r"\‘

wr

ADVANCES IN OPTIMIZATION OF CIRCUITS AND SYSTEMS

USING RECENT MINIMAX AND £, ALGORITHMS
]

WITOLD KELLERMANN, M.Se.

A Thesis
Spbmittgd to the School of Gra;iuate Studies *
in E;ar;.ial Fulfilment of the Requirements
for tEhe Degree .

Doctor of Philosophy

-

McMaster University

: © . December 1985

,t



ADVANCES IN OPTIMIZATION OF CIRCUITS AND SYSTEMS
i ) i
USING RECENT MINIMAX AND ¢; ALGORITHMS



DOCTOR OF PHILOSOPHY (1985) McMASTER UNIVERSITY
(Electrical Engineering) . ’ r Hamilton, Ontario

TITLE: Advances in Optimization of Circuits and Systems Using
-Recent Minimax and ¢, Algorithms

AUTHOR: Wit.old Kellermann, M.Sc. (E E)
(Technical University of Wroclaw}

SUPERVISOR: J.W. Bandler, Professor, Department of E!ect.ncal and
' Computer Engineering
B.Sc. (Eng.), Ph.D., D.Sc. (Eng.) (University of London)
D.1.C., (Imperial College) .
P.Eng. (Province of Ontario)
C.Eng., F.LE.E. (United Kingdom) .
Fellow, LE.E.E.

. NUMBER OF PAGES: 'xvi, 202- ’ '

it



ABSTRACT

This thesis concerns itseif with computer-aided teo‘:hniqu'es for design
_centering, i:olerancing and tuning, fault location and model parameter identification
from measurements. .

Since many of thé engineerin-é system probienis discussed in this thesis are
formulated as 'optimizatioq problems we examine algl)rit.hms and techniques for
.non]inear optimization. Our :\ntention is focused on minimax and £, algorithms since
many for-m\:ﬂutions of engineex-'ing system problems exploit the charac';eristic features

[
of these two norms.

v

A novel approach for _wo'rst—case network design is proposed and an

algorithm for the fixed tolerance problem embodying worst-case search and selection

of sample points is presented.

The features of the £; norm in the tuning problem’are discussed in detail
and explained using r{ecessary conditions for optimality of tk;e nonlinear €, problem
with nonlinear qpnst.raint.s. Regular and singular £; problems are defined and a
criterion for cietermininé a sing'ulari.t.y presentin the £, problém is formulated.

“ New formulations using the £; norm afe given for fault isolation and medel
‘parameter id‘ent.iﬁcation in analog circuits.

Practical engineering problems have been solved illustrating the wide
a;)plicability of the concept;used and the robustnéss of the algorithms employed:

A new gigorithm for minémizing the “car'dinality of a set éﬁbject to

- nonlinear, nondifferentiable c_:onstraipt.s is pr;s'?nted and_ i}lixstrg;e@f Ey solving the

best mechanical alignment problem. The load shedding and genemtion rescheduling

problem in power systems is formulated using the £, norm. The formulation is-tested

iii



on 6-bus and 26-bus power systems. A general microwave multiplexer design

procedure exploiting exact network sensitivities is introduced and illustrated by

-

_ designing 5-channel, 11 GHz and 12-channel, 12 GHz multiplexers.
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INTRODUCTION

. The increasing size and complexity of physical man-made engineering

systems necessitate the use of computers in all aspects of 5he design, production and

maintenance processes. A corresponding need has developed for efficient and
-

powerful computer-aided techniques for thorough study and optimal realization of the

above mentioned processes. K

Computer-aided design (CAD) techniques are now well est,ab‘lished for

design ceritering, tolerance optimization, yield maximization, cost minimization and
the rapidly increasing range of applications includes electronic circuits, power
!
systems, microwave systems and mechanical systems.
-‘—5—'\. ’ . - . - -
« Computer-aided design is often treated together with computer-aided

- manufacturing (CAM). We are not including CAM in this thesis, since CAM starts

from data, preferably mnchme-readable data, that is produced in the demgprocess,_

but CAM is not part of the desngn process itself.

Computer-aided testing (CAT) techniques, which originated from the area
of t.iigit.al circuits, are primarily associated for analog ;ircuits'with the problems of
fault location, model parameter identification from measurements and postproduction

* tuning. |
Recently, the term computer-aided engineering (CA\l'EI-) has been us;zd m<;5t
, t"requently for turnkey software and hardware systemé for electronic systems and

-

-component design. It has also been used in a more general sense to include a broad set

of system analysis tools applicable in many engineering disciplines.

"



Most of the discussion in this thesis focuses on computer-aided engineering

gystem prablem solving, in which key elements are formulations of the problems,

algorithms for solving the problems and software implementing, the methods
proposed.

Many of the éubproblems assqciated with overall problems in different
engineering disciplines are similar to each other. This motivates us to’ utilize a
conceptv;:al framework developed over the past ten yc:ars for design centering,
tolerancing and tuning'(DC’I"ﬁ- and for fault’ analysis, postpreduction tuning and
model parameter identification from measurements. Our aim is to provide a set of
methods and techniques for solving 'th'esg problems which employ recent optimization
algorithms with the emphasis on nonlinear minimax and €, algorithms. Our
attention is focused on minimax and €; algorithms since many formulations of
engineering system problems exploit the characteristic features of these two norms.

We do not presume to be able to solve all problems associated with any
overall engineering system. Applications of the methods and teéhniques proposed ”
will be immediately apparent in many cases. Often it: will also occur that familiarity

with the concepts and techniques will clarify certgin problem aspects which have been
ob;cured or unrecognized. d

In Chapter 2 previous work’in the area of design centering, tolerancing and
tuning is reviewed! We consider the relevant fundamental concepjs and definitions
commonly used in the DCTT literature. Three general formulations of the optimal
DCTT problem are given and some import.ant‘ spgcial cases are described .in more
detail. We provide also an adequate st.at.e-of-the-a;t review of algorithms for DCTT

problems.



A

Chapter 3 deals with the use of minimax optimization techniques in
. -~ ’

computer-aided engineering. A critical review of the existing minimax algorithms is -

given together with a comparison of minimax algorithms using the classical three-

section transmission-line transformer (Bandler and Macdonald 1969a). The Halld and

1
P

Mhdsen algorithm (Hald and Madsen 1981) is treated in some detail and its
performance is demonstrated on regular and singular problems. ' A detailed
description of the algorithm is given in Appendix A. A nevel approach to worst-case
network design is pr;)posed and an algorithm for the fixed tolerance problem
embodying worst-case sea.rch and ;glection of sample points is presented.

-Ciepter 4 covers the use of €, optimizétion techniques ip coﬁlputer-aided
engineering. Previous work in the area of nonlinear £, ;)ptirr;ization is briefly
reviewed. The Hald and Madsen algorithm (Hald and Madsen 1985) for nonlinear £,
optimization is presented in some detail in Appendix C. The features of the €; norm
in the tuning problem are discussed in  detail and explained using necessary

conditions for optimality of the nonlinear €, preblem with- nonlinear constraints,

. Regular and singular £ prqblems are defined and a criterion for determining a

singularity present in the €, problem is formulétegi. New formulations using the €,

norm are given for fault isolation and model parameter identification in analog
. )

cireuits, _ *

The next three chapters, Chapter 5, 6 and 7, contain major applications of

the conchts and methods described earlier. In each case, a difficult engineering
problem has been selved illustr;lting the wide applicability of the methods i:i-oposed

and the robustness of ‘the algorithms used. -

z .
. v

Chapter 5 describes a minimax approach to the best mechanical alignment

. problem. A new algorithm for minimizing the cardinality of a set subject to nonlinear,

-

1

A _ ' , b



nondifferentiable constraints is presentec) and illustrated by sclving practical

problems.

Load shedding and generation rescheduling in power systems using the &
., e

norm is treated in Chapter 6. A new formulation for the problem is proposed and
. >
tested using 6-bus and 26-bus systems.

”
In Chapter 7, optimal design of microwave multiplexing networks is for-
mulated as an optimization problem. A geﬁeral multiplexer optimization procedure”
exploiting exact network sensitiyities,is illustrated by designing 11 GHz, 5-channel
and 12 GHz, 12-channel multiplexers.
We conclude in Chapter 8 along with some suggestions for further research.
The author contributed substantially to the [ollowing oriéinal
developments presented {n this t.h;:is\: . .
1 An algorithm for the fixed tolerance ﬁrol;lemiambodying worst-case search

and selection of sample points. - -

-(2) Mixed programming formulat.iorrof the tuning problem ensuring that the
: ‘solution gives the m_inimum number of tunable parameters. .

(3) A new formulation for fault isolation in nn:log circuits using‘the £ Inorm
and an exact penalty function. )

4) An algorithm for minimizing the cardinality of a set squect to nonliﬁeaf,
nogdifferentiable constrairits.

(5) A formulation oi" the loé.d_-shedding problem in power systems\ uging the £,
norm. ’ B l

(6} A p'rocpduré for optimal design of microwave multiplexers using €; and

minimax optimization.
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DESIGN CENTERING, 'i‘OLERANCING AND TUNING (DCTT) - A REVIEW

| .
21/ INTRODUCTION

.

The dev?elopment of new design procedures and techniques can, in general,
be characterized as an attempt to include in the design process as many factors which
may influence the performance of a manufactured design as possible. \.Nith readily
available a ever‘increasing computing power at hand; computer-aided dgsigners
are dgaling with more real.istic‘ problems. We should not, however, ;‘ely only on the
computing power of medern machines since besides economical considerations there
exist physxcal l1m1t.s to what is practically achievable. Bremermann (1962)
determined by simple phys:cal c‘onmderatmns that ™... no data processing system
whether artificial or living can process more than 2x1047 bits per second per gram of
In the classical design problem we are interested in finding one single point
in the design parameter space which satisfies the design specifications. This kind of
solution is impractical from the manufa;:turing point of view since there is a number
of factors which influence the performance of 8 manufactured design.

Phenomena associated with the desngn)f circuits .and which can be
considered are (Bandler and Rizk 1979):

(a) manufacturing ;oler;mces (i.e'., the actual value of the design variable
. outcome may lie within-an interval with a cert.aiﬁ probability density

IS

function);



[N

(b}

(c)

(d)

(e)

®

<
model uncertainties; equivalent circuits are used to model actual circuits

N
»

and the parameters of equivalent circuits usually have uncertainties
associated with them;
parasitic effects; these parasitics can substantially alter the ideal circuit

performance and should be taken into considerati where possible; they .

are marked in many analog electrical circuits (ackivehhigh frequency, etc.);
environmental uncertainties: some circyifs have to meet stringent
specifications for a variety of different environmental conditions; militar.'y
and telephone equipment, for example, often has to be designed for extreme
temperatures !

mismatched term%nations; netwoerk terminations or loads may be
substantiaily different from ideal; |

material uncertaini:y; uncertainties exist in the materials used to fabricate

the circuits,

Taking into account in the design process the above mentioned factors, if at

all possible, is usually in conflict with the feasible or acceptable computatmnal effort

) mvolved Therefore, a successful design procedure is usually a comprormse between

the complexity of t_he model and the computational cost to produce a design satisfying

all specifications. -

In the next section we consider the relevant fundamental concepts and

definitions commonly used in the DCTT literature.



2.2 FU.\'DAMENTALCON.CEP’I‘S AND DEFINI’IyNS
The mathematical formulation of an approach which embedies centering,
tolerancing and tuning in a unified manner was presented by Bandler, Liu and Tromp
(1976a). T
7 A design consists of d(fsig'n data of the nominal point ¢9, the tolerance

vector e and the tuning vector t, where

-] - ’ "
. N [—a, [

. 2.1
a . . and t £ .

¢0

)=

| %0 | 5o [ ]
n is the number, .for example, of network pumm%ters which may be indexed by

© LAz, ..n} gy

. We will assume that the parameters can be éaried contin‘uously and that

the parameters can be chosen independently. Extra conditions such as discretization

and ix\nf:osed parametef bounds may be treated as cﬁnstraiﬁts,-see Bandler, Liu and
Chen (1975). Some of the barameters can be set to zero or held éonstant. .

' An outcome {$, g, p}vof a design {¢, &, t} implies a point in the parameter

space given by

Q%¢°+Ep, i (2.3)

where

.')



2 (2.4)

m
e

L K
and g € Ry Ry is a set of multipliers determined from realistic situations of the
tolerance spread. We consider

A= - i 12.5)

Rp—{lll lspls alralsplsltlellb}r
where
0s=sasl. (2.6}

The most commonly used.continuous range is obtained by setting a; to zero. Unless

otherwise stated, the case

‘R A . L en .
Ru_{pl—lSpiS l,.|€'[¢}, )

is considered (Bandler and Liu 1974).
The tolerance region R, as desdribed by Butler (1971) and Bandler (197.2,'
1974), is a set of points defined by (2.3) for&ll u € Ry, Inthe case of-1 = p;<1,i€ly,
R;%{‘Nd’;:@?*"—]lli- ~-l=sp s1, i€l¢}, (2.8)
which is a convex regular polytope of n dimensions with sides of length 2¢;,1€ I, and
centered at $9. The extreme points of R, are obtained by setting p; = t 1. Thus, the

set of vertices may be defined ag N

RAWDIG, =) +em, me(-L1L €L} (2.9)-

The number of points in Ry is 2°. Let each of these points be indexed by ¢i, i € .I,,,

~ where

[,&{1,2,..2°. .. . (2.10)
Thus, Ry = {$!, $2, ..., $2"}.
The tuning region Ry(p) is defined as the set of points (see Bandler, Liu and

Tromp 1976a)
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YN

»

¢=¢0+EH+TP ) (2“.)
farall p € Rp, where ‘
™ -
t'l
Sy .
T4 2 . - » (2.12)
t
. n
A -t
Some of the common examples of R are
: ’ A ; 213
‘ R={pl—1=p s1, i€},
. orinthe case of one-way tuning or irrqversible trimming, “
a : (2.14)
Rp—{plospls lvl€l¢}r .
" oor ‘. . ,
' 4 . (2.15)
. {{p_’.{pl-l_s.gi,so,lél‘p}. o _
The constraint region R, is defined as (Butler 1971{Bandler 1972, 1974,
) )
RE(@lg 20 icl}, v 2.16)
wﬁef:‘- ) ! : l
. : 5 a
, ) . . I.={1,2,.,m}. ., _ . (2.17)

is the index set for the ‘performance specifications and parameter. constraints. R, is

H

dssumed to,be nonempty.

.

The definitions and concepts presented are illustrated in Fig. 2.1 by a twe-

dimensional example.

23 -THREE FORMULATIONS OF"i‘HE OPTIMAL DCTT PROBLEM

2.3.1 General Nonlinear Programming Formﬁ]atio_n w'ith_
Differentiable Constraints

The first general fo@ion 9f the optimal DCTT problem was given by

bdndler, Liu and Tromp (1976a). The probiem was stated- as follows: obtaina set of

)
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¢ A , -
: tolerance I . /l,tunmg region _Rt(p.) :
. | | *
region Rg | | N
r— - ————l—0%m I > \
! REEAS N ‘
| f Rc N
— 40 ] |
| L |¢+EF.+TP
. { L= V1
b e f— — —

o
1
b

L] . ; . B
Fig. 2.1 Illustration of concepts in design centering, tolerancing and tuning.

' (Bandler, Liu and Tromp 1976a).

. . . 1 -

N
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optimal design values {¢?, e, t} such that any outcome {¢0, £, u}, p € Ry, may be tuned

into R for some p € R, 1t was formulated as the nonlinear programming problem:;

m'inimizeC (¢°, g, t) ’ (2.18)
subject to |
. $ER (orgip)20), . (2.19)
where ‘
¢=¢"+Ep+Tp (2.20)

and constraints ¢0, e, t = 0, for ali p € Ry and some p € R,. C is an appropriate
function chosen to represent a reasonable approximation to known component cost
data.

Stated in an abstract sense, the worst-case solution of the problem must

satisfy

RGINR, =@ o (2.21)
" forall p € Ry, where & denotes an empty set.

They also di‘sr,cdssed the geometrical structure of the problem and
introduced some. ’i'mportént §becial cases obtained by separating the components into
effectively l;uned and effectively toleranced parametel:sl They pro;'ed that the
solution of the reduced prob_iem is the solution of the origir;a[ one under certain
conditions.

2.3.2 . General Nonlinear ProgrammingF.ormulation with .
| Nondifferentiable Constraints

Polak and S.angiovanni-Vincentelli. (1979) fdrmul‘ated the DCTT problem
_a:'s a mathematical programming problem in the form |

| . minimize C{¢°, ¢, t)

subject to
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min  min  max g (@) =0 (2.22)
(A3 pGRu pERp

and the constraints 9, €, t = 0, where ¢ is given in (2.20). They demonstmte(\i that

their formulation is equivalent to the one in Bnndl:er. Liu and Tromp (1976a}. They

suggested a new algorithm which deals with the nondifferentiable co;lstrnints (2.22).

The algorithm solves the problem as a sequencé of approximating problems with R‘,!'

CRyasa discrete set. They showed that, under cerr.i;'in conditions,’ the accumulation

points of the sequencd.of stationary points of the approximating problems are

stationary points of the original problem.

2.33 Formulation Based on'Gex:xeralized Least pth Function
A differ,t.ent. formulatior{ was -presented by Bandler and Abdei-Malek
(1978a). They introduced a generalized least.pth function to convert a tolerance and
tuning problem to an equivalent tolerance problem. An expanded constraint region,
namely the tunable constraint region R, replaces the original region R. ('see Fig.
2.2). The regidri isgiven for p = o by |
Rct%{Q | mex min g (@ + Tp) =0}, - (223

' pER €L,

where & is given by (2.3). The authors based some definitions of yield upon R and

described worst-case design and worst-case centering.

2.4 - SPECIALCASES AND O.B-.I_ECTIVE FUNCTIONS
Several objective functions (or cost functions) have _been propoaed {Pinel
- and Roberts 1972, Pinel 1973, Bandler 1974, Karafin 1974, Bandler and Liu ‘1974). In
practice, d suitable modeling problem would have to be ‘solved to détermine tl';e_ cost-

tolerance-tuning relationship. We assume that the nominal parameter values,

~ - O
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)
‘ &
untunable outcome
12+
Ry (p) Re
s —
o} :_ I
' :- —1 | : ; ’
| ¢° . tunable outcome
8t | t {
l | A% $°+Ep
Re— _ i :
: I ! ¢°+’.E.u,+ TP
6 | :
‘ A T A '
‘ feasible outcome
4 ‘ L
] R . /
‘ ct .
2 e
. 0 1 - 1 1 1 1 1 ¢1

0 2 4 6 8 10 2

Fig. 2.2 'Geometrichinterpretation of the tolerance problem equi\[alent'fo the -

tolerance-tuning problem. (Bandler and Abdel-Malek léTSa). :
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tolerances and tuning ranges (either absolute or relative) are the main variables and
that the cost of the design’is the sum of the cost of the individual components.

Suitable objective functions will be, for example, of the form

0

- S ; 2.24
C@e,t)= E(ci—ni—‘o). .
i=1 5 ¢,

1

where the ¢; and ¢ are nonnegativé copﬁtants. These -may be set to ‘zero if the

corresponding element is not.to be toleranced or tuned, respéctively. ' o

l The special cases considered may be def_in'e‘d mathematically as a zero

tolerance probiem (ZTP) a fixed tole;nnce problem (FTP) and a variable tolerance

problem (VTP) (Scl'uner-J acobsen and Madsen 1979, Bandler and Rizk 1979).
Schuaer-Jacobsen and Madsen (1979) define the problems in terms of a set

of m nonlinear differentiable functio%ﬁ' n real variables. In this presentat.lon we

define those problems using notation and concepts directly related to the design

problem (Bandler and Kellermann 1983). .
3 SN

We do not mclude tuning in this chapter since it will be consuiered in much

more detail than other problems in Chapter 4. .
2.41  The Zero Tolerance Problem (Centering Prc;blein) -

In this probl;em we have e=0andt = 0. ‘We want :ho find the nominal
design ¢0 satisfying the desxgn specxﬁcatmns g(’) = 0, where ¢ = 130 The problem
isa pure cent.enng problem in which a feasible, centered nommal design is. found if Re

’
# @. The solution may be useful at the initial stage of a design process when the.
designer has no prior experience with the problem and an initial rough approximation

gives some insight. T

The problem can be conveniently formulated in minimax form as ‘

[

AN



15

/‘
’ - , (2.25)
minimize Fid Y , \
0
b \
AY
subject to ~ Ny
: hY
=0, (2.26)
where
(2.27)

F((bo)é max (—g, (¢0)).
i€ Ic

242 The Fixed Tolerance Problem
Here' we have £ = const'= 0. We want to find tbo,\ the center of the
tolerance region R;, when the manufacturing tolerances on the combonents are fixed.

This is basically a ¢entering problem and can be formulated in minimax form as

2.28
minimize F(¢?) %28
‘l’o
subject to
T $P=o, : (2.29)
where _
- - (2.30)
b= cp°+ Eqn forallp € Rp
and
(2.31)

F(¢") = max (—g, ().
iel .

Under certain assumptions {one-dimensional convexity of R, see Fig. 2.3) it '

T

is sufficient to choose only the vertices of R, to form appropriate minimax functions. *

o

2.4.3 The Variable Tolerance Problem

In this problem we have & = co.nst.,rt = 0. The manufacjurjng tolerances

.

are considered as variables:instead of as being fixed. « '
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. ' R, I
\ . | $
N rrmrmrmrmrmTmTrTETETETETETET®>®>>

Fig. 2.3 Ill,ustrationq_of convex, one-dimensionally convex and nonconvex regions -

(Liu 1975). '
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T ee—

The design probiem can be formulated as

(2.32)
minimize C(¢°, €)
¢’
subject to
' =0, (2.33)
e=0, (2.34)
gid) =0, (2.39

where ¢ is given by (2.3),
The objective function C is directly related to the component cost, and
generally possesses the properties < -
C(q:", ¢) —» const as g — «@,
Cd’ e)>o as ci—xo.

A common form of this objective is’

0
vi & (2.36)
¢c -,
teg .
i=1 1 !

where the c{'s are positive constant weights. Vs

2.4.4 Generalized Tolera'nce’ Assignment Problem '

Tromp.(1977) has generalized the tolerance assignment problem so .that. .
physical tolerances, model uncertainties, external disturbing effects and dependentiy
tolerar ed parameters can be considered\:in a unified manner. In essence, the~
approach l;egins with the definitions of the kg-dimensional vector ¢oi, the ki-
dimensional vector ¢ and the ky,;-dimensional vector’ i so that ¢i is a function of doi
and piforalli=1,2,..n, é.nd oi itselfdepends onall §i-1 fori= 3,3,....11‘

Input parameters, e.g., the physical parameteri_ available to the

manufacturer might be identified as qﬁ, whereas ¢n would be the output vettor, e.g.,
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the sampled response of a system or the vector of constraints g, which defined the
region R.. The quantities 2, ..., - can be identified, for example, as intermediate
or model parameters. The variables pi, i-=l,2,...,n., create the unavoidable or

undesirable fluctuations and generally embody the unknown or intangible. ‘Hence we

let . :
' - -
_ ¢m? . ¢1‘1 pl 1
2 2
o™} ¢ C e
' (2.37
¢’ 2 , o2 and g 2| . | -
On n n '
The tolerance region in the ¢ space is obviously no longer, restricted to be
- ‘,r T
an orthotope in this formulation. : .
2.5 ALGORITHMS FOR DCTT PROBLEMS
' In worst-case design the whole tolerance region has to lie in the constraint

region, i.e., it is required that

R,CR_.

’

This is design with 100% yield, where yield Y is given by
va number of outcomes which meet specifications

total number of outcomes - .

~ The 2" vertices of the tolerance region are usua‘l.ly the points considered as
candidahes.for worst-case. :'I‘here"a.re "tv{o". maiin féasops. The first is that it is
impractical, t;r even impossible, to éc;nsider 'éxplii:it.ly lt.l';e infinite number of point.ss.
" contained in the tolerance reéion_. “The second is that éné—'dimqnsional convexity of the
constraint reg‘lon may be assumed. Bt;ndler (1974) pt';oved, in this-case, that it is

sufficient for worst-case design to require that

0;})

o —
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R,CR,.
- An example of a worst case des‘ign and a design with yield < 100% is shown in Fig.

24

2.5.1°  VertexSelection'Schemes
For large bréf)l_ems; with a large number of variables, the number of

vertices of the tolerance region becomes enormous. Selection schemes which inciude

purging (dropping of constraints or vertices) as well as addition of vertices of the

tolerance region during the optimization process alleviate the need for considering-2® ...

vertices {Bandler, Liu and Chen 1975, Bandler, Liu and Tromp {976[)', Trorﬁp 1977.
One of these schemes (Bandler, Liu and Tromp 1976b} is based on iterative solution qf
necessary conditions for the worst vertex derived from the Kﬂuhn- Tut;ker conditions.
These methods rely on the assumption that the constraint region is one-dimensionally
convex. .
Schjaer-Jacobsen and Madsen (1979) suggest the application of interval
“arithmetic for solving the worst-case problem which guarantees f.hat the worst case is
al\'v.ays found. By t;olving the ‘worst-casg' problem as- described by them, neo
information i}. gained about where in the tolerance interval the worst case is attained.

In their method the one-dimensional convexity assu:mption is not required, and theA

worst case can lieat an edgé of the tolerance region instead of at a vertex.

2.5.2 Simpliciai and Quadratit Approximations
The tolerance problem described earlier implicitly solves the denterilng
problem, in which we are interested in 'ﬁndi'ng a "center" of the constraint region.

