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ABSTRACT

This thesis addresses itself to the compﬁter-‘aided design and modeiling of

microwave circuits using efficient minimax and € optimization techniques.

Recent algorithms for nonlinear minimax.and €; optimization are

- . .
reviewed. The features of the £; norm; its theoretical properties and the necessary

- . . 5
conditions for optimality are discussed,

-.

A comparative e;amplé with 5 optimizatien illustrates the rqbuétness of £,

for the part:cular appllcatlons of this thesis; Efﬁcient gradient apprbximation

techmques applxcable to both minimax and 4] opumlzauon are presented. - /
.

LU

networks, cascaded and branched cascaded st@ictures is introduced. The objective is
. N . O . . ! L]

to ‘calculate the sensitivities efficiently, without appealing to the adjoint network -

concept: A novel proof of a recent result in sensitivity analysis of lossless and

_ reciﬁrocal two-ports’is presented. -

Design of manifold‘ type waveghide'multipfe)gers has been considered as a °

major apphcatwn for both minimax optlmxzatlon and the iheoreuc*l work in

branched cascaded network sens;tlwty analysm Compeonents of the multiplexer -

.- - - .
structure 'and nonideal effects such as'dissipation and dispersion are discussed and a

step-by-step 'i'mplernentati'on of an algorithm to calculate ‘particular responses and

: % ~ o .
'sensitivities 15 presented. Examples of-the design of 3-, 12- and 16-channel, 12 GHz -

\
multzple'(ers 1llustrate the practlcahty of the approach present’ed

A new approach to- modelhng of microwave devices wh:ch explmts t.hc

theoretical pr_opertles of the £} norm is presented. The-concept of multi-circuit

i

A simplified .and stralghtforward treatment of sensm\rltxes for two-port

<3
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4 - ) .
measurements i8 introduced and its-merits in obtaining unique and self-consistent

Fl

pargmeters are discussed. The technique is applied tq modelling of multi-coupled
. + .

cavity filters and GaAs FET's. The application of effitient modelling tecﬁniques in

developing algorithrhs for postprdduction tuning and ir[ establishing the relationship’

. / :
between physical parameters of a device and its equiyalent circuit model parameters,

{ : .

is discussed.
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INTRODUCTION | a ~

Over the past 20 years, computer-aided design (CAD) techniques have

developed into an'int_egral part of methods used for solvihg most Engineerihg

problems. In the past decade, the astonishing cost reduction.in computer cofponents

and the availability of p'ersonal computers has ge-nerated further enthusinsm to use

efﬁcxenb and powerful CAD techniques. The use- o[‘ highly mternctwe ‘software

- systems and the capabxlxty of high resolutlon graphma] dlsplays has changed the

image of' CAD techniques from a toplc un_derstandable only by specm[xsts to a

- ﬁowerful tool serving every practicing engineer.’

Design of microwave filters using optimization methods is one of the

earliest applications for CAD 'techniques in electrical engineering. ‘In recent Years,

software systems for modelling and design of microwave circuits have been developed . '
which are capable of handling most commonly used microwave devices. The applica-

tion of such general purpose. software $ystems to design problems requiring multiple_

objectives of cost raductmn desxgn centermg, tolerance opum:zatxan and post.-

producr,lon tuning, and ;{wdellmg problems thh complex and uncertain, CII‘CUIt

&
-

equwalent topologies, necessnates the use of state- of-the art ophm:zatlon techmques

, Unfortunately, while h:ghly eﬁ'lcxent optnmzatmn algonthms have been developed in

f
the last decade, the algorithms dsed in most microwave software _systems age the ones

described by mathematicians 10-15 years ago. There are two major factors

contributing tosuch a sizeable gap.

3

L]

‘,\

a4 -
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. . Pl . R . -t
‘ “"‘ . . . .. ' - . N - )
o 2 algorithms, whose characteristic features can be exploited in many engineering

. . R 43 ' I ) .
P . problems and have been, the subject of most recent advancements in optimization

technjques, is generally Eombli@eted. This has led',l for instance, to.tqhe use of the more

I . s

-+ ., straightforward leastusquares 'optimiz_at.io‘n with the limitation on linearity of .

9 ' . ] - o > .

consfmintsr*in most microwave sof'tware systems. I-t should be’ mentioned that a
l!

- . T e b

o . nonlingar prbgrammmg‘ problem with nonlmear constramts can be easxly formulated

dsa minitiax pl:oblem. : - -
. - LY . ) . . - R ) o

e The second factor which has helped the use of rather old non-gradient

o optimization techniques (e.g., the fendom‘ optimization in SUPER-COMPACT 1986

£

R

3

fa-ag

lmposeible in some microwave problems‘ On the other hend usmg numerical
different.iatmns to ést:mate the gradxents"a‘t every 1tel;at10n of an optimization
procedure becomes prohibltwely expenswe when attemptmg to.solve large problems )

.

This’ thes:s addresses itself to modellmg ‘and desrgn of microwave ClI‘CUItS

using-recent_mmimax and £ opt_imization techniques. A major part of the thesie_,is

» . B -

concerned with a :nmpllﬁed treatment of sensitivity analyms apphcable to’ generel.

.\-

two -ports, cascaded and branched-cascaded structures quently encountered in b,

microwave aree. The sensitivities are dxrectly used 1n conjunetion with powerful =

minimax and £, algorithms whieh will be descrlbed m ‘some detail We do not

presume to be able to calculate. exact senmt:v:tles for all microwave structuree

-~

1 Therefore efficient gradient appronmation techmques w:ll be described which enable

s The first factor is that the impleméntation‘of:n'onlinear minimax and £, -

- and TOUGHSTONE 1985) to continue, is the difficulties related to sensitivity .
analysis of many microwave'circuits as required by,‘the advanced'éradient-based '

optimizntion‘ methods Derwmg explmt sens:twuy expressmns lS difﬁcult or




Tl

" y5 to use minimax and €; algorithms in problems in which exact gradient evaluation

~ is not feasible.

c

, The concepts described in design and medelling are applied to microwave

- .
T

' 'devices such as multi-coupled cavity ﬁltere, waveguide manifold type multiplexers

s

, and GaAs FET's.. These ‘devices are all of current sig'niﬁcant: interest to researchers

: and engmeers due to their eppllcatxon in setelhte commumcatxon s_v, stems.

computer axded des:gn Problem formulatxons for both typés of optxmmatmns are

' Chapter 2 deals w1th the use of minimax and £ opt:mxzatmn techmqheb in

: gwen The e:ustmg minimax algorxthms are rev1ewed briefly and the Hald and

RS

. Madsen ulgorlthm {Hald and Vla.dsen 1981) 18 descnbed For nonlmear 81

optlmmatmn the Hald and Madsen algorlthm (Hald and Madsen 1985) 1. 1S revtewed

-and the faatures of the £) norm are e'tplmned usmg necessary condmons for

-

ontlmaltty F‘or problems in which exact gradlent evaluatmn is not, feamble a recent. -

B method l'or efficient gradlent -approximations, ‘as apphed to both minimax and 8.

