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•ABSTRACT

The state space design of self-tuninggeneral

The adaptive ~ontrol of linear discrete timer
multivariable systems is considered. A unifying survey of ~\
a· number of adaptive control str-.Q.tegies is presented The

" -" . v-')
various algorithms are shown to ,be special cases of a more i

I

controllers is considered in detail. Two new algor i.thms

for ~te space
.

pole assignment~,elf-tuning control' are
~.

proposed. The first algori.thm follows an explicit

a modification of ~e bootstrap estimatorapproach,-,..
.~

tohus...
. "-

was used for joint param~ter and state estimation of an

innovations model. the resulting seli\uning controller" -"'", .,..
C.,..,

is more efficient computationally than~She methods based

minimal realization canon

be

block canonical forms\since a

ado~ed. The second alsbrithm may,be regarded as an

implicit pole assignment controller. The recursive

prediction error algorithm is used for joint parameter and

state estimation in the controller canonical form .. The

,- main contribution of this approach is that on-line

computation of -transformation matrices is avoided. The

subsequent computation of controner parameters is

trivial, and the resulting self-tuning controller is

~ robust to over-parameterization. To demonstrate a•

practical application, the second algorithm was used to

design a robust autopilot for a simulated nonlinear model

iii
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~f a Royal Na~ fr~gate subjected to sea disturbances.

The autopilo~ was found to perform well for both the t.
~ -

course .lc.eeping and course changing modes .-.
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CHAPTER 1

1. INTRODUCTION

, 1.1 Background

The design of efficient controllers for physical

systems requires an accurate a priori knowledge of the

system dynamics. In practice however this information is

often not c,?mp 'le'x toavailable since many systems are too

analyze. 1 b 1 · IA so the' system· may e non 1near and time

varying, in which case the linearized system parameters

\
will alter with time and set point changes. Such problems

may be tackled by designing controllers which.can adapt to

any detectable changes in the system dynamics.

The subject of adaptive control has received a great

deal of attention since the 1950·s. In· a ~ecent survey

paper Astrom [10]. noted that over 1500 papers have been

published on the t~ic.

Early wor\<. on adaptive control concentrated on model

reference controllers (I1RCs ). Such controllers were

originaly designed for continous time models. based on

deterministic theory [29.57.70,74.81,92]. Later papers

[28.58.60,68]. have applied model reference techniques- to

discrete time systems. The techniques have been extended to

1



improve

2

their performance in the stochastic environment in
-----

[25.26,58,59,61].

Since the early 1970's however, the availability of

efficient micro,computers has made self-tuning control the

more popular method for adaptive control. The two methods

are by no means unrelated. Several unification papers

[2,3,4,26,28,29,35,36,58,59,60,61,67,66], have derived

general adaptive control algorithms for which the various

discrete time model reference and self-tuning control

algorithms are special cases.

Self-tuning control may be divided into two distinct

steps. Firstly, a recursive estimation algorithm is used

to estimate the unknown system parameters. At each

sampling interval the current estimates are used to

calculate the controller parameters. The assumption that

the estimated parameters are equal to the system parameters

leads to 'certainty equivalence' control [9,16].

•
The term 'self-tuning' applies if the resulting

controller parameters would converge to those values that

would have been obtained

known exactly.

if the system parameters were

The minimum variance controller of Astrom [9,13]

would lead to unbounded control for inverse unstable (non-

minimum phase) systems. This is a severe restriction,

since such systems often occur in sampled data systems even

when the underlying continous time system is inverse stable

7
































































































































































































































































































