Another approachisone developed by Director and Hachtel -(1977). Itisconcerned

LS

R4
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/, [——design with yleld< 100%

/ &° /

R 42 ' 9,=0
V- - 7 / N . L .
wqr_st-cuse design ) g,=0

Fig. 2.4

- cﬁ’

Example of a wofst-case design and a design with' yield <100 percent. For B
the worst case deslgn the set of active vert:ces is Sy = {1,3,4}. These -

vertices mdlcate critical regmns,where constraint violations are most likely

bo occur for a desngn th.h y1eld <100 percent {Bandler and Abdel Malek
1978b).
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with finding the center of the largest hypersphere inscribed in the constraint region
(see; Fig. 2.5). Inthe process, an in;ermﬂ approximation to the region is obtained. The
problem of finding the largest hypersphere is solved by a sequence of linear
programming problems. . ) |
Bandler and Abdel-Malek (see Bandler .ahd Abdel-“/lalek 1978b, Abdel-
Malek and Bandler 1980a, 1980b) proposed a method (m the context. of yield
optimization) in which approxxmat.lons are made to both the constraint region and the
yield mtegral over the constraint regmn. The method assumes that the param'eters of
the circuit have a joint probability density function which is truncated of adequately '
represented by an orthotopic hruncat.ed dxstnbut.lon over a reg'lon w:th fixed volume‘3
but whbse position.. depends . on the nominal parameter values Using the
;egmnahzatlon they approximate the failure rate (I-Y) in two steps.‘ First the
’ intersection of the tolerance region R, and the constraint regioﬁ R is approximated
s .
with a quadratic approximation. Th..is approximation is updated as the nominal point
changes and only g‘e‘neratea in those areas where.R,(¢0) "\;it.ulates the cohs‘train't
region. Then the quadratic approximation is linearized about the points where the '
orthotope R, mtersects the quadratic approxxmat:on to R n R._. Because their
approximation to the failure rate is analyttcal itis posmble to dxfferenuate 1t to ﬁnd

1

" the gradient of the yield w.r.t. the nominal pomt $0,

2.5.3 Cut-Map Algorithms for Tolerancing and Tuning
Many algorithms for design problems with parameter tolerances assume
Cp
one- dimensional convexity of the constraint region (or the set of feasible nominal

designs). Mayne, Polﬁk and Voreadis (1982) presented an algorithm for the tolerance

problem which is suitable for the nonconvex prquem.

-



22

/
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constraint
region

linear seorch\

k4 - ' \
(a) Initial search for boundary points. \

lineor search °

(b) The polytope approximating the boundary of the constraint

o A ]
region after two iterations.

-~

Fig.2.5 [Illustration of the simplicial approximation approach (Director and

Hs:chtel 1977



The dqsign problem requires ti'le solution of the infinke d.imensional
inequality ' e
' g’ +'Ep =0 forall RER,
Let R, denote the feasible set for the tolerance problem, i..e., the problem
" where $ = ¢0 + E pforall p € R, One method of solving such a problem is the outer
approximations al‘gorithm described in Mayn'e, Polak and Trahan (1979). This
replaces: the infinite-dignensional feasibility problem by an infinite sequence of
_conventional (ﬁnite-dime'nsional) fégsiSility problems where Ry {5 a finite subset of
Ry ' _ ) : ‘
The cut-map algorithm approximates Rc (‘the complement of R;) by the
union of a ﬁnite riu_mber of very simply described regions. Typically, at iteration i, R
is approximated by W; & U {B(?, ryj)|-j <i} (or a subset of this; set), where Bi¢;t, ry)
.denotes anopen pall with center ¢;0 and ra:lius T (> 0, such that R, N B(q;jO,' n=a.
Clearly R.N'W; = @ so that R. C Wy thatis W;'is 'an outer approximation
T;J—Rc of a particularly simﬁle kind. The aigerithm proceeds by determining any ;0 in
W' and then cqmputing p{; ri =0 implies that ¢;0 lies in R.. Rules for computing rj and '
constructing W; are given and represent exf"qsion;v. of the conceptual algorit-hms of
Eave;s and Zangwill (1971). '
In Voreadis and Mayne (1982) the idea of cut-map algorithms is extende;:l to

the case when tuning is also present. Both algorithms, however, are suitable only for '

¢
-

the case when the tolerance and tuning regions are constant.

¥

2.5.4 - Function Splitting for the Tolerance Problem

. " Sophisticated algorithms for the fixed and variable tolerance problem are

presented by Brayton, Director, Hachtel and Vidigal (1979). One-dimensional

e

S §



convexity is assumed. The nondifferentiability of the worst case function

max fi(q;), or max (fgi(tb)).
¢€Rt $ € Rc

i€ ., is coped with by "function splitting”. The idea of function splitting is to trea>t a
single function as if it were simultaneously several different functions..Since the
worst case of a single function can occur simultanecusly at two different vertices, say
n(ip) and plig), then it is natural to treat g0 + E p(iy)) aﬁd ﬂ¢0‘+ E plig) as-twc; se- |
parate functions and to employ both gradients, £ '(¢0 + E u(i)) and f'($0 + E p(iz)),
in the optinﬁzation algorithm. The worst case fynetion is not differentiable at $0 but
possesses:a generalized gradient which is the convex hull of f'(§0 + E ﬁ(il)) and f '((.1)0
+ E p(ig)). A vertex list, updated at each iteration, defines the function and gradient
information supplie::l to a quadratic program to detérmine a search direction.
2.5.5 MINMAX-MINBOX Lin;ear Programming Approach

Hachtel, Scott and Zug.‘(lgBO) proposed an interactive iindar programming
bas;zd method for optimization problems iﬁ worst case circuit design and dev;ice
modeling. They probose a flexible objective MINMAX-MINBOX linear pro'gramming
approach, '.I‘he MINMAX linear pfogramm‘nfng design step, similar to the method
developed by Schjaer-Jacobsen and Madsen (1979), asks the user to guess- at the
effective range of linearity of the specified objective furictions, and then produc;as the
minimum {over the n-dimensional design space) of the maximum (over the func;ion
ih'dg_xbesl fﬁnétion subjéct to this "b;)x constraifi_t.f'. The MINBOX linear programAming
step asks the user to spet‘:ify desired improved levels for the upper bounded objective

functions. The MINBOX LP step either produces the smallest step A which achieves

. st fu .

those levels or states that the levels areinfeasible. N

.'_ . .
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2.5.6 Related Algerithms
Inthe design of electronic circuits, as in all types of design, the engineer is
faced with making a decision in the presence of competing objectives.- Lightner and
Director (1981) presented a technique for multiple criterion optimization .(M_CO).
They proposed user orieﬁted weight selection heuristics for the weighted £, solution °
to the MCO problem and generalized this idea for a family ofweiéhted p-norms. .
k Vidigal and Director (1982) described a design ce.ntering algorithm for
nonconvex regions of accept.abilit.y which is basi(;ally a convergent sequence of
subproblems each of which has a convex region of acceptabxht.y Convergent

algorithms exist for the so[utlon of these subproblems, e.g., Dlrector and Hachtel

_ (1977) or Bandler and Abdel-Malek (1978b)
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MINIMAX OPTIMIZATION TECHNIQUES IN COMPUTER-AIDED

ENGINEERING

3.1 INTRODUCTION

A wide class of engineering system problems can be formulated as
optimization problems with the objective-heing the norm of the error functions w.r.t.
spgeified or measured responses of a system.

Many circuit design problems can be formulated naturally as minimax
optimization problems. Most commonly, the minimax functions result from lower
and/or upper specifications on a performance function of interest, In practice, we form
error fumctions at a finite discrete set of frequencies, for example, and assume that a
sufficiént” number of sample points have been chosen so that the discrege
approximatiqn problem. adequately approximates the continuous problem. This may
result in a large number of minimax functions to be minimized. Therefore, a highly
efficient and fast algorithm for minimax optimization is of great importance to many
system designers and enginee'rs.

In this chapter, the area of nonlinear minimax optimization is briefly
revié\yed. The Hald and Madsen algorithm is treated in some detail. The ideas
l;ehiqd the algorithm are-exPlained and illus.trated with a microwave circuit example.
We also present a comparison of the Hald and Madsen algoritihm with other mini‘max.
nléorithms, using a three-section -transmission-line transformer problem.

A novel Approach to worst-case tolerance design of circuifs is proposed.

Previous work in this area has been concentrated on worst-case design techniques

26
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= )
disregarding the source of the minimax functions, i.e., the discretization of a

continuous problem. Our approach integrates a search technique for maxima of the

response (a tech}xique based on cubic interpclation) with the worst-case search using

$
linearly constrained optimization.

3.2 INDEPENDENT PARAMETERS, PERFORMANCE FUNCTIONS AND

SPECIFICATIONS A .

In electrical circuit design, more than <;ne response function might have to
meet given speciﬁcatiﬁné. As an example, a circuit can be designed to meé§ desired
3pectﬁcatior;s in both the frequency and the t.ime domains (Bandler and Rizk, 1979).
Graphically, this situation is; shown in Fig. 3.1. In this case, we have more than one
independent variable, @, namely, w!, w2, .., qﬂ\z,where A is the number of these
independent variables. Accordingly, we have A response functions Fl{(¢, wl),
" FU, \;;2), ..., FM¢, ). In general, we can have A upper specifications Syl(yh),
8;2(w2), .y M) and ) lower specifications, Sgl(y!), Se2(y?), ..., Ser(yA). The error
functions will be of the form . .

- A =w @ EF e -S e, =121, (3.1a)

¢, @, ) = wi () (P, w) - S, (¢, si=12,.4, - (3.1b)

where wyi(yi) and wcj(qﬁ) are positive weighting functions and the subscripts uand €
refer to upper and lower specifications, respectively.

In a typical DCTT problem, the indep‘oendent variable is the frequency and
we are interested in the output response of the circuit at a discrete set of frequency

points. Without loss of generality, we consider the following error functions

PAY
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c

0 —
. frequency L

Fig.3.1 Upper and lower specifications for an amplifier to be designed to operate .

over a specified temperature raﬁ/ge (Bandler and Rizk 1979).
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a _ - 2
e ®Ee b w) =w, F @) -8, iel, (3.2a)
e (e b, w)=w, (Fd)-S,, i€l, (3.2b)
where
A
F(2F(e, g;) (3.2¢)

[, and Iz are index sets, not necessarily disjoint. Let

A €y i€ [u' . (3.3
fi = { ' i€ lc ,
—e,p k € [e, .
where
Y . 3.4
lu - {1P2| A ) nu}l (
A 3.5)
le = {1'2""'“c}'
: - 3.6)
[ &2, .., m, (
- and m = ny + ng. The m functions
£=(f fo ... £l T 3.1

characterize the circuit performance, which is ‘monitored during the optimizatibn
process.

If we let

A (3.8)
Mr(cb) £ max fi(tb).

iel <
¢

then the sign of Myindicates whether the specifications are satisfied or violated.

~

-—
3.3 REVIEW OF MINIMAX ALGORITHMS
3.3.1 Formulation of the Pro‘blem

The mathematical formulation of the linearly constrained minimax

problem is the following. Let



A -
fj(x)l__fjfxl, g xn), i=1.2,....m,
be a set of m nonlinear, continuously differentiable functions. The vector x 2 [x1 x2.-...

xpJT is the set of n parameters to be optimized.

‘We consider the optimization problem

. (3.9a)
minimize F(x) £ max fj(x) , e
< x o -
subject to
alx+b =0, i=12,.°0, (3.9b)
. i i eq
©alx+b 20, i= (€ +1)..e, (3.9¢)

wherea;and b;,i =.1,2, ..., £, are constants.

r N
~
-

3.3.2 Metheds Based on Linearization

Over the past ﬁl\:teen years, this.type of problem has been considered by
many researchers. Usually only the unconstrained problem is treat:.ed, however. But
in some of the methods to be dgscribed, it is no somplication and computationally
costless to add linear constraix,lt.s. Mar'x;( of the minimax papers in the literature use
the objective function

A A

F(x) & maxlfj(x)|,

. | j

instead of F. There is no_,significarit difference between these twoq optimization .

problems. We prefer (3.9) since it is'-notationally easierand more general.

One of the earliest methods for solving the minimax problem was thatﬂ of

Osborne and Watson (1969). At the kth iterate, xy, their method uses a linear .

approximation of the nonlinear minimax problem, namely, -

minimize F (x, , b) & max {£x,) + £(x)"h}, (3.10)
. ~h . j /

;
f

Qo
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where fj'(x'k) demt\es the gradient vector of fj w.r.t. x at the point x. The minimizer
hy of (3.10) is founc-i‘ using linear programming and it is used in a line search. This
‘method may be efficient, but often it is inefficient. No convergence can be guaranteed
and the method can even provif:ie convergence to a nonstationary point. Madsen
(1975) incorporated trust regions in the Osborne and Watson method. The linearized
probiem (3.10) is solved subject to a local bound on the.variable h, the bound being
adjusted during the iteration. No line search is used.. This method has be;n proved to
provide convergence to the set of stationary points .nnd has a quadratic finai rate of
convergence when the solution is regular (Madsen and ‘Schjaer-Jac-obsen 1976).
However, the rate of convergence may be very slow on singular problems.

The method of Anderson and Osborne (1977) is very similar to that of
Madsén. The main difference lies in the way of bounding the step length Iyl A
different approach \;as usé;i by Bandler and Charalambous (1972). They presented an
approach utilizing _efﬁcignt. unconstrained gradient miﬁhhizat.ion techniques. in
conj}/x\n"ct.ion with least pth objective functions employing extremely large values of p.
(\Ikl;:aralamboqs and Conn (1978) apply an active set strategy to obtain a direction fora
line search. i ‘

All ot: these methods are first-order met_l‘mds, i.e., the search is based on
first-order derivatives only. 'i'hérefoz:e, all of these methods have probiems with
sing'ular solutions and the rate ot; convergence may be very slow.

. i
3.33 Methods Using Second-Order Information -

In order to ow.z;come this problem, some second—qrder (or approximate

second-order) information must be used. Hettich {1376} was the first who proposed

LS

doing this. He used a Newton iterstion for solving a set of equations which expresses



£
the necessary cgnditions foran optimun{. However, Hettich's method is only local. It
is; required that the initial point be close to the solution and that the set of active
functions {and constraints) is krlmwn. Han (1981) suggested nonlincar programming
techmques for solvmg the mir:imax problem. He uses a nonlinear progrnmming»
formulation of the minimax problem which is solved via successwe quadratlc
progrémming {Powell 1978). A line search is incorporated using the minimax
objective function as m'erit function. Overton (1979) uses an approach similar to

Han's, but solves equality constrained quadratic problems and uses a specialized line

search. »

The method-of Watson (1979) is very similar to the method of Hald and
.‘\dadsen (1981). It sth.ches between a first- and a second order method. The main

differences between the Hald and Madsen algorithm and the Watson method are the
fallowin% Watson requires th; user to provide exact first- and second-order
derivatives whereas+ Hald and Madsen require only ‘first-order derivatives.
Furthermore, Watson fails to define a suitabl»e set of criteria folr switching between
the first-order and the second-order methods. The Hald and Madsen method has’

guaranteed convergence to the set of stationary points whereas Watson s method has

no such property. Itcaneven provide convergence to a nenstationary point.

34 T.HE HALD AND MADSEN MINIMAX ALGORITHM IN SYSTEM
DESIGN
341 General Description
The Hald and Madsen algorithm for nonlinear minimax optimization (Hald
and Madsen 1981} is a combination of the first-order method of Madsen (1975) and an

approximate second-order method. The first-order method provides fast convergence
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to the neighbourhood of a solution. If the solution is singular (see Madsen and
Schjaer-Jacobsen 1976;, then the rate of convergence becomes very slow'and a switch
is made tosghe second-order method. Here, a quasi-Newton method is usedr to solve a
set of n(;nli.near equations that necessarily hold at a‘>local solution of (3.9). This
metl'-md has superlinear final convergence. Several switches between the two methods
/Jnuy take place and the switching criteria ensp'r.e the global convergence of the
combined methed. The user of this algérizhm is require.d to supply function values
and first-order derivatives wht;reas- the ,neceé'sary pecond .derivative estimates are

generated by the algorithm.

For this thesis, we have used the MMLC version of the algorithm (Bandier '

and Zuberek 1982), based b}i the earlier implementation due to Hald (1981).

The nlgo‘r‘ithm is described in more detail in Appendix A, where the two
methods, namely, the first-order method (denoted Method 1) and th(;, Qpproximate
second-order method (denoted Method 2) are presented and the switching conditions

between the two methods are given.

\

4

342 Performance of the Algorithm on Regular and Singular Prpblems

When the solution ils singular, the final rate of convergence of Method 1 can
bg very slow. Consider the example of E‘rg’ 3.2 in two variables, where the two
functions are active at the solution z (i.e., fj(z)‘= F(z) for two values of j). Figure 3.2
shows contours for a two-dimensional singular minimax problem arising from
optin?lizaiion of a two-section 10:1 transmission-line transformer, where the minimax
functions correspond to the reflection coefficient samﬁleci at 11 nqn:nalizeci
frequencies with respect to 1 GHz (0.5, 0.6, ..., 1.4, 1.5). The optinﬁzatior.r\iariables

are characteristic impedances Z;'and Zo. Section lengths €; and £; are kept constant
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Fig. 3.2

Two-dimensional singular minimax problem arising from optimization
of a two-section 10:1 transmission-line transformer with optimization
parameters Z, and Zo. The first 6 iterations are performed using

Method ! of the algorithm. Iterations 7 and 8 are performed using

Methed 2. The total number of iterations (function evaluations) to reach
the solution with the accuracy of 10-6 is 11 (0.49s on Cyber 170/815). If
Method 2 i3 not used 25 iterations {(1.14s of CPU time) are required to
reach the solution.

.
y

s
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at their optimal value €, which is tl‘m quartet wavelength at the center frequency.
According to Madsen and Schjaer-Jacobsen (1976), this is a singular problem. Above
the dotted line, F is equal to one of the functions fj, F(x) = f1(x), and below the dotted
line, F is equal to another ...function, F(x) = fa(x). At the dotted ' line,
fi{x) = fz(xi = F(x) and this line represents t.hé bottom of a valley.

If f; and f; are different, then there is a kink at>the-bottom of the valley and
a method based on linearization, such as Method 1, will provide fast convergence fo
this kink, as illt_lstrated by the first three iterands in Fig. 3.2. After the dotted line
has been reached, however, the convergénce towards z ;:an be slow because the
iterands have to follow a curvé which passes the solution_z ina smoothlmar_mer'(with
no kink). Therefore, a method based on first-order derivatives ontly is not sufficient,in
general, to give fast convergence. Some second-order (or approximate second-order)
information is needed. The first six iterations are performed t\.lsing ‘.Vietl;pd 1 of the
algori'thm. Iterations 7 and 8 are performéd-using Method 2. The total r;ux;iber'of:
iterations (function evaluations) to reach the solution with the accuracy of 10-6 is 11
(0.49 seconds on tﬁe Cyber 170/815). If Method 2 is not used at all, 25 iterations (1.i4
seconds of CPU time) are fequired to reach the’ﬁolution.

Nof.ice that if three functions were 'equal at a minimum of & two-
dimensional problem, then no smooth curve through the solution exists and Method 1
providles fast (quadrf;tic) converg’gnce,to the solution. This is illus;trated in Fig. 3.3,
which shows contours for the same two-section 10:1 transmission-line transformer
problem. However, the optimization variables are now €/€; and Z,. Characteristic -

."impedance Z2 and seétion length éélfq are kept at their optimal valﬁes; (8aftq =1,
Zé = 4.47213). Here, the problem is reguiar and five iterations are sufficient to reach

the vicinity of the'solution. In the figure;the first five iterations shown are performed
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1o+ , : .
08 (o)) 10 L] . 12
/1
Fig. 3.3 Two-dimensional regular minimax problem arising from optimizatfon of

a two-section 10:1° transmission-line transformer with optimization

parameters €;/fq and Z;. The first 5 iterations shown are performed
N - using Method 1. The tojal number of iterations to reach the solution
with the accuracy of 10-8is 8 (0.375 of CPU time on Gyber 170/815).

)
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using Method 1. The total number of iterations to reach the solution with the

;1ccﬁrucy of 10-6 i3 8 (0:37 seconds of CPU time on the Cyber 170/815).

. To show the influence .of the parameters DX (initial step length of the |

iterative algorithm) and KEQS (the number of successive iterations with identical
sets of acti}oﬂesidunl functions that is required before a switch to Stage 2'is 'mmie).
the optimization has been performed several times’ for different values. of DX and
KEQS. The resulting numbers of residual function evaluations required to achieve
the accuracy EPS = 10-6, as well as the number of shifts to Sta;e 2, ure.summarized
in Table 3.1 (the numbers of shifts are given in parentheses‘). - )
[t can be cbserved that the inclreusing values of KEQS correspond’t'o

slightly increased numbers of function evaluationq;' Moreover, too small and too large

values of DX require more residual function evaluations because of adjustments

which are performed by the algorithm. Frém other experiments, if was obd{rved that

W
A

the increasing values of KEQS correspond, generally, to smaller numbers of shifts to

Stage 2 {some too early shifts are eliminated).

«

* “

35 _, COMPARISON OF MlNIMAX ALGORITHMS FOR CIRCUIT DESIGN
N

351 The Test Problem : ‘ "

3 . .~

. To compare the performancé of minimax algorithi’ns, a three-section, 100-

' -
B . -

\'{\ chosen. (see Fig. 3.4). ' It is a special case of an N-section transmission-line
. i ' ‘

transformer. Originally studied by Bandlek and Macdonald (1969a, 1969b), this type

of test problem is now widely considered.

' 1 r

fpercent relative bandwidth 10:1 transmission-line transformer problem has been

#3
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TABLE 3.1
THE INFLUENCE OF THE CONTROLLING PARAMETERS DX AND

KEQS ON THE NUMBER OF FUNCTION EVALUATIONS

KEQS
DX 2 T 3 T4
0.1 2120 2312 24(2)
0.25 19(2) 18(2) 19(2)
0.5 18(2) 2020  22(2) -
075 . 18(2) 182 | %2002
1:0 2@ ¢ 222 23(2)
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Z,.4, Zo by Zyily

Fig. 3.4 Three-sectioﬁ, 10:1 transmission-line transformer used as a test problem to

compare the performance of minimax algorithms.
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The problem is to minimize the maximum reflection coelficient of this
matching network. A detailed discussion on the formulation of direct minimax
response objéctives is presented in Bandler (1969).

Formally, the problem is to

minimize F(x) = max |P(X,&))i, {3.11)
X (0.5,1.5]

where
x = [8/8g Ly Eltq Za €y/€ Z3)T.

The minimax functio.ns represent the modulus of the’reflection coefficient
sampled at thie 11 normalized frequencies @ (w.r\.t. 1 GHz) {0.5, 0.6, 0.7, 0.77, 0.9, 1.0,
1.1,1.23,1.3,14, 1.5}. The known quarter-wave solution is givenby €; = £2 = €3 =
- €q,Z1 = 1.63471,Zp = 3.16228,Z3 = 6.11729, whezze €q is the quarter wavelength at
the‘:enter frequency, namely,

€q = 7.49484cmfor 1 GHz.

The con.'esponding maximum reflection coefficient is 0.19729. Two starting

points have been used |

xi=[0.8 1.5 12 3.0 08 6.0I,

x>=[1.0 1.0 1.0 3.16228 1.0 10017
Gradient vectors with respect.to section lengths and characteristic impedances are

obtained using the adjoint network methed.

352 Performance of the Algorithms
Table 3.2 shows the performance of selected minimax algorithms on the
test problen}. Table 3.2 also shows results obtained us;ing the algorithm published in

Bandler, Kellermann and Madsen (1985b), with a cubic interpolation search for

" maxima of the response. Using this technique, the number of sample points can be
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TABLE 3.2
COMPARISON OF ALGORITHMS FOR THE THREE-SECTION TRANSFORMER

(NUMBER OF FUNCTION EVALUATIONS)

[

Algorithm Starting Point 7:01 Starting Point 102

Bandler, Kellermann -

and Madsen (1985b)1 18 * 21 *+
Hald and Madsen (1981) ‘ 21 ) 46
Agnew (1981) . Alg.1 23 64
Alg .11 20 109
Bandler and Charalambous (1973) - 95 155
Charalambous and Conn (1975) 162 67
Conn (1979) 67 80
M;ldéen (1975) 253 C 707
-Madsen and Schjaer-Jacobsen(1976) - .29 48

Eandler, Kellermann i .
and Madsen (1985b)2 15 * 22+*

Execution times on Cyber 170/815 in seconds are * 0.6, **0.7, ¥ 0.57, ** 0.85

*"Active” frequency points selected by ‘ 1 without cubic interpolation
the cubic interpolation search ‘ T
0.50000, 0.76999, 1.23001, 1.50000 2 with cubic interpolation

S
i



42

reduced from 11 to 4 and we do not have to know in advance the location of frequency
points corresponding bo the maxima of the response. More information on the cubic

interpolation search technique is given in Section 3.6 in the context of a new npproach

\
\

to worst-case design of circuits.
The results published by Hald and Madsen (1981) correspond to the

combined method as described here except that the PSB (Powell’s symmetric Broyden)

—

formula was used for updating the Jacobian in Method 2. Numerical .results
published in Bandler, Kellermann and Madsen {1985b) indicate that the use of the -
Broyden—Fletcher-Goldfarb-Shanno (BFGS) formula as described in Appendix A is

significantly better (see Table 3.2).

€ .
36 WORST:CASE NETWORK DESIGN
361 Preliminary Remarks

In this section we will formulate the fixed tolerénce problem (FTP)
(Bar;dler, Liu and Tromp 1976a, Sci-ajaer-Jacobse.n and Madsen 1979) embodying
worst-case search and the selection of sample pomts for the discrete approximatidr? of
a continqqus problem. As mentioned in the mt.roducuon. the discretization of a
continuous problem may result in_a-large number of minimax functions to be
minimized. The size of the problem i mcrease.s drt;matically if we want to consider
tolerances on network parameters since for each frequency pomt. selected to represent
the response 2" (n is the number of network parameters) rmmmax functions have to’
be created if we'want to consider all vert:ces of the tolerance region.

