ .
ASYMPTOTIC CONVERGENCE OF THE ESfTMAIED PARAMETERS

al

e
—

The Bootstrap Estimator

The original bootstrap estimator propoced in £32.82]

may be described as follows. Cbnsider the, syétem modeled in

the observability canonical.form

144

N, I
xt+1 = T xt + bb u, + LI {(Al.a)
A -
b
Y. = [150...0]x’ + e, - (Aal.b)
or '
xt+1 = Abxt + Bbut +-Ut (Al.¢)
Yy = cbxt + e, (al.d)
where et “and Ut are zero mean gaussian noise sequences of
theféppropriéte dimensions. The vectors ay, and bb represent
the non—-trivial elements of Ab and Bb respectively. The
special canonical structure of Ab allowe us to rewrite (al)
as o .
I'd ’ )
T . T
Yy = [ab.bb] xt—n + at (A2.a)
Ye-1) -
“t-n
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- b"”
' -
v ] or more compactly
. oY, = 618, _ + E . o (az.py -
: t b b,; t ‘
where
0 ) L)
Et =.2 ui.t—i + e, . : U(AZ;C)
i=1 . :
Et iz uncorrelated with‘¢B e hence the RLS algorithm wasg '
- used to estimate eb from (AZ.é).' However, Xt is not
available, hence ar stochastic approximation algorithm was

e uSed to update the state estimates thus:

X X T X (A3
Xere = Fepe—1 © G e bectlt—l) L A3)
However as pointed out in_[1:90,9lJ. Q, - 0, as t = =,

t

~
Hence it becomes impossible to update xt. The resulting large
. - - A . . "
error bounds on‘xt prevents the convergence of the parameter .

el
estimates to their unbiased wvalues [1,94].

AZ. The Modfied Algorithm ~
Any system reﬁreseﬁted by (Al) may after applying the
standard Kalman filtering ) aigorithm and . suitable ég

transformation be alsd represented by

i I —! " . * | .
. .
- - ’
xt+1 =|al xt + bc Uy +Lkc e, (Aé.g)
t O B
Y, = [1.0.. ,ijt + e (A4.B)
or more compactly =
‘Xt+1.= Acxt + Bcut + hcet ‘ (A4.,.C)
Y, = cht f e, (A4.d)

Due to the canonical structure of #y. (Ada—d) can be written

as
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o raT WT T F D B
Ve = [agibok ] Xl,e-1 | * e . (Ad.e)
y X
l,t—n-
Jc. ’J ‘.;t_]- -
-J- -
* “t-n
-1
- - [“tn ]
which can be written in compact form as
= T :
Yy = Bc¢c't + e, (A4.f)

Since the innovations sequence is white one may use an ELS
- )

type algorithm to estimate the parameters from (A4.e). The
estimates of the state variable xl t Tequired.in (A4.e) is
cbtained as. the one step prediction states of' the

innovations model (A4.c).

The modified algorithm is thus:

. T _ A M~ - - :
¢c,t = Exl.t—lif"xl.t—n'ut—l'"'ut—n'st—l""et—n] (AS5.a)
Po =0ol , g > 0 .
Ae = Aggtemy * (1=A ) (A5.b)
= L
Aoo = 0.99, 0 < Ao <1 N
- gt = yt--— yt (AS.C)
N Pt-—-1¢c t
Lt = T * * (AS.d)
Mo ot oo, ePea1%e,e
ec‘t = ec.t-l + Ltst (AS.e)
- T )
€y = Yy — ec.t¢c.t {AB.f)
) T
1 P é é P
: t—-1 yEfe,t =1
P, = — (P, - e ] . (AS.g)
LY =l v e Th
t t c,t t—-1"¢c,t
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~ o A ’ ) ! .
Xt+1 = Ac(ec}fixt“i,ac(eq.ﬁ)ut +_Rc(9c;t}st ¢A51h)
. A A .
where 8 is the current estimate of o .
c,t . . c
A3. Comparison With The RPE Egtiaator . ’J
Conglder -
. .
_ 1 2 .
. " Min[ — E{e_ }] : . (Aé.a)
t .
2
8
c

Subject to (A4.a) and (A4.D)

