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ABSTRACT

A detailed study is presented of power and spectral measurement methodology
commonly used to characterize and optimize the fundamental continuous-wave properties
of semiconductor lasers. These properties include: efficiency, optical loss, the temperature
sensitivity of threshold, gain, and spectral linewidth. The techniques studied are found to
often yield erroneous or misleading resuits. The conditions under which errors can occur
are investigated and precautionary measures necessary to avoid these problems are
outlined.

The effect of well number, length, and temperature on efficiency and optical loss is
investigated. A phenomenological model based on inter-valence band absorption ([VBA)
for the description of the results is developed. The model provides evidence of the
importance of IVBA in determining laser characteristics, including the failure to lase. The
operating regime where [VBA dominates is found to be clearly identifiable. It is also found
that, in the presence of [VBA, there exists a potential for misleading measurements of the
internal efficiency and the optical loss. Using the high temperature sensitivity of the gain
coefficient, it is possible to obtain an indication as to whether IVBA is affecting the
experimental results.

In order to study the temperature dependence of the threshold current, a derivation
of the empirical T, relation is given which provides meaning to the fitting parameters.
The experimentally determined T, is shown to correlate with the T, predicted from
data obtained by the [VBA model for a range of lengths and well numbers. The conditions

under which the T,  relation is valid are determined.

The gain coefficient for lasers having five quantum wells is calculated theoretically



and compared to the gain coefficient obtained experimentally both from the IVBA model for
efficiency and from the length dependence of the threshold current density. The efficiency
method agrees with theory to within experimental error. However, the threshold method
yields a value which is approximately one-half of the theoretical value, a phenomenon
which has been previously observed in the literature but for which no explanation has been
found. Direct measurement of the below-threshold output spectrum of the lasers
demonstrates that the cause of this discrepancy is an unexpected length dependence of the
gain coefficient. Non-uniform carrier injection into the quantum wells is suggested as a
possible physical mechanism.

A potential for gross inaccuracies in the measurement of laser linewidth using the
delayed self-homodyne (DSH) technique is discovered. It is found that the accuracy of the
DSH technique depends on the amount of noise in the laser bias current source to a
previously unappreciated degree. This is due to a combination of the high FM sensitivity
of semiconductor lasers and the long optical delay lines required by the DSH technique.
The errors behave in a manner usually associated with intrinsic 1/f noise, and can cause all
of the associated properties of residual linewidth, linewidth floor, non-Lorentzian
lineshape, and premature re-broadening of the laser line. Guidelines for proper filtering of

the current source are given to ensure accurate measurement.
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CHAPTER ONE

INTRODUCTION

1.1 MOTIVATION

EMICONDUCTOR lasers can be found in a wide range of applications, from
S common items such as compact disc players and high speed printers, to the esoteric
and astonishing 1997 Sojourner sent to explore the Ares Vallis flood plain of Mars. The
minute size, low power demands and low cost of these devices are attractive advantages.
Perhaps the greatest driving force behind progress in semiconductor lasers,
however, is optical communications. With an emitting wavelength of 1.3 or 1.55 um, they
are used as transmitters in optical fibre links, either directly modulated or with an external
modulator. At0.98 pm, they can be used to pump Erbium-doped fibre amplifiers used as
repeaters in long-distance links. The ability to design a range of emission wavelengths is
useful for high-capacity wavelength division multiplexing (WDM), where a number of
lasers at slightly different wavelengths are used to send a series of signals simultaneously.
Not only are improved devices required for current communications demands, but

proposals for future uses, such as fibre-to-the-home and land-line components for the
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expansion of wireless networks, ensure that interest in semiconductor lasers will continue
for some time.

Crucial to further progress in semiconductor lasers is an understanding of the
underlying physics of the devices, as well as the development of an arsenal of meaningful
characterization techniques. This is complicated by the small size (typically less than | mm
cubed), the difficulty in physically accessing the inside of the laser in a non-destructive
manner, and the high degree of coupling that exists between the various physical processes
occurring during operation. As a result, many standard characterization techniques are
indirect and rely on a priori models of laser behaviour. When the assumptions used to
generate a model are invalid, experimental results can be misleading. If the original
assumptions are not re-examined and corrected, consequences can range from numerical

results which simply do not agree with theory, to the postulation of new but highly suspect

physical mechanisms.

1.2 HISTORICAL CONTEXT

1.2.1 Evolution to Commercial Transmitters [1]

Successful lasing in a forward-biased GaAs p-n junction was first observed in 1962
(2]-[5]. Later improvements in liquid phase epitaxy led to room-temperature, pulsed-mode
lasing action in 1969 [6]. In 1970, the first continuous-wave (CW) room-temperature
semiconductor laser was demonstrated [7]. Since these lasers were based on GaAs, the
lasing wavelength was usually in the range of 0.8-0.9 pm.

The advent of low-loss optical fibre in the 1.3-1.55 pm wavelength range led to a
pursuit for lasers operating in the infrared. InGaAsP lasers on InP substrates provided a
viable solution, and in 1977 a 1.3 um InGaAsP/InP laser was demonstrated [8], with
lasing at 1.55 pum soon to follow. By 1984, InGaAsP/InP lasers in long-haul optical
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communication systems had been introduced commercially [9].

1.2.2 Characterization of Threshold

Since the first semiconductor laser, improvements to the threshold current and
electrical-to-optical conversion efficiency have been sought. Between 1962 and 1975, the
threshold current density had decreased by over two orders of magnitude [1]. Further
progress was made by: improvements in the design of the device geometry [10]; the
introduction of thin (< 500 A) narrow bandgap epilayers which act to form a quantum well
potential for carriers in the crystal [11], [12]; and the intentional introduction of lattice-
mismatch strain into the quantum wells [13]. An example of a multi-quantum well laser
with a ridge to confine the current and optical mode is shown in Fig. 1.1.

In addition to an overall reduction in current consumption, a reduction in the

temperature sensitivity of threshold current is also desirable. The ambient temperature in a

Bias Current

Output Light

Quantum
Wells

Cleaved
Facet

Output Light

Figure 1.1 - The basic structure of a multi-quantum well ridge-waveguide
semiconductor laser.
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transmitter or repeater module can exceed 50°C [14], and typical industrial standards
require an operating range of 40°C to 85°C. Presently, thermo-electric (TE) coolers are
usually used to stabilized the temperature of the laser. However, TE coolers add
significantly to the cost of packaging, increase package volume, require additional sensing
and control circuitry, and can consume upwards of one hundred times the power needed to
operate the lasers which they are cooling. Since TE coolers are inefficient, they generate
excess heat and, furthermore, can often be unreliable.

The ultimate goal, therefore, of characterizing the temperature sensitivity of the
threshold current is the development of a laser module which does not require a TE cooler.
However, this is complicated since InGaAsP/InP lasers have a notoriously high sensitivity
to temperature [15], the cause of which is not fully understood. At the time of this writing
there appears to be a consensus forming around changes in the gain as the primary
contributor [16], [17] but there is still much controversy. In addition, while the theoretical
temperature dependence of the gain due to softening of the Fermi distribution can be used
to successfully predict the temperature sensitivity in GaAs/AlGaAs (T, =200 - 400 K)
[18], this is not the case for InGaAsP/InP. Although the theoretical calculation for
quaternary lasers yields approximately the same result as the ternaries [1], the observed
temperature sensitivity is much higher (T, =40-70 K [1]), and does not improve as
much as predicted with the introduction of quantum wells [19]. If gain is the main culprit,
further investigation is required into what material property makes it so.

One complicating factor from the experimental point of view has been the concise
description of the temperature dependence of threshold. Since 1968 [20], the threshold

current density, J,, has been associated with an exponential temperature dependence:

—1 TTg
Jn=1T,e

(L.1)

where T, and J, are the characteristic temperature and current density, respectively.
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Unfortunately, the observed J,;, does not follow this behaviour and Ty and J, depend on
temperature. This has led to the custom of dividing the observed temperature range into
arbitrary sub-ranges over which T, and J p are relatively constant, which unnecessarily
complicates the analysis. In 1995. it was noted that a strong correlation existed between

J and its temperature derivative, V.J,,, given by [15]

I
=D 1.2
o (1.2)

where D and m are constants, and m was found to have a value of close to 3/2. Equation

(1.2) was found to be valid for a wide temperature range (-50°C to 100°C) and a variety of

laser designs.

1.2.3 Efficiency Characterization

Characterization of the laser efficiency is usually treated separately from the
threshold current. This is accomplished by measuring the slope of the light output vs.
current (L-I) curve above threshold. Less work has been done directly on the slope

efficiency than on threshold, with the assumption being that the two are affected by similar

mechanisms.
The external differential quantum efficiency, 1, is defined as

_ Change in rate of photons escaping from cavity
change in rate of carriers injected into cavity

d

and the irternal differential quantum efficiency, n,, is

_ change in rate of photons produced in cavity
change in rate of carriers injected into cavity

The efficiencies Ny and T; can be related by [1], {21], [22]
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ot 2k L.
nd nl ( +ln(1/R)) ( 3)

where o is the optical loss per unit length, L is the cavity length, and R is the facet
reflectivity. The standard characterization technique involves plotting n;' as a function of
L and extracting 1; and o from the slope and intercept.

Both 1; and o have been examined periodically and, at various times, one or the
other has been ascribed the temperature and structural behaviour of Ny. An early detailed
study in quaternary lasers was given by Adams er. al. [23] in 1980, who attributed the
temperature dependence of 14 primarily to inter-valence band absorption (IVBA) affecting
a. In 1987, Koren et. al. [24] noted a weak length dependence of Ny, and similarly
attributed it to [IVBA. They pointed out that an [VBA contribution to o would impart to it
an implicit length dependence which would give rise to a difference between the actual and
measured values of T, and o, as obtained from (1.3). Studies by other groups
investigated [VBA with regard to departures from the linear length dependence in (1.3)
[25], and changes of m, with changes in the band structure [26], [27]. In contrast, others

have attributed the temperature dependence of 1, to changes in 7; induced by hetero-

barrier leakage [28].

1.2.4 Gain Characterization

The fraction per unit length by which light is increased as it travels down the cavity
is called the gain, and it is a fundamental quantity affecting the threshold current. It has the
advantage that, for Fabry-Perot lasers, measurement requires fairly straightforward
spectroscopy, and the calculation of the gain from the spectrum relies on reasonable
assumptions. As a result, it is one of the most common CW diagnostic techniques after

measuring the L-I curve.

The original method for extracting the gain from the below-threshold spectrum was
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proposed by Hakki and Paoli in 1975 [29]. It was discovered, however, that the finite
spectral resolution of monochromators used for the measurement could introduce
significant systematic errors in the gain, particularly near threshold. This was pointed in
1984 by Cassidy [30], who also introduced a modified “mode sum/min” method which
greatly improved the accuracy of the technique. Unfortunately, it is still possible to find
publications basing conclusions on the Hakki-Paoli technique.

Since it is difficult to know the carrier concentration in the active region of a device,
the gain is usually plotted as a function of current density, J. The gain also has a
dependence on wavelength. Since the laser typically lases at the peak of the wavelength
curve, it is this peak value, g, which is tracked as a function of J. In 1985, Mcliroy et. al.
(31] noticed that the theoretical g vs. J curve for g> 0 could be described by a logarithm,

g=IGyIn(J/NyJ,) (1.4)
where T" is the optical confinement factor, Ny, is the number of quantum wells, G, is the
logarithmic gain coefficient, and ], is the transparency current density. The logarithmic
dependence is observed experimentally, for example, by Osinski et. al. [32].

The logarithmic dependence can be used to predict the length dependence of the
threshold current, or, alternatively, the length dependence of the threshold current can be
used to infer 'Gy and J,. The latter is a common practice since it is often easier to cleave
samples of different lengths and perform L-I measurements than it is to set up the
spectroscopic and computational apparatus to measure the gain directly. At threshold, the
gain is equal to the mirror losses, given by

gn=In(l/R)/L (1.5)

Equations (1.4) and (1.5) can be combined to give

I =NyJ exp{ln(1/R)/TG,L}. (1.6)
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Equation (1.6) has been used to compare experimental I'G, values with ones
calculated theoretically at room temperature. Close agreement is often found, after some
adjusting of unknown parameters [33]. However, large inexplicable discrepancies have
also been found, notably in quaternary materials [33], [34].

Note that from (1.6), there exists a length at which the threshold current is a

minimum. The threshold current at this length, I, ..., is {31]

_ewlin(l/R) J,

Linmin = _T-a (L.7)

where w is the width of the contact supplying current to the laser. It is assumed that T is
proportional to the number of quantum wells with a constant of proportionality C.

Obviously, it is desirable to determine what mechanisms affect J, and G, and use this

knowledge to increase G, and decrease J,.

1.2.5 Linewidth Measurements

Laser linewidth is of interest both for an understanding of the fundamental physics
of lasers and from potential applications demanding pure (i. e., narrow linewidth) spectral
sources. In terms of communications, analogue networks (such as cable television) require
very narrow sources to reduce FM-to-AM noise conversion in optical fibre [35], [36].

Perhaps the most commonly used, simplest and highest resolution technique is laser
self-homodyning and the closely related self-heterodyne technique. Self-homodyning was
first proposed in 1980 [37], and has been used to investigate a variety of linewidth-related
properties. Among these are the existence of a non-Lorentzian component in the lineshape
[38], 1/f noise in the laser output [39], and departures from the Schawlow-Townes formula

in the form of linewidth flooring, residual linewidth, and linewidth re-broadening [38],

[40].
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1.3 MATERIAL COVERED IN THIS THESIS

Continuous wave (CW) operation of semiconductor lasers is important for long-
haul. high bit-rate communications where speed and dispersion considerations require
external modulation. This thesis primarily deals with the CW characterization of
semiconductor lasers, as opposed to the CW characteristics. In many cases, the two are
inextricably bound together: the presence of certain characteristics requires the re-
interpretation of some of the basic characterization techniques outlined in Section 1.2. The
hope is that, in addition to providing an improved experimental methodology, some useful
information regarding fundamental physical processes affecting the power and spectral
properties of the lasers studied in this thesis will also be imparted. The lasers used for the
various studies are compressively strained, multi-quantum well ridge waveguide
InGaAsP/InP lasers. The lasers studied in Chapters 3 through S are Fabry-Perot type,
while the one used in the linewidth study in Chapter 6 is a gain-coupled distributed-
feedback laser.

The body of this thesis begins in Chapter 2 with a model of Fabry-Perot multi-
quantum well lasers. The cavity is assumed defect-free and carriers are assumed to be
evenly distributed along the length of the cavity. The underlying concepts behind the
various models used in the subsequent chapters are presented in a coherent manner, and it
shown that they can be used to reproduce some of the most fundamental properties of the
laser: the optical spectrum, the L-I curve, gain saturation, and the Schawlow-Townes
linewidth dependence on the output power.

In Chapter 3, a systematic study of the well number, length and temperature
dependence of the efficiency and optical loss is presented. The study relies on data

collected from a large set of 175 lasers. A model which includes IVBA is used to describe
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the trends, and areas in parameter space where changes in the internal efficiency become
significant are outlined. The consequences of the model and the measured parameters are
examined.

In Chapter 4, the same set of lasers is examined for the temperature dependence of
the threshold current. A modified version of (1.2) is derived from phenomenological
considerations and used to give physical meaning to the shape of the J, vs. temperature
curve. The gain and loss coefficients measured in Chapter 3 are used to make predictions
of the characteristic temperature, T, , which are then compared to experiment.

A room-temperature investigation into the gain of lasers having 5 quantum wells is
given in Chapter 5. The gain is calculated by four independent methods. The source of the
occasionally observed discrepancy between the theoretical and experimental gain
coefficients discussed in Section 1.2.4 is explored and identified, and possible root causes
are discussed.

The effect of laser bias current noise on the self-homodyne (and self-heterodyne)
technique for measuring laser linewidth is presented in Chapter 6. A mathematical
description of the measurement apparatus is derived and extended to incorporate the
presence of a single noise tone. The model is compared with experiment and further
extended to describe a band of white current noise. Guidelines for filtering the current

source to ensure accurate linewidth measurements are given.
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CHAPTER TWO

THEORETICAL FOUNDATIONS

2.0 INTRODUCTION
N this chapter, the ground work is laid for analyses used later. The individual models
Ipresented in other chapters are brought together to illustrate that it is possible to use
them in a cohesive manner. A trade-off is required between practicality and detail. At one
extreme, numerical simulation of all known phenomena could be done by computer. This
approach makes it difficult to perform quantitative fits to experimental data to determine
unknown parameters. It also has the disadvantage that the interaction of various
mechanisms can be obscured. At the other extreme, there is the danger of
oversimplification. For example, many rate equation models ignore the variation in optical
power along the length of the laser cavity, in favour of keeping a count of the total number
of photons present in the cavity. Although this is simpler, it gives an incorrect relationship
between gain and power output [1].
The model presented in this chapter is similar to that of Cassidy [2] and Gordon
[3]. Modifications have been made to include quantum-well gain effects, inter-valence

band absorption and current loss mechanisms. The carrier density along the length of the
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laser cavity is assumed to be constant. This sacrifice is necessary to maintain tractable
solutions when performing later quantitative analysis. More complicated models indicate
that this assumption is not likely to introduce significant inaccuracies under CW conditions
(4].

In Section 2.1 it is shown how the three-dimensional optical wave equation can be
reduced to two separate problems: a two-dimensional bound problem in the transverse-
lateral plane, and a one-dimensional traveling wave problem in the longitudinal direction.
The spectral and optical power properties are derived in the longitudinal direction in Section
2.2. In Section 2.3, an alternative derivation for the optical power is presented using
Poynting’s theorem, and it is shown that the power in each cavity mode is separately
conserved. The single-mode power equation is explored in Section 2.4, and a graphical
example of the power spectral density is given in Section 2.5. In Section 2.6, a carrier
equation for the net gain and a phenomenological relationship between current and carrier
density is introduced. It is demonstrated that the model is capable of reproducing light
output vs. current curves in Section 2.7. Section 2.8 contains a discussion of gain

saturation, and Section 2.9 contains a derivation of the above-threshold spectral lineshape

expected from this model.

2.1 THE OPTICAL MODE

The solution of the electromagnetic field in a semiconductor laser is inherently a
three-dimensional problem. However, the field is generally bound in one or more low-
order modes in two orthogonal directions and approximates a slowly varying traveling
wave in the third. Considerable simplification takes place if the bound and traveling wave
solutions are considered separately. In materials with complex indices of refraction, this
cannot be done with an exact treatment. Fortunately, the problems can be decoupled if the

real part of the refractive index is primarily responsible for the confinement of the bound
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Figure 2.1 - Geometry of the optical waveguide in a laser, and the division into sections of
the indices of refraction for the example of a 3x3 section laser. The transverse direction is
the direction of growth on the wafer.

solutions. The contribution of the imaginary part of the refractive index is treated as
perturbation in the following derivation based on Chuang [5], and Agrawal and Dutta [6].
Consider a waveguide as depicted in Figure 2.1 with a mode confined in the x
(lateral) and y (transverse) directions, and free to propagate in the z (longitudinal) direction.
Assuming that each material constituting the core and the cladding is linear, isotropic,
homogeneous, non-magnetic and charge-neutral, the harmonic time-independent wave
equation is
VZE+[n(x,y)k2E=0 2.1
where E is the electric field vector, n(x,y) is the complex index of refraction of each section
and k, is 27t divided by the free space wavelength. One common approximate approach to
solving (2.1) is called the effective index method (6]. In this approach, the waveguide is

divided into sections where the refractive index is assumed constant. Each transverse
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column of sections shown in Figure 2.1 is treated as a separate slab waveguide problem. A

solution can be found for each of these (¢(y;x)) and used to solve for the mode in the lateral

direction Y(x). The electric field is therefore written as

E = éo(y:x)w(x)e® (2.2)
where B is the modal propagation constant and € is the unit vector in the direction of
polarization. Substituting (2.2) into (2.1) and performing a separation of variables gives

differential equations for each of the transverse and lateral directions:

9*0(y;x)

dy? +[n(,y)k0 eff(x)]q)()’:x):O (2.32)
FY(X) a2
T3t B0 =By =0 (2.3b)

where BZ;(x) is the constant of separation.
Equation (2.3a) is solved for each transverse column with B, (x) acting as the
effective propagation constant. The B for the k™ column (B, ) can, in principle, be

related to the power distribution by multiplying (2.3a) by the complex conjugate ¢”(y;x)

and Re{n jk}, and integrating over all y:

j Re{ ,k}¢k(y)[ ¢“(Y) njzkk:',Q)k(y):ldy

.[_: Re{njk }¢k()’)¢k(y)dy

2
effk —

2.4)

In (2.4), the x dependence of ¢ and B.; has been replaced with the column index and the
(x,y) dependence of n has been replaced with row and column indices.
As mentioned, (2.1) can be solved in closed form if all n, are real (n‘o’) This is

treated as the unperturbed equation and has solutions ¢'” and an effective propagation

given by



Chapter Two - Theoretical Foundations 18

e
@ \_
(Bt ) = [~ 090" (y)0 (y)dy

(2.5)

Now consider a perturbative imaginary component to n,. denoted Anj, so that
ny =0l +iAng (2.6)
giving rise to a change in the propagation constant of AB.g . SO
Berrx =Bettx +idBegr - 2.7
Since Anj and AP, are considered to be small, njlk and Bzm can be approximated by
e = (n}c')

Bl z(B(e?f)k) + 2iABr B - (2.8b)

[

+ 71An1kn‘°’ , (2.8a)

19

At this point, something of a leap of faith is required. It is assumed appropriate to
replace ¢, (y) with (D‘O’(y), without adding a A¢,(y) term as has been done in (2.6) and
(2.7) with ny and By, thereby eliminating unwanted cross-products in what follows.
Unfortunately, this is not rigorously true. However, comparisons of approximate methods
based on this assumption and exact numerical simulations agree favourably (a careful
quantitative comparison between the two is given in [7]). Therefore, this ad hoc step is
introduced as an inelegant but evidently practical part of the solution.

Substituting (2.8) and ¢, (y) = ¢§‘°’(y) into (2.4), and canceling unperturbed terms
using (2.5), AB.¢ , can be calculated as

(0)
AB lerAn miky
eff.k = J . Smal] 3

(2.9)
Berr.x

where
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n(‘(Z) j¢(0)‘¢§c0)dy

section j

J n(0)¢(0)‘¢(0)dy

is referred to as the transverse optical confinement factor, and represents the fraction of
power of the transverse solution ¢, overlapping section j. The summation in (2.9) was
obtained by breaking the infinite limits on the integral in the numerator of (2.4) into a series
of integrations over each section j.

A similar procedure can now be carried out for W(x). As in (2.4), the propagation

constant can be written

dy*
[ v owxidx

J ¥x )[8 W(X)*‘B..frk (x)}
B? = |

(2.10)

Note that (2.3b) has been multiplied only by y’(x) before integration, without the added
factor of a refractive index used previously. One might be tempted to relate (2.10) more
closely to the power distribution by multiplying by n¢, = Berx / ko- However, it must
be remembered that ¢ , is merely a constant of separation and is not necessarily so easily
used to obtain the optical power. Equation (2.10) is therefore used as given. In the lasers
discussed in this thesis, the lateral confinement factor introduced below is nearly unity for
the waveguide core and zero for the cladding, so that not having (2.10) easily expressible
in terms of power is not a great inconvenience.

