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ABSTRACT

This thesis concerns itself with computer-aided techniques for design

centering, tolerancing and tuning. fault location and model parameter identification

.'from measurements. ,
Since many of the engineerin'g system problenls discussed in this thesis are

formulated as 'optimizatio~ problems we examine algorithms and techniques fo:

nonlinear optimization. Our ~ttention is focused on minimax and el algorithms since

many formulations of engineering system problems exploit the characteristic features

of these two norms.
c

A novel approach for .worst-case network design is proposed and an

algorithm for the fixed tolerance problem embodying worst-case search and selection ,.

of sample points is presented.

, •

The features of the t t norm in the tuning problem- are discussed in detail

and explained using necessary conditions for optimality of the nonlinear t t problem

with nonlinear ~nstraints. Regular and singular t 1 problems ar,e defined and a

criteri,on for determinin~ a sin~larity present in (h~ t I problem i~ form.ulated.

. New formulations USlI\g the tt norm a~ gIVen for fault Isolation and model

parameter identification in analog circuits.

Practical engineering problems have been solved illustrating the wide

applicability of the concep~usedand the robustness of the algorithms employed:

A new~orithm for minimizing the" ~ari:lina;ity of a set s~bject to

. nonlinear, nondifferentiable constrai~ts is prerted and illustrat~.~y solving the

best mechanical alignment problem. The load shedding and generation rescheduling

problem in power systems is formulated using the et norm. The formulation is tested

iii
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on 6-bus and 26-bus power systems, A general microwave multiplexer design

procedure exploiting exact network sensitivities is int~oduced and illustrated by

_designing 5-channel, II GH.z and 12-channel, 12 GHz multiplexers,
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1
INTRODUCTION

",

,

The increasing size and complexity of physical man-made engineering

systems necessitate the use of computers in all aspects of the design, production and- ,
... maintenance processes. A corresponding need has developed for efficient and

•
powerful computer-aided techniques for thorough study and optimal realization of the

above mentioned processes.

Computer-aided design (CAD) techniques are now well established for

design centering, tolerance optimization, yield maximization, cost minimization an!!

the rapidly increllSing range of applications includes eleCtronic circuits, power,
systems, microwave systems and mechanical systems.

.~

Computer-aided design is often treated together with computer-aided

manufacturing (CAM). We are not including CAM in this thesis, since CAM ~tarts

from data, preferably machine-readable data, that is produced in the desi~process,

but CAM is not part of the design proceSl> itself.

Computer-aided testing (CAT) techniques, which originated from the area
,,

of digital circuits, are primarily associated for jlnalog circuits' with the problems of

fault lOcation, model parameter identification from measurements and postproduction

. tuning.

Re~ently, the term computer-aided engineeri~ (CAE) has been used m?st

frequently for turnkey software and hardware systems for electronic systems and

component design. It has also been used in a more general sense to include a broad set

ofsystem analysis tools applicable in many engineering disciplines.

1

'.



, 2

:'IIost of the discussion in this thesis focuses on computer-aided engineering

system prqplem solving, in which key elements are formulations of the problems,

algorithms for solving the problems and software implementing, the methods

proposed.

Many of the subproblems associated with overall problems in different

engineering disciplines are similar to each other. This motivates us to' utilize a

concePtu~mework developed over th<;. past ten yc'~rs for design centering,
. ,......

tolerancing and tuning (DCTT) and for fault analysis, postproduction tuning and

model parameter identific~tion from measurements. Our aim is to provide a set of

methods and techniques for solving·these problems which employ recent optimization

algorithms with the emphasis 0':1 nonlinear minimax and eI algorithms. Our

attention is focused on minimax and eI algorithms since many formulations of

engineering system prob'lems exploit the characteristic features of these two norms.

We do not presume to be able to solve all problems' associated with any

overall engineering system. Applications of the methods and techniques proposed

will be immediately apparent in many cases. Often it will also occur that familiarity

with the concepts and techniques will clarify cerlll.in problem aspects which have been

obscured or unrecognized. . "

In Chapter 2 previous work'in the area ofdesign centering, tolerancing and

tuning is reviewed.' We consider the relevant fundamental conce~ and definitions

commonly used in the DCTT literature. Th'ree' general formulations of the optimal

DCTT problem are given and ,some important special cases are described in more

detail. We provide also an adequate state-of-the-art review of algorithms for DCTT

problems.



.'

3

j

Chapter 3 deals with the use of minimax optimization techniques in,
computer-aided engineering. A critical review of the existing minimax algorithms iJ; /

given together with a comparisoQ of minimax' algorithms using the classical three-

section transmission-line transformer (Bandler and Macdonald 1969a). The Hald and
}

~adsen algorithm (Hald and Madsen 1981) is treated in some detail and its

performance is demonstrated on regular and singular problems. A detailed

description of the algorithm is give.n in Appendix A. A nevel approach to worst-case

network design is proposed and an algorithm for the fixed tolerance problem

embodying worst-case search and selection ofsample points is presented.

'Ch:pter 4 covers the use of et optimization techniques in computer-aided _, .

engineering.. Previous work in the area of nonlinear et optimization is briefly

reviewed. The Hald ahd Madsen algorithm (Hald and Madsen 1985) for nonlinear et

optimization is presented in !Wme detail in AppendixC. The features of the el norm

in the tl1!1ing problem are discussed in. detail and' explained using ne~essary

conditions for optimality of the nonlinear et preblem with· nonlinear constraints.

<Regular and singular et pro.blems are defined and a criterion for determining a

singularity present in the et problem is formulated. New formulations using the el. '.'.. .
norm are given for fault isolation and. model parameter identification in analog

circuits.

The next three chapters, Chapter 5, 6 and 7, contain major applications of

the concbpts and methods desc~ibed earlier.. In each case, a difficult engineering

problem has been solved ilIustr~ting the wide applicability of the methods proposed

and the ro~ustnessof the algorithms used~

Chapter 5 describes a minimax approach to the best mechanical alignment

~. problem. A new algorithm for minimizing the cardinality ofa set subject to nonlinear,

"
I
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