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ABSTRACT

- M

The problem of estimating evoked potentials and its: pattern

recognition and classification ig addressed in this thesis.' After ,/

L

providing the relevant physiological background and reviewing the

various methods of processing the evoked potantiél, we bropose the
. . - - w . .

- method of adaptive nolse cancellation for estiqating the evoked
potential withopt siimﬁius repetitioh. A new weighted exact least
squares lattice alggrithm is derived ;or thia_pgrpo%q. THe thigble
weighting factor can be used to make the algorithm robdust. Its...

¢

performance is compared to that of unnormalized and normallzed exact
least sd;ares-laftice algorithms and is shown.to be supe;ior. 6ne
example oflusing adaptivg noise cancallation"%o‘estimﬁte evoked
potential without stimulus repetition is preseqted.. Pattern recopnitior
of evoked potentiasls is achieved’ by syntactic methods. Ve d?rive ]
finite-state grammar to represent the normal*evoked‘uohantial. S;itable
prenrocessing using a zero-phase bandpass filter, parsing and attribute
checking are the ateps in this classification nrocedure. A database of
normal evoked potentials and opﬁimized gccept&nce criterion afe used for-

checking the attributes. Detdailed training‘and test runs are performed

to demonstrate the performance of this classifier;
1§
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CHAPTER 1

INTRODUCTIGCN

5

Bigelectrie activity.within the human body, when properly

acquired and interpreted, i1s-en enormous source of information about the

dynamic aspects of body functions. Electrical activity of the large
body of neurons in the brain gives rise to measurable potentinls on the

surface of the scalp. In the absence of any specific stimulation,. jhe

‘measurable electrical potential on the scalp is called the

'elecfroencephalogram' or e.e.g.. This can be considered te ye'spafial

" and temporal summation of the non-specific electrical activity of

neurong in the brain.

‘r
ilhen & discrete amount of energy impinges on sense organs, only a
specific population of neurons responsible for that sensory modality is
activated. The electrical ac@ivity of the-specifié neuronal population

that was activated can be identified, knowing-the time relationship

between the stimulus and the electrical reeponse that it generated.

-

These responses are called 'evoked potentiala' or EPs.
1.1 Definition of the Problem

The measurement of EP3 is complicated.by the fact that they are

of much sﬁg{ser magnitude than the on-going e.e.;"' Improvement of

I
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signallto—noise ratio haes convenﬁionally been achieved by collecting a
large ensemble of responses or EPs to repeated identical stimuli and
performing ensemnle averaging. Under assumptions that EP {s
determipistic, background e.e.g. 1s a zero-mean random process and that
the two are uncorrelated, it can be shown that:ensemble averaging will
improve the signal-to-noise ratio by a facton equnl to the square root
of the number of stimulus repetitlcns.

However, there is no & priori reason to assume that responses
evoked b} a- series of identical eeimpli will themselves be identical
(impl}ing EP is deterministic). The effects of habituation, Ffatigue or
distraction are known to.elter the cnaracteristics of seme evoked
pofentials, particularly 1late waves. Averaged EPs mey also be
-misleading since they do not reflect the momentary changes in the
.excitability of the central nervous system that are crucial to the

normal response of the organism to environmental change. Only those
compenents of the indlvidual responses éhat are comnon to all responses
will be brought out by averaging. In the study of physiological
systems, the “comp}ete“ regsponse to a stimulus is et least as important
as,the common elements in all responses to a large sequence of identical

atimuli.

In using ensemble averaging technique, the requirement of
repetﬁtion imposes a time lag before the EP is availab’e. Thie time lag
together with the loss of transient responses precludes the effective

use of the EP techniqug in monitoring patients in the intensive care



uni? and du}‘ihg neurosuzfgery.l_ "In ‘add.j‘.tio,n:. the loss of tranalents and
habituntion to successivé stimuli make tpis technique less apprepriate
in thne st..udyvof .c-dgnit.ive processes using the contingent negative
variation or P300 (two types of EPs).
Adaptive‘ﬁ"i*.ltex.-ing techniqueq have become very popular in the
past five of ten years in the signal'pi'oce‘ssing field. Adaptive noisk
cancellation, where informa‘tion fron pI_'e—stimuJ.us e.e.g- can be used to
cancel e.e.g. in the post-stimulus dat,é.,_ -thereby enhancing the signal:
to-noise ratio, holds promise. The ad-aptive techn‘ique‘used in the
cancellation acheme is of primary importarme,’in attai‘.ping accedtable
signal-to-noise ratios. -

Therefore, having seen that the ,a;sun;g:;ﬁ‘ioﬁ that EP is
deterministic is untenable and that ensemble averaginé as a’ mathod of
improving signal-to-noise ratio is undesirable, we arrived at our; first

research objective.

Research Objective (1) :-
Derive an adn-ptive noise cancellation filtax;'é" estimate

the evoked potential.

-
-

In present da:} neurolbgical' ‘practica, t:‘he- climcian identifies
the peaks of the EP estimated by conventional a\(er.aging or by some new
method by visual inspection and class:igfii-e‘s"it ag normal or abnoraal

based on its appearancs. The‘ quantitative guid'elines- :;n this

.

-
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classification procedure are wmainly the latencies of the peaks$\
Selective atpenuation of some peaks are also indicati;e of abnormality.
The main motivation for automatic battern recognition and classification
of EPs arises out of a need to supplement the clinician's visual
analysls with a npore objective method. In the p}ocess of pattern
recognition and classification, iﬁ ié_also desirable to builg up*?
description of the pattern under consideration. This allows us to give
regsons in terms of péak latenciéa and amplitudes (the parameters used
by the clinician) for classification as normal or aﬁnormal. The
objective criteria used by the automatic classifier alléus the
comparison of peak latencies and amplitudes between subjects and
centers. The unsupervised nature of the pattern recognition system Lill

meke it 1ldeal for screening et remote locations, continuous monitorins .

in intensive care situations and during surgical procedures.

Research Objective (2) :-
A pattern recognition method for classification and generation

[y

of description of EP. -

)
'

' These general research objectives are precisely defined in
section 5.3 and section 6.2 respectively, stating explicitly the

assﬁmptions made and other theoretical considerations.

]



) .
1.2 Proposed Solutiona o ' .

We give an outline of the proposedl solutions to the two research
questions raised in the previous section. The detdils of the methods
used are the subject matter of Part - B (Adaptivé Filtering) and Part -

C (Pattern Recognition).

(1) Signal Estimation ° E ‘

The adaptive noise cancellation methed was proposed by Widrow-

et.al. {1975) to extract signal from noise. It is assumed that a
reference source of nolse is available which is correlated only;‘to the
noise in the signal plus noise source (ealled pr;mary source). An
adaptive filter modifies the reference noise sucl:L that the e‘XpE,c_:t_ed

value of the squared error betwesen the modified reference noise and the

noise in the primary source is minimized. Because of the eigenvalue.

gensitivity problems of the Least-Mean-Square (LMSrralgorithm that

Widrow and others used for the adaptive noise cancellation, we derived a -

Welghted exact Lea;t Squares La.ttice‘/(wLSL) in the joint estif:.:;;tion form
as a generalization of the exact LSL derived by Lee e‘t.al.(1§81) and
Heykin (1986)- for adsptive noisk canceilation. Ppst :;timulus EP plus
e.e.g. 18 the primary source and pre stimulus e.e.g. is the referencé
source (alternatively, concurrent e.e.g. from a diffqrent locetion
'uncon‘@aminate‘!d' by EP could be the reference spurce). We show by
simulations an;i tests with real data that EP can be estimat?_d without

7

having to rep'ea.t' the stimul'u.s; To distinguish it from con.vent'i‘dnal
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.Evoked Potantiul"or Sst EP..

éveraged EP, we call EP estimated by this method, 'Single Stimulus

(2) Pattern Recognition

Considering the structﬁ;al specificity of the EP waveforms, the

'proceaure followed bj‘thé c¢linician can be- best automated by syntactice

pat£ern recognition. This method also builds ub a description of the
pattern as a natural part of the.procegs. The EP waveform is first pre-
proﬁeséed by.zeroibhase bandpass filter (thus avoiding any phase
‘distortion)‘to:remove artifatts and noise. A finite-state grammar which
can identify‘a *hill! is used in the pattern recognition procedure. The
parse tasle that:ié generated is.a complete description of.the EP
waveforn. The sgllient features of the EP, such as locatlon of the
peaké, can be identified and used for classification. A data base of
normal EP pargmeters is generatgd and referenced for classification and
is‘ﬁfdated suitably.' Acceptance crite?ia are optimized fof ¢linical

applications during the training run of the classifier. The method was

*

tested in great detail using real EPs of unknown diagnosis obtained from

actual patient records.
r~

The new signal estimation technique and the pattern recognition
technique'a;e quite general in nature in that they can be applied to any

of the well-known EPs, such as visual, auditory, somatosensory or

. cognitive, after suitable minor modifications. The weighted exact least

square lattice algorithm %hat is derived here is the first of its kind
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and is the most general form. Weights can be calculated on-line to zive

-
the algorithm desirable properties such as statistical robustness.

In this thesis, when application considerations are discussed, '
Brain Stem Auditory Evoked Potential (BSAEP) is taken as the

example.

1.3 Thesis Outline

Background material relevant to this thesis is presented in Part

- A vwhich comprises chapters 2 and 3. We begin Chapter 2 with the

physioloéy of BSAEP including a brief introduction to various
elect;ophyaiological theories of o?igin of EPs. After giwving the
physiological aﬂd ciinical significance of BSAEZP, we arrive at a
sidpléfied engineering model of signal generation, which we will refer
to throughout the rest of the thesis: In Chapter .3, after a quick
overview of EP acquisitionrfechniques, we present a detailed review of
literature relevant to signal proceséing ané pattern recognition of LPs.
Part - B deﬁls'with the adaptive filtering gechnique used for

single stimulus EP extraction. In Chapter 4, we discuss adaptive noise
'cancellation and derive the weighted exact least squares lattice

" structure. In Chapter 5, general simulation studies are considered.
'-Coggirison of normalized exact lemst squares lattice algorithm and WLSL

}is made and results of real data test are glven.

)
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|
The syntactic pattern recognition method is.discussed in Part - ¢
of the thesis. 1In Chapter 6, the theery, application conside;ations\gnd

results of pattern recognition and classification are given.

We conclude the thesis with a detailed discussion and criticism
\ -

of the research work. Recommendations for future research are included

in the last section.

* The overview section at the beginning‘of each chapﬁér gives a

more detailed account~of the‘Ebntents. We thus leave further details to

them.

/“ .
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BACEGROUND



CHAPTER 2

PHYSIOLOGY OF EVOKED POTENTIALS

2.1 Overview of the Chapter

As part of the background material, we take a look at the

anatomical and physiological implicatioﬁs of evoked potentials in

genpral-and brain stem auditory“evoked potential (BSAEP) in particular.
In section 2.2, geﬁepal'theories of the origin of evoked ﬁotentials are
discussed. The c¢liniecal utility of evcked potentials is then discussed
in secticn 2.5 to justify the present effort. a simplified engiqeering
model of evokeé potential generation i; arrived at in section 2.4% which

takes into consideration most of the relevant physiological details.
. 2.2 Origin of Evoked Potentials

The search for a buried ressage in the electroencepﬁalogram
(e.e.g.) has been going on, right from the days of Hans Berger (1929),
the First person to record the e.e.g.« After a period of careful
scrutiny of the time 'and frequené} domain-characteristics of e.e.g.,
interest has shifted to responses evoked by stipuli ?o the human sensory
system called the evoked potentfial (EP). This interest is partly
justified by the knowledge that EP reflects in some rfashion, the
fﬁnctiopal aspects of the specific neuroanetomical pathways activated by

®
10
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. (1947) estimated the EP by superposing an ensemble of responses on a

I

the stimulus.

The myriasds of external stimull that we continuously receive
along with endogenous stimuli activate the human brain, the resultgnt of
which can be heasured on the scalp as e.e.g.. This is considered to be
the spatial and temporal summation of the post-synaptic potentials
arising from billions of neurons in the human brain (Kiioh et al.,
1981). The e.e.g. 1is usualli of the order of 100 microvolts. A

specific stimulus presented.to the sensory system activates only a small

proportion of dhis neuronal population.: Mot very\surprisingly, its

reflettion on the scalp which s the EP,.is difficultoto detect a& its .

. . " , .
anplitude ranges from sub-microyoilt toc tens of microvelts. Dawson

’ »
photographic plate, thereby improving the signal teo noise ratic. Since
that time, dedicated hardwdre which essentially performs the same
averaging technique -has been Jsed to estimate the EP. Figure 21
jllustrates this paradigm where one specific type of EP, the brain stem

auditory EP tBSAEP) is shown. 4

L
~

cf the many classification systems of EPs, the one we are
o

interested in is based on its origin within the brain. The.first one is

the sensory or short latency or far-field EP and the other ie‘the long

latency or near-field EP. Among the various theories of the origin of

EP (see Childers,.1977 for an excellent review), the short latency EP -

can be assumed to be an example of "field theory model® and long latency
- . ;

,« EP, that of "complex cortical connection mooei". In the case of short

[N



AVERAGER t—» BSAEP

o

EVOKED POTENTIAL PARADIGM -

Figure 2.1 Evoked potential paradigm.
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"latency EP, deep stryctures are activated (in-vivo eurrent source.
aensity analysis done on aiec brain by Jadhavan (1980) lends some
credenée to this) and by volume corduction is seen almost equally at all
points of the scaip. However, for the long laténcy BP, cortical areas
specific to a &ertain stimulus closéJto the scalp are Zcvtiveted and the
ionic‘currénts precpagating through the tathways give rise to pﬁteﬁtials
in localized areas of the scalp. The €.8.34y haying a sizila£ origin, it
cgp.be hypothesized that e.e.ps. maxgbe more correlat?d to long lgtency
EP than to short latenmcy EP.

+

N

A .

Brain stem auditory EP (BSAEP) is example'Pf short_iatency EP.

In response to auditory stimulus, the JI1Ith nerve and brain stem areas

¢

of the auditory pathwdy are activated and its response can be sween all
. \ .

over the scalp in the first 10 miiliseconds‘after the stizulus (hencé
the napme short laténcy EP). Given the fact th;t in this shori period,
the generatora of e.e.g. in éheAcerebral cortex could have hardly
responded to the stimulus (ie., g.e.2. "desyqqﬁronized"), BSA?P. is
probably leume conducted to the.sqélp and is uncorr;lated to ﬁhc on-
tgoing edﬁg; BSAZP-has étrong_correlation with the integrity of the
undeflying anatomical structures (Jewetdt ahq Ronmano, 1972). It is
usually'r;corded fronm the vertex (Kiloﬁ'et.hi., 1981) and is of very
L

amall adplltude. Often, an ensenble ag large as 2000 has to be averaved

to enhance the signal to noise ratio suff1c1ently. \Flgure 2.2 shows an

idealized 3SAEP. B
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2.3 Physlological Significance of Evoked Potentials.

Evoked potential tests provide a sensitive and quantitative
extension to the clinicai neurological examination (Chiappa, 1983).
They have the ability:to demonstrate abnormal sensory system function
when the neurological examination is eqq}vocal. EPs also help define
the an&tomical-dis#ribution of a disease process and objectively monitor
changes in a patignt’s status over time. It is the changes in shape,
amplitude and latency (duration from stimulus on-set to the event) of
the peaks in the EP that give the clinicien this objective information.
In the case of wost. EPs, it is primarily the changes in latency that
give information about the abnormality to the glinicihn'(Kiloh et al.,

1981; Chiappa, 1983).

BSAEPs are remdrkably constant in the same patient.> They can
therefore be used to assess the inzggrity‘of the brainstem and hence the
prognqsis_in unconscious patients. These potentials have also been
useful in the diagnosis of acoustic neuromas and‘othé; ciinical

.conditions. They may also be used to agsess .the physiological effects
of drugs or neurostimulation. A detailed treatment of the clinical

utility of this and ‘other EPs are given in Kiloh et al. (1981).

From the foregeing discussion, it is clear that EPs have

tremendous clinical as well as research utility. A major stumbling

-

block in its more effic1ent use has been the need to repeat the stimulus

to generate a large enough erisemble - so that avenaging will improve the

4
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signal to.noise ratio sufficiently. Repetiticn of the stimulus entails a

delay in obtaining the EP as well as confounding the measurement by the

effects of habituation and fatigue. In this thesis, we undertake an
o

'\investigation of different methods of improving the signal to noise

ratio so that stimulus repetition can be minimized or eliminated.
2., A Working Model -
\

To facilitate the development of :ugnal processing methods ih the

succeedmg chapters, we will develqp a model for the generatlon of the

EP. L - S . .

In published literature, é.e.g. has ﬁee'n‘ effectively' modeled ds a
tinde series. Work of Kaveh et al. (1978) and Rauner et al, {1983), for
example, - shows that an autoregressive (AR) time series model of order 8
to 10 is suffic-ient to model e.e.g.. Our own experience in the past
years have shown that filtered e.e.g used in BSAEP work can be modelad
as an AR model of order 6. Hence, in general, 8.6, g. can be considered
to be a genersl'time series which is the output of an autoregressive,
‘moving ’gverage (ARM.A) filter exc'itedlby ‘a\?white,' Gauseian noise
sequence. This is shown in figure 2.3 where !v! is thé e.e.g.. and 'w' is
the white, Gaussian noisé. When a stimul'us is presented, the neuronal
pathway stimulated g‘e‘;{erates a response which we have called SSt EP. It
is well known that when tl.he stimulus intenbsit'y*ié doubled, the réspone
is not doubled (Riloh et al., 1980), indica.ting & seturation-type non-

lineerity in the system. As a complex interconnection of neurons in the

-
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stimulated pathway -g{.ves rise.,t“o SSt EP, wev see shape and latency
veriations or "jitter"\i(’ﬂunon et al., 1981) in SSt EP, which makes it
non~-deterministic. This'-r-lgh;l\i’near and stochastic signal, SSt EP is 1st
in figure 2.3. Since, in the case of short.. latency EPs, SSt EP is the
. potential gen‘erated by thalamic: and lower regions and e.e.g. is the
potential generated by cerebral cortical regions, they can be considered
ﬁ:utuai-ly’ uncorrelated.and the total regponse, 'd' in figure 2.3 can be

considered as their additive combination at the ascalp.