The presence of a An, will introduce a modification to the unperturbed propagation

constant, k, given by
B=k+Ap . (2.11)
The symbol k is used instead of B‘”’ since it is a more conventional notation. Substituting

(2.9) and (2.11) into (2.10), and once again canceling unperturbed terms, the change in

propagation constant is found to be
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—i
AB=—T;lg; (2.12)
- j.k
where
Jw‘(x)\u(x)dx
[-L — section j
k = feo .
I~ v w(x)dx
and
kl
gij = An,-kﬂﬁﬁ)?"

Note that it follows from the definitions of the confinement factors that
Y.l =1.
)k

The parameter g; is the net gain per unit length of each section of the waveguide.
A net modal gain can be defined as g =2iAB. While the active region of the waveguide is
often described in terms of gain, it is customary to discuss the passive sections in terms of

their loss per unit length, o ;; =—g;- Finally, the gain/losses are usually lumped into

active and passive terms so that

g=Tgu — (1= Doty (2.13)

where [ is the active region confinement factor, g, is the net gain in the active region,

and o, is the loss in the passive sections.

Equation (2.13) is the simple result of the rather involved derivation given above.
Analysis is now greatly simplified since the non-axial distribution of the optical mode and
the evolution of the wave as it travels down the axis are conveniently grouped into separate
variables. The utility of this will become evident particularly in Chapters 3 and 5, where
the gain and losses are examined in detail. Although a more sophisticated method for

calculating I" will be used, the principle outlined in this section is still valid.
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2.2 LASER OPTICS I - FIELD SOLUTION

In Section 2.1, it was demonstrated that the three-dimensional problem of the
electromagnetic field inside a dielectric waveguide with complex indices of refraction can be
reduced to three one-dimensional problems in the presence of strong guiding by the real
parts of the refractive indices. Attention can now be focused on the axial dimension where
the field has an unbound, wavelike character with a wavelength much smaller than the
length of the cavity. It is assumed that the gain is small enough that the wave can be treated
as having a slowly varying amplitude.

Other than the presence of optical gain, two aspects make this problem particularly
interesting: ~ spontaneous emission and feedback from the ends of the cavity. The
calculation of the longitudinal optical field starts by consideration of the spontaneous
emission from a thin sheet of semiconductor centred about a point z, on the longitudinal
axis. Since each photon has a random initial phase, they will be uncorrelated, as depicted
in Fig. 2.2, There is an equal likelihood of a photon being emitted in the positive- or
negative-going directions.

As discussed in Section 2.1, the propagation of the field will be described by
u=e®*20) where B=k—ig/2, k is the propagation constant and g/2 is the amplitude
gain of the field per unit length (so that g is the gain of the power). To be exact, a random

phase angle should be added to the exponent. However, it does not affect the final result as

Figure 2.2 - Spontaneous emission from a sheet of material at Z,
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long as it is remembered that adding this field to other ones which are not correlated must
be done after squaring each to get the average power rather than adding them first.

The field induced by a spontaneous emission event will also have an amplitude,
a(t). The amplitude contains a time dependence to account for broadening effects such as
the finite transition lifetime. In this chapter, only the time-averaged power spectrum is

considered and intensity noise is ignored, so the explicit time dependence of a(t) is

dropped.

I'l 1'2
—>X
. >
! ! —+ >
ZO z

Figure 2.3 - The positive-going field at point z after two passes, emitted from point z, In
the positive direction.

Now consider what happens when the source sheet and its accompanying gain
medium are placed inside a Fabry-Perot etalon as shown in Fig. 2.3. Following the course
of a single photon after emission, its amplitude and phase will progress as given by u(z) as
it moves in the positive direction. After reflecting from the right hand mirror with reflection
coefficient r,, the amplitude inside the cavity will decrease and the wave will continue in
the negative-going direction until it reflects off mirror r, and returns to propagating in the
positive direction. Each round trip has a total travel length of 2L and will therefore
contribute an additional factor of r,r,e®" to the field. The positive-going field at point

z> z, after an infinite number of passes will be

. - . 2 .
a,ul(z>zy)=a,e? z0’(1 + 0,62 +(ryr,) e“‘m‘+...)
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iB(z-z9)
a.e' n
= ___ 2.14
where the following notation has been used:

% direction of propagation
+ direction of emission

u
and the subscript on the amplitude a indicates the direction of emission. Expressions
similar to (2.14) can be easily derived for other combinations of propagation direction,
direction of emission, and field point (z>z, or z<z;). Al of the eight possible
combinations are summarized in Table 2.1.

Since it is the power and not the photon field that will be physically observed, it is
that quantity which is of the greatest interest to calculate. The field amplitude is related to
the amount of spontaneously emitted energy in both directions per unit length per unit time
per unit frequency (e.g. - J/(m-s-Hz)). The average power spectral density (defined as
the power per unit frequency, see [8] and [9]) of positive-going light at field point z due to
a thin sheet of semiconductor of width dz centred at source point z, (z>2zg) is the sum of

the contributions of the left and right emitted photons:

dP‘;(z>zo)=h%"(X_)(ut(z>zo)z+luf(z>zo)2)dzo (2.15)
with
! <o f = Tt
2

where v, is the fraction of the spontaneous emission power coupled into the cavity and
ug, (V) is the spontaneous emission power spectral density. The parameters a,, Ysp and

u, are assumed to be independent of z,, or it is assumed that a suitable average Y Can
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be found for the integration that follows. The factor of 1/2 arises from the assumption that
half of the spontaneously emitted energy will be coupled into each direction. There are four
possible combinations of propagation direction and position relative to z, for dP/dz, and
they are also summarized in Table 2.1. Equation (2.15) can be integrated over all source

sheets along the length of the cavity to obtain the power spectral density along the cavity in

the positive z direction,

< \Y 2 2
Pi(z) = Y;PU;PL){J:'u:(z >z, )l dz, + JZLIuj(z <z, )' dzo}
_ Yapl(V) [1-R, +(1-R,)R,G(V)|e¥* + R,R,[G(W)]* - 1
280 (1= yRIR,GW)) +4yRR; G(V)sin (v / Vegg)

where Vggp =v, /2L is the free spectral range, v, is the group velocity of the optical

(2.16)

mode, R, =r}, and G(v)=e*"" is the single pass gain. P5(z) can be obtained by
exchanging R, <> R, and z & L -z. The output of the right facet, P . (V), according to
(2.16) can be easily obtained as
Pout(v) = (l - R'.’.)P:(L)
YspUsp (V{1 =R, J(G(V) = 1)(1+ R,G(V))

- 2g(v)[(l - JRR;G)’ +41/R1R2G(v)sin2(1rv/vFSR)] '

(2.17)

Equation (2.17) is similar to the output of a Fabry-Perot etalon with an input beam of
power Ygu,,(V)(G(v)-1)(1+R,G(Vv))/2g(v) and a finesse which is calculated from the
RG product rather than the reflectivity.

One further useful quantity is the power spectral density integrated over one cavity
mode, P,. As will be seen in section 2.3, while the power P dv is not in general
conserved, P, is. The frequency dependence of the spontaneous emission and the gain
are both assumed to be reasonably constant over one mode. New variables are defined:
the spontaneous emission into mode m (YsplUsp.m = YspUsp(V)Vg / 2L), the net gain of mode

m, g, and the single-pass gain of m, G_,. Integrating (2.16) with respect to v over
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limits corresponding to the consecutive minima of one Fabry-Perot mode

(V/Vgg =—1/21/2) gives

PL(z) = Ysolsp.m [1 —R +(1- Rz)Rle]egz +RR,G}, -1
m 2 ga(1-RR,G%)

(2.18)

It should be mentioned that the method of determining the field resulting from a
single spontaneous emission event and integrating over all such events has been used in a
more general form to determine the spectra of distributed feedback lasers [10]. This could

be considered a closed form applicable to the special case of Fabry-Perot lasers.

2.3 LASER OPTICS II - CONSERVATION OF ENERGY'

Consider a thin closed surface pierced by the active material of the laser waveguide
in the direction of propagation as shown in Fig. 2.4. The net rate of optical energy leaving
this surface can be found by integrating the Poynting vector S over the entire area [11].

This will be equal to the net rate at which optical er.2rgy is created, less the rate at which it

1s stored or dissipated within the volume.

ﬁsdnm(r, —aa—':}iv (2.19)

where r, is the net emission rate per unit volume and p is the energy density. The surface

integral on the left side of (2.19) can be related to the volume it encloses by Gauss’ theorem
§bs-da=[[[(V-Shv . (2.20)
v
Equating the integrands of the volume integrals in (2.19) and (2.20) gives

VS=r, -——. 2.21)

" This section is based on a derivation given by J. G. Simmons, “On the spatial and temporal dependence of
photons and free carriers in a semiconductor medium”, EP727 Course Notes, McMaster University, Canada.
There, the energy flow is described in terms of photon continuity rather than the Poynting vector.
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Figure 2.4 - A section of the laser waveguide showing the Gaussian surface (dashed) used

in (2.19). The arrows indicate optical energy flow through the surfaces in the axial and
perpendicular directions.

The components of S in the x and y directions represent an energy flow
perpendicular to the direction of propagation and, hence, lost from the cavity. These losses
can be lumped together as the energy loss rate per unit volume, r_ =dS /dx +dS, /dy.
The radiative rate r, can be separated into a component representing the net rate of
stimulated transitions (emission minus absorption), r,, and the rate of spontaneous

transitions, r,, so that r, =r, +r_. Under steady state conditions, dp/dt =0 and (2.21)

becomes
aS

—E=r+r, T (2.22)

oz
The stimulated emission rate is proportional to the energy density (Fermi’s rule).
For reasons which will become obvious, the constant of proportionality between the

stimulated emission rate and the energy density is written as v B, where v, is the group

velocity in the z direction, and B is a proportionality factor so that r, = v,.Bp. Two main

mechanisms contribute to r : light scattered from defects in the cavity and spontaneous

emission which is not directed axially. The former will be proportional to p and is written
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VoQiP, Where o, is the proportionality factor, and the latter is a fraction of ry,, given
as (l—ysp)rsp, where (l—ysp) is the proportionality. Applying these modifications to

(2.22) gives

ds,
TZ- = Vng - vgascmp + Ysprsp (2.23)
Since S, is the power per unit area propagating axially, it is related to p simply by
S, =vgp. Things are simplified if S, is considered to be a constant function of x and y (or
it is assumed that a suitable average is found by the method outlined in Section 2.1) and
written in terms of the power, P = AS,, where A is the area of the active material. With

the further definition of the net gain g =B - @, and u,, = Ar,, (2.23) can be written as a

differential equation for the power as a function of z:

where ygu is considered independent of z.
Finally, P consists two independent populations of non-interacting photons
propagating in the negative- (P~) and positive- ( P*) going directions so that

P=P"+P,
dP/0z=0P* /dz-9dP /dz .

A separation of variables can be performed on (2.24) with the spontaneous emission

divided equally between the two directions,

dP* 9P . e
T =g(P" +P )+yspu,p;
aP* Yol
= 3 =gP*+%’- , (2.25a)
A
) ~ YU
-——=gp 422 2.25b
3 g 3 ( )

In order to solve the simultaneous differential equations in (2.25), boundary
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conditions are required. For mirror reflectivities R; at z=0 and R, at z=L the boundary
conditions are

P*(0)=R,P7(0) , (2.26a)

P7(L)y=R,P"(L). (2.26b)

[ntegrating the positive-going power in (2.25) from 0 to z and the negative-going

power from (L.-z) to z gives

u. (e®® -1
P*(z)=P*(0)e® +@(——) . (2.27a)
2 g
u eg(L-Z) -1
P (z) =P (L)ed't "% 4 Y“; P ( ) i (2.27b)
(o4
- o

In the form shown in (2.27), it is easy to see the first term as a pure amplification
term resulting in an exponential increase in power progressing along the cavity from the

facet, and the second term as an amplified spontaneous emission term. Solving for z=0

and z=L,

P*(L)= GP*(0)+7“’#(G—‘Q. (2.282)
2 g
P~(0)=GP~(L) +Y‘—*’:‘i(0—‘l—) , (2.28b)

g
where G =e®" is the single pass gain as defined in section 2.2. Combining (2.28) and

(2.26), the power at the facets in both directions is found to be

Yspsp (G- 1)(R,G +1)
2 g(1-RR,G?)

pr(L) = Ju¥s (G- D(R,G ‘:l) , (2.29b)

2 g(1-RR,G?)

Yspusp (G - l)(R‘.’G + l)

2 g(1-RR,G?)

YsoUsp (G—-1)(R,G+1)
2 g(1-RR,G?)

P*(0)=R, (2.292)

P~ (0)= , (2.29c¢)

P*(L)=R,

, (2.29d)

which can be used with (2.27) to provide an explicit description for the power distribution
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along the cavity,
Yoy [~ Ri +(1-R,)R,G]e® + R,R,G? - |

Pe== g(1-RR,G?)

(2.30)

Equation (2.30) is exactly the same as (2.18) for the cavity modes obtained from
the tracing the optical field. Therefore, not only is the total energy conserved but the
energy in each cavity mode is also separately conserved. This remarkable fact has been
previously demonstrated classically using a current element equivalent to represent
spontaneous emission and solving the resulting inhomogeneous Maxwell’s equations [12],

as well as a transmission line equivalent circuit method [3].

2.4 SINGLE-MODE POWER

In this section, some of the properties of the power integrated over a single mode
are discussed. For simplicity, the z=L facet will be considered when examining the
output power and the mirror reflectivities are set to R, =R, =R. The extension to
opposing facet power, general R, and multimode is straightforward.

The single-mode power, P, emitted outside the facet at z > L will simply be the

power at the inside of the facet times the transmittivity (T = | - R) of the facet. From

(2.29d),

Pp =(1-R)P}(L)
- Ysp.musp.m (1 - R)(Gm - l)
2 gm(l_RGm) .

(2.31)

There are several interesting aspects of the simple expression given by (2.31).
First, it can be seen that the spontaneous emission coupled into the mode is a factor, so that
if there is no spontaneous emission, no power can be emitted. This may seem to be a
simple and obvious fact, but there are treatments of lasers for which this is not the case.

Second, after a quick inspection it might be concluded that (2.31) is singular at the
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transparency condition, g, =0, since g, appears in the denominator. However, G, -1

also approaches zero on the same order. L’'Hopital’s rule can be applied to show

u
Pu(gn=0)= —YS‘"“‘? 2L

-~

which makes sense intuitively. When the gain is such that the material is perfectly
transparent to the mode, spontaneous emission is the only source of power in the mode.
Since energy has to be conserved and the cavity is in steady state, the rate of energy leaving
the facets must be equal to the energy being produced. Half the spontaneous emission
must be leaving by each facet.

Finally, there is a real singularity, referred to as the high-gain limit [13], at the point
where the round trip gain, RG, is unity. The term “threshold” is sometimes used instead
of high-gain limit, but here threshold will be reserved for describing the knee in the light
vs. current curve separating lasing and non-lasing regimes. Usually there is little point in
discriminating between the two, since either a model is being used which neglects to
properly account for spontaneous emission, which means threshold and high-gain limit are
identical, or it is assumed that the difference is negligible. Nevertheless, to avoid
confusion and minimize assumptions, a distinction will be drawn herein.

The high-gain limit can be understood by realizing that a unity round-trip gain
means that the optical power lost from the cavity (either through the facets or non-axially) is
totally compensated for by the gain of the medium. However, spontaneous emission is still
pumping energy into the optical mode. The resulting steady-state modal power is infinite.
Figure 2.5 shows the asymptotic approach of the output power to the high-gain limit as a
function of g,L. In steady state, the high gain limit can never be reached or surpassed.

Dynamically, of course, it is possible. The output power in Fig. 2.5 has been normalized

to unity at transparency.
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Figure 2.5 - Output power as a function of g L, illustrating the high-gain limit and the
statically forbidden regime. R =0.3 has been used giving a high-gain limit of
gmL = In(1/0.3) and the power has been normalized to unity at g L =0.

Inside the cavity, (2.30) can also be simplified for R, =R, =R to give

- Em?
P! (z) = Jenlpm | (1ZRjeP® | (2.32a)
2. | 1-RG,

and for the negative-going direction

— Em(L-2)
P-(2) = Yl | (1~ R)e -1 (2.32b)
28 1-RG,,
and at transparency
+ /. — 0N — Ysp.musp.m R
PL(z.g,=0)= 3 (z-i- I—RL R (2.33a)

- Ysp.mYsp.m 1
P . =0)=_% P. ( L- ) . 2.33b
m(Z:8m ) 2 Y Z ( )
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Equations (2.32) and (2.33) are plotted as a function of position in the cavity for
various values of the gain in Figure 2.6. Above transparency, the power increases
exponentially as the optical wave travels along the length of the cavity. At transparency,
the increase is linear and under lossy conditions the power increases as a constant minus a
negative exponential. When the optical wave reaches a facet, a fraction, (1-R), of the
energy is dumped from the cavity. The remainder of the wave is reflected and propagates
in the opposite direction, increasing exponentially. When the wave reflects again from the
other facet and reaches the starting position, it is the same power as it was originally.

The total power distribution (the sum of both the positive- and negative- going
waves) is not uniform; for g, > 0, it will be a maximum at the mirrors and a minimum in
the centre. A large power difference between two sections of the waveguide can possibly

lead to such highly differing local rates of stimulated recombination that a significant

Power (arb.)

Figure 2.6 - Power distribution as a function of position for various values of the gain-
length product. Arrows indicate the direction of propagation.
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difference in the carrier populations is induced. The assumption that the gain and
spontaneous emission are constant along the length of the cavity would then break down.

The ratio of towal power between the middle of the cavity (at
P (L/2)=P;(L/2)+ P, (L/2))and the end of the cavity (PL(L)=Pr(L)+P_ (L)) is
approximately constant near the high gain limit and can be calculated. Forming the ratio
using (2.31) and taking the limitas RG—>1 (= g—In(I/R)/L) gives

lim {P.(L/2)/P (L)}= */_
RG — | I+R

(2.34)

which is about 0.84 for R = 0.3. Although the relative difference does not seem overly
large, a high power density could mean a large absolute difference. This would result in a
reduced differential electrical-to-optical conversion efficiency and a roll-off in the L-I curve.

Analyses in this thesis are restricted to the sub-roll-off regime. Note (2.34) indicates that

increasing the facet reflectivity (for example, by coating the facets with a highly reflective

dielectric stack) would delay the onset of this effect.

2.5 POWER SPECTRAL DENSITY

The power spectral density given by (2.17) can be illustrated graphically. As an
example, the gain as a function of wavelength was measured on a 7 quantum well, L = 250
Hm laser (see chapter 5). It was found that the dependence of the gain on mode number m

(where m = 0 is the peak of the gain curve) could be well described by a parabola over a

limited range of wavelengths and currents:

8m = Z(1+0.010m - 0.0025m?) (2.35)

where g, is the peak gain.
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Figure 2.7 - Calculated power spectral density from the laser facet for RG, =0.5 and
L=250um (gq =In(0.5/R)/0.0250cm™ and R =0.3).

Power Spectral Density (arb.)
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Figure 2.8 - Calculated power spectral density under high gain conditions, RG, =0.98
(g, =1In(0.98/R)/0.0250 cm™ and R =0.3).
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It is also necessary to obtain an approximate curve for the spontaneous emission.
To do this, the magnitudes of the spectral peaks (v / vggz = integer) were calculated using
(2.35) and (2.17) with R =0.3, and Ysp.mUsp.m SEt to unity. The experimentally measured
spectral peaks were then divided by the calculated peaks. The result is a function
proportional to Yg, nug, .. Assuming Ysp.m IS @ weak function of m, it is found that the

spontaneous emission power per unit length per mode is approximately described by a

linear function of m:
Ugp m = Ugp (1 +0.012m). (2.36)

The power spectral density is plotted as a function of frequency in Figure 2.7 for a
low gain value of RG;=0.5. As the gain increases, small differences in the gain between
adjacent modes make a larger difference in the spectrum. As the peak gain approaches the
high gain limit, the central mode begins to dominate, as can be seen in Figure 2.8 with
RG,=0.98.

Although, in principle, the mode at the peak of the gain curve should always lase,
crystal defects within the cavity can cause small amounts of feedback due to Rayleigh

scattering [14]. This can cause a departure from the idealized spectra in Figure 2.7 and

Figure 2.8.

2.6 CARRIERS AND CURRENT

Under CW conditions, the laser is usually driven by a constant current source. The
current flow is caused by a voltage drop across the laser and results in electrons being
promoted from the valence band to the conduction band. The usual strategy, which is
followed here, is to use the carrier density as a kernel quantity and calculate both the gain
and current from it. Once that is done, the output power can be calculated using the

equations derived in the previous sections and the light output vs. current characteristic can
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be obtained.

In 1986, Mcllroy et. al. [15] noticed that the calculated gain (at the peak of the gain
vs. wavelength curve) for a quantum well laser had a carrier density dependence which was
approximately logarithmic above transparency. In Chapter 5, an example of such a
calculation will be given and it will be shown that the net peak material gain (that is, at

mode m=0) for transitions across the bandgap, B,, can be described by

By =B In(n/ ny) (2.37)
where 3, and n, are the parameters which give the best fit to the numerical calculation.
The symbol “n” is used to refer to the carrier density. For charge neutral, intrinsically
doped wells, the excess electron and hole populations will be equal. This assumption is
often used in the literature to avoid detailed calculations of carrier distributions in the active
region. It is adopted here with the caveat that non-uniform densities from well to well is a
potential source of inaccuracy.

Among the optical loss mechanisms, inter-valence band absorption (IVBA) plays a
large role as will be discussed in detail in Chapter 3. [VBA is considered to be

approximately proportional to the hole density [16]-[18] in the quantum wells:
Qivgao =M. (2.38)

Optical power will also be scattered from the waveguide from defects both in the core and
the cladding of the waveguide. These are labeled with the single, carrier-independent loss

coefficient o,. Putting the above terms together, the peak net modal gain can be written
g0 =TBoln(n/ng)-Im-a . (2.39)
Calculating the current from the carrier density (or any other quantity e. g. voltage)

is a difficult task. There are many mechanisms responsible for current flow in a laser,

including radiative recombination, non-radiative recombination through localized bandgap
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states, current leakage laterally outside the ridge, leakage over the p-i-n heterobarrier, and
Auger recombination. To incorporate a full treatment of any one of these is complicated
and would introduce large uncertainties in terms of unknown or poorly known material
parameters. Furthermore, there still remains much controversy over the relative influence

of these mechanisms.