'opttmlzauons is'described. - - B R

’ _In_Chapter 3_, simple algebraic apbroacﬁes are presented which reduce the

. - . . Y

" networks deecribed by their nodal admittance matrices to equivalent unterminnted

- two pcrts w:th sm:ultaneous sensitivity analysis.. The ong‘mahty of the epprdach I1es

in the fact that there is’ no need to appeal to the adjomt network concept Second- order

-

sen51t1v1t1es ahd computatmnal effort are dlscussed The ongmal idea by Bandler

e R1zk and Abdel-\rlalek (1978) in efficxent s;mulanon and senmthty analysm of

ca;;caded networks 15 extended to the branched cascaded structureﬂ with arbitrary

Junctwns. The 1nd1v1dual c‘omponents.of the structuré, apart from the-three-port

PRNETS

"junctions, are two-ports whlch may have been deduced by the reductlon of comphcated

networks usmg the a.forementloned algebraxc approaches A new proof for a recent ,

&

e



result in sensitivity anaiysis of logsless reciprocal two-ports is presented and a new

and interesting result in sensitivity evaluation of branched cascaded netwerks is

derived. L
Chapter 4 covers the design of multiplexing networks using the minimax

optimization in detail. This is one of the largest nonlinear optimization problems ever”

demonstrated in microwave circuit design. Models for individual components of the

-
»

multiplexer with nonideal effects such as dissipation, dxspersmn and junction
'sdsceptances are presented The branched cascaded sens1t1v1ty analys;s is eﬂ'ectwely
‘used and 3-, 12- and 16—cha_nnel multiplexers are designed in-reasonable
_computational times. ’ . o v

[n Chapter 5, microwave device modelling tet_:hniques a.re considered. The
:dxi_sting techniqua__é in typical cofnmgrcially available software systems as well as
more advanced techniques in modélling are reviewed. A new ‘forn‘mlation for
modélling uging the concep.t of Tmulti-ci‘rcuit‘,-mgasgrdments: is presented. "We discuss '
the.merits of this technique in lobtainin.g unique. dnd self-consistent models. ;'["he
| technique is gpplidd to modélling-nf multi-coupled cavity filters a‘nd GaAs FET's. The .
a;.i'plic;at_ion of_éfﬁéient.ﬁlodelling techniques.in developi:ng-algorithms for post-
pr_od'uctlion tuning is briefly discussed. : \

ko '
-

We conclude in Chapter 6 with some suggestmns for further research.
. - The’ author contnbutea“ substant:ally to the i’ollowmg original
deveiopménts presepted in .this thepi's: : ' _ .
(0N S An integrated t-reafr'nent of ‘senditivities for two-po.rts,'cascaded and
branched cascaded structures using simple algebraic approaches

(2 :A new proof‘ of a result in. sensitivity analysns of recxprocal lossless

two-ports. : ) , ~



(3)
(4)

(5) "

(6)

A new result in sensitivity analysis of branched cascaded networks.

" Application of the theoretical results for branched cascaded network

simulation and sensitivity analysis to the design of manifold type
multiplexers using efficient minimax optimization, and an implementation

with realistic and nonideal effects included.

]

Efesenta;ion of a new formulation for modelling which exploits

multi-circuit measurements with a discussion of its implementation.

Establishing the relationship between physical and model parameters of a

multi-coupled cavity filter using efficient modelling.



2 R . | ) /
' MINIMAX AND ¢, OPTIMIZATION TECHNIQUES - NEW ADVANCES

e

RCTH IN’I;Ra.DUCTION
| T A wide -clas"s of microwave circuit and system design- _problems can be

_ fo'i"rh'ulated as minimax oefimization probleres. Ther'efore, efﬁcie{ht m.inimax

._‘algor:it.hu‘;s ha_ve been ef great iﬁt rest to microwave engineers and researchers for the. .
past 20 years. On the other h%fx optimization has just begun to gain populanty in

the mlcrowave area and it is the author's belief that the formulauon of the modellmg

: pt:oblem‘ﬁsijng the €1 norm marks one of the ﬁrst attempts to solve a well-known and

w:de.-ly eecoe‘dtered microwave problem with this type of optimization. Unique

;_p;'o;‘)ler'léi'es of- 8 [ 'optimi-zation and the modelling .techniqee which utilizes such -
.pr.ei)'ei'tiee are di'scussed in this thesis. |

+

In the context of 1ntegratedlc1rcu1t desngn Brayton, Hachtel and

|"SanQQVenn1 Vmcentelh (1981) have surveyed the advances in the multiple objective

_ .opnmazatmn techmques up to 1981 '\deny of the techmques rev1ewed are also used m-
'-'.‘.tl;e-mmrowave \é;ea In the past few years, mainly due to t:he work of Hald and

-. ‘Vladsen (1981 1985) at t.he Technical Umversxty of Denmark highly efﬁclent_,
:uummax and Cl optxm:zatmn e]gor:thms have been developed Very recently,

‘ apphcat:ions of these new met_hods to solv‘e general engineering p_r_o_b_lems and

partifui&rly problems in’ ‘t.he'l‘nierow"ave area havle 'beeh discﬁssed (Baridler,
_ Kellermann and Madsen 1985a, 1985b; Kellermann 1986),

.



In this chapter,' the-existi_ng minimax and €; optimization techniques are

" briefly revmwed In both cases, we conclude the dlscusmon by desecribing the efficient

algonthms of Hald and Madsen
For the f 1 problem, the necessafy conditions for optimality and the role of
zero-valued functions are discussed in detail due to their significance in the-modelling”

t,echmque which utilizes them. ‘Also, an €, apptonmanon example is presented for

direct comparisen mth the least squares (82) approximation. '

To extend the practical appl:cahons for gradxent-based minimax and &

) optimiiations, efficient gradient approximations are described. Such approximations

become exfremely_useful for problems in which exact gradient evaluation is not

feasible.

2.2 MINIMAX OPTIMIZATION TECHNIQUES

- From its early applications in the design of microwave filters with

Chebyshev.type responses, minimax optimization has been used extensively in many

" circuit design problems. "Most commonly, the minimax functions result from lower

and/or upper specifications on a performance function of interest. In this section,
formulht;iog of minimax optimization problems and minimax algorithms are

reviewed.

221 - DésignS}I)eciﬁcationss' and Error Funct.ions | ) -

In a general des:gn problem there are A response functions Fl(¢, wl),
F2((b 1p2) . FMd, yd) that have to meet given specifications. ¢ represents the
network ;.:araniéters and i, j =:1,2, ...,A is an indépendent parameter Such as

freduency, time, temperature, etc. (Bandler and Rizk 1979). As an example, a filter



-

can be designed to meet desired specifications in both the frequency and time domain
ag illustrated in Fig. 2.1 (Rizk, 19‘79). The performance specifications are usually
functions of the independeﬁ't_: parameter only. They are denoted by Si(g!),

- S2(y2),...,SMyh). The cggrés'.;;ondihg error functions are given by,
@, oh = Wih Fltg, o - Fhy, =120, @

wh’&e wi is a positive Weighting function. I_t is necessary in practice, to consider a

discrete set of sar;xples for each i, S\‘:ch tha.t satisfying the specifications at these

“'sample points implies se;tisfying themn alrr_mst ev‘grywhere. Thus, for the discrete case,
taking H as the index séf. for the jth fﬁncti.cvns, | ‘

@) 2@, o) = wi(Fl) -8, i€l (2.20)

is the error function evaluated at the ith sample point for th;a independent variable wi.