~ Assumptions
| Keéping in mind the signal .proc'essing technique that we are goiﬁg
to employ (the subject matter of chapters 4 and 5), we make the
following minimally rgstricﬁive assumptions. Rei;erring to figure 2.3
where 'd' is the observed time series in respanse fo the stimulus, 'v!'
is the on-going e.e.g. and 's' is the actual response of the activated
neuronal pathyay (which we call single stimulus EP or SSt EP), we assume
that - Y
1. i‘the‘ sig'nll.ll (8% rEP. or 's') and noise (\e.e.g. or 'v') combine
additively to give the potential measured from the scal.p, which we
‘ will call the response or 'd'. -
2. the noime (e.e.g. or 'v') is ﬁ correlated time series.
3 ho restrictions are placed on the charaéteristics of the signal {SSt

EP or 's'). In general, 's' is non-lineer and stochastic.

4. woignal and noise are not corrélated.

In general EP methodology, assumptions 1 and 4, are always'

W
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employed (eg., Aunon et al., 1981; Childers, 1977; Rauner et al.,1§83;
de Weerd and Martens, %978; Kayeh et al., 1978); In assumptiop 2, we dg
not place the usual restrictive condition that the time serieé be
;tationary'(see the references above) even.though e.e.g. can sometimeg
be cqnsideré& stationary for epochs shorter than 12 secoﬁds (Cohen and
Sances, 1977). Assumption 3 is entirely general without the usual
deterministic and linear constraints. As we #hall ses in éhapters 4 and’
5, these more realistic ;séumptions can be accomodated by the signal :
proéesaing technique that wé‘use, which is adaptive noise cancellation

1

using weighted least squares lattice algorithm.

In the next chapter, we provide a comprehensive review of the
signal processing and pattern recdgnition techniques used in EP

Y
processing. 2

LY



CHAPTER 3
~ . METHODS OF PROCESSING EVOEED POTENTIALS
3.1 Overview of the Chapter

Evoked potentials have been in use for almost_fpur decades'now.
Many pethods ?rom photographic gpperimpgﬁition'and ﬁisual analysis to
épecially designad computer systems with sophisticated signal processing
techniques have been used in its apquisi@ion and processing. In this
éhapter, we review in detail the présent day techniques that are wide}y
Psed and are related to our :gsearch. In section 3.2; we give a brief
outline of electrode requirementé, electrode montages (10-20 syste;L
amplifier requiréments, ete. for the_acquisition of BSAEP. ngﬁion 3.3
is & comprehensive raview of the signal processing-teéhniques ugsed for
evoked potential studies. We look at the assumptions involved, basic
theory and applications of the conventional averaging techp@que and
variants thereof, types of optimal Wiener ftltering. time varying
filtering-and pred;ctor-subtractor—restorer filtering. In section 3 by
we review the statistlical an& syntactic methods of pattern recognition

L

as applied to evoked potentials.

AN
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3.2 Acquisition ’o'r“Evoked_fatentiais

In this section, we take a brief look at hardware-roquirements
for EP acquisition. Tt is to be noted that the requirements vary.
depending on the type of EP being processed. References like Kiloh et

. {1981) or Chiappa (1983) give the technique of measurement for gll
types of EPs, Here, we concentrate on the requirements for the
acquisition of BSAEP since, in the Succeeding chapters, our signal
processing and pattern recognition techniques are developed with BSAEP

as the example for application,

BSAEP is recordec'l'from the vertéx (Cz) on top of the skull with
reference electrodos on the earlcbes (A1-A2) (see figure 2.1). The
locations on the scalp are determined under the International 10-20
system (Kiloh et al., 1981). Conventional e.e. g- gold disc electrodes
are used. Although gold electrodes have poor d.c. and low frequency
responso (Geddes and Baker, 1975), it ig entirely adequate for BSAEP
since most of its energy lies in the 400-1500 hz band (Madhavan et al.,y
1983). The stimulation used 1is auditory biphasic clicks lasting for 200

' 'mi(:rosaconds, delivered to the ear i\l}rough headphones. Stimulation is

repeated at the rate of'10 hz." The voluu;,p of the clicks is usually 60
to ’75 db above hearing thres?d : -

Differential amplifiers with high commen mode ro;]ection ratio and
low noise dre enployed for amplification, considering the small

epplitude of the signal (less than 1 microvolt), Amplification of the
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oraer of 1,000,000 is usually required. Since thé energy of the signal
(400-1500 hz) and principal noise (maximum aroﬁnd 10 hz) lie in widely
aebarated frequency bands (Boston, i981), ‘bandpass filtering can»be
gainfully employed.” In clinical work, bandpass filtering Qf 150 fo 3000
hz is used. The consequenée of this is that whereas with an unfiltered
response; the signal to noilse ratio m;y be as adverse as -20 db,
bandpass filtering improves it to the order of -5 db to 0 db. The price
to. be paid is the phase distortion and hence latency distortion in the
eatiggted EP (Boston and Ainslie, 1980). However, 150 to 3000 hz is
congidered qgite acceptable at-low orders of'the filter.

s Th§ f%rst 10 millisecdnds after stiﬁglus onset is analog to
digital convérted at rates of 10 to 50 Khz which sntisfieshthe Nyquist
rate. Repeated responses a;; acquired and ensemble averaged by a
'computer. Averaging around 2000 responses enhances-the gignal to noise
ratio sqﬁficieﬁtlf'ang the estimated EP is displayed on the video
monitor. The‘clinician or the technician then visually identifies the
peaks and the}normalcy of the EP is determined. --

N

3.3 Current Sign/é_.l ‘Proc.:eaaing _Techniques . '

Averaging is the true and tested method in EP processing.

Desirability of quicker and better estimates of EP has  spawned
\ )

considerable research into alternate methods. A consistert feature in

- L ] .
all these approaches is the aid of reducing the number of repetitions »”

-

required before an acceptable EP estimate is obtained.
N

-+

-
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3.3.1 Conventional Averaging

Referring to figuré 2.3 in the last chapter, we can wrife the
equation for the observed response, d on the scalp.at time instant i for
j th repetition of the stimulus with the ascfmptions that aignal and
noise is additive, signal, s is deterministic, noise, v is a zero-mean
random process and that signal and noise from tAial to trial are
uncorrelated. ™,

a5(1) = (1) + v,(1) §=1,2, 0000 L

Expected value of d(i) then is
E{T3)] = B(s(1)] + E(v(1)] = s(1)
which means tﬁct cns%mble average is the estimate of single stimulus EP
(sst EP). With the additional assumption that the average noise power
is the same in each realization in the ensemble, it can be shown that
signal to noise ratio is improved proportional to the square “oot of ‘the
" nunmber of repetitions, N. However, it is easy to sge that the
assumption that.the signal is deterministic is untenable because we
cannct expect a complex system like neu;onal-pathwﬁys to respond
identically to each'stimulus. Thus, in the brocesa'of a;eraging, a great.
deal of potential information about the individual responses or SSt EP .
is lost. 1In any case, averaging is the most popular method of EP
0

processing, -mainly because of its conceptual and computational
f,.

simplicity. .o



3.3.2 Improvements to Averaging

Implied in the assumption that signal (or SSt EP) is

deterministic’ is that its onset delay after the stimulus is invariant.
i

However, in practice we do see that there is jitter in the response.

Many methods have been proposed to accomodate this factor.

1

Basar (1980) used a method of eelective.averaging where each
response is visually inspected and ;acceptanle‘ ones are averaged:'This
is not so much to compensate for jitter in the response than to

K eliminate. responses with obvious ertifacte which could deteriorate the

ensemble average.

b

crogs ~correlated with a templete (typically a conventionally averaged

EP) and shifted till cross-correlation is maximized. Such 'aligned

responses are ensemble averaged to give the estimate of 55t EP. 'The’ ‘

fact that SSt EP over different repetitions may have shape variations,
'?- the background e.0.g. may have shapes simtIar to the.template and data~

lengths are not long enough to calculate-reliable statistical
' ' Y.

‘expectations intreduce‘errors in this estimation procedure.

-

Aunon and McGillem (1975) proposed a method wherein each

individual: peak of the S8t EP is aligned before averaging. Individual .

responseefgig pre-processed by a minimum mean square error filter using

a prefiously averaged EP as the desired response. Each peak is selected

In cross- correlation_averaging(Woody,1967),each response is

L]
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by metching it with a template and a histogram of the number of peaks at
eacn iat’ency is obtained. By statistical procetiures, pe'aks are asalgned
to each latency interval. In each of thene *nter‘i.rals, detected peaks
,are aligned and averaged. Although the minimum mean square error filter
can distort the signal to some extent and similarity of 58t EP and

€.8.8. components can_lead to. incorrect alignment this method performs
1

"better than conventiona.l averaging.

Thege methods iare reviewed in more detail in Aunon et al. t1981).
A few more methods of improvemen‘t to conVEntlonal averaging liks median
a,veragi'ng (Borda and Frost, 1968), frequency domein averaging (Auerbach
ana Haber, 1974; Rodriguez et al., (1981)) are available in the

literature. L. oL
3.3.3 Wiener Filtering Techniques -

Based on Wi’bléer's optimal filter theory (i9l,9), which 'minimizes
tne mean SquAre .oi‘ the estimation error, Walter (1969) fmoposed its use
in EP ‘processing. Dojrle (19';5) propc;sed some modifica‘.tions. In a geries
of articles, de Weerd (1981) explored this technique and extended its
‘application to EPB. Tu and McGillem (1983) have approached the optimal

'fi]:tering problem from least square_s estimation theory.

As we have seeén earlier, the response, d on the scalp to a’
stimulus can be written as the sum of SS’c.. EP, s and e.e.g., V.

a{i) = s{1) + v(1)
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From Wiener filter theory, we can write the transfer function of

the optimal filter which will estimate the signal, s{i) as {see Kailath,

1981)

.Sﬂ(mf
Hlw) = ~

S w+S (w)
k1 Vv

W v

.

‘x, .

where Sg (w) and §,, (W) are the power spettra of S5t EP and e.e.g.. The.

above formulaticn assumes independence between s(i) and v(i) and their

étationarity. As the power spectra of these quantities are. not known,

we will have to work with'the average spectra of individual responses,

d(i) and that of, its edsemble_average,/gddmﬂ and Sjjw) respectively.

For filtering ‘the ensetible dveraged EP (Doyle, 1975), it céh'be easily

shown that the appropriate filter transfer function is

5

N S,y
H (o) = ____[ 1 2w
a N-1

'/. .

The fact that e.e.g. 1s sometimes non-stationary and that
estimates of spectra ratherijhén true spectrya are used compromise the
' A
effectiveness of this filtefipg scheme. SN

!

3.3.4 Time Varying Filtering ' *

. R A\ . '
*de Weerd (1981) and de Weerd and Kap (1981) assume signal and
noise to be non-stationary and suggest a' time varying filtering
technique. It can' be characteriséﬁ as -a bank of constant relative

bandwidth filters (bandwidth proportional to the centre‘freqqency of the



' Q
band), followed by tlme-varying attenuators which are controlled by the

estimated time-varying signal to noise power ralfio in the correspo.nding
frequency bands. The outputs of these attenuators are summed to give the
estimate o'f the signal. Even though this filter is available on Nicolet
\‘f*thfinder EP equipment as a.?fftware package (de Weerd, .1984), there is
not much published information regarding its performance.

¥

3-3.5 Predictor—Subtractor-Restorer Filtering

Kaveh et al. {1978) made clever use of the information in pre-
stimulus e.e.g.. If indeed,. the pre-stimulus e.e.g. is higflly
correlated with the e.e.g. in t‘he post-stimulus, as will be the case for
short-latency EPs, that ini‘o-rma.tion can be used in extracting S8t EP
from the response, - oA

Sk

The post-stimulus response is filtered using the autoregressive .

(AR) model of pre-stimulus e.2.g.. The result is a suﬁ: of 35St EP
_distorted by tla-:_i?s filter (coefficients of which are known,. the AR
parameters) and whitened (assuming pre and post-stimulus e.e.g. are the
same) post-stimulus e.e.g.. This mixture of signal and noise lends

itself readily to Wiener filtering. The distorted signal obtalned is

inverse filtered using the knowr AR %‘aﬂ{icieﬁ‘cs to obtaln an estimate‘

of the 5SSt EP. Some improvements to this wethod, mainly in the Wiener

" filtering step::_*_have been suggested by Rauner et al. (1983).

. It ma;} be noted that instead of the block method of processing

Lo d
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-usea By Kaveh et al., an adapt?vé strueture invblving an AR lattice
pfedictor, k-step adapﬁive line enhancer Fnd in?erse AR lattice will be
an attractive alternative. |

The idea of using pfe-stimulué e.e.g. 1s excellent but the choice
of application to visual %P that Kaveh et al. made maynbé inaﬁpropriate
(cor%elation_between pfé and post‘é£imu%us e.é.gz in the case of this
near-fiéld EP may not be high and hence not whiten the post-stimulus
e.e.g.). The assumption of stationarity of the data and the rather

.

simple“sighal spectrum that Kaveh et al. chosé (a low-pass function) in

.the formﬁlaiion of the Wiener filter may have contributed toléhe ratﬁér
unspectacular results. : ‘ , *

As we have seen in'th;s se;tion, the fieid of EP signal
proceésing has a rich history. The non-linearit} and nén—stationariﬁv
of the system under stgdy is a hajor stumbiing block in these effﬁrfs;
.However, £he clinical and resedrch importance of estimgting-singléﬁ

-

qﬁimulus EPs (as opposed to averaged EPs) cannot be overstated. ~In our
o . | )
approach, we borrow some ideas that were discussed here (like the use of -

pre-stimulus e.e.g.)’and make use of the new developments in the field
of signal processing like adaptive filtering, lattice structures, etc.,

This is the subject matter of PART B of this theéis.'

3.4 Current Pattern Recognition Techniqp§

-

The ma%in motivation féf developi Ipattern recognition and,
_ 5 . ) .

o
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classification schemes for evoked potential arises out of a need to
supplement the visual analysis of EP with & more objective and less

tedious- method. In the absence of methods to estimate single stimulus

- evoked potentials, some classification methods have utilized features

obtained from the complete response (ie., 5SSt EP plus e.e;g.). The

..features used in these statistical classification methods may have no

direct felationship to features like peak latencies and shapes used in -
usual EP préctice.— Nevertheless, the ability to automatically classify

averaged or SSt EP is a very useful addition to EP methodology.

}, \

The epproach w|e have used i.s c'alled syntactic pat.t.ern recognition
where information from the structurally specific shapﬁ of the averag.ed
or Sst EP. is utilized, s';i.milar to the clinician's épproaciﬁ.' Howeve‘r,
for the sake of completeness, we will review briefly the statistical

pattern recognition techniques used:for evoked potential classification
3.4.1 Statistical Methods

In the method of statistical pattern récognition, for unlabelled
samples, clustering is done to find class defining information after
extracting features using, say, Karhunen-Louvg .eXpansion.

Cle}ssd.fi;ation is done based on distance metrics, prebability measures

or by directly dériving a diseriminant function from the features.

in the litera(ure, we see a variety of simple features used fo‘r

pattern recognition. Aunon and McGillen (1982) used the amplitudes at
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each instant of the waveform as the features. Ono et al: (1981) used the
AR aoefficienis of the EP model as their feaiures. Others have used
spectral components estimated by maximum entropy.method (Lam et él.,
1982) or by Walsh transform method (Larsen’-and Lai, 1980). These can be
looked upon as choices sub-optimal to Karhunen-Louve (K-L) expansion
since K-L expansion uses basis vectors estimated from the data - whereas
gther transform methods use pre-selected basis vegtérs‘(Ahmed and Rao,
j975). Most of the classifiers used are either based on probabilistic

measures (Aunon and McGillem, 1982) or discriminant functions (Aunon et

al., 1982; Ono et al., 1981).

Childers et-al;.(1982) proposed a novel way of feature selection
using seémented data. Instead ﬁf'selecting maximﬁm eiéenvalue
eigenvectors as the basis; ﬁ figure .of ‘merit As used to select the basis
vectors. Using & linear diseriminant funct;on,.they have achieved very

low probability of error (sometimes zero) of classification.
'3.4.2 Syntactic Methods

The method of syntactic pattern tecognition was developed by Fu
(see Fu, 1982 for a complete exposition of the method) from principies
of TheoreticaIALinguistics and Computer Science. Tou and Gonzalez

(1974) also éive a clear description'of the method.

When the pattern to be recognized and classified is structurally

Specific, the syntactic approach offers a computationallyisimple and

o
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[
conceptually straight—forwafd method. In the case of BSAEP, we have

seen in figure 2.2 that it has a well defined.shape. Most EPs exhibit
this property. This being the case, the syntactic method further offers
the advantage o?-constructiﬁg a descfiption of the pattern under study
which, as we will sée in PART C of the thesis, is a major advantage in
clinical implementation. Begides, this{method uses the vérj parameters
used by-the clinician such as peak shapes, amplitudes and latencies, té

arrive at the classification.