In view of (A4.e),(A5.a) and (A3.b}), ‘the above problem is

. A1
equivalent to

1 .
Min [ — E{e, 1] -
L
2
9
c
Subject to o
T . ‘ .
€ = Yp ~ B k%, ¢ (A7.a)
Define },
det d¢c E
VW, = - ———— = $ 4 — (AT.B)
t de c,t a8 c,t
c.t c.t

The RPE algorithm described in chapter 4 usges wt as 8

stochastic descent direction for the recursive minimization

of (A6.a). Using the ordinary differential equation (ODE)
approach of Ljung [60,61;63] it is easy to show that
Gc e ec with probability 1, where eo is a local minimum éf

(A6). However if we ignore the implicit dependence of éc e

on ec £ {.e. the second term on the right hand side of



« S T
(A7.b) we get - a PLR type alsorithm. i.e °
N T

“For the modified boétstrap aigorithm-the-éxact relationship

- b

. - ayT
. t
R - ] !#t =
- dec .
Define - A
u dxt
£ = T
‘ det.
3 ' ‘
M : 9 =
ae, .
. t
then

T Wesr = (AL - K CLIW + M. + [0]

introducing'the forward shift operateot =z

1y

W= (2T — -
t = (zX Al + chc) t

_ _ . -1
Ve = C(zI = A + K_C O™ M,

C.ladi(zI — a_ + K_C )N,

det(zI - Ac +‘KCCC)

= 1 [le,t Iut Ist]
c(z ")
where .
n o -3
c(z—l) = 1 + I (a, - k)=

hY

ai.ki

i=1l,...,n

between #; and ¢; t may'be obtained by differentiation; thus

{AB.a)

(A8.Db)

-

(A8.c)

(AB8.d)

(A8.e)

(AB.f)

(AB.g)

(AB.h)

(AB.1)

are the elements of ac and kc respectively

’



which peduceﬁ to

-

‘.

1 xl ' | o . IR

4— & - ?t = -'-—T éC't T --‘ . * - (As'k)
' ’ c(z +) . - .

Thus inspite . of usiné the 'estimaged_.states'in the data
", vector the asymptotic prope;ties of the modified bootsgrap
" aléorithm :ié 'the saﬁe. as tﬁat'of the ELé;estimaﬁof. The”
usefulness of _the modifiéd BSE howefer. is in . its
applicétion to gheAjoint paramé;er and state estimation of a
parsiﬁbnious MIMO st;te' space model " as demonstrated in

‘chapter 3.

A4. Convergence Analysis of The Modified BSE Estimator

~

Theorem Al:-—

Consider the algorithm (A5), with the system modeled

.

by

T3 ‘ ) .
Yy = ec¢t + e, : (A9.§)
assume that the following conditions are verified:

.

(a) The correct model order has been selected.

(b) C(_z_l)CE - e,) = (e - 8 T (A9.b)
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(e) . e, is a whire’noiée ﬂcquance

CO N .E(¢c ¢ t} =0, Eor all @

-

'-ﬂhen using the now standard ODE approach of Ljung [61162463]

or alternatively Ehe martinsale approach [40 105], the

-

éufficient conditions for the asymptotic convergence of (AS)

- - ..

is given by ) ) B ) ) . oo
Prob( lim 8. ¢ *'Sc } =1 . (AlO.a)
£ = :
. .. . . s’
_— globally - . Ve 7
if oo
o 1 1 : , .
Real { 1 T - =1} 20 - (Al10.D)
ez ) 2 . ) : .
Condition‘(d) above~- is easil# verified _sxnce e ig white

L

.t does not céntain e,. Condition (b) may be

noise and ¢

verified as follows.

s

g, = ytl—';t A ' (Al2.a)
RS é§$€~? ec.z¢c_t + e, - (A12.b) |
R I N TS B C N -'@c.t)Tec't v e, © (al2.e)
- [aZ'PZ'kE3 -:et—l * E_-t—{1 * kéc B ec.t)Td’c.t t e (al2.d)
—et—n-+ Et—n
0 0 '
o 0 . )
- Te-1 7 Et—_l
_-ét—n - ét—q
and usihg (AB.1), (312L¢) reduces to
ezt - e) = (8 - ec't)T¢c‘t + e,
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. . N -
- - - . . - "
-~ . - s o - N -

This verifies condition (b). Thuégprovided the correct model

;orQér is known.condition (a).is verified and (A10) holds.

