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------Abstract
:

The, level structures of the nuclei

\

~
60 61·Zn and Zn have

been studied by means of (T,ny) and (a,ny) reactions,

respecti vely.. Additional heavy ion induced reactions were

also investigated with respect to 60, 61 Zn and other compet­

ing channels, notabl~ 59Zn , 60Cu and 61Ga • Gamma·singles,
,

n-y coincidence, y-y, multi-y coincid~nce, y and n-y angular

distribution measurements were made. Limitations on excited,

state lifetimes were obtained from beam pulsing, electronic
<

c·: timing, and Doppler shift measurements. A high resolUtion

neutron spectrum of the 58Ni (a,n)61 Zn ~eaction wa~ obtained.

At tempts at other mul ti-particle tra.nsfer experiments have

been unsuccessful.

The experimental results are compared with those

-found elsewhere and with theoretical calculations.
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In 'an introductory course on nuclear physics; a

professor of mine, (R.G. Summers-Gill), once made the

analogy of nuclear physics with stamp collecting.~The two

main problems in nuclear physics are that the interactions

are very complex a'nd only partially understood even

today. Hampering matters is thE\ fact that most nuclei

contain either too many' particles (i.e. more than two) or

too few (cf. the effectively infinite number of atoms in

even the tiniest of solid state devices). One is therefore

faced with solving a general n-body problem With complicated

forces and special attention paid to quantum mechanics and

occasionally, relatiVity.
• Hence the idea of stamp collec-

ting: data are collected and analysed for patterns; pheno­

menological, macroscopic aind .. microscopic theories are

developed to try to account for these patterns and in turn

predict addi ti~nal properties. Wi.th time, the techniques of
\.

both theoretical and experimental realms become more

refined.

Two of the earliest and most important "patterns"

recognized were the Shell ~odel uf ~ayer (1949) and Haxe1,

1
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(1952) and Bohr and Motte1son (1953).

Jensen and Suess (1949) anc! the 'CbUective
\

idodels 'of Bohr

JThe theoretical inspiration fo.r this t'hesis has in
•

fact been the series'of shell model calculations carried out

on the Zn

60Zn and

isotopes by van Hienen et ale (197£). The nuclei

61Zn were chosen to be studieti in this thesis

partly because little was known about their structux e and

•electromagnetic decay modes when this project began and

partly to test the validity of ~he theoretical predictions.

To accomplish this, a number of experimental techniques

incorporating heavy ion induced reactions and subsequent

decays were" employed to determine energy levels, spins,.

parities and y transition branches, multipolarities and

lifetimes.
I

In the course of these investigations, hitherto

unknown properties of other nuclei near A=60 were uncovered,

Glaudemans et al (1972) and Koops and Glaudemans (1977) of
,

60most notably Cu., Since the shell model calculations of

the Ni and Cu isotopes provide the foundation for the Zn

calculations, any new information on 60Cu , 59 Zn , 6~Ga, etc ..
is not without relevance.

The following chapters describe both the t~eoretical

and experimental aspects of the methodology. The experi-

mental results are.presented and discussed in the light of

~ theory and results obtained by others; in particular, the Y

spectroscopy work of Kamermans et al. (1970) regarding 6U zn ,












































































































































































































































































































































































































