The carrier density is usually related phenomenologically to the rate of

recombination per unit volume, r, by [6]

r=an+bn*+cn’ (2.40)
where each term is associated with a separate mechanism: the first with non-radiative
recombination; the second with radiative recombination; and the final with Auger
recombination. However, there is no clear experimental confirmation that the different
current mechanisms can be so easily separated and (2.40) is nothing more than a three
parameter polynomial fit to the r vs. n data. In fact, there is direct experimental evidence to
the contrary [19]. Spontaneous emission from the laser has been observed to increase
linearly with carrier density, indicating that it is more closely related to the first term to than
to the second. In addition, theoretical calculations show that carrier degeneracy, and
phonon- and trap-assisted processes tend to change the power law dependence of the Auger
recombination rate {20].

In Chapters 4 and 5, different approximations to (2.40) will be used for
convenience. For the purposes of calculating the L-I curve in the next section, the
following approach is used. Both the spontaneous emission and non-radiative
recombination rate are assumed proportional to n. The stimulated recombination rate is
calculated using the optical power equations and dividing by the hv of each mode to convert
the power to a quantum rate. The contribution of Auger recombination is ignored. Finally,

it was discovered that, although the above assumptions are adequate to describe the
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magnitude of the above-threshold slope of the L-I curve for a variety of lengths, well
numbers and temperatures (see Chapter 3) and to partially predict the relative change of
threshold with length, well number and temperature (see Chapter 4), a length-independent
contribution to the threshold current is required to account for changes in the gain with
cavity length. This is examined further in Chapter 5, with possible sources being non-
uniform carrier injection into the quantum wells and changes in lateral leakage current. For
the purposes of this chapter, the length independent current is left as an adjustable

parameter, [;=qtbn, where q is the electron charge, t is the active area thickness and b is the

carrier proportionality constant.

2.7 THEL-I CURVE

In this section the light output vs. current (L-I) characteristic of a free running
semiconductor laser will be reproduced. It is stressed that the following is not being
submitted as evidence that the model is an accurate description of the laser, since at this
point no quantitative evidence has been offered that the numerous adjustable parameters
introduced so far have any physical significance. The purpose of this section is merely to
show that L-I curves with appropriate shapes, threshold currents, efficiencies, and output
powers can be calculated. The real test of a theory lies in the ability to describe changes in
the L-I curve under different design and operating conditions, as will be done in later

chapters.

From Section 2.6, the current density passing through the laser contact, J, can be

written as a function of carrier density given by
I= qt(aspn +a,n+bn/(wL)+ fs,) (2.41)

where a,, and a, are the coefficients of the spontaneous emission and non-radiative

recombination rates, respectively, T is the average rate of stimulated recombination per



Chapter Two - Theoretical Foundations 40

unit volume, b is the constant for the length-independent current discussed in Section 2.6,
q is the electron charge, w is the ridge width, and L is the cavity length as before.

The parameter a,, once chosen, can be related to peak of the spontaneous emission
curve at any carrier density. The spontaneous emission power of each mode is converted
to a quantum rate by dividing (2.36) by the quantum energy of the mode, hv,,. This rate is
then summed over all significant modes and divided by the lateral width and transverse

thickness of the active region, to give the quantum rate per unit volume, which is equal to

agpn. Inequation form,

_ A, nwt 5 42
Upo =~ . (2.42)
> (1+0.012m)/ hv,,
m=-M

The range of modes that contribute significantly the total emission rate is given by M.

The parameter T can be calculated by integrating the modal stimulated emission
power per unit length in both directions over the length of the cavity, dividing by the
photon energy of the mode, summing over all modes, and finally dividing by L to get the

average:

R T L T I S 0n b-
Pl Y __{Jo B, P" (2)z+ jLBum(z)dz}. (2.43)
Lm:-thm

For the power distribution with equal facet reflectivities given by (2.31), (2.43)

becomes
20M 1
F, == — | B_P? (zMdz
¥ Lm—_-z—’M th IO " m( )d
7 M u. L
==Y 1 [Pm-y“’ i }B—m (2.44)
Lm:-M th 2 gm

where P, is the output power of the m” mode given by (2.31). There is an assumption

required in applying (2.44). Although the relationship between B, and g, is known from
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(2.39) if oyga and oy are known, this is not true for other values of m. A spectrum for
the ner gain is given by (2.35), but this is the result of combined spectra of B, and oy, ;
neither is known individually. In later chapters, this will not be a problem since either gn
or B, will be the quantities of concern. For the purposes of this section and the sake of
simplicity, however, it will be assumed that B, , Oygam and 0y, all have the same
spectrum given by (2.35). The result of this assumption is that the spectral information in

the ratio B, / g, cancels, and (2.43) can be written

M Uy, L
=By L[pm_ﬁu&] , (2.45)
goL m=—m hvy, 2

Under high loss conditions (both B, and g, negative and P_ < YU,/ 2), Ty can become
negative. In this situation, |F,,] is the rate of absorption transitions across the bandgap.

We are now in a position to illustrate the light output and gain as a function of

current. The method is as follows:

1. Step the carrier density to the next value, or choose a start value if this is the

first iteration.

!\)

Calculate the associated peak net gain using (2.39), and determine the net gain

and spontaneous emission for the remainder of the modes using (2.35), (2.36)

and (2.42).

3. Calculate the single facet output power for each of the modes using (2.31) and
the total output power by the sum over all modes.

4. Calculate the current density using (2.45) and (2.41). The current can be

obtained by multiplying J by wL.

5. Repeat the above steps as necessary.
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For convenience, the equations used in the above algorithm are summarized with

the corresponding step number.

l. Choose n
2. go =IBln(n/ng)-Im-a, (2.39)
Em = 8o(1+0.010m - 0.0025m?) (2.35)
a..nwt
usp,O = M 2 (242)
> (1+0.012m)/ hv,,
m=~M
Upm = Ugo(l+0.012m) (2.36)
3. p, = tenten (ZR)Cn -1 (231)
2 gm(l - RGm)
M
POU! = XPm
m=-M
M u, L
4, t, = 2By L P _Yolon® (2.45)
gOL m=-M th 2
J=qt(agn+a,n+bn/(WL)+7,) (2.41)

The adjustable input parameters are B, v, n,, O, Yepr d5pr 3, and b, and the design
parameters are I', L, t and w. Even for this simple model there is a large number of
parameters (eight) which can be adjusted to give agreement with experimental results. It is
for this reason that the following is considered a numerical example for illustration only.
L-I curves with appropriate thresholds, efficiencies, output powers, and associated
properties such as gain saturation can be reproduced for reasonable values of the input
parameters. Models are often put forward which agree with experiment remarkably well,

but little discussion of the number input parameters or corresponding confidence intervals

is offered. This is usually because the output of the model is sensitive enough to the input
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parameters that nearly any experimental result can be explained by judiciously altering the
values. In such cases taking the match between experiment and theory as verification of the
theory is highly suspect. In later chapters, specific aspects of the model are used to
characterize lasers and frank discussions of confidence intervals and degrees of freedom are
given.

L-I curves produced by the model for a 7 quantum well device are shown in Fig.
2.9. The input parameters were kept constant, except for the length, and are summarized
in Table 2.2. Sources for comparison of the values used are included in the Table. All
parameters are within reasonable proximity of published experimental values. Also shown
in Figure 2.9 are experimentally measured L-I curves for devices with the same cavity
lengths and well number. It can be seen that, once the input parameters are fixed, the

variation in the threshold current and above-threshold efficiency are faithfully reproduced.

12 Experiment —
O  Theory

10 [ ]
_ | 250 um ©
2 g 375um
g | 500 um )
o - 750 um
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2 i
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5 47
3 .

2 -

0 [ :

0 70 80

Figure 2.9 - Experimental and theoretical L-I curves for a seven quantum well laser at
20°C. The theoretical points above threshold have a non-constant spacing because of the
computer algorithm used to search for valid points near the high gain limit.
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Parameter Value Units Comments
B, 8904 cm'  measured directly; see chapter 3
™, 333 cm’ measured directly; see chapter 3
oy 1.6 cm’ measured directly; see chapter 3
n, 2x10" cm’  measured value of 2.5x 10" in [16]
a,, 10° s combined sp and nr value of 5x10% in [19]
a, 6.5x10* s see above
b 8000 cm’s’  see section 2.6 for discussion
Yo 2x10° natural  values range from 10™ to 10°%; see for example [2]
r 0.0336 natural  calculated; see chapter 3
t 7x3.5=24.5 nm physical value of device used for experiment
w 2 pm physical value of device used for experiment

Table 2.2 - Values of input parameters used in producing the theoretical L-I curves in
Fig. 2.9.

2.8 GAIN SATURATION

When the laser is above threshold, the modal gain is close to the high gain limit in
Fig. 2.5; 1. e,,

g=In(1/R)/L-9%

where  is small. The increase in output power is driven by a decrease in §. Since the
change in carrier density required to produce these changes is also small, all carrier-density-
dependent processes in the wells such as spontaneous emission and non-radiative
recombination are essentially clamped at the threshold value. Due to the high power

density in the cavity, carriers that make it into the wells are immediately stimulated to
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recombine radiatively and do not contribute to an increase in the gain. Thus, as the current
density increases above threshold, the gain vs. current density curve saturates and becomes

constant, as depicted in Fig. 2.10 for a 7 quantum well, 500 um device calculated using the

model in Section 2.7.
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Figure 2.10 - Net modal gain as a function of current density for a 7 well, SO0 um device,

as calculated from the model in Section 2.7. The gain curve saturates at the threshold
current density.

2.9 THE ABOVE-THRESHOLD SPECTRAL LINE
In Section 2.2, it was found that the finesse of the laser cavity is determined by the
product of the reflectivity and single-pass gain. The coefficient of finesse, 3, is given by

_ 4RG
I-RG

where R = w/ R;R, . When RG is close to unity, as is the case above threshold, the finesse
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is very high. In this section, the spectrum of a single mode near the high-gain limit is

investigated.
The output spectrum of a laser was found to be

V) = TspUsp (VI(1 = Ry J(G(V) = 1)(1+ R G(V))

P (V) = : i .
28(V)|(1 - RG(V))’ + 4RG(V)sin (T / Vegg )|

(2.17

out
Let v, be the centre of lasing resonance m (i. e. - Vo / Vgsg =m). For frequencies near
this resonance, sin(f(V - Vy)/ Vgsg ) = TV = V) / Vgg and (2.17) becomes

1-R, (G, - 1)(1+R,G
Pou((V)-*- Yspusp.m( -)( m )( + i m)

. (2.46)
4RG, n* (V—V,)

(1-RG,)"  Vese

28, (1-RG, )| 1+

which is a Lorentzian function of frequency with a full width at half maximum (FWHM),
Av, of

Av = Q-'n—m% . (2.47)

Equation (2.47) can be made somewhat more meaningful with the help of a few
substitutions. The RG under the radical can be eliminated in the limit as RG — 1. With

the help of (2.31), the factor of (1-RG) in the numerator can be solved for in terms of the

output power of that mode:

([—RG )___ YSPUSP-m (I—RZ)(Gm ~ l)
" 2 g P
m* m

(2.48)

where the facet number 2 (at z=L) has been designated as the output facet. Substitution of

(2.48) and Vg =c/ 2ngL into (2.47) gives

_ YspUsp (L =R NG, = 1)c
2ng,n,LP,

Av

(2.49)
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n, is the modal group index defined by n, =k/k,. Since this is the lasing resonance,

gn=In(1/R)/L and G =1/R,

cKy..u
Av= oTsolsp (2.50)
2mn, P,

where

o U-RoJI-VRE,)
YRR, In(1/{R/R;)
Equation (2.50) exhibits the inverse power dependence obtained in other treatments [21].
The derivation given here is very simple. It does not include noise in the centre frequency
V, due to refractive index fluctuations, which can act to broaden the linewidth [21].

A number of factors can be modified to reduce the linewidth at a constant output
power. Lowering the fraction of spontaneous emission coupled into the mode, Yy and
reducing ug, , by lowering the carrier density required to reach threshold are two
examples. The threshold carrier density can be lowered by increasing the length of the
device, increasing the reflectivity of the facets, or by engineering the band structure to
improve the amount of gain at a given carrier density. A further reduction can be realized in
the K factor. Figure 2.11 shows a plot of K. For typical as-cleaved facets, the reflectivity
is about R =0.3 which gives K = 1.4. If the facets are coated to have a reflectivity of
R=0.9, K is reduced to 0.11, which amounts to over a factor of 10 reduction in
linewidth. Often, for high power devices, the output facet is left as-cleaved and the other
coated for high reflectivity. In this case, a much smaller reduction in linewidth is expected

between R, =0.3 and R; =0.9, as shown in Figure 2.11.
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As Cleaved Reflectivity

0.2 0.4 0.6 0.8 !

Figure 2.11 - The K factor in (2.49) plotted as a function of reflectivity. One case is for
identical facet reflectivities, the other for one facet fixed at the as-cleaved value of 0.3.
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CHAPTER THREE

QUANTUM EFFICIENCY AND OPTICAL LOSS’

3.0 INTRODUCTION

HE slope of the L-I curve above threshold is of interest from a practical standpoint
since an increase in this slope means a higher output power can be obtained for a
lower rate of current flow. This is especially important in applications where CW operation
with a minimum of current consumption is desired, such as high-power externally
modulated sources for use as transmitters in optical fibre communications systems.
Measuring the slope as a function of length can be used to obtain the optical losses, and, as
will be seen, the variations in the slope as a function of well number provides further
insight into the gain and inter-valence band absorption.
It is convenient to introduce a unitless quantity to represent the slope. The

differential quantum efficiency, m,, (also sometimes called the external quantum

efficiency), is defined as

"The majority of this chapter has been published in [1]
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My =—— (3.1)

where P is the power output of one facet, I is the input current, and hv is the photon
energy in the lasing mode. The factor of 2 is included to account for light leaving both
facets. The cavity is assumed symmetric.

In Section 3.1, an expression for n, is derived from the power equations of
Chapter 2. The remainder of this chapter is dedicated to a large-scale study of multi-
quantum well lasers, where the number of wells, length, and temperature are systematically
altered. Section 3.2 contains a description of the devices and the experimental apparatus

used to measure the L-I characteristics. A detailed analysis of the results is given in Section

3.3. and a discussion of the results is provided in Section 3.4.

3.1 DIFFERENTIAL QUANTUM EFFICIENCY

It is useful for characterization purposes to derive a formula for 1, in terms of the

internal quantum efficiency, 1, which is defined as

_2qdP,

= T

(3.2)

where P, is the power traveling in one direction produced inside the cavity by the lasing
mode. The maximum possible value of 1 is unity, which means that as the rate of carrier
injection is increased, the rate of photon production increases by the same amount.
Because the carrier density is clamped above threshold, spontaneous emission from the
cavity and non-radiative processes do not contribute directly to 1), (they would, of course,
contribute if T; were defined as proportional to P,, /[ instead of being a differential
quantity). ~ Stimulated emission is considered to be coupled into the cavity with
approximately 100% efficiency [2]. Therefore, the only contribution to a non-unity T is

leakage around the active area, either laterally outside the ridge or transversally, without
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being captured by the quantum wells.

From (3.1) and (3.2)

dP/d
Ny = 5

=1 33
NP7 dg (3:3)

where g is the net modal gain.

The power produced inside the cavity will be the sum of the contributions from

stimulated and spontaneous emission along the length of the cavity,

u
P,= L:‘[BP*(Z)+Y—SP2i}dz (3.4)

where P*(z) is given by (2.32a), B is the modal gain (excluding losses), and Yoplsp / 2 18
the spontaneous emission in one direction coupled into the mode, as defined in Chapter 2.
The mode number subscript, m, has been dropped from the notation. It is recognized that
only the lasing mode is being considered since the non-lasing modes should be essentially
clamped by the constant carrier density. Performing the integration in (3.4) gives
Pm=5p+ﬁiﬁ£®—§] (3.5)
g 2 g
where (2.31) has been used to identify P. The fact that the spontaneous emission and the

gain are only changing by small amounts above threshold is used to note that

dP d[B]
—>>——|,
dg dg|lg

dP > dYsp usp

dg dg

’

so that the derivative of (3.5) becomes

@b, _BdP

n

(3.6)
dg gdg

which, upon substitution into (3.3) yields
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nd=ni (37)

£
B
Since B =g+ o, where o is the loss coefficient as discussed in Chapter 2, and g can now

be approximated by the high gain value of g=1In(1/R)/L, the end result of this section

can be written by inverting (3.7),

L
Tonpl e 3.8
K n.[ In(1/R) 5-8)

Equation (3.8) will be used in the analysis that follows.

3.2 EXPERIMENT

Variations in 1, with thickness and composition of the graded-index region
surrounding the active region have been observed in a variety of devices [3]-[5]. An
anomalous length dependence of 7;' containing a minimum that shifts with well number in
MQW lasers [6], [7] and with active volume in bulk double heterostructure lasers [8] has
been attributed to inter-valence band absorption (IVBA) in the barrier regions in the former
case [7], while the latter has been analyzed using a detailed numerical model including
several mechanisms such as Auger recombination, leakage over the heterobarrier, free
carrier absorption, and radiative recombination in the guiding layers [9]. The temperature
dependence of m, has similarly been modeled and attributed to increased thermal
broadening of the gain spectrum due to changes in the momentum relaxation rate [10].

In this and the remaining sections, a systematic empirical investigation of the
length, well number, and temperature dependence of T, in strained InGaAsP/InP MQW
lasers operating at 1.3 pum is presented. The devices studied in this investigation are

multiquantum well (MQW) ridge waveguide lasers operating at 1.3 pum with the flat-band
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structure in the transverse direction given in Fig. 3.1. The wells were 0.7% compressively
strained and contained in a stepped separate confinement heterostructure (SSCH). Seven
structures were grown by low-pressure metalorganic vapor phase epitaxy (LP-MOVPE) on
(100) oriented S-doped n-type InP substrates with well numbers ranging from 5 to 14.
The SSCH region was varied in width from 80 to 40 nm on the n and p sides to maintain a
more constant total core region width. Lasers were processed with 2 um ridges, cleaved to
five lengths of 250 um to 1000 pum, and mounted on SiC/copper block heat sinks which in
turn were mounted on alumina substrates. An average of five devices at each length and
well number were prepared so that devices with outlying characteristics could be
reasonably discarded, which accounted for about 20% of the 175 laser set. Figure 3.2 is a
summary of the lasers in the set.

CW L-I measurements were made on all device structures with heat sink
temperatures ranging from -50 to 90°C. Careful calibration of the photodetector was
required for accurate determination of 1,. The peak wavelength of each laser spectrum
was measured and the L-I signal was corrected for the wavelength-dependent responsivity
of the detector. This was critical since, at the emission wavelength of the devices, the
detector response can change by as much as 10% for only a 1.5% change in wavelength,
which can easily occur should the device length and temperature change. Measurements
were taken at a pressure of < 20 mTorr to prevent moisture condensation at low
temperatures. The laser facet was situated ~ 2 mm from the large area anti-reflection coated
SiGe detector.

The efficiency was extracted from the slopes of the above-threshold linear regions
of the L-I curves. Plots of 13 vs. L at -50°C and 20°C are given in Figs. 3.3a and 3.3b,
and demonstrate the expected linear length dependence. At higher temperatures and lower

well numbers, however, 1;' exhibits a non-linear length behaviour with a minimum which
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0.7% Compressively Strained MQW SSCH
Ridge Waveguide Lasers at 1.3 pm
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|
5 identical lasers of each length

7 Well Numbers x 5 Lengths x 5 lasers = 175 lasers total

Figure 3.2 - Summary of the devices under study.
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Figure 3.3 - Observed reciprocal differential quantum efficiency as a function of length.
(a) -50°C and (b) 20°C are shown with the lines representing numerical fits from the model
in Section 3.3. The fitted curves are extrapolated to low lengths and terminate where lasing

theoretically ceases. (c) shows the anomalous length behaviour at 80°C for various well
numbers with lines provided as guides to the eye.
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Figure 3.4 - Observed reciprocal of the differential external efficiency as a function of

well number for (a) 20°C with the lines representing numerical fits and (b) 80°C where the
lines are guides to the eye.
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Well Number

Length (um)

Temperature (°C)

Figure 3.5 - Schematic representation of parameter space. The shaded regions indicate
lasers which exhibited normal behaviour. Notches missing from the cube at high

temperature, low length, and low well number indicate anomalous regions. n;‘ values at
all (Ny, L) below 40°C fell in the normal regime.

shifts with well number as shown in Fig. 3.3c for 80°C. Figure 3.4 shows that the
corresponding dependence of m;' on well number, Ny, is similarly linear at low
temperatures and non-linear at higher temperatures and lower lengths.

The behaviour of 1, can be divided into two regimes: a normal region, where ;'
falls on a straight line as a function of Ny, and L (hereafter referred to by the co-ordinates
(Nw, L)), and an anomalous region where the (N, L) dependence of m;' deviates
significantly from linearity. Figure 3.5 illustrates the division of the three-dimensional
parameter space of (Ny,, L, T), where T is the heat sink temperature, into normal and

anomalous efficiency regimes for the devices under study.
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The standard method [2] for obtaining the loss coefficient in the normal regime at a
given well number and temperature is by graphing m;' vs. L and dividing the slope,
n;'a/ In(1/ R), by the observed intercept, n;', and multiplying by In(1/R) where here R
=0.3 is assumed (see (3.8)). It will be shown in Section 3.3 that the observed value of n,
is not necessarily an accurate measure of the internal efficiency when the loss coefficient
has an implicit length dependence. The reciprocal of the intercept for this laser set varies
between 0.9 and 0.7 over the normal regime. Figure 3.6 contains a plot of the o obtained
by this method as a function of well number for a variety of temperatures. As the
temperature increases the optical loss per well increases. However, the intercept at
Ny =0 decreases with temperature and in fact becomes significantly negative at higher T.
If the Ny, dependence of o were caused by increased scattering losses at the additional

interfaces introduced by added well and barrier layers, then the intercept would represent
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Figure 3.6 - The measured optical loss coefficient at -50°C, 20°C and 40°C. The intercept

decreases with temperature. Note the negative intercept at 40°C which cannot be easily
explained by scattering at the hetero-interfaces.
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the residual losses. The fact that the intercept decreases and becomes negative implies that

interfacial scattering losses cannot fully explain this behaviour.

3.3 ANALYSIS

Equation (3.8) for the differential efficiency is valid to zeroth order in &, as defined
in Section 2.8. Since & is changing above threshold, it can be assumed that as long as the
L-I characteristic above threshold is linear and the gain is constant along the length of the
cavity, the contribution of first and higher-order terms are insignificant since the external
efficiency would then be changing with drive current. Any deviation from a linear length
dependence or a non-constant dependence on well number must therefore be due to implicit
variations of 1; and « rather than a departure from (3.8) itself.