A number of methods ha.ve been proposed for solving the worst-case

problem. Schjaer-Jacobsen and Mndsen (19‘79) suggest the appllcatmn of mterval
\ ,
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~

arithmetic. Bandler, Liu and Chen (1975) and Tromp (1977) described methods‘ which
rely on the assumption that t'he functions considered are one-dimensionally convex.

Our n;.)proach to the fixed toierance problem ‘is a double iterative algorithm.
For each outer iteration of minimization first a search using cubié interpolation is
done to determine frequency points which are.caﬁdidates for active functions and then
é number (equal to the number of selected minimax functions) of inner leop optimiza-
tions are performed to determine the worst case for each of the minimax functions. -

> .

The advantage of our approach is that the worst-case search (done by
means of linearly constrained optimization) and the actual minimization are linked
together such that each worst-case calculation affects immediately the outer iteration
'of minimization.

vV
3.6.2-  Cubic Interpolation Search Technique
The cubic interpolation techniqle allows us to consid‘er the minimum

v

number of frequeﬁcy i)oints to adequately npproxi:ﬁate the continuous problem. In
many cases the discretization of a continuoué—p&*ob]em may not bé adequate to give the
continuous minim solution. As illustrated in Fig.>3.5. the solution obtained using
~ uniformly spaced sample points mﬁy npt be optimal in the continuous minimax sense
since some of the peaks of the response (or error function) would be missed. One way,

to overcome this difficulty is to use densely spaced sample points. This, however, may

result in a‘prohibitively large number of minimax functions to be optimized.
'Y

Therefore, it is desirable to develop a technique to locate the maxima of the response
w.r.t. frequency and to track these maxima during the optimization process as they .

shift along the freqhency axis due to the changes in the values of optimization
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parameters. Such a technique has been developed by Bandler and Chen (1984). [t is
baséd on the cubic interpolation formulas of Fletcher and Powell (1963). For
convenient reference theformulas are given in Appendix B.
P
3.6.3 Fixed Tolerance Problem Embodying Worst-Case Search and Selectilox of
{

Sample Points
- We consider a set of m nonlinear function_s

{0 £ 140, wj), j€J & (1,2,m}, (3.12)
h .
where wj, j € J, is an independent parameter {frequency). The number of functions m

is equal to

M= Mnay + 2,
where my,,, is the number of the maxima of t.h.e response and 2 represents the edges of
the frequency interval (e, mu[. '

The fixed tolerance problem can be defined on the basis of the worst-case

objective function (Schjaer-Jacobsen and Madsen 1979) as that of determining
min F$¢% = min mex max £ () .
¢’ " i€l . beR,

For each outer iteration of minimization w.r.t, ¢0 m frequency points are

(3.13)

determined (by a search technique based on cubic interpolation) and m lmearly
constrmned optimizations are performed to find the worst cases.
At the kth outer iteration of minimization we have an approximation ¢0 of

: the solutxon and we solve m linearly constrained optimizations, where the jth
problem,J E dJ,is .
N i 3 . . - f' )
minimize  { i (tbk)) (3.14a)
&

- subject to



18

(3.14b)
@9, 5 S @), S @, + e, i=1,2,...n

Once ¢y* for the jth functien is determined we can identify whether the worst-case
oceurred at a vertex using the following criteria.
Let
v), =1@&D, —@pl. - _ (3.15)
If [(yi - &l 5 10-5, thert the worst-case occurre‘d at a vertex, for which y;, i€1, are easy
to determine

=1 i (&7, S @D (3.16)

+1 otherwise

B, =

i
foe' function values fj,j € J, and the gradien,t.s of fi,j €4, which are returned

to the outer iteration are evaluated at a point ("), ie., where the jth worst-case

occurred.

3.6.4 Ilustration of the Approach! Three-Section Transmission:Line

Transformer

‘The three-section transmission-line transformer is used to illustréte the
approach‘and its validity for worst-case design. Numerical results are summarized in
Table 3.3. As expected the nominal parameter valued arel‘t;lifferent from the values
obtained for the nominal design problem. The location of the two internal maxima of
the response has also cha_n_geq as compared to‘ the.nomina'l design problem. Each
linearly constraine‘dl ‘ optimizétion to détermine worst-case for the particular

frequency with the accuracy 10-3 requires about 4 iterations of the algorithm.
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TABLE 3.3 .

' »
FIXED TOLERANCE PROBLEM FOR THE

THREE-SECTION 10:1 TRANSFORMER

Number of Minimax Functions
Number of V.uriables
Required Accuracy of the Solut.ionl
Assumed Tolerances
Step Size in Ebe Cubic [.nterpolation Search

Solution Vector

"Active” Frequency Points

Maximum Reflection Ceefficient
Number of Function Evaluations

Execution Time on Cyber 170/815 (in seconds)

10-5
5%
0.1
£1/€q = 0.96373
Z, = 1.67797
€2/€q = 0.98720
Zs = 3.22493
£y/¢, = 0.96483
Z3 = 6.04817
© 0.50000
0.78726
1.27242
._1.50060
0.33589
32

8.1
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3.7 CONCLUDING REMARKS

In this chapter, we have considered minimax optimization techniques in
computer-aided design of engineering systems. The area of nonlinear minimax
optimization has been brieﬂy reviewed. Comparison made .on the.classical three-
section transmission-line transformer problem shows clearly that the algorithm'of
Hald and Madsen is better than the other "algorithms in terms of the number of
function evaluations required to reach the solution with a desired aceuracy.

We have presented a novel approach to worst-case tolerance design of
circu‘its integrating a cubic interpolation based search technique for mnx.ima of th(.a
response with the worst-case search using linearly constrained optimization..’ll‘}:e
validi-ty of the approach has been demonstrated by solving a fixed t.olerang:-e problem
for the three-section transmission-line transformer. We emphasize that our dpproach
does not require the designer to know in advance the location of frequency points "

corresponding to the maxima of the response and significangly reduces the m'xmber\of
[
sample points adequately approximating the continuous response. This aspect of the

approach is particularly important since it can reduce the number of minimax

functions for which the worst cases have to be found.

-
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5,

(l OPTIMIZATION TECHNIQUES IN COMPUTER-AIDED ENGINEBERING

4.1 INTRODUCTION

The problem of minimizing the £; norm of u set of nonlinear functions

arises 'in a variety of areas. The most popular application of the €, norm is the

A
problem of approximating a function to data that might be contaminated with some

wild points or gross errors. [n this case the minimization of the €, no:;pﬂ'é'sidunl is
superior to using other norms ¢, with p > 1 (Bartels and Conn 1981).

-
The number of applications of the £; norm to di}::t and system prgblems is

pnts in fault isolation techniqt-xes"for linear analog circuits (Bandler, Bierdacki,

_Salama and Starzyk 1982),

Another important application of the £y norm is the functional approach to

' post-production t{:ning (Bandler and Salama 1985), where the ¢, type of objective

function is used to select the number of tunable parameters needed to tune all possirale

*
outcomes of a manufactured design,

As the number of applications of the £| norm to circuit and system problems
is increasing so is the importance of fast and efficient nonlinear €, optimization

algorithms -to circuit designers and engineers. We &ent a brief review of the

existing €, algorithms and concentrate in more detail on the Hald.*and Madsen

algorithm. : ‘ . -

The problem of tunable parameter selection in optimai DCTT is considered

with the efnphasis on the tuning pro‘b'le?n‘ ‘at th sign stage. ' The necessary

51



conditions for optimality of the nonlinear €; problem with nenlinéar conktraints are
derived and distussed in connection wi‘th the Luninglpmblem.

We define regular and singular £} problems and {ormulate a criterion for
determining a singularity present in the €, problem.

'I‘hc; pro'perties of the Hald und Madsen €; optimization algorithm are

" applied to fault isolation in linear analog circuits under an insufficient number of
independent voit,\a‘ge measurements, A new formulation of the problem, a formulaticn
,

based on an exact penalty function, is proposed and illustrated by a simple resistive

*

network example. : '
[n this chapter we also present a formulation using the £ Qérm for model
parameter identification problems and illustrate it with a 6th order muiti-coupled

" cavity narrow bnnd-pass filter. .

. ’/\__ }
. NV |
4.2 REVIEW OF ¢y ALGORITHMS '

4.2.‘1 . Formulation of the Problem

. . N .
The optimization problem to be considered has the following. mathematical

L4

formulation. Let

-

A . _ .
fj.(__x):fj (xl, Xgpeny xn}, i=12,.,m,

be a set of m nonlinear, continuously differentiable functions. The vector x & [x; x2...

-

xnlT is the setof n paraméters to be optimized: We consider the following problem:

:

m- ’ »

- minimize F02 S I <) Coy Wl
» x j=l
oy “
subject to
. . (4.1b)
a.Tx+b.=0, i=1,2,..,¢ .
{ 1 . ~eq
T L
ai‘+bi20' i=¢ (4.1c)

where a;and b; i = 1, 2, ..., £, are constants: This is called the linearl.y constrained €y

problem.

i

ol



422 - Algorithms for the SonlinearI ¢) Problem
The problem’(4.1) is, in principle, very similar to the linearly constrained
) minimax problem where the objective function is F(x) £ max|fi(x)|. Thereforz, many of
the algorithms for solving the minimax problem may be revised into algorithms.for
. " solving 34.1) and vice versa. For this reason most of the methods mentioned below
have miﬁimax counterparts. A survey of minimax algorithms has-recently been éiven

in Bandler, Kellermann and Madgen (1985b).

. Most of the rpethods. i’or minimizing~the €, function solve only -the'

unconstrained problem (i.e. (4.1) with £=0). For the type of methods to be described

in this chapter, however, it is no-€omplication and computationally costless to add the
linear constraints.
; . ,
One e first attempts to solve the ) problem was published in the paper of
e and Watson (1971). The method is iterative and at the kth iterate xy the
_following linear approximation of the nonlinear £; problem is used:
T A @)
: s A . T ' .
- | . mm;rmm Flx, . b) £ Zl Ifx) + €x )" Bl ,
j= ., - .

This linear model problem is solved ﬁsin?linear programming. Ti’:e direction hy
found‘ is then used in a line search. This method has quadratic final converéénce
under spggigl circumstances but normally the final convergence is much slower. The
global convergence properties of -this method are rather poor, and like the Gauss-
Newton method for nonlinegs least squares (which is similar) the Osborne and

. : Watson method may pi'ovide ﬁst convergence to a nonstationary point, e.g., a point
which is not a local minimum. -

The more recent ﬁapers on the £, problem use some second-order information.

Most of the met.hods'require that the user supply exact second (as well as first)
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derivatives. To the best of our knowledge the method of H:).ld and Madsen {1985).is
the first which uses approximate second-order informatien (i.e., it is a second-order
method, but the user supplies only first derivatives). The methods of the next
paragraph use exact second-order information. T

E1~A£tar, Vidyasagar and Dutta {1979) use a sequence of smoot.h problems -
approximating the {nondifferentiable) ¢ problem, Each of the smooth problems is
solved by standard techniques and the sequence of solutlons will often converge to a
solution of the ¢, problem. However, this kind of method may have severe ill-
condi;ioning problems nearran & sblution because a nondifferentiuble function with a
kink is approximgted by smooth functions. This gives curvatures in thé smooth
functions which tend to infinity as the €, solu;:ion is approached. Murray and Overton
(1981) use a norflinear progrnmmmg formulation of the €; problem and apply_
successwe quadratic programming. A special line search algorithm is used to obtaina
reduction in the £, objective function. The algonthﬁm of McLean and Wat.son (1980) is
a hybrid method like the method of Ha.ld and Mad-sen (1985). It combines a first-order
.method based on {4.2) using trust regions with a Newton iteration. The ﬁrst-order
method is mt.ended to be used initially, and close ta a solution the Newton method
should be used. This method often converges raptdly to 'a solution but the rules for
switching between the two stages do not g'uarnntee convergence. In fact the method
may converge'to a nonstationary point.

The linearly constrained ¢, preblem may be formulated as a nonlinear
programming problem. .;Phen"it can be :;olved by standard techniques, f'rom-that field.
When Powell's (Powell 1978) methoc! for nonlinear prngrammmg is applied to the €,
_problem we obtain a method which in its final stages is very sxmxlnr to the Hald and
Madsen method. It can be shown that in the ne:ghbourhood of a local solution of(4 1}

their'method generates the same po_mts as Powell’s method. However, in the latter

niethod a quadratic program must be solved in évery iteration, whereas Hald and

-



Madsen have te solve only a set of linear equations in the neighbourhood of a selution.
Therefore, the computational effort used per iteration with their method is normally
f -

-much smaller.

43 THE HALD AND MADSEI\{ ALGORITHM FOR NONLINEAR ¢,

OPTIMIZATION =

The algorithm to be deseribed in this section is based on the work of Hald and
Madsen (1985). [t is a hybrid method combining a first-order methdd with an
- approximate second-order methed. The first-order method is a robust trust region
meth‘od which provides co‘nvergence to the neighbo.urhood of a solution. [t is based '0;1
linear model problems of the type (4.2). These are solved subject to the constraints of
the original problem (4.1) and a bou:d-on the step length jhj. The latter bound
reflects the neighbourhood_ of the iterate xy in which .the‘ I':th model function (see (4.2))
is a good approximation to the nonlinear €; function. If the spiution aﬁproached by
*the first-order methed is "singular” (see below) then a higher-order method must be
used in order to obtain a fast ultimate rate of con\;ergence. Theref.ore £.!. swjtch is made
to a quasi-Newton.method that solves a set of nonlinear equations that necessarily o
hold at a solution of (4.1). This mer.hoc.i has superlinear final convergence. Several
switches between the first-order and the quasi-Newtop-method may take- place. The
reason for allowing this is that the latter method works only close to a solution, so if it
is started too eari;a switch back to the fmore robust) trust. region method is
necessary, Notice that the user of this algorithm is required to supply function values
and ﬁrst-ordc-:r derivatives, whereas the necessary second derivatiye information is
gene:;ated by the algorithm.

The algorithm is described in more detail in Appendix C, where the two

methods, namely, the first-order method (denoted Method 1) and the approximate

WL
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second-order method (denoted.Method 2) dre presented and the switching conditions
between the two methods are given. | - -
4.4 NECESSARY CONDITIONS FOR OP'I‘I.M’A-L[’I‘Y OF THE NONLINEAR £

PROBLEM WITH NONLINEAR CONSTRAINTS

As indicated in the introduction the €, objectiyé _function plays an important
role in mnn.y ci*t?it and systems problems. Since mx.my, of these problems are
formulated as £, optimization problems with noenlinear constrﬂaints, it may be ﬁseful
t(; derive necessary conditions for optimality and use them to get some insight into the
features of the ¢} norm in engineering problems.

In the following derivation we l:/ge the approach taken l;)y' :' El-Attar,

Vidyasagar and Dutta (1979) and extend it to the case of nonlinear constraints.

The nonlinear £; problem with nonlinear constraints may be stated as

s m _
minimize F(x) & z £ Ly 3w
x j=1
subject to .
g 20, i=1,..,m_ (4.3b)

where g;: R" = R are, in general, nonlinear constraints.

Problem (4.3) can be transformed into the following nonlinear programming

problem
o \
minimize F(x, ¥) E Z ¥, ] _ (4.4a)
xiy im]
subject to .
yi—fi(x)zo. 'i=1,2,,___m' (4.4b)

, ’ {4.4¢)
y + fi(x)_ao, i=12,.,m,

- {4.4d)

gi(x)zD, 1= l,....mc,

where the fi(x), gi(x) are as in (4.3) and F: R**™ — R is a new objective.

-
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.

The gradient of the ebjective function is

u
0

where u' = ﬁ .. 1T is an m-dimensional vector representing the gradient w.rit. y
=

F = (4.5)

A

and 0 = (00 ... 0|T is an n-dimensicnal vector representing the gradient w.r.t. x.

Suppose that (x*, y*) is a solution to (4.4}, then

y: =]fi(x')|. i=1,2,..m. (4.6)
Define the sets w=-
)2 1. (x*) > 0f) , @D
J(x‘)é{ilfi(x‘) <0}, 14.8)
< Zix*) £ ], (x*) =0}, . (4.9)
' Ax*)E i g (x*) = 0}. Ve (4.10)

The gradients of the active constraints for the problem (4.4) are given by

.
i (4.11)
. . i€lx"),
~f(x*) - -~
Q,
. L ieda, 4.12)
fi(x')
\
, . 3
?i , .ei , i €Z(x%, ' (4.13)
’ -f.(x* £ (x*) y -
o | ) _
. . i €Am®), (4:14)
Lgtxm | .

where e; is an m-dimensional vector with 1 in the ith position and zeros elsewhere.
By applying the Kuhn-Tucker conditions we get the following necessary.

conditions for optimality
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u — —en _el
+ \_ \‘I l . + :_ Ai‘ . +
0 €l fI(x‘) ied -ft(x“) . (4.15
L ?
—¢€ —¢ 0 0
) 9 S P R B e
i€Z fi(x‘) —-f.l(x‘) i€A "'gi(x ) 9
where \; = 0and y; = Oare the corresponding multipliers.
2 . R
Splitting equi}uon (4.15) we get ‘ ﬁ -
Safan+ SA (=fam+ D 0 ~ y ) fxy+
i€l i€J iEZ
+ S A —gen =0, ¥
1EA
\.=1,1i¢l,
1
A'.:l' ied, ' (4.16)
\i + ¥, = 1 e
-l ,i€Z, ¢
y. 20, A.' =0
1]
1 A\ z=0 A
or
S o+ X 5 EEN= 2 NEE",
ieZ i€z €A
i (4.17)
-1s8 =<1, i€Z,
RS €A, Y
where
(4.18)
o. -—sxgnf(x‘) ‘

N The necessary condxtmns for opnmahty of the nonlinear ¢y problem indicate

that zero functions filx*), i € Z, play an important role in the characteristicde of the €,
problem. They are called active nyunctions since they characterize an £
a similar way as the active functmnf in the nenlinear minimax proble

golution ail the functions are naturally divided into two sets, one containing zero

functions ang the other nonzero functions. This fact may be very useful in many
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engineering problems which require some kind of a discrete selection or classification
process i-fonly w; can formulate the problem in such a way that zero (or nonzero)
functions at an ¢, solution ‘have a unique interpretation in terms of a practical
engineering problem.

Once again an analogy can be drawn to the minimax problem in which
minimax f@ctions (error functions) result from lower and/or upper specifications on a

performance function of interest and the sign of the minimax objective indicates

whether the specifications are satisfied or violated.

45 - REGULAR AND SINGULAR ¢, PROBLEMS

Madsen and Schjaer-Jacobsen (1976) presented a theoretical treatment of
singularities in nonlinear minimax optimization problems, which allows for a
clmlﬁmtmn of regular and singular problems Similar concepts apply to nonlinear
& problems (Bandler, Kellermann and Madsen 1985c)

In order to simplify the notat:on assume that the firstr functlions are active in

the nonlinear ¢, problem, i.g., Z=1{1,2,...,r} (see (4.9) for the definition of 7).

Definition 1

) The unconstrained ¢, problem is singular with respect to the solution x* if the
matrix
, . . . {4.19)
é - : ]
D =[f (x*) f(x*)... £ (x*)]
has rank less than n. Otherwise the problem is regular.

When constraints are present, active constraints play the same role as

functmns whose values are zero at the solution.
Assume that the first m, constraints are active in the nonlinear £, problem,

ie, Ak (1,2 .., m.}(see(4.10) for the definition of A).



L

A%

Definitipn 2

The constrained ¢; problem is singular with respect to the solution x* if the

matrix‘_
DAL (x*) £.x .. f(x*) g.x*) g(x*)..g_ x*)] (4.20)
=1t A% f (x%) g, g, ...gma \

has rank less than n. Otherwise the problem is singular.

Normally a problem is regular if the (total} number of zero functions and

active constraints is at least n,

”
Consider a two-dimensional example with two functions and no constraints

2

- 2 :
fl(x) = ()q'-l -1} + X5

(4.21)
= 2 .

- f(x) = x| — x,

Contours of F near the solution are given in'Fig. 4.1. The solution is at x* = [0.59

0.351T, where f1(x*) = 0.28927 > 0 and fa(x*) = 0. This is an example of a singular ¢,

problem since the number of functions whose values are zero at the solution is less

—
]

than n (the number of variables).

46 TUNABLE PARAMETER SELECTION IN THE OPTIMAL DCTT PROBLEM
46.1 Approaches to ;.he Tuning Problem

Computer-aided designers have approached the tuning proble{;t in two ways,

each emphasizix;g one distinct facet. Before production, at the design stage, one can

i consider tuning as an integral part of the design process (Bandler, Liu and Tromp

(1976a), Polak and Sangiovanni-Vincentelli (1979)), the objective being to relax the

tolerances on the circuit components and compensate for ti\e uncertainties in the

model parameters. It is often necessary to intreduce tuning parameters in order to

obtain a feasible design. Sometimes, this is the case when tolerances are fixed and

_ there is no solution to the FTP satisfying all design specifications. The- integral

]
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.design an‘blem is formulated and selved using optimization such that the essential
demand of production cost reduction is optimally met. .The solution of the design

problem provides the manufacturer with the allowed design tolerances a\nd the

tunable parameters. At the design stage we can distinguish two types of tuning

problems: {
a) tuning with a fixed set of tunable parameters,
b) tuning with a variable set of tunable parameters.

Problem a) is basically a centering problem (if the tolérances are fixed) and the

solution ﬁves us tuning ranges for the tunable parameters. .Prob-l‘emA b) involves the

selection of tunable parﬁmétgrs at the design stage. lntroducin-'g tunablie parameters

is usually expensive and we want to find the necessary t;xnable parameters (and their

range3) with the objective of minimizing the cost of introducin -tunnbig p:zrameters.

Ideally, we would like to find the minimum number of tunable parameters which are
ecessary to satisfy the specifications.

. In the final stages of production, the manu.factux:ed circuit .is usually tested to
check whether or not it n_leet.s't.hp design specifications. Tolerances_ on ;ircuit com-
ponents, parasitic effects and uncertainties in the circuit modél cause deviations in
the manufactured cin:uit. perf(;rmance, and violation of the design specifications may
result (Bandler and Saiama 1981). Post-producf.io'h ttmix;g is u51.mlly needed and the
tuning assignment problem arises. Here, it is required to find Lh; necessary changes
in the' tunable paran;et.ers to adjust the manufactured circuit to satisfy the design
requirem;mts‘ The post-production tuning problem has been a problem of significant
interest amongst computer-aided designers which resulted in a number of algorithms

' (Adams and Manaktala 1"975, Liider and Kaiser 1976, Lopresti 1977, Alajajian, Tl:ick
and El-Masry 1980, Bar;dler and Biernacki 1980, Schockley and Morris 1983). Most |

. of these algorithms utilize network sensiﬁviﬁes and first-order approximations.

~
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On the contrary, tuning at the design stage hasnot been given its proper place
in com?}uter-aided design. 1n this chapter, therefore, we examine some aspects of the

»

tuning problem at the design stage.

4.6.2 Tuning at the Design Stage with a Fixed Set of Tunable Parameters
., Taking the tuning process into account at the design stage we separate the,

design components into tunable elements and mnuble elements (Bandler and

Biernacki 1980).

Let - ,
e
by
v ¢lé (4.22)
‘ Pk B
define the tunable design elemants and 3
' ) (01)
pya | ) '

<
ne

(4.23)

define the nonttlmable elements.
" Once the tunable cox;tponents have been chosq_h the problem is to find the
nominal point ¢?, tuning ranges of the tunable parameters t;, i € I, and settings of
the tunable parameters p;f, i € I, r € [,, for all worst-cases, suclh that any w;rstxge
can be t.ungd into tl;e feasible region of the problem.
_ The pro";ﬂem .‘is basically a centering problem and can be formulated in

minimax form as



64

oA (4.240)
minimize F(¢)=max (~-g (d)
0 r .
¢, tp i€ lc .
subject to
0 (4.24b)
o’ =0
{4.24¢)
t =0, i€l (1,2, . k :
‘ . (4.24d)
—-1sp =1, i€l, rel ,
. 1 t v
where
e (4.25)
) (bi=¢?+cip:+tip:.~1€It,rG[V‘
or ' \
{4.26)

¢ =@ F . Ll
4.6.3 Tuning at the Design Stage with a Variable Set of Tunable Parameters
L4
In this type of problem , the selection of tunable parameters at the design
stage is involv’e’c—;l..‘ We would like to determine the minimum number of tunable

[
parameters (and their ranges) such that all outcomes can be adjusted to meet. the

‘ ’fesign specifications.

73 ,
- - ; ' <
4.6.3.1 Mixed Programming Formulation

, The following mixed programming formulation of the tuning problem ensures

,
that the solution gives the minimum number of tunable parameters ~

m
‘ minimize » w.s. . : (4.272)
—_— L,
r i=1
ti' pllsl !
) \
‘ subject to .
. a g (P =0, Te L. . [4.27b)
r : . (4.27¢)
-lspist, i€l r€l, :
| B ~

&
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-
. e Yt z0, i€l ) (4.27d)
e . s i ! - -
/ ‘. .' .) | ,

. g_:()ors,:l//ie[ , (4.270)7

i i ¢ :

where . .
' : (4.28)
— 40 r r -
R b =¢ +en + tiApi s,

.
.