*  Notice the following notation:

in 4 wJ(q,Ji)' (2.2b)
. o . :
P2 Fg,e) (2.2¢)
and T
Sj' A S}(qﬂ) ) - C (2.2d)

In typlcal microwave design problems we have only one mdependent
vanable, namely, fraquency Therefore, superscript j is dropped and w is used in place
of w in the following formulatmns Considering upper and lower specifications, the
érror functions will be of the form

o @12 e @ w)=w F@-S), i€l i (2.3a)

J

‘and © | - , )
' 4 = \ ; : 2.3b

- 8, (D) = e (b, w) = w,(F(d) - 5,) . i€l,, ( 3b)

where aubs_cripts u and £ refer to thé upper and lower specifications, respectively. I,

and I are not necessarily disjbint. Let



. Fig.-2.1-

0 ~y'=w
. |  (a) ] '
Fé’sz
0
F2($,¥%) :
A )
/N a0
- 47/ \ia(npa) |
‘ 0 . - ] s N .__lpz..’
B

An ekample of rriultiple objectives in filter design, (a) the insertion loss

specification in the frequency domain of a lowpass filter, (b) an impulse
- response- specificat

1 1979).

ion in the time domain of the lowpass filter (Rizk
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j€l
(2 Cyj ! 1€l 3 : {2.4)
i_ r c r
_?ﬂ" kel
where
‘1 Aa2.nf R
L &2.ny, | @8
A . o L
1,={12..n,}, o - {28)
N L2 02,5m @0
and m = n,+ne. The m functions )
f_[f f... £ )7 . | _, e

.-n m
charactenze the circuit performance whlch is momtored durmg the ()_Etlmlzatzon

»

procéss. If we let _
A s . I . . - '.
M (@) = max [(P), | @9 ‘. ‘
. *Ic | )
then the sign of Mrindicates whether the specifications are satisfied or violated.
2.22  Formulation of the Minimax Optimization Problem
The mathematical formulation of the linearly constrained minimax
problem, which is applicable to c‘lesign'broblems' addressed in this ﬁhésis, is th.e'.'
. . . . ’ St

following. Let -

e f(x)-—-f(x x ....x), i=1,2,..m

12
* be a set of m nonlinear, contmuously differentiable funqtlons The vector
- __. T :
’ sr X2 {xl x2 ?cn] 7 7
is the set of n parameters to be optimized. : B - o
. RN el . L
We consider the optimization problem
NI A ; <, . ,
muum;ze F(x) 2 max fj(x) . £ (2.10a) -
! J

subject to ™~
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T

ax+b =0, @ i=12..¢ , ' " (2.10b)
i i eq
T . . p 7.
a x+ bi‘E o, : J:-—(quﬁ- n,..t, (2.10c)
where a;and b, i = 1,2, ... ,¢, are constants.
2.‘_2.’3, Nonlinear Programming Using Minimax Optimization aa

In problems such as tolerance optimization and tuning where usually a cost
fuhctibn is 'to-be minimized, the speciﬁcations on circuit responses are handlqd' by
nonlinear constraints. A,n el'ﬁcxent and robust minimax algorithm, in addition to its

apphcatmn in desugns which are dxrectly formulated as minimax problems can be -

T used in general nonlmear programmmg The transformatmn of a general nonlinear
N L

‘.programmmg problem to xmmmax optlmlzat.xon often results ina smgular mmxrnax

-

problem (deﬁned in Sect1on2 2.4) for which only minimax algonthms using
' second order mformansn are efﬁctent The minimax algonthms will be descnbed in
more detail in the next sectmn. Here, the fransformatmn is presented.

Consider the problen_m R .
minimize U@ . - el

4

, Subject to | |

‘/ ' ' . \ L . PR

" g@=20, i=12,..¢, : | (@11b)
o St - L

where U and g;, 1 = 1,2,.. . £, are nonlinear functions of x. Charalambous (1973) and '

) Bandler and Char.aldmbous (1974) suggested the transformation of (2.11) to an
. S .‘:_ ' '. ‘ . ' .
: equiva1ent unconstrainéd minimax problem, namely,

" minimize M(x, u) = max {U(x), U(x)-u g(x)] i=1,2, ¢ (2,123) :
| -

where

a>0 i=12,....L . . (2120
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o Any aesign problem which is naturally formulated as a‘\no_nlin_eai-
.programming problem is transformed to the minimax problem via (2.12} and then

golved using minimax optimization algorithms.

224 Review of Minimax Algorithms

Linear Programming Methods

L 5% -

Methods of solving the minimax problem via linear programming

teqhnfques have been considered by many researchers over the past fifteen years.

Here the method suggeste-d by Mgdsen et al. (1975) is presented. At the kth stage of

the method,‘let xi be the current best peint. Each funct@on fi(x) is lingarized at x. Let
afj(xk) |

ey - (2.13)
fj (x,) = - - .
Then fij(x) is approximated by
- e )T Ry B (2.14)°
fj(xk+h) = fj(xk) + fj(xk) h, ]—'II,Z,...,m ) | | .
A step h =[hy hp...h,]T which simultaneously decreases e'q.ch Tj_is found by the
.linear program ' ' -
minimize y S _ (2158)
" ywh .
subject to , - _
‘ : ' 1T i1 o 2.15b
)+ ) hsy, j=lze.m, ! é.)
-8 sh s§ , _ i=1,2,..n. . (2.15¢)

' The value of the scalar 5y controls the step size h so that a decrease in max {fi(x)} is

made, If 5y is small encugh, then the linear approximations to the fj are accurate and

a decrease- is guaranteed. The value of 8y is adjusted at each step. For exax_nple.

‘suppose hy is the solution to (2.15). The new point, -x;;...l': xi + hy, may not have

achieveda decrease in max {f;(x)} since (2.15) only uses e linear approximation to fi(x).

If no decrease is obtairied.‘ then the last step hy is rejected and 8y is replaced by Blhylke
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whe.re p<l1. Ifc;n decrease in max {fj(x)} oceurs, then 8§y may be increased if a test; o
measuring the goodness .of linear approximations, succeeds,
This method may work well if m>n, i.e., the number of functions exceeds

the number of parameters. However, if m<n, the method may behave like the
steepest descent.' methed with slow convergenlcle; If m>n, then in many i:uses'the‘
solution-can be e‘xpecte'd to be a point (x, y), where n+1 of the function fi's are equal to

each other as well as being equal to y. Thus, in effect, we are solving a system of

equations where x and y are the unknowns. The linearization of each function fj(x)

" — would correspond to the same linearization found in Newton's methaod on the above

. . /
equations and quadratic convergence is expected. In general, one can expect this

method to work quite well when the final answer is tightly c-onstrain_ed. (called the
regular case), but may revert to a method related I:‘o steepest déscent if fewer thun
n+1 of i:her functions arg constraining the final answe;r (singular case). Madsen and
Schjaer-Jacobsen (1976) give .a complete discussion of when quadratic convergence is '-

expected for this method.