In light of the above observations and those in Section 3.2, a phenomenological
model which includes inter-valence band absorption (IVBA) in the quantum wells is
presented in Section 3.3.1. IVBA is the absorption of a photon resulting in a promotion of
an electron from the split-off band to the heavy-hole or light hole band. It will be shown
that the normal differential quantum efficiency can be accurately described with a minimum
of fitting parameters by considering only the gain/loss contribution to 1, while keeping the
internal efficiency constant. The apparent value of 1), given by the intercept of the n3' vs.
L graph will appear to change due to the length dependence of the [VBA. Although it has
been suggested that [VBA is also responsible for the anomalous behaviour [7], it will be
shown that this hypothesis is not quantitatively consistent with the analysis in the normal

regime, so that changes in 1, becoming non-negligible must be partly responsible for the

behaviour in the anomalous regime.
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3.3.1 Inter-Valence Band Absorption

Inter-Valence Band Absorption (IVBA) is the absorption of a photon due to an
electronic transition from the split-off band into holes in the heavy-hole band, as depicted in
Fig. 3.7. The first investigation of [VBA as a mechanism for the temperature dependence
of the optical losses in semiconductor lasers was by Adams et. al. [11]. A discussion is
given in that reference about various possible mechanisms, including electron transitions
from the conduction band minimum to higher minima, impurity-conduction band
transitions, valence band transitions corresponding to these, and free carrier absorption due

to plasma effects. The conclusion reached in [11] and invoked here is that [VBA is

dominant.

Conduction
Band

Emission

VU W

Heavy-Hole
Band

IVBA
Split-off
Band

Figure 3.7 -Schematic diagram of the band structure indicating absorption via [VBA.

3.3.2 IVBA Model

In Section 2.6, the losses, o, were written as the sum of the contributions of [VBA

and carrier-independent residual losses. At threshold this can be expressed as
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oy =I'my +a,. (3.9)
Above threshold, the gain can be approximated by its value at the high-gain limit,
8m = In(1/R)/ L, making the threshold condition:
gn =(B-a),.
[Bin(ny /ng)-Tymy, -0, =In(1/R)/L. (3.10)

In Chapter 2, it was assumed that IVBA in the wells is dominant. However, there
is actually some uncertainty as to whether [VBA in the well, barrier, or cladding regions is
dominant and, hence, what value should be associated with the confinement factor and
carrier density IVBA loss term in (3.9) and (3.10). IVBA in the cladding (outside the
SSCH) is excluded from consideration since the carrier density in this region is expected to
change with current and, if significant, would result in increasing [VBA losses and a non-
linear L-I curve. Measurements in unstrained and strained MQW lasers [12] indicate that
IVBA is suppressed in some compressively strained materials, while theoretical
calculations [13] indicate that IVBA is dependent on the specific band structure and may, in
fact, increase with compressive strain under certain conditions. This would suggest that
the IVBA in both barrier and well states should be considered. Figure 3.8 is a plot of the
results of cold cavity calculations of the optical confinement factor of the wells (T, ) and
barriers (I'g) using the effective index [2] and transfer matrix method [14]. The
calculation reveals that I is not a steadily increasing function of well number, because of
the variation in the size of the stepped region. However, from Fig. 3.6 it is known that the
losses vary linearly with well number. If IVBA is the source of the variation in losses, it

must be present predominately in the wells, since only I',, exhibits the appropriate linear

dependence on well number, 'y, = CNy,, with C =0.0048.
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Figure 3.8 -Cold cavity calculations of the confinement factors in the well and barrier
regions. The well confinement factor increases approximately linearly with well number
(I'=0.0048 - N, ) while the barrier confinement factor decreases appreciably for seven and
eight wells.

3.3.3 Fitting Procedure

It was found that (3.8)-(3.10) could be used to describe the data in the normal
regime with the following three assumptions:

i) at-50°C, B is large enough that n,, has a negligible dependence on (Nw. L),

ii) the actual internal efficiency in the normal regime is independent of well number
and temperature, and

ii) &, represents the residual optical losses due to scattering in the cladding and
coupling into radiation modes, and is independent of well number and
temperature.

At -50°C, the internal efficiency as measured from the intercept of the m3' vs. L

graph for all well numbers is essentially the same, 1, =0.909+0.005. From assumption
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(i) this is taken to be the true value of the internal efficiency, unaffected by the length
dependence of [VBA losses. Since 1, for these lasers is constant from -50°C to -30°C, this
is a valid assumption, as will be discussed in Section 3.4.4. According to assumption (ii),
7 is fixed at this value for all well numbers and temperatures greater than -50°C in the
normal regime. Finally, if assumption (i) applies then the optical losses at -50°C can be
plotted as a function of well number with the intercept being the residual losses, Qy. Itis
found to have a value of @, =1.6 cm™ and is fixed at this value, according to assumption
(iit).

Since the accuracy of the parameter values obtained from the fits depends upon the
validity of the assumptions, some further discussion is required. At each temperature, ;'
is a function of two variables, (N,,, L). In the normal regime, the description of the
variation of m3' with each variable requires the knowledge of a slope and an intercept. It is

therefore a bilinear surface which can be described in terms of a total of four independent

parameters a, b, c, d:

Ny =a+bN, +cL+dN L. (3.11)

With the above assumptions, however, the model is able to successfully describe all four
degrees of freedom of the normal efficiency with only two independent fitting parameters,
as will be shown below. Although additional parameters could be introduced to describe,
for example, changes in the internal efficiency with temperature due to leakage over the
hetero-barrier, the fact that these changes can be predicted by the other two fitting

parameters would have to be considered a coincidence. The principle of Occam’s razor® is

YQuia frustra fit per plura potest equaliter fieri per pauciona: It is vain to do by more what can equally done
by fewer. In other words, the explanation for an event which requires the least number of assumptions and
coincidences is the correct one. This argument is often used in the field of fundamental theoretical physics.
Although it is usually associated with Sir William of Occam, a 14" century philosopher, it had been
previously used by others including, most notably, Aristotle [15).
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applied by considering this a validation of the assumptions.

Although (3.10) will be used in the subsequent analysis, it is transcendental in n,
and its effect on (3.8) is not immediately obvious. It is instructive to approximate (3.10) so
that n,, can be solved for explicitly. This is done by assuming that § >> yn, and setting
o, to zero for clarity (it does not substantially alter the qualitative result). Solving for n,,
and using (3.9) and (3.10),

-l _ -l IH(I/R) L ) 3.12
Mg =M {1+Fyn0exp[ BTL ]ln(l/R)} (3.12)

Equation (3.12) depends linearly on length and well number when the exponent is small.
such as at long lengths, high well number, and high 3. When the length and well number
decrease, the exponent becomes significant and a sharp increase should be observed in ;'

For the purposes of the fit, (3.8)-(3.10) may be re-written as

-1 -1 aﬁXNw+a0
=7 |l +————=L |, 3.13
nd Tll [ ln(l/R) :l ( a)
1 l
N, In(X)-a,XN, - =—ln(—), 3.13b
a (X)—a, o =T R ( )
where

X=nm/n0,

a, =pC,

a3y =Mm,C

and 1; =0.909+0.005 and o, =1.6+0.1 cm™ are fixed at the -50°C values. X is the
threshold carrier density normalized by ny, and yn, is referred to as the scaled [IVBA
coefficient. Note that the constant C from the proportionality fit to the 'y, vs. Ny, plot of
Fig. 3.8 has been absorbed into the fitting parameters a, and a,.

The parameters a, and a, were fitted to the data using (3.13a) in the normal regime

at each temperature above -50°C using the least squares Marquardt method in two
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dimensions (N, L) and manual searches of parameter space [16] with R = 0.3. At each
iteration of the fit, (3.13b) was used to determine the magnitude of the scaled threshold
carrier density, X. The curves in Figs. 3.3a, 3.3b, and 3.4a represent the best fits and
terminate at low (N, L) where (3.13b) no longer has any roots. When the fits are
extrapolated into the anomalous efficiency regime, the exponential curling up described
qualitatively by (3.12) cannot explain the anomalous behaviour of the efficiency. Figure
3.9 contains plots of the gain and scaled [VBA coefficients as a function of heat-sink
temperature. Since the data used for the fits was obtained under CW conditions, changes
in the junction temperature with length and well number at a constant heat sink temperature
are possible. In the normal regime, this would require the temperature change due to
internal heating to be linear over a factor of four change in L and a factor of three change in
Nyw. This seems likely only for small changes in internal heating. The result would be an
over-estimation in the IVBA coefficient. It is recognized, however, that even if the junction
temperature does not change significantly with Ny, and L, it may be significantly higher
than the heat-sink temperature. Over the measured range of heat-sink temperatures, the
gain coefficient is found to vary by an order of magnitude, while the scaled IVBA
coefficient varies by a factor of about two. This supports the conclusion reached in [14]
that it is the temperature dependence of the gain rather than IVBA that primarily affects the
temperature sensitivity of InGaAsP/InP MQW lasers.

Although ny, and n, cannot be determined separately, the value X =n, /n, can
be found. Typical values obtained from the fits at 20°C ranged from 1.06 for (N,, L) =
(14, 1000 um) and 1.32 for (5, 250 um). At 80°C, ng / ny increased to 1.38 at (14,
1000 pm) and (5, 250 um) did not lase. The condition for lasing is discussed in Section
3.4.1. The optical losses due to IVBA are found to be 23.7+0.3 cm™ at (14, 1000 pum,
20°C), 10.6+0.1 cm™ at (5, 250 pm, 20°C), and 40.8+0.6 cm™ at (14, 1000 wm, 80°C).
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Figure 3.9 - B and yn, as a function of temperature obtained from fits to the data. The
magnitude of B below -20°C is too large to obtain reasonably accurate values and they are

omitted from the plot.
[VBA accounts for between 76% and 98% of the material losses in the measured parameter
space.

The anomalous efficiency has been analyzed as a function of length and attributed to
[VBA in the barriers caused by carriers overflowing from the wells but remaining in the
SSCH under high inversion conditions [5]. We model the barrier [VBA with a method
similar to [5]. To maintain an analytical expression, the carriers at the barrier are assumed

to be non-degenerate. The hole carrier concentration in the wells, ny,, is given by
E
Ny =IE:} Dy, f(E)dE (3.14)

where Ej the energy level of the barrier, and E,, the energy of the bottom of the QW
subband. f(E) and D, are the Fermi function and 2-D density of states for a single QW

subband, respectively:

4nm
Dy =——¥
Y hlL,
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1

(E-E)/KT '

f(E)=
l+e

where m,, is the effective mass in the well, L, is the well width, E, is the energy of the

Fermi level, and k is Boltzman's constant. Performing the integration of (3.14) gives

l+e-(Ew—Ef)/kT
ny = kTDy, ln[l+e'(EB‘Er)/kT . (3.15)
Similarly, the barrier concentration is
ng = j; DZE**f(E)dE (3.16)
where
312
D = 41t[2n,1°] :
h-
Using f(E) = e EE0V/¥T (3 16) becomes
ng = Dge™EB-EO/KT (3.17)

Equations (3.15) and (3.17) can be used to relate the well- and barrier- carrier

densities

enw/DwkT - l
ng =Dy

AE/KT _ .nw /DwkT (3.18)

€ €

where AE=E; —E,, is the valence band offset. If the barrier is non-degenerate and the

AE/KT nw /DwkT

well is degenerate, e >>e and (3.18) simplifies to

ng = Dge &/ (emw/OWkT _ 1), (3.19)
Also, if the IVBA in the barrier, a5, is assumed to be proportional to the hole density, then

it can be added to the expression for the total loss in (3.9) and expressed in terms of the

scaled threshold carrier density as

o =a,[e** 1] (3.20)
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with a; =yy;Dge ™" and a, =ny /DykT where vy, is the IVBA coefficient in the
barrier.  This was done for the data at 60°C and S wells. Values of
a, =0.0048-4580 =22.0 cm™ and a, =0.0048-431=2.07 cm" were obtained from the
7' data in the normal regime at this temperature as given by Fig. 3.9, and a, and a, were
used as fitting parameters. From the best fit shown in Fig. 3.10, it can be seen that it is not
possible to have high enough losses at the lower lengths to give the correct ;' and still
have a lasing device. Therefore, if [VBA in the barrier is included while accounting for

IVBA in the wells, the anomalous efficiency still cannot be quantitatively described. It is

concluded that in the anomalous regime, changes in 1, caused by changes in the leakage

currents must become significant.

)8 I —— [VBA in Wells Only N
A W [VBA in Wells and Barrier

1/m,
[3S]
(18]

1.8

—
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Figure 3.10 - Reciprocal differential efficiency extended to the anomalous regime of 5
wells at 60°C, with the values for B and yn, obtained from the normal regime at this

temperature. The solid line represents the best fit when IVBA in the barriers is added.
Both curves terminate at low lengths where lasing theoretically ceases.
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3.4 CONSEQUENCES OF IVBA

3.4.1 Minimum Lasing Condition

Equation (3.10) can be pictured as the intersection between a logarithmic gain curve
and a straight loss line as depicted schematically in Fig. 3.11. The intercept of the loss line
is determined by the mirror losses, o, =In(1/R)/L, and the residual losses a,. The
slope is given by the value of " y. As B decreases and the slope or intercept of the loss
line increases, a point will be reached where the loss line is tangent to the gain curve.
Lasing will not occur for any further decrease in gain or increase in loss. In
contradistinction, if the losses were a constant function of carrier density, then the two
curves would always cross unless some other mechanism interfered. The tangential
condition gives a locus of (I'y,, L) values at a given B and yn, that are the minimum

values required for lasing to occur. Of course, lasing may cease before this boundary due

to other effects.

Gain
%

slope = [y

Gain/Loss
BQ
+
K

'y

N Dy

Carrier Density

Figure 3.11 - Schematic representation of gain and losses as a function of carrier density in
the [VBA model.
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From (3.10) it can be shown that the gain curve and the loss line are tangential

when n, =B /y. Substitution into (3.10) gives the minimum lasing criterion:

' In(1/R)
of L) |
C'wB n\mo) 3 +a,

(3.21)

The contour obtained from (3.21) separating lasing from non-lasing values of (Ny,, L) for
the values of § and n, obtained from the normal regime at 90°C is shown in Fig. 3.12,
where Ty has been normalized to Ny, by the constant C. Lasers from this experiment
which did not lase are indicated by open circles, while the closed circles represent

successful lasing. In all cases, all of the identical lasers exhibited the same behaviour.

Lasing Condition (Theoretical)
O  Did Not Lase (Experimental)
® Lased (Experimental)

15
g
Z r
G :
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= -
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0 : L 1 L 1 L l L L L L L 1 1 | JENt A | L i :
0 200 400 600 800 1000 1200

Length (um)

Figure 3.12 - The minimum lasing condition. The solid line represents the theoretical
contour separating non-lasing devices on the low side and lasing devices on the high side.

Open circles represent lasers which failed to lase experimentally while the closed circles
represent successful lasing.
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3.4.2 Minimum in the Gain/Loss Reduction of m,

From Fig. 3.10, it can be seen that the IVBA model presented here predicts a
maximum T\, in (I'y,, L). Actual devices exhibit a maximum at (T',,, L) values somewhat
higher than this, as discussed in Section 3.3, due to changes in 1, becoming significant.
The maximum from gain and losses in the [VBA model cannot therefore be used to fully
optimize a laser design in this case, but may help to provide an estimate of the optimal
value, how it changes under various conditions, and to what extent 1, modifies it. The
partial derivative of (3.8) can be taken with respect to I',, with the help of (3.9) and (3.10)
to obtain the value of the optical confinement factor required to achieve a maximum in n, at

a given length,

1
o, +—In{l/R
> L (1/R)

Cpax = ) (3.22)
B-em,

Substituting (3.22) into (3.10) vyields a scaled threshold carrier density of

Dy / No|ry, =r,, =€. combining (3.22), (3.8) and (3.9) gives

Tl;llrw o =ni-l[[3_‘3+mo][l+aoL]. (3.23)

It can be seen from (3.23) that at [, the gain/loss component of the efficiency has

a length dependence due only to the scattering losses.

3.4.3 Physical Significance of the Measured 7,

The value of 1, measured using the standard method of extrapolating 7;' to zero length
will be affected by the length-dependent inter-valence band absorption losses. This can be
illustrated in closed form in the normal regime by approximating the logarithmic gain curve

by a linear function, TBln(ny, / ng)=I'B(n, —nj). Equation (3.10) can then be used to

solve for n,, similar to reference [1], to give
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0, = FywP'ng +a, -i-ln(l/ R)/L. (3.24)
Tw(B'-7v)
Combining (3.8)-(3.10) and (3.24), one obtains
a A
¢ =Ny|l+—4—L 3.25
Ny nlml: In(l/R) J ( a)
where
Nim =Ni(1=7/B"), (3.25b)
Oy =0, + My mg. (3.25¢)

From (3.25b) it can be seen that actual internal efficiency is underestimated unless
v/PB <<l.

Therefore, care must be taken when measuring T, to ensure that the design and
operating conditions are such that the intercept of ;' vs. L is not affected by [VBA losses.
From Fig. 3.9 it can be seen that g /P (and by inference Yy /P’) has a strong
temperature dependence. If the internal efficiency is measured at a few temperatures near
the temperature of interest, values of T Which are constant over the temperature range are
likely to have a small g /B’ and hence be an accurate reflection of n,. Otherwise, the

physical meaning of the parameter extracted is questionable.

3.5. CHAPTER SUMMARY

A study of external differential quantum efficiency and optical loss has been performed
where the three variable parameters of well number, length, and temperature were altered
systematically on otherwise similar devices. A phenomenological model based on widely
accepted expressions for gain and inter-valence band absorption and a constant internal
efficiency was used to successfully describe the linear variations of the reciprocal external

efficiency with well number and length with a minimum number of fitting parameters. This
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model predicts a minimum condition for lasing, a maximum in the gain/loss contribution to
the external efficiency as a function of well number and length at a given temperature, and a
potential to cause an underestimation of the measured internal efficiency. Quantitative
measurements of the gain coefficient, B, and scaled [VBA loss, Yn,, support the
conclusion that the gain has a higher temperature sensitivity than does [VBA.

The range over which the IVBA model accurately describes the external efficiency for
the devices measured was up to 40°C for fewer wells and shorter cavity lengths (~5 wells,
250 pm length) up to 90°C for more wells and longer cavities (> 8 wells, > 500 pm
length). It was found that points outside this normal region could be identified by their
anomalous behaviour in that their 1 ' values did not fall on a straight line when plotted as a
function of L. In this anomalous regime, the external efficiency could not be explained
entirely by the IVBA model, even when it was extended to include IVBA in the barrier
states within the SSCH. It is concluded that in the anomalous regime, the internal
efficiency must be changing non-negligibly due to increased current leakage out of the
SSCH and/or laterally outside the ridge. The uncertainty in input parameters required to
calculate the band structure under bias and the amount of scatter present in the anomalous

data in this study prevent any conclusive quantitative analysis of 7, in this regime.
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CHAPTER FOUR

TEMPERATURE SENSITIVITY OF THRESHOLD'

4.0 INTRODUCTION

HE temperature sensitivity of the threshold current has been the subject of a great
Tdeal of study (see [2] for a long list of references on the subject). The motivation
from the practical standpoint is the variability of environmental conditions when a laser
transmitter is placed in the field in an optical fibre network. Internal temperatures in a
module box can range from -40°C to 85°C. Presently, thermo-electric coolers are used in
the packaging of semiconductor lasers to stabilize the temperature. The coolers, associated
circuitry, and added power consumption all contribute to a significant increase in the cost of
the module. Aside from a deeper understanding of device physics, the ultimate goal of
these studies is to develop a laser which can be operated over a wide temperature range
without the need for actively controlling the temperature.

There have been a number of conflicting opinions as to the source of the highly

sensitive threshold current in InP-based lasers [2]. At the time of this writing, a consensus

"The majority of this chapter has been published in [1].
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appears to be forming in favour of a large temperature dependence of the gain (see Chapter
3 for further evidence supporting this hypothesis), although adherents to other
mechanisms, such as Auger recombination and hetero-barrier leakage, still exist.

In this chapter, the results of a large scale study of the temperature sensitivity of the
CW threshold current are presented. In Section 4.1, the method of characterization is

discussed. Experimental results are presented in Section 4.2 and analyzed in Section 4.3.

A summary of conclusions is given in Section 4.4.

4.1 CHARACTERIZATION METHODOLOGY

Traditionally, the temperature (T) dependence of the threshold current density, J,

)

has been described by the Pankove relation [3]

T/T
Jp=Jpe™ " 70 (4.1)

where J, is the threshold current density extrapolated to T=0 and T, is the temperature
sensitivity parameter. Equation (4.1) has the advantage that T, gives an intuitive feel for
the change of threshold current with temperature. A difficulty arises in actually using (4.1)
for characterizing lasers, however, since both J, and T, are typically functions of
temperature. This poses a problem for studies such as presented here which compare
devices with different structures over a wide temperature range. Dividing the temperature
range into arbitrary small segments over which T, is constant unnecessarily complicates
the analysis.

An alternative relationship for the temperature dependence of semiconductor lasers
has been derived from purely empirical considerations, and shown to be valid for a variety

of devices over a temperature range of -50°C to 100°C [2], [4]:

W _

DJn+l )
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which, upon integration becomes

—i/n
T =[5(Tm -T)] (4.3)

where n has been found to have a value near 1/2. The parameters n, D, and T,, arc
empirical parameters that are essentially independent of temperature, which makes

meaningful comparisons between different device structures much easier. A more

convenient form of (4.3) is

-5
T
I =JO[1_T——] 4.4)

max
where: J, is the low T extrapolation of the threshold current density; T, is the
temperature at which J, approaches infinity asymptotically when extrapolated to higher T,
and acts as a scaling factor for the temperature axis; and { (= 1/n) is a dimensionless
parameter describing the rapidity with which J, increases as the temperature approaches

Tomax, @ higher £ indicating a greater sensitivity at the same temperature ratio, T / Toax -

4.2 EXPERIMENT AND RESULTS

The devices studied in this investigation are the same as in Chapter 3 (see Fig. 3.2
for the summary of devices), and the CW L-I curves from Section 3.1 were used. The
threshold currents were obtained from linear fits to the above- and below-threshold
portions of the L-I curve. The current at which the extrapolations of the two curves met
was identified as threshold.

A three-parameter least-squares fit was used to determine the values of J,, ¢, and
Trax in (4.4) at each well number and length (again referred to by the parametric co-
ordinates (Ny, L)). The fit was carried out simultaneously for all devices with similar

(Ny, L) in order to get an average value for the fitting parameters, as well as an estimate of
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Figure 4.1 - Example of least squares fit of (4.4) to the threshold current data of
devices with (Ny,,L)=(8,500um). R is the correlation factor.

the expected device-to-device variation. An example of such a fit for the five devices with
(Nw, L) = (8, 500 pum) is shown in Fig. 4.1.

The variation of T, with well number and length is shown in Figs. 4.2a and
4.2b, respectively. It is observed in Fig. 4.2b that T, increases with length as has been
previously reported [4]. The N, dependence in Fig. 4.2a shows a similar trend, with
Trax increasing for larger well numbers but in a less systematic manner than for the cavity
length. Since devices with different well numbers are from different wafers and growth

runs, we attribute these erratic variations to small, uncontrollable variations in structure.
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The tendency of T to increase with Ny, and L is not surprising since larger well
numbers and lengths correspond to a lower threshold carrier density, which is usually
associated with better temperature performance. In Figs. 4.3, { is observed to increase
with increasing Ny, and L, which means that. for a given T/T,,, ratio. the temperature
sensitivity increases for longer lengths and higher well numbers, in contrast to the T,
trend. The reason for this is discussed in Section 4.3.