4.6.3.2 €1 Objective Functionin the Tuning Problem
' In max;y cases, however, we are satisfied with a solution w.here a i)ossibly
small subset of all parameters is Blelectéd for tl.ming (without guarantee that it is the
smal.lest) and in that case we formulate the problem in the wﬁy for which there exist
efficient alg;)rithms. The necessary conditions for optimality of the ﬁonlinear £
problem (Charélambous 19;79, Bandler and Kellermnnﬁ 1983)'in_di;a'te that zeros of
the nonlinear functions fi(x) play an important role in the chazl'a;:t.eristics ofan £,
solution. This fact can be used in the tunable para;net.e_; selection problém.at the

design stage.

e 2 .
To select a small subset of tunable parameters at the design stage the

following objective function can be used ‘ - .
N n . : ' i -
< [ ] ' C = z Ic t.I_. - . (4.29)
. [
- im] . '
where the c;'s are positive weighting factors. ) :

" The corresbonding optimization problem can be formulated as

n - ™~

B -
) < minimize > et - (4.302)
0 r =g - - .
) ¢thll P-l ‘.l
Sbjestte . C ‘ ) . R T
i ’ gi(¢)20' i= 1;2"""mc ’ . . ‘/" ’ (4.30b). ' .
, - _ ‘ : |
- ) . ‘\f_’ﬂs‘ , e . .
T . <
. |
b -
‘;;- . . - ] .
. "N
i . - .
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P
\

N

—~lspls1,i=12.,n, . (4.30c)

where

| P =¢?+t’i SR - WA
The £, objective function plays an important role in the tuning problem.

Mz;i'\y of theﬁe probiems ;nre l'ormulét'.ed as €, optimization problems.with nonlinear
constraints. From the necessary conditions Wity of the vt’l problem with
nonlinear constrﬁints (derived in Section 4.4) it can be seen that the active constraints
{more pfecisely, tt;e gradients of the active constraints) in the ¢} problem have some
influence on the number of functions fj(x) that are zero at a solution x*. In the tuning
problem those zeros correépond tc; pafamétqrs that are not tunable. To illustrate the
fact we show a s;imple two-dimensional example in which the conatrg.ints defining the
feasible region R are linear. . ' )

. ! ’
464 Two-dimensional Example of the Properties of the £, Objective Function in

the Tuning Problem \

'_(“ I

Assuming no ovérlapping of* nonfeasible regions defined by different
' . t v 8

conﬁt.rgints inside the ort:hobope R, i.e.,

> R N R=0, | (4.32)
ix) N
STIN ~ Ve
where
. [ ]
. o R,A{b€R,|g,(d) <0}, €I, . (4.33)

, we consider the objective function of the form E|t;|.

A two-dimensional example of R; and R,, assunfing L&t the constraints
KV .

-

defining R are linear, is shown in'Fig. 4.2. The constraints gi(d),j = 1,2,3,4, are of _

L

*

-
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¢°+EI"'3
p :
. ;o , C
. I;:
¢°+EF‘1 = 7" i ¢°+EF'2
($)=0" ~ ° '
| PRC -~ Ngyl#)=0 |
| Y
AB=[t, P41| 'j '
BC=|t, o3| '

\
”~

fig. 4.2 Tygg;d.ir'nensio,nal exal"nple of Rc and R..
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»
the form
- : 34
\gj.:a“¢l+aj2¢2-bjzo, j=1,2,3,4, (4.34)
Wl‘;ere

_ 40 r r
=T e LR

Using simple geometrical relations (see Fig. 4.2), we have

lay  Jagd Ity p:\ ) (4.35)
= or - = - .
It, 03 ltlpﬂ ' ltzp;i L
Similarly for other vertices .
Y (4:36)
_‘——: = |-’—2!- for (r,j) = {12,2) (1,3} (3,4)} . :
. Ity el o

.Vec_t.of t is a vector of tuning ranges for both parameters. Tuning in the

negative direction is allowed with |pif| <.1.

The objective function

2T .
C Sy (4.37)

~

which minimizes the sum of tuning ranges, will select only one parameter for tuning,

, namely, N . _ ﬁ

ot max la,| > max lag, j=1,23.4, - (4.38)
j . .
or _ -
- t, if max Iajll < m'?x Iaj2|, j=1,2,3,4. (4.393
J J . ;
Introducing new variables : m
| fop gt , (4:40)
ti _tl Pl ] .
we can state that the objective (4.37) will select ‘
. t, if max lt.';l < max lt;, ~ 441
r i

o



or )
- t, if max il > max |t3) . (4.42)
r r
‘_) In general, the objective function
S | | (4.43)
2 It : :
; £
i=l

minimizes the sum of tuning ranges and is appropriate to minimize the cost of tuning

associated with each element.

{‘ -
4.7 FAULT ISOLATION IN ANALOG CIRCUITS USING THE ¢, NORNi
471 Formulation of the Pro’b'lem

This application of the £; norm to circuit problems deals with fault isolation

in linear analog circuits under an insufficient number. of independent voltage
\ - i}

measurements. The €, norm is used to isolate the most likely faulty elements.
Practiéz_ﬂly. the faulty components are very few and the relative change in their
values is significantly larger than in the nonfaulty ones (Merrill 1973).

The method presented here is a modification of the method utilizing
. multiple test vectors to obtain the measurements _(Baqdler.’_ Biernacki, Salama and

" Starzyk 1982).

For k different excitations applied to the faulty network we consider the.

*

following optimization problem - . Co '
< ' (4.44
minimize 2 100,/ S i
) im]
subject to . ‘ " )

[
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{4.44b)

Vck - V': =0,
where 2 [¢) ¢2 ... $alT is a vector of network parameters, ¢ represents the nominal
parameter values, Aq;ié ¢, - ¢i0, i =1,2, .., n,epresent the deviations in network
parm;eters from nominal values, V™ is a p-dimensional vector of voltage
measurements performed at the accessible nodes for the kth excitation and Vi is a p-
dimensional vector of voltages at accessible nodes calculated using the vector ¢ as
parameter values.

The corresponding nonlinear ¢ problem can be formulated based on an

exact penalty function (Charalambous 1979) as follows:

k ‘ L}

N r . e ""'zm I£(P)] ' (4.45)

| . minimize P . :

¢ =1 ' ‘
* where

f@)12A0 /0], i=1,2,..0, (4:46)
A ¢ .m . _ . (447
[, @2, (Vi-VM, i=1,2,. kxp, (4.47)

and B;, i = 1, 2, ..., kxp, are appropriate multipliers (satisfying certain conditions

»
»

stated in Charalambous 1979). \

\

4.72 - Mesh Network Ex‘ample (Bandler, Biernacki, Salama and St,arzyfc 1982)

Consider the resistive network shown in Fig. 4.3 with the nominal values of .

elements G; = 1.0 ;ind tolerances g; = £0.05,i = 1,2,..., 20. All outside nodes are

N ¢

[Ty






T2

assumed to be accessible with node 12 taken as the reference node. Nodes 4,5,8 uhd_9
are assumed internal, Zhere no measurements can be performed. Two faults are
assumed in the network in glements Gg.and Gig. In Cas,e 1 we applied the Hald and
Madsen ¢, algorithm to optimization problem (4.45) \;Jith a -s'mgle excitation at node 1.
_In Case 2 we considered two excitations applied at nodes 3 and 6 sequentin-lly. The .

resulits of both optimiza‘tion problems are s.ummnrized in Table 4.1. The nominal
component values have been used asa startir;g point since j0st a few elements change
significantly from nominal. |

In both cases the actual faulty elements have been identii";ed, but in Case 2,
‘the es_timm.ed changes in the faulty elen:ents are closer to their true values. Also
some of the changes in the nonfaulty’comm‘nents approach bett,;ar their true values in
Case 2. The estimated changes in the faulty elements are much closer.to the actual
changes as compared to the results reported in Bandler, Biernacki, Salama and
Starzyk (1982). |

Consider the resistive network shown in Fig. 4.4 withk 28 nodes, t.he(\
nominal values ‘of.elementa Gi'= '1‘0 and tolerances g; = £0.05,i =1, 2, ..., 52.}\,‘j i
outside nodes are assun;:d to be accessible for measurements with node 28 taken as
the reference node- ) o )

Two experimenﬁ have been performed using this petwork and a single

'e\;f:iﬁtio‘n applied at node 21. First, six faults are assumed in the network in elements

Ga7, 2}33, Gag, Gao, G‘gr,l‘and Gsg. The optimization problem {4.45) has bgen solved and
the results are shown in Table 4.2~ All six faults have be'en identified ;uccessfully. In
another exmrim;;it (see results in Table 4.3) four faults in the network in elements
‘G“. GJ, Gqs and Gyg have also been successfully detected with only one excitation,

The results presented in Tables 4.2 and 4.3 have been obtained using a version of the

-
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TABLE 4.1

RESULTS FOR THE MESH NETWORK EXAMPLE (12 NODES, 2 FAULTS) / ‘

Percentage Deviation

Element' " Neominal Actual '
Value Value Actual Case l Case 2

G, 10 0.98 20 0.00 0.13

G2 1.0 0.50 . -50.0° 4878 —49.44

Gy 1o 104 © 40 0.00 3.60

Gy 1.0 097 . -30- ©0.00 0.00

Cs 10 0.95 5.0 22  -171

Ge 10 - 0.99 -1.0 0.00 0.00

Gq 1.0 1.02 2.0 0.00 0.00

Gs 1.0 1.05 5.0 0.00 0.00 :

Gy 1.0 1.02 2.0 2.80 97

G1o 1.0 098 & -20 0.00 0.00

Gy 1.0 1.04 4.0 0,00 0.00

G2 1.0 1.01 1.0 3.45 2.08

Gz . © 1.0 0.99 -1.0 0.00 -0.44

Gie 10 098 20 9.00 0.00

Gis (TO 1.02 2.0 0.00 155

Gie 1.0 0.96 -4.0 -2/42 571 .

Gi7 . 1.0 1.02 2.0 0.00 2.67

Gua 10 ' . 050  -50.0° 5216  -48.94

Gug 1.0 088 - 20 . 0.00 95

Gao L0, 096 . - 40 367 ) a ‘
Number of Function R 8 “ 8
Evaluations ’ '

Execution Time (secs) S S
on Cyber 170/815 3.0 3.9

. a
* Faults A o e
- -
* ' - , 7
~ 4 C .
» .
+ » i
[ ]
R / 4
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‘ \/ Fig. 4.4 The resistive mesh network (28 nodes).

. .
A : - . 4
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TABLE 4.2 . \

RESULTS FOR THE MESH NETWORK 'EXAMPLE 28 NOQDES, 6 FAULTS)

Percentage Deviation

Element Nominal Actual
Value Value Actual Computed
G, 1.00 0.98 2.0 0.0
Go 1.00 0.98 2.0 0.0
Gy . 1.00 1.04 4.0 00 -
Gy 1.00 1.01 : 1.0 0.0 _j
Gs 1.00 099 -1.0 0.0 -
Gs 1.00 0.97 -3.0 0.0 E 4
Gy 1.00 0.95 -5.0 0.0 ' .
Gs 1.00 1.02 , 2.0 0.0 '
Gy 1.00 1.00 00 00
G 100 101 10 0.0
Gy 100 095 50 0.0
G2 - 1.00 0.99 -1 0.0
Gia 5 1.00 1.03 3.0 00
Gia 1.00 0.97 -3.0 00
Gis . 1.00 0.95 50 o0 .
Gig 100 L0z 20 . 00
Gy1 1.00 1.04 40 . 00 _
Gis L0 0.98 | -2.0 0.0 - '
Gis 1.00 0.99 -0 . 0.0
Gao 100 1.05 5.0 0.0
G, 1.00 097 -3.0 0.0
Goo Y Lo 1.04 40 ’, 0.0
Gag 1.00 ~ 099 -1.0 0.0
Gae 1.00 ey 0.0
T Gy - 1.00 1.05 5.0 0.0
' . 0.96 40 - 00
1.04 40 0.0
.1.00 0.0 0.0




%

TABLE 4.2 (continued)

P ' ;
RESULTS FOR THE MESH NETWORK EXAMPLE (28 NODES, 6 FAULTS)

Goo 1.00 0.99 - © 10 0.0

Gao 1.00 0.95 S0 . 00

Gay " 1.00 1.03 3.0 ", 00
Gaz, 1.00 099 -0 L 0.0

Gaa 1.00 1.00 0.0 0.0

Gae 100 098 2.0 0.0
YGas 1.00 0.96 4.0 0.0
Gas * 1.00 0.98 2.0 0.0
Gar 1.00 0.50 -50.0° ~49.0
G & 100 . 0.50 500° -46.0
Gas 100 0 Toso 500 -56.0
G 1.00 1.01 1.0 0.0

Ga 1.00 103 3.0 0.0

Gz 1.00 0.98 . 20 0.0,
Ga .00 0.97 30 | 0.0 .
Gua 1.00° 0.95 50 0.0

. Gas 100 * - 0% 4.0 -11.0
Ges 1.00 102 20 - 0.0
Gar 1.00 1.04 4.0 00
Gus 1,00 0.99 10 0.0
f}, 1.00 050 . - -500* ' =560
® <, 1.00. 103 30 - 0.0
. ew 100 . .05 - -500° ~40.0
Gs2 1.00 0.50 - -50.0°. 52,0

* Numberof @ - <
Function Evaluations " 12 -
*Faults .
S N i



RESULTS FOR THE MESH NETWORK EXAMPLE (28 NODES, 4 FAULTST"’)

7

TABLE 4.3

\

Percentage Deviation

Element Nominal Actual
Value Value Actual Computed

oG 1.00 0.98 -2.0 0.0

N Ge 1.00 0.98 -2.0 0.0
Gy 1.00 1.04 4.0 0.0

e Ga 1.00 1.01 1.0 0.0
;) Gs 1.00 0.9 410 0.0
Gsg 1.00 0.97 . =30 0.0

Gy 1.00 0.95 50 0.0

Gy 1.00 1.02 20 0.0

Gs 1.00 1.00 A 00 0.0

- Gyo 1.00 1.01 1.0 0.0

Cur 100 0.95 .50 0.0

Gz £.00 0.99 -1.0 )I‘> 0.0

G13 1.00 1.03 3.0 0.0
G 1.00 0:97 -3.0 0.0

Gis 1.00" 0.95 -5.0 0.0

Gis 1.00 1.02 2.0 0.0

Gi7 1.00 _1.04 4.0 0.0

i Gis 1.00 0.98 -2:0 0.0
Gyo 1.00 0.99 -1.0 0.0

Goo 1.00 1.05 5.0 \ 0,

' 1.00 0.97 -3.0 '

. Gha . 1.00 ﬂ.m 4.0 0.0
Ga3 1.00 0.99 .. -0 .0.0
Gza 1.00 0.96 ad 0.0
Gas 1.00 1.05 5.0 0.0
Gas 1.00 -0.96 -4.0 0.0
Go7 1.00 1.04 4.0 0.0

?
- b
Sar
P
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RESU L;I‘S FORTHE MESH NETWORK EXAMPLE (28 NODES, 4 FAULTS)
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TABLE 4.3 (continued)

-

-
Gog 1.00 1.00 0.0 0.0
Goo 1.00 99 -1:0 0.0
Gso 1.00 0.95 -5.0 0.0
Ga1 1.00° 1.03 3.0 0.0
Gy2 1.00 0.99 -1.0 0.0
Ga3 100 " 100 0.0 0.0
Gga 1.00 0.98 -2.0 0.0
Gys © 100 0.96 40 * 0.0
Gsg 1.00 0.98 20 0.0
Gar . 1.00 0.99 -1.0 20 A
Gag . 1.00 1.05 50 0.0
-Gap 1.00 0.97- -3.0 0.0
G 1.00 1.01 1.0 0.0 i
Ga1 1.00 0.50 -50.0¢ —46.0 '
Gaz 1.00 0.98- -2.0 0.0
Ga ' 100 0.97 3.0 0.0
Gas 1.00 0.50 -50.0* -54.0
G 1.00 0.50 -50.0* —45.0
Gus 100 1.02 2.0 0.0
Gar ' 1.00 1.04 4.0 0.0
Ges 1.00 0.50 -50.0* ~53.0
G 1.00 0.95 5.0 0.0
Gso 1.00 1.03 3.0 0.0
Gs, 1.00 0.98 -2.0 4.0
Gsz Lo 103 - 3.0 0.0
Number of . ‘
Function Evaluations 1
~.
o ™~
- ‘ T
! —_



9

L

Hald and Madsen €, algorithm developed on the Texas Instruments Professional

Computer. Due to the size of the problem the execution times were of the order of

hoursona TUl:;C. ' ’ . ,
" 48 MODE[; PARAMETER IDENTIFICATION USING THE €; NORM
4.8.1 Formulation of the Problem

This application of the € norm to circuft problems deals with model
parameter identification from measurements. The problem of approximating a
measured response by a netw.oqk. of system respanse ‘tan be formulated as an
optimization problem. .

| Let )
Fow & (F™ FP .. FRV R
be a measured response corresponding to measurements at data (fr;quency) points i,

i= 1,2,... k, where

FRAF™ @), =12,k - (4.49)
 Let .
. . | . -
. @, o 2 ) Fid) . Bl (4.50)
Be_the response of an appropriate model which depends nonlinearly on a vector of
' parameters b2 q),;]T, where
Fi@) & F@w), E= 1,2, k. . (4.51)

The idenfification problem may be stated as followé:
minimize f] (4.52)

where

(4.53)

" (4.54)

¢ S
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. -

It is usually assumed that the expected values of component.s of f are zer-t"), '
but due to the presence of measurement errors in observing F™, this cannot be
realized in pra;ﬁce. Thé particular norm to be used depends on the distribution of
these errors, rep;'esented by the components of f.

It is commonly supposed that the values of the fi's are independent and
normally distributed, when the maxim:dm likelihood estimate of the data is given by
choosing the norm to be the least squares norm (Watson 1984). The measurements,
however, might contain some isolated large errors, and in this case, minimization of
the £y norm residual is recommended due to its "filtering” properties.w.r.t. lsua'ge

errors.

Using the €} norm the identification problem becomes

-
.

k ' “
: g minimize 2 If; (®) RGO
' $ i=1l ‘ : oo

.o

where fi(¢),i = 1,2, ..., k,are defined in {4.54).

482 6th Order Multi-Coupled Cavity Filter Example.

.

IF} this example we deal with mdlti-coupled cavity nz;x;rpw band-ﬁass 'ﬁlters.
used in microwave communication §ystéms (see Fig. 4.5).
A narrow-band lumpe:'.l model of an untérnﬁnated multi?cavity filter :has *
been given by Atia and Williams (1972) as
' ZL=V, o _(4.56)
where ‘
Z=jsl+M), L (4.57)

-

Ly
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_ by 0.75 and measurement 0.14 at 3990:0 by 0.40.

© 82

- | szﬁ(_‘i 0) , -  wse)
: Ao\ wy . ' | ‘
1 denotes an nxn identity matrix, M is an nxn coupling matrix whose (i,j} element
- - . LT Tl
represents the normaliZed coupling between the ith and-jth cavities, wo is the center
1

frequency and Aw is the bandwidth parameter. The dmgonal. entnes Mi; represent

the deviations from the synchronous tumng

.In practice it is often desired to determine the actual filter cou;ﬂirigs based on

response (return loss or insertion loss) measurements. The problem can be formulated .

‘asan optirﬁization’prdb]effrﬁ 55) v'aith the €1 objective funct.ion -

Tn thls example reﬂect.mn coefﬁment has been used as the filter response. A

6th order filter cent.ered at 4000 MHz with 40 MHz bandwidth is considered.

""L_-

‘ OpUmelly desxgned ﬁlter parameters "have- Been pev:turbed and the filter )ms been

snmulated. Reflection coefficient at, 26 _t'requencg points is used as the specification

(‘ﬁ\easured response). The obtimnation pmbigm {4.55) has been solved using quite

~arbitrary couplings as starting Values. The results of parameter identification are

"_:_summari'zed in Table 4.4.

To demonstrate the properties of the. 61 norm in the xdentlﬁcatlon problem we

-

) dehberately mtroduce large errdrs to data r{})resentmg the measurements. Table 4.5

' cont.ams data (frequency point, reﬂechon\ coefficient) used in the prevmus example

and data mth two large errors, Measurement0.23 at 3986 0 MHz has been replaced

L3
-

N



‘TABLE 4.4

RESULTS OF IDENTIFICATION FOR THE 6TH ORDER FILTER EXAMPLE

"

. : *
‘ Coupling Optirﬁal Design . Perturbed Design + Identified
Value Value
Mo 0.819006 . 0.859956 (+ 5%) 0.86002¢0
Mag © 0.511264 0.526602 (+3%) 0.527018
May - 0.824890 0.791894 (-4%) 0.791897
Mas . 0.511264 0.526602 (+3%) - 0.526183
Msg 0.819006 0.859956 (+ 5%) 0.859893
Mg 0.093863 0.087293(~7%)  0.087287
Mgs ~0.357895 -0.393685 ( + 10%) -0.393684
Number of .
Function . .
Evaluations : . 12 v
£ Objective ' ' R
Funetion at the , .
Solution . ‘  4.3155x 195
- Execution Time ) : .
(zecs) on : ) _
VAX 11/780 ‘ ‘ 5o 84
t. )
j -
=
P .
. o ,
N .' ’\/ g
] .
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TABLE 4.5

DATA USED AS MEASUREMENTS [N THE 6TH ORDER FILTER EXAMPLE

1

=y
-

Reflection

Frequency
(MHz) Coefficient
‘ 3975.0 0.99
‘ 3977.0 . 1.00
. 3979.0 0.89
; 3980.0 ’ 0.58 ,
3982.0 0.26: - o .
3984.0 0.23 '
) 3986.0 023
3986.0 10.23—0.75
. 3988.0 0.20
3990.0 0.14~+0.40
3992.0 0.08
3994.0 . 0.01
3996.0 . 0.05 : S
©3998.0 008 -
4000.0 0.09, ,
4002.0 0.08 ST L .
4004.0 0.05 '
¢ 4008.0 0.01
4008.0 008 - -
4010.0 014
4012.0 - 0.20
4014.0 0.23
4016.0 0.23
40180 0.25
4020.0 0.55
' 4022.0 -0.99 .
1 4024.0: .. 0.99 '
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a

The optimization problem (4.55) has been solved with the data containir:g
two large errors. The results of identification are summarized in Table 4.6. All the
| -couplmgs have been identified successfully in the pr.esence of large errors. The £,
| ob;:c’t.we function at the solution is equal to the sum of the absolute values of the
-«;rrors introduced in the measurements. B 2|

Y ’ l\
t

4.9 CONCLUSIONS

In this chaptet we have investigatecll the €1 optimization techniques in
computer aided engmeermg The area of nonlinear (4] opurmzahon is reviewed with
the emphasxs on the Hald and Madsen algorlt.hm The necessary condltmns for
opnmahty of the nonhnear ,C(‘ problem sub]ect to nonlinear constraints md.n:ate that

-

zeros of the nonlinear functions and active constraints play an important role in the

charadtenstxcs of the ¢} problem. This fact has been used in fault @atmn t.echmques

for linear analog circuits a.nd we have demonstrated that theg;d and Madsen ¢,

algorithm is very successful in methods for fault isolation in lmear circuits urider an

) insufficient number of mdependent voltage measurements Smgular and regular ¢,
problems have been defined and a criterion for det.errmnmg a smgulanty present in
the £; Qroblem has been forr_nulat.e'd. .

‘ We have alslo discussed in de_t_.gil: tunable parameter sele_etion in l'.hé optimal

DCTT prdblem. A r;ew; mixed .programming f':)rmulation_ of tixe problem i.s" given
which ensures that the soiut.ion gives the minimum number of tunable parameters to

tune all outcomes. The £, type of objective function in the tuning p.roblem has been

" examined and illustrated by a two—dimensional example. We have also presented a

formulation using the \!1 norm for model parameter identification problems ‘and

x.
illustrated it with a 6th order multi-coupled cavity narrow bandpass filt.er
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| TABLE 4.6 A
RESULTS OF IDENTIFICATION FOR THE 6TH ORDER FILTER PROBLEM

WITH DATA CONTAINING LARGE ERRORS

a [y
. Coupling " Actual Value. - Identified Value
Pl » H -
Mi2 ) 0.859956 0.860312
Mas _ 0.526602 0.527016
—_— Maq ‘ 0.791894 0791897,
? P Mg . 0.526602 . . 0.526184
g Msg . 0.859956 ©0.859608 -
¢ Mg . 0.087293 - 0.087273
Mg - - -0.393685 -0.393680
. e Nugber of-
C Function - c
. Evaluations , 19
e N . .
" £, Objective
. « Functionatthe '
-y Solution ‘ 0.77628
b . : . :
' Execution Time . , . o -
{secs) on s s :
' VAX 117780 ‘ : 125 - .
aq
) )
L
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A MINIMAX APPRODACH.TO THE BEST ALIGNMENT OF MECHANICAL

SYSTEMS

5.1 INTRODUCTION \ . 5{# '

An important practical extension of the problems discussed ip?tl*le previous
chapters is the best alignment probleﬁ (Bandler, El-Kady, Kellermann anq Zuberek
1983b, 1984). Generally, the optimal design problem is to ensure that a demgn, when

: manufactured, will satxsfy specifications. 'In many practical mtuatmns- however due
" to manufacturing errors, a product may not meet. the specu'icat.mna ([’etersen and
)adn/ls;7\]\980 1982), There are two principal ways of t.acklmg thzs problem

complete rejection and replacement of the manufactured part or alxgnment or.
reworkmg (if posmble.) of the part. In the case of very expensive materials, t\e latter
may be justxﬁed The problem we address in this chapter is how to elﬁcnently\perform
the part alignment process and, if reworking is needed, how to choose the best way to
do it. We pralde an attempt to formulate and to solve this problem usmg minimax
'opt.xmuauon_ (Hald and Madsen 1981, Bandler and Zuberek 1982). :

First, basic definitions and concepts are given and the problem is formu-

—~ .
lated in terms of minimax optimization. Tolerance regions, error functions and their

derivatives are deseribed together with examples of tolerance reglc‘ms.- We show the
test results obtained by running the program {(Bandler, El—Kady, Kellermann and
Zuberek 1983a) for several samples (Woodward Governor Company 1982).

Conclusions and suggestions for further deyelopment are aiso given.

