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ABSTRACT

:

Approaches to the investigation of myogenic and hormonal
",

contrQls in the medi,ation of gut:,.motility are well understood, however

methods to'analyze neural control remain to be developed. ~ have

developed a cannula system with nerve ,cuff electrodes, subserosal

bipolar electrodes, and extraluminal strain gauges to simultaneously,,.
monitor the .vagal nerve, myoelectric' (ECA), and contractile activities

I

in chronic dogs'cTh~ cuff electrodes were used to toth stimulate and

record nerve signals. Five healthy dogs-were implanted with~uch cannula

on the gastric area, with the cuff electrodes placed on the branches of
~ .

the anterior nerve of Latarjet. The condi,tion of the cuff e1~ctrodes

were monitored by impedance measurements, while that of the nerves ~nder

the, cuff e1ectrode~re studied by electron microsc~ (EM). Three Time

Delay Estimation~(TDE) algorithms: General Cross Correlation (GCC),
. -. ). .

Smooth Coherence Of Transform (SCOT), and Maximum Likelihood (ML)

,methods were simulated with thr~e types of signals as inputs: Band

limited Gaussian White Noise (GWN), Sine wave (SINE), and Impulses of .
I

random intervals (IMP), Results of the analysis of the recorded neural

,signals show~ the three algorithms can be used to study the, sensory

and motor patterns of the compound nerve signals with the SCOT and ML
.', "

methods being superior'than the GeC met~od. The results from the EM. ~ . ~ ..
studies suggested that the cuff electrode caused loss of the myel inated

(iii) "



axons and the larger diameter ~nmyelinated axons. Based on the res~

of this study, relevant physiological interpretations were also

discussed.
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CHAPTER
}

INTROOUCTION

INTROOUCTION

•

,­-

, ) .

•

'.

\
Gastrointestinal (GI) motility involves' the study of the

function of the gut as the ingested material is mix~d, triturated,

digested, absorbed, and propelled. The various organs of the GI tract

include the esophagus; liver, pancreas, st~mach, small intestine, and

large intestine. Specific motility patterns in response to the ingested

material are brought about by the integration, in time and space, of

three control system~: myogenic, neural, and hormonal. These functions

almost always operate inter.-dependently. However, it is thought that

the'myogentc control system is the one immediately responsible for the.
. control of GI motilit}' [Daniel et al 1960]. The myogenic control system

~s in turn modulated by the .hormonal and neural control systems.

Components of the hormonal control system are activated in response to

the various types of ingested material and may modulate myogenic control

direCtly or il]directly by affect>l.ng neural co.ntr,ols. The neural control

system is brollghtabout by the actiyation and integration of both /'
".intr1nsic (within the gut wall) and extrinsic nervous systems, initiated

by stimuli external and internal to the gut and ~fected by hormonal
,

- ,
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controls [Debas et al 1975,1977, Fox et al 1980].

"Consequently a study'of GI motility necessitates the monitoring

of the three control activities. In this ~egard much attention has been
. . ~

devoted toward understanding myogenic actnrity and its modulation as per

input from other systems by monitoring the electrical and contractjle

signals with electrerl€s and strain gauges re~pectively, both in hu~ans

and animals [80rtoff, ~975; Daniel and Chapman, 1963; Daniel and Irwin,

1968]. The role of various hormones in gu.t motility are usua.llY

analyzed by monitoring blood samples and myogeni~ activities [Debas et

al, 1975; Fox et al, 1977]. ' ..

-

A'
On the other hand, not much has been accomplished in monitoring

the neural activities in relation to mYogenic activities. The GI tract

is richly innervated with an i~trinsic~eural network embedded in the

intestinal wall [Furness and Costa, 1980]. The intrinsic nervous syste~

appears to be capable of modulating the myogenic activities without

,extrinsic inputs [Kelly and Code, 1969; Papatova and Atanassora.1972].

This is possible, because the intrinsic nerves have both sensory and

motor components. The extrinsic nervous system appears to i~fluence GI

motility malnly via the intr';nsic nervous system,' but the nature of the

interactions between the extrinsic nerves, intrinsic n~rves, and the

smooth muscle cells remains unclear.

ou~ presen~ kn~Wledge 'of 'the neural contrOI(Of Gl motility is

mainly based on acute in-vivo experiments in anesth,tized aniIDals or on
, ..I

in-vitro studies of isolated gut tissues. These however pose

significant disadvantages (discussed ,in the next chapter). Hilan and

•
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Roman [1978] have studied unanesthetized, animals by suturing the vagal

motor fibers, some of which are invol'ved in central nervous system
•control of. gastric (stomach) motility, to the peripheral end of the left

phrenic nerve (nerve that innervates the diaphragm). The,activity
•

patterns of the motor units of the innervated diaphragm studied in

parallel with physiol,ogical variables affecting gut motility provided an

indication of the nature of the vagal motor fibre activity. Hall and,

Diament· [1982] studied the problem in un,anesthet,ized animals in-vivo by

blocking the cervical vagal nerves by cooling and examined the resultant

changes in motility pattern's. The findings of both these' investigators
....

suggest that the vagal nerve plays an important roie in the control and

coordinat~on of gastric motility. However, neural activities and their

corresponding motility patterns have not been reported in conscious

animals.