Plots of J, as a function of well number and length are shown in Figs. 4.4. The nearly
linear increase observed with well number is expected since more wells require
proportionally more current density through the ridge to maintain the same level of

inversion. The decrease with length can also be associated with a corresponding decrease

in threshold carrier density.

4.3 DISCUSSION
In Section 3.3.1, the net modal gain of a laser at threshold (g, ) was written as
gn =IBIn(ny /ny)-Tmy, -0y =In(1/R)/L . (4.5)

[f the carriers are not distributed evenly among the wells, the first two terms should ideally

be replaced with

N
IBin(ny /ng) > CB[Z In(n; / n, )]
i=l
'm, - I'my,

th

where n; is the carrier density in the i® well at threshold, and T, is the average carrier
density at threshold, and C is the confinement factor per well, as discussed in Chapter 3.
For the sake of simplicity this step is omitted and it is recognized that the n, in (4.5) is an

effective value.

In Section 2.6, the carrier density was related to the current by [see (2.40)]
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Jin = qt(any, + bn, +cnd,) . (4.6)

Equation (4.6) is often simplified to [S]-[7]

J, =B,gn; . (4.7)
[t is advantageous to maintain the simplicity of (4.7) while preserving as much as possible
the accuracy of (4.6). This is done by generalizing (4.7) to the power law expression:

J =kng, (4.8)
where k and & are constants. Equation (4.8) has two adjustable parameters compared with
one in (4.7) and, therefore, serves as a better approximation to the three-parameter
description in (4.6). A detailed discussion of the influence of different values of a,b,andc
on the power-law approximation, through its effect on the logarithmic gain-current density
relation, is given in [8].

The value of Cyn,, from the IVBA losses in (4.5) was estimated in Chapter 3 by
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Figure 4.5 - The dependence of (Cynu,)-l on temperature, as measured from the
differential quantum efficiency in Chapter 3. The lines are linear fits to the data.
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measurement of the slope efficiency of these lasers. Figure 4.5 illustrates the temperature
dependence of (Cyn, )™ for selected well numbers. In all cases, (Cwm,,)” decreases

linearly with temperature, and can be described by the equation

(C1my,)™ = [Ny, L) - SNy, L)T 4.9)

where I(Ny,,L) and S(N,,L) are the intercept and slope, respectively, and depend on well
number and length.

Measurements of ¥ have been reported and found to have only a weak temperature
dependence [9]. Furthermore, changes in C from the expected temperature dispersion of
the refractive indices [10] are small. It is therefore assumed that n, 1s primarily
responsible for the temperature behaviour of (Cyn, )™ in Fig. 4.5. By solving for n, in

(4.9) and substituting into (4.8), it can be shown that

g, _ T\
J, =k(Cy) | 1 -— (4.10
from which the T__, relation (4.4) is recovered with the identities
Iy =k(Cyb) ™, (4.11a)
T =1/S, (4.11b)
£=E. (4.11c)

Equations (4.11) are an interesting result since they state that T o IS determined by
the threshold carrier density given by the threshold gain condition in (4.5), while Cis
directly related to the J,, vs. n,, characteristic. However, direct experimental confirmation
of (4.11) with the data presented here is complicated by several factors. The k and £
parameters depend on the range over which n,, varies and, hence, the physical parameter
(Nw, L, or T) which is being changed. In addition, the method by which an effective n,
may be calculated for (4.5) is different than that calculated for (4.8), so that the n,

appearing in (4.5) and (4.8) do not have the same meaning when the carrier density is not
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uniform from well to well. In Chapter 3, fits to (4.5) were done simultaneously over all
well numbers and lengths at each temperature, introducing another kind of averaging since
any carrier non-uniformity at one ( Ny, L) would affect all measured values of (Cyn,, )_l at
that temperature. Nevertheless, a reasonable degree of correlation is found between the
ratio I/S calculated from the (Cyn, )"l values obtained from efficiency measurements on
these devices, and the T, values obtained by fits of the threshold current density to (4.4),
as expected from (4.11b).

The results of the two methods are plotted together in Figs. 4.6. The measured
T, values for 250 pm and 375 um devices in Fig. 4.6a agree well, differing by less than
10% from those predicted by I/S, and they display a similar well number and length
dependence. Devices with longer cavity lengths have a maximum of 20% difference, as
shown in Fig. 4.6b. Both the length dependence and slope of the data in Fig. 4.6b match
the prediction for Ny, < 12. However, the theoretical curves are shifted by about -25 K.
We believe this systematic deviation is due to factors not included in this simple model,
such as non-uniform carrier injection in the quantum wells. This idea is corroborated by
the T, values of the 12 and 14 well devices, which oppose the trend expected from the
theoretical prediction and the rest of the experimental data. Fig. 4.7 is a plot of predicted
vs. calculated T, values indicating a correlation between the model and experiment for
lower T, and increasing deviation for higher T, .

It should be noted that Fig. 4.6 represents a prediction of the temperature sensitivity
of the CW threshold current of these lasers over a wide range of well numbers, lengths and
temperatures based on measurements of the slope efficiency. The model used is simple and
includes no adjustable parameters. Predictions of T, are usually limited to small variations
in device design, limited temperature ranges, and are compared to experimental data with

the use of fitting parameters (see [2] for a large list of references). We believe that Fig. 4.6
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establishes a quantitative correlation between the temperature dependence of the slope
efficiency and the threshold current and suggest that further investigation of the
relationship, particularly with regards to the deviations noted above, may provide valuable
information on the root causes of the high temperature sensitivity of InP-based lasers.
Although € cannot be compared to independently measured parameters in a similar
fashion, it is interesting to calculate a rough typical value for { by matching J, and
oly, / dny, at threshold for the two different expressions for J » given by (4.6) and (4.8).
Using a=2.2x10% s/, b=8xI0"" cm’~!, c¢=1.3x10"® cmSs!, ng =2.9x10"% cm-}
[11] and eight quantum wells (t = 8 x 35 A = 280 A), a value of {=180 (and
k=8.5x107 A-cm™-cm™) is obtained, which is in the middle of our range. It is not
known how a, b, and ¢ change with Ny, and L, and reported values for these parameters
vary greatly [11]-[14]. The calculated value of § can easily vary over the observed range

of 1.1 to 2.4 for different values of n, or reasonable changes in a, b, and c. The value of
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n=1/2 previously observed [2] corresponds to the accuracy of the simplified expression

4.7.

In terms of the threshold carrier density, § will change as

d¢ _b2-§—cn,(6-8)
dn,  nj(a+bn, +cn}) (4.12)

which is negative for the typical values used above. This explains the observed counter-

intuitive increase of { with Ny, and L in Fig. 4.3, since the associated decrease in n,

increases (.

4.4 CHAPTER SUMMARY AND CONCLUSIONS

The threshold current density in strained MQW lasers has been empiricaily
characterized while systematically varying the well number and length. In order to
characterize the devices in such a way as to provide performance-related information, the
T e €quation was used. It was found that T, increased with well number and length, as
would be intuitively expected, but the exponential sensitivity parameter, {, increased in
opposition to expectations.

A carrier-density model was used to provide a phenomenological derivation of the T,
relation. The model gives meaning to { by relating it to the J, vs. n, curve, and explains
the observed n =1/2 and the changes in { with well number and length. T__ is shown
to be associated with gain and losses in the laser and can be related quantitatively to the
slope efficiency, establishing a connection between threshold and efficiency phenomena.
The separation of gain/loss and current temperature sensitivity parameters further increases
the utility of the T, relation. The T, relation is found to be valid as long as:

(1) ng varies linearly with temperature
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(2) J, varies over a small enough range that it can be adequately described by
Jm=kni
These conditions will not necessarily hold for all temperatures or for more esoteric devices.

However, it is remarkable that they are valid for a temperature range as wide as 150°C (-50

to 100°C) for all the devices studied to date, including bulk lasers [2], [4].
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CHAPTER FIVE

GAIN AND THRESHOLD'

5.0 INTRODUCTION

N Chapter 4, the temperature sensitivity of the threshold current was explored.
IAlthough the threshold currents for the entire parameter space of well number, length
and temperature can be completely specified by Trax(Nw,L), {(Ny,L) and J4(Ny,,L). it
is difficult to derive any physical insight or performance-related information at a specific
temperature from the T, of equation (4.4).

In this chapter,‘ the influence of gain in determining threshold at room temperature
(20°C) is studied in detail. The approximate logarithmic dependence of the gain on carrier
density between transparency and threshold is used, as has been done in previous chapters.
The logarithmic gain coefficient is determined by four independent methods: first-
principles theoretical calculation; the dependence of efficiency on length and well number;

the dependence of threshold current on length; and the below-threshold optical spectrum.

"Portions of this chapter will be subritted to [1]
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The latter one is the most direct and will be used as the standard to which the others will be

compared.

5.1 FIRST PRINCIPLES CALCULATION

The calculation of the gain coefficient in quantum well lasers first requires
knowledge of the material band structure and composition. Once the mole fractions in the
barrier and wells are known, the gain at the peak of the gain vs. wavelength curves can be
calculated for a range of carrier densities. Fitting a natural logarithm to the plot of the peak
gain vs. carrier density gives the logarithmic gain coefficient. In section 5. 1.1, the method
of calculating the energy levels in the quantum wells is introduced. In section 5. 1.2, the

band structure and composition for the devices under study are obtained. The gain

coefficient is derived in section 5.1.3.

5.1.1 Carrier Energy Levels Using the Transfer Matrix Method
The quantum well energy levels of carriers in the conduction and valence bands will
be calculated using the transfer matrix method (TMM) [2]. This method is widely used

both for carrier wavefunctions and calculation of the optical confinement factor, which is a

>
>
5
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=
E ki |k | ks ki | k[ ki kn-2 |kn.f kn
2 0 ——
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Figure 5.1 - Band diagram of N layers used in TMM calculation
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similar problem. It is presented here since the elements of the transfer matrix for the carrier
problem are not given explicitly in [2] and must be derived. The active region band
structure is assumed to be a flat, alternating series of wells and barriers with the first and
last barrier being infinite in width, as shown in Fig. 5.1. The envelope function and
parabolic band approximations are employed and effective masses are used for each layer
(31.

The general solution to the time-independent Schrodinger wave equation in the

section is a given by the sum of two counter-propagating waves:

\VJ = Ajekj(x—xi‘l) + Bjc—ki(x-xl'l) (5 l)
where
2m.
kj=i h_ZJ(E - VJ)
Xo =0,

X; are the positions of the hetero-interfaces as in Fig. 5.1, m; is the effective mass and V i
is the potential of the j" section, E is the energy of the carrier, and A j and B; are the
coefficients to be determined by boundary conditions.

At the interface between the j and j+1 sections, the following boundary

conditions hold [3]:

‘l’j(xj)=\|fj+l(xj+|) (5.2a)

1 3| __L 3y (5.2b)
my ox|_ my, ox |_
=Xy X=X;

From (5.1) and (5.2),

A, +B,, = Aje"i(“"’"‘) + Bje“‘f(""“) (5.3a)
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A =B, = A Tt (55 g KiMist ke -x,0) (5.3b)

Solving alternately for Aj, and By, in (5.3b) and substituting each in (5.3a),

expressions for A;,; and By, can be obtained in terms of the coefficients of the i™ layer,

k;m; (x;-x; kim. ) op(x -x,
Ay == A 120 el g 1o S bl ) (s )
2 kj,,lmj 2 ijmj
k;m, X,-x kimi, ) -k (x,-»
BjH:-l-Aj - T ekl l")w»llaj L4 T e lmtm) s )
2 Kjm; 2 Kjwim,

Equations (5.4) can be expressed more conveniently in a matrix form:

[A“'}: EJ‘[A’} (5.5)
Bju B, .

where t! is the 2x2 transfer matrix of the j* section. The elements of 1’ are

. k.m. -x

[{l=l e Ll ekx("x ) (5.6a)
2 kj.m;

t =< 1- it |oloyxp) (5.6b)
2 K, m;

tg’.l =l 1— kjmjﬂ ekl(‘j“j-l) (5.6¢)
2 kj.m,

tl, =l[1+kimj+' e lxr) (5.6d)
2 kj.m;

For bound solutions, the wavefunction must obey

lim {y,(x)} =0, (5.7a)
lim {yy(x)} =0 . (5.7b)

Depending on the sign of E~V j» the various k; are either purely imaginary or a negative
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real number. Equations (5.7) can therefore only be satisfied when

A =0, (5.8a)
By =0 . (5.8b)

and the energy, E, must be less than both V, and V.

Az g 5.9
B,| |B,| ©-9)

Repeated application of (5.5) to (5.9) gives

AN AN-12N=-2 2241 0
=t U C.tt
[ O :I Bl
Ax =T 0 5.10)
0] '|B ©

where T is the total transfer matrix. Equation (5.10) can only be satisfied if

From (5.8a) and (5.5),

T, =0 (5.11)
where T,, is the lower right-hand element of T.

The numerical approach is now straightforward: calculate the total transfer matrix
as in (5.10) by multiplying the matrices for each section given by (5.6), and keep adjusting
the energy E until Ty, vanishes. Although the elements in i are, in general, complex, Ta
will always be real for bound solutions. This simplifies the algorithm since it is more
efficient to search for zero crossings in T,, than searching for the zero minimum in T,s)-
The proof that T,, is real is tedious, so only a barrier-well-barrier section of the multi-layer
stack is treated below. The general proof is obtained by replacing the well layer with a
well-barrier-well series of layers.

Consider three layers taken out of the stack as shown in Fig. 5.2. In going from

the j tothe j+2 layer, two transfer matrices must be multiplied together,
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Figure 5.2 - A three-layer section of the multi-quantum-well material with propagation
constants and transfer matrices between sections indicated.

5 ’} ‘ ‘.[A]

ILC BT b ]
=t/ . (5.12)

[Bm B,

The bottom right-hand element of the combined t*'t/ matrix is
ty =[UM0] ) =i, + sk, (5.13)

which, from (5.6), can be expressed explicitly as

. Kinmj,, kjm,,, + KM, ek (R =xi) Ky (xy=x )
kj+2mj+l kj+lmj kj+2mj

+_1.[1+ kj*"lmj"'z + kjm.i“ + kjmj+2 e'ki*l(xi*l'xi)e"kj("j'xi-l) ) (5.14)
Kjpomy,,  kjm;  kj,,m,

Although nothing is known about the wavefunction outside these three layers, something

can be said about the propagation constants. For bound solutions, k j+1 1s purely imaginary

(see (5.1)). Similarly, k., and k; are real. Equation (5.14) can therefore be re-arranged

as
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ty, = l[l + kjmj*‘ }(ekiﬂ(‘lﬂ"‘j) + e‘kjﬂ("jfl"‘i))c"‘i(‘f'"rl)
4

+_1_( Kje1Mjy + kjmj,, ](e"m(‘jﬂ“j) _ e"‘iﬂ("j»l“"y))e"‘x("l“;—l)

kj+2mj+l kj+lmj

1+ k;m;, Re{e“m("jvl"‘j)e‘kj(‘r‘:-l)}
kj+2m'

_li[k#lmjﬂ +kjmj+l [m{ekm("m"‘;)e"‘l(";'"‘:—l)} (5.15)
2 kj+2mj+l kj+lmj

-~

with the round brackets in the first term being real and the round brackets in the second

term being purely imaginary, making t,, real.

5.1.2 Band Structure of the Devices Under Study

The band structure is calculated for the five quantum well lasers used in Chapter 3.
The composition of the well and barriers is not known and must be determined from the
wavelengths of the band-edge transitions. As shown in Fig. 3.1, the nominal transition
wavelength of the barrier material is 1.1 um. The nominal strain is 0.7% compressive in
the wells and the lasing wavelength is 1.3 um. This is enough information to determine the
x and y mole fractions of In,_ Ga,As P _,.

The empirically derived formula for the bandgap of a free-standing quaternary

material is [4]

E,(eV) =1.35+0.668x - 1.068y +0.758x* +0.078y>
-0.069xy —0.322x%y +0.03xy" . (5.16)
Lattice constants for quaternary material can be calculated by linear interpolation from the
constituent binaries. For a quaternary layer on an InP substrate with a fractional lattice

mismatch of €, the relationship between x and y is {4]
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_ 0.4182x — 5.8687¢
~ 0.189+0.0131x

(5.17)

where € is defined as

€=asub—a

asu.lb

a,p I the substrate lattice constant, and a is the material lattice constant. Equations (5.16)
and (5.17) can be used with € = 0 to solve for the mole fractions in the barrier which give a
transition wavelength of 1.1 um. These are found to be Xp = 0.14470 and y, =0.31600.
Solving for the mole fractions in the well requires an iterative search. After
guessing at an initial x,, y, is calculated using (5.17) with €=-0.007, which
corresponds to the assumed compressive strain of 0.7%. The mole fractions are then used

to determine the required material parameters using the linear interpolation formula
Q(%.y) = xyQguns + X(1=¥)Qgap + (1= X)YQups + (1= x)N1 = y)Qpp  (5.18)

where Q(x,y) is the quantity value in the quaternary, and Qy, is the quantity value of

the binary.

The band discontinuities are next calculated. The components contributing to the

calculation of the band discontinuities are labeled in Fig 5.3. In the presence of strain, the

; Conduction Band Valence Band
A T A A T
AE, AEy,
0.36
5 ¢ 0.64AE, AEhh}
_L_E ...... .E_t_(lB)SEhy Yy | : ::Z:“‘
v : . w f (1/3)851ly

Figure 5.3 - Conduction and valence band structure in the absence of quantum size effects.
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conduction (AE,), heavy hole ( AE,, ) and light hole (AE,;) band discontinuities are given
by [5]

AE, =0.36AE, ~ (2/3)3E,, , (5.19a)
AEy, =0.64AE, — (1/3)3E,, +(1/2)SE,,, (5.19b)

The discontinuities in the valence band are the absolute values of the differences, i. e. with
the energy scale inverted. AE, is the difference in bandgaps between the barrier and well

material as determined by (5.16), OE,, and OE, are the hydrostatic and shear

contributions, respectively, and are given by
8E,, =-2a'(l-cy, /c;)e (5.20a)
OEg, =-2b%(1+2¢c), /¢, )e (5.20b)
where a® and b? are the hydrostatic and shear deformation potentials, and ¢,; and c,, are
the stiffness coefficients, the values of which can be obtained from (5.18) using the binary
values listed in Table 5.1.

With the band discontinuities known, all that remains to be determined before the
energy levels can be calculated are the effective masses of each of the bands in the barriers
and quantum wells. The bands are assumed parabolic so that the effective masses are
constant and unaffected by strain. Under such conditions, the conduction band effective

mass can be determined by interpolating the binary values given in Table 5.1 with (5.18).

The heavy hole and light hole effective masses are

— My "
Tn = Y1 =27, 21
My
my, = 5.21b)
. Y1 +2Y, (

where m, is the electron rest mass, and Y, and Y, are the Luttinger parameters and are

also interpolated from binary values given in Table 5.1.
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Table 5.1 - Material parameters used to interpolate quaternary values from the
binaries. All values are taken from [6] except [MJ* which is from (3].

The TMM of Section 5.1.1 was applied to determine the lowest quantum well
energy levels in each band. Under compressive strain, the lowest level is always in the
heavy hole band. The mole fraction x,, was adjusted until the energy difference between
the lowest conduction band level and the lowest heavy hole level corresponded to an optical
wavelength of 1.3 um. The conduction band well was found to contain one energy level
(cl), the heavy hole well had two (hhi, hh2) and the light hole had one (lh1). A slight
coupling exists between the wells, causing a fine splitting of each of the levels into five
sub-levels. The amount of fine splitting was so small (< 5 meV between adjacent levels in
all cases) that it was ignored and the wells were approximated as being completely
uncoupled. With uncoupled wells, the above analysis applies equally well to the devices

with other numbers of quantum wells, 6-14. The mole fractions and energy levels are

listed in Table 5.2.
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Parameter Value

Xy, 0.18961

Vo 0.62667

AE, 68.783 meV

AE,, 195.19 meV

AE, 142.74 meV

E, 47.049 meV

cl fine splittings 2.24, 3.60, 4.64, 4.81 meV
Eini 38.239 meV

hhl fine splittings <0.01 meV

Epl 86.492 meV

Ih1 fine splittings 1.49, 2.22, 2.50, 2.04 meV
Eina 141.52 meV

hh2 fine splittings 0.010, 0.014, 0.014, 0.010 meV
B 19577cm™

€ 0.419

Table 5.2 - Parameters calculated for the devices under study. The quantum
well energy levels are measured from the bottom of the well and are the lowest
level of the fine splittings. The fine splittings are the differences between levels

starting from the lowest two. See Section 5.1.3 for the calculation of B and .

5.1.3 Theoretical Gain Coefficient
The theory of optical gain in semiconductors is well-established and will not be
described here in great detail. Ref. [3] contains a good overview with other references for

further reading. For the purposes of this calculation, only cl-hhl transitions will be
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considered. The overlap integral between the electron and hole wavefunctions is
approximated to unity. As mentioned earlier, the parabolic band approximation is used and
strict momentum conservation is invoked. With the average phase index of refraction
approximated by the group index. the gain. g(E,; ). of the laser as a function of transition
energy E,, is [7]

g(Eeh) =PI (5.22)
where B is the magnitude of the gain in units of inverse length and [ is a unitless integral
determined by the carrier density that is always bounded between -1 and 1, and is referred

to as the normalized gain. Explicitly, § is given by [3]

2 nq’m, M’
f= " mM

S (5.23)
heqemgL, Egn,

where q is the electron charge, h is Planck’s constant, ¢ is the speed of light in vacuum,
L, is the width of the well, &, is the permittivity of free space, my is the electron rest
mass, n, is the group index, E; is the band-edge transition energy (in contrast to E,,

which is the energy gap between the bottoms of the conduction and valence band wells).

m, is the reduced mass, defined as

m;' = my} +m' (5.24)
|M|2 is the magnitude squared of the transition matrix element and is interpolated from the
binary values given in Table I of ref. [3], with the exception of GaP which is calculated
from the k- p theory in [3]. The binary values are also listed in Table 5.1. For the devices
used in this study, B was found to have a value of B =19577 cm™.

The integral I is given by
(Ee) = L(Eg,) ®(f. - £, )E, / E,, (5.25)

where @ denotes convolution. L(E,,) is a Lorentzian broadening function which is used
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to account for the intraband relaxation of the carriers and is characterized by the intraband

relaxation time, T;,:

l hit
L(Ey) s ————i0 (5.26)
T Egh +(h/Tin)

f. and f, are the quasi-Fermi functions for electrons in the conduction and valence bands.

respectively, and are given by

1

f., = 5.27
cy l+ e(Ee.h ’Efc‘v )/kT ( )

where E¢, and Eq, are the quasi-Fermi levels in the conduction and valence bands, and E.
and E, are the electron and hole energies. The energy axis for (5.27) is increasing towards
the conduction band and decreasing towards the valence band.