87 ’
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K ' r
5.2 PRELIMINARY CONCEPTS

Suppose we have a set of points P in a two-dimensional space

B o : | (5.1)
P —'{Ply sz----_pm}- ‘mzln
and a system of coordinates YOX associated with this set. Let
1240,2,..,m - (5.2)

4
be the index set for these points.

The cocordinates ohpoint pi € P,i €1, maybe giveu'eithe{; w.r.t. the madin

origin of the YOX system of coordinates or w.r.t. another point of the set P. Let

[Og{fﬁ....,no}., 1sn <m, (5.3)

" be the index set for points which are referenced to the main origin of the YOX system

of coordinates. With each point p; € P, 1 S i S ng, we associate a set of indices I such
C 3 : , .

that elements of I' are indices of points referenced to p;. The setI', 1 < i < ng, may be

an empty set or a subset of the set 1. e

"Let1< ¢ <ng Forlsi<(Cwehave
. idg ¢ o (5.4)
which means that no points are reference to p; € P/.l =i<¢ For€=sisngwe

define the following index sets " /'

t A ’
I =.{n0+1....,n0+nl},

+1 A
[ _{n0+ne+l,...,n0+n +n

t+2 A . ' .
I —{no+ne+“¢+1+l""'"o+ne+"e+1+ne+2}'

(5.5)
ia - > . ‘
I _{n0+ne+ne+l+...+ni_l+1....,n0+n'+nt+l+...+ni}, es:Sno,
2.
no A -
I ={n°+nn l+1,...,_n0+n“}.
0 (1 p

b
s
§

l

LTS . .
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For guch point p; € P, i € I, we introduce a superscript. indicating its reference point.

For example, p0(%0,7.0), 1 <i s ng, is the ith point of the set P with coordinates x;0,
. %

¥i® referenced to the main origin, pi(xj® + XY+ ¥ np<ism,¢ < J = ng, is the

ith point of the set P with coordinates %3, ¥il referenced to the p0.

v

521 Definitions of Subsets of Points :

Three disjoint éubsets of points can be distinguished in the set P-
- regular points, Preg, .
- reference points, P,y

- referenced points, Propy.

For each of these subsets there is an associated index set,

Definition 1

-

A point,p;i € P is a regular point if its coordinates dre given w.r.t. the main
origin of the YOX sytem of cogrdinates and if it is not a referem;e point for'dthe/r '
poi;lts. Formally, . _

T j=0,i¢€ !m-é t,2,...e-1} =.ple Pg - -t 186

"

Definition 2 , .

A point pi € P is a reference point if its coordinqtes are given w.r.t. the

‘main origin of the YOX system of coordinates and if it is.treated as an origin for other
]
points. Formally,

[(57)

. . A j
i=0,iel 2 {C,€+l,...,no} = in €P,.
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Definition 3 \
A point p; € P is a referenced point if its coordinates are given w.r.t. another
by -

peint of the subset P sand if it is not a reference point for other points. Formally,

r

& jel i€l

L
ref?

4 (5.8)
refd = {n'd+1,...,m} = p’l € an.

The concepts and definitions introduced are illustrated in Fig. 5.1.
‘ »

522 Example

Let P 2 {py,p2,p3,P4.P5.P6.p7}. From Fig. 5.1 we can define the following
index sets: 1 = {1,2,3,4;5,6,7}, the indéx set for the set P; 10 = {1,2,3}, the index set for
points refere?ced to the main origin of the YOX sy'stem of cooréinntes; Il = &, the
index set for points referenced to py9; I2 = {4,5}, the index set for points referenced to

pa0; I3 = {6, e index set for points referenced to p3¢. ‘'We can also define the index

q . '
sets for regular points I,z = {1}, reference points [¢f = {2,3} and referenced points

leefa = (45,6,7). ' \ )

9]

523 Tolerance Regions
'Suppose we have ; set R of tolerance regions R;, i € [é{l,2....,m}, in the 2-
dimensional space, '
RE(R;,R,...Rem} B9
anda systgm of coordinates YOX associated with this set. We can define a one- to-éne
mapping g which assigns elementé R;€Rto élements pi € P,
/ e y

The sets P,R ;3.nd tt;\mapping gare §ho_wn in Eig. 5.2,

‘ The regions R; € R, 1 €1, maf have different shapes (e.g., circular,

rectangular), they fnay be defined using polar coordinates, rectangular coordinates or

’

{gP-R}. ' (5.10) .

/
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3
. *Pq °

0 *
o'p3 N
L 4
2
op4
2
0 : "Ps
. p1

. pg ' ’ .
o} ‘ X

i N e S e B
P?(xl- yl) pi(x4+ x2' y4+ Y2) * 4

0,=0 =0 2,72, =0 =2 -0
Py(xy ¥,) Pslxg+ x,, y + y .

-0 -0 =3 =0-3, =0

~ Py (xg, ¥ Pe(Xg+ X Yo+ ¥,

3,73 -0 =3 -9
Pplx, + X y.z‘+ ¥y

Fig. 5.1 The set of points P and the T¥OX system of coordinates associated with it,

. .

Sk
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Fig.5.2 The mappingg: P— R.
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combined polar and rectangular coordinates. Dilr;ensions of tolerance regions may l.;e
given either w.r.t. the main origin of the YOX system of coordinates (for R = g(p), i€
10 = [rop U [rep) or w.r.t. the reference point (for R; = gpi), 1 € Lierq).

We can use the same notation indicating the reference points for tolerance
regions as for points, e.g., Ri%, 1 < i < ny, is the ith tolerance region of the set R with
dimensions gi_ven w.r:t. the main origin of the YOX system of coordinates and R;i:
ng <i=m,€ <)< ng,is the ith tolerance regiori‘of the set R with dimensions given
w.r.t. the transformed coordinates of pi® from the YOX to the YOX system of

coordinates.

52.4 Transformation of Coordinates
The two systems of coordinates, YOX ar‘ld YOX are related by the following

-transformation of coordinates
X.

. [ i

. yl'

. - - (5.12)
SEREE ML JCNE AN S

is a set of variables relating’the two systems of coordinates (Fig.5.3).

(5.11)

Sinq)s } ‘d)@a.

r LI
.

IR

where

53 ° FORMULATIONOF THE PROBLEM

The first ste;; in the solution of thé best .éligr.xme'nt. problem is- to find ¢y
such that the maximum number of points pJ € P, i E"_['.j € lpgrorj = 0 are insi;fe oron °
the boundary of the corres‘gon.ding Ri € R, R..l = g(pij.j. However, the solh.:lt_ion to the
problem st.gt'ed above may }xot be; uﬁique a;'x'd may' nc;t. be equal to the number of points

m.
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Ifitis not/possi}ﬂe to find &g = [y ds 3]T such that gill m points are ins_ide

or on the boundary of the correspor,nding tolerance region then iI‘: is necessary %o dele_t.e
.ione or more points in the set P to ensure that all other points satisfy this conditien.

In general, the number of variables for the best alignment problem depends
on the type of the point (regular, reference or referenced) bging #* candidate for ,
deletion. The vector of variables ¢ may Be extended with new variables, which are
the coordinates of reference points if these are the candidates for deleting.

Introducing new variables is necessary when deleting a reference point,
because we have to determir;e the locations of all telerance regions referenced to it. 7
The general form of the vector of varigbles for the best alignment problem is

I (5.13)

T _- '
b =, ¢, d.x. ¥y x. ¥. .. x, ¥
ke 1 ¥2 *3 i ‘ll“::2 ig i i

il'i2""'ik € Idelref ,
where
(5.14)

=g

!dglref = Iﬂ:('

and k is the cardinality of ljairer. The index set g, represents deleted points. For
example, if the ith point of the set P (i € I4) is a candidate for deleting then ¢y
reduces to the form $1T = {¢1 do b3 % yil, i € leirer. If the ith an_d jth points (ij €
Iier) are candidates for deleting then T = [d; &2 3 x; i Xj ¥l i € Lgelcer- If the
candida‘.teS for deleting are not reference points then ¢y = &g,

The Besf: alignment problem can be formulated as.

inimi s C T (518)
mm1mu::le Ny = mrd(ldel)
ldd €2 - .
subiect to the constraint =
»
. s BA g .
min max fi(q:k)so, i€l =(I—:Idal) U[M"r , (5.16)

b
where [ is the index set for points p; which are to be aligned, [, is the index set for

points which should be deleted, 2! is the family of all subsets of the set [, ny, is the
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cardinality of 1. and q)k.is the vector of o.ﬁgimization variables corresponding to the
set Ig.1. Variables ¢, d2 and ¢; relate the YOX, and the YO?{-systems of coordinates
and x, yj, are transformed coordinates (fror.'n_ '\-(-C_)-)-('{to YOX)_of a refe\rence point
actt.:ally being deleted. The error function fi(dy) is ass@ciatéd‘ with the point pi to
indigate-whe}her the point pi is in {fi(dy) =5 0} or ﬁut,(fi (i), > 0) of the tolerance .~ -
regionRi = g(pi.i)..‘ | S

The index set [’ in (5.16) also contaji.ﬁs the indice; of deleted reference
points in order t: ensure that the error function corresponding to the new location of 2
reference point determined by the optimization (émrdinatéé of the reference point
considered are additional variables of the problem) will satisfy the constraint (5.16).

This is not required for the deleted regular or referenced points since no other points

and tolerance regions are referenced to them.

5.4 ALGORITHM FOR SOLVING THE PROBLEM

"The solution to the best alignment problem consists of two stages. The first
stage’ corx:esponds to a discrete (or combinatorial) minimization of the number of
points wh.ich should be deleted from the original set of points, and the second stage is
‘an unconstrained minir.nax optimization of a set of error functions fj, ie I, determined
by the first stage. The discrete minimization Iof the ﬁrs.t stage is usually implemented
as a systematic search of ;he solution in the family 2! of all subset: fthe set [. It is
convenidnt to répresem this search in the form.of a n;ult.ilgvel ‘tree in which the root
(1e;vel 0) corresponds to the set Idalll = @ ({J denotes the empfy set), the levél 1 contains
all the single element subsets [l4et1 = {1}, [Lger2 = {2}, ..., the level 2 ail the subéets_of
I which contain two elements, and so on. The ﬁ:-'st stage minimization tfﬁvers.es the

tree level after level until the solution is found, i.e., until such a subset [ge is

.

R

L,
“
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]

encountered for which the constraint (5.16) is satisfied. It can be observed, however,
that the minimax optimization of the second stagé, which is performed for each step of
the first stage search, can be used to eliminate those nodes (and their subtrees) of the
search tree which cannot influence the solut‘.ion. In fact, if the minimax constraint
corresponding to the subset [4.jata particular levgl of the §ea;rch tree is not satisfied
t'hen the next l;vel subsets should be derived from- the [4q of the pre-vious level by
adding only the 'mdicés of those points which correspond to the active errar functions
at the solution ¢ of the'minimax optimization since the remaining, nonactive error
functions do not affect the solution. This observation is the basis of the lmplemented
combina ial searchrglgorit.hm which dynamically creates and tfaverses the reduced

search tree

541  Detailsofthe Algorithm

The algorithm always starts with the set I3, = @ (the root of the tree) and

-

&k = &0 = 0. If the minimax objective function

Fi@y) = max by . - (5.17)
. i€l

at the solution ¢g* is nonpositive, F(¢o") = 0, then ¢¢” corresponcls to the best

3 .
alignment solutlon, and the solut.xon is optimally centered. If F(do") > 0 there is no

[y

possible alignment of ail the points p;, i € 1, and at least one of the pomts "has to be
«ieléted to allow the alignment of the remaining points. The candidates for deletion
are the points for whi;:h theﬁcc;;'re‘vsﬁonding error functions are ac_tive at the soluti(;n
$i’, and their indices are attached to the root [y o'f the sem:'ch tree, creating the level 1
nodes. The search is continued node after node of the created level and the minimax

optimization with one less function (except the case of deleting a reference point) is

repeated at each node. During the traversal of the level 1 nodes, the new nodes are

~u

R,
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attached to the search tree creating the nfext level, and so on, urﬁl‘l a subset Iyq is
found for which the minimax édnstraint is .satisﬁed, F(d" =< 0. It should be noted
that corresponding to each node of the search tree there is a unique associated index,
and the gef [y corresponding to the node j'is determined as the set of indices of the

path from the node j to the root of the tree.

"5.5 P TOLERANCE .REGIONS, ERROR FUNCTIONS AND THEIR

DERIVATIVES

To, form th;z error fum.:.t,i‘ons for the best alignment problem we have to
.. decide ’in'whicb system of coordinates these functions will be éxpressed. It is
"convenient to ch'ooae the system of coordinates associated with l:l:ne regions, first of ail
because it i.s easier to tral}si.'orm fpt;ints than tolerance regions to the new gystem of
coor_dinat;es, and _seco'n;L i)ecéuge ‘the derivatives of the error functions w.r.t.
opﬁn;iiation vari;bies can be easily obtaim_zd using transformed codrdinates of points
. and theJ ;mob.iari of th;: tra%:sfforma-t:iop.

o

551  Preliminary Considerations of Derivatives
For &y = ¢y (no. de}etionﬁ of any points or deletions only of regular or

referenced points) the error function is of the form

o : (5.18)

iy = Lix (g yi( @), TE€T-Iy,. :

The derivative of f; w.r.t. ¢ can be written as o
o . of 3y 9 - T 519)

= + ,
ad, ox dd, v, 3,

where

. a*
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. raﬁ rax. ' ray,
-4 L 1
9P, : Iy 3P,

Mg 2] o W, [ (5.20)
9by 9%, | b, | a9, |' ad, I, |
L 3¢, - 3y

The terms of the form (ﬁi)/(axi), (al'i)l(ays dgpe-;ld c_m'the shape o? the EJolera.ri'ce region
and usually :;tre not very compliq:}ted because the function f; and .the' cqord‘inates Xi,Yi
are expressed in thfz_ same system. The terTmS of the form (axi)/ﬁaq,o): (8y;M(ady) depend
only on the transformutioﬁ formula and are the same f.or the derivatives of all
minimax functim;s.' 'I"hpy can be calculated once for the actual point ¢g and used for

all functions. -

Partial derivatives (ax;/(3dyg) and (dy)/(3do) can be arranged in a matrix

called the Jacobian of the transformation

. [ ax. ax. ax. |
: \ — 1 _t
‘ ip ad,* dd
gal -0 (5.21)
0 b ’
' dy; dy; ay;
o
which, for the transformation (5.11) takes the form
1 0 (Fx sing, —y.conp , .
Ji _ 1 3 ' 3) {5.22)
" i . :

f lo 1 (;imscba—;isincba)

5.5.2 ©  General Formulation of Derivatives

For §x = &y (deletion of reference poihts) depending on the type of a point

for which we form the error function we have three cases:

wl
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o [i1 ‘ li2 .lik (regulnrpo'mtorrefemnce)
LS 1™ dalrer 7 - point not deleted

The error function is of ‘the form
’ _ . (5.23)
fi(tbk) = l'i(xi((bo)), y b ). o
The derivatives w.r.t. optimization 3\.rarialzoles do are given by (5.19) and the

®  derivatives w.r.t. additional variables are

af.

I

=40,
ax.
i

1

(5.24)

i~

TS
ay,

: . .- »
where iy,...,ik € [delref-

"y
-

i€l dolref (mférenee point deleted)

The error function is of the form

Z _ (5.25)
fi(¢k)_ fi(xil'y‘l,...,x. Voo % Y )

~ and thederivatives are

Cw

oy
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Q
2
af
“i_p o\
64:0
Q‘ . . ) .
. ii _ [ (.) fori= i (5.26)
axij 0 - for'i = ij |
ij € Id‘!m,j= 1,..k.
afi (.) fori =i1
Sy_i={0 I'ori:tij' .

: i iy i i
iel'ul“u.. ullu .. uIl* (referenced point)

The error function is of the form

_ : : o (5.27)
f:(¢k) - rl(xl(¢0)' y‘(¢o)- xi .Yi y ey xi‘:.YLp ey xi ’yl )
o1 1 O j k k
and the derivatives are given by (5.19) for ¢g and w.r.t. additional variables by
- - : :
. “ 1.
- J - af (.) fori€l’,
S
g 0 forigl’,
A : ‘ (5.28)
1. .
af; [(...) foriel?,
ay. i, )
i o forignt,
5.5.3 Tables of Error Functions and Derivatives ) -

For the general form of the vector of variables, given by (5.13), we'fom_x
error functions and derivatives for three cases:.

1) fegular point or reference point not deleted;

—

2) reference point deleted; .

3) referenced point.
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The general form of derivatives-of f, w.r.t. g is given by (5.19), where the

terms of the form (3x;)/(3dg), (3yi}/(ado) may be calculated as in (5.22)'. and the terms of
the form (3f)/{ax;), (af{}(dy,) are mbuiated in~Tablés 5.1 - 5.3 for each type of toleranm-:
region. The coordinates x;, yi are transformed coordinates of poin.t.s using the
transformation }‘.’1 1). The derivatives of error functions w.r.t;. additional variables
_.arealso gi\;en ;n these tabl;s.

For the circular tolerance region error functions and derivatives are given
in Table 5.1. As an exgmple,_ consider three points with circular tolerance regions
shown in Fig. 5.4. Assume that x0, yg0 are additional variables, so

o =, =6, &, & xp voI'.
The error functions and ae‘rivétives for py0 (regular point), ps0- (reference point
deleted),l and p3? (referenced point) can be caleulated using formulas given in Table
5.1.
| For other types of -Ldlerance region the location of a point w.r.t.
corresponding tolerance region can be cimaraétta‘rized by a system of four linear or
nonlinear functior.ls. For a regular point and rectangular tolerance region (Fig. 5.5),7

these functions result from tHe inequalities

0 <0<y : (5.29)
XL S X S Xy,
0 0 0 LI C (5.30)
. Yo SYi =Yy - :
and have the form '
t=x" —x?, (5.31)
i il i
2_ .0 0 (5.32)
=% =Xy ‘ .
IL ’ _ 0 ) D : .
- B=y) -y, \ (5.33)
A_0_ 0 (5.34)
f? =Y =Yy ,
- %
- » /\\ ) ¢
~
o 1

2

-
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TABLE 5.1

.t

DERIVATIVES OF ERROR FUNCTIONS FOR CIRCULAR TOLERANCE REGION

Regular Point or " Reference Point "
Reference Point Deleted " Referenced Point
NI Not Deleted
f;=D-r, ‘fi=D—ri f,=D,-r;
af fax. - A/D ' - -A /D
1 i 11
of Jay, -B/D ; * -B/D,
.. 8
. : ~A/MD, i=i A/, i€l
af./ax. ‘ 0 . v
g 0, i=i ) : i
} ‘ 0, ig IJ
. . i,
. -B/D, i=4i B/D,, i€’
of /3y . 0 .
R 0, i=i i
i J] 0, ig 1!
{ -
0 i,
A=x =x Al—x"+x -X
n,
i i j
_.0. 0 _ 5.0 -
B—yni-yi Bl_yni+yii_yi
D=@a%+B)? D, = (A2 + BYY?
- ax ay i
* For thiscase, terms —, —— are equal to zero, and eonsequentl — =0
o, b, o¢
@
3 p
t ;
S —
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TABLE 5.2

DERIVATIVES OF ERROR FUNCTIONS FOIJRECTANGU LAR
TOLERANCE REGION

Regular Point or Reference Point not Deleted

H {il=l"?1."‘? =y = y-%; G =y-viy
a2ax) 1 1 . 0 0
af‘i'/ay;" . 0 0 . 1
o fax, 0 0 0 0
aff/ay: 0 0 0 0

3

Reference Point Deleted

. 1_.0 _0 _ .0 0 ~ .0 0 _ .0 0
£ f; = %% fiz_xi_in r?‘yu.‘yi f?_yi—yiU
-1, i=ij 1, i=ij\ ;
aatiex, - ] o o
i 0, 1:1] 0, 1==|j /
. ? -1, '_';ij L i=i
alay. 0 0 ‘ . .
R 0, i=t. . 0, 1=1
) ]
Referenced Point ¢
1_0, I T B U 0 L0
i fi_"‘ij+"iL"‘i. fiz"‘i“"itJ""ij R=vLtyi-y; f?“yif.(yiu*'yij)
. affrax, -1 1 0
%y, 0 , 0, ' -1 : 1
: L ' i
: 1,iel! -1,i€r’
aflax; i . 0 0
j 0,ietl 0,igl -
S . g, i
; 1 1,iel! -1,i¢l!
ey, 0 y i i
i " , 0,ign! 0, i€l

»

-
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TABLE 5.3

DERIVAT[VES.OF ERROR FUNCTIONS FOR X-R TOLERANCE REGION

Regular Point or Reference Point not Deleted

1.0 ¢ 2_.0 0 _'nod -

g fi == b= x %y R =Ry ~E f=E-Ry
af:/ax? -1 1 l L-—x?IE x?/E
aay? 0 : 0 —yYE yU/E
A, 0 0 o 0

j N
a3y, 0 0 0 0
i
Reference Point Deleted
' 1_.0 0 2_.0 0 _ —
fi fi = xp=x; fi=x-xy F?‘RiL‘E f?‘E"'Riu
_li i::'ij ' ‘li=lj -X IE,I—.LJ' K?IE,i=i
o, NS = |
i 0, 1:1j .0, utzj 0, 1:11 0, i=i
, -yYE, i=1i yUE i=i
a%fay. 0 0 ] ]
C 0, i=i 9, i=i
7y ! -
2]

Referenced Point

1_0,.% 2_ 5,0 _ - '
£ fr=rj tr—x =g -(x) +x) £=R, -D f{=D-R

i } ! ‘iU
Alax, -1 1 -AD - AD
| afiey, 0 .0 -B/D B/D
i. i. . i - i,
1, i€l ~1, i€l AD, i€1. —A/D, i€l
af?laxi. i, i, i. i
o 0,iel’ 0,iel! o, igl! 0, igH
: i, i
B/D,icll —B/D, i€l
< aflay, 0 0 e l .
j 0, ield 0, i¢ll,

A= x, - x?, B= ¥, = y?, D=(a%+ BZ)I.Q’ E= ((x‘i))2 + (y?)z)w
' i i



pty

S

6\-

Y|

106

¢
2 l
- X 2
3 p3
2 r
) 3
3N
i o . 2 2
. <' .% yna ) y3
- o ! - L4
X2 _ .
: - ) g
(‘ ) : ’ : P2
0 , r
Xna A 0
' ' K Rz ’
0 [} '
~ X4 N Py .. ,
0 [ 0
Q 0
.’ o
0 Y
X
Fig. 5.4 Points with gircular tdiéran_ce regions.
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0 0
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[
-
o 0
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xiL & '
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X 0
. L — YiL
i VA h
Fig. 5.5 Regular point with the rectangulér toleraﬁce.tiegion.
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» - J

For a regular point and the X-R tolerance region (Fig. 5.6), the error

functions result from (5.29) and from

0,2 2 2 02
Ry ) S("?) +(y?) = (/)

(5.35)

and fif, [;2 have the form of (5.31), (5.32), respectively, while ;3 and fi* can be

expressed as

©=r% - Vad + o0,

i iL

= \/(x‘i’)z}(yf)z_ RO

iy’

(5.36)

(5.3N

Finally, for a regular point and the Y-R tolerance region (Fig. 5.7), the error

functions result from (5.30) and (5.35), and f;1, ;2, f;3, ;4 are given by (5.33), (5.34),

{5.36) and (5.37}, respectively.

For each of these tolerance regions, we represent a point using only one

error function. The four error functions‘may be combined into one using the following

" functions (Bandler and Charalambous 1972a, 1972b)

) f‘i'(g?) q
[ s€S ™

Iiq
: I , forM=0,
f =
1 .
0 , forM=0,
where

P MA max (.82(1,23,4,

sé'Sl

A M {l<p<°°, forM>0,

q —p
|

M lsp<w, forM<0,

S, itM<0,
‘Sél . .
SzifM>0,

.~ -‘3 . ’
Sz={sli*i’ 20,3€5}.

(5.38)
»

(5.39)

(5.40)

(5.41)

(5.42)

b

I
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Fig. 5.6 Regular point and the X-R tolerance region.
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Fig. 5.7 Regular point and the Y-R tolerance region. ,
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The gradient vector of the combined error function is given by

HEY

M

5 q (5.43)

s€S

ap-t g [G@1e-1 £3¢), frM = 0.

£ ()=

s€ES| M

From (5.38) and (5.43), it can be seen that if f;*&), s = 1,2,3,4, are continuous with

continuous first partial derivatives, thén, under the stated conditions, the function f

N 4
is continuous everywhere with continuous first partial derivatives (except possibly

when both M = 0 and two or more maxima are equal). For p — », practically

ri = max (f‘i‘)
S ESl

The elements of the gradient vector f;'s, s€Sy, for the rectangular and the X-

~

R tolerance regions are given in Tables 5.2 and 5.3, respectively. For the Y-R
H ! ‘ . F
tolerance region error functions and their derivatives are the corresponding entries of

the tables for the rectangular and the X-R tolerance regions.

. ’ J
5.6 COMPUTER IMPLEMENTATION OF THE ALGORITHM

4 >
_ (Bandler, El-Kady, Kellermann and Zuberek 1983a) -

o L 4
In this section, a Fortran program for solving the best alignment problem is

brieﬂy described. It has some limitations, resulting from tt_le fact tha_t. it was desiﬁgm_ad
for solving particular practical problems (e.g., the nurhbér of different shapes of
tolerance i-egiohs is"l.im.ite_d to 4). The ;;rogram employs :'1 package for linearly
constrained minimax optimization (Hald 1981) a'vq.ilable:n the.form of a library of
subroutines. . | -‘ ,

The structure of the program is shown in Fig. 5.8. The main segment is

BSTALN. It reads the data from t'he input file SAMPLE, prints the data, calls

subroutine FDF at the starting poinf, calls subroutine PRSRCH and prints the final

results. The subroutine PRSRCH organizes the workspace memory for SEARCH and

‘r

L4
]
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BSTALN \
» -
PRSRCH SEARCH INSRCH
b
{4
MMLAIQ SOLVER
b
_ TOLCIR 'FDF TOL XY
TOL XR TOLYR
| Voo _
Fig: 5.8 Structure of the program for the best alignment problem. .
e
<

BN
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calls SEARCH The subroutme SEARCH 1mplements the decision- tree structure
described earher It calls SOLVER and IN SRCH The subroutine SOLVER prepares
parameters and calls the minimax opt:mnzqtlon routine MMLA1Q. The subroutine
INSRCH' eliminates identical entries in the decisioﬁ-tree structure. The 'subroutine
- FDF perfor}ps the trans'formationlof coqrdinates, evaluates” error- fuﬁctions' ahd

calculates final derivatives. It calls TOLCIR, TOLXY, TOLXR and TOLYR.