In the literature, we find&knsﬁances of syntactic methods being
used for e.e.g. analysis (Bourne et al., 1981; Bourne et al., 1980),
where features extracted from the e.e.g. power spectrum are the
primitivés. We do not find in the literature, any application of
syntactic pattern recognition to evoked potenyial data. In PART C of
the thésis, we will discués the theory of the syntactic‘method'and give

details of our work in the area.
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ADAPTIVE FILTERING
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CHAPTER 4

THEORY OF ADAPTIVE NOISE CANCELLATION.USING

WEIGHTED EXACT LEAST SQUARES LATTICE

4.1 Ovébview of the Chapter

A}
L]

As an alternative to conventional averaging and the other
methods discussed in Chapter 3, we propose adaptive noise cancellation
using weighted exact least squares lattice algorithm. The theory of
adaptive noise cancellation ig presented in section 4.2, In section
4.3, we derive the new weighted exact least squares laptiée aigorithm
in the Joint estimation form for adaptive noise cancellation. This is
the most general form of the lattice in that weighting can be attached
to the data depending .on a priori information available about rthe

process{es}, statistical robustness issues, ete..

-

4.2 Theory of Adaptive Noise Cancellation

‘Even though adaptiﬁe noise cancellation has been sporadically
used since the late 1950's, this technique has become , much more

popular since the landmark paper of Widrow and.colleagues in 1975. 1In

33
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&

that paper, they givela thorough treatment of the theory, limitations

.and appllications of adaptive noise cancellation {Widrow et al., 1975).

One of the classical problems in signal processing is

estimating a signal corrupted by additive noise. There is a large

"body of literature dealing with optimal Wiener &£iltering to achieve

this objectivén In section 3.3.3, we have reviewed some applications
of ﬁiener filtering u;ing fixed filters in evcked potential research.
A .priori informétiqn regarding signél énd noise processes a:g\required
in implementing such fifteqs. An alternative that has gaiﬁbd—ﬁﬁhch
popularity in recent years has beén filters that are.data adaptivé.
Such f;%ters automatically adapt to thg incoming data to achieve the
objeétive of filtéring out the noise. Whether fixed or adaptive, such
filters requirg either a priori information regarding the processes or

a training sequence to tune the adaptive filter.

v

— P

Adaptive noise canée};a;ion is an ‘alternativeo where an
adst{pnal éource' of noise, gélled "reference input", correlated to
the noise corruptingjthe signai, is made use of. The source o} signal
;long with the 'additive noise - is called éhe primary Iinput". The-

reference Input is filtered adaptively to give an estimate of the

- i

primary input noise. This estimate -can then be subtracted from
primary input to achievge leveliiof neise reduction with.little signal
distortion usually, impessible with fixed filters, if the conditions

are appropriate.
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The configuration for adaptive noise cancellaticn is shown in

figure 4.1, u(i) and d{(i)} are the reference and primary inputs

respectively. Primary input is the sum of the signal to be estimated
s(i) and noise corrupting it, v(i) which is correlated to u{i).
Reference input u{i) is adaptively filtered to yield anvestimate, (1)
of noise in the primary input, v(i). V(1) is subbractéd from primary
input, d(i) to give the error, e(i). The'adaptive filter coefficients

are automatically adjusted to minimize this error.

Thé assumptions involved in adapt&ve necise cancellation are:
(1) Primary input contains signal, s(1) corrupted by additive

noise, v(i).
A1) s(i) is uncorrelated to v(i) and referezce input, u{i).
'(iii) u(i) is correlated to v(i).

"

The adaptive noise cancellation problem as stated above can be
_considered as a linear least squares estimation probiem/where we
estimate the _parémeters of phe' multiple linear regression model
(Haykin, 1986) relating u{i) to d(i) (in fact, u(i) to v(i) due to the
" above mentioned assumption (ii)): 'Theno using an Mth order linear
transversal filter, figpre 'U.1 .can be represented as in figure 4.2
where 2z-1 is the backward shift operator. This problem is also called
joint process estimation because we estimate one process {d(i)}

N
-
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Figure 4.1 Adaptive noise cancellation configuration.
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(actually (v(i)}) Ffrom observations of g related'pr‘ocess (u(i}} by
embedding them into a joint process "[d(i),u(i)} (Lee, 1980).

" Let us consider the real, scalar case of the problem proposed
above. . To find the least squares estimates of the parameters of the

multiple linear_regression model, choose the tap weights, Wk such that

the 'pe.rformance criterion, ‘
. \
Ew . ,w)="Y e (4.2.1)
. i= .
1
is minimized, where
M .
b e =di ~ > w uli-k+1), bsisi (4.2.2)
k‘-l k H 2
Define the following M vectors: .
(1) Ref‘erence input vector, rum
u(i—1) ‘
. ui)={ =
al - -
] u(i—M+1)J
(£1)  Tap weight vector ’ 1
N g ' [.wx -
¢
W
=1 .
3 ) : -
wMJ

Equation for error, e{i) in (4.2.2) can be re-written as:

bl

eli) = d(i) — yT(i) w, i=sisi



‘for all the (iz-ij+1) time instants. To writc all the (ip-i1+1) equa-

tions in a compact form, define the Roilowing (iz-i1+1) vectors:
i

(1) Ercor vector, _e(il)
c(1l+l)
e= | -
Le(i,.,}
(ii} Primary -input .or . Q. o . ro .
vector, : d“1) i) vii)
ST N R vli = 1)
d = [ - = - + :
. - - —
| diy | sy | | wi) |

or d = s + v where s and v are as shown above and s(i), is the signal

and. v(i) is the additive noise in the primary input (refer figure
4.71). New. ‘all the (ip-11+1) equations can .pe written in a compact

form as below

~
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A

esd-Aw . - (4.2.3)
\ : : T
- : . : . N
where A is a ({ip=11+1)xM) Toeplitz matrix.
r gT(iIS-. 1. . k
_ i+ 1 .

- A= - f

N ul(i,)

Equation (4.2.1) can be rewritten as . "
E(w) = 2T 2. ] (4.2.4)

To find the least squares estimates, 4 of

1=

, var-j‘.v_a such that E(w) iz
]

a minimum. Equivalently, if we <Zifferentiate (4.2.4) Wwith respect to

—

™
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(w.r.t.) w and équate to zero, the solution is the estimate we destre,

Q.

3 de 3T o ' o
Lo 2),
aw aw / ~ .

But de/ow = -A from equation (4,2.3). ¢

a . 4.2,
—E=-2ATe=2aTAw~-ATd) ( 3
dw .

~

To find W, i.e., value of w when E(W) is a minimum, equate (U4.2. 5) to

zero to get

L]

. : " AT Af =4ATd & (4.2.6)
This is the deterministic system ‘of Normal Equations. -The

—t

minimum error using the Least squares' estimate of the tap-weights, w

is

1<y
AN

€min = & - A
C sse(y-a® .

éecondAtefm on the ?ight gand side representg the ﬁeasuremenﬁ
noise in the multiple linear regreséién model;reiating u(i) and v(i):
Hence, better the model, smaller the second term will 'be and €nin dril

be the "best" ' estimate of signal s in the least squares.sense.

The minimum value of sum of error squares is-

E . =gT,‘ .
min min “rmn
b o . L (4.2.7)
=d"d-dTa® N

Taking '(4.2.6) and (4.2.7) together, augmented normal equations

‘can be written as ..
(4.2.8)

SR I by

b X
wheré QM-is a null vector of order M, *

- 0 * . . ,
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Widrow et- al. ('1975) give an alternate exposition from
s;tdchastfic point of view. Instead of the: least squares al‘gori‘thm as
in (4.2.6), he used the least mean squares (LMS) algorithm (Widrow and
Hoff, 1960), which i:]:t/mugh;simple, suffers FProm problems in
éonvergence, especially when the input covariance matrix%és a lérge
eigenvalue spread (see Haykin, 1986 for a detailé:j discussion). Sinha
et al. (1979) and Sinha et al, '(1981) give some applications in state
estimation. The adaptive noise cancellatien pr'oblernvis recast as a, -
system identification problem by Friedlander (1982a) who arrives at a

-

more general infinite impulse response ({{IR) :adaptive filter structure

{cf. the finite impulse resp'onse“: FIR) structure due tt:.'_) the
transversal 'filter model useé in all otl';er development of adaptive
noise cancellation t..heor'y ineluding ours) which is very complicated
and can have stability problems. In' several pub'l‘i.catiorrs, Gardner
(1981a) proposed structures for eombat1ng the probfém of SLgnal
‘]:eakage into .reference} input and meuhods 41) realize TIIR f‘ilter

. -

structures {(Gardner, 1981b). ¢

. . -
. -

The least squares solution as in (4.2, 6) can be implﬁmented in

many different ways. One method to solve for the tap wexg.j vector 1s- -

by récurs#.ve least squares method where matrix inversion is avmded

using matrix inversion lemma (Ljung and Soderstrom, 1983). This

adaptive methed gives exact least squares solutions at ever‘j instant
N

-

of time. Another method 13 to replage the - tramsversal filter
.

“
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structure by a lattice configuration which is the subject matter of
. []

section 4.3, Over and above the advantages provided by the lattice

42

structure In terms of modularity, availability of estimated. signaf

from lower Erders of the lattice simultaneocusly, ete. (discussed'in
detail in the next section), successive orﬁhogoﬁalization _provided
only by lattice ‘structures offers advantages in convergence rates.
Two typeslof lattice algorithms are available (i) gradient type and
(ii) 'exact. The gradient type lattice algorithms (Itakura and éaito,
1971; Makhoul, '19753) have fixed step size and -this raffects their
cohveréeﬁce rate adversely Qhen for example the }nput is non-Gaussian
or has ill-conditioned ‘covariances (Lee, 1980}. The exact lagtice,
Eouevef, ‘has a data dependent’ variable which gives it very rapid

convergence rates (Lee, 1980; Haykin, 1986). The name "ekact" comes

. - .
frem the fact that, as in the case of recursive least squares

" mentioned earlier and‘ unlike the case of the gradient typé' lattice

mentioned above, the algorithm gives the exact least squares solution
at evéry instant of time. This implies that parameters, like
reflé&tion coefficients of the lattice are not approximated (Itakura
and Saito,.19?1; Gibson;r1962) but exact expressions are obtained for
theigJ,upaate’ {Goodwin -and Sin, 1984). Both the gradient type and
exact least squares lattices have found ;any'applications iﬁ adaptive
neise caneellation (Ayala, 1982; Madhavan et al., 1984; Gardinervet
' ~ ' 4

al., 1985). Other than noise cancellation, the joint estimation form

can be utilized for adaptive channel equalization {Satorius ‘and Pack,
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1981), echo cancellation (Gritton and Lin, 1984), adaptive line

enharicement (Reddy et al., 1981}, etc.

4.3 . Derivation of Weighted Exact Least Squares Lattice Algorithm

in the Joint Estimation Form

4.3.1 Introduction

v

Since the publication of the derivation of exact least squares

»lattice (LSL) by Morf in 1977, there has been a tremendous amount of

interest and published litefatufe in the field. This s not .at all
surprising‘since thé.exact LSL‘algorithm exhibits modularity in,its
structure which makes it well-suited for 'VLSI implementation, has nice
stability properties, robustness to variations in the eigenvalue
spread of the covariance matrix of input data, successive
orthogonalization and decoupl&ng of stages, excellent éonvergence
behaviour and very fast paraméter Ltracking capability (Lee et al.,

1981). Alternate derivations of exact LSL algorithm have been

presented by Pack and Satorlus (1979), Shensa (1981), Lee et al.

[0
(1981), Samson (1982), Shichor (1982) and Haykin (1986). In his Ph.D.

thesis, Lee (1980) gives both algebraic and geometric derivations of

the exact LSL. & comprehensive review of the literature .relating to
exact LSL algorithm 1s presented in Frieqiéndéb‘s' review paper in
1982(b). _ Some recent papers have discussed the error propagation



properties of LSL algorithms (Ljung and Ljung, 1985; Swanson and

Symons, . 1984) . o : '

In otir initial application of .adaptive noise éancéllation, we
implemented the normalized exaect least squares lattice algorithm as
developed by Lee et ai. (1981). This algorithm was tested using both
simulated and real evoked potential data (Madhavan et  al., 1984).
Although, this implementation provea successf&l' in general, we
encounteéed situations where the algorithm had to be resilient to bad
or'abﬁormal data. In‘these cases, the normalized exact LSL algorithm,
rather than being resilient, would adapt very rapidly to the bad data

(a tribute to the algeorithm's fast parameter tracking capability!;}.

|

Although,\fasi parameter tracking capability i5 desirable in general,

algorithm's immunity te bad data {robustness) is also important.. In

an initial attempt to incorporate this feature (discussed in detail in

chapter 5, which presents the implementation and testing results for

~

thé normalized exact LSL algorithm), we had to use an unconventional

weighting scheme involving the fo;getting factor;, \.
-

£

The above mentioned factor provided the main motivation for
developing a lattice balgorithm where some suitable - weighting scheme

can be used for "robustness. A second motivation is to Have a

counterpart to the weighted least.squares algorithm (eg., Goodwin and

Payne, 1977; Sinha and Kuszta, 1983; Ljung and Soderstrom, 1983) in
the area of lattice algorithms, thus giving a very general algorithm

-~
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which we wWill call Weighted exact Leést Sduares Lattice {WLSL)
.algorithm. The weighting on a performance criterion (eg., equation
J4,2.1) can be chosen to give estimates d}fferent properties. \Using a
weighting of ,the form g(n,i) such that 0 = g{(n,i) s 1, where at time
n, index i varies from 1 to n, the properties we are interested Ln are
.(i)”.forgetting prefile ‘such that 'statisticai variations in observed
data can be followed and (ii) robustness such that estimates are
resiiient to bad or abnormal data,

If g(n,i) = An-i1 aj, where 0 = )\ aj < 1, objectives (i) and
(ii) mentioned above can be satisfied. Value of X\ is chosen according
'to the expected non-stationarity in the data. ' The method to choo§g aj
for robustness will be discussed after the WLSL algorithm is derived.
In the development of the WLSL algorithm, we follow closelj the lucid

and systematie derivation in Haykin (1986).

In deriving the wéighted exact least squares lattice algprithm
in joint estimation form,. we will first derive prediction lattice and
théﬁ the joint estimation form. Putting the least squares solution
discussed in section 4.2 in. a general context, it may be noted that
(see figure U4.2) d(i) can be any desired signal and u(i), any input
éignal. Dep%Pding on their choices, error, e(i) may take well-known
forms. For example} if the desired signal, d(i} is equal to the

input, u(i) and input vector u are M successively delayed (past)
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inputs, error e(i) is the forward prediction error (Haykin, 1986). ' In

an analogous fashion, backward prediction error can be obtained.

4.3.2 Adaptive Forward Linear Prediction

[

The problem of linear prediction has been discussed at length
in the literature (eg., Makhoul, 1975b; Burg, 1968; Silvia and
Robinson, 1979). _ Based on the least squares eétimation procedure
deseribed in section 4,2, let us develop' Ehe adaptive forward

prediction error filtgr.-

Considering the desired signal as u(i) and input vector uy(i-1)
as the M past inputs, i.e.,_
. ui—1)
uli—2)

n E\[(i—l) =

uli—M)
and the tap-weight vector for prediction h(n) optimized in the least

Squares sense over the observation interval 1 < i = n, {?plying

prewindowing (Lee, 1980), Mth order forward prediction erfor at

instant i is .

£y = uld - gg - Uhtn) (4.3.1)
where -
- hl(n)
b ="
..\. hM(n).
- -
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Equivalentlyy

" T . (4.3.2)
- 1= gMHh) g\_M(n)

where
1
—h(n)

implying a transversal filter structure as shown in figure 4.3 (fy(1)

-~ uti)*
EMX“QF{EMG—H

and aM(n)-- l

corresponds to emin(i) in secticn 4.2).

The performance eriterion we choose to minimize in this léast'
squares procedure is,a‘weiéhted one, where by the use of a weighting
of the type g(n,1) §“An‘ia1, Wwe can give dééired properties to‘the
estimates. [n this weighted case, let us dencte the minimum. value of

weighted sum of forward prediction error squares as

1

n
. . Fy ) = St ailf_“(m‘
i=1
finalogous to (4.2.8), augmented normal equation for this case.
can be written as

Jut? u) gl li-1) ! Fytm
~ ' _ ) (u.3.3)

n .
z )\n_‘ui R .
i=1 u@ g, (i~ 1) gyli= Duy =1 | _ 0,

where Oy is a null vectbb of order M.