For the purposes of this section, the quasi-Fermi levels are an intermediate step. To
obtain the gain coefficient, the carrier density must be calculated. As discussed in Chapter
3, the intrinsically doped quantum wells are assumed charge-neutral, so the electron and
hole densities are equal and evenly distributed among the wells. As will be seen, this
assumption is not necessarily true, and may be responsible for the measurement of
erroneous values for the gain coefficient when measured by the threshold method.

In calculating the carrier density, it is not clear whether only carriers in the state
participating in lasing action (the cl and hhl bands), or if the other levels, including the
unbound states above the wells, should also be included. A detailed analysis would
consider all carriers for processes such as non-radiative recombination through localized
defect states and Auger-assisted leakage over the hetero-barrier, but would consider
radiative recombination primarily from the c! and hhl bands. Such an analysis is beyond
the scope of this thesis. However, since measurements of the A, B, and C coefficients (see

Chapter 4) relating the carrier density to current include all states, the same is done in this
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calculation. In practice, the difference in the gain coefficient including all states and only cl

and hh1 states is within the error due to assumptions and accuracy in material parameters,

about 9%.
The electron density in the conduction band is given by the sum of carriers in cl
and those above the well:

n= j; Dycf (E)dE + j;c Dgcf . (EYIE (5.28)

where E | is energy of the bottom of the quantum well subband, E, is the energy of the

top of the quantum well, and Dy, and Dy are the 2-d density of states in the well and the

3-d density of states above the well:

m
D = ,C 5.29a)
we Th°L,, (
1 (2m_)"? ,
Dge = —| 2=< E-E, . 5.29b
BC 2n~( A2 ) te ( )

The first integral in (5.28) can be evaluated in closed form, the second requires numerical

integration. Equation (5.28) can be re-written as

312
- (Ege —E¢ /KT I (2m "~ (= Vxdx
n=KkTDy In(1+e®eEa )+F( - ) o [1oEeEomr - (5:30)

The valence band quasi-Fermi level can be similarly related to the carrier density.

The hhl, lhl and hh2 bands must all be accounted for, in addition to the unbound states

above the well:
n=p=Y [ Dyif,(E)ME + [ Dgyf,(E)E (5.31)

where i=hhl, Ihl, hh2 and the densities of states can be obtained from (5.29) by
replacing m_ with the appropriate effective mass and E. with E,,. In using (5.29b) and

(5.31) for the valence band, the energy scale must be inverted, i. e. the energy at the
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bottom of the valence band quantum well is lower than the top.

Using (5.25)-(5.31), plots of the normalized peak gain, I, as a function of carrier
density, I,(n), can be obtained by choosing a carrier density, searching for the
corresponding quasi-Fermi levels, calculating I as a function of E.,. and identifying the
maximum. Above transparency (Ip(n) > 0), the curve is well described by a logarithm, as

shown in Fig. 5.4,

[(n)=E&ln(n/ny) . (5.32)

0.5

Ip(n) = &ln(n/no) Aa/ea
0.4 & =0419 /g/g'
n, = 3.51x10" cm® &
0.3

yel

0.2 2

24

Normalized Gain, 1

3 4 5 6 7 8 9 10 11
Carrier Density (10'® cm™)
Figure 5.4 - Theoretical calculation of the normalized gain, I, as a function of carrier

density. The open circles are the calculated points, the solid line is a logarithmic fit to the
points.

5.2 EFFICIENCY CALCULATION
In Chapter 3, the variation in slope efficiency with well number was described by a

model based on inter-valence band absorption (IVBA). Although the model provided an
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economical explanation for the observed behaviour, it could not be considered as having
been proven. Results from Chapter 3 were used in Chapter 4 in calculating the temperature
sensitivity of the threshold current. The calculation was found to comelate with
experimental data, particularly for low well numbers.

The gain in the quantum wells, B, in Chapter 2 was given by

B=TBIn(n/ngy). (5.33)

By calculating the optical confinement factor and using the data in Chapter 3, it was found
that B =8900+1300cm™ at 20°C. The theoretical value calculated from the previous
section is B = BE = 8204 cm™', using B =19577cm™ and & =0.419. The efficiency value
is in reasonable agreement with theory, further validating the model of Chapter 3. The
calculation of I" could be a significant contributor to the difference, since carrier filling of
the bands, internal temperature variations, and gain guiding were not accounted for.
Uncertainties in the values of the material parameters used to calculate the gain are also a
possible culprit. Even if these problems were eliminated, however, a difference may still
exist due to non-uniform filling of the quantum wells, as will be discussed in Section 5.5.
It has been suggested that IVBA may have an impact on the effective gain

coefficient [7]. This can easily be calculated using the expression for the net gain, (2.39),
g=TBIn(n/ng)}-my(n/ny)~ay (5.34)
with B=8900cm™, yny=333cm™ and o, =1.6 cm™ from the 20°C measurements in
Chapter 3. Figure 5.5 is a comparison of net modal gain, g, with the gain term
Bin(n/ny,) as a function of n/n, for 5 and 14 wells. Despite the presence of linear and
constant terms in (5.34), g still maintains a logarithmic shape. The gain coefficient when

IVBA and o, are included is 8470 cm™ for both 5 and 14 wells, with the differences in

magnitude in Fig 5.5 caused by the change in T for the different well numbers. Therefore
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IVBA has only a small effect on the gain coefficient and, furthermore, is essentially

independent of well number.

500 _

[ | — - Gain Term Only ~
400 L | — — - Net Gain e

j 7

L 7~
£ 300 [ Py 14 Wells
] F -
g [ A
= 200 // _
i 7 — T -
L 7 - - 7
o b2 P 5 Wells
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0 EéL/L L i b 1 i
1 1.2 1.4 1.6 1.8 2 2.2 2.4
n/n

Figure 5.5 - Gain and net gain for the optical mode for 5 and 14 quantum wells. The
dots represent the calculated points and the dashed lines are logarithmic fits. The

logarithmic gain coefficient for both well numbers is 8900 cm™ when only QW gain is

considered and 8470 cm™ when IVBA and residual losses are included. The

transparency carrier density is modified by a factor of 1.04 for 5 wells and 1.03 for 14
wells.

5.3 THRESHOLD CALCULATION
One of the simplest and most commonly used methods of inferring the gain

coefficient is by examining the length dependence of the threshold current density. The

logarithmic dependence of the net gain on carrier density is written

g=IBIn(n/ny) (5.35)
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where B and n,, includes the effects of IVBA and residual losses, and, using the threshold

condition
gn=In(1/R)/L, (5.36)
(5.34) can be re-written
In(1/R)
Ny =Ny, exp{ FBL } (5.37)

To relate carrier density to current density, the approximate relationship of Chapter 4 can be

used,
J=LyNykn® . (5.38)
The thickness of the active region, LNy, has been written explicitly in (5.38)

Substitution of (5.37) into (5.38) gives

(5.39)

I'G,L
where
J, =Lykné
Go=B/C.
By plotting J;, as a function of L and assuming a value for R, ['G, can be obtained. The
gain coefficient of the current density, Gy, ultimately determines the threshold performance
of the laser, and is more useful as a figure of merit than B. Values will therefore be
compared by converting B to G, by assuming { = 2, rather than the other way around.
Figure 5.6 contains a plot of the threshold current density as a function of length for

the 5 quantum well devices. From a least squares fit to (5.39), it is found that

G, =47.5t1.1cm™ (threshold current method).

The corresponding values from theory and efficiency are
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Figure 5.6 - Threshold current density as a function of length (dots) used to obtain the gain
coefficient (fitting parameter a,) and transparency current density (fitting parameter a,).
The fit is given by the solid line. The dashed lines indicate the J,, values expected from the

direct gain measurements in Section 5.4.3. The % and correlation factor R for the fit are
also shown.

Gy = rBé /g
=0.0048-5-19577-0.419-0.952/2
=93.7cm™ (theoretical calculation),

IG,=TB/¢
=5-0.0048-8470/2
=102+ 15cm™ (efficiency method).

The extra factor of 0.952 in the theoretical calculation accounts for the reduction of the gain
coefficient due to IVBA, as calculated from efficiency measurements in Section 5.2. The B
used for the efficiency value includes [VBA.

It is evident from the above that the threshold current value of

Gy =47.5+1.1cm™ is significantly lower than the others, differing by a factor of about
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1/2. This cannot be accounted for by altering { in the theoretical calculation, since even a
rather high value such as {=2.5 still gives [Gy=75cm™, a significant difference.
Similar discrepancies have been noted in the literature (7], [8]. It is desirable to discover

the cause of the difference since it might lead to reduced threshold currents.

5.4 DIRECT MEASUREMENT

In order to reach an understanding of the discrepancy between the gain coefficient
obtained through the threshold method and those that were calculated theoretically and
inferred from the slope efficiency, below-threshold spectral measurements were undertaken
to measure the gain as a function of current density. It was discovered that both the gain
coefficient and the transparency current density have a significant length dependence which
gives misleading results when using the threshold method. In section 5.4.1 the
experimental details are given, in section 5.4.2 the method of analysis is given, and in

section 5.4.3 the results are presented and discussed.

5.4.1 Experimental Details

The lasers were placed on a copper stage thermally stabilized by a thermo-electric
cooler. Light from the laser output was collected, chopped and coupled into a 1/2-metre
double-pass monochromator. The monochromator output was imaged onto an InGaAs
detector connected to a lock-in amplifier which used the chopper signal as a reference. The
monochromator was scanned over a range of wavelengths with a step size typically on the
order of 0.08 A for various laser drive currents. A computer was used to drive all
mechanical and electrical components and to collect and record the signal from the lock-in

amplifier.

The lens system was designed to minimize the reflection of emitted light back in to
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Figure 5.7 - Schematic representation of the optical system used to couple light from the
laser into the monochromator.

the laser, which could cause a modification of the free-running spectrum, and yet still
collect a significant portion of the light. A schematic diagram of the lenses is given in Fig.
5.7. All lenses were anti-reflection coated for 1.3 pm wavelength. The collecting lens was
chosen to have a 50.8 mm diameter and a 62.9 mm focal length. An effort was made to
reduce the amount of spherically aberrant light entering the monochromator. An iris
aperture was placed between the laser and the first collecting lens to reduce the cone of light
entering the lens system. It was discovered through experimentation, however, that the
aperture was unnecessary when the monochromator entrance slit was closed to a narrow
enough width (< 10 um).

The second and third lenses along the beam path form a Galilean telescope system.
Aside from creating a small beam spot for chopping at the focal point, the width of the
collimated beam is reduced to less than half the original width. This is useful both for
reducing spherical aberration and introducing additional degrees of freedom permitting the
fine adjustment of the beam diameter striking the final lens. In this manner, optimal filling

of the monochromator grating is ensured. The final lens focuses the beam on the
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Figure 5.8 - Sample spectrum of a 5 well, 250 um laser.

monochromator entrance slit.

5.4.2 Method of Analysis [9]

A sample of the Fabry-Perot spectrum of a 5 well, 250 um laser is given in Fig.
5.8. The drive current is such that the single-pass gain (as defined in Chapter 2) is
approximately RG=0.5. Note the similarity between this spectrum and the theoretical
spectrum in Fig. 2.7. To obtain the gain, the ratio, p, between the integrated power in each
mode (from minimum to minimum) and the average of the minima on either side is

calculated. From Chapter 2 (equation (2.17)) the output spectral density for a symmetric

laser is

YU (1-R)(1+RG)G-1)

P (V)= > ——
oulV) 28 |(1-RG)’ +4RGsin*(9)]

(5.40)

where 8 =7v/ vggp. All variables have the same meaning as in Chapter 2, and G, g, and
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YspUsp have an implicit frequency dependence which is considered small over the span of

one mode. The minima of mode m occur when 8 =(m+1/2)x, so that

- Yspusp.m (l - R)(Gm - l)
28, (1+ RGm)

P

(5.4

min,m

The total power in each mode is given by integrating (5.40) with respect to frequency over

one mode (0 =-m/2 — m/2). Thisis given by (2.31) as

_ Yspusp.m (1 - R)(Gm - 1)

= 542
sum.m 2gm (1_ RGm) ( )
Therefore, the ratio is
pm = Psum.m / Pmm.m
_1+RG, (5.43)
1-RG,,
or, if the ratio is known, RG, is given by
RG, =PmZl (5.44)

Pm+1

The calculation of the gain of each mode can be accomplished by numerically integrating
the measured spectrum and dividing by the average of the minimum on each side of the
mode to determine p,,. Equation (5.44) can then be used to obtain RG,,.

A further refinement is required to account for the finite resolution of the
monochromator. Although the total power in one mode is constant, it will be convolved
with the response function of the monochromator. Power from the centre of the mode will
be shifted to the edges, increasing the minima. This can be corrected for by Taylor

expanding (5.40) about a minimum, to obtain the factor, F, by which it is increased [9]:

4RG | , . 4 4RG 1
F={l+ —2 |42 == ___ 5.45
{ +(1+RG)2[G o [(1+RG)2 3)]} ©43)
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where 6> and ¢* are the second and fourth moments of the response function,
respectively. Multiplying P, . by F™' will give the true value of RG when substituted
into (5.44). However, since the RG in (5.45) is also the true value, the correction must be
applied iteratively until it converges.

It is usually beneficial to average over several points at the minimum to reduce the
random error in P, .. Averaging is equivalent to convolving a box function the same
size as the averaging window with the spectrum. The systematic error due to averaging can
be corrected by convolving the box function with the monochromator response function
before calculating the moments for (5.45).

The monochromator response function was measured by biasing the laser above
threshold. Since the width of the lasing mode will be much less than the response
function, the spectrum of the mode will actually be the response function (i. e. - the
response function is effectively convolved with a delta-function at the centre of the mode).
The response function was measured each time a laser was placed in the measurement
apparatus, since the exact response function is alignment-dependent.

As the cavity length of the laser increases, the free spectral range, Vgsg =c¢/2n,L,
decreases and the effect of the monochromator response function becomes more severe.
As higher order terms than those given in (5.45) become significant, the iterative correction
will not converge to the actual value of RG. In order to quantify the expected error, a
typical response function was convolved with theoretical spectra having RG=0...1. The
mode sum/min method discussed above was then applied and the resulting RG was
compared to the original value. Figure 5.9 is a plot of the error as a function of RG for

various cavity lengths. Based on this plot, it is concluded that only lasers with L < 500um

incurred acceptable errors.
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Figure 5.9 - Expected percentage error in RG measurements as a function of
the actual RG value for various cavity lengths.

5.4.3 Results and Discussion

According to the standard theory used to derive (5.39) for the threshold current
density, a single gain curve parameterized by N, J « and I'G, will apply to lasers that have
varying length but are otherwise identical. The threshold current density varies because the
position of the mirror loss line, o, =In(1/R)/L, changes with L, as depicted in Fig.
5.10. Therefore, direct measurement of the g vs. J for devices with varying length should
yield curves that are collinear, merely saturating at different threshold gain values (see
Chapter 2 for a discussion of gain saturation).

Figure 5.11 is a plot of the experimentally measured gain curves for the 5 quantum
well structure in Chapter 3 at a heat sink temperature of 20°C, for cavity lengths of 250,

375, and 500 pm. It is evident that the curves have a significant dependence on length. In
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Figure 5.10 - Schematic diagram of the theoretically expected gain as a function of the
logarithm of the current density for two identical laser structures of different length. The
mirror loss, o, =Iin(l1/R)/ L changes, giving rise to changes in Jih-
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Figure 5.11 - Experimentally determined modal
current density for the 5 quantum well devices
dashed lines indicate threshold.

gain as a function of the logarithm of the
and three different cavity lengths. The
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" Device Lengih Nwly (A/cm?) [Gy (cm™)
250 um 1970 %10 90.1£15

375 um 1650 +8 74.4%1.6

500 um 1459 £3 69.9%1.0

J;» all lengths (Fig. 5.6) 1248 +22 47.5%1.1

Table 5.3 - Summary of gain coefficient and transparency current density values

measured directly, as well as those inferred trom the threshold current density of all
lengths.

addition to a change in the gain coefficient 'G, a large change in the transparency current
density can be seen. An interesting feature of Fig. 5.12 is that I'G, decreases with length
(i. €., it gets worse), while Ny, J, also decreases with length (i. e., it gets better). It is not
clear whether this is the result of two independent mechanisms at work, one which affects
the gain and one which affects the transparency current density, or whether a single

mechanism is invalidating one or more of the assumptions used to derive (5.39). The gain

coefficient for the 250 um device is

[G,=90.1£L5 cm™ (direct measurement)

which compares favourably to the theoretical calculation and the efficiency method in
Section 5.3. The values for the gain coefficient and transparency current density for the
devices measured are given in Table 5.3

To further illustrate the effect of the varying parameters, a hypothetical J, vs. L
curve was calculated for the I'G, and Ny J,. of each device using (5.39). The results are
shown as dashed lines in Fig. 5.6. It is surprising that even though the shape of the gain
curve changes with length, the same form of J, vs. L curve expected from (5.39) is still
obtained, albeit with different parametric values. The parameters ['Gy and Ny J, are
plotted as a function of length in Fig. 5.12. It is evident that both quantities change with L
in a similar manner. A function with an exponentiated reciprocal of L like (5.39) can be

used to describe the behaviour. Note that the fitting parameter a, has a value much closer
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Fig. 5.13 - Directly measured gain coefficient and transparency current density as

a function of length. The two quantities decrease with length in a manner similar to
that expected from the threshold current density.

to that calculated theoretically for I'G,. The error in the fits are not shown since two fitting
parameters were used for only three points.

One possible mechanism for the observed changes in the gain curve with length is a
change in the internal junction temperature of the laser. Although the heat sink was
maintained at 20°C, resistive heating due to current passing through the device can raise the
crystal temperature in the active region. Not only will different lengths have different
current densities, the change in physical dimensions may have an effect on the rate at which
heat is dissipated. An estimate of the temperature change for a unit change of the current
density was obtained experimentally.

When a laser is biased above threshold, one mode usually dominates in power, as
discussed in Section 2.5. In the absence of crystal defects, this will be the mode closest to

the wavelength peak of the gain curve. The position of the gain peak is a function of the
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material composition, structure, carrier density, and crystal temperature. Since the carrier
density is essentially clamped above threshold, the only factor which changes is crystal
temperature. As the drive current is increased, the dominant mode, m,, is observed to
decrease in power and the mode next to it on the long wavelength side, m,, increases. At
some point, this mode peaks in power and begins to decrease while mode m, starts to
increase.

A similar effect is observed if the current is held constant and the hear sink
temperature is adjusted, with an increase in temperature corresponding to a similar red shift
in the gain peak. Therefore, the temperature change per unit change in current density,
dT /dJ, can be estimated as follows. The laser is biased above threshold with the heat
sink temperature at 20°C at a point where m, has peaked in power. The change in current
required for the m, mode to peak ( Al) is recorded, and the wavelength difference between

my and m, (AA) is also noted. The wavelength change per unit current is thus

approximated by

oA AAL

a Al

The change in temperature (AT ) required to shift the gain peak from m; to m, is
obtained by biasing the laser at the original current and slowly incrementing the heat sink
temperature. Note that AA must be re-recorded since the wavelengths of the modes shift
slightly with temperature. The change in temperature per unit wavelength is approximated

by

9T AT

oL AL
Assuming that the change in heat sink temperature over this range is representative of the

change in internal temperature, the differential resistive heating is approximately
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a4
dJ dlI
L
oA dl
AT AA
=wL———22 p
W AN Al (5.46)

Table 5.4 - Measured and calculated quantities used to estimate the differential resistive
heating occurring inside the lasers under study.

The quantities in (5.46) were measured for 250 um and 1000 um cavity lengths and
are summarized in Table 5.2. It can be seen that dI/dT is lower for longer devices, but
dJ/dT is higher. To get an idea of the magnitude of the heating in real terms, the change
in temperature between zero bias and threshold can be estimated using the above-threshold
dI/dT. From Fig. 5.6, the threshold currents of the 250 um and 1000 wm devices were

17.1 and 32.0 mA, respectively. The change in temperature in both cases is

AT 350, (0 = 17.1mA) = AI%

=17.1-0.33
=5.6°C,

AT go0um (0 = 32mA) = 32.0.26
=8.3°C.

The temperature difference at threshold between the 250 um and 1000 um devices

is on the order of 3°C. One would expect the temperature difference between the 250 pm
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and 500 um devices to be even less. The gain coefficient, ['Gy, of these two devices
changes by about 22% according to Table 5.1. In contrast, a change in heat sink
temperature of 10°C (20-30°C) causes the gain coefficient determined by efficiency
measurements Fig. 3.9 to change by only about 10%. Apparently, the temperature
difference due to the different lengths cannot directly explain the change in gain coefficient.
Note that the transparency current density also cannot be explained since it is expected to
increase with temperature and hence with length.

In Chapter 4, it was observed that T, increased with well number up to 10 wells,
then decreased for 12 and 14 well devices with longer cavity lengths. Several mechanisms
could explain this behaviour. For example, an increase in the number of strained layers
could cause an increase in the number of crystal defects. The resulting increase in current
leakage paths could, conceivably, affect the temperature performance of the threshold
current. However, the low-temperature extrapolation of the threshold current density, J

0

did not show an abnormal increase for 12 and 14 wells, as would be expected in such a
case.

It was suggested in Chapter 4 that a non-uniform carrier distribution among the
wells could explain the anomalous T, values of the 12 and 14 well devices. Obviously,
the larger the number of quantum wells, the more likely it is that the finite transport time of
the holes across the active region (since holes have a lower mobility) plays a role. As the
length of the device decreases, a higher gain and hence higher population inversion is
required to reach threshold. More carriers in the quantum wells and a higher Fermi level
will give rise to greater carrier spill-over into barrier states. Carriers could then be re-
captured by other quantum wells, thus partially alleviating the transport problem. When the
length is increased, the lower carrier density may mean that some wells will not contribute

as much as others to the net gain. Fewer wells will be participating fully in consuming
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current, giving a lower value for N, J, (i. e. - it will appear to improve). At the same time,
the gain available to the optical mode will be reduced, giving a lower value for TG, (i. e. -
it will appear to degrade). Since the same mechanism is responsible for both phenomena,
both N, J,. and T'G, should change in a similar manner. J o would not necessarily reflect
this situation since the hole mobility has a strong temperature dependence [6]. At lower
temperatures, the increased mobility may mean that carrier transport problems are not
significant.

As a final note, a curve similar to the fit in Fig. 5.6 can be produced by fixing the

gain coefficient at its 250 pm value of I'Gy =90.1 and adding a length independent current

loss term so that
Jin =2, exp{In(1/.3)/90.1L} +a, / wL

where a, and a, are fitting parameters. The best fit gives a,=990A/cm’ and

a2, =83 mA. The xl for this fit is 7624 (A /cm?)® in contrast to 3313 (A/cm?)? for
the fit in Fig. 5.6

5.5 CHAPTER SUMMARY AND CONCLUSIONS

The gain coefficient of a five quantum well device was calculated at room
temperature by four separate methods. The theoretical calculation, direct measurement of
the below-threshold spectrum of a 250 um long device, and measurement of the above-
threshold slope efficiency all yielded similar results. However, the standard method of
observing the threshold current density as a function of cavity length yielded a value nearly
one-half that of the other methods.