Subroutines TOLCIR, TOLXY, TOLXR and TOLYR calculate the error function and

its derivatives for the\ circular, ‘rectangular, X-R and Y-R tolerance regions,‘

.

respectively, using p = =,
For the purpose of illustration an artiﬁcitﬂ(‘simple example has been
constructed.

} -

5.6.1 E;cample (B’éﬁdlér, El_-Kacly, Kellermann and Zuberek 1983b)

Suppose we have a set of points Pé{pl, P2, P3, P4, ps} and a set of tolerax.me

regions B.é{Rl, Ro, Rg, Ry, R5'}‘ Fig. 5.9 illustrates the situation before thé alignment.
3 :

Error functions at the starting point T = [0.0 0.0 0.0] are the fo‘;lowing -
o fy = 2.071 x 101, ' |
fa = -5.000x 10-‘1 .

f3= .5.000:& 10-t,

f4 = -5.000 x 10-1

v

fs =-5 000 x 10-1,

Fxg 5.10 shows the situation after running the ahgmnent program. The. best.
ahgnment. was found at q;oT = [-2 316 x 10-1 -2.792 x 10~ 4.758 x 10- 2l with pomt 5

deleted. Remaining error functions at the solution are

L]

. f = -1.540x 10-1,

¢
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- Fig.5.9 Points ahd tolerance regions before alignment.
' A
t



115

i

<

Fig. 5.10 Re;ults of running the alignment program.
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fy = L‘-,1.20‘(-3 x 10-1,
f3 =,—.\'l.2047x 10-2,
fq = —l‘.203§ x10-2.
: /
5._7. TEST RESULTS Ofl PRAC"I‘ICAL PROBLEMS
The program described in the previous sectioﬁ has been extensively test.ed..
It ha; been run for seveﬁ sets of data (Woodward Governor Ct;mpany 1982). The data

resulted from practical problems of part alignment in manufactured mechanical

systems and have been collected from inspecting actual parts, so the order of error

function values represents the real life situation. The points represent holes in one

paft which have to meet certain specifications when coupled together with another
.part.' Test samplés have .different numbers of points, varying from 5 t6 13 and
specified tolerance regior{s of different shapes. To giJle nn-‘idea of what the snnllplgs
are like, we describe bﬁeﬂj two simple sampl;as and one interesting sample in more

detail. -

Sample 1 (Table 5.4)

This ﬁamp!e has & peints, 1 with circular and 4 with the rectangular

tolerance regions. Ithas no reference points. Originally, the number of points out-of-

tolerance was 4. After 12 iterations of stage 0, the minimum value of the maximum

“error function was 3.6078 x 10-4. Three -points (1, 3 and 4) have been selected as’

potential candidates for deleting. It turns out t'hat‘. deleting point number 1 gives the

solution for which the remaining-error functions are negative and the maximum error

at the ;6lution was -6.45668 x 104 (after 25 additional minimax iterations).-.
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TABLE 5.4

DATA FOR SAMPLE | (Woodward Governor Company 1982)

Point Tolerance Origin Actual  Actual Tolerances
Code + Code* X y
XN YN I
L 0 0 00000 00000 00000 0.0000  0.0010
XL Xy M3 Yu

? ‘ 12 0 -0.8800 1.3682 ;0.87§0 -0.8750 1.3690 l.3'l720

3_/ 12 .0 0.6589 0.7499 06610 0.6630 0.7500 0.7520

‘4 : i2 0, 0.8990 -0.4414 0.8990 0.9010 -0.4410 -0.4380

5 12a.L 0 -~0.5635 -1.56254 -0.5650 -0.5620 -1.5250 -1.5520.
+ The tolerance code is o.ne of four (0, 12, 13, 23), wht;re -

0 - the code for the circular tolerance region,
12 - the code for the rectangujar tolerance region,
. 13 - the code for-the X-R tolerance region,
23 - the code for the Y-R tolerance region.

* Ahy point with an origin code of 0-is referenced to the main origin of X =

0.0,

¥ = 0.0. Any other origin code refers to the point by that number on the same
sample. For instance, for an origin code of 4, the actual X and ¥ dimensions are
measured from the actual X and y.dimensions of point number 4.

rd

-

~

i
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Sample 2 (Table é.ﬁ!

This sample has 7 points, all with the circular tolerance regions and all
referenced to the main origin. Originally, the number of pomt.s out-of- tolerance was
5. After i5 1terazmns. the solution was [‘ound with ne deletions and the maxlmum '

error at the solut.iori was ~7.73563 x 10-4.

Sample 6 (Table 5.6)
This sample is very interestiné: it has 11 points, 4 with fircular, 4 with
rectar{gular, 1 w;ith' the X-R and 2 with the Y-R toler.ance regions. Five .Ijoints are :
referenced to points other than the ms;in origin. Pr:e_vibus work on the best alignment
problem (Peterson and Johnson 1980) doés not permit a' refereﬁce‘point. to be deleted
(tmnsiated). In our approach, any point can be delet‘ed; Ofiginall&, there were 2 .
poi_nts_; out-of-tolerance, and one of them is a reference point. When a poir:t‘which isan
origin for on-e or more pﬁints is found to be out-of-tolerance, there is a good chance that:
any point referenced. to it will also appear to be off location. In this sample, points 7
and 8 afe referenced t.o'point 1. Points 1 and 8 were'-both fo@d to be out-of-wlerant;e

However, if pomt 1 was shxfted by the amount specified (m ot.her ‘words, if hole .

number 1 was. plugged and re-drilied in the proper locatlon), pomt 8 would be in-

. tolerance without any rewark needed. Thus, ina pract:cal mechanical sense, there 1s—" '

only .one pd‘mt out-of-tolerance, that being point 1. (Peterson and Johnson 1980).
Results of running the prograrfl for Sample 6 sho'wlthat‘ indeed deleting refer}encé'
point 1 (plugging and redrilling hole) implies that all oiher points will be inv-toleramA:e
and the maxxmum error at the solutmn is-1.9911 x 10-4.

We can observe how pomt 1 was selected for deleting from the details of the '

solution, given in Table 5.7. From the results of minimax optimization at stage 0,

P
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\ _ TABLE 5.5 o

DATA FOR SAMPLE 2 (Woodward Governor Company 1982)

\

. Point Tolerance Origin Actual Actual Tolerances
Code + - Code* X v ’
S :
: XN YN N
[ .

1 0 0 . 0.0000 -0.0001 - ©.0000 0.0000 00050
1 . - ’ . .
‘ 2 0 0  -0.6412 1.1080 - =0.6405 1.1094 0.0025

3 .0 0 -12778 00052 _ -1.2810  0.0000 ' 0.0025

4 - 0 0 . 295 -1.1101 -0.6405 -1.1094 0.0025

| - ‘ N

5 0 0 . 0.6499 -1.1055 0.6405 = -1.1094 \ 0.0025 -

6 0 0 12846 _ (.0083 *1.2810°  0.0000  0.0025

7 0 .0 0.6393 1.1126 0.6405 1.1094 0.0025

+ see Table 5.4 for code explanations.
* gee Table 5.4 for code explanations.

i



N

o1

. 120

TABLE 5.6

DATA FOR SAMPLE 6 {Woodward Governor Company 1982)

Point Yolerance Origin  Actual

Actual Tolerances
Code + CodB* X y
XN N N
L r 1] | ,0 2.3970 ~-0.9508 ;.3950 -0.9500 0.0010
2 0 0 ™-16955 <=1.9621 - -1.6960 -1.9620 0.0010
L Xy L Yo
3 12 0 0.6620 0.7507 0.6610 J 0.6630  0.7500 6:7520
4 12 '0- 0.8998 -0.4393 0.8980° 0.9010 -0.4410 -0.4380
} , YL Yﬁ R Ry
5, 23 0 -0.5629‘ -1.5231 -1.5260 -1.5210 1.6225° 1.6260
v t XL ."U Lo Yu.
6 12 0 ~0.8773 1.3700 -0.8780 -0.8750" 1.3690  1.3720
_ "N. XN N
T 0 1 -2.8646 3:5015 -2.8640 3.5010 0.0010
) ; XL Xy YL ) .YU
8 12 1 -0.8764 ~ 2.3274 ;-0'.8750 -0.8710 2.53250 2.3290
- XN XN l'N-
9 "0 4 0.6653 -0.7855 = 0.6650 -0.7860 = 0.0010. \
L ‘ yu - Rpa ‘ Ry
vﬁ)“;. “.23- 5 -09642 10227 10210 10360 14053 14073
11 13 6 -0.0641 00640 11358 ,1.1378 -

-1.1348  -0.0660

+,* see Table 5.4 for code explar;tétion§
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TABLE 5.7

RESULTS OF BEST MINIMAX ALIGNMENT FOR SAMPLE 6

(Woodward Governor C.ompany 1982)

Error
Function

~

Values of Error Functions+

Starting
Point

Stage 0 Optimization

(no deletions)

. Optimization with

Point 1 Deleted
{translated) -

10

Il

1.1540659 x 10-3

—4.9009805 x 104

~7.0000000 x 104
© _8.0000000 x 104

-1.2887855 x 10-3

~7.0000000 x 104

-2.1897503 x 104

1.4000000 x 103
~4.1690481 x 104
-2.5929437 x 10~

-1.0000000 x 104

R

7.8766877 x 104
7.8054088 x 104

-6.7451522 x 104

-5.1]45712 x 104

-4.1859431 x 104 -

-6.1087476 x 104
7.8766877 x 104
7.8766877 x 104

~2.2387620 x 104

-2.7637365 x 104

6.1249301 x 104

-6.0836163 x 10-4*
-3.1859860 x 104
-6.0366698 x 104

-6.0460585 x 104

+~1.3816043 x 10-3

719911453 x 10-4
-1.9911453 x 10-4
-1.9911453 x 104
-1.9911453 x 10-4
-1.9911453 x 104

—4.0926333 x 104

+ Maximum error functions are underlined

* This error function value corresponds to-the new locatipn of point 1.
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points I, 7 and 8 are selgcted as candidates for deleting. Results of minimax
optimization with point 1 deleted (tra.rlls]ated) show that a solution can.be obtained
with only one poivnt deleted.

The results of running the program for all test samples are summarized in

Table 5.8,

58  CONCLUDING REMARKS

| 'I"his chapter provides an attempt to formulate and to solve ‘the best
mechanical alignment problem using minimax optimizllt.ion. Results of r;xnning the
best- aligﬁmen; program for pra‘ctical‘éroblemé (fTable 5.8) confirm the efficiency of .
our -approach. The concepts introduced and the algorithm proposeti are described in
t[r;is chapter by tackling a particular mechanical engineering problem. Howlever, this
class of probléem may come from diﬁ‘e.rent. sourcés and further generaliza'tion is
;;ossible. One natural extens)ion of this approach, which may be very useful from. the
practical’ point of view, i; considering alignment problems in three dimensions.

Another suggestidn for further exploration is the investigation of the least pth

formulation to reduce the number of minimax functions.
The problem which originated from aligning mechanical designs is here
-formulated as a general optimization problem and we feel that this approach should

prove useful in many other areas where problems of a similar nature may exist.
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TABLE58 !
RESULTS OF RUNNING THE BEST ALIGNMENT PROGRAM

ON DATA SUPPLIED BY THE WOODWARD GOVERNOR COMPANY

CYBER
_ 170/730
No. of Points Results . Execution
* Sample Total No. OriginallyOQut (Points | Time in
No. ) of Points.  of Tolerance Deleted) Comments Seconds
1 5 4 1 Reg: Point Deleted 0.7
2 T, "5 0 No Deletions 0.4
»
3 n 2 1 Ref Point Deleted 0.9
4 1 3 2 Reference and Reg. 28
, : ' Points Deleted
5 11 3 2 Reference and Reg. 1.5
. . _ Points Deleted
6 11 .2 ' 1 Reference Point 1.2
Deleted :
7 13 3. 3 Regular Points 3.6
. . .. Deleted !
-

34



LOAD SHEDDING AND GENERATION-RESCHEDULING IN POWER

SYSTEMS

G.i INTRODUCTION
“This chapter provides an attempt to \'ormulate and to solve the load‘
shedding and generation rescheduling problem in an emergency state using a
nonlinear optimizatioh algorithm with the £; type objective function.’

The problem arises m many practical situations when an operating power
system is under emergenc& conditions ahd some vsecurity constraints imposed on the
system are violated. The control action taken may invoive load shedding and
generation rescheduling. The problem can be formulated as an optimization problem
with the objective of minimizing the amount of customer load curtailments. We are

'concerﬁed with the problem of seiec;ing a possibly small subset of loads to be shed
from ihe set of s;II. candidates for sh:édc_ling.
- From the security (in the static sense) point of view there are two types of
contingenciesl('l“al'ukdar and Wu 1981): ‘¢
- a sudden change in the powér injection to the network caused by the ?artial or
complgte loss of a genérator, load or tie;
- asudden change in the network’s éonﬁguration. , ks

If the system is to be normal and secure in the static sense it must satisfy a

set.of algebraic constraints that can be written in the form

hix,ul=0, _ (6.1)

124
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gx,u)=0, ‘ . ) 8.2)

where u is the'set of control variables (decision variables) and x is the set of state "
variables (dependent variables). Equation (6.1) is a set of equality constraints called

the power flow equations and e&uation (6.2) is a set of inequality constraints often,
called se)curitil constraints.

If the system is insecure or in ary em‘zrgency condition the control action
taken to remove ;‘.h.e violatior;s of security constraints ‘(6.2) (assuming that the system
survives the outage and equation {6.1) can be solved) may involve loead shedding and
generation reschedul’ing.‘ﬁn such sit.u'nt.ions‘\;fe usually waat to minimize the control
action (genemti;m rescheduling and load shedWen considering lot;d shedding
only as 'a last resort. If the load shedding is absolutely necessary te remove the
inequality const.rainté violations then the objective may be to select t!'m minimum
number of inferruf;tible loads fo.r partial or complete curtailment.

Several approaches have beex; ‘investigated to find post emergency schedule |
with the minimum of load shedding, however, in none of them the problem of selecting
the minimum nulmber of loads for shedding has been addressed directly. |

) A simple linear model which takes into account only the real power
injections and vélt.age angles has been uséd qugeneratiop, and load r;éscheduling .
(Ghoneim, Askourah and éa.hman 19717, Stott and Hobson i977a, 1977h, Chan and
. Sehweppe 1979). Special techniques wer; usgd to improve the performa-nce of
algorithms p;'oposed such as the dual simplex method (Sbtt and Hobson 1977a,
1977b) and sparse linear programming (Chﬂan and Yip 1979).

The real-power-voitage-angle model may Inot. be adequate for certain

.

applications such as real-time emergency state control or detail off-line studies
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‘ {planning) where the voltage profile and the schcdulir}g of reactive power sources are

important (Cﬁnn and Schweppe 1979).

- A different approach, which dees not use optimization techniques has been
presented in Medic!xerla, Billinton and Sachdev (1979, 1981). It basically consists of
two sets of equations. First, a set of equations for determining the desired increments
in state variables to alleviate line overloads is developed and thin the s?éand set of
equations is developed, which can be solved for determining the‘\,generation
rescheduling and load curtailment pattern to satisfy the calculated change.s;‘ in state
variables.’ < |

Recer;tly, a multi-stage formulation of the generation rescheduling and
load shedding problem has been proposed (Krogh and Javid 1983). It includes a

technique for modeling the short-term thermal capacity of a transmission line, a

‘'generation scheduling model and constraints and a linear load flow model. The multi-

stage formulation is then cast into a linear programming framewox;k.

The purpose of this chapter is to give a general formulation 6f.the load
shedding and geheration reschedqu;:g problem ?h'ich uses the Han-Powell algorithm
for the general nonlinear programming problem (Han 1976, Powell 1977) with the €1
type objective function suggested in Bandler, El-Kady, Kellermann and Zuberek
(1983b) to select a possibly small éubset of loads to be shed from the set of 511

c:-mdidates for shedding. The Tellegen theorem method for po‘v;ér system sensil'.livity

calculations (Bandler and El-Kady 1980a, 1980b) and the fast decoupled load flow

technique (Stott and Alsac 1974) are employed. Numerical results for a 6-bus and a

26-bus power systems illustrate the performance of the method proposed.
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p) ;
g N
6.2 FORMULA’I‘I\ON OF THE PROBLEM
6.2.1 Objectivé Funcf.i_on and Constraints

The load shedding and generation rescheduling prob]ei’n ¢itn be formulated
as a mathematical optimization problem which attempts to minirmnize t.he‘number' of
loads to be shed under emergency conditions which can take the form of line out.ages‘
or generator outages {partial or cor.nplete)‘ The objective ’func'tion usgd in this,

approach is of the €, type. Formally the problem is to

L . : .
minimize’ > (P,— PP, B0+ L0 +ng, (6.3
VPP, =1 =1
| BJ & €=1,.,n,,

X

subject to (6.1). and (6.2)\c3?1:esponding to the emergency conditions, where
[Vgl  isthe voltage magnitude at node g,
Pg is the real power injected at generator qode g
Pe is the real power injected at load node £, ~-
Pg0 is the nominal real load power at node £.
‘ We }et subscripts £‘= 1,2,...,n, correspond to PQ buses (load buses}, subseripts g =
n,+1,..,n, + ng, correspon;:l to PV buses (generator buses), and supscript n=ng +
. ng+l corresponds to the slack bus: The objective functio:; (6.3) has the property of
I\'emt‘i:ing as many as possible terms (Py - P9}, € = 1, .., ng, to zero at the solution. This
corresponds to selecting a i)ossibly small subset %f loagls to be shed under emergency
conditions from the set of all loads being candidates for shedding. The set of
optimization variables usually tfestricted only to control variables in oﬁltimal. power
flow problems, |V | and P, =g=nr+1,..,n,+ng, is her: extended with tl;e real load
powers Py, £=1, ..., n.. In emergencies the operator may augx\ﬁent the decision vector

with certain loads whose values can then be adjusted downu;{rds. The objective (6.3)

[
: 1
-
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simulates that pro?:ésq,_ which is basically a process'of designing the real load powers
(and the generator voltjage magnitudes together with the generatoi‘l real powers) to
satisfy the security constraints. ' .

The real and reactive loads are not independent; one cannot shed real loads:
. without curtailing reactive loada. It is assumed in this approach, as well as in Chan
' Bl"ld Schweppe (1979), that thé p(')wer faétor rehains fixed after & po:’jtion of the load is
shedded. h

'i‘he minimization of {6.3) is subjected to (6.1) and (6.2), where in (6.1) it is
russumed that th;z pdwer network is represented by a steé.ciy-stnt.e_ a.c. power flow
mo;iel in which the power flow equations are obtained by equating the power injected
into each node with the ﬁéﬁver removed from the node and recognizing -that under
: steady-siéte conditions the networkc&n be rep:'-esented by an admittance matrix
(Talukdar and Wu 1981). In our implementation of the method proposed the fast
decoupled load flow b;achnique was used. - .

Security c.onstraints {6.2) in terms of the power ner._w'drk variables form six

groups of constraints, both linear and nonlinear w.r.t. optimization variables chosen:

1) * AJdoad real power constraints (linear)

0 = 6.4
PysP,s0, £=1,2,.,n0., ' (6.4)
2) _load voltage magnitude constraints (nonlinear)
VPR s V) & V™ e=1,2,..,n,, (8.5)
3) voltage angle constraints (nonlinear)} o
sMP g 5 < 6™ i=1,2,..,n +n., - 68
i - i ! L G
4) generator real power constraints (linear)
min max —- . l (6.7a)
‘w'\ Pg SPgst \ g—nL+1,...,%+nG,

- . pmingp <pPa. (8.7}
. n n Dn .
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5) generator reactive powe‘r constraints (nonlinear)
. min max — (6.8)

QE < QgSQg , g=n, + 1,..,n,

6) generator voltage magnitude constraints (linear)
min max _ 6.9
vy S|VJ=s|VJ™, g=n + 1.0 +ng. 6.9

Transmission line loading limits can be current-magnitude constraints due
to thermal considefationg or electrical-angle (difference in vbltage_ angles acrosls a
line) cdnstmints due to stability considerations. In this forr/nulation by appropriately
choosing §;min and §;max in (6.6) the stability limits in terms of Bij (85 = 6; — ;) can be
accommodated as well as the current-magnitude constraints which can be converted
.into the form ' . .
0™ <e <07, (6.10)

i [T .

oo '
as shown in Chan and Yip (1979).

6.2.2 Gradients of the Objective Function and Constraints

0

The optimization method implemented in the.fc'»rm' of a Fortran package

(Bandler and Zuberek 1982b) requires first-order derivatives of the objective function
agd the constraints to be avai-lable. Since the ’voltage magnitudes |Vgl, real generator
.\ p'-owers Pg. g =nL+1, v nL +ng, and real load powers Pg, £=1, nL, Arélassumed tc‘)
‘be optimization variables the gradiem.: of the objecti.\fe function (6.3.)“ and the gradients

_ of the constraints (6.4), (6.7a) énd (6.9) car;:be easily found. To find the gradients of
the constrain_ts (6.5), (6.6), (6.7b) and (6.8) the Tellegen' theorem method. was used

(Bandler and El-Khdy 1980a, 1980b) and an implem’entation in the form of the TTM1

package (Bandler, El-Kady and Wojciechowski*1983). E
. \

. T
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6.3 " REMARKS ON THE IMPLEMENTATION OF THE FAST DECOUPLED

METHOD |

The implementation (Bandler and Zuberek 1982c) of the f'xist. decoupled
load ﬂdﬁr technique, incorporated in the TTM1 package, basically follows the method
of Stott and Alsac, and differs only ina mbre flexible iteration scheme in which the
order of€uccessive P-6 and Q-V iteraltions.is not fixed but depends on the relationship
between the accuracies of P-& aﬁd Q-V iterations. Let e5 be the nccuracy of the last P-8
itération, and cy be the accuracy of the last Q-V itef'ation. If, after the kth iteration

e.=2¢ 4
[ v

the (k+ 1)th iteration is the P-§one. If
S8, = 2 ca'
the (k+ 1)th iteration is the Q-V one. Otherwise, the basic (15, 1V) is followed. The
| implemented scheme tendsto avoid large differences between the two acc;.lracies and
ovi'-converging of the one of the two sg'rslen{s of equations iimplied by the method

*
which slows down the overal] convergence rate (Stott and Alsac 1974).

6.:4 . NUMERICAL RESULTS: 6-BUS AND 26-BUS SYSTEMS
" 6 Bus System \

The method pr¢§ented has been tested on a é-bus sample power system
shown in Fig. 6.1. The required data i‘s given in Table 61 Powers injected into buses
are shown. Contingency in the form of the loss of 50% of gene’rationT capacity at bus §
is considered. Upper and 1ower.bounds on network variables in terms of the l;ase case
_ s;)lutioh are given in Table 6.2. The results of optimization showing the variables at

the st.arting point and at the solution are summarized in Table 6.3. It can be seen that

the objective function (6.3) salected only one load to be shed (out of three], ;mmely, P1.

4
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Fig.‘B‘l‘ 6-bus power system.
S

»

— bus 3
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TABLE 6:1a "

BUS DATA FOR THE 6-BUS POWER SYSTEM

Bus Bus Type P; Qi |Vl £8;

Index, i (pu) (pu) (pu}
1 load -2.40 0 C - Z -
2 load ' -240 0 - Z -
3 load -1.60 -0.40 - Z-
4 generator -0.30 - 102 £-
5 generator 1.25 ’ - 1.04 ~Z-
6 slack - - 104  £0.0
TABLE 6.1b

- LINE DATA FOR THE 6-BUS POWER SYSTEM “

" Branch Terminal Resistance Reactance Number

Index, t Buses Ry (pu) X (pu) of Lines
14 0.05 0.20 - 1
1,5 0.025 0.10 2

2,3 0.10 0.40 1
10 24 7 o1 0.40 1
11 2,5 0.05 . 0.20 "1
12 26 0.01875 0.075 4
13 34 015 060 1

-1
14 3,6 0.0375 0.15 2.




133 L

e
) TABLE 6.2
N NETWORK VARIABLES

UPPER AND LOWER BOUNDS O
FOR THE 6-BUS POWER SYSTEM

Variablc: | Lower Bound UpperBound
Vel 0.93|V 0 1.07 ]ydo'
& ‘ 0980 . 1180
Py 0.85 Py 13P ks
Qg 0.85 Qg° 1.3 Qg
Vgl ENAY L15|Vg0

A )

, .
[Vlo, 59, Pgl, Qg0 and |V¢l® denote nominal values (at the base-case solution) except

for the power injected at inode 5, for which Pg0 = 0.625 (taking into account the forced

outage of 50% of generating capacity). -
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TABLE6.3

’

RESULTS OF RUNNING THE LOAD SHEDDING PROGRAM

FOR THE 6-BUS POWER SYSTEM

/

g

Starting Point ’ Soluﬁqti
P
Variable
P, ) : ’-2‘.40 » -2.07225
Py -2.40 . -~2.40000
Py . ' ~1.60 . -1.6000
Py - -0.30 -0.25500 °
. Pg 0625 0.704375
IVl ' 1.02 .  1.040629
vyl 1.04 1.037985
:_ (_)bjec,tive Funcgiou : 0.(; ' 0.327745 ’
L= | — ] ‘
. No.of Fu'n\ction'_ ‘ "
_ VEvaluations/ S 20
Execution Time « : ‘
. on_Cyber 170/815 . 45 .
(in seconds)
L
. -]
y \ \ -
’
\ - -
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- N
The‘othcr two, 15-_3 x;nd P3 are exactly the same as at the stnr.tinlg point. The objective
funclt‘ion value at tHe solution is exactly equal to the amount of load no. 1 to be
curtailed. The changes in values of Py and Py reflect the fact that we allowed up to
30% incrase in real generation at buses 4 and 5 It can be observed also that the 30%
reslerge_ has not been utilized in full. This can be explained by the fact that other’

constraints have limited the use of full reserve at buses 4 and 5. |

26-Bus System
The method presented has also been tested on a 26- bus power system shown

in F:g 6 2. The requlred do.t.a for the system is given in Tables 6. 4 6.5 and 6.6.