Methods Using Second-Order Information

All linear programming methods are first-order methods, i.e., the search is
based on first-order derivatives only. They all have problems with singular solutions

irt which the rate of convergence may be very slow. In order to overcome this problem,

LJ

. some second-order (or approximate second-order) information must be used. Hettich

(A1976) was the first who proposed doing this. He used a Newton iteration for solving a

set of equations which expresses the necessary condition for an optimum. Hettich's
method is only local and reqliit:es,the initial point to be close to the solution. Han

(1981) suggested nonlinear programming techniquaes for solving the minimax
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‘problem. He uses a nonlinear programming formulation of the minimax problem

which is solved via successive quadratic programming (Powell 1978). A line search is

incorporated using the minimax objective function as merit function.

Watson (1979} introduced a method that switcha‘s bet.wéen 1.1 first-order and
a second-(;fdér method. Hald and Madsen (1981) use a similar methed, however their
method has the,f following advantages over Watson's method: 1) the user is required to
provide only ex.act ﬁrst-ortlier de;'ivatives. 2)a sgitable_ set of criteria for sQ_vitching

between the first-order and the second-order methods are deﬁned, 3) the method has

guaranteed convergence to the set of stationary pq'ir)ts.

The Hald and Madsen Algorithm

" The Hald and Madsen algorithm for nonlinear minimax optimization (Hald‘ |

and Madsen 1981) is a two-stage one. Initially, Stége 1 is used and at each point the

nonlinear residual functions are approximated by linea'r funct.ions using the
first-order derivative mformatmn (provuied by the user). Ifa smooth valley through

. the solution’is detected a switch to Stage 2is made and the quam-‘lewton iteration is

used. '\Iecessary second derivative estimates are generated by the algonthm If it
turns out that the Stage 2 iteration is unsuccessful (for instance, if the set of active
functions has been wrongly chosen) then a switch is made back to Stage 1. The

algorithm may switch several times between Stage 1 and Stage 2 but normally only a

few switches will take place and the iteration will términate in either Stage 1 with

-

~ quadratic rate of convergence or in Stage 2 with superlinear rate of convergence.

The algorithm, which handles linear equality and inequality constraints, is

a feasible point algorithm. This means fhat the re_ésid'ual functions are only evaluated.

b
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at points’ satxsfymg the linear constramts [mtla.lly a feasible pomt 15 determined by

the algorithm, and from t.hat pomt feasxb:.hty is retamed

_ For this thesm we hnve used the MMLC version of the algorlthm (Bandler

L

and Zuberek '1982).

2.3 ¢, OPTIMIZATION TECHNIQUES

1231 Formulation of the Problem

a5

kel

The optimization problem fo be considered has the following mathematical -

formulation. Let Q(x), i=1,2,...,m, be a set of m nonlinear, continuously

differentiable functions. The vector

lT

A
=[xy x, o x)

isthesetofn para-me_teré to be oﬁtirm'zed. We consider the folIoWiné problem:

R

' m . : —_— -
e A : ‘ . (2.16a)
minimize F(x) £ z |fjt:|:)| : . .
X =1 ] . ) . .
Subject to '
) r
_alx+b =0, i=1,2,..,6 ., . (2.16b)
ot ' eq
alx+b.20, . i=€ +1,.,0, ' - (2.18e)
i Lo eq

wherea;andb;, i = 1,2,...,8, are cbnstants. This is called the linearly constrained él

problem.

232 Reviewof ¢; Algorithms |
One of the first attempts to solve the €| problem was published by Osborne
and Watson (1971). The method is iterative and at the kth iterate xi the following

approximation of the nonlinear €; problem is used:

e

“
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. The Hald and Mads n Algorithm '

16

minimize F(x , h) = Z |f (xk) +f (xk)Thl o : (2.17).
b .

This is similar to the linearization of minimax functions as given by (2.14). The linear
model problem is solvad usmg linear programxmng The duectlbn hk found is then
used i in a line search The g]obal convergence propertles of this. method are rat.her

poor and the method .may prowde convergence to a nonstatlonary p-mnt i.e, aépomt

1"} W aw ~
whxch isnota local mmmum -
*

. The more’ recerjt papers on the €; problem use soqe second-order
. N

. r LI - . .
information. Mostof the methods require that the user suppliesﬁexact second (as well

b

L -

as first) derivatives, S ) ' o S .

The linearﬁf constrained €, problem can be foxfmulateel as a nonlinear

p;Qgramming prob]e"m. _‘i‘hen, it tan ke solved ‘by stangiéli:d* techhiques front that field.
When Powell’s method (Pocwell 1978} for nonlinear p;e'glr-amming is applied to the £;
problein,.’we obitei;n a method which in its final stages is si'mi'lar to the Haid and -

A

Medsen method (Hald and Madsen'lQBS) HOWever in the heighbou’fhood of a

solution, Hald e.nd Madsen have to solve only a set of- Imear equations whereas in |

. .
it}

Powell's method a quadratxc program must be solved i in everyitaration.

B vl ,. ') ] ) ) _“ .. [

. . ' -
i te

o

method combimng a ﬁret-order method with an appro:umate second-order method.

The user supphes only first denyatxves. The'ﬁrst—order method is based on the linear
model prebleliis of the type (2.17). These are solved sul;ject to the constraints of _ the -
ori;inel pmialéea (2.16) and & bound on the step length . The latter bound ceflects

the neighbourhood of the iterate xy in which the kth model fuiiction (see (2.17)) is &

Fhe Hald and Madsen algorithm (I-Qd and ‘Vladsen 1985) is a hybrld -"_.

AV%
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‘good approximation to the nonlinear €; function: If the solution approached by the

first-order rnethod is "singulat” (see definition which foTlows),_t.hen a higher-order

m'etlhod must be used in order to obtain a fast ultimate rate of convergence. Therefore,

a switch is made tn 8 quasi-Newton method that solves a set of nonlinear equations
that nenéssanily hald at-a solutign o.fh(Z.'IG). ;[‘hisllr‘n.ethbd has superlinear final
convergence. Several n;vitche;i between the first-order and the quasi-Newton method
' may take place. The reason fnr allowmg .thlS is that the latter method works only

close to a selution, so if it started too early, a sw1t.ch back to the more robust first

-

method is necessary The second derivative mi'ormutlon required in the quasi-Newton

method is generated by the algunth'm.

+

Definition

‘We' say that the solution x* of the iinea‘rlyz constrained €, problem is .

reguiar if the set .

: Al _
fj (x?)lfj(x"‘) —0} L![ail 8, x* + b.l =0
spans the sp_aced Rn. Otherwise the solution is singular (Bandler, Kellermann and

Madsen 1985¢).

The set of zero functions, i.e., the functions which are equal to zerp at the

’

solution, are call‘é:r_i‘-active functions for the €, problem. A problem is regular if the

-

(total) number of zero-valued functions (écfive functions) and active contraints is at
) least n. For regular problems the, method of Hald and \‘Iadsen is quadratlcally

' convergent For smgular problems the convergence is superlmear

. . : . s
- . - et
- . . "
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2.3.3 Nécessary Condition for Optimality of £; Problems

The use of the €| norm in the problem of approximating = function to data

" -that might contain some wild points has been discussed by-rhany researchers,

Recently, ¢, opfimization has found new applications in many circuit and system

problems based on its unique properties which result from the necessary conditions

' for optimality, The applicatii’)ns in¢lude fault isolation techniques for linear analog '

circuits (Bandler and Salama 1985a), fu:;:tidnal approach to postproduction tuning -
(Bandler and Salama 1985b) and microwave modelling (Bandler Chen and Dauavad
1986b). The insensitivity of €; optimization to a few large fi's in (2. 16) and the fact

that many fi's are zero at the solution, has led to formulations that are designed to

* exploit these properties.