If we define the matrix on the left hand !ﬁde as <DH+1(n),

{(4.3.3) can be writéen as

s

A
FM(n) (4.3.4)

D, A gm(n) = ‘

Oy

®y,1{n) can be seen to be the ((M+1)x(M+1)) deterministic

correlation matrix of the input to the forward prediction error E&lter.



u (i)

aq4(n)

%

F’igure'

s
-
-

u (i-1)

' u {i-M+1) u (i-M)
I Yy

ay{n}

ay{n)

——— —— —

a1 (n)

ay(n)

4.3

>

_Forward prediction error filter of order M.
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1
in figure 4.,3.
n
! (n)= \- AP (iul
Prtat 4ty gy, 0
+1 i=l + + g-\\
which can be seen to be equivalent to the matrix on the LH \_ﬁ\\\\\\$~’
(4.3.3), keeping in mind the partition ( R
uli)
)=
e 10 ay li= 1) I
Define ,
(1) Utn) = '? 3 o uG?
1-1

(ii) Deterministic  cross-correlation  vestor  between . desired

response, u{i) and predictor input véctor, uy{t-1),

A
n

8= \o-i a; uli) u (i-1) - (4.3.5)

i=1

(1i1)  (MxM) deterministie correlation matrix of predictor input

vector, uy(i-1)

. :
P (n—1) = Y A" 'u g, (1—l)u -1

l=l ' -

= z N TR T (4.3.6)
i=1 . .o
where B{ = aj41 . (4.3.7)

Withs these three definitions, ®y.q(n) can be represented as

. T
vm 8, S (4.3.8)
@ = ~ .
g @ (-1 ‘
Separating terms on RHS for i=n in equation (4. 3 5) and for i=n-1 in
{(8.3.6},

8,(i) =18,(~1)+a_ulmy,(n-1) ' (4.3.9)

T (4.3.10) 5
Pym- =3 n-2+B _ uin-Lgln-1) . S
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Using the well-known matrix inversion lemma in (4.3.10), where

‘ : 1
— . —1_ 1 . L ) _
A-QMm—l). B —AmMmaZL C—EMU—IL D=

Bn-l
and
A-l'= B_BCmD+CT+BC'CT B,
¢M4(n-1) can be written as
o ln-1) = A7 0y =2 - AT @G -2y gy in-1)
BTt +uy T—DA" g n-2)uy (n_nl
- wlin-tA T eg n-2) {4.3.11)
Define
, AT e -2 uyn-1) (4.3.12)
k.(n=-1) = - -
- L i M T e n-2u, -1
: | Uy n— M n— EMH—
e

As we shall see presently, the gain vector ‘EM(n-1) has some -

interesting 1nterpre€ tions. Using (4.3.12}, equatlon (4.3.11) can be
written as . '

o7 n-1 = A7 0y -2 = A kel (n-nm"(n 2) (4.3.13)

Using (4.3.8) and the expression for ayn(n), the apémented

normal equation (4.3.4) can be written as

Uy 8l l [ [FM‘"’ l 14,3, 14)
§,@ @, m-1)"" —him) 8y '
which is the same as equation (4.3.3). ’
From (4.3.14) v
N 8 n) — yin—Dhin) = 0y
or ] . 4
hin) = 2 tn-1)8,(n) (4.3.75)

Using (4. 3 9) for @1(n}, (4.3.13) for ®y-1(n-1) and (4.3.7),

B = hin—1) + k, (n—l)[u(n)—u (n~11htn=11] (4.3.16)



51\

The term ([u{n) = QMT(n—l) h(n-1)] has a special significance,
. .. ) \

. Comparing to (4.3.1), one can see that what i{s different here is that

tap- welghts from the prevmus 1nstant h(n-1), are used. Define

qM(n)zu(n)-/-u (n—l)h(n—l)—-uT () a,(n=1) (4.3.17)

=M =M -
ny{n) is a tentative estimate of forward prediction errdr'fH(n) before
the tap-weight vector is updated nM(n) is called the forwafd"l
prediction innovation of order M Now, (W3 16) can be wr'1tten as

' hn) = htn=1) + k(=D ) (1.3.18)

To find the updzlte equation for forward predictton error filter tap

weights, ay(n), write ay(n) as (from (4.3.2))

1
a,(n) =
=M —hin)
1 - 1
—b(n-l)—}_c_M(n—l)r]M(n)
.- 1 0
= I —[ (n)
_ . ~h(n=1) ky (n=1)
. 0 L
L gy () =§M(n_1)_l % Ny () (4.3.193
_M(n—l)

: \ .
. To find the update equation for the minimum value of perfor-

mance criterion or sum of weighted forward prediction error squares,

Fy ) -—V AR 'a|r [

l=l

= ? A" ‘o[u(l)—u (1—1)h(n)]

1=1

Simplification will yield
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n -

Fy(n = N A" o Ju ] ~ @ in hin)

‘
At 4=

i=1

Substituting update equations for Q1(nf and h(n), it can be

shown that

_ : (4.3.20)
Fym =AF n-1+ a n,in}f (n)

Interpretation for gain vector, k'M(n-1) {[forward prediction case]
From equations (4.3.12) and (4.3.13), the gain vector can be

written as

-'—'—k.(
=M
l:l'n—l

But from (4.3.7), ﬂn.1 =a

— 1
n-1)= ‘?“ (n-—l)g_“(n—[)

n- -

1 . 1 '
;-hum—ll— P, (n-Dy,n-1)
n

or

+ (4.3.21)

' — !
kylh—1) = & n-1)a_u,(n-1)| °

Comparing (4.3.21) to the least squafes solution for taptweight

‘as in (4.3.15), k'y(n-1) can be interpreted as the  least squaresl

Sglution for fap-weiéhts‘where the™ input vector }s‘gM(i-1) and the

deterministic cross-éor?élation vector, say -gin) in this case, is
equal to ap gH(n-1).

The general d;finitipn for the deterministic cross-correlation

vector between some desired input, d'(i) and iﬁbﬁt\gecﬁor, uy{i-1) is
. n .‘ .
= > \""a d'iy,li-1) , (4.3.22)

i=1

.'To give the interpretation, we have to know what this desired

.

-~"ihput, d'(i}, has to be. It can be seen that if



¢'(i) = 0 for t'= 1,2,...,n-1,
= 1 N for i=r§ g
equation (4.3.22) becomes

vy _
B'(n) = A a u,fn—1)
which 1is exactly what is required in equation {(4.3.21}. S0, from

‘ o -
(4.3.21), the interpretation for the gain vector, kK'yln-1) is thaz it

{5 the least square$ estimates of the tap-weights when the input
vector is g_M(i—H and desired respense is 1, This s shown in, figure
»

b,

Another quantity of interest in this interpretation is the

5

estimation error, y'y(n-1), shecwn in figure 4.4, 1Tt can be written as
\"“‘(n—ll =1- Ezi(n—lllj'“(n—l)

Substituting for k'y(n-1) from (4.3.12), it can be shown that
1

Yy n-1) = (4.3.23)

-1 T -1
L +a A g“(n—!)q).“ (n-2h, (n-1)

Since

0s\a =1 and gzl(n—l)‘l‘;ll(n—'.’.‘)gul'n'—l) 20,

0= y'“(n—l)s i or 0= y.“(n) =1
Comparing y'y(n) to similar variables in published literature

reviewed in section U.3.1, specifically Haykin (1986), we see that the

effect of weighting used here, i.e., dn, is that Y'uln) decreases from
i to 0 more slowly, or in other words, its {:rajectory lie; above those
in pubvlished literature. Consequencje of this }f‘;ct, a:'s_ue shall see in |
later sections, is that the lattice algorithm can be made robust to

- ) <
bad data. Lee (1980) and Haykin (1986) explain its "likelihcod

‘ratio" interpretation. Also notice the diffarence betueen Le2's

\ -



Ky (n-1) 35(0-1) - === k,;_‘.(n-l) K (n-1)

Figure 447 Interpretation for gain vec‘tor --forward prediction
case. ) ‘ b
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!

" (1980) def‘imtion of 'b and Haykin's (1986) and our def‘mition See

Haykin (1986) Tor more detalled discussion of‘ interpr‘eta,tmns o[‘ “\".

-~
a

: -
4.3.3 . Adaptive Backward Linear Prediction
Our development here will closely parallel the one we adopteci
for adaptive forward linear prediction.

Considering the desired sighal as u(i-M), M input vector,

uy(1), -as K -
uli) ( : : -
u(ir'l) Rl
. G = | -

wli—M+1) . Y e

.and the tap-wéight vector for backward prediction, g(n} cptimized in

the least squares sense over the observation interval 1 = i < n, the

Mth order backward prediction error at igstant, i, \ ’
- N (4.3.24) .
b= uli—M). - g':t(l) gl < o "
where - o
. . o
g,(n) . N
go=| = )
gy ¢
Equivalently, b ' . '
. 4.3.25)
) b, (x) = u m Syin) C‘ . (8.3
where ‘ 4 ‘
a, (i) e
. oy —-g(n) L
s u (i) = [ and [ :
Mt uti—M T
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Notice the difference in partitioning used for gM+«|(i) from the’
forward prediction case (4.3.2). The transversal filter structure for
backward prediction error is shown in 'f‘igure 4.5, Minimum value of
the performance index that Ls minimized to find the welighted least
‘squares estimate of tap-weights is

. - 0 '
_ N\ an-i a2
Bym = > A aiIbM(l)I

g Writing the augmented normal equations in a fashion similar to
b ’

the forward prediction case,

n u, an@  ui-Mg, @ [TE 0,
A ; ' (4.3.26)
(=1 . T, ) 5
i=1 ] uli—M y, (D [uli~M)| L B_\((n)
Matrix on the LHS is
a .
—_— = a-i o, T .
LYY 7\:1 A ag Dy @
i= . )
wHere the p.artiti.on ) - \
g_“(i)
=] ‘
‘ ’ Ml u{i—M)
is used. .
o, . (n)—[ B! (8.3.27)
. : e B, (n} ¢
- Define SN

n
(1) P = S A ia futi-Wf?

iml

(il)\ - Deterministic cross-correlation vector between desired

response?:[g(“i-M) and input vector, uy(i) -

8= > A"la ui-Mu, ) (4.3.28) »
=2 i Rt A

a



u (i — i)
coln) ¢4(n)
2
\
-

Figure 4.5

Backward prediction error filter of order M.
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(i) (MxM) deterministic correlation matrix of input vector, uy(i)

n

G = D A" a0 uy )

At

i=1
Then, (4.3.27) can be written as

“”M‘"’ 8,0 \ l-ﬁ_!“” ‘ Oy (4.3.28)
gl Um-3 ' 1 B (m
date equations for 82(n) and @yln) ‘can be written as
Q,,(n)=A@_2(n—l)+unu(n-.\/l)_v._1_.“(n] _ (4.3.29)
(4.3.30)

. T
®, ) = A Dy(n—D)+a Uy g ©
Using matrix iﬂVEC&MT% lemma in {4.3.30) and defining

—1 g1
A (DM(n-l)l_l_M(n)

kg =7 . | (4.3.31)
— + 17 g oy =1 g, 0 ,

-

we-can Write
| ;:(n) =zl n-1)- Y gfﬂ(n) QT\::(n'—l) (8.3.32)
_ﬁote t at.n the gain vector, ky(n) in equation (4.3.31) 1is
different from ain vector for the forward‘predlction case, gqq(n-1’ in
eguatlon,(u;3.12 . - . |
Noting.from ;;pg ented normal equation in (4.3.28) that
' ‘ . gln) =@ n-18,(m '
and following steps similar to ﬁhe ones in the .forward prediction

case, it can be shown that

gln}= ﬂm”+k(ﬂdm“%m(mymnl

R ra

The backward prediction innovation of order M can be defined as
4.,3.32
LpM(n)=u(n—M)-gM&n)g(n-l) (4.3.32)
.giny=gln-1) +ky(n iy, in) “ (4.3.33)



Update of backward prediction error filter tap weights can be

written as

-g(n) -g(n-1) -k, (n)yfn)
_CM(n) = [ = ‘
! 1
-gln-1) kyg(n) (4.3.34)
= [ - \ - [ 1y (n}
0

As in the case of update eqﬁatlon for Fy{n) in the forward
_ prediction i..case, sum of weighted backward prediction error squares can

be updated as

BM(n)=ABN[(n-f‘) +anlpulmb“(n) (ﬁ'3'35)

Interpretation for gain vector, ky(n) [backward prediction case]

From equations (4,3.31) and (4.3.32),
(4.3.36)

l_{;{(n)= fb_";(p)angm(n) v

Comparing to gain vector in the rorwg%d predictiod/case as in

equation {(4.3.21), EM(n) can be iﬁterpreted as the least squares

estimate of the tap-weights where the input vector -is uy(i) and the

cross-correlation vector is an uy(n) implying that the desired signal =

1 for i=n" and 0, otherqiSe. ‘The corresponding tEinéversal filter is
shown in figure 4.6. Estimation error, yy(n) can be written as

i - T
/_y/u(n) = l-ulmk,m

1

(4.3.37)

-1.T -1
. S+ a A uyin) @ (n-1)u, (n)
Even though this is different from'y’H(n) in the forward prediction

case (4.3.23), yg(n) has the same range and similar interpretations.

-
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=1

u u (n-1) ' uin-M+2) un-M+1)°

Figure 4.6 Interpretation for gain vector - backward prediction
case.



61

Gain vector update

(

Before we develap the update equation for gain vector, let us
establish the relationships between k and y in the case of backward

prediction and corresponding primed quantities -in the forward
*

prediction case. Re-writing (4.3.21)s and (4.3.23) in. the forward

prediction case, .

1. ) (4.3.38)
;'lg_“(n-l) = &, (n-1) Q.M(n—l)

(1]

-

. ) 43,
YM(n-l): I“E-:q("'l)L‘.M(“'” ( »3 39)

The equations (4.3.36) and (4.3.37) in the backward prediction case

are

1
—kym = @7 (n) u, () ~ (B.3.10)

n

‘ . §.3.41)
Yoy () = 1=y ) Ky () .

Rewriting (4.3.80) for time instant, {(n-1) and compai-irig to

(4.3.38), we see that
o ‘a o (4.3.42)
ky(-1)= TEM(“'” ‘
n-l

Rewriting (4.3.41) for time instan,/(n-1), and subst'itut.ing

for k'y(n-t) in (4.3.39), we get

. a_ a, _. : (4.3.43)
yyln-1)= 1-;——+;-—YM (n-1)
n-l n-1
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Equations {4.3.42) and (4.3.43) gives the relationship between
k and y and the primed quantities. Now, we will develop' update

equations for the gain vector.

Rewriting (4.3.40) for order M+1,

1 (4.3.44)
_M“(n) =a ‘D\.tn(“)y-.\nl(")

Using the partitfoning of Uyeq(n) in (4.3.2) and Py, () in

(4.3.8) and finding ¢M+1'1(n) by the method of inverse by partitioplihg,

' .
T

@y (n)=[ 0 : I + —l'—s. (mayn)

1 0, k- Fy(n) =N !

R R 0 fyg(n)
Kyl = a,®3n-1) gy (n—1) * ™ By
0 £y () . .
: =[ -;_(;“(n_“ | +a —— Fm 2, (0} (4.3.45)

: uslng (‘4.3.39)-

The substitution that we did in (4,.3.44) can be done from the

backuard prediction case (equations (4.3.25) and (4.3. 28)) to give

-1
1 0 Qy r .
@ H(n)=[ . |+ m Syinlg,(n)
0 0 M
=M
-
an_q/finally ' . .
-1
) . anM(n)g_\!ln) bM(nl ) .
e e o % B (n) Su'h
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Recognizing that ap (DM-1(n) uy(n) = ky(n) as in equation (4.3.40),
: ) ky(n)
LI [

by(n) (4.3.46)
+ a gM(nl .
0 . 'BM(n)

4.3.4 Weighted exact Least Squares Lattice (WLSL)
The results tV{ Wwe developed in the forward and backward
prediction and gain update sections can now be combined to produce the

WLSL algorithm.

al In the backward prediction case, we bgftitlon uy, (L) as
_ Uy (D T
Uy ) =
‘ uli-M)

and it results in the correlation matrix, as In eqqatién (4.3.28),
Dyl 8yn)

fDM = T
8,(n)  Uln-M

Multiply both sides of the above equation by a (M+1) vector
whose first M elements are am-1(n} and last element, zero.

‘QM(I'!) g“-l(n’
-a.Msl(n) ’

0

Py a0 T
8,(n) By

From augmented normal equation‘in the forward prediction case
(4.3.4), we know
.I"M_l(n)
tbu(fx)g-_“_l(n) = [

Dy

Also, define a new quantity A4y q(n) = QET(n) ay-1(n}. Using

these two expressions in (4.3.47) yields
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= | 0y, | (U.4.48)

A_“_l(n)

Similarly, approaching from the forward predictlon case, the
equation for correlation matrix (equation (4.3.8)),

Um  8t) l ‘

Multiply both sides by an (M+1) vector whese first element is

(D.\H- l(n) = I
N 8,(n @, (n-1)

zerq, and last M elements are ey-1{(n-1}.

Al ey, ()

’ M-1

(4.3.49)
Py (M)

o] =
Gy -1
g O, (0-1) g, (n-1)

From the augmented normal Toaquat:ion in the backward prediction

case (4.3.27),
' UV
QM(n-l)_gM_l(p-l)z I \

- BM_l(n-.l) / /,’

Define A’y q(n) = 8;T(n) cyq(n-1) s

4

Sub_stitutihg these expressions in (4.3.49),

J ‘3:\(-1(")
o {4.3.50)
Py al™ Sy, (0D l = Oy .
8, (n-1)
) Muitiplying both sides by
% A.\{-l(n)
BM-l(“‘”
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I—' : . .T
Ay By M)
0 Ay B, ,(n-1)
© () l — = (4.3.51)
M+l
+ EM_[(n_” BM_l(n—l) g.\(-l
4 L Auﬁﬂn’. i

» Subtracting (4.3.51} from (4.3.48),

g“‘l(n) AM-l(n) 0 F.\!-l(n)— B (n—i)
o, , (m - = . Bua
X 0 BM_l(n—l) QM-l(n..l)
Dy

Comparing this equation to the augmented normal eqﬁation in the

forward prediction case, which is, f

\\: Fn)
QM *1(n}f'-“(n) = 1
Q.l«_l -
we get , '
B = L . (4.3.52)
“ . By -1 g )
By 00y R) (4.3.53)

F ) ="F, (n)- —
M M-1 -
B, _,(n-1)

Multiplying (U4.3.48) by

Ay
F'M_l(n)
and subtracting the resulting expression from {4.3.50), we get
Ly
l 0 SRR SR
<D, . ,in) l— - ‘ £ ] A (nA.
M+l n)a,, ,(n)
Gy (=1 Fy 0 B“_l(n—l)— M-1 M-t
. : F_“_l(n)
At o,

ot
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»
¢
8
Comparing this to the augmented normal equation in the backward
'prediction case, which is,

~ - 9-.\[
®, . . (n) ¢ (n)= l
Ml M By (n)
-«
{ we get .
| : 0 By 0 7 By (4.3.54)
7 P S0 = " F
Sy (-1) L 0
: Ay (A (0 g '
. My (4.3.55)
B, (n) s By ln-t) - —————

M-l .
To find the relationship between Ay_¢(m) and dfM-lﬁn" pre-multipily
both sides of {4.3.48) by the vector [0 cTy_;(n-1)]. We get

- FM-l(n)
‘ 80} ’
[0 o (n-1)] "’un‘“’l W s gl menl | 8y |0 (4.3.56)
a,, ,{n)

M-l
- éAM_ﬁM.
since last element of ¢Ty j(n-1) is unity.