.‘\____‘/_\ '.'A -

L) -

AS. The Modified Algorithm For The Observability Canonical

Form

- . o

Coneider the system modeled by el
‘ . Y‘ .
xt+1 = + bo u, o+ ko e, (AlB.a)
Yy = {1.0...7.011{t * ey (A13.b)
; : A

‘ of.mare compactly i
Xt+1¢= ont + Bout + Koet (Al3.c)
o T Yo =1CX, + e, : (Al3.d)

Duertorthe canonical structure of'Aa (Al2) can be written as

. - 1
oo T, T T]‘E%‘ + o (Al4.a)
v, = lag.b .k, t—n - ®e 1.3
B
ut-n , -
-1
° et"n ' .7
. R = -,
. ~ '
which can be written in compact form as
Y, = ei¢ ' 14
v = 8%, * ey (Al4.D)
Dafine-
- % T TP G |
o,t = [¥pnrBe1r v VeanrBer e Xpon]T (Al4.c)



of (Al4.a), by replacing 6_ and ¢
. < c,

-

~ a T | - 152 -

.o

then algorithm (A5) may be used to estimate the parameters

v with 60 and ¢o,t‘

The exact gradient vector ¥, for this canonical qum

-

' may bé dbtained by differentiation thus:

d (e $ ) .
Dy = o.,t7o.t (Al5.a)
t 46 . i .
. ‘o,t - . .
Using (AB) ¥, can be evaluated from .
. i ]
0
o —_ . - — R4
¥, = [z 1a {(z 1),...z ‘a. (2 l)....z " Iu EIE '
-1 : ~ i
c(z 7)) T! |-
. : xtl ) -
"(Al5.b)
where .
n—-i - - )
al(z_l) =1 - I a ‘z-j -~ i=1, ..., n=1
. 1 ; o'j
) 1 }i-I 0
L O [ DNO| ¢ AlS.c)
t - . t
cz"ly 7@ o] ° o
‘D = diag(a (2—1) »( -1). =1y 9y
1 ez ....un_l(z Y1)
(AlS5.c) thus reduces to - i h
- -1 - '
?t = [H(=z )]¢o,t ) (Al5.d)
In section A6. we ,shall establish _fhat a sufficient
" . ) da_p
condition for the asymp%gtic con gence of the estimated
_ T < o ‘>.
parameters, i,e . . .
prob{ GO't -+ ‘ao }/m
lim ¢ » = o
is~that -

L
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Real { [H(z™) = = [I]} >0 (Al6.a) -
. - 2- ' ‘ ) .

-

* Since [H(z:;)] is diagonal the above condit;on réguces to

' 1 1 _ o
‘Real { I, - T 12>0 7 (alé.vH
c(z *) 2 - o T
ané_ . . , ' “
. _ ai(z_l) 1 .
- ] " Real { - - - } >0 - {Alé.e)
: c(z ™)y 2 - o '
- i=1, ..., n=1
. . ) LI
A6. Converzence Analvsis For The Observabilitvy Canonical
form ~ N
. .
Define -
T
Yem1 = Qg yseeeiug
_ T
Et-l '_. (et__l-p---vet_n) -
-~
= - : = T
Et-l = (bt_lsttﬂist_n)
Now
_E ’ -~
tT* t ; > |
= e°¢o’t - eo.t¢o.t + e, (Al7.a)
- T - _ "Ll _ T '
= _Bo[éo_t ¢, e+ (8, 6o, *5.t Tt 8¢ (Al7.b)

— Ty ' T, .
- (ao = ao,t) xt—n“+ (by - Po,e? Uiy + (kg = k

~

T
o,t) Eey
“

T A T
A, - X )+ kg, e(Epmy = Ep_q) + e (Al7.¢)

Using (Al3® and performing recursive forward substitutions

L]}

05



Yen T ®t—n - - S .
Yten+l ~ ®t—n+l ~ bo.l-’“}t-n = ko,let—n
| Vt-n+i-l T €t—n+i-1 — F Py Up_naiojl
e : ' J=1- L
-1
- I Ko, 3% ten+i-j-1
‘ :35 ¢
- n."'l ,_'-:?{J - n—-l .
Ye_y — e, _q = & B Up_: 9 — Ik ev_:i1]
L.t 1 "t=1 o,._j t—j-1 S ©,] t‘J l.