In the aosence of sufficient data, it is not possible to

und~rstand the integration of the neural controls with the myogenIc,

controls. I Th.,is lack of information is mainly due to the difficulties

encountered in developing techniques for implanting electrodes on the

gut nerve trunk and for .recording and analyiing low ,amplitude nerve

s'ign~ls. {

Within a 'nerve'b~ndle,-~hich'can c~nsi t of thousands of nerve

fibres, each fibre can generate characteristic tion potentials (next
\

chapter). Recording separately from these individual fibre yields an

impulse like waveform [Davis~n and Grundy, 1978; Grundy et al, 1981;

Hilan and Roman, 1978]. These indiVidual fibres, however, can fire

'.



, 4

synchronously or asynchronously, independent of each bther. Let Mbe'

the summation of all the individual fibre potentials at any i,nstant time

then,

N
M(t)=.l: nitt}

1=1
1.1

I.

•

Where ni is the instantaneous potential produced by the i th nerve fibre.

As per the Central Limit Theorem [Papoulis, 1965], M(t}, approaches 'a

Gaussian probability distribution as the number of samples (N) increases

without bound and so long as the 'n i (t) are independent. Hence

recording from a large nerve trunk tends to yield a r~ndom'waveform.

Thus these nerve fibres may, at a given instant, carry sensory or motor

impulses by virtue of the nerve consisti~g of both sensory and motor

fibres. In order to understand the mechanism of the extrinsic neural

control of the GI system, it is necessary to be able to separate the

distribution of'motor and sensory signals from the me~sured compound
•

signals;' and cor'rel,ate them to the underlying GI motility patterns.

More than any other organ system of the body, the GI tract

consists of an h~terogeneous collection of dissimila~organs, i.e. the'

structure and functions of, for example, the esophagus and the stomach

are as dissimilar as are those of the small and the large ·intestine.

This ~issimilarity among the functions of the components of the systems

adds compl~ity to the study of the GI·physiology. This thesis deals

with the stomach (gastric) and duodenum {proximal part of the small.
int~stine} portion of the GI system. The techniques developed in this

•

..
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study, however, can easily be adapted to any other portion of the GI

system. ' ;

1.2 OBJECTIVES OF THE RESEARCH

.."
1he objectives of this research include:

(i) the development of an instrumentation system to record

neural signals innervating the stomach in conscious animal

chronicall~ (in-vivo) yncluding a cannula system consisting

of electrodes and strain gauges for implantation;
\

(ii) the development of computer algorithms to explore the'

5

.
sensory and motor ne4ral ~atterns from'the recorded compound

neural signals; ...

1.3

(iii) the study of the recorded neural signals:

(a) for the distriputions of the motor and sensory

activities from the measured compound neural signal

using a laboratory oriented personal computer system;

(b) the correlation of the motor and sensory activities to

the corresponding contractile activities; and.

(iv} the evaluation of the effects of this' instrumentation on

nerves.

'-- "

ORGANIZATION OF THE THESIS

;,'l.

The organization of this thesis is' as· follows: ,/

..
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Chapter II deals with a review of the general anatbmy and

functions of the GI tract, the control of GI motility, and methods for

investigating gastric motility. Chapter III deals with a basic review

of the generation of the neural signals, their statistical

characteristics, and algorithms for estimating the sensory and motor

patterns from the recorded compound neural signals. The procedures for

fabricating the various electrodes, instrumentation requirements,

computer facilities, and implementation of the various algorithms i~'

analyzing the neural signpls are given in Chapter IV. In Chapter V, the

performance of the various algorithms~ evaluated using three

different simulated signals. In Chapter VI, using the various

algorithms, the sensory and motor patterns of the recorded compound

neural signal~ are analyzed under various conditions such as: during

periods of ~ontractions; during quiescence; in the case of highly

damaged nerve trunk; and, signals contaminated with artifacts. The

conditions of the nerve trunk and of the cuff elecfrode studied by the

electron microscopy and impedance measurements are given. The

discussions of the simulat)on results and analysis of the neural signals

are gi've.n in Chapter VII. Final.ly conclusions and suggestions for

further studies are given in Chapter VIII •

•
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