Taking transpose of both sidés of (4.3.50},

[0 g (n-1) @ @) =(a, () Q5 By (n-D)]
Substituting this in the LHS of (4.3.56),

” ' T 2y 0
By (e, B, (n-1)] [
0
since the first element of ay_4(n)

AM_l(n) = AMT‘(n)
Define forward reflection coefficient as
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r (n)=_&__‘ . . ' . (u3-57)

and backwar‘d. reflection coefficient %s

A&(_l(n) A_“_I(n)

r .n= =
M
b, F 0 Fy_n

{See Robins:fp/a.nd Treitel (1980) for an interesting dlscussion ‘on

(4.3.58)

reflection coefficients.) Using the definitions of reflection

coefficients lr}“(u.j.$2) and (U4.3.54), we get

By g L . (4.3.59)
a,(n) = l =Ty l
' 0 Tl nmt)
d - ]
an ‘ i\“
0 \ By (4.3.60)
W = ~NbM
’ PERCE VR
Multiplying LHS of (4.3.59) by QTM+..(n), ‘the flrst term on the
RHS by ' Cos S _ ”
.-l‘-\}""\_.__,/l_-l“(n) T
- o !
EM+|(n) -
. uin—-W)
and the second term by
u(n) T
e (= [ ( l)l
ne
Uy o .

we get T '

t_t{lﬂ(n)gu(n) = g:[fn)gM_ = l"!.__“(n)bm_lln— 1)

or :
= (4.3.61)
fM(n) = fM_l(n) - l"r_M(n)bM_l(n-l) . ‘
A similar procedure-with (4.3.60) will yield _
- : {4.3.62)
bM(n) =by a1 - l"b.M(n) o0
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Equations *(4.3.61) and (4.3.62) &ead to. thé lattice structure
shown in figure 4.7. Two more update equations for "y" and "A" are
required to compiete the WLSL algorithm. In develcping t.his, we have
to keep Inmmind that in the case of HLSL', the "y"'s for f‘orﬁai"d‘ and
backward predictions are distinct (as opposed to in t!’;e unweighted LSL

case) and are related by {4.3.43),

a - Q

Yyl-n=1-

YM("—U ' (4.3.63)

n-1 qn—l

. e A o
-Rewriting equatiod (4.3.46) for order, M, and time, (n-1),

-15_\(_1(“"” _bM_l(n—l)

k m-n:[ 9/
= -1 Sy -
a-lp, (-1

l(n—l)
0—"
Mjﬂ'tiplying both sides by uTy(n-1), -

Ky ln=1)
uy@—1k,@-1) =l (n-1) [ + .

0 . | . N

¥ b ;(n—l) :
M-1 .
P -1 in—1) - (4.364)
“a-tB_m-1) " ST -
Equation (4.3.41) is

Yy =1- g;(n):i;_“(n)
Now it can be ldentified that LHS of (4.3.64) is 1-yy(n-1).

First term on RHS of. (4.3.64) is

a=1 .
=ur (n--l)f: (n-1)
ST EM—l M

" ok
L_nM_l(n—U uln-M)]

0

L =l-yy, (=D
In the second term onRHS of (4.3.64), . i

T i -
) Uyl ey [in-D=by, (n-1)
Therefore (4.3.64) can be written as’
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-/

o by _ n=1) ©(4.3.65)
.y“(n—l)=YM_l(“‘”_‘“n—lm . )
- M-

T %
Writing for time = n, (4.3.65) is

[y

o byt . (4.3.66)
yM(n) = Y.\‘l-—l(n) -a, B, (w . .
. - A

Knowing the relationship between yy(n-1) and y'y(n-1) as tn

.3.65) can be written for y'M(n—1) by -substituting

equation (4.3.63), i
a a

o n-1 n-1 -
in-1)=1- + {n—1)
v:u ’ an aﬂ. YM i .
The result is the update equation for yy'(n-1} and it is
. 2
ey ey o=l (4.3.67),
n=-— =Y Nn— —_F ——————— :
M M-t
) ‘ o BM_l(n—l)

A certain amount of .non-intuitive algebraic manipulations are
required to find update equations for Ay.1(n). Let us start by noting
that since the first element of the M vector, gn“i(n-i) is unity,

. . s
Ay_q(n) can be written as ) ‘
‘ 2, =D \
- T
. ay_ =14, (mQ, |, B, (n-1)] I
t ’ Y > ) hd © 0 - ! f
Substituting for [Ay q(n) 0Ty ; By_q(n-1}] -frem (%.3.50), the
above equation can be written as : T ‘ £ S
L g8y (=1
— T i
Ay =10 g, _m=-1 ¢M{1(3‘ .
Further substitution for'f-bMM(n) as -
_ o - T :
- Py =Dy =D+ a uy iy, () .
yields k C ’ )
G . L . .
. -
~— .
’ Ve
. 2
. \ 1
-.I N
. - * \\
‘ i : \ .’ - -
) . -

A

»
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N QM_l(n—I)
Ay _ (=210 g, (n-1]®, (n—1)
. 0 ’
I a,, (n—1),° ,
|
foe T . - T ) (4.3.68)
4—un[0 s‘._“_l(ﬂ—l)lg.\1+q(n)y_$1+l€n) . l . .
SeVeral substitutions can be performed in this equation. From
(4.3.48},
FM_l.(n—I)
g“_l(p-:l)
¢,\I+1(n_”l ] = v
0 .
AM_l(n—l_) .

and since' last element of c_:M_](n-l) is unity, first term on RHS of
(4.3.68) can be written as AAy_q{n-1).

Using the partition

' u,(n)
. Uy () = ] .
u(n— M) :
L ¥ : gy fn=1)
. . T : .
\ - EM-H(")“ l = 0y (n) J ‘ ‘
. o 0 . .
and from the other partition, !
\ . - uln) i
u,  [(o)= ] -
M +1 Ly @m-v . \

' .
0 g _(n=Dlyy, m=by_(a-1)

Usipg all these simplifiecations in (4.3.68),

= - (4.3.69)
. . AM__l(n)—.\AM_I(na-l)+unbM_l(n—l)nM_l(n) N c.
Stapting with equation (4.3.19) and multiplying both sides by

uly,1(n}, it can be shown that : .

oL _
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‘ fM(n}—r]M(n)y‘“(n—ll .
For order (M-1), qH_1(n) can be written in,two ways using the

relationship between y'M_](n~T).énd yM-1{n=1) in (4.3.63).

. r\l_l(n) ' (u.3-70).
My = ——
=T in~1)
Yv_y
~ fM_l(n)_ . . (4.3.71)
B ul"l un
l ~ + Yy _ (n—1)
0'n—l un-l ' !

Substituting (4.3.70) in (4.3.69),

. b, (n—-Df, [(n}
Ay_ =34, (n-D+a u-t M-t (4.3.72)
M- V- n
YM_lln—ll
Substituting (4.3.71) in (4.3.69), .
b (n—-1{ (n) .
Ay_ =14, -1+ —H= M-l S 43T
’ ' 1 1 YM_[('_]_.”
_ - +
Qn an—l nn—l

- Equations (4.3.72), (4.3.57), (4.3.58), .(4:3.61), (4.3.62),
(8.3.53), (4.3.55)_ana (4.3.67) form the Weighted exact Least Squares

‘Lattice algorithm.
.’ ‘

_ b (a=1f. (m
(1) By =kdy_(n=1)+a_ -2t X
M- M- a_ Y (n-1)
X \«\ M-1
(11) I ' -1
[y i) = ——i— X
E BM_I(n—l) R
(140) e oM™ .
bM . N .
Fu-ﬁ“) .
(iV) . _ k T
fM(n) = t'M_l(n) - l’LM(n) bM_l(n— 1) ' ‘

G
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(v) = - ‘
by =by (a1 =T o) Ty ()

2
(vi) |AM_1(n)|
F.m=F, (- ——
M M- -
L B_“_l(n—l)
(vil) IA“_l(n)p
. B =B, (n-1)— ——
M M1
Fy_,n.
- o by _ (0= 1)
(viil)} Vyla—D=yy_n=-1)~a 8, .(n-1)
‘ M-1

73

It may be noted that instead of (i) and (viii), equations
2

) - . B .
(4.3.73) and (4.3.66) could be used in the WLSL algorithm.

b (n-1}f,, .(n)
. M-1"" M-1
A m=1\aA (n—1) -
(i). M-1 '“,‘—i R | 1 YM_l(n—‘) N
./ a M
un un-—l qn—l

by _ o

(vitt)' Y@= YM-_'('T) ~ % B,

[N

A few comments are in order regarding the WLSL update equations

above.
Remark 1. When the weighting aj=), equations ii)' to, (yili)
including (1)’ and (viii)’ reduce to unweighted LSL (cf.
—_— " Haykin ?1986)). When 'ai=1, yu(n} = y'y(n} (s;.ee equation

(4.3.63).

e
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T4

Remark 2. When aj is greater than or equal ‘to zero but less than
unity, y'y 1(n-1) remains larger than In the unweighted
case, as was discussed in the galn vector update section.
This can also be seen from update equation (viii).

To fully appretiate the conseéuence‘ of this property, let us -
look at the "likelihood r‘ai:i.o" interpretation of "y" in Lee (1980) on
page 124, Dl;'opplng the order subscript and using an "L" superscript
to indicate his definitlcon of "y", which ‘is qiff'er'ent from ours,

ytm = i o3 gy ) _

Dropping the weightings .\ and a for the moment, our "y"-is-

defined as ‘

l .
Y = ———————— (§.3.74)
1 +u, (n®g(n—1)uy(n)

Lee's "y" can alsc be written as (Lee ('1980), page 120) -

oG n-Dy @ (4.3.75)

YL(n) = T o1
o1 ng(n) Sy (n~1)y, (n)

syim = 1-yMa) - . ’ . (4.3.6‘\
The interpretation of likelihood ratio, yL(n) is that it is a
measure of how non-Gaussian the observatlion is, i.e., Hhen. yL(n) is
close to  one, the observation is non-Gaussian. In the unweighted
case, our y{n) (= y'(n)) will then be cloée to zero. Therefore, our
"y i.s a direct measure o(t‘ h.ou Gaussian the obséf';{ation is. From
update equation (1), it can be seen that the cbntrit;utign of second -
term on the RHS will become large and the lattice will adapt rapidly.
When there are .outl.lers in the data {(or pad data), to avoid this, rapid

adaptation from occuring, the fact mentioned at the beginning of

N
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reﬁark 2. that y}t1(n—1) remalns laréer in thé weighted case implies
that the lattlice sees the observdtion as more Gaussian than it really
is and adapts less.. . Eq#ghermore, _the fact that welghting, aj, Iis
chosen such that Lt i3 zgmall when' the observation is an outlier

.8
further reduces th® contribution of the second term in update equation

(1).

*

»

Remark 3. When aj = 0, the lattice is shut down completely. No

*
adaptation takes place.

Remark L. One method to chocse {ai} is -to pre-determine the
sequence frém prior knowledge about the data being

processed.

-

From the update equations, it ls obvious that at time instant,

n, ap has to be available before any updates are done. This may make

on=line choice of ap difficult.

One way to avoid pre-determination of {aij) may be to have a two
pass system where dur{ng .the first pass, aj=1 and fluctuations of
.yHJ(n-1) are noted so that dﬁn&n3 he second pass, for those instances
where yy ¢(n-1) were very small ‘¢indicating non-Gaussian observations
or outliers), a is made sméll a ;er the initial adaptation period; thus

making the WLSL robust,

~

~4.3.5 Joint Estimation Form
. oM~

Going back to the problem discussed in 3section 4.2 of noise

cancellation’ or Joint 3process estimation, we have to estimate a’

o~ S G
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process (d{i)} from obser.vatlons of a relatc:d ‘process {u(1)}. This
can be done by adding a® transversal filter section to the lattice
struéture_as shown in figure 4.8. This section estimates the value of
d(1) at any instant from {by(1)} using tap weights [py(i)}. It can be
shown that {bM(i)} has the same information content as {u{i)} and that

bg(i), b4(1), ... by(i) are uncorrelated with each other in a

deterministic sense for all instants of time (Haykin, 1986).

-

is : ’ 3 \ 2
’ AL T.. . (4.3.77) -
dM {iluti) = th)BM(x)

_..From the foregoing discussion, the estimate of d(i), given u(i)

where :the (M+1) vectors QM(i) and py(i) are

byt ] [0

b @) p, )
b= | . By |

[ by i) / [Py (]

The performance criterion to be minimized in the least squares

solution of QH(i) is

: n . ‘
E(n) = Z A""uileu(i)fz
v iml
where - ' : v
~ (4.3.78
ewn=mn-dummm=dm-b;mgwn » 3.78)

In the spirit of ‘earlier discussions on the least squares

solution, the estimates of tap-weights can be uritggn as
‘o . -
Dy, (M py(m) =ty in) - . (4.3.79)
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Flgure 4.8 Weighted exact least squares lattlce for joint
process estimation.
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The ((M+1)x(M+1)) correlation matrix of backward prediction

errors, Dy, 4(n) i§ defined as
a .
_ n-i T o v (4,3.80)
Dy, = E A Cli!'_lu(l)hM(l)
i=1

Backward prediction errcrs being uncorrelated to each other, it

can be shown in a straight-ferward manner that

X ]
.

Ll

DM+l

{n}

L

I8
NG

-

BM(n)J

(4.3.81)

defined as

The (M+1) cross-correlation vector between d{i) and QM(i) is

r

(4.3.82)

n
by = O A" la dg, G
i=1
Define a lower triangular matrix Ly(n) (of order ((M+1)x(M+1)))
of backward prediction error filter coefficients (see section 4.3.3),

where the second subscri;pt indicates the order of the filter as

- -

[_ 1 /—-c;'(n)q .
co'x(n) 1 - S':'(n)
LM(ri)= =
0 .
i &cn‘h',(n) R ) 1J ’ | )
This, along with Athe definition of backward prediction error in

-~

(4.3.25), let us write {4.3.82) as
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n
Ly = Ly ) S A dl gy )
L= o (4.3.83)
=L, M0, (0

where By,1{n) is a new (M+1) cross-correlation vector between d(i) and

Uya g (1)
Now, (4.3.79) yields ' (
Meatn) ]
g:(n)
t AN
Py =D () : Dy .
. o
: -
L.s';(n)_l

Since Dy,y(n) is diagonal as in (4.3.81) and with some abuse of
'nota‘tion, we can write the equation for the Mth tap weight as
Py(m) = B grim) @y, (m)

Defining the scalar,

- 4,3.84
ptd(n)_= QI((n) QMH(")' (4.3 )

w L '
. ai , (4.3.85)
\ ‘ T B
' To find the update equation for py(n), let us start with
equation (4.3.34),
' ' ' \
Ly (n)

* Sy =

. ' »
v Multiplying throughout by uTy ,(n) and simplifying, we

byn) = w1 - ul )k, (0] '
= "’_\:((“W\I(")' from (4.3.37)



Therefore

;)" bM(n)

.[(_M(n)
(n) = -1) -
) Sy'n Q‘M(n y“(n)

0.
Using this and the usual update of B8y, y(n) as
Qy o M=Arg, (-1)+ a dlmy, ()

in equation (4.3.84) and silmpllfying,
¢ dindby(n)  byn) .

_ M7 ‘ (4.3.86)
Py =Ap n—1)+ g Y:“(n) - Yoy ky 8y o

Substituting for ETM{n) from (4.3.36), the last term equals

by () ) ‘
: T -1
Uy (0} D () Qi)

s Tyl
Comparing to the usual least sqUmres solution, ID-‘M(n) Oy(n) is

tap-weight estimates when the desired signal is d(i) and input vecter

s uy(1). So, when input is applied to the tap-weights, ®-1y(n) By(n),
we get an .estimate of the desired signal.

w b -1 o~

* @) PL N gy () = dy_,(nlun)

Substltuting this result into the last term of (4.3.86),

by (n} ~ .
pylit=Apyn=1+a_ e [d(n) — dM_l(nl u{n))]
. Using (4.3.78), )
b, (n)
: - M iy (4.3.87)
- A pm(n] —‘ A PM(n—l} + Gn YM(n) eM_l(n) .
" Equation (4.3.78) for-order (M-1) is
. ]
. -~ » - ? LY
2

]
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ey =dinl—h, mpy 0 \ (4.3.87)
M-1 -
=d(n) - S pj(n)bj(n)
+  j=0
M-2 ’ ‘ *
= _ pM_l(nY“_l(n) + {din) = S pi(n)bj(n)l
. | o .
The last term is ey o(n).
t eM_l(n) = =Py l‘n)bm_l(n) +ey ,n)
Writing for grder M, '
(4.3.88)

’ eM(n’) = ey _,(n) —py(n) by (n)
Equations (4.3.85), (4.3.87) and (4.3.88) constitute the update£
equations for the joint estimation form of WLSL. We give all the
. . .
“update equations for WLSL algorithm in the Jjoint process estimation

M-1 M-1 T
My, (- +d —

-
form below.