In this section, we follow the approach of Kellermann (1986) based on the
! :

earlier work of El-Attar, Vidyasagar and Dutta (1979) to derive the necessary

.conditions for optimality of the ronlinear €1 problem with nonlinear constraints.

Therefore, we derive some insight into the features of the €, norm in engineering

problems in general, and the microwawy device modelling ap]iroa'ch presented in -
Chapter 6 in particular, .

The nonlinear 81 problem with nonlinear constraints may be stated as l

o : -

o | | |

rmmmme F(x): 2 |f(x)| ‘(2.18a)
. . j=1
subject to .
gm0, i=1,.m_, L - (2.18b) .

-

where the g's are, in general, nonlinear constraints. . . -
Problem '(2.18) can be transformed into the following nonlinear

programming problem e . . S .
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m .
S N A - (2.19a)
minimize F(x,y) = Z Y, RN
X,y i=1 ’ )
subject to .
y~f@=0, = i=12..m, - (2.19h)
yHL@=0,  i=l2..m, (219
. - R, | (2.19d)
) o g.L(x).E._‘ 0, J':—l,...,mc , .
where the fi(x); gi(x) are as in (2.18) and F:R®*™ 4R i a new objective.
'The gradient of the objective function is
e[ (2.20)
0

"~ whereu=[11...1jTis an m—dimensional—y.ecfor representing the gradient with
respect to y and 0 = (00.. -0]T is an n-dimensional vector representing the gradient
- with respect to x..

Suppose that (x*, y*).is a solution to (2.19), then

v, =If, M, i=1,2,..,m . IRV
" Define the sets ' ‘ '
[x") 2 i x>0}, R ¢ 21
e Jxn & {1| fi(x-)<o}‘f' ‘ R | {2.23)
2 & i fan=0}, ' 224
A L g am=0r. (2.25)

The gf_adients of the active con'straints for the problem (2.19) are given by

(2.26)

L ielx®),

e
o
-fi(x“)
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L
| % L iedxY), (2.27)
fi(x") ‘ .
e, 8,
i L eza (2.28)
d —faxnl e -
‘ -
0-!‘
. ) €AY, . (2.29)
gi(x“)

where e; is an m-dimensional vector with 1 in the ith position and zeros elsewhere.

By applying the Kuhn-Tucker con&itions we get the following necessary .

conditions for optimality = ° - P
. ‘u . < -ei -ei
|+ A + Al
N RN PRl PR
0 ; £ (x*) : - f.(x*)
i€l . ) i i€d 1 L (2.3(1) o
S [0 fen] S lesa] 0] '
A .‘,+p.[ . ]+ .A.[ . =[ ]
iz b L) g Aty A | U—gx*) 0
where Aj = 0, and p; = 0 are the corresponding multipliers. . ,
Splitting equation (2.30) we get |
2 AEEDE DA (=FEM+ YA - wEEFE D K (g &N=0, -
i€l i€d . Q€2 . €A
‘\i =1, i€l .
.\i =1 ,~ i€d
‘\i+p‘i=1} ez L (23D,
A =0,p.20] " ’ ' ’
A =0, icA

or
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> o fix) + ?5f(x')- > g(x"‘)

IEZ i€Z lEA .
S C1sesLL ez | 2321
Aiao , | €A,
where - . ' _ ' |
0,2 signfxh e

The necessary conditions for optimality of the non‘l_inear' €, problém

indicate that zero-valued functions fij(x*), i€2Z, piay-. an important role in the

characteristics of the £, problem. This fact can be exploited in formulating practical
L} . ’ .

engineering problems in’which zero (or nonzero) functions at an €; solution have

physical interpretations.

2.3.4 Illustration pf & Approximatip.n a . )

The’l;obustness of the ¢ optimization ~in dealing with large fi'sin (2..'l(l5). as
discussed in the literature (Hald.and Madsen 1985, Bartels and. Conn 1981), is a
consequence of the optima-lity conditions. Since the €, solution is.usually situated at a
point where onelor more i]s are equal to zero, some large f s are in effect lgnored

completely In Chapter 5, we mtroduce a formulation for modelling in whxch some f' 3

are de31gned to have large values at the solution, justifying the use of £{ as opposed to

.the other norms €, with p>1 In that formulation which uses the concept of mult1-"

¢ircuit measurements, the change in parameters between different circuits form part

of the objective, i.e., they are some of the.fj's. These fj"s are expected to have only a few

. . . l:
large values but many zeros at the solution. _ .

In this section, we illustrate the unique properties of -¢; optimization by

considéring a rational approximation probler‘n. In-particular, the insensitivity ol €|

-
-4 .
e
.

.
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optimization to a few large fj's will becomne evident when the same problem is solved
using €; and the least squares- (fg)hnd the results are compared.
We want to find the rational approximant of the form (El-Attar,

Vidyasagar and Dutta 1979)

9 .

Kix) = - u

2
1 +x4m+x5m

to the function Vw on the interval wé€[0, 1]. Us_ifxg 51 uniformly spaced sample points

on the given interval, parameter vector x waslobtained by £; and.€; optimizations.
The results are summarized in Table 2.1 under case A. Using both sets of parameters,
the approximating functio"n virtually' duplicates the actual function over the whole
.interval. We now introduce a few large deviations in the actual function in two
separate cases, In case B, the actuﬁl function value is replaced by zero at 5 points in
the intefva:l,-ﬁémeiy, at 0.2,0.4,.. .,1.0. In case C, we use zero at ﬁ:4 and 08 and one
at 0.2 and 0.6. In both cases, € and £, optinlli'zations are performéd and the
parameters obtained are si‘umma_x"ized in Table 2.1. |
-'I‘he parameiers obtained by £y optimizatioﬁ in cases BandC ar;'e consistent
with their values in case A, On the other hand, ‘the presence of large devnatxons has

" affected the ¢y optimization results severely, and inconsistent parameters are

obtained. Figs. 2.2(a) and 2.2(b) ill_ustrate the approximating and the actual functions

for cases B and C. Whereas the approximation using ¢, has ignored the larée

deviations completely and has .achieved dn excellent match, for both cases, the €

approximation which was as good as €, in case A, has deteriorated. For instanée, the

‘particular arrangement of deviations in case B has caused the approximating function

to underestimate the actual function over the whole interval, . : .

»
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TABLE 2.1

L

. ' : L4
APPROXIMATION PROBLEM USING €, AND &, OPTIMIZATION"  ~

Case A

) Case B CaseC
Pargmeter g £y £ T2 & €
S X 0.0 0.0071 0.0 00391 00  —0.0261
Xa 8.5620 85660 '8.6664  5.8050 8.5506  12.8828
X3 29.3124 29.7515  30.5684 30.0523  29.1070  26.0012
x4 . 247375  25.0108 25.4261  19.6892  24.6452 321023
x5 12.2285  12.3699 21.8794 ', 12.0887  7.4300

12.9234

+
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Fig. 2.2\ Approximations using €; and ~-t2 optimizations. The solid line is the
‘ ~actual funetign. Diamonds identify the approximation using €; and

circles represent approximations with €. Stars represent data points
after large deliberate deviations. (a) and (b) correspond to cases Band C.

