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ABSTRACf

The propagation of weak shock waves through a horizontal

stratified two-phase system has been investigated both theoretically and
, , ..

experimentally to demonstrate the various"facets of its interaction with

the phases, fuel bundles and flow network branches. Two types of sGock .L .'-

tubes are used: a lucite
,.

shock tube is utilized in monitoring the

•

mechanism at the interface of the phases by high speed photography and

the other one is an aluminum shock tube of 101.6 mm inner diameter with

flow network branches is 4sed in investigating the shock waxe behaviour

inside a pressure tube during blow-down and loss of,coolant accidents.

'This dissertation can be.divided in~to three broad categories.,
First, the inclusiop of the interfacial roughness factor in the analysis

of the shock wave propagation through a two-phase system insid~ a

pressure tube weakens the strength of the shock waves, because of the

energy loss due to frictional resistance at the interface. The interface

is subjected to a combined effect-Af the waves propagating both in the

ga. and liquid phases of the system. High speed ph~tography of the,

interface is considered to estimate the parameters pertaining to the

generation of the ripples at the 'interface and the coupling of this

parameter to a quasi-steady energy balance for the system can provide

the values of the magnitude of the overpressures in the system.

Second~y, the interact~on ,of weak shock waves with three

different types of, fuel bundles used in CANDU reactors is presented.
~

Depending on the percentage of· the ,flow ar'ea., .!!vailable, different fuel

bundles produce different magnitudes of the overpressure. For the
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transmitted waves, the choking is markedly observed even for moderate
Il'

range of the shock waves.

strengths of overpressure for

"Presence of liquid phase enhances the

the reflected and tttansmitt:d:aves.

Inside the fuel bundles, the shock wave~ cause unusual vibrational

effects which ma~ be detrimental to the life of the fuel elements.

observed

Around the
~

to be same

network, the two-phn~ propagation velocity is
"

as the gas phase propagation velocity. Though. tap

and distilled water exhibit variations in the maximum overpressures, the,
time averaged magnitude under these two systems agree very well every-

where in tte network branches. The vertical presSbre profiles in the

tap water has dispersive and high oscillatory nature whereas in the

disfilled water the rise iR'overpressure is dispersive, but smooth in

. nature. In distilled water, the pre-pulses moving under'8 free surface

travel at the speed of sound in water and for those in ti~water, this
'..-,

velocity is influenced by the presence·of air bubbles iA~he tube walls.

-" .
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CHAPTER 1

INTR<;;;'uCTION

1.1 Problem Definition

The interaction of both J+.ock waves and pressure waves (we?k~.,

shock waves) occur in many industrial plants where the instantaneous.. ,
release of chemical or mechanical energy generates high speed shock

waves and a change in the fluid properties of the syBtem is brought

about by the excursion of these waves. Besides industrial sectors, the

shock waves have trem~ndously wide variety. of their generation, such as

from the high energy bomb explosion down to the exhaust of the internal

combustion engines. Similarly, the strengths of the shock waves also

vary from high hypersonic to the near soni~ types of flows. In the study

of the shock waves, the compressibility of the medium into which these

waves are propagating, is of primary importance for the determination

and the analysis of the aftermath of the wave propagation. Although

shock waves can occur in solid, liquid and gaseous substances, it is the
I

gas phase medium, which is held responsible for ~e phy~ical'changes in

many modern industrial systems.

The complications associated with the shock wave propagation

through a two-phase gas-liquid system have called for the thorough

\.

1

"
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investigation and understanding of the problem from the perspectives of

_ the nuclear reactor safety analysis. In nuclear reactors, particularly

in CANDU-type reactors, where the horizontal pressure tubes comprise the

•
main part of the Primary Heat Trsnsport (PHT) system, the coolant flows

through these pressure tubes under pressure to remove the heat from the

fuel eieme\lts. In the event of toss of Coolant Accidents (LO~A) the

pressure waves may be generated in the system and the propagation' or

these pressure waves through the fuel bundles, different pipe connect-

ions and other sophisticat~d flow measuring devices may induce a lot of

complicated effects

the pressure tubes

inside the pressure tubes. Once "the coolant from

'-has been drained off. then part of the hot fuel

"

bundles is exposed to the hot steam. At that time. the Emergency Core

Cooling (ECC) water (or fluid) cqming in Contact with the hot steam or

fue~s, generates pressure waves in the pressure tubes. These pressure

waves propagating through the fuel bundles produce unstable pressure

'fluctuations that may cause the dislodgement of the fuel elements from

the bundle· assembly. The extent of the vibrational effects are the

measure in the design for the durability of ;he fuel bundles under fast

transient conditions.

Referring the works'of Borisov et al (1965) and Sutradhar et al

(1983), the propagation of the shock waves in stratified two-c6mponent

fluid flow systems is observed to generate high degree of instability at

. .'
the interface. The energy imparted to the wavy interface by the high

energy gas flow behind the pressure vaves causes the flow regime of the

system to chang~ drastically [Sutradhar et al (1983»), The shock waves

through the heavier phase propagating at a faster speed suffer multiple



3

reflections from the surfsce as well as from the solid boundary at the

bottom. This mechanism induces perturbations at the smooth interface

/,

-,

producing low amplitude ripples spread over the interface. The presence

of incompressible liquid phase tends to enhance the shock wave atrengths

due to the reduction of the compressible phaae ?f the system. The non"': •

linear increase in the strengths of the shock waves with the increase

in the liquid level will produce stronger shock waves upon their

reflections from the fuel 'bundles of any other flow IOOnitoring objects

stationed inside the pressure tubes [Sutradhar and Chang (1985b)]. The

d\"ilS of these effects are attempted for the investigation in this

work, and are categorically mentioned in the next section.

1.2 Organisation of the Thesis

In Chapter 1, the' basic shock wave dynamics are discusaed in

detall., These classical results are important for the compressibility
"

effects of the fluids under eonsideration. In two-phase stratified

horizontal flows, the compressibility of the gas phase plays a very

import~nt role as compared to that of the liquid phase. In a stratified

system, the propagation speed of a pressure or shock wave is controlled

1 by the compressible parameters of tlie gas phase. The equations for the

particle velocities induced by a shock in both the gas and liquid phases

are also provided in this chapter.

In Chapter 2, the literature review pertaining to the work in
~

this thesis is presented. This includes the works done in the branched

•

pipe, systell8 in the single phase as well as in the two-~e systems.

,
"

•'. ...




























































































































































































































































































































































































