(1)
-
Yy _,(n=1 '
: ' by, (n=Df. /()
(i)' _ M=-1 MEL .
Sy fmr=2r4y, (a-1)-
) a
n
(11) S L
' . ['r“(n)— B
- M_l(n-l)
. . ! * v
(111) e e -
l‘b.M(n)— F s
‘ 1‘l_l(n)'
(iv) ) =y _tn) — L y(miby _n-1)




. -
{(v) Ty = ' I £
byl =by, _ (—1) = T\ (i), )
. - ' -~
v 1A, ()’
{vi) Foim)=F. ' (1) = ———
M M-
. T By -1 .
H
la, .
(vil) B.(m=h8 IR P Sl o ‘ T
) M(n M- l(njA F.\{ _ l(n) .- ~
- —r .
. '
‘ b, (n-13?
i1 . - M-
(viii) yM(n-l)—\(M_l(n—l)—u

" By 1) ~ S

3

v o,

2 Lt
(viit)' g ( { Ib.\!—l(n“ ) . N
YMn)=yM_ln)—u _— ' o
' L By . o
-, . S
. : b, (nle,, (n)
M M-1
ix (A) = A pyfn—11 +
( ‘) Py Py a_ T . B :
- - ' r
. Py (n) . o E o
)= o
(xd, MY Em - -
. ‘ . N - “ ,
(x1) ey (M) = ey_ (M = py@bym * o -
- ~

Notice that Ln-this set of update equations, (viii)' is always
required be('cause the quantity, yy{n) 1s necessary in the joint
estimation section In update equation (ix). Hence, if équati.ons (i)

.. and (viil) are used, 53ne more variable and equation is required than

. . ~ - -
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AT (i) and (viii)' are used. In actual implementations, therefore,
T i

N .

"the primed equations are ‘advantageous in terms of computational speed

and memory requirements. . F

When the WLSL in &ge joint estimation form is used for adaptive
noise cancellation, u(ik) is the reference input and d(i) is the
primary input;"Remarks 1 through 4 made in connection with WLSL holds

in the- joint estimation case-also. However, it skould be noted that
. —_ .

cyy{n) is a measure of how Gaussian u(i), the reference input, is and

not d{i), the primary input. If primary input Has outliers and™other

Mhad" daﬁa. ‘ai will have to be pre-determiped as mentioned earlier in

Rémark 4,

-

An fﬁbortant fact. to be noted in the above derivation is that

we have nct explicitly made any stétionérity assdmptions. (Neither has
. \ ) .
it been used implicitly 1like .in using Toeplitz property of the

L4 .
~ * .
- gorrelation matriz or by equating (forward and appropriately shifted
. . ' A

~

backward prediction errors, etc.

In the nexzt chaphei, we shali.exploﬂe the behaviour of WLSL in

s -

the joint estimation form by simulation and distuss its application to

.-single stimulus. BSAEP.
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CHAPTER 5

SIMULATION & hPPLICATIONS T0

EVOKED POTENTIALS A
/ .
5.1 Overview of the Chnpper

Simulation studies were done to assess the performance of the
weightéd exact least squares lattice (WLSL)} for. adaptive noise
'cancell;tion. Although a 1arge number of simulations were performed in
the course of this research, only a few characteristic results whicn
demonstrate the performance of WLSL and its superiority over normelized
exact legat squares lattice (NLSE) in adaptive noise cancellation
applications are giqeﬁ iﬁ section- 5.2, A perforﬁance index,: n is
defined agd used in these studies.-aéédlts of earlieg studies using
NLSL are given in section 5+.2.1. Here, we explain an unconventional
&hoice for the forgetting factor, A. In section 5.2.2, results for the
welghted exact least squares lattice algorithe are given. The choice of
a; in the WLSL algorithm to ‘obtain supericr performance to that of NLSL
is discussed and demonstrated by simulation. Finally, results of
.application of normalized LSL to real BSARP data are given in section
5.3. .

84



5.2 Sipulation Studies

In this seciion; we present the simulation results of analysis of
adaptive noise cancellation of "AR prbqasseé using  weighted hnd
normalized exact ledst sdua}ea iaitice'algérithms; For both the

normalized exact least squares lattice (NLSL) and weighted exact least

squares lattice (WLSL) algorithus, -we consider two cases ‘where different )

welghting schemes are used.. The objective is to demonstrate the
differencea in. adaptive noi$e cancellation performance for these four
conditions. To compare the performnnce of these algorithms for adaptive

noise cancellation, we define a performance index, which we will c@all "M

index".

* . . .
-
.

M index is defined as the ratio of the mean Square error between

the desired -signal and the’ primary input (which ié*variance of noise in

primary input) to the mean square'error between the desired signal and’

the estimated signal for any lattice order = M.

] ’ W
. mean square errquprimary'input .
" M index = 10 log.‘o \\J\ . . \. . - decibels

mean square °rr°r'order=M .

. W "

For lattice order = 0, the estimated signal is the result of
scaled subtraction of the ‘reference input from the primary input (note
- : - \

that sceling is not constant over all time indices, i, but varies

adaptivelf to minimize the performance uwriterion, as explained in

ra
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chapté’:‘r 4)'. For proper lattice order which best fits the multiple
linear regressdion model relating the noise in raference and primary
\inputs, the corresponding mean square error will be minimum and the M
index will take its maximum value. Therefore, M index is. a. measure of
performa.nce of the lattice algorithm- for order = M and we s_zhall use this
- measure to compare,,varidus lattice algorithms for ada;ot’i-ve noise

-

cancellation,

-The next.two ‘soctibna' give 'the details oi; .s:imulation a.nd the-
results. In section 5.2.1, ue discuss some earlier work done (Madhavan
.et .al., 1984) using normalized exa.ct least squares la.ttice algorithm
(Lee et al, 1981) We consider two t\:ases - .(i) forgetting f.‘actor, A =
1.00 and' (ii1) forgetting factor, A = 1. 03. In gection 5.2. 2, the
performance \of the lattice algoritﬁm derived in this thesis,"-ILSL
algorithm, ia demonstrated. Two cases where (i) weighting factor, a; is
constant throughout and (ii) weighting . factor, ay is }rariable are
preaented. Comparisona are made among these four types - two for

‘normnalized and two for waighted axact laast squares algorithms - and

resulis presented at the end of section 5.2\,_2. —F .
.
For aimulation studies in sections 5.2.1 and- 5 2.2, we used 256

samples of an AR(2)’ proceaa, u(i).

wu(l) = 0.4 u(i-1) - 0.643 u{1-2) + w(i)

whére w(i) is white gaussian .

N\
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This procesa was choeen for illustration only and similar results
can be obtained for-other-time. series. Referring to figure 411,‘u(i) is
the ref'eren,ce input. l‘o generate the primary input, d(i}, tfae‘ white k
gaussian sequence, w(i) 1s added to a siénal at ap'przpriate signal to
noise ratioe. The signal, e(i) 'ie & zero-phase 'band_pasf'filtereti (400
- 1500 Hz) brain stem auditery evoked potential. The multiple linear
-regreseion model relating noise in reference and primary innuts ts of

order-2.as shown.by the above equation for u{i) and a second order
) . p\ L . .

Tattice will be required for effective noise cancellation.

5.2.1 Normalized Exnct Least Squares Lattice (NLSL) R
Figure 5.1 shows all the data used in this simulation. Figure
51 a) ehowe 256 samples oi‘ refer‘ence input, ufi) which is a realization
of the AR(2) process as given in the previous section. .\’hite gaussian
noise, w(i) is added at 0 db aignal to nolse ratio to the signal shown
in b) to reeult in e) which is the primary input. As mentioned before,‘l
the last 128 se.mplee in b) is a zero-phase band pass filtered normal
BSAEP. Referring to figure 4.8, the reference input :L) ie ehown in
g i‘igure 5.1 a).and primary input, d(i) in figure 5.1 c) The lattice"'
'predictor qnd the transversal filter sections of the |h‘LSL traneformé
_-'.ﬂ(i) baeed on the correlation between u(i) and noi e in the primary
input and the reeult ‘{'s- subtracted from the primary i put.’ In .adaptive
noise cancellation. the eetimation errore, e\{(i) are the estimates of
: -the signal in the primary input. 1In this eection, the lgorithm we havgp

implemented is the normalized exact least squares l\attice (\ILSL) as

N \ .
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developed by Lee et al.(1981).

. Figure 5.1 d) shows the estimated signal for lattice ordaf 2 (or
ez(i)) VThia clearly shows adaptation'at work and after about 100.
aamplea, nolse in the urimary input js effectively removed. To
investigate th’ effect of forgetting factor, X, let us consider the role
it normally plays in lattice algorithms. The value of A is aliraya;
chosen as leass than or equal to 1.0. When X< 1‘.0, for da.ta that is
non—stationary, the lattice algorithm 'forgets’ tha old values, in other
worda, welghts remote past values muth leas than imnmediate past values
gj(\ring an exponential wa}hting profile where the efi‘ective mezory of
the algorithm is approximately 1/ 1-A. In this stmulation with A= -
1.0, the M index for 2nd order NLSL was, 13 94 dh. Hhat we found was '

that by using A > 1.0,  the ¥ index attainable I.‘o{!hd order NLSL is

. higher. For the aatimated signal shown in figure 5 1.d), we used’ A =

1.03 for tha first 128 aamplea and A = 1.0 for the laat 128 samples. '

The M 1ndex for 2nd order NLSL was 20.4 db.

The use of A > 1.0 can ba e'xplainad as follows. Conaider the
aignal in figure 5.1 b) as a. 'tranaiant diaturbanca' in the primary. .
put. Knowing the poeition of occura.nce of this diaturbance, we have
chosen A as stated in the previous paragraph. The raaulting waighting
profi}e is shown in figure 5.2. Because of the nuch larger weighting
afforded to the firat 128 samples compared to -the 1aat 128, the unwanted
effaét of transient disturbance in the adaptation,procedure is

minimized.

iz
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”

' A5>mentioned in Chapter A, the mgip_mot%g&}ion for developing a
waighted'exact‘léast squares lattice algordthn stems from the
desirabllity to ﬁeigﬁt.the data iﬁdependently of the forgetting factor,
A. One of 'the undesirable}feafurea of keeping A-> 1.0 is that the
performaéée criterion_thai we are trying to minimize in the ieast
squares problem, which are-of the form -

. ‘ .n
Em= N .\""iai leti)]?

P

i=1

-

and other welghted energy terms cam become unbounded as time index, n

becomes larger and larger. In the preaent discussion of NiSL, however,

' that has . been avoided by making Bure that A is greater than 1 0 only for

.a limited period of time. Given that differenp weighting is deairable,

a weighted exact least sQuaqu lattice algorithm is necessar} to

accomplish this._ .o

5.2.2 Welghted Exact Least Squares Lattice (WLSL)

i —

Y Using the same AR(2) model, and number of samples (256) as in the

case of NLSL, détailed.ﬁimuiationa were done with WLSL algbfithm.'

Figure 5.3 shows a repréaentative set of results from detailed
. . . .

simulations done. The complete results for WLSL are tabulated in table

5.1.

-

t

When weighting factor, @; = 1.0 for all i, the WLSL i3 the weld-—
] T~ . . ’

v
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known unnormulized exact least squares lattice nlgorithm (see remark 1.
“in saction 4.3.4). The plots in figure 5 3 correspond to this cholce of
oy, The t.op left-hand corner shows the AR(Z) referenc input. In the
top right-hond corner 1s the signal that was added to white noise at
_different signal to noise ratios to give pridary inputs. Figure 5.3 a),
b) and ¢) correspond to\{imary input signal to nolse ratios of +10 dby
0 db and -10 db, respectively.‘ The left-hand column showa the primary
' inputs and the right- -hand column, the estima.tad signals which are the

eatimation errors of 2nd order lattice. x-

lfl

A

It can be seen that the signal has been recovered very.

- efi‘ectively Indeed, there is very little indication of the initial

* adaptation other than t.he 1it‘tle kinks at beginning of the estimate&'

signal plots. " M indices for each of these cases were 12 66 db, 20.51 db
and 24.31 db for aignal to noise ratios, +10 db, ‘0 db and -10 db,
‘respectively. As can ba noticed in the lei‘t-hand column, for high

signal' to noise . ratigs, the signal appears as a 'transient disturbance’

in the primary input. So as not to let this affect the 1attice_’ .

parameters, -;hr-*ahe weightad exact least squa.res lattico algorithm, ay

* can be properly chosen. Since most of the adaptation has taken. pl{ce in -

the first 100 samples,’ the lattice can be shut dov.m for the second half
of the data set (a priori knowledge of when the signal is going to
appear- in the primary input is necessary) Tha 1attice can be shut down
(see remark 3. in section 4:i3.4) convaniently by setting ay = 0.0 ford

-

= 129 to0-256 (for 1 =1 to 128, ui = 1.0).
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'Using the weighting scheme stated above, detailed sinulations

were done for the same AR(2) process and-512 samples. Table 5.lagives

. the'pesults for +10 db to -60 db primary input signal to neige ratios.

Compafing M indices for ay = constant (= 1.0) to that for ay = veriable
(lattice ‘shut down fc)'r. the‘second half), \;'e can see fohat at high signal
to-nolse r_atiqs, elimina.tion of the effect of 'transient d;.stu‘rbance' ‘
impro’;'es .the_periéormance cif WLSL for adaptive noise cancellation
dramatically. For example, at 10 db signal to nelse ratio, M inde'x when

ay is variable 1is 42.69 db where as when a; 18 constant, M index is only

' .26.7 db. But, at low si-gnai to noise ratios, the transient disturbance

will be ve&niall (very small signal variance in .the primary input).

'Hence, the necessity to shut down the lattice is less. Besides, by

shut'ting down the lattice, all feedback within the lattice is cutoff

and the performance of the WLSL is degraded. This can be seen for signal
1 \‘ . .

to noise ratics less than 220 db where M index for variable @ is less
DI ) . e i
than that fo;' constant ay. This trade-off has .to be considered in

praéctical applications. A

.

An overall comparison is presented ‘in figure 5;1.. The same AR(2)

' process and 256 samples were used in comparing the performance of the

fol_lou»t{é four cases of lattice alogorithms ~

a) WLSL: .q, = variable (explained earlier)

b). WLSL: gy = constant i(= 1.0) ) 9
o) NI:.SL:. A =1.03 | :
- _qd) NLSL: A =1.00 7 o ] ‘
, s’
v . L] ,
N
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LY / .
L] . '
. Table 5.1 ’
Performlan-ce of WLSL al~gc;rithm. M index for constant and
variable ay for different signal to noise ratics of
primary input. -
» ..
Signal to noi';le . M index (db)
’ Ratio (db) ay = constant oy = variable
.. +10 26.7 42,69 .
+5 31.34 4731 .
K .0 134,75 U 50.31
-5 37.16, 50.02
=10 38.5 46.77°
~ - -15 39.19 42.26
=20 Q 39.5 37.38
-25 - 39.59 32.4
+30 39.46 - 27.42 )
kY .
. -40 38.0R | 17.52
-50 0 33.0 T 8.44
-60 24449

\

) 2.77
'



50,0

(db) .

M index

-10 0 T

Signal to nolse ratioc (db)

-

Figure 5.4  Performance conparison of WLSL to I{LSL.
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Uee of A > 1. po givee better performance in the NLSL caee, as can
~

‘be "seen in figure 5.4, c) The improvement for b) over d) hee been e
: mentioned in literature (Reddy et al., 1981) but no. reaeon was given in -

that reference. However, they go on to conjecture that "normalized

.

Valgorithms night prove to be adventegeous in situatlons Jith lees

' ecchracy in computations" At this noint we do not heve much to add to

-

" their cbmmente. T Pt e o ' . T

* -
-~

- M v

The improvement in performence using variable ui in the VL“L
.alogrithm is significant as seen in figure 5.4. The top trace al
frepreeents the varieble ai caee. Restating the conditione for the use
of-veriable ai, it is advantageoue to'make'the.lattice inseneitive'to'

-f'unwanted or bad data (the signal in the prim&ry input falls into this

A

) category Bince for edaptive noise cancelletion, the primery function of
the lattice is to iearn the relationsﬁip between the noise in the

reference and primry inpute) by reducing or‘iven eetting equal to 0.0

‘(corresponding to shutting down the lattice) the value of “i‘ It can be.

-

concluded that weighting allowe us to make the exa'ct least squares

- lattice elgorithm ineensitive or robust to unwanted .or bad data in the”

-

linpute of the lettice. o

.Remark’ 1. To implement the WLSL algorithm, a 'time exchange‘computer'

o . code oan'be wfitten. In this progran, only the present and
'

ot : 'previoue valuee of some of the internal parameters of tho

lattice need be stored. ‘Pack and Satorious (1979) zive such
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d'FBrtran program. By way of cautlon, one should mention

 that the progrnmping of lattice algorithms 1s very tricky, in

that even when some of the internal parametérs of the lattice
are not properly updated, the lattice will give apparently

adequéte results! \

Number of computdtions required for lattice algorithms in

general, 1s relatively high. Cioffi and Kailath (1984) gives

a compafiaon for various algorithms. In pérticular, NLSL

algorithm in the joint estimation form requires 29il

operatidns {multiplies and divides) per iteration where N is

i

the order of the lattice. The WLSL algorithm presented here

requires 25N opgrétions (1M d}Vides) in the joint estimation

form. With sbecial purpose computational aeccelerators, this
large number of computations can be performed in a reasonable

length of time.