13of‘
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the Broyden formula. Special iterations are introduced to improve the performance of

25
/-

2.4 EFFICIENT GRADIENT APPROXIMATIONS
2.41 Introductor; Remarks

| One difficulty iﬁ exferﬂding the practical applications for powerful
'gradient-bhééd minimax- and €, optimization described pre#iqusly is that exact
gradien_ts-of' all functions with respect to all variab\les are r:equired. For some

applications, either an explicit expréssion of the exact gradients is not available or the

computational labor for evaluating such gradients is prohibitive. Moreover, it is

. highjy desirable to utilize many existing circuit simulation pfograms which provide

only the values of the functions (or responses).
Recently, Bandlér, Chen, Daijavad and Madsen (1986) proposed a flexible

and powerful approach to gradient approximation for nenlinear optimization. It is a

hybrid method which dtiliies pararﬁeter perturbations (i.e., finite difi’er.encing); the
Broyden update A(B‘royden, 1965) and th.e special iterations of Powell (1970). Finite I.

diﬁ‘er’enciﬁg requires one additional finction evaluation to obtain the gi'adient with

respect to each variable. It is the most reliable but also the most expensive method.

. The Broyden rank-one formula has been used in conjunction with the special

iferations of Powell to update the approximate gradients. See, for example, the work

By ‘Madsen (1975) and Zuberek (1984). Such an update does not require additional

Vf'tinction evaluations but if.s'accuracy may not be satisfactory for some highly

S

‘nonlinear problems or for a certain stage of optimization. Bandler, Chen, Daijavad
* and Matfsen (1986) use parameter perturbations to obtain an initial approximation

R ahd to provide regular corrections. The subsequent approximations are updated using

.

_the Broyden update. The Broyden formula is also modified to incorporate .a
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knowledge, if available, of th; structure of the Jécobian (e.g., the spnrsitx.of the
Jacobian). |

The gradiertt approximaﬁion is rather inde;;endef‘)t of the optimization
technique and can be used in conjunction with both the minimax and £, algorith‘ms‘

describe& in Sections 2.2 4 and 2.3.2

242 . Methodof Perturbations .

For a no_‘nlinea_r 'optimizat.ioh problem with m functions i(x)j=1,.. .,m, °

' the first-order derivative of fi(x) with.i'gépect to x; can be approximated by

#fm fixnte) - f(x) . (2.35)

-
]

'ax'g‘, Tt

1 .
where ¢; is a unit vector and t is the perturbation on x{. An approximation of the

' T
A afT
Jix) = ] — .
. ' ax - Lot .
using pérturbations'(,' requires n+1 evaluations of the functions f(x) where n is the

.

. number of variables. S ot ot

243 - Broyden Update
Having an approximate Jacobian Ji at a point xi and the function values

at x and X + hy, we can obtdlin Jy 4 using the Broyden rank-one update (Broyden

. 1985)

| flx, +h) - fix.) — J.h
3 =g 4 rk k T_¥<' KDk
hkhk

T {2.36)
by

The new approximation Jk'+1 provides a linearized model between two points xx and

"X+ by

f(xkfhk) '",‘ﬁxk] =d, by S ' (2.37

' J
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Notice that if xy and x; + l:\k are iterates o'f optirﬁiza;ion the Broyden formuia‘ does
not require additional fux;ct.ion evglua&ions: |

" The application of tht.a original Broyden update has shofmf;miﬁgs. As hag
been‘qbservec_l by Zuber;:k (1984), if some‘fupctions are linear in some variables and if ‘
the corresponding components of hy are noazér_o, then the approximation to éonstaht.

derivatives are updated by nonzero values. Applying the Broyden formula to each

* fj(x) as a single function gxfd associating with fj a weighting vector defined by

wliw . .w ¥, w20 ' . (2.38)
J 1.7 e i, ‘ : S
we have )
. 'T " ' - . -
I o iy i W R o 239
gy = + T o Djic »
o qjk %
where - .
h : a ' T (2.40)
. q = [w; by, Wi L .

If fj is linear in x;, we set wj; = 0. In circuit design problems, it may be known that the

performance function is linear or independent of some parameters over certain

-l

frequency or time intervals,’ ‘An 'approx)imaté Jacobian evaluated using (2.39) also

satisfies (2.37).

2.44 Special Iterations of Powell

' The Broyden formula updates the approximate gradients along the

dlrecmor‘\‘ hy. If the directions of some consecutive steps of optimization are collinear,

the Broyden update may not converge. To cure this problem, Powell (1970) suggested

‘the method of "strictly linearly independent directions" generated by special

iterations. Unlike an ordinary iteration where a step is taken in order to reduce the

- objective function, a special iteration is intended to improve the gradient

approximation. After every p ordinary iterations the function values are calculated at



ﬁ point obtained using the formula given by Powell (1970) and a Broyden update is
applied. As suggested by Powell and also Madsen (1975), p = 2 gives satisfactory

results.

25 CONCLUDINGREMARKS

In this chapter, we feviewed minimax and el_opfin;izaition techniques
‘whi:‘:il are uged for design ‘and modelling of microwéve circuits in this thesis. The
emphasis was on the efficient and new techniques developed in the past few years. In _
particular, we ha.ve described the Hald and Madsén algorithms for both minimax and
€; optimizations. _ | |

The necessa;'y conditions for optimality and the .roIe of zeros of the '_ :
. nonlinear functions and active constrain’tsl in -81 opﬁmization'were c-liscussed gnd a
simple illustrétion of the ¢, approximation compared w'ithrthe €s was prt;sented.

We describefi efficient gradient approximation techniques which ﬁse a‘
hybrid method utilizing parameter perturb;ations, the Broyden update and special
_iterations of i’owell. These technigques, whit::h are rather independent of the
optimization method, can be u.'s;zd in conjunction with min‘im.alx and £ algorithms.
Their use obviates exact calculation of gradients and ﬁénce expands the range of .
applications for powerful gradient-based algorithms to many microwave prob_le;r\ls in

e
which exact gradient evaluation is not feasibie. )



3 |
SENSITIVITY ANALYSIS OF TWO-PORTS AND CASCADED

STRUCTURES - SIMPLE ALGEBRAIC APPROACHES |

31 INTRObUCTION

| In Chapter 2, we _revie\;ved recent gréflient-baﬂéd mi‘ni:max_ and ¢,
optimization techniques. .When these techniques are applied to the design and
" modelling of électrical circuits, exact‘ and efficient evaluation of circ-uit response
sensitivities with reél;ect to equivalent network parameters becomes ‘of significant
interest. For linear networics, Director and Rohrer (1969) introduced the concept of
the adjoint netwurk,‘which 15 used in efficient calcu}at?ion of sensitivities based on
Tellegen's thtlaorem. They.showed that the sens_itiviti‘es of a particular response with ) |
respect to all the pararr;,eters in a linear network can be evaluated with two network
‘analyses: one correspondiné to bh.KEriginaI ngtwo;k and one correspondiqg to a
hypothetical network called the adjoint. Director (1971) showed that, onte the
original circuit has been analyzed, the analysis of the adjoint network i3 performed
with minimal éxt.ra effort. |