In order to understand this discrepancy, the gain curves for 375 pum and 500 um
devices were also measured directly. Contrary to expectations, both the gain coefficient

and transparency current density were found to have a significant dependence on cavity
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length. Furthermore, the two quantities changed by fractionally the same amount. This is
quite remarkable since they have opposing effects on the threshold current. Internal
resistive heating was considered as a possible source, but was discounted because it would
cause the two quantities to change in opposition and the magnitude was not large enough
support the hypothesis. However, it was found that a non-uniform distribution of carriers

among the quantum wells could qualitatively explain the observations.
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CHAPTER SIX

LINEWIDTH'

6.0 INTRODUCTION

HE above-threshold laser line is of interest both from a physics point of view and in
Tterms of practical applications. Narrow spectral sources are desirable in demanding
applications such as analogue cable television (CATV) links and coherent communications.
Linewidth specifications for these devices can be considerably less than 1 MHz.
Measurements of linewidths this narrow is challenging. For example, it has been observed
that linewidth measurements suffer from highly imprecise results. A recent round-robin
study was performed by a European opto-electronics consortium (COST 215) wherein a set
of semiconductor lasers was passed from company to company, and the linewidth was
evaluated by various methods at each site. The lasers were returned to the original site and
re-evaluated to ensure against handling and operational degradation. It was found that

discrepancies in the measured linewidth between different sites varied by a factor of more

*Portions of this chapter have been submitted for publication in [1].
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than two for similar techniques and up to a factor of ten for different techniques [2].

Obviously then, it is desirable to pursue a method of linewidth measurement which
can be made reproducible and free from errors. To this end, the delayed self-homodyne
(DSH) technique was investigated. Both the DSH and the very similar delayed self-
heterodyne techniques are the most popular approaches due to their high resolution,
stability and ease of use.

In Section 6.1, the DSH technique is outlined and examples of linewidth vs.
inverse power plots are given. The effect of carefully filtering the drive current source for
the laser is investigated. In preparation for a mathematical description of the effect of laser
current noise on the DSH technique, a model of the DSH technique in the absence of
source current noise is developed in Section 6.2. In Section 6.3, a simplified “single tone”
noise model is developed and verified experimentally in Section 6.4. Finally, in Section
6.5, a low-pass band of current noise is considered and guidelines for appropriate filtering
of the current source are provided. Although this chapter deals exclusively with the DSH
technique, everything presented here is equally applicable to delayed self-heterodyne
measurements. The only observable difference is a shift in the RF spectrum by an amount

equal to the frequency of the acousto-optic modulator,

6.1 LINEWIDTH MEASUREMENTS USING THE DSH TECHNIQUE

In delayed self-homodyning, the laser output is interfered with itself [31. A
schematic of a DSH experimental set-up is shown in Fig. 6.1. The laser output is launched
into a tapered fibre, passed through a high return-loss (< -65 dB) optical isolator, and split
into two paths of approximately equal intensity. The laser line can be observed while the

fibre is moved by small amounts to ensure that reflections from the tapered fibre tip are

having no effect on the lineshape.
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Figure 6.1 - Schematic diagram of the DSH experiment. Switches A and B are shown in
the standard ‘off” positions.

The polarization difference between the two paths is kept at a minimum by using
small amounts of stress in one arm to introduce birefringence. The light through one path
is delayed by a length, Ly, corresponding to a transit time of T,. L is chosen so that the
outputs of the two arms are mutually uncorrelated. One rule of thumb is that T, should be
greater than three times the coherence time, T, of the laser, which is related to the

(Lorentzian) linewidth, Av, by [4]

1

Te=——. 6.1
¢ TTAV (1)

Decreasing linewidths require increasing L,. Typical delay lengths range from 700 m to 5

km or more. Self homo- and hetero-dyne fibre interferometers are available from a variety

of commercial sources.
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The two paths are recombined and detected with an RF receiver, and displayed on
an RF spectrum analyzer with resolution and video bandwidths of 30 kHz and 10 kHz,
respectively. The output power of the laser is monitored simultaneously by splitting off a
small portion of the optical signal before entering the interferometer. Current to the laser is
supplied by a commercially available, shielded lead-acid battery source with a 100 kHz
low-pass filter network. Although this is considered an adequate precaution against current
noise [5], it will be shown in the next section that the DSH technique is far more sensitive
to current noise than previously appreciated, and inappropriate filtering of the current
source can introduce significant errors in the measured linewidth.

The detected RF signal represents the laser line convolved with itself [6], as shown
in Section 6.2. In the DSH technique, the negative frequency components are folded onto
the positive side of the spectrum, so only half of the line is observed. Figure 6.2 shows a
typical trace from a DSH measurement. The first 100 kHz is omitted to avoid the dc spike

of the spectrum analyzer. Delayed self-heterodyne measurements give the same lineshape,

0
_5--\
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I
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3
[e]
o
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-20 + : f

0 1 2 3 4

Frequency (MHz)

Figure 6.2 - Typical spectrum analyzer trace of the intrinsic laser line as observed by the
DSH experiment (with switch A ‘on’ in Fig. 6.1). The trace is a digitally scanned scope
photograph, with the correct axes added afterwards.
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but the spectrum is shifted so that both sides of the RF spectrum can be viewed separately
and the dc spike is avoided. Delayed self-heterodyning is achieved by winding some fibre
from one arm around a cylinder of piezoelectric material. An RF voltage on the cylinder
causes it to oscillate in diameter. The resuiting index modulation of the fibre shifts the RF
spectrum of the received signal.

In Chapter 2, an inverse relation between the linewidth and output power was
derived for a Fabry-Perot laser. Although distributed feedback (DFB) lasers [7] are used
here, the same characteristic is expected [4]. However, other non-ideal characteristics are
often found instead, as depicted in Fig. 6.3. The extrapolation of the linear portion of the
linewidth vs. inverse power curve to infinite power does not yield zero linewidth, but a
residual linewidth is observed. At high powers, the linewidth departs from the linearity

and becomes approximately constant, forming a linewidth “floor”. As the power is further

_— Re-broadening

<—— | Schawlow-Townes

g‘ Linear Region

3

g \ <

S| R Linewidth Floor
a Residual Linewidth

[Output Power]‘l

Figure 6.3 - Typical experimentally observed features of the linewidth vs. inverse power
plot. Theoretically, the Schawlow-Townes linear region should have a zero intercept.
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increased, a re-broadening of the laser line is observed. In addition, the lineshape is often
found to have a non-Lorentzian component, usually assumed to be Gaussian, giving an
overall Voigt profile’. The source of all these has been attributed to 1/f noise [8], [9]. the
physical cause of which has been postulated to be a variety of mechanisms [10], such as
mode partition noise [11], event driven temperature fluctuations [12], fluctuations in local
current density [13]-[15], optical absorption [16], and spatial hole burning [17].

Although, obviously, the source of non-ideal effects is of interest since eliminating
them would reduce the linewidth, the presence of a non-Lorentzian lineshape component is
especially irksome. Since a Lorentzian convolved with itself is a Lorentzian with twice the
full width at half maximum (FWHM), the laser linewidth is easy to get from the RF
spectrum: simply use the half width at half maximum (HWHM) of the RF spectrum. This
is not the case when a non-Lorentzian component exists. Notably, the convolution of a
Gaussian with itself is a Gaussian with 2 times the FWHM. The relationship between
the FHWM s of a Voigt profile and an auto-convolved Voigt profile depends on the relative
widths of the constituent Lorentzian and Gaussian components. An accurate determination
of an arbitrary laser linewidth would require taking the square root of the Fourier
transform, and then calculating the inverse Fourier transform. Although this is certainly
possible to do, a further complication arises from the fact that the system impact of non-
Lorentzian components is not well understood.

Two points are required to obtain the linewidth of a Lorentzian function. The
(arbitrarily normalized) equation for the displayed RF spectrum in the absence of a non-

Lorentzian component is

1

L E— 6.2
1+(v/ Av)* ©2)

RF

t A Voigt profile is the convolution between a Lorentzian and a Gaussian function.
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where, once again, Av is the laser FWHM and the HWHM of the RF spectrum. If two
points on the RF spectrum are measured at v, and v, having a ratio, p, of the power at v,

divided by the power at v,, then from (6.2)

( y ,) | 12
V5 /Vviip—
Av=ﬁ{'—-'-p—} (6.3)
2 p-1

Linewidth measurements were performed using (6.3) on a Nortel Technology
partially gain-coupled distributed feedback (GC-DFB) laser [18]. The frequency Vv, was
kept at 200 kHz for all measurements and v, was adjusted for p=3dB. As a check on

the lineshape, v, was also measured at p=10dB, which will give the same Av for a

® -3dB filter out
N -10dB filter out
O

-3 dB filter in
2500_'"1""”'” 0O -10dBfilterin [
L [ ]
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2000 | ®e o 7
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< . oe o, * "
» . 4
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E - . . . . g 1
< i g Eg AN g ]
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Figure 6.4 - Linewidth of a GC-DFB laser as a function of inverse power. The solid
symbols represent the measured linewidth in the absence of additional current filtering
(switch A in the ‘off” position in Fig. 6.1) and the open symbols are with a 20 Hz filter in

place. The circles are the linewidth measured at the -3 dB point, the squares are measured
at the -10 dB point.
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Lorentzian line. The results of these measurements are shown as a function of inverse
power in Fig. 6.4 as the solid symbols. All the features usually associated with 1/f-noise
mentioned above appear in the Figure, including a significant non-Lorentzian component as
is indicated by the large difference in Av obtained from the different values of p.
However, when a very narrow low pass (20 Hz) filter is placed in series with the current
source output (switch A ‘on’ in Fig. 6.1), the lineshape becomes Lorentzian, and the
residual linewidth, linewidth floor, and premature re-broadening all disappear. From the

open symbols in Fig. 6.4, it is evident that the ideal inverse power relation derived in

Chapter 2 is recovered.

6.2 THE DSH MODEL

Given the remarkable change in the behaviour of the linewidth when a narrow band
filer is placed in series with the current source, further investigation is required to
determine whether the actual linewidth has changed, or if this is an artifact of the
measurement technique. Before examining the effect of current noise on the measurement
technique, it is first necessary to derive an expression for the linewidth observed by the
DSH method in the absence of noise. The output field, E, of a laser above threshold can be

written in terms of the mean frequency at the centre of the laser line

E= Re{é} (6.4)

where the tilde (~) denotes a complex (or “analytic”) signal,

E — Eoei(mon+¢N(t))

’

@, is the centre frequency of the lasing mode, ¢y(t) is the phase noise induced by
spontaneous emission and the finite passband of the laser cavity, and E, is the field

amplitude. The amplitude noise is small compared to the phase noise [4] and is ignored
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here.

The phase signal ¢y (t) is a peculiar variable and its properties need to be outlined
before proceeding. It is a random signal and is assumed here to be ergodic; i. e. that the
time average of a function of ¢y(t) is equal to the statistical average of an ensemble of

randomly chosen lasers, each with its own ¢y (t) [19]. Such an average is independent of

time and hence ¢y (t) is also strictly stationary.

Writing the time average of ¢y (t) can be conceptually confusing if not dealt with
properly. If a laser is chosen randomly from an ensemble, ¢ (t) is equally likely to take
on any value. Furthermore, values separated by 27 are equivalent. The latter could be
addressed by taking the 21 modulo of ¢y (t). A range of 2% could be chosen, say

Opn(t) (mod 2R) = -... 7t (6.5)
giving
(on(0)=0

where ( ) denotes ensemble or time average. However, the choice of range is arbitrary

and could easily have been chosen to be

On(t) (mod 2m) =0...2%

in which case

(on(t))=m
In a sense, there is a gauge freedom present in (q)N(t)). The issue can be side-stepped by
conceptually choosing an arbitrary reference phase ®,, and writing all dn(t) as a
difference between the reference phase. In this manner, the time average becomes
(On(t)~Dy)=0
which is a definite zero-mean process. Since this is the same as choosing the zero-mean

gauge of (6.5) that is what is done in the following derivations. The probability
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distribution function (PDF) of ¢ (t), Poy - is therefore

1/2n —M<Ppy<T
Poy = 0 otherwise

from which the PDF of the cosine and sine of ¢y(t) are calculated to be [20]

-1
(n«/l—zz) ~-1<z<1

0 otherwise

p.=

where z is cosdy or sin@y. Since the PDFs are symmetric about z = 0, the time average

of z vanishes and
(e*N)=o0. (6.6)
Although ¢y (t) is ergodic, it is still has a limited causality; ¢y(t+1) is not

statistically independent of ¢y(t) unless t©>37,, where T, is the coherence time. The

phase difference function is defined by
Adp (L, T) = Op(t+T) ~ Dy (1) (6.7)
and has a symmetric PDF.

We are now in a position to determine the relationship between the phase noise and
the laser lineshape. The power spectral density of the intrinsic laser line is given by the

Fourier transform of the (suitably normalized) autocorrelation, [, of the complex field [20]
T o (Et+ DE" (V)
where (*) denotes complex conjugate. Substituting for the field in (6.4),
rg - 4P0<ei(mo(t+t)+¢N(t+t))e-i(m0t+¢Nu))>

= 4Poe“°°‘<e‘("°*‘“"’)>. (6.8)

The factor of 4 appears in (6.8) because the power spectral density of the analytic signal is
four times that of the real signal [20].
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In Fourier transforming (6.8), €'0" acts to shift the line so that it is centred about

®,. The actual shape of the laser line, £(v), is given by

£(v) = S{{e"*Y) (6.9)
where 3} signifies the Fourier transform with respect to T.

A laser with a noiseless current source being measured by the DSH technique
(switch A ‘on’ and switch B ‘off” in Fig. 6.1) will have its field split into two paths. One
path will be delayed by a time T, >3t, to ensure mutual incoherence between the two
arms. The phase noises from the arms are ¢, (t) and ¢y (t+71,) respectively. However,
writing the phase noise this way presents a minor problem when forming the
autocorrelation at the interferometer output because ¢y (t+1T) and Oy(t+7T,) are not
mutually incoherent for all T (i. . - when T approaches T,). Since the autocorrelation
integral is over all 7, it would seem that the statistics of ¢y(t) over the whole range from
completely coherent to completely incoherent needs to be known. Treatments in this vein
have been done for arbitrary t, by assuming, for example, a white frequency noise
spectrum [21]. Aside from relaxing the pre-condition on the frequency noise spectrum [6],
restricting the analysis to the non-coherent regime simplifies the mathematics and allows for
an easier introduction of current noise. From the ensemble viewpoint this is not a problem:
demanding T4 > 37, automatically restricts the ensemble to lasers with mutually incoherent
phase noise outputs from the two arms. To translate this ensemble into the time domain,
the phase noise from the short and long arms are written as ¢,(t) and ¢,(t) respectively,

where ¢,(t) and ¢,(t) are mutually incoherent for all t. Note that the ¢, (i=1,2) have

the same statistics as ¢, so that
(e®)=(e*)=0 (6.10a)
< iAd; (. 1:)> ( iAdN (L. t)) (6.10Db)
(£(61)8(02)) = (£(0.(){&(02(1))) (6.10c)
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Equation (6.10c) is the well-known property that the mean of the product of two mutually
incoherent processes is equal to the product of the means [20].

The real field output of the interferometer is
EO
E, = ﬁ[cos(mot +0,(1) +cos(@g (L +T) +0a(D))]

A 1:1 split ratio and equal polarizations have been assumed for simplicity, but is not

necessary in general. The time dependence of the output power is given by the square of

the real field,

P, = Po[cos(aot +0,(1)+cos(@q(t +T,) +0,(1))]]

l l
= Po[l + -2—cos(20.)0t +20,(1)) + 5cos(2mo(t +Ty)+20,(t))
+%cos((oo1:d +,(t) =0, (1)) + %cos(zmot +0,(1)+ ‘Dn(t)):l
which has an analytic signal of

~ l i l
Pb - Po[1+_2_el[-wol+l¢|(l)] +;e|[2mo(t+td )+2042(0)]

+lei[m0td +02(1)-9 ()] + %eiumowword +¢2(()+ol(()]]. (6. 1 1)

When the optical power is detected, it will give rise to a photocurrent, I(t), given
by
[(t) =Py (1)
where 7 is the optical-to-electrical conversion efficiency. The electrical power spectrum is

given by Fourier transforming the autocorrelation, I";, of the current. Using (6.11), one

finds
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r= 4n2<f>b(t + ‘t)l.’;(t)>

—€
4

. 1 .
+ie|[A¢2(x.r)—Am(l.r)] +_e|[2m0t+A¢2(l.t)—A¢|((.t)]> (6.12)

: 47\2<1 +_1_ eil20gT2801 (0] l i2wgt+2402(11)]

The cross-terms produced in multiplying out the analytic signal of the power vanish in

(6.12) since they contain factors such as
<eiz(¢2(t)—¢|u))>
which, from (6.10c) and (6.10a),
<ei2(02(l)~01(l))> - (e'2i°“”><e2‘°1“’>

=0
or have factors such as
<ei2(¢2(:)+¢2(t))>
which similarly vanishes.

By applying (6.10b) and (6.10c) and collecting terms, (6.12) can be written
1‘i = 41121"(2,[1 + %ez“"“(ei“w“-ﬂ)z + i(emN (x.r))l]

The first term is a dc term. The second term contains a factor of e2“°° which acts to shift
the laser line to twice the optical frequency. Since most detectors cannot respond to a
signal this fast, the power from this term is also detected as dc. The ac signal will therefore

be given by the final term, called the homodyne cross-term, l“i ,

2

r_l = T‘2P(2)<eiA¢N((.t)>

By taking one-quarter of the Fourier transform of I'; and using (6.9), the RF power
spectral density of the real signal, Pgg(V), is found to be
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2p2
0

P
Pre(V) = 1

LV)® L(V) (6.13)

Self-homodyning, then, serves to down shift the laser line from the original optical

frequency so that it is centred about v = 0 and convolve the line with itself.

6.3 THE SINGLE-TONE MODEL

A single frequency tone is the limit of a noise band as the bandwidth is reduced to

a very small frequency range. This limit will be examined first, since it is easier to treat
both mathematically and experimentally.

When the drive current of a laser is changed, the centre frequency of the laser line

also changes or “chirps”. The amount of frequency change per unit current is called the

FM sensitivity, Sgy. For a dc biased laser undergoing modulation of amplitude [ at a

modulation frequency f, the radial frequency shift, ¢,(t), of the laser centre frequency
is

Py (1) = 2MS L, cOS2TE 1)

giving a phase shift, ¢,,(t), after time t of

Or(t) = SF;ﬂIm sin2nf t) . (6.14)

m
We now wish to examine the effect of the chirp-induced sinusoidal phase shifting
of (6.14) on the DSH interferometer. The new autocorrelation function of the homodyne
cross-term can be obtained by replacing the phase noise of each arm, ¢,(t) and ¢,(t) in

(6.12) with the total phase, §;(t)+ Opy (1) and O, (t) + 0y, (1 + T4 ), respectively, so that

R
r. = n°P, <ei[AQZ(l.t)—AOl(l.T)]ei[A¢M(l+t.‘td )-A@M(t.rd)l>
fx 4

2
n Po (eiA¢N(t.t))2<eiA¢M(t+t.td )e-iAoM(t.rd)>
4

(6.15)

The modulation contribution (second angle brackets) has been separated from the intrinsic
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phase noise because the two are statistically independent. The modulation contribution is

given the symbol M(1), defined as
M(1) = (eiA¢M((+t.td)e-iA¢M(l.td )> (6.16)

The exponential factors can be expressed in terms of cosines and sines, for example,

—1A LT
e dnm (L.T4)

= cos[xsin(2xf .t + @) - isin[xsin(2nf .t + 0)]
where

Adp (L, Ty) =0 (t+Ty) = Op(t)
Seuln [sin(2mf (¢ +1,)) - sin(2f ,t)]

m

= xsin(2nf ,t +¢) .
and

X = 2S—fFM-I£Sin(1tfm‘td)

m
o=nf T4+n/2.

Expanding this in terms of Bessel functions, we arrive at a even real series and an
imaginary odd series:
e UM = 5 (x) + 2], (X)cos260 + 2], (x)cos40 + ...
— i[2J,(x)sin® + 2J,(x)sin 30 + ]
where
0=2nf_t+o.

A similar expansion can be made for the “®*™%) factor in (6.16), except that t is
replaced with t +T and the imaginary series has a plus sign in front of it. The product of
the two factors results in four series: the product of the two even Bessel series, the product

of the two odd Bessel series, and two cross-series. All terms in both cross-series vanish,

since

(cosAsinB) = <%[sin(B —A)+sin(B+ A)]> =0
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where A and B are integer multiples of 6(t) or 8(t + 1). Similarly, cross terms in the other

two (even and odd) series also vanish since
(cosAcosB) = <%[cos(A ~B)+cos(A + B)]> =0

when A # B. This leaves only direct terms of the form

(cos(2mnf ,(t + T) + n@)cos(2nnf t + ne))
= (cos?(2nnf t + ncp)) cos(2mnf ,T) - (sin(2mnf ,t + ng)cos(2mnf ¢ + n))sin(2mnf , 1)

1
5cos(21tnf mT)

and

(sin(2mnf (¢ + ) + ng)sin(27nf ,t + np))
= (sin® (2mnf o + n@))cos(2mnf , T) — {cos(2nnf t + ng)sin(2maf t + ng))sin(2nnf 1)

1
= 5cos(21tnf mT)
where n is an integer. Applying these identities, (6.16) becomes

M(1) = i[Jn(x)]2 cos(2nnf , 1) (6.17)

N=—co

The Fourier transform of (6.17) is

Muv)= 3[1.0F8(v=nf,). (6.18)

n=-co

The modified detected RF spectrum is given by the Fourier transform of (6.15)
which, with (6.13) and (6.18), can be written

P
Pre(V) = ‘14 .

M(V)®[L(V)® L(V)] . (6.19)

Equations similar to (6.18) and (6.19) have been presented previously for other purposes

[22], but in the absence of any derivation. Equation (6.19) represents a sum of shifted
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lasers lines, each weighted by [J n()()]2.

6.4 EXPERIMENTAL VERIFICATION

To experimentally verify (6.19), the set-up in Fig. 6.1 was used with switch A and
B both in the *on’ positions. A dither current amplitude of I, =2 pA was used and the
frequency was varied over a range of f_ =0..40kHz. Two interferometers were used
with delay lengths of 5 km and 700 m and corresponding differential optical mode delays
of T4 = 25.6 and 3.60 Ws, respectively. Both lengths gave the same linewidth of 400 kHz
in the absence of a dither. Sgy, was measured independently using a scanning Fabry-Perot
interferometer (FPI) with the following procedure.