Thq numyer of data samples used will dépend on the model of
the refefenog:and primary input“processes. For example, when
the poles of -the model ;re élosa to the unit cir¢le, larger
number of samples than wé;e used in thié éimula;ion study

(256.and 512) will be, réquired..

In our simulation atudiqs,-since the reference input was
AR(2) and primary input was white, only a finitg impulse

response lattice was necessary. If the primary input was also
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_AR; an infinite impulse response lattice will be required.

(r%tio o: two polynomials). Methods to achleve this are
di;cussed in Friedlander (1982 a). However, in practice, this
infinite impulse response is approxinated by a lattice of
large order'(Friedlander; 1982 a; Gardiner et al., 1985},

usually 100 or more.

-Ljung and Ljung (1985) have studied the numerical stabllity

of lattice.algorithms. Théy conclude that lattice.alpgorithms
are exponentially stabferin that the effects of error decay
exponentially. Ofper studies done by Samsog and Reddy (19283)
and Swansen and Symends (1984) on the stability of normalized
lattice for fi*ed point implementations have .shown certain
jnstances of instablility. Unnormalized lattices are always
numerically stable (Wiberg et al., 1985). Word length
effectq for floating point implementations have not been
discussed in the literature. Although no detailed analysis:
has been done, our experiences with;NLSL and WLSL suggest
that the problems d&e to word length 9ff;cts are more severe
in the c;se of WLSL than‘NLSL. Word length has to be an
important consideration in ‘the implementatio; of the weighted

exact least squares lattice algorithm.

5.3 Applications to Evoked Potential Estimation

The téchniqua of adaptive noise cancellation using the ﬁorﬁﬁlizeq.
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exact least squares -lattice algorj:thr: .u.as.applied for the estim.at,ion of
'b'ruin sten uudit;)ry evoked pétentiqls (BSAEP).i Initially, a
éqnv'ent.ionall averaged BSAZP was collected from the subject uging .
Nicolet Pathfinder II lequip.-m'ent- for later ;comparis‘on with si.'.lrgle
stim;.zlus (Sst) ‘BSA_E'.P. For the single stimulus procedure, ﬁata fil'.tercd
beti«een .150 and 2000 Hz were digitized at 10 Kf{.i.- '-Th‘e primar:," input to
" the lattice® consisted of 12.8 msec of post-stimulus e.e.g. and 12.8 nsec
Vof e.e.g. i:nmedia_tely preceding the stj'.nu_.lus {(figure 5.5). Thllz

.reference input was 25.6 msec of e.c.g. inmediately preceding-the pres

7 N
‘

stimulus e.e.g. in the primary input.(figure 5.6). All the signals are

succeeding segments of e.ei.g. from-the same alectrods locatien, C

.
2

. -
’

o o

. Restating the assumptions for-adsptive noise cancellation, the
e.e.g. in the reference and primary input are assumed to be correlated -
aﬁd the evokt?_d .potential ir t:he prinary input immediately ':‘oliouing the
stimulus for 12.8 msec (or at least the first 7 asec where the evoked
+ potential of interest occurs) and e.e.g. are éssumed to be uncorrelated.
Some justifications for the above assumptions were discussed in Chaptef
-2 (sect..ion.IZ:'zl on the orig;n of evoked potentials). BSAEP, being a

short la.tency EP, “f.he ge.e.g. in the first (’6 msec is hardly
‘desynchronized (effect of stimulus is not jet .pres;nt in the e.e.g.).
Hé:rice, the a:;suuption that BSAEP is uncorrelated to e.e.g. is te.r@able.‘
The‘fi.ltered e.e.g. ﬁsed in this \studjr. has its p.eak' power 1.'; the range
100 - 200 Hz. This uoixlc-il"imply that-e.e.q. iﬁ the reference and prim:‘y- l

inputs which are separated by 25.6 msec are correlated. i X g

3
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For adaptivg.noise cancellation using NLSL, forae .,ting factor Ay
was choeen equnl te 1.03 for samples 1 te 128 and 1.00 for semplea from
129 to 256. The affect of this .cholce was di.scussed in section 5.2.1
and at the end' of section 5.2.2.  8ince e.e,g. in the reference and
Drime.ry inouts can be modeled ag high corder AR processaes (order of 5 or
& for the e.e.b. used in this study), :Lt 1s required to have. a high
order 1attice for noise cancellation, as discussed under remark 4. in

section 5.2.2)4. The constraints of the computer system that we were

using (PDP 11/34) allowed only upto 50th ordeg_Jattices.

Figure 5.7 shows.100 samples (immediately following the stinmulus)
of the estimated signal for the Soth.order lattice. Peaks I to' V have
been identified_ on this S5t BSAEP and notice tne clear formation of the
peales except for the small bump between peaks III and IV. Figure 5.8,
shows & ‘comparison of conventional averageci BSAEP (ensemble average of
2000 responses) and SSt BSAEP, It can be seen that the peaks in the top
trace (ave;aged BSAEP) and in the bottom trace (SSt BSAEP) do not match

‘exactly: This is not particulhrly surprising since the to;} trace is the
average‘ of 2000 random realizations %reas the bottonm trace is one such
realization (note that in the entire procedure of adavtive noise
canqellation, we do n;t make the aasumption that the signal (BSAEP) is
deterministic, ie., each of the 2000 stimuli produce identical evok#d

FJ
responses).

"Eventhough, this is = very encouraging result, we hasten to add
that extensive trials could not be done due to the limitations of the

computer syetEm 'we were using., Ba\sed on the simnlations done, as is
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- SAMP . FREQ. = 10000 “AMPLITUDE MULT. = 1809.80
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3

_Figure 5.7 Single ‘stimulus BSAEP.
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Figure 5.8 Cox;:pariaon of ensembls averaged and single stimulus.
BSAEP. ’

1
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evidepf'frbm the results presented at theuﬁnd of section &2.2; we feel

that nolse cancellation to ex?rabt SSt‘BSAﬁP using WLSL with variable

welghting, &i could be more effective. In the lighﬁ of remarks 4. and’
5. iﬁ sactién 5-2n2; we could not - test this coﬁjectu:e using our

compu£er f&cilities which necessitated speciél progran development and

testing._Such development is ﬁnderwa& at the present time. However, we

feel £hat uéing WLSL'Lith variable a; will be preferable since, as seen

in figure 5.4, its performance is significantly better than NLSL with A

= 1.03. o S |

We would like to emphasize £hat £his testing with real data was
;zinly designed fo demonstrate one of the many possible baradigms for
single stimulus EP e*traction gna the power of.ax;ct least squares
lattice algorithms for adaptive noibé cancellation. It_is by no means

an optimlzed solution to the problem of extraction of single ;timulﬁs
. evoked pofeﬁfial?t However, the simﬁlati?n;studies and real data test
have shown that adaptive noise cancellation ﬁéing exact least squares
lattice alogrithm can be used .to extract single stimulus evoked

'
potential.
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"+ . CTHAPTER 6
. ' SYNTACTIC PATTERN RECOGNITIOR -
v -#° OF EVOKED POTENTIALS
¢ . .
6.1 Overview of the Chapter ’ - N
v In view of the structural specificity of the BSAEP wa-vei‘orm, we

employ syntactic matﬁﬁc_ls for its pattern recpgnition and classification.
Detaild of ‘prel_Proce'ss'i‘ng by zero-phase bandpass filtering, pricitive
extractien, .t.bé finite-atéte g.i-ammar choaén and metheds for pe.rsi-:ig and
classific_a.t‘ion‘ are ‘given in. section 6.2. A znairiing run en seventf
patients was used to fine tﬁne the airstem, to arrive at an empirically.
optimized c,iéssification criterion and to build’a dﬁta base of normal
BSAEP para.'n::e.ter.s'. The m.ethod.is Fliscussec-l in\ séct:L.qn 6.3. In section
_ 6.4, -the reﬁﬁits of a test run on sixty patients 'of unknown diagnosis
are given. Ve conclude -the chapter uith a d.iss‘.éﬁssion of the results in
section 6.5. Work -preéented 1n this chapter has been repqrted in the

literature (Madhavan et al., 1986).

6.2 Theory of Syntactic Method

-In presefit day ne{zral'ogic‘al practice, the cliniclan identifies
the pe‘aks by visudl inspection and ciaasifieé ‘the BSAEP as normal or -

abnormal based on its appearance. The quatitative puidelines in this

108
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classification hrocedure ar;.maiply the 1at9ncieé of the peaks. Some
researchers have established normal limita for these la£encias (Kiloh et
.al.;:1981; Fridman et .al., 1§82; Rose 'ifary Edwards et ®l., 1982).
Selective attenﬁation‘of.some peaks is also indicative of abnormality.
Considering the structural speéifiqity of the BSAEP, the procedﬁre can
balpest automated by syntactic pa£tern recognition (Fu,“1982;'Stockman

et al., 1976). An idealized BSAEP is shown in figure 6.1.

.The main motivation for automatic pattern recognition and
classification of BSAEPs arises out of =a qeed Fo supﬁlement the
cliniclan's fisﬁ&l'analysis with’ a more objective method.' A syntgctic '
recoénition\méthod not o;ly clessifies the pattern but alseo builds'uﬁia
dedcripfipn'of the pattern. In the case of BSAEP, the description is ;n
terms of peak locations. - Such an objective criterién for peak selection
allows the comparison of peak latencies and amplitudes between subiects
and between centers. fhe unsupervised nature of the bqttern recegnition

scheme makes it 1deal for screening at remote locatiens,-.mwmonitering in-

intensive care situatlions and dgiing surgical procedures.

1l

AN

The syntactic pattern recognition aystem'consiéts of three steps
2 . .
as discussed by Fu (1982).

(1) Preprocessing where the pattern under consideration is

filtered, restored and enhanced. : . . ' : -

(11) Primitives that have been ‘decided upon which will adequately
@ : - T

represent the éigqal,'are extracted.

(iii) Syntax analysis involving‘the decision as to whether
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Figure 6.1

Tdealized BSAEP, - -

MSEC
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)

or not the B’Grix@;of primitives is syntactieally correct (ie., belongs

to the claas of pattez:ns described by the given syntax or grammar).’

We will look at each of thesé steps in turn in the context of

BSAEP,. which will clarify the procedu.re.

. b d
- AR - *

BSAEPS used in this ‘study were randomly selected from the large
number of normal and’ abnormal responsea-obtained from routine clinical
aeaessmente. ‘A PDP 11/34 minicomputer was used to digitize and process
these responeee. Five hundred data pointe corresponding to 10 msec

(sampling rate of 50 Khz) were stoted for each BSAEP.

Lo

i Earlier studies (Friuman et al., 1982; Boeton. 1981) have shown.

that BSAEP epectrel components in the range 400 to 1500 Hy determine the

, ‘location of its peaks. Asa means of smoothing the data, a zero-phasge
bandpass filter in the. above racge was 'd-‘esi‘gned using the met?iiod of
McClellen et al, (1973). Zero-phase i:ilter,ing ia extremely important in
this context because of the’ eitmifican&of the latencies ‘of the pea.ks

. {(Boaton anad Ainslie, 1980, Doyle and Hyde, 1981) A filter with a pass
.* band of 400 to 1500 hz and 97 coefficients wee deeivned. BSAEP is
convolved with the filter coefficiente to' give the preprocessed eignel.'
Pee.ke I to V being most importe.nt data pointa 50 to 350, corresponding
to-}to .'7 millisecond_s, were considered the active region and set up for .

further analysis.
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6.2.2 Selection of Primitives

The choice of primitivés, i.e., basic signal descriptors, to
repesent the pattern 1is ﬁhe key to success of the syntactic method.
Primitiv.res must be general enough so t}lat the pattern can be represented
without too mahy of them, yet they should be capable of preserving all
the required shape information of t'he BSAEP. We selected the following

three primitives.

b/ N\

- where mrrews indi:ca’f;e-the direction of the signal slope.

a -Only ganqral .directions rather than exact gradients‘ﬁre

con_sllidered in the z;xtraction of primitives. Each signal sample, y(i)
can be r‘;eplaced by a primitive accordiﬂg .to the followlng rules:
y('j:+1)'- -y(1) . > e‘ — y(i)- replaced by 'a!
y{i+1) - y(1) - X € — y(i) replaced b‘y 1!

Iy(i) - y(i+1)| . € —> y(li) replaced bjr 1e!

A

The bound 'e' is chosen as a select{%ble percentage of the maximunm
.differenc.e between any y{i) and y(i+1): The beginning of the sentence
or string of priniit'ives 1s defined as the point after which there is a
selectable number’(iBEG) of cimsecutive 'a's indicating the sta.rt' of the

first peak of the EP.
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6.2.3 Grammar

Investigations into-the mathematical strﬁcture of natural
languages, asined at trying to understand its properties, revealed that
primitives (alphabet) with a set cf reériting rules, the combination of
which is called a grammar, can be used as o method of describing
languages {Fu, 1982). In our context, a grammar should describe one
class of patterns (and one alone), such as normal BSAEPs, when
primitives have been dafined as in the previous section. A graomar G,
is defined as a set of four entities - a2 starting symbol S, nof-

terminals V, which are somé combinations of primitives, terminals Vi

which are primitivés and a set of production rules P which relate S to-

V4 -through Ve

BSAEP can be conasidered as a succession of five'HILLS'with a

HILL defined &s in figure 6.2. Sharp and flat hills are acceptable. A

finite-state or type 3 (Fu, 1982) grammar Ggiy7» described below,

“characterizes a hill.

SHTREE

[47]
1

,the starting symbol, 'HILL!

V, - the non-terminals, [4,B,C] which
ere the intermediate steps in the
relationship between S and Vg

Vi - the set of primitives, (a,b,c] as
defined previously _

P: ~ the set of production rules uhich,

when applied, generates sentences

(strings of primitives) from

starting symbol, 'HILL!

A

11.3 .
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Definition of a 'HILL'.'
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(Arrows below denott "can be replafes7by")
N

1. HILL
2. A
3. A
Le A
5. A
6. B
7. B
8- B‘
9. C
0. €

LLLLLLLLL

al
al
cB
bC
)

cB
b

" bC

bC

b

\
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Let us consider the grammar Gyyy7 =nd ses how 1t can be applied

to our recognition.problem.

- Starting with 'HILL',

(1) 'HILL' can be replaced by.aA (rule 1.) giving

(2) A in aA can be replaced by.cB (rule 3.) giving —=> acB

(3) B in acB can be replaced by b (rule 7.) giviqg — aj?

—>  aA

This is an acceptable shape -as showh in figure 6. 2 since it

[ 4
contains in sequence, an upslope ('a'), a flat top ('¢') and-a downslope -

('bO It can be shown by enuleration that application of the

production rules in any order after rule 1. has been applied, will'

. “generate only sentances of the form a cqbﬂ hnn 2 1, a > 0). This

‘grammar can he iterated five times to identify the five hills in the

" BSAEP, -

6.2.4 Parsing

=

[}

Parsing is the‘&tep where we ascertain that the unknown BSAEP,

3
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after being preprocessed, is described by the grammar that wé have
chosen above. To facilitate parsing, we set up a table as shown below,
éki}ing up the cells with the number of occurences of the primitiveé for.

" ™~

each peak. Rows are the primitives a, ¢, b and ¢ in that order and

columns are the I to V peaks. Each entry in the table, ny 4 1s the number .

of ith primitives in the jth peak. o
* PEAK
1 2 3. y 5

P»
R Ial ‘I
1

M 'o! 2 nij
I .
T |bl 3
I
v 'e! 4 - .
E

-

Paraing involves checking the entries in this table. The first
. and third rows indicate the positive and negative slopes of the hill.
.They must be non-zero to have the shape of a hill. The second row

indicates the flatness of the hill.

6.2.5 Attribute Checking

Once the hills are recggnized, their attributes have to be
checked to see if they are acceptable (normal or abnormal); Latency of
any‘peak p is

N -
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pfl:

4
. 1 - 2
L:—!lBL+(3 \n..)+n + =
P50 A= =l 2

ji=1 i=1

—

Qﬁere IBL 1is the number of data points in the saquenée before the
beginning of the sentence.. Using this latency, the peak gmpiitude can
.be determined from the origfnal-data set. The method to determine
whether these attribu£33 are acceptaPle is described in the next

gectlion.

6.3 Training Run

BSAEPs were collected in the neurological clinic of the McMaster

!

University Medica; Center using Nicdiet Pathfinder II evoked potentiﬁl

equipment., The subjects used in the study (training and tesf run

combined) had a mean age of 37.5. years with a standard deviation of 14.8

years. The routine clinical procedure of BSAEP collection was used.