In this chapter’, we develop a systematic way of evéluéting sensitivities
without appealing to the adjoint network concept. “The cqmpl'nt.ations involve simpie
z_xlgebr'aic.manipulations of vectors and matrices. .Th‘is “s_ir_nple tteﬁtx_nentl was
originally suggested by Branin (1973). Starti_ng with the admittance or impedance
. . R .

matrix description of a network, we &evelop formulﬁs ,to‘e\_raluate first- and

second-order sensitivities of its two-port equivalent with respect to a generic variable

T2

o

¢ dppearing in the matrix. These formulas are then used to evaluate input and output

29
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port response sensitivitiea, To ‘accomr.nodate active devices, we consider the use of
controlled sources in the network and present formulas for sensitivities'of two-port

»

S-parameters which are oommonly used for both active and passive devxces

»
Recently, an important result in sens;tnnty analysm of lossless two—ports

was presented by Orchard et al.(1983, 1985). ,Using the matrix “notation of thxs
chapter, we prove their result in an elegant and simple way and»_furthér dovelop itto

. . - - - .
the computation of group delay. . * SN - ¢

Finally, in preparation for the design of moltipjie'x.ing‘:‘net.:works which
belong to the class of branched cascaded ne_t:works,‘,we review some of the concepts in
- sensitivity analysis of cascaded 2-ports by Bandler et al (1978, 1981). Utilizing a
method whi_ch obviates t.ho use of auxiliary or adjoint networks, we discuss the senoi—

tivity of branched cascaded circuits with examples on specific frequency responses.

32 GENERALTWO-PORTS o,
321  Unterminated TwoPorts i . e
Assume that tho adrmttance matrix descnphon qf an oﬁmvalog circuit
:model is availabla, All denvat:ons and formulas presanted in thls chapter have dual
. counterparts for tho case of & cu'cmt descnbed by its mmedance mal:rut The general
caoo ofa hybnd matrix could also bﬁ handled,; ho»yover we avo;d geri'orahzatlon for
the sake of the sunphmty of notation. .
E‘rom the four types of controlled sources the voltage contrelled current
' source (VCCS) ¢ can be easily handled in an admittance mntnx descnptlon The other
- three types are converted mto VCCS t.hrough. an mtermedmto step mvolvmg
gyrators This is an exercise des::nbed in Chua and Lin (1976) as well as other text
books. .



.. _ Consider an nXn ‘admittance matrix Y arranged such that the input and
: & output responses of interest are evatuated using the voltages at nodes 1 and n. In this

. » . - . . . - “
section, we develop a comprehensive set of formulas for first: and second-order

",

Sensitivities of the tﬁo-port apgn-citcuit impedance matrix obtaiﬁt;d from Y.
' .F‘igure 3.17 illustrates the blorv.'k‘ reﬁ;'es;znjtation 'of the circuit and its two-port,
eqi{ivhlent. We have _ - .
. L }fv“_=1 . - (3.1
wheré I = [Il‘D ... 0 In‘lT an& V= -[Vi V... V,T are the current excitation and the
\;oltages, respectivelj;, Dencte the two-port currents and voltages by I, = (I} L;Tand

o

Vp ={V1 V,IT. By defining

U={e; el ] (3:2)
where e, =.[-l 0 ...0lTande, =[0...01]T, we have ! ]
| " vp=utv. - . "3
and " R
£, 1=Ul,. (3.4
From (3.1}, (3.3) aqﬂt3.4) we czir_1 s;)__f:ve' for | .
L Ty, =urysir=uTY-lu, _ C@35)
which‘gives . o . - -
Loty [ Y 3.6 -

‘aly " le eTY"le
n . 1 n n

‘using the definition of two-port open-tircuit impedance matrix z. By solving the

system of equations ¢ . .
Yp=¢ ' (3.7a)
‘:N -~ . .
‘and .

Yq = e,, . . (3.7b)
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Fig. 3.1 Block representation and two-port equivalent of a circuit characterized
by its admittance matrix. z is the two-porf*open-circuit impedance
matrix, .
e

32




33

we evaluate z as

-, o
pn .9,

Dxi'ferentlatmg (3.6) w1th respect to a variable ¢ in Y we have

T T
&P exq

z=

eTP o q

zp = —UTY"lY, Y‘lU
whex‘e z¢ and Y¢ denote the derivative of z and Y with respect to ¢ N ow,
T 1__ TY - A | AT
LA ¢ =.[ T_1]={AT]'=[P-¢1] »

.

where p a.nd q are obtamed by solving the systems of equations
YT = e

and.

‘Alsb,rdtising the identity _
| o oy-lgs [f-‘el f—lenl = [p"ql._
- (3.9) becomes e | ’
| ’ z¢~.—[p Q)T Yy lp al .

As an example suppose t.hat ¢ appears in Y in the followmg posmons

k € -
r K \ -
R U PR TSR T
Y = : N
il = .. & ...
..' . -

then (3.13) becomes .

. [®~B)®,~p)  B~P)la,—q)
CZy= = . A A :
oL@ -a)m-p) Q- -q)

(3.10)

(3.11a)
(3.11b)
© (3.12)

(3.13)

(3.14)

(3.15)

Having evaluated zg, we can calculate Zy, 1.0., the sensitivity of z with respect to

actuel cireuit parameters, by apﬁlying the chain rule of differentiation. '.I‘hble' 31
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- .
BhO\;VB some imssible circuit paramete;'s and the relationship between i, and zy.: The
circuit parameters considered are conductance G, resistance R, capacitance C,
mductance L, and two parameters asseciated mth a VCCS with a transcondu‘ctmce

gme —i2afr, name]y delay t and gm which denot,es the magnitude of transconductance

atde. ' ' . 7 v

3.2.2 Second-Order Sensitivities

In optimization of responses such as group delay and gain slope,

second-order derivatives of z are needgd. In such-cases, z,,, which denotes the

,séhsitivity of z with respect to angular frequancy @, is used to evaluate the response

' 1tself The sensitivities with respect to cucmt parameters are then calculated usmg

zw, wluch isa second-or:;ier sensitivity expression, A

- Using (3.9) we have ‘

- z,= —-UTY"lY,Y-lU, (3.16)

‘w}uch can be dxﬂ'erentmted with respect tod as

z‘m = UTY-‘(Y Y Y Y YT ‘Y )Y-‘U .
: : 3.17
= [p qJ Y,[p ql-(p q]TY wolP ql+[p alY,[p ql. ‘
Four systema ofequatmns are solvedtoobtam[p q]and [p q']. They are
, Yp y p. | ) {3.18a)
Yq =Y q, (3.18b)‘
w o . -
| YTp,ﬂ,‘T'} I (3.18¢)
- § and ) : ' w ' ) . -
- ' YTq' =¥T4 . (3.18d)
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TABLE3.1 S
SENSITIVITIES OF OPEN-CIRCUIT IMPEDANCE MATRIX
'W.R.T.SOME POSSIBLE NETWORK PARAMETERS