=1 »

gsimilarly

(ALl7.d)

P ]
Yt—n '
A . LA
Yt—n+l T Po,t,1%-n T ¥o,t,1%t-n .
RN
| . =1, i-1 o
A Yeenti-l ~ F Po e, jton+i-g-1 ~ F Xo ¢, fton+i-jol
Xpen = j=1 j=1 .
—n .
4
R n—1 n-1 .
Yo7 — %D uw: ., -Ik E o
|._1':. 1 j=1 ?.t.j t=-j=1 5=1 Oft.J t—=3—-1
(Al7.e)
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tﬁéxefbfe U
R A _
B 'ao(xt—n = Xen? T . .
Ft—n ~ ®t-n _ N
E - V . 1_- - . e ‘
t=-n+1 e;fn+l sbo.l Po’Ffl)“t— - (kc“1 -
Koot 198, + k (5, ~—e, )
A P 0,1 "t—n t—-n
o= “1-1
ft-n+i-1 T Ct—nwi-1 " Z (bo,j”bo.t,'j)ut_n+i_j__l
- Jj=1 . ' g
T .
a . . ]
i-1 i-1
\ ~ Ik =K .= : _ » .
OrJ Tt & gyt Ko, 3 o ntim 51t mntim 1)
Jj=1 ’ ) =1 :
' [ n=] n#l
[ - e - Z(b - b ;
-1 t-1. ’ 1 Ly -
: ' ° o j)Ut—'j 1 z(ko'j- kca t J)Et—j—'l
J:l j=l ’ ]
n-1
L TR R, 3oy T oD
| J=1
(Al7.f)

sub for (Al7.f) in (Al7.c), rearranging and using (AB.i):
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. S ey ey TR —
- ) (b 4 bo.tﬁljclfz_l)“t—l + .. ’
i # (b = by a2 I
- - etz hyE —;3) = +(__-b | u, _ + i - | (Al7.2)
. t t ) o,n o,t,n""t—m .
A.r‘ C -', : N (ko.l - ko.t.l)Ql(z_L*5551 * .
3 . S+ (k s K e, (‘z_l.SE L+ ..
s : o,1 o,t,i 71" t—1i
y \ +o kg T kdft;n)gt—n ]

Thus.usiné the definition for EH(z_l)] from (Al5), (Al7.g)
'can be written as .- ﬁ

- C . T..., -1
e, = (8_ - eo'p) (H(z

L o] Y1e

+et

This verifies assumption (b) of theorem Al. Now e, is white

o.,t

noise and is not centained in ¢ hence 1is independent of

o,t

_¢° £ for ‘all G.Ithis verifies assumptions (c) "and (d). Thus

if the correct model order has been selected, by«theorém al:

pfob{ lim eo.t - eo} = 1 C
£ v L

1 A
)} = — [1I]} is strictly positive real. This

if_{[chfl

estaﬁlishes conditions (Alé) as'required,

e

Comparing equatioﬁs (Al6) and (AlOb) ;t is obvious
thgt the sufficient’™ conditions for the asyﬁptotic
écnvergence of the bootstrap aigoritpm.is mofe restrictive
when it is applied to the observabiiity'danoniCal‘forﬁ. than
the case for the observer canonical form. Hence it is the

latter canonical form that should be adopted for joint

-
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paramefer and staté estimation:by.tﬁe-BSE estihator}
. ' - . i;\

- "y i Lo Y

’ \
AT. Proof 0f Theorem Al

b ]

qpeorem Al may be proved by the’ ODE ;;groabh of Ljung

[64].'aL£housh a useful method, such EL approach is based to

some extent on heuristic arguments (Goodwin and Sin’ £42]).

The appreoach adépted‘ here follows the‘methods propbsed by

Sole [1051, based on the asymptotic properties of martingale

-

stochastié processes. 1n a recent work, Chen [103] has alsc

&
-proposed a more rigorous version of the O0DE  approach using

the asymptotic properties of martingale sequences.