Contingency in the form of loss of generation capacity at bus 19 from 1.45 to 1.00 ig,

+ considered. Upper and lower bounds on network variables in teims of the base case _

solution are the samie as those given in Table 6.2 for the 6-bus system with the

exception of Pyg for which Pyg0 is taken as 1.00 (taking the contingency into account),

The results of optimization showing all varia'ble.s at the starting point and at the
solution are surhmarized in Table 6.‘7. From the iesults it can be seen that again only
one foad (Pg) out of seventeen has been selected for sheddlng, assuming contmgency at
bus 19. All the other loadﬂave not been affected. The objective function at the

solution is exactly equal to the amount of load at bus 6 to be curtailed.
Al
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Fig. 6.2 26-bus power system.
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TABLE 6.4

BUS DATA FOR THE 26-BUS POWER SYSTEM \

-

Injected Power Bus Voltage
Bus -
PITI Qm ' lvm| 6m
1 ~0.82 021 - -
2 0.01 0.0 ‘ - -
3" -0.57 -0.17 - -
4 -0.48 -0.21 - - -
5 -0.43 -0.11 ’ - -
6 -0.40 -0.10 - -
1 -1.11 -0.27 -o- -
8 -0.23 -0.06 - -
. 9 067 - =021 - -
10 -1.02 -0.27 -y -
11 -0.43 -0.14 o - -
12 -0.43 -0.12 - -
13 0.01 0.0 - - -
14 0.01 00 - -
15 0.01 0.0 - -
16 -131 -0.30 - -
17 - -0.03 -0.01 - -
18 2.80 - 1.07 -
19 1.45 - 1.05 -
20 2.80 - 1.00 -
21 1.10 - 1.02 -
.22 -£0.56 R ~~0.89 -
23 -0.04 - 1.00 -
24 -0.05 - : 1.00 -
25 . 0.63 - 1.00 -

26 0.0 -7 1.01 0.0

A
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TABLE 6.5

LINE DATA FOR THE 26-BUS POWER SYSTEM

Terminal Resistance Reactance 1/2 Shunt,

Line " "Buses Ry (pu) X (pu) Susceptance

1 13,26 0.0 0.0131° 0.0

2 26,16 0.0 0.0392 0.0

3 16,23 0.0 0.4320 : 0.0

4 23,26 0.0 0.3140 0.0

5 2,10 0.0 0.0150 0.0

‘6 9,10 0.1494 0.3392 0.4120

7 9,12 0.0658 0.1494 0.0182

8 12,26 0.0533 0.1210 0.0147

9 9,14 0.0618 0.2397 0.0319
10 11,14 0.0676  * 0.2620 0.0349"
11 19,26 0.0610 0.2521 . 0.0295
12 - 6,26 0.0513 0.1986 0.0265
13 6,19 0.0129 0.0532 0.0074
14 719 . 0.0906 0.3742 0.0437
15 6,7 0.0921 0.3569 0.0475
16 11,22 0.0513 0.2118 . 0.0248
17 8,11 0.0865 0.3355 0.0447
18 17,22 0.0281 0.1869 0.0237
19 8,21 0.0735 - 0.2847 - -+ 0.0379
20 17,21 0.0459 0.3055 0.0387
21 1,4 0.0619 . 0.2401 0.0319
22 4,21 , 0.0610 0.2365 0.0315
23 20,21 0.0 0.0305 0.0

24 15,1 0.0 0.0147 0.0

25 2,13 - 0.0086 . 0.0707 0.3017
26 1,7 0.0199 0.0785 0.0404
217 15,20 ’ 0.0107 0.0617 0.4471
28 2,18 - 0.0074 0.0608 " 0.2593
29 1.3 0.0 0.0392 0.0

30 24,3 0.0 0.1450 0.0

3 521 0.0 0.1750 ~ 0.0

32 5,26 0.0 0.1540° - 0.0

Yy

=/
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TABLE 6.6

TRANSFORMER TAPS FOR THE 26-BUS POWER SYSTEM

Terminnl ‘
No. Buses | Real : Imaginary N
1 13,26 1.03 0.0
2 a2 097 - 0.0
3  “o43 098 . . o0
4 28,16 : 636 - 0.0
5 151 089 0.0
T s | 5,21 0.99 oo
7 2,10 L ‘ 0.0
8 1.3 098 0.0

9 5,25 C 1.03 0.0
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TABLES6.7
RESULTS OF'RUNNING THE LOAD SHEDDING PROGRAM

FOR THE 26-BUS POWER-SYSTEM

Starting Point Solution
" Yariable ’ !
' ' P -0.82 -0.82000
Py -0.01 \ =-0.01000
Py -0.57 -0.57000
Py -0.48 -0.48000
Ps —0.43 -0.43000
Pg -0.40 =0.155187
: P; -L11 - » ~1.11
Ps -0.23 -0.23000
Pg —0.67 -0.67000
Pig ~1.02 -1.02000
P ~-0.43 -0.43000
Pio. -043 7 -0.43000
Pyy’ -0.01 -0.01000
. Pis -0.01 -0.01000
Pis -0.01 .—0.01000
- : P1s -1.31 _ ~1.31000
) P17 003 o —0.03000
Pg 2.80 2.86677
Plg - 1.00 - 1.15000
Pgo : 2.80 2.83164
Pgy L.l(] 1.12126
. Pag _—_9.56 -0.58739
Pag =0.04 -0.04600
Poy - -0.05 ~0.04436
Pos ' 063 ° . 0.84753
Vigl 1.07 - 1.06814
Vil 1.05 1.05055
[Vag| 1.00 1.00684
Vol 1.02 1.02583
o , Vool 0.89 0.88974
N . . V23| 1.00 0.99768 -
. : Va4l 1.00 : 1.00721
. ) Vsl 1.00. 1.00635
Objective Function * - 0.0 ’ 0.24481
o Number of Function
Evaluations 9
Execution Time on

Cyber 170/815 (in seconds) - 79.5
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6.5 CONCLUSIONS

In this chapter the load shedding and generation reschedu-lin‘g problem is
formulated as a nonlinear Aptimization problem. The pl\'oblem of selecting a possibly
small subset of loads to be shed is addressedcdirectly by proposing the €, type of the
objective fuhctioh for the problem. The Han-Powell algorithm for general nonlinear
programmmg problem is used, To preserve th:: nonlinearity of the p}oblem
{(appearing in the security constramts considered) the exact first-order sensxtwmes
based on the Tellegen theorem are employed. Numerical results for 6-bL_ns and 26-bus
gystems show that the objective function proposed selects small number of loads to be -
shed (one out of three for a 6-bus system and one out of seventeen for a 26-bus system)
from the set of all loéds being candidates for shedding. .

The ﬁan-Powell algorithm has proved to be fast and robusl: for small

optimum power ﬂow problems (up to 100 buses) (Giras and Talukdar 1981). For large
problems a class of decomposltxons has been developed (Talukdar, Giras and Kaiyan

1983) which can be applied to t.he load shedding problem.
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OPTIMAL DESIGN OF M[CR\)WAVE MULTIPLEXING NETWORKS

7.1 . INTRODUCTION

W

Practical design and manufacture of contiguous-l;and mul.t_.?plexers
coﬁsisting of multi-cavity filters distributed along a w_aveguidé manifold has beén a
problem of significant intereﬁt over the past ten years (Atia 1974; Chen, Assal. and
Mahle 1976; Chen 1983;. Recently, a geﬁeral multiplexer design procedu;e using an
‘extension of the normal least squares method has been described (Egri, Williams and
Atia 1983). | ) ‘

- In this chapter, we formulate the design of a c‘ontiguous-band multiplexer
structure as a centering proBlein using a recently developed nlinimax algorithm of
Hald and Madsen (Hald and Madsen 1981). All design parameters of iﬁterest, e.g.,‘
waveguide spacings, inpﬁt-o_utput and filter coupling parameters, can be directly
optimized. ‘A wide r:ange of possible multiplexer optimiiation‘ problems' can be

_ formulat.fd and solved by apf:_ropriately defining specifications on common port ;eturn

loss and individual channel insertion loss functions. The minimax error functions are

‘created using those specifications, simulated exact multiblexer responses and

-

weighting factors. A typical structure under consideration is shown in Fig.. 7.1

The multiplexer optimization procedure to-be described in this chapter

_exploits exact network sensitivities. Evaluation of the exact sensitivities for the |

multiplexer structure is based on the_exaét sensitivity ‘a'nalysis of individual filters
and a direct appligation of the method of forward and reverse analyses for cascaded

st_ruct.l.ires developed by Bandler, Rizk and Abdel-Malek-(1978). The details of the
{ » - . ’
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+
simulation and sensitivity analysis aspect of the problem huve begh described in

. : L
Barndler, Chen, Daijavad and Kellermann (1984), Bandler, Daijavad and Zhang

i1985), and Bandler, Chen and Daijavad (1985).
7.2 FORMULATION OF THE PROBLEM

The objective function to be minimized is given by . .
Fig) = max [,(@). _ | )/{”

j€d ‘ ‘ ’ -
wiere ¢ = $0 is a vector of design parameters (g.g., section or spacing ‘engths, *

channel input and output couplings and filter coupling parameters) and
. . :

J&(1,2, ..., m}isan index set. The miriimax functions fj($), j € J, can be of the form

W@ MF L, w) — S (@), | a2

i —wi @NFL e, @) - S, A
. Wf,(w.l)(legfp, w) - si_(mi))_ . (R

. ~ w20 )F, ) - S, : (1.5)

where Fyl(d, w;) is the insertion loss f_or.__ghe kth.channel at thé ith frequency,.
F2(¢, w;) is the return loss at the common port at fhe ith frequency, Sgk‘l(mi) (\S'th_(c.niv)')‘
is the upper (lower) specification on inser:ion,_.loss of the kth channel at the ith
frequency, Sy2(wy;) (Sszu)i)) is thé upper (lower) speéiﬁchtion on return loss at t'fhe ith
frequency, and wy, ', kal,wuz. ‘w2 are the a;rbitrary user-chosen m;'nnegative
'weighting factors, 7

A typical example of épeciﬁcations on return loss and insertion loss for a

three-channel multiplexer is shown in Fig. 7.2.
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73 UNTERMINATED FILTER SIMULATION AND SENSITIVITY

ANALYSIS .
1)

The model of an unterminated multi-cavity filter has been given by Atia
and Williams (1972) (see Section 4.8.2, equations (4.55-4.57) and Fig. 4.4).

We reduce the system to a two-port (see Fig. 7.3) given by
I ‘

‘
‘ [
n

where y is the s.c. admittance matrix of the filter, including input 1:ny and output ng:1

_ [ Vi ‘ - (1.6)
y v ) )
n

ideal transformers (see Fig. 7.4). Matrix y and its sensitivities w.r.t. all variablés,
including frequency, can be ol.)t:a‘ined by sélving the systems

Z.p. =e; andZq=e,, ('7.7)
where e, 2(10-.. 0jTand en.—‘i—m ... 0 1]T are n-dimensional unit excitation vectors.
‘Note that q can be foqnd with minimal extra effort after factorization of Z for the
solution of p. The following formulas i'o-r the évaluntion of y and its sensitivities are

readilj derived (Bandler, Chen, Daijavad and Kellermann 1984)

2 _ 2 .
LYn %Yy l [ nP, 0y B,P, l
= = ' (7.8
' y n.n n2 nn l"ld )
M eYe Me¥p 192P, a4,
2 X

ay _ 20,PPy N Py * Py q) I .

— = -] . ‘ N (1.9
-aM : : 2 '
t NP, q + P d) . 28,9,9,
where ‘.
1 ife=k,
¢ = [
0.5 ifé=k,
© 9 T -
v n’p’p nnp'q

- tals ol I L . (7.10)

: . e nlnszq n,q q ~

./ J .
|
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~
2 .
ay [2mP, MB, "y 0 mypy, (7.10)
, -— = and — = . ’ .o
m LA iy MP, 2mq,
7.4 COMPUTER IMPLEMENTATION N
N

A Fortran package has been developed for multiplexer simulation,

sensitivity analysis and optimization. Functional blocks of the package are shown in
, :

Fig. 7.5. This package has been designed to reflect the requirements of ComDev Ltd.

of Cambridge, Ontario, Canada. It has been tested in close coopefation with engineers -

"directly involved in multiplexer design and postpreduction tuning. .

‘ ' /"‘ : }
Options of thg} Eackage R

. The required mode of operation of the ﬁackage is selected by the user by

_setting an indicator as follows: - .

. A

. ' [
. 1 — ifonly multiplexer simulation is required:

2 - if multiplexer sensitivity analysis is required (implies simulation);

. .

3 — if multiplexer optimi-zation is required (implies both simulation &nd

E ere ey .
sensitivity analysis).
. ' . -]
Options of the Optiniization Mode A
If the mt{}tiplexer optimization option is selected three es of '

optimization are allowed for, namely, only return loss optimization (suggested by
Chen (1983)), only insertion loss optimizatidn, return loss and insertion loss

optimization, all at user-defined sets of frequency points. A suitable and sophisticated

- coding scheme has been developed which creates.a consecutively numbered set of

-

LS

o,
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SIMULATION
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‘ > SENSITIVITY
. ANALYSIS
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FUNCTION ‘
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. . ' GRADIENT '
- ' ‘ . .EVALUATION
: &

- Option3 © ,| OPTIMIZATION

Fig.7.5 Functional blocks of the computer package for multiplexer simulation,
\
sensitivity analysis and optimization.
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minimax functions depending on whether we have only lower (upper) specifications,

both or no specifications on a function of interest at a certain frequency point.
»

Options Related to the Selection of Optimization Variables

The coding scheme developed and employed in the package allows also a

very flexible choice of optimization variables.” In general, all parameters are
. » .

candidates for optim-ization variables, however, with very little effort, the user dan

declare any parameters to be optimization variables.

Optioﬁs Related to the Microwave Model of ¢ Multiplexer

. -The package can exploit timee ;:ommorily used practical models of the
multiplexer, depending on lwhether the junctions are ideal or nonideal (junction
susceptasnce is included), whether the filters are lossless’ or lossy’(diss?i)ntéc.)n is
ingluded), and whether'the filters are modgl!ed as dispersive or non-dispersive. (The
waveguide manifold is alwé}s assumed dispersive.)
| 7.5l' . 5-CHANNEL, 11 GHz MULTIPLEXER DESIGN USING MINIMAX

OPTIMIZATION | |
The procedure is illustrg.t:ed by des'igni.ng an 11 GHz, 5-channel multiplexer
.havix'ig the centér frequencies and bandwidths (similar to those in Egri, Williams and

Atia 1983) given in Table 7.1.
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TABLET.1

5.CHANNEL MULTIPLEXER CENTER FREQUENCIES AND BAN DWIDTHS

el
———

Channel Center Frequency Bandwidth
- (MHz) {MHz)
1 10992.5 81
2 11075.0- 76
3 11155.0 76
4 € 11495.0 16
5 11618.5 - 154
)
...—/
4
-
P
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. '

Suppose we want to design this multipl:exer such that certain speciﬁeations
on the common port return loss and indiviti?m! channel insertion loss functions are
satisfied. A lower specification of 20 dB on return loss ove:; the passbandﬁ of‘all)ﬁve
channels should be satisfied. We want also to control return loss between char;nels 1
~and2,2and3,4and5ina éimilar way. We impose alsd additional specifications on
insertion loss for all channels, i.e., we want the insertion lo;s in the transition bnn_ds
not to drop below 20dB. We start the design process with five identical srx pole,

pseudo-elliptic function filters, Starting values of the coupling coefficients for the

filters are given in the following matrix (Chen 1983):

E 0 0.62575 0 0 0 o
0.62575 0 0.57615 - 0 0 _ p
0 057615 . ¢ 032348 - 9 ~0.74957
M= 0 ' 0 032348 ~ o | 1.04192 (1] (7.12)
0 0 0 1.04102 0 1.04239
0 0 -074957 ¢ 1.04239 0 |

The initial spacing lengths are set equal to Ag /2 (half the ws.svelength
corres.ponding'bo the kth center frequencjf) The filters are assumed lossy and
.dispersive. Wavegmde junctxons are assumed nonideal. _

Fig. 7.6 shows the responses of the multiplexer at the start of the
optimization process. As we see the specifications on the common port return loss are
seriously violated." |

The optimization proce:s is performed in sev;:ral steps. First we select only
' non-zero coup!ings, input/output transformer ratios .and filter spacings as

optimization variables. Thisg gives a total of 45 optimization variables. The error
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functions resulting from the multiplexer responses and specifications are created at |

51 nonuniformly spaced frequency points. An improved design is obtained after 30

. B ,f » '
function evaluations (2308 on the Cyber 170/815). The responses corresponding to the

/ ;
first step of the optimization process are shown in Fig. 7.7.

In order to completely satisfy the design specifications we perform a second

step of opt.:mu.atmn m which we release additional optimimtion variables, i.e., cavity

resonances. This givesa total of 75 nonlinear opnmlzatmn vanables Using the game

frequency points as in step 1 and results of the first optimization as a starting pomt we
continue the optimization process After 30 additional function ezaluatlons {and 470s
’
of CPU time on the Cyber 170/815}, r.he des:gn specifications are satisfied and the
optimized responses of the 5-channel muluplexer are shown in Fig. 7.8. To improve
the return loss response of the multiplexer, the third step of ?ptimizatjon is performed
in which a seargh technique for m.aximu. of the f::s;ﬁonse is ;zmployed. This gives 66
minimax funf:tiuns. and the same number of variables as previously. After 25
additioripl function evaluations (and 360s of CPlU time on the Cyber 170/815) we
obtain the final optimized responses as shown in Fig. 7.9.

In the‘ approa:ch presented the gmphasis is on achieving a maximally
effgc-tiv'e set of Barly iﬁraﬁom\ of optimization using a subset of all. possible
optimization variables. Thm gubset should correspond to "dominant” variables of the
croblem. Initial selection of the variables canbe facilitated by the full knowledge.and
experience of the designer gnd by an initial sensitivity analysis at selected frequency

points.
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6 12-CHANNEL, 12 GHz MULTIPLEXER DESIGN USING ¢,

OPTIMIZATION

A major task in desiér-ling a n?ult.iplexer is to determine ti"n\e location of the
channel filters along the waveguide manifold (Che’n 1983). This is ve:f‘y important for
designs using the c0|?1mon port return l;ss as the only optimization c.rite.rion. A
typical value of lower specification on return loss over the _pnssbnnds ‘of all
multiplexer channels is 20 dB. The error functions fj(¢) for this type of problem are of

the forin (7.5).

If we perform a minimax optimization based on these error functions and at

the solution the minimax objective function value is négative then the goal has been
achiéveq. In many 'cases, however, us{'ng the ﬁlter spacings as the only optir’niz.ation @,
variables may not be sufficient to sétisfi,r all speciﬂcaiions and minimax optimization
gives results correspoﬁdiné to the situation where the speéiﬁcation violations are
distributed over all m,uiti;:lexer channels. In that..case the use of the one-sided £,
optimization of the same error functions may lead to more desirable result; where the
violations occur only over a few multiplexer channels. This process of identifying
"bad channels” has two very important consequences." First, the results indicate in .
which channelg the additional variables have to be released to improve locally (in the
frequency domain) the performancé of the multiplexer and second, it gives very good
starting values of the waveguide spacings to be used in the subsequent mir;imai
optimization. The idea presented is illustrated by ciesigm’ng a 12 GHz, 12-channel
ﬁultiplexer witho:.:t dummy channels. Th_e li-chanhel coﬁtiguous band multiplexer

ﬁgs a chann_el frequency separation of 40 MHz and a usable bandwidth of 39 MHz with

~ the center frequency of channel 1 12 180.0 MHz.
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Suppose we want to design this multiplexer such that a lower specification

-

of 20 dB on the common port return loss over the passbands of all 12 channels should

be satisfied. We start the design procesé with twelve identieal 6th order filters with

the c\oupling coefficients given in the following matrix (Tong and Smith 1984):

- 0 0594 0 LV 0 o
| 0.594 0 0.535 0 0 0
0 0535 ‘ 0 0.425 0 —0.400 | (73,
- M= 0 0 0425 0 0838 .0
0 0 0 0.834 0 0.763
| o 0 ~0.400 0. 0763 o |

Initially we select the spacing lengths along the waveguide manifold as the

only optimization varigbles with starting values set equal to A2 (half the
wavelengtﬁ corresponding to the kth center frequenc;h. ‘For the kth channel. the
waveguide spacing is measured along the mahifola from the adjacerit (l;-l)th channel,
For the first channgl the spacing is t.ile disltance from the short circuit. The filters are
assumed lossy and dispersive.‘ Waveg.uic.le junctions are ae';sumed nonid;al.

Fig..7.10 shows the retu\m‘ loss response of the multiplexer at the start of
tl}g qptim.ization' process. The specification on the common port return loss is
sér'iously violated, espeéially in the lower frequen;ies range (corresponding to
channels 8-12). | : ‘ R

_The filter spa{.;ings are the dominant variables of the problem. This is bag‘

on the initial sensitivity analysis of the commion port return loss function w.r.t. all

variables at selected frequency points.
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0
We perform the one-sided ¢, optirﬁimtion ‘which is defined in the following
way.* ‘ .. .. R | .
.- - » L% - ) -
, .
S SN I : (7.14)
minimize E ! (dN, ) :
¢ =y .
p .
where
if f(¢p)=0 . )
¢ { rj(‘b) i £4) =0 : (7-15)
Pl iffgr<o e )

The functions fi(¢) are the original error functions defined in (7.5).

We define also the gradients of the functions f;*(¢) in the following way

o ()

oA () e if £($)r=0

P

a (7.16)
0 if fi¢r<0

The results of the ¢, optimization defined above are shown in Fig. 7.11. The@t_i_tiins

of the 20 dB specification are most serious in the frequency range corresponding to
'chnhnels 1-2 and 8-12. This motivates us to release additional optimization variables

in the. filters corresponding to these channels.” As aﬂdit.ional optimization variables

we release the input-output transformer ratios, cavity resonant frequencies as well as
" 4 .

intercavity couplings. From that point minimgx Optimimtion"\s employed using the
3 p

£, optimized spacings as the starting values for the spacings. The final. optimized
: - . 4 )

return loss of the 12 channel multiplexer is.shown in Fig. 7.12. The problem involves

60 nonlinear dégign variables. -

\ -

11 CONCLUDING REMARKS - . ~
A ﬁowerful- and eﬁciem optimization procedure for cont?gumﬁ band
T 3 MR . o .
muiltiplexers has Been presentéd. It employs a fast and robust gradient-based

i - _ o
i a

' »

" minimax algorithm. The muitiplexer responses and their first-order sensitivities are v e



163

SN

-uorjeziwnd

..
( ZHW ) AJN3NO3dd

-

S

" po22T 08T2T 02Tl owoma owomd ccomd owmda b26TT ommﬁd c-mdﬂ ooaaa ]

o 13 Buisn Ajuo s3urords paziunydo yim Jaxapdinu [auuBYd-Z [ Ayl Jo mum_:o%om iredg .

T

N.: cmh.:

I

N

X

o
-

® 5
NI ONY NﬁPLBH

<+

(=]
(3]

2]
o~

w o
- o
1 80) SS07 NOILLY3S

[ =]
—{

-



i : : : . .h N

‘uonyrzitido xvwuW Fuisn sanpwesed Fuidnod

pup saauruosal AJIABD ‘SorjBl JAWIOJSUEL) jndno-indut ‘sSupoeds peziundo yum 1axapdnnu [UUBYI-ZL 34l JO sosuodsay 1L 34
a. . ) ) . .

-7 . (ZHHW) AIN3ND3I™S
0sT27 02T2T 08027 0v02T 00027 03671 026TT
| 1 ] Y | I\ !

=
-

NynL3d

164
(Vo]
o™

L}

™
d3SNI ONU

un

|
(=]
o

1
|
o
- -
t ea 1 sscdh NOIU

i

]
(=]
_




v

“fet

165

calculated efficiently and exactly. The procedure devclopcd allows flexibility in
selecting'optimizlntion variables and multiplexer models. The important feature is
the possibility of including linear equality and inequality constraints on optimizatidn

variables. To our knowledge, the 5- and 12.channel multiplexer designs are the first

-~

‘ su'ccessf\lgttempts to use gradient-Based optimization for multiplexer design as well

as being the largest nonlinear optimization process ever demonstrated on microwave

circuit design for a reasonable computational cost. III \

A formulation using the £; norm for the initial stage of multiplexer design

_has been presented and illustrated by a 12-channe!, 12 GHz multiplexer problem. The

one-sided €, optimization sets to zero as many errar functions as possible, and this
results in identifying channels of the multiplexer where the specification violations

. L.
are most serious.