Biphaéic (rarefaction and cbnﬁenaation) clicks were delivered to the ear
of the subject at 9.9 repetitiong'per second. Clicks were of 100
microsecond duration and eround 65 db above hearing threshold. The

e.e.g. from C, - Az'montage with A1 as reference was suitably amplifibd

and bandpaas flltered (150 - 3500 hz), After-artifact rejection {based-

on amplitude ériteria, which is a standard feature of .the equipment),

two thousand responses were averaged to obtain each BSAEP.
,/t Preprocesging and pattern recognition computer programs were
g . ' _ .
written in Fortran IV and implemented on a PDP 11/34 computer. A few

¢
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" initial runs were m‘ém\_i‘\r}i tune the parameters of the pattern

" recognition procedure. The bound '¢' in the primitive extraction astep

was cfiosen as 3% of the naximum difference between any y(i) and y(i+1).
It was found that a choice of IBEG = 10 was sultable (IBEG is the number
of consecutive 'a' érimitives necessary to define the beginning of the
sentence). Primitives are extracted from the preéroceséed BSAEP and the

parse table constructed. If pa;'é;a is succesful, ie., all five peaks. save

" been identifiéd, peak letencles are computed using the equation above

and displayed along with the unfiltered ESAEP (figure 6.3). If they are
within acceﬁtable limits (procedure for their selecticn ia desgribed in
the next section), the amplitudes of the pea;cs are found frow the

unfiltered data. ‘hen there is a neu.rologice.l abnormaldty in the brain

- stem region, only that peak which corresponds to the ‘area of abnorma{.ity

is attenuated (Kilch et al., 1981). Hence if all peaks fall within 257%

of the ::r/age peak amplitude, the amplitude attribute check 4s

successful If the latency and amplitude attribute checks are

successful, the BSAEP is labelled 'parsb successful: attributes nermal'.

' Figure 6., shows unfiltered _anld filtered BSAEP and the final
output of tﬁe'péttérn recognition pr.c‘gram for a .normal 'subj'ect. The
parse table-and the sentence that was parsed 'zre shown in figure 6.5+
As described in the parsing section, rows 1 and 3 he.ve non-zer\;Qlements
1ndica.ting that’ thers was & positive end negative slope giving the-shape
of a.hiil. All the five hills are flat-topped with one horizontal
prinmitive 'c! in the 2nd row. From éach of the columns in the table

-
corresponding to each hill, the sentence can be written as shown at the .
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EP SUBJECT NO: 1H

PEAK 1 LATENCY =1.560
PEAK 2 LATENCY = 2.540
PEAK 3 LATENCY = 3.620
PEAK 4 LATENCY =4.700
PEAK 5 LATENCY =5.520

* PARSE SUCC.ESSFUL‘ : ATTRIBUTES NORMAL :#

-

T T
0 5 | 10 |
v - # T  MSEC
v L - . .
Figure 6.3 Final output of the pattern recognition procedure. '
. . S R p-—\
! ‘ ) }
o )



Figure 6.4

EP SUBJECT NO:1E

‘

b)

0 . 5 10
: MSEC -
£

- ‘ PEAK 1 LATENCY =1640 * - °
e PEAK 2 LATENCY =2.620
; PEAK 3 LATENCY = 3.640
3 . PEAK 4 LATENCY =4.760
~ PEAK 5 LATENCY =5.740

* PARSE SUCCESSFUL : ATTRIBUTES NORMAL 3¢

-*

Bl

Zero-phase bandpaaa_filteréd BSAEP élong with the
final cutput of the pattern recognition procedure.
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---L."
31 22 26 27 22
1 ) 1 1 1 1
25 23 27 25 - 24
1~ 1 1 1 2
Hill | “Hill | Hill 1 Hill IV Hill vV .
a3l c b25c|a?2¢ b23 ¢ |a26 ¢c b27 ¢ |a?7 ¢ b25 ¢ |a22 ¢ b24 ¢2
N ? '
™\
Flgure 6.5 "Parse table -and the senfence"'fi-iat was parsed.
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bottom of the figure. For example, in the case of hill III, it haa 26
'a' primitives (13t row of 3rd, column), one 'c'primitive (2nd.row of
3rd column), 27 'b' primitives (3rd row of 3rd column) and one ‘c!

primitive (4th row of 3rd coluon).

If houever, the parse. fails, that message 1s displayed and neak

latencies and amplitudes are not computed. If the parse is successful

but either attribute check faile, peak latencies and the'attribute

= mismatch' message ie‘dieplayed. If either the parse fails or there is

‘an attribute mismatch, the classifier considers that BSAEP"abnormalk

‘. Fifty eight normal and 12 abnormal .BSAEPs. based on neurological
assessment, wera choaén randonly from our clinical records. In our

— A : '
' previous’etudy (Madhavan et al.,” 1983), the latency attribute check was

based on mean absolute peak latencies and two etandard deviations was

eelacted as constituting an acceptable range for each peak 1atencj. One

problem uith this approach is that a delay in one peak affects all the

aubeequent peak latenciee. To avoid this undesirable carry-cver effect,
. ) . N

we used mean peak latency differences between successive peaks which.

then lets us treat them as 'uncorrelated'. Further, the-latency of ‘the

firat peak is not used in the classirication at all because it is.

affected by extraneous factors, eg., wax in the ear. A database was

- created for mean peak latency differences and standard deviations of

normal BSAEPs. E

.,o

To determine what multipls of the standard deviation about each °

\

s
.
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ﬁemn‘latency differenco constifutes our acceptable range'of normal
values (rather than a fixed value of two-asfrns chosen for our previous
.lht;dy (Madhavan, et al., 19833), an. empirical optimization run was
performed. The multiplier was varied independently for each mean peak
latency diﬁference from 0.1 cdrfésponding to.a very tight range of ,

acceptable values about the mean to 3.0 corresppndiang to a larg ge range.
-

Then thé claasifier performance was compared teo the neurological

assepsment.

r

The following scoring system was qgggt

-

1. Concurrence of neurological and classifier results: +1
(normal or abnormal) \ .

2. Neurological normal; classifier abnormal T -1
(false positiva) . 7 :
' . ! . . : ) : .
3. Heurological abnormal; claskifier normal : - =10
{false negative) :

A false negative was penalized more'to-réduce the danger of the

classifier falsely identifying an abnormal response as norma "and thus

posaibly escaoing a closer’ scrutiny by the neurologiat. ,I must be
L el

noted. that the somewhat arbitrary scoring system that we have used can

be modified according to the situation.

+

For each peak, the standard deviation multiplier that maximized.
the total score for all the 70 subjects was selected for use in the test
run, The final values are as follows. o

4
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Peak Latency : (II-I)  (III-II)} (IV-III)  (V-IV)
Difference ) :
“Multiplier _ 1.74 1.90 2.33 1.77

R 4

6.4 Test Run
Sixty BSAEPs_of unkpown (to the authors)} clinical assessment were '
~ processed in thi’s 1'*un. Th.e pro\cedure qés a'xactly the same as before
except that the optimized standard deviation multipliers were used. If
the BSAEP was clas_aifi'e’d by the neurologist as normal, the database was
updated. The final resulrts for 60 test subjécts which cortained 35

normels and 25 abnormals are shown in table 6.1.

With a typical Qrtiary elinic prevalence of 42X (25 abnormals
out of_ 6C), u;n,a see that the accuracjr::\f classification was 83%. The
- s;énsit;.vity, ie., the classifier's eblility to détect abnormality when
present, -waa 84% or 21 out of 25 times.v The classifier correctly
identified the absence of abnormalities 28 'iiut of 35 times or the
_claséifi.er‘a_specificity was 8_071. 'The jt.ota.l of 93 entries in the
.databa_se (58_ no'rmals.fro_m training and 35 normals from test runs)
yielded the mean peak -la%ency"differen'ces and theéir st&ndard. dev_iatio\qe\- . R

shown in table 6.2.

-

6.5 Discussion

. ' These results show that the syntacfic pattern recdgnition'

h o .
approach produces very acceptable results. Preprocessingr by the zero-

.
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Table 6.1
- Result of classification of 60 subjects.
{21+28)=49 correctly classified.

4 false negatives and 7 false positives.

~ Clinical Assessment

Abnormal Normal .
: ,Clﬁssif;cation Abnormal 21 I .
by .° : '
Computer Normal . y . 28
] ( .
1
P *
o .
- » »
. “ - Q )
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Table 6.2

Statlstics_after 93 entries have been made into the
data base of normal BSAEPs.
Mean values and standard deviations of relative peak latencies shown.

I-stimulus latency values not used in the classification procedure.

¥

Latency in milliseconds

Peak Diffefence ‘ Mean . ‘ Standard Deviation
I - stimulus 1.653 0.198
-1 ° 1.015 , 0.090

CIID - II » 1.018 . 0.110
IV - III 1.075 , 0.080
V- 1v 0.898 ‘ 0.118
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phase bandpass filter renders tﬁe'rest of the steps in the pattern
recognition praocedure very easy. ‘AB shown in figure 6.4(b), the zero-
phase filtered EP 1 ooka" different from the classical EP as in figure
6.1 but because of the zerco-phase nature of the filter, there 1s no
distortion in the location of the peaks. Indeed, this is the feature
used by the clinician in making the'assessment and that is preserved by
Zero- phass filtering. A similar approach used earlier.(Fridman et al.,
1982) has also Bhown the efficacy of zerounhase bandpass filtering. In
our application, the removal of noise and artifacts by preprocessing has
made the-gramﬁar required to jdentify - HILLS particularly simple. The‘
finite—state-grammar we have used here makes the parsing procedure easy.
Software imﬁlementatibn, which chiefly involves loglcal operaticns, on
any microcomputer will be qtraight-fofward, makiﬁé it inexﬁensive and

portable.

One' impor nt feature of this classifier is the use of relative
peak latency diffearences rather than absolute neak 1&tencies from
stimu}ﬁs. By eliﬁinating (at least partially) the carryover effect of
delay in one peak-affécting the latencies of Subsequenﬁ peaks, we havg
achieved an improvement in claqsificatioh aécuracy ffom 75% in our

\ .
previous study (Madhavan et al., 1983) to 83% in this case.

Instead qf choosing a-fixed acceptance criterion (say, 2 standard
deviations about each peek latency),‘tﬁe multipliers were empirieally
optimized. In this procedure,a.weighting system was developed wéifd,a
penalizes a false negative ten times more than Y false positive. These
‘yeightings could be modified according to the application st hanq. For

3

v
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"example, ina acreening situation where EP is only one part of a test

battery, false positives (classifying normals as abnormals) could be
penalized more. . On the other hand, false negatives may be penali ed

pmuch more than was done here ("-10") in an intensive ‘care application

_when it is important to identify ell abnormalities It should be

&

pointed out that as more and more entries.are made in the database and_

the standard dQviation values converge, the maghitude'of the multipliers
may-hgve to be iﬁcreas;d Yo avoid an increase 1in error rate of
classification.

A sufficiently largo sample of BSAEPs (seventy) was used to train

the classifier. The test run had a typical tertiary care prevalence of

ebnormal BSAEPs and can be considered a valid test of the clagsifier.

Accuracy of B37% ensures-that the classifier performs adequately - in a
cl;nical context. Further improvement in sccuracy of classificaticn may
be achieved by developing separate databases for infants, children,
adults and geriatric groups as there are well-known differences in
acceptable latencles f&r'each of these groups. It is easy to modify the
claaqiffbr for any other evokeq potentialleuch as visual and
somatosensory potentials. Since it 1s general in nature, 6n1y the

relevant attribute table need be established.

Qur classifier is seen as & supplement to the clinician's visual.

analysis. Becausa of the objective method of locating peaks and
¢lassifying the EP, this algorithm lel be useful where continuous
attention of a trained neurologist is not available or pdsaible as in EP

screening in remote locationg or in surgical and intensive care

moni toring.

FAS



CHAPTER 7

-

P

_ CONCLUSIONS & 'RECOMMENDATIONS

In thig éhesis, we ha;e pgesenteq'some new and powerful nmethods
for the estimation and pattern recoénition and claégification or-evoked
potentials. The.ensedﬁiL avéraging technique to estimate evoked
botentiuls suffers from many drawbacks. The assuzption that responses
to each stimuluse are identicai; and~hence the evoked respohses are
deﬁerministic, is unrealistic. Since the transient responses are lost by
averaging and there is an inherent time lag #efore all the responses in
the ensemble are collected and averagéd, we explored éthervmefhods fof
the estimation of the evoked patential. 2

!
Adaptive ;oise cancellation seemed to provide the best solution
’for the estimation of single stimﬁlus evoked potentials. As many

studies have shown (discussed iA chapé;r 4), the popular LMS algorithm
which has been used for nolse pancellatiog has many drawbacks. In this
thesis, we have demonsfrated the use of a new family of adaptive
algorithms, the so called lattice algorithms. Simulation studies and
real Pata tests demonﬁtsgta the ability of the normalized exact leaét
squares lattice algorithm as deveploped by Lee et al. (1981) to estimate

single stimulus evoKed potential.

. oL - .
. J -

129
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‘These etudiee prompted us to develop'a new end more general
lattice algorithm called weighted exact least aguares 1attice algorithm.
The complete theoretical derivation and simulation etudies‘to
.demonstrate its‘euperiority‘over nermaiized exact least squares lattice
in adettive noiee cancelletion upplicatiens is a major contribution of
this thesis. The derivation of tne algorithm, which parallels the
procedure adopted by Haykin (1986) for unnormalized (unweinhted) exact
least squares lattice, shows the dissociqtion of gain vector, 'x' ‘and

ty! .for forward and backward prediction. We explain the interpretation

* R

of 'y! as a measure of how gaussian the input procese is and its
relationships to similar variables in publisted literature. The
weighting factor, a; in the weighted exact least squares lattice
algorithm modifies the 'y’ appropriately to make the weighted exact
least squeree lattice algorithm robust. It is this property which gives
it superiority over normalized exact least squares lattice aiogfithm in
adaptive noise cancellation apelicatione.

We have assumed a very different epproach to the pattern
recognltion and classification problem. Rather than'extendinp‘the
etatietical ‘approach taken in Part - B (adaptive filterinn) of the
thesis and using stetietical pattern recognition techniques, we adepted
syntactic methods ;hich have their roots in Artificial‘lntelligence and
.. Computer Science. This was dictated purely by the'uaveform that we were
trying to classify. Evoked potentials being structurally specific

" waveforms and abnormality in them being very small varietions in.latency

{corresponding to very small shifts in frequency and other parameters of
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the process), we felt that syntactic methods would be more appropriate
for ﬁhttern racognition than statistical methods. The simplicity of the
procedure and the performance of the classifier has demonstrated tﬁe
validity of this ﬁremise. Another reascn for the use of syntactic
method was its ability to build up a description of the.evoked potential
in terms of its amplituéé and latency which is jiot easily done with

statistical methods.

The applicatidh\of syntactic pgttern recognition o evoked
potentials has been‘éemon;trated for the first time in this t;::}af’ﬁrhe
finite state grammar we have developed to éescribe a waveform is unique,
.to this auther's knowledge. Th; flexibil{ty of this grammar isrshown by.
the ease of mbdifyihg it to suit other applications (NHohara, 1985). "The
scoring system developed to optimize the classifler during the training
- phasg can be tailored to other ciinichi gituations by médifying them
suitably. As a part of the classification progedure, a data base cof
normal’ evoked potenfﬁals is generated. The syntactic pattern
recognition ayatem was demonstrated to be practical by the exhaustive

test run that was undertaken.

There are several directions in which the results developed in
this thesis could be extended. To make the least squares lattice
algorithm robust, the elegant methods developed by Puthenpura et al.
(1986) can be incorporated into the weighted exact least squares lattice
algogith;. Adaptive noise cancellatioﬁ using other powerful adaptive

algorithma such as Fast Transversal Filter (Cioffi and Kailath, 1984)
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and systolic arrays (Haykin, 1986) should be explored. Robustizing
these algorithms will be a very useful extension to existing adaptlve
techniques. .The use of joint estimation form of lattlce algorithms for
pattern recognition should be explored, where if the reference and
primary inputs are feature vectors, the estimation error is a measurg of
_the distance between them. This can form the basis of classification
uéing distance measures. Another interesting extenslon of lettice
algorithms is to the non-linear case. Lee (1980) mentions the possible
extensions to Toda lattice which arlses in the context of solitons
(Toda, 1970). The interesting property of Toda lattises is their
exponential nearest;neiéhbour coupling; This arises naturally in pany -
physiological situations, especially in action potential propagationﬁ"
through axons and across synapses. | .
- %
There 1s wmuch more work to hé done in the practical
'implementation of single stimulus evoked popential syétems ing
adaptive noise cancellation. Thié\uogk is currently underway at McMaster
Univeraity.; Thé practical soluti;n has to be optimizeé in terms of
filter order, number of signal sampies, word length and computational
power required. The question of alternate refefehce input sources is

¥y .
984) voint but that coherence

also not settled. Winsky and.AllinJ%n (1
of alternate e.e.g. channels is low but we feel that other solutions can
be found to this problem. The reference input to be used for other
forms of evoked potentials such as visual, somatosenséry end event

related potentials has to be explored in detail.

v
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The use of:syntactié pattern recognition and "classification can
be readily extended to other evoked potentials. The generality of the
grammar and Ehe ease of implementation should make this extension
readlly possible. Once the techﬁique is extended to pther evoked

potentials, they can be combined into a multi-modality evoked potential

aystem which can form part of a neurclogical expert system. Different:

scoring systems should be tried to optimize the application of the
cléssifier in situations such as screening in remote locations and
monitoring in neurosurgical and intensive care situations. ‘P;rtitioning
. of the data base of norm&i evoked ioténtials uéed in‘phe classification
preocedurs into different:age groups should impro;e the accuracy of
classification.
The rasults.presented in this thesis have applications not only
. 1n neurological signal processing and biomedical engineering but also in
. adaptive filtering and pattern regognition and their applicationé.in
many afeas of signal processing. We?believe ‘that our work wili have a

.major impact in those areas.

——
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