Define -

Qt = ec,t - Bc (al8.a)

then subtracting ec from both sides of " (AS5.e) and using

(AS.f) and (AS5.g)

— bl

" 8, = 8, 1 *+ Pe_1® % (A18.5)
Select the stochastic Lyapunov function .
’ _T. —1= < '
_ Vt =8 Pt Bt : {Al8.¢c)
then multiplying (Al8.b) by EE -1 and using (A5}, Vt -

gatisfies the reéursive'relationship
_ 2 - . 2 -
V=V o+ B(0E = 2O = b (Pl kB (Al8.4)

_ 2 _ _ _ 2
= vt—l + b(t) 2b(t)z (k) Zb(t)et éc.tpt—1¢c,ttt

(Al8.e)

where . b

_tet (Al8.¢f)
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f;(t) =E, —e. oo : : ..(A}S.g)“
_ ) . ‘ ' .
Let Ft'Be the set of increasing c-algebra’s generated by
. > {GO'f"fet’¢c,0’f'f’?c,t}_ P 4
 a1so let
.. 2 _ 2
E-l e lF, 43 = ° .
then T ) )
E{QV IF, 3} = Vi | + E((b(t) 2b(t)z(t))|?t 17
_2¢'c.qa'~1¢c.t° -~ E{(¢c t £ l¢c t)e IF 1} (Al8.h)
Define {
. . |
~ g{t) = z(t) = — plt) (Al9.2)
2. :
thus -
E{VFIFt;il = vt—l —ZE{b(t)g(t)IFt 1}
T -2 2
TE(eg, Pe1?c, efL1F 1} + 2¢c ePe®e. ~ (Al9.b)
from (A9) and (Al8.a)
' 1 . 1 —
g(t) = (—“—:T- - — Jb(t)
: clg ) 2 '
but from (A10.b)
- 1 1
Real (——_1——) > 0
cl(z ) 2

thus E{g(t)b(t)} > 0 , (see Ljung et. al [66]).
Thus the following inequality can be established
E{(Vt + Zb(t)g(t))lFt_l} TV

L+ 26 T 2

t— c.t?t"c,tc (Al9.c)

Theorem A2 Martingale Stochastic Conversgsence Theorem_(MGCT)

Let Tt Vel and Bt+1 he non-negative cequences of

random variables and Ft a sequence of increaging o-algebras.
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. Then if ' -
' . 3
E(T IFy_y) € Tyoy * V¢ 8, * (az0.2)
and '
E vy - a.s ) (A20.0)
] 7 .
then
T, - T <= w.op.l . (A20.¢)
and’ ' -
L8 <= w.p-1 (AZ20.d)
1 v : |
- ° ¥

| 5~ .
. The proof of theorem A2 due to Neveu is given in [104].
Now define'\
T, =V, *+ 2b(t)g(t) (A20.e)

thenl(A19.c)_reduces to

T 2

E{Tt]Ft_l} £ Tt—l + 2¢c,tpt¢c.t° (A20.f)
dividing (A20.f) by t
E(T_IF, | )} €T T T P
t' T t—-1 - - z
<, t—1 _ t—1 + 2¢c.tpt¢c.t° (A20.8)
t t-1 e (t-1)
t
Now - ¢T o X ) a
26 % c.t te,t o . . ( [66,1051)-
1 t

thus from (A20c) (AZ0d4d)

(a) T e i
-+ ¢ = wW.p.l

t
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T ' o T
=1 { = w.p,1
t-1 : -

- ]
{b) T -~
e l ¢t

- ((a) and (b)) imply Tt -0 w.p.l (to avoid contrd&iction).
%

Thus from (AZ20.e)
—1a2

'r . . .
| Etpt g, + 2b(t)s(t)‘* 0 | (A21.a)
and by positivity .
1
- =] "
Btﬁt Bt -0 w.p.l -
ec.t * Bc w.p.l )
" and
2b(t)g(t) = 0 w.p.l .- (AZ1.B)
1 1
hence gince ( — . - T ) is a stable filter ..
c(z ) 2
£ p(L) + 0 . : . (a2l.c)
but
z(t) = €, — e = 1
t‘ v — Q1 b(t)
: ez ™)

thus (AZ2l.c) implies that

J

st - e, - 6]

i.e the residual sequence converges to the driving noise.

This completes the proof.