G



CONCLUSIONS

This thesis has considered a number of important proﬁlems associated with

S
computer-aided design and computer-aided testing of engineering systems. These

+

problems include design centering, tolerancing and tuning, worst-case selection,
s
tunable parameter selection, fault location and model! parameter identification from

measurements.
. .
Many of the engineering system problems discussed in this thesis have
been formulated as optimjzation problems. The formulations exploit characteristic

features of the minimax and €} norms. SR
The minimax cbiective function has been well established in the aesign of

circuits and systems, especially in design centering and tolerance optimization. Two
' R A

Y

new applications have been presentéd in this thesis. One is an algorithm for the fixed

tolerance problem embeodying worst-case search nPd selection of sample points.

Linearly constrained optimization is used to determine actual worst cases during the

5

optimizatic;n of the nominal ciesign subject to ﬁxeh‘o’l‘éfmrws. )
Ancther application is an a.lgorit.hm for minimizing the ca.rdinality of a set
subject to nonlinear, nendifferentiable constraints. It is a combinatorial problem m
which an unconstrained minimax optimization of a set of error functions is used to
select candidates for deleting from the original set of points. The algorithm has been .
used for solv'mé a practicai mechanical -enginee;ring problem which originated from

aligning mechanical desi;fns. The gpproai:h presented in Chapter 5 should prove

useful in many othet arees where problems of a similar nature may exist.

-
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Unlike the minimax norm, the €; norm has not been given its proper place
\ in computer-aided design and computer-aided testing of circuits and !;ystems. This
thesis, thereforé, has examined some aspects of £; optimization and its relevance to
;.unable parameter selection at the design stage, fault location in analog systems and

' model parameter identification from measurements.

Necessary conditions for optimality of the nonlinear £; problem with
nonl}ngar constraints indicate that zeros of flhe nonlinear functions play an important
role in the characteristics of the £, objective function. Aétive constraints play the
same role as zero functions. This fact has been used in fault isolation techniqués for
linear analog circuits. The ¢, norm is used to isc:late the most likely faulty elements,
In Chapter 4., anew for\mulation for f'ault. isolation in analog circuits based on an exact
penalty function has been presented. |

Another important application of the £, nort_m is the selection of tunable

gparameters in the l'unctmnal approach to post-productxon tuning. Two' n.ew ‘
formulations for t.he tuning problem have been presented based on the c]assd'lcatxon of
the tuning problems into tuning with ‘the fixed set of tunable parameters and tumng-
with the vanable set of tunable paramer.ers A :mxed programming formulatmn
given in Chapter 4 ensures that the solution gives the minimum number of tunable
parameters. The importance of selecting tuning parameters in real life engmeermg
systems has been demonstrated in Chapter 6 where the load shedding and generation
"rescheduling problem in povfe; systems is formulated as an bptimization ﬁroblem
with the £; type of objecti\;fe function. Although the number of applications of the £,
norm to circuits and systems problems is increasing, it is felt tﬁat the full potential of *
the ¢; norm in solving engineering sysiem problems has pot been realized and

requires further research.

P
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*
All the formulations in this thesis are supported by fast ond efficient

algorithms for mini;'nnx and ¢, optimization originated by Hald and Madsen. The

‘results presented in Chapter 3 (comparison of minimax algorithms on a three- section

transmission-line transformer) and in Hald and Mndsa‘ﬁ'gl'gsﬁ) indicate that both

algorithms may be the best of their class currently available. The robustness of the

algorithms- hag been proved by solving practical engineering design problems of

A
significant size. An optimization procedure for the design of contiguous and

‘noncontiguous band microwave multiplexers, described in Chapter 7, allows us to

solve problems involving up to 75 nonlineartdesign variables and as many as 100

! N .
* nonlineer error functions. An important factor in the sugcess of both algorithms in

solving-difficult engineering problems is the fact that the algorithms recognize

singularities in the problems defined and treat them efficiently. As was Shown in

r -

+ L
Chapter 3 on a two-section transmission-line transformer, those singularities are not

only a@tract concepts, but are inherent in mﬁny circuits and systems design

»

problems. | )
. Many of the suhplroblems associated with overall problems in different
enéineering disciplines’ e of a similar nature and sufﬁcier;t ;z\plexity to m'otivate
the development of a conteptual framework within which it would be possible to
integrate and apply the results of computer-aided eng‘gneering system resps;mh. The
aim would be to provide the fneans of integrating t}xé design process {(centering,
tolerancing and tuningﬁ) with the post_-productiop process (parameter identification,

fault location, post-production tuning). Such a framework would be an extension of

the oo'ncept.é and-definitions ube_d in DCTT to include fault location, post-production

~ tuningand model parqm;ter.identiﬁcation.

e -
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In order Lo'integrut'e the classi(;;xl design prc.:blerﬁ and, for ggmmple. the
modél parameter identification problem, we could extend the concept of spec‘iﬁcation.
to include a ' measured response of a network or system. In the design problem, the
specifications wJuc'h a mnnufactured design must meet are known exactly. This is not
the case with the specifications for the ldont.lﬁcatlon problem due to the presence ol'
measurement errors or uncertainties in observing the particular response. The
concept of performance function in both.problems is exactly the same. This is an

-

appropriate model which depends, in general, nonlinearly on a set of parameters. The
difference between the two problenils; lies basu:ally in the nature of the specifications. -
It should also be noted that for t.hg identification problem, we usually consider the
single point speciﬁéation whilé in the design problem wt;'usually have lower and/or
upper specifications. - Single point specifications can always be replaced by two
specifications, lower and upper, p;'equal value, Thus‘.we can think of a general design

problem formulated as an optimization problem with the objettive being the norm of

the error functions resulting from specifications on performance functions of interest.

'The particular norm to be used depends on the nature of specifications.

A numbel; of other problems are also worth further res rcl‘i and’
develéprltxent. J . ‘

(a) In t;; pi;é;sent );ersipn of the algorithm'for tlr:e'ﬁxed tolerance problem,
-worst-case se-arch is performed for each iteration of the ortimization w.‘r.t.
nominal value;s. It was observed, however; that close to a solution, worst

. cases selected do not change from |€eratxon to.iteration. [t would be

worthwhile to develop a cnt.enon allowmg us to test whether the worst-case

correspondmg toa par'uculnr t'unct.mn hes changed or not. Such a criterion

- -
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(b}

(c)

@
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. J
would be based on the signs of gradients and would alievinte the worst-cus:g
search for each iteration,
In Chapter 4,_a ;nimd programming formulation for the selection of tunable
parameters at the design stage is proposed. The formulation ensures that a
minimum number of parameters for tuning is seleotled. It would be useful
to investigate possible algorithms for solving this. type of mixed
brogramming problem.
A natural e:;tension of the approach to the best‘alignment is one which
considers alignment problems in three dimensions. This would be very
useful from the practical point of view.
In the p'resent implemeﬁtatiop of the approach .to .load shedding and
generation rescheduling in power systems, all arrays are : to be
dense. Since t.he' problem ¥ structurally very sparse, implementations
taking sparsity directly into account would prove very useful for solving

problems of significant size. \
. - : '

-
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APPENDIX A
DESCRIPTION OF THE HALD AND MADSEN MINIMAX ALGORITHM
The algorithm is a combination of two methods denoted Method 1 and

Method 2. Method 1 is intended to be used far away from a solution whereas Method 2

' is a local method. We first dgscribe these two methods’

‘Method 1

This is essentially the algorithm of Madsen (1975).] At the kth step a

feasible approximation Xxi of a solutmn of (3 9 and a local bouhd Ay are given. In

order to find.a better esthate of a solution the following lineariked problem is solved:

minimize F (xk,h)_= max {fj(xkf+ fj(xk

h .
subject to ' .
a'(x +h) +b =0, i=h.., 0,
i i eq

‘el + My +b, 20, i=( D
= The solution of (A.1), denoted hy, is found by linear programming. Notice
that xy + by is feasible. The next iterate is Xy +hy providéd this point is bettét Lhn.lj
x, in the sense of F, i.e., if FOne+by) < Fizy). Otherwise xgs1=%r. In Fig. A1, an
example :mth one varmble, two !‘unctxons and no constraints (§=0) is shown. F(x)is
e kmked bold- faced curve At xy lmear ’ppro:um ns of the two functmns fi and

fz are made and the solutlon of (A.1) is hy which is found at the intersection of the two

linear approximations. We assume that the local bound Ay is so large that it has no

- 4

-~ . 1n
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F(x)

Xy X *+hy 3

- f-— A.""*"'A. —.'l
r N

1

Fig. Al An example with one variable and two functions illustrating a Method
1 iteration of the algorithm.
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influegnce. The new point is X 41 = xx+hy which is seen to be close to a local

;

minimumof F.
'The local bound Ay is.introduced because the linear model (A.1) is a good,

' api)roximation of (3.9) only in some neighbourhood of xx. Therefore, it makes sense to
conpider only small valuesof fh} in connection with the linear model (A.1). The size of

. the bound is adjusted in every iteration based on a com;;arisoﬁ'between the decrease
ipt the objective function F and the decrease predictéd by the model (A.1). If the ratio
between the two is smal_l, o

3 F(xy) - F(xy + hy) < 0.25 [F(xy, 0) - Flxy, hy)l (49
. then the bound is decreased, Axi 1 = Ax/4. Otherwise, if _.

M F(xy) - Fxg+ hy) = 0.75 [P(xy,0) - Fixy,hy)] ~ (A.3),
then Ay 41 =2Ay. If neither<A.2) nor (A.3) hold then we leave the bound unchanged,
Ag+1=Ag " )

Experiments have shown that the algorithm is father insensitive to small
changes in the constants used in the updating of the bound. This methc;d has safe'
global convergence prt?perties (Madsen 1975) and if the solution is regu}ar then the

‘ ' .
final rate of convergence is quadratic (Madsen and Schjaer-Jacobsen 1978).

-

-

\

Methed 2

2

_ ‘ ’) It is a local method. it is assumed that a poin}. near a solution z is known,
© 7 and that the active sets A(z) &{j | f(z)=F(z) } and C(z) & {i| a;Tz+b;=0} are known.

* At a local minimum z of (3.9) the following necessary conditions hold (see, e.g.,

Hettich 1976), ' B <~

-~
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P

jeAlD) i€Ciz) ' —
z A]- l = Ol’
JEALR)

fjo(z) - fj(z) =0, jGA(z)\{io},

S \ rj’m - Y pa=o,

(A.4)

a;rz +b =0, , i€C(z), >

” where the multipliers \; and y; are nonnegative and jo€A(z) is fixed. Method 2 is an
app;roximate Newton method for solving the nonlinear system (A.4) (in the variables
« (zAm). Exact first derivatives are u'sed but the matrix £ .\jfj”(z) is approximated

. : e
y using a modified BFGS update. In this way an approximate Jacobian Jy is obtained -

at the estimate (xy,A'), pi) of the solution of (A.4). The next estimate is found by

Axk .
J (LI [ ,A”", th)
g | AA (x, \ p) (A.5)
1 apt .
-(xi”.; A +‘(n)' pl+ Dy x, Atk Pm) +@x, M(k)'\“g') ' s
where R(z,A,n) =0is Fhe vector formulationof (A.4). - ‘ :

We consider one iteration of Method 2. For simplicity, we use the notation
X=1xx, A=A, p = A=A(2) and C = C(z). In a Newton #eration for solving

(A.4), we'shoqld use the Jacobian
. -

. . Z A E _~F
) JEA
{00..00 11..1 00..00
. . . RxAp =
S . ‘ C G 0 0 -
- . . J
+ - * . to. S ‘ A
R CLF L e, o | . |

where E has the columns '(x), j € A, F has tht columns a, i€C, and G.has th . -

co_lumns fi, (x)-£;(x), j € A\(jo}. Only the upper left hand bloc¢k involves more t J
- ‘ A : - . M

Ay



first derivatives. In Method 2, this block is ubproximated by an'updating formula .+

whereas the exact values are used in the other block3 of R".

- The Lagrangian function corresponding to (3.9) is

so the upper left hand block of (A.6) is Ly;"(x, A,p) since A\ =

Lx Ap) = D Af -

j=1

4

2 “i[“iT’ “?il'
i=1

Oforj € A.

’

(AT

-
This block is approximated by the BFGS formula with the modxﬁcat:ons of.

-

Powell (1978) that keep the approximation positive deﬁnite. Thus the matrix Jy of

(A.5)is . .
B, E -F |
00..00 11...1 Qﬂ...OD
J, ' . s
' , GT 0 0 |
L .F 0 o J*®
where By is updated through _ ° ' '
T T T
B, ,,= Bk - B, s8s B /Is'B, sl+yy I[aTyl v
with ’
S = Xk+1-X v
-

An 1teratxon of Method 2is now given by (A.8), (A. 5) and (A 9) with g

-

y =Ly, AR -

Rix, A, p) =-

-

L(xAp)

x(!u A, F)T o 7

> A1

f —

(A9).

(A.10)

where e has the components fj (x) - fi(x), j € A\(jo} and £ has the components a;T¥+ by,

i€C.
/

-
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The Combined.Method

e “ The combined method is the algorithm which we use in this thesis.

BN L,
Initially, Method 1 is used.and the active sets used in (A.4) are egtimated. When a

singular local minimum seems to be appr’onéhed a switch to Méthod 2 is made. If the
' Method 2 iteration is unsuccessful Method 1 is used again. Several switches between

the two methods may take place. When Method 1 is used w& say that the iteration is

in Stage 1, otherwise it is in Stage 2.-A detailed description of the twostages follows.

The Stage 1 Iteration !

P

We have a point xy, a local bound Ay and a matrix J which should

approximate the Jacobian of (A.4).

1. ET and Ay . are found usihg Method 1, and ‘approximations Ag+ and
et
Cy+1 of the active sets at xi 4 are found via the active sets at the solution

hy of the linear modg] problem (A.1).

Atk+1rpik+1) of the multipliers; is found through a least
squares sol ‘;1 n of (A.4) with (x4 1,Ak+1,Ck+1) inserted for (z,A(z).C(z)_')..q-
This estimate is u r {inding a new Jacobian estimate Jg41.by the'
BFGS update.
3: A switch to Stage 2 is made if the following two conditions hold:
(a) ‘I“he active set estimates have been constant over v consecutive

different Stage 1 iterates.

{b) The components of Atk + 1) and ptk+1) are nonnegative.

The Stage 2 [teration

Xi Ak, Jx and active set estimates Ay,Cy are given.



/for (A(z), C(z)).

177 .
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»

» Find (xy 4 1, Ak + 8 pek+10) and Jy 4 using Method 2 with (A, Cy) inserted

Bt

Let Ak+l=Akp’Ck+l'=C.k and Ag 41 = Ay

Switch to Stage 1 if one of the following conditions hold:-'

(a) A fu.nction or constr;aint outside of Ay 41 or Cy, +1 is active at Xk +1.
(b) A cbmponent ofA";*'Uor pk+Uis negatiye. _
(© IR (xs Ak D ks D) > 0,999 | Roxy Ao putio | (see (A.5) for the
definition of R). . . |

This completes the deséription of the combined method.

It has been shown (Piald and Madsen 1981) that the combined method can

only converge to stationary points and that the final rate of cofwergence is quadratic

on regular. prol;lems and superlinear on singular problems (provided that the

Jacobian of (A.4).is regular). o _ -

v
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APPENDIX B

CUBIC INTERPOLATION FORMU LA

As a well-known fact, 2 maximum of a continuous dxﬂ'erentxable function

elw) is chamctenzed by e’ £ 3e/dw = 0 and 3%e/dw? < 0. Thisnmphes a chafige in the

sign (ﬁ%} and, in the neighbourhood of the maximum, de/dw decreases as frequency
inéreases. [t follows that if there exist two points wy < w2 such that
e >0 and e <0
“1 Y2

at least one maximum of e () lies between w) and w2, If @y and wq dre close enmigh to

Sy

exclude the existence of multiple maxima; the location of the detected maximurg{an

be estimated by the cubic interpolation formula (Fletcher and Powell 1963)

(mz-ml)[ Xx—y -e;} ‘

-and

T — 2 ' (B.1)
e —e +2x
bt S
where ’
‘e(m ) — elw,)
' . 2
y= _ew.) —_— em + 3 ! (B.2)
1 2 . (.\:I2 - (.01_
. R T .

. ._ ‘= [f_e e l | . B

'_. (‘)1 "’2 ‘ .
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APPENDIX C

" DESCRIPTION OF THE HALD AND MADSEN ¢, ALGORITHM

Method 1 and Method 2. We first des‘cribe the two basic methods and next the

-

combined method, including switching rules.

Method 1
This is a method providiﬁg global 'converggnce._‘At the kth step a feasible

approximation xy to a sol}i?.ion of (4.1 and a local bound Ay are given. In order to find

-

-

a better estimate the following linearized problem isEolved:
. .

mu;:rmze F(‘k h & E|f(x)+f(x) h|’
S i=

subject to _ ) _ ' .
HhL < A.k' . . ‘ . : {C.1)
a’(x. + h) + b Zo, i=1,..¢

ik i X ¥ LI}

T(x+h)+b Z0, i=(, +1) L€,

The solutlon of (C.1), hk, may be found by a standard lmear%rogrammmg roiitine.

]‘"e:ﬂowever an 1mplementat:on of the algonthm of Bartels, Conn and Sinclair (1978) is

us ed‘(hlc}xs more efﬁc1ent N otlce that {x+hy)is feasxble
o The next iterate is (xk-i- hg) prov:ded that t.h:s point i3 better than x| in the

sense of F, i.e. ifF(xk+h|,) < F('xk) Otherwise Xyp+] = Xg.

- " |

The Iocal bound Ak is adjusted in every iteration based ofi comparison

between’ the decrease in the nonlmear objectwe functxon and the decrease predicted .

Al

T 119

' We now give a detailed description of the method which is a dombination of

L
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. by the model F. [fthe ratio between the two is small,

Fx,) - F(x,+ h) s 0.25F (x,0) = F (x,, b, )], (C.2)
then the bound is decreased: Ag+1 = Ay/4. Otherwise, if © *
. F(x,) - Flx, + h))= 0.75(F (x,,0) - F (x,., L) (C.3

" then Ak +1 = 2 Ag. Ifneither (C.2) nor (C.3) holtd then we leave the bound unchanged,

Ag+1 = A
Experiments have shown that the method is rather insengitive to small
changes in the constants used in this updating procedure of the local bound. Notice

that if the new point (xy + hy) is not accepted then the bound is decreased. *

Method 2

This is a local method. It is assumed that a point near a solution x* is

known and that the set of zero furictions L ' '

Zix*) £ { jlfxm =0} (C.49
and the set of gctive constraints,
Ax*?) & (ila'x* +b =0} - (C.5)

are known.

Method 2 is an a'ﬁproximate Newton method for solving the nonlinear

¥

system (C.9) (in the variables (x, 8, p)). Exactl fimﬁep'ﬁatives hfg used but the

\
matrix - : 7 ‘ . . 4
| ’ S L R -
g+ D 8 fx* - ’
. €z - ’
s approximated using'é molified BFGS update. In this way an approximate Jacobian

s

. dkis obtained at the estimatd (x, 8%, wk) of the solution of (C.9). THe next estimate
. L Y Pt
o isi,obt.ginéd by ; . |

~
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Axk | - -
K _ (k)
Jk A&‘ ' - —Il(xk!a ll'l-' )' i (C.6)
" A_pm

(ka.ﬁ'H“.p(““) _ (x‘k,ﬁm,p'k')+(Axk,A6m,Ap‘k')

. .,
where R is defined by (C.10}. Notice that no line search is involved.
\

The Combined Method

The combined method is the algorithm which is used in this thesis. Method
1 is intended to providé the giobal convergence and Method 2 is used to obtain fast

local convergence. p

< [ ]
[nitially, Method 1 is used and the sets (C.4) ax;d.(C.S) are estimated. When

a local minimum seems to be approached a switch to Method 2 is made. If the Method
2 iteration is unsuccessful then.Method 1 is used again. Several swm:hes between the
two methods may take place. When Method 1 is used we say that the iteration is in

Stage 1, otherwise it is'in Stage 2. ‘A detailed description of the two stages follows.

. . ' N
] The-Stage 1 Iteration _ ' -

We have a point x, a local bound Ay and a matrix which should

-

apfroximate the Jacobian of (C.9).

1. x,+1 and Ag+y are found using Method 1, and approximations Zy +1 and

-

A+ of the sets (C.4) and (C.5) are founc'l':via the zero and active sets at the

solution hy of the linear model problem (C.1).

2. ‘ An estlmate (BUH'U ptk+1) of the multipliers is found through a least

[

squares solutmn of (C.9) with (Xg+1, Zx+1, Ak+1) inserted for (x, Z(x),
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§

A(x)). This estimate is used for finding a new Jacobian estimate Jy 41 by
the-BFGS method as described later in this appendix,

3. | ~A switch to Stage 2 is made if the following two conditions hold

-

© (a) The estimates Zy,; and Ag+) have been constant OVU

consecutive different Stage 1 it.esag:j.(y 3 3):
|

(b) The multiplier estimates are in the cori:ect ranges,
l 8( k+ 1) I <1
i ' . .
11;k+ 1t =0.

The Stage 2 [teration

3

fp. We have an est.xmat.e (xy, 8k ptk)), estimates Zk and Ay of (C. 4) and (C.5),

and a matrix Jy whxch should approx:mat.e the J acobmn of (C.9).

1. Find (xg 41, 8%+, ptk+1) and oJy 4 using Method 2 with (ZR,A i«#;serted
- for (Z(x*), A(x*)). f;

2. LetAgs: = Ax Zewes = Zxand Age; = Ax.

3. " Switch to Stage ] if one of the following conditions holds:

{a) A function fi with j € Zy has changed sign, or a constraint

»
. corresponding to an index i with i ¢ Ay has become violated.

(b) A component of 8+ orof p““' bjg outs:de its range:

Jﬁtk+lll >1,

or
i p;k+ll <0.

-
(c) . “R{xk+lp6‘k+l)|ptk+l‘l> 0‘999m(xk'6(k).p(k)m

This completes the description of the combined method.

ah
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It has been shown by Hald and Madsen (1985), that the method has safe
global convergence properties: it can only converge- to stationary points. -
Furthermore, the final rate of convergence is a} least superlinear, i.e.,

Ixk+1-x*] < efixe - x*f, ’ (C.7)
]

where cy — 0 for k — .

Necessary Conditions for a Solution ) . !

- At a solution x* of the linearly constrained €, problem (4.1) the functions

which are zero play a.special role since they contribute to the kinks of F." The

\s

functions which jre non-zero at x* give smooth contributions to F since | f}(x) | is

smooth near x* when f{x*} = 0. Therefore we pajcition F into a smooth and a non-

#mooth part, LT =~
' - F = Y I+ Y |5

.- iz T jez

=g+ Y £ (C8)
j€Z

where Z = Z(x*) is defined by (C.4) and g = gx+ is smooth in a neighbourhood of x*

g

It is easily shown (see for instance Charalambous 1979) that the following

set of equafions hol_dbt the local minimum x = x* *
. ’ [
g'x) + z ij}.(x) - Z pa =0,
J€Z i€A
) ) (C.9)
fxy =0, . . jeZ, ,
ax+ l':i =40, i€ A, i

where | §;] = 1,4; 2 0,2 = Z(x*) and A = A(x*) are defined by (9.4) and (C.5), and .

gm = D If} .
i€z
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e

This set of_ equations corresponds to the Kuhn-Tucker conditions for the
nonlinear programming probgm whiph is equivalent to (4.1). The unknowns are x, §;
. ]
and y;, and it is see;n that the number of unknowns equals the number of equations. If
we use a vector notation (C.9) can be expressed ds follows,
R(x, 8,0 =0. “ (C.10)
e
Updating the Matrices Jx

The Jacobian of the noniinear system (C9Yis . .

- — ' "_ 1
g+ 2 §f0 E F
i€z . - [
/A/-l’{'(\x'}b.p) = (C.11)
— N ET 0o o
—~FF 0o o0

where E and Fare mau;.ice;t with eolum‘ns" f;'(x), j€ Z,.and -a;, iGA, :espectively. -

[n Method 2 we need to find an ee:timate Jk+1‘_;.0 R'(xk+1, §tk+11 ptk+1)),
This .is done as follows. At the iterate x, estimates Zy and Ay réplace Z and A. The,
submatrices E and F are caiculat.ed exactly using f;'(xy), j€Zy, and -&;, i€ Ag. |

' Only the uppe'r‘l;t&hand side part of R’, needs to be appro::imnt,ed. This is

done via a medification of the BFGS method, due to Powell (1978). The modification is
necessary because the upper left hand side of R’ is not necessarily positive
.semit—ieﬁnite at;a s_olut.ipn of (4.1). However, it is more stablg and not less efficient to
keep the approximation positive definite. The updating procedure becomes

B, =B~ B, s, 5 B, /18, B8, + %zzflf{zk’f |
with ’
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zk=ayk+(1-e)3ksk, ; 0<B=s1

- xC.IZ)
yk = G(xk + hk , Bikl , (k)) - G(Xk , Bik) , p(k,) ]

G 8 .w =g+ o 8,
]GZk

where 8 is defined such t.hat skﬁ> 0 which implies that positive deﬁmteness is

mamt.amed Notice t.hat when @ is close enough to 0 this inequality will hold provided

.
By is positive definite. Normally, however, 8 can be chosen to be 1. Powell's formula
for calculating Ois
. T
1 \ fs y = 0.2t
g = [ ' . ' (C.13)
08¢, l{t -8 ykl otherwise . *

with tx = SgTBksk We have found however that Powell's updatmg *procedure
becomes unstable when 8 is too close to 0 and therefore we have megified (C.13). Ife

found by (C.13) becomes less than 0.5 then we use 8 = 0. This implies that when

e
e

-

This completes the descnptlon of the Jacobian approxxmatmn proceJure

(C.13) glvesB < 0.5 then By 4+ = By

~_
\
|
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Cubic interpolation, 40, 43, 178
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Security constraints, 124, 125

Singular,
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-
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vector, 7
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Vertex, 8
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