Light was coupled into the FPI using single-mode fibre and a lens system which is
built in to the commercially available FPI package. One mirror of the FPI was scanned
with a piezo-electric positioner and the output of the scan was displayed on an oscilloscope
set to trigger at the beginning of the scan. The temperature stabilized laser was dc biased
above threshold. The scope graticule was calibrated by adding an RF signal of known
frequency to the laser drive current. The resulting AM sidebands were observed on the
scope and used to adjust the frequency scale. The RF source was replaced by the low-
frequency source in Fig. 6.1. As the laser centre frequency oscillates, a distinctive “double
horn” curve is observed on the scope trace (see below). The FM chirp at that frequency
and amplitude is given by half the frequency between the two horns. In order to obtain a
resolvable difference between the horns, a much larger current amplitude had to be used
(Ip ~1mA). The chirp was found to be proportional to current amplitude in the range
[ =0.1...2mA, and is assumed to be similarly proportional down to I, =2 pA. The

measured Sg, as a function of frequency for the laser under study is given in Fig. 6.5 and

can be seen to be well described by a logarithm function,
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Figure 6.5 - FM sensitivity as a function of dither frequency at low frequencies.
Sem(MHz/ mA) =97In(10* / £, (6.20)

where f_ is in kHz.

With the above information, a prediction for the apparent linewidth in the presence
of the 2 A dither can be made for a range of f,,. Applying the known values of f R
Ty, and Sgy(f,) to (6.18), M(V) can be calculated. This is then convolved with the auto-
convolved natural laser line which is assumed to be Lorentzian. An “apparent” linewidth is
obtained by the usual method in (6.3) with v, =200 kHz and p=3dB.

Qualitatively, it is convenient to picture #M(v) in the so-called **quasi-static
approximation” [19]. The oscillating dither current causes the laser centre frequency to
oscillate sinusoidally. This signal is separated into two paths, but when they are
recombined, the sinusoidal oscillation in the delayed path is phase-shifted with respect to

the reference arm. This will have an effect on the detected RF signal which is caused by

the beating between the two arms. If there is no phase difference between the centre
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frequency of the two arms, then no effect will be observed in the RF beat spectrum. A
small phase difference will mean a small amplitude sinusoidal modulation of the beat
spectrum as the laser centre frequencies follow each other and cross when they are
equidistant from the turning point. As the phase difference increases to 180°, a maximum
in the average size of the beat signal will be reached. The RF spectrum will then return to
its unperturbed value when the phase difference reached 360°.

Under these circumstances, the difference, Avyg,, between the centre frequencies

of the two arms is
AVpsy = Seml[SIN(2TE o (U + T,)) - sin(2nf )]

= 2Spy I, sin(nf Ty )sin(2nf,, (2t + 1)) . (6.21)

The quasi-static modulation function, Mys(V), is the probability of finding Avpg, between

v and v+dv. From (6.21), it is given by the PDF of a simple harmonic oscillator
oscillating with amplitude 2Sg, I, sin(rf,7,):

!
Mos(V) = [ 2SeyL sin(mt o7, )| - v

0 for v > 28y, sin(nf ,74)

for v <28yl sin(nf . T4)

(6.22)

which will be convolved with £(v)® £(v) as in (6.19). Equation (6.19) contains a series
of §-functions and (6.22) approaches infinity at the limits v =+2Sgyl, sin(nf,t,). In
order to compare the two, the sideband height (integrating the §-function) of M(v) for
fn=10kHz and [, =2pA was summed into bins 40 kHz in width. Mqs(V) was
integrated over the same bin width. The two-sided results are plotted in staircase format in
Fig. 6.6. As the bin width is increased, the two functions become increasingly similar.
Since the linewidth being convolved with the modulation function is a factor of ten larger

than the bin size in Fig. 6.6, Mqs(V) should in fact be a valid approximation.
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Figure 6.6 - A plot of the exact modulation function and the modulation function obtained
by the quasi static approximation for a modulation frequency of f_ =10kHz and
amplitude of I, =2 pA. Both functions were integrated over consecutive 40 kHz bins.

Note that both functions in Fig. 6.6 have a distinctive double *“horn” feature.
Under higher amplitude modulation, this feature can be observed directly and was used to
calibrate the oscilloscope graticule, as discussed above, in measuring the FM sensitivity of
the laser. This frequency difference between the horns reaches a maximum when
faty=0.5.

The modified linewidth as a function of the modulation frequency for the two delay
line lengths are given by the solid lines in Fig. 6.7. It can be seen that the 5 km line
reaches a maximum linewidth at £, =0.5/ 1, =0.5/25.6 us=19.5 kHz and returns to the

natural linewidth at twice that frequency. The maximum for the 700 m line cannot be seen



Chapter Six - Linewidth 147

‘ Theo
3.5- O Exmrrlyrrlentlllllrlll[ﬁﬁi‘ll]l“lri

llllllllllllllllllll

Apparent Linewidth (MHz)

-

LELEJ llllll]'l'lllllllllllllllll

0 Loi IJ_[ | . L L L L l Ltod .l ' .| l L L 1 l ) N} l I 4‘
0 5 10 1S 20 25 30 35 40
Dither Frequency (kHz)

Figure 6.7 - Theoretical and experimental apparent linewidth as a function of
frequency for a 5 km and 700 m delay line.

in the frequency range shown because it is at f, =0.5/3.6 us=139kHz. The same
conditions of I, =2 nA and f =0...40 kHz were used experimentally with switch A and

B both ‘on’ in Fig. 6.1 and is indicated by open circles in Fig. 6.7. The single-tone model

is evidently confirmed.

6.5 BAND-LIMITED WHITE CURRENT NOISE

With the single-tone model confirmed in Section 6.4, it is useful to extend the
model to a band of low-density white current noise, as might be found in a typical low-
noise current source. The purpose of this section is to provide a discussion of the impact
of current noise based on non-rigorous quantitative arguments and then provide rough

guidelines on the amount of current filtering required to eliminate current noise effects. A
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closed-form frequency-domain expression is derived and is verified with a time-domain

computer calculation.

Consider an ideal filter with a narrow passband 8f centred about frequency f. The

time average variance of the output current is

<(Ai)2>— I°8f between f —8f /2 and f +8f / 2
0 otherwise

where 17 is the spectral density (nA%/ Hz) of the current noise and is assumed constant
(white noise). If 8f is small enough, then the output of the filter will look like a single
tone of frequency f. In Section 6.4, it was found that the PDF of the centre frequency of
the laser in the quasi-static approximation was a “horn” function, with both horns
approaching infinity at an equal rate at v = #2Sg, [ sin(rf ,7,). The output of the filter is
the same with f, =f and I, = IN28f (the factor of +2 comes from converting rms to
amplitude).

The single-tone PDF can be compared favourably to the PDF of a coin toss, which
has two delta functions of equal amplitude, one for each orientation: heads and tails. If a
toss decides whether a particle moves a fixed distance in the positive or negative direction
and a series of independent tosses are made, the total PDF for the net position of the
particle is given by the solution to the well-known random walk problem. If the *horns” of

the PDF in (6.22) are approximated by two delta functions,
HMos(V) = %[a(v ~ 2Spid(28) " sin(mft, )) + 8(v + 2Spy, 1(256) " sin(nfr, ))] (6.23)
then the step size, s, (f), describing the motion of the laser centre frequency for a filter n is
$a(F) = £2Sg [(23f) *sin(nfr, )| . (6.24)

Now consider a larger low passband of frequencies, B, composed of the summed

output of N (= B/ 3f) elemental filters place side-by-side in frequency, each with a centre
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frequency f,. At any moment in time, each of the elemental filters will contribute a
frequency shift of the laser line to either the positive or negative frequency side. The output
of each of the filters is uncorrelated with respect to the others. If an ensemble of DSH
experiments are performed, the average frequency shift over the ensemble, (sn), due to the
n' filter is

(s,)=0. (6.25)

The total shift of the centre frequency, v, , for one member of the ensemble is

N
Viet = 2, 5n (6.26)
n=l

with the ensemble average of the total frequency shift being
N
) =(250)
n=l
N
X (s)
0. (6.27)

The squared standard deviation of v, is

02 = <(vlo( —<vlot>)-> :
Expanding the square, applying (6.27), and using the definition (6.26),

¢’ = (Vtot>2

(&)
(3:)3)-

The second sum above can be separated into terms which form direct products with the

same terms in the first sum and those which form cross products:



Chapter Six - Linewidth 150

m=| m=n m#n
so that
, N R N
*= Y ((5a) )+ X Zsusm) - (6.29)
m=l n=im#n

Since s; and s, are statistically independent for m # n, the mean of the products is the

product of the means:

=0 (6.30)
from (6.25). Equation (6.29) becomes

o= i((sn)2> . (6.31)

From (6.24),

((s0))=(s.) (6.3)

since the two possible values of s, differ only by a sign. 6° can be more easily calculated

if the sum in (6.31) is approximated by an integral with 8f — df. Using (6.31), (6.32)
and (6.24),

o? =4[ Sk, I* sin(nfr, Jf

sin(2nB1,)
=282 12[3-——-—“] (6.33)
™ 2nTy

where it has been assumed that S, is a constant function of f for simplicity. For a large
number of small steps, the PDF of a random walk approaches a Gaussian function [23].

The modulation function for band limited white current noise, Mg, , is therefore

vije?

Tore (6.34)

My (V)=
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which is convolved with the auto-convolved lineshape in place of # in (6.19). The

FWHM of My, , 0, is

g = 2«/21:1(2)0

. 172
=4w/1n(2)sw1[13—s‘—“(2“i")]. (6.35)
' 2nty |

If the intrinsic laser line is Lorentzian, the noise will produce a Voigt profile for the RF

spectrum. The FWHM of the Voigt profile, o, is approximately related to the FHWM of

the laser line, Av, and the Gaussian modulation function by

oty = 1.0692 + £/0.866639(Av)” + 4o (6.36)

The above discussion describes a situation where a 1/f-like (i. e., Gaussian)
component is present in the measured laser line. This component adds a dependence of the
measured linewidth on the differential delay time, as has been observed previously [8] and
can cause all of the associated properties of linewidth flooring, residual linewidth, and
premature re-broadening. However, this phenomenon should be in no way be considered

an intrinsic property of the laser for the following reasons:

1. Although the laser centre frequency is changing with time and a long
time average would yield a larger overall linewidth, the rate at which the
shifting occurs is orders of magnitude slower than the processes usually
associated with linewidth, and has limited practical impact on linewidth-
related phenomena. For example, it will have no affect on FM to AM
conversion noise in analogue optical fibre transmissions [24], [25]. An
important exception where white current noise would be important is
applications where a high degree of frequency stability is required.

2. The amount of apparent linewidth broadening depends on the
experiment being performed. Different current sources will produce
different results. As the delay length of the fibre is changed, a different
linewidth will be measured. Other measurement methods, such as a

Fabry-Perot interferometer locked in quadrature, may also yield
different results.

3. Most importantly, the amount of apparent broadening depends
unpredictably on such extrinsic effects as the length, type, and
positioning of cables used to supply current to the laser, the location of
the measurement site relative to equipment that generates electrical noise,
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humidity and local weather conditions, ec.

Therefore, DSH linewidth broadening due to band-limited current noise is
considered to be an error introduced by the improper filtering of the current source. Since
the peculiarities of laser chirp mean that it is the largest at very low frequencies, and, as
seen in (6.35), the amount of broadening depends not only on the amplitude of the noise
but on the bandwidth as well, the magnitude of this artifact has not been previously
appreciated. Furthermore, experimental investigations into laser 1/f noise which do not
describe in detail careful precautions taken to low-pass filter the current source are highly
suspect.

At this point, it is useful to generate guidelines for the high accuracy operating
regimes of the DSH technique. The desired delay line length will be a trade-off between
two conflicting requirements. There should be sufficient delay to ensure incoherent
mixing, yet it should not get so long that problems arise with an increased broadening
artifact as described by (6.35). To quantify this trade-off, (6.35) was solved for the

intrinsic linewidth which would give rise to a fractional error of € (i.e., oy =(1+€)Av).

With the help of (6.34),

(6.36)

. 12

Ay 4[In(2)S gy [B _ s1n(21tBtd)] !
J/(2€+0.9308)* - 0.866639 2nty

Equation (6.36) is plotted in Fig. 6.6 (solid lines) as a function of the delay line

length, L, =14¢/n, where n, is the fibre group velocity. Three noise bandwidths are

shown with an assumed noise amplitude of 1 nA/+Hz", an Sg, of 700 MHz/mA, and

TAs an example, the LDX-3620 Ultra Low Noise Current Source manufactured by the ILX Lightwave
Corporation is rated for 100 nA rms noise between 5 Hz and 10 kHz (which corresponds to an average

of [=1nA/~+/Hz) and a total of 850 nA rms out to 10 MHz (an average over that range of
I'=0.3nA/~Hz). This, of course, does not include FM pick-up in the cables or contact noise.
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€=1%. The curves describe the minimum natural linewidth for which the current noise
incurs no more than a 1% error in measurement. Linewidths below these lines will be
measured with decreasing accuracy. The incoherent mixing condition defined by three
times the coherence time in (6.1) is indicated by the dashed line.

As a check on the frequency domain approach, a time domain computer model was
also employed, where the passband of white current noise was simulated by the sum of a
large number of single tones at evenly spaced frequencies. The current waveform was then
applied to a hypothetical laser. The resulting signal was used to build a histogram of

instantaneous centre frequencies, which was then equated to the modulation function in

Frequency Domain Calculation
O  Time Domain Calculation
----- Non-Conherence Condition

A lllll'

Linewidth (MHz)

\
0.1 1 J I S N | al b1 el 1 1

0.1 1 10
Delay Line Length (km)

Figure 6.8 - Conditions for accurate linewidth measurements for 1, 10 and 100 kHz noise

bandwidths with a current noise density of / =1nA /vHz in the frequency domain model
(solid lines) and time domain model (circles). The dashed line indicates the non-coherence

condition given by [4]. The contours represent the minimum allowable linewidth at any
given delay line length.
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accordance with the quasi-static approximation. The results of the simulation are indicated
by circles in Fig. 6.8. They agree quite well with the frequency domain equation, with
only minor deviations caused by approximating the harmonic oscillator PDF in (6.22) by
the two delta functions in (6.23) in the frequency domain model.

As can be seen from Fig. 6.8, linewidth measurement accuracy is greatly enhanced
if the current noise bandwidth is tightly controlled. The root-mean-squared (rms)
magnitude of the current noise is reduced with a lower noise bandwidth, but as well the
more troublesome higher noise frequencies (see Fig. 6.7) will be preferentially suppressed.
This should by kept in mind when selecting the bias current source to be used for linewidth

measurements. Proper shielding and layout precautions should also be taken to prevent

any extraneous noise from being picked up.

6.5 CHAPTER SUMMARY AND CONCLUSIONS

It has been observed that the effect of laser-bias current noise on the accuracy of
delayed self-homodyne measurements is much more severe than has previously
appreciated. In addition to producing an apparent broadening of the laser line, artifacts
such as a linewidth floor, residual linewidth, premature re-broadening, and a Gaussian
component can be introduced. These phenomena have been discussed in connection with
various intrinsic excess noise mechanisms such as mode partition noise and spectral hole
burning. However, in the presence of current noise the impact of the intrinsic mechanisms

may be greatly overestimated. It was found that simple low-pass filtering of the current

source could essentially eliminate all of the above problems.
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CHAPTER SEVEN

CONCLUSIONS

7.0 INTRODUCTION

HE preceding chapters have offered a careful examination of some of the most
Tfundamemal techniques used to characterize the power and spectral properties of
semiconductor lasers. In this chapter, [ summarize the results which [ believe to be the
most significant in terms of their impact on the characterization and understanding of
semiconductor lasers. In addition, I would like to take this opportunity to suggest some

interesting ways in which the work in this thesis may be extended.

7.1 THESIS SUMMARY

7.1.1 Laser Modeling
A classical, phenomenological model was introduced in Chapter 2 which was able
to reproduce basic laser properties. The advantages of the model are its simplicity and the

ability to use portions of it directly to analyze experimental data. Additionally, quantities
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within the model, such as the logarithmic gain coefficient, can be easily calculated from
first principles if desired.

The dependence of the optical power on spontaneous emission, gain and
longitudinal position within the laser cavity was derived by two methods. By comparing
the results of the two methods it was proven that the power in each mode is separately
conserved. Although this has been known for some time from quantum mechanical and
classical circuit-equivalent methods, to my knowledge it is the first-ever classical all-optical
derivation. From the same equation, a linewidth formula was derived similar to that
obtained classically from the transmission-line matrix method, and exhibits the same

inverse-power relationship exhibited by quantum-mechanical treatments.

7.1.2 Efficiency and Optical Loss

A large-scale study of the effect of varying well number, length and temperature on
the differential quantum efficiency was performed. Variations in the optical loss were
observed that could be best explained by the presence of inter-valence band absorption
(IVBA). A model based on IVBA was used to infer the gain and loss coefficients as a
function of temperature. Results of numerical fits indicate that the dominant mechanisms
affecting the differential quantum efficiency fall into two identifiable regimes. IVBA
dominates in the normal regime, where the reciprocal of the differential quantum efficiency
exhibits the expected linear length dependence. In the anomalous regime, the usual linear
length dependence is not followed and changes in the intemal efficiency, likely due to
hetero-barrier leakage, become significant.

The model confirms a previous observation by others that the presence of [VBA can
introduce errors into the internal efficiency and optical loss measured by the standard

method. A strategy for avoiding this pitfall was discussed. Because of the high
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temperature dependence of the gain coefficient, a highly temperature-sensitive intemnal
efficiency could indicate a problem.

A further interesting result of the model was the successful prediction of the failure
of certain devices to lase. The failure to lase was connected to the inability to achieve
sufficient gain to overcome the increased optical losses due to high carrier concentrations at
high temperature. It was found that the [VBA contribution to the degradation of the

differential quantum efficiency could be minimized with an appropriate choice of optical

confinement factor.

7.1.3 Temperature Sensitivity of Threshold

The large-scale study was continued by examining the effect of well number and
length and the temperature sensitivity of threshold. For this, a slightly re-arranged version
of the previously proposed T, equation was employed, and was observed to fit the data
with a high correlation factor. A simple phenomenological derivation of the T o €quation
was presented which gave physical meaning to the parameters involved. It was found that
T ax Was related to the variation of the threshold carrier density with temperature, which is
in turn determined by the optical gain and losses. The exponential sensitivity parameter, {,
was found to be related to the power-law dependence of the current density on the carrier
density, explaining the previously observed value of {=2. The increase in { with well
number and length was also explained.

An attempt was made to make predictions of T, based on the gain and loss
coefficients measured from the differential quantum efficiency. Although for many lengths
and well numbers reasonable agreement was found, there were certain areas of parameter
space (long lengths and high well numbers) where discrepancies exist. It was conjectured

that non-uniform carrier injection into the quantum wells is responsible for this behaviour.
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Finally, the conditions under which the T, equations would accurately describe
experimental data were discussed. These are:
(1) the inverse of the threshold carrier density varies linearly with temperature, and
(2) the threshold current density varies over a small enough range that it can be

adequately described by a power-law dependence on the threshold carrier density.

7.1.4 Threshold and Gain

The logarithmic gain coefficient was determined for a five quantum-well device by
four independent methods: first principles calculation; the new [VBA model; the length
dependence of threshold; and direct observation of the below-threshold spectrum of a
250 um device. All methods agreed to within about 10%, with the exception of the
threshold method which yielded a gain coefficient which was about one-half that of the
other values. This discrepancy, while having been noted before in the literature as a
disagreement between theory and experiment, had not been previously explained. It was
discovered by further direct measurements, however, that the source of the disparity is in
the unexpected dependence of the gain coefficient on length. Changes in the internal
resistive heating with cavity length as a possible cause was rejected because the magnitude
did not appear large enough and it could not also explain the changes in transparency
current density. Finally, it was described how the previously conjectured non-uniform

carrier injection into the quantum wells could be responsible for this phenomenon.

7.1.5 Linewidth
Observations were reported of 1/f-like behaviour of the laser linewidth which
appeared to be unrelated to the intrinsic properties of the laser, but rather to the extrinsic

conditions relating to the measurement set-up, specifically the degree to which the laser bias
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current was filtered. In order to determine the exact cause of the I/f noise, the effect of
current noise on the delayed self-homodyne technique was investigated.

A derivation was given for the RF beat spectrum of a delayed self-homodyne
experiment. The mathematics of the problem were simplified by applying the mutual non-
coherence of the interferometer arms at an early stage in the problem. The model was then
extended to include the presence of a single noise tone, which is the limit of an
infinitesimally narrow noise pass band. The model was confirmed experimentally and it
was demonstrated that the presence of a noise tone would introduce errors into the
technique in the form of artificially inflating the measured linewidth. The model was
further extended to include a finite band of white current noise. It was shown, with certain
approximations, that the noise would approach the form of a Gaussian linewidth
component, as is typically associated with intrinsic 1/f noise mechanisms. The model was

used to determine guidelines for appropriately filtering the current source to avoid such

€ITors.

7.2 RECOMMENDATIONS FOR FUTURE WORK

The phenomena influencing the characterization techniques presented suggest a
number of interesting areas where further investigation would be productive. One common
thread throughout Chapters 3 through 5 was the possibility of non-uniform carrier injection
into the quantum wells affecting the performance of the laser. This has been described
theoretically [1], [2] and is thought to affect laser dynamics. It could be investigated by
designing a laser with quantum wells of varying widths but similar depths. Since the band
gap due to the quantum size effect would be different for each well, the recombination rate
in each well could be determined by examining the spectrum of spontaneously emitted

light. To account for the possibility that different well widths may influence the carrier
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capture time of the quantum well, the results could be compared to a device structure which
has the ordering of the well widths from the p to n contact reversed.

Although it is encouraging that the model presented in Chapter 3 gives reasonable
predictions of T, and gives the correct gain coefficient for five quantum-well lasers at
room temperature, it should not be considered proven without further empirical support,
preferably direct measurement of IVBA. Direct measurement is problematic since it is
difficult to discriminate between band gap absorption and IVBA. An estimate of the
influence of IVBA could be obtained by optically probing the laser below the band gap.
The spectral output of the laser would be a series of Fabry-Perot fringes with a finesse
determined by the facet reflectivity and the optical losses. Part of these losses will be due
to scattering, but [IVBA could be searched for by changing the bias current below threshold
and looking for a carrier-density dependence. The obvious drawback to this method is the
fact that the probing does not take place at the lasing wavelength.

Much work still remains to be done regarding the temperature dependence of
threshold. Carrier lifetime measurements could be performed to obtain the carrier density
dependence of the current density, and compare the temperature dependence of this with the
power law relationship used in Chapter 4. A quantity of intense interest which was not
discussed in this thesis is the relationship of device design to the maximum operating
power as a function of temperature. An investigation into the influence of the characteristic
parameters from the T, relation on the maximum operating power under CW and pulsed
conditions could provide useful insight into some of the contributing mechanisms.

By eliminating the errors introduced into the delayed seif-homodyne technique due
to current noise, reliable studies of intrinsic 1/f-roise and linewidth re-broadening can be
conducted. A further possible concemn is linewidth de-stabilization due to minute drifting

of the temperature from air currents, which can be eliminated by using an evacuated
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chamber. This may have an effect on linewidth measurements which was not accounted

for in Chapter 6.
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