X X
G \ zcb-
R (=) '
RZ /e
C sz¢
L'. -1,
. st ch
—8T
-39
T - —sg e z¢

s = jw = j2nfis the complex frequency




3.2.3 Computational Considerations
Fora gener;al two-port, it has been established that solving eight systems of
equationsf namely (3.7), (3 11) and (3.18), brovides complete information for

evaluation of first- and second-order sensitivities of the open-circuit impedance

matrix z; which in turn leads to sensitivity evaluation of input and output responses.
From a computational point of view, this means one LU factorization of matrix Y

followed by eight forward and backward subshtutmns (FBS) If mntri:g Y is
- . ’ .
symmetrical, only four FBS are required since p P, q =q, p =p and =q.
For those familiar w1th the concept of the adjoint network, an explanation

. isin order here to justify the.ne.ed for performing as many as eidﬂt'FBS's in a complete

sensitivity analysis. Using the adjoint network approaéh, the first-order sehsiﬁivity of

a particular response is calcuated via 2 FBS's and the second order sen51t1v1ty i

I‘E.‘QU}I‘ES 4 FBS's for any lmear network, An example ‘of second-order sen51t1v1ty'
evaluation can be found in calculat:on of group delay sen§1t1v1txes discussed by
_Bandier. Rizk and Tromp (1976). The important differerice here is that with the
unterminated two-port, we have not committed ourselves to excitation or termination
at either port and this freeciom has doubled the humi?er of pﬁssible FBS's required. By
designating excipation and }:erminatibn ports, the matr;ix manipulaﬂion method is
computationally equivalent to the adjoint network approach with the difference that

algebra has replaced cu-cult interpretation.

LT

The use of an unterrrunnted two-port model has the advantage that we can

obtain the transmission matrix and its first- and second-order sensitivities of a
. _ . .

two-port equivalent foi a complicated subnetwork inside a large network in an

independent fashion. This means that the excitations and terminations in other parts

of the large network are ignored. Later in-thi§ chapter, we will describe efficient

M
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. -1 .

methods for simulation and sensitivity analysis of cascaded networks with the —

requirement that the transmission matrix and its sensitivities for each two-port ba

.

. known. . I , - P

. '." - . - \ ' ’ .‘ ‘ l- - o
3.24 Terminated Two-Ports DR - T .

‘4

If the ‘two-port equivdlent obtained by‘; reduction of admittance or’

impedance matrix is part of a larger network, e.g., a filter in a multiplexer structure,

.

_then we evaluate the transmission matrix and its sensitivities for the two-port and-

use the cascaded network approach. However, in many of the examples in this fhesis,
such as modelling of multi- cghpled cavity filters and GaAs FET’s, the entire analysis
is almost completed after reduction to two-ports since the input and outpﬁt responses

a_hd their sensitivities could be readily evaluated once -th!-: ux}termiﬁated two-poft -

analysis is done,

“Assume that the two-port is terminated by an arbitrary load Yy -and a
o ,

source J =1A with an admittance Ys. We have

L=1-YsV (3.19)
_and _
o o 3 b= YLV, o . (3.200
-lDeno-ting‘T‘ K |
| o | TA _Ys 0], ' @21
- ! ) 0 YL
'-we,wri_te (3. 19)_a_nd,(3.292 ina comp&t form, as ' l"f‘"
| )  L=e-TV,. @

* Using the fact that V, = z I subject to (3.22), we solve for V, as

Vo= (4 zT)'zey =Hzey, (3.23)
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e ~where
/\ | HE( +2zD L.
.—— d Furthermore, the first-order sensitivities of Vp‘can be derived as
| (VP)¢ =[Hgz + Hzgl ey
= [—H(H~ Y, Hz + Hzyl ey -
= H{— (2o T + 27Ty) H.z + zyley
= H{—(z4 T+ zTy) V, +-lz¢ el
o Hizg(“TV, + ey 2Ty V,
=H@pl,—2zTy V).~ ~  @2s)

4 ’ . . e . . - - * *
- The derivation of the second-order derivative is similar. Here we state the result,
‘ 2

»

which is derived in Appendix A’, as

(Vodoo = = H {26 By Vi + T (Volyl + 2 [T ¥, + T.(v-,',)u']
s+ 2Ty (Voo + To (Vilg + Tou Gl — z0a . (3.26).
Sometimes, as for the evaluation of tltle output reflection cpeffﬁcient, it ig_; '
also of interest to solve the network excited at the outp‘iﬁt port. The solution, deno‘ted/;
by ‘A"p, can .be obtained by simply replacit:lg ey by én in (3.23), where e, = [0 1]T. The

B

A - - ) -
sensitivity expressions of Vp are the same as those of V, except that ey, I, and V are

-~

replaced by e, fp and pr, as appropriate. o ‘ » v

Various frequency respdn&as and their sensitivities can be caloéulated usin.g
‘the fo'rmulas obtained for the two-port. Table 3.2 summarizes some useful formulas
f;)r various responses. The formulas have been derived fro_tﬁ- their convlentic'?n-al
definitions, having in mind that we have alréady_ pre%e'n%ed formulas for
response are obtained b-y s.imple diﬁ'erex;ltiation, e.g., for the group detay denoge_d by

Tg, we have . T

-

(3.24),

Vo = [V V,iT and its first- and second-order sensitivities. The sensitivities for each = -



TABLE 3.2 i
b b

VARIOUS FREQUENCY RESPONSE EXPRESSIONS

.Response - ' Fotjmula
input reflection | s .
. . — [2G. .V, ~1 .
. coefficient (piy) Y ( s l
’ s
input return - _ -20 logmlpin|
loss : -
transducer loss = . —10 log-lo [4]Vn|2 GSGL]
. . o
insertion lds-s ' —20 Iogm lVnY’I]
V) (Y
gainslope =20 [ LI 1J“’l
o n 10 v Y.~
n T
group delay [(vn)m- ¥g),
; : ~Im|— + —
\'2 Y
n S

o ARev . A po a
. Gg&Re(Y9 G 2Re(y)) Y RYgry,
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g, = -tm Ve ViV s a5 @2n
| v v Y v T

n n 8

As mentioned earlier, starting with the impedance matrix desc;'iption of a
network, we can derive dual formulas for all equations derived in this chapter. Such
formulas for a symmetrical impedance matrix have been presented by Bandler, Chen

and Daijavad (19853, 1986a).

3.2.5 S-parameter Sensitivities

The use of scattering coefficients or S;parameters is popular in thé
microwave area. Scattering coefficients are'usually defined from a wave poiht. of
view. However, in this section we rel.at.e two-port S-parameters to the open-_circuit :

impedance matrix of the two-port ancherive their sensitivities.

From the definition of S-parameters we have

Pl o
ANE-AINEINE o
-1

22

2y

8

a
2

- where [}, V) and I, V,, are the current and voltage at ports 1 and 2, respectively, of a
two-port network, ay, by and ag, by are the incid.ent and reflected waves at ports 1 and
2, respectively,' and Z is the normalizing imi)edance. The reason for using subscript n

for voltage and current at port 2is to be consistent with the previous notation,

{3.28¢) .
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Ve
~. Denoting the normalized open-circuit impedance by z, we have ' :
- ' 1 ‘ g’/-/
Z=—z, - % (3.2
Z0 : ‘

where z and its sensitivity with respect to ¢ denoted by z4 have been derived in (3.8)

and (3.13). From the definition of z, we have

v _rl _
ll=zo’[ 1]_ (3.30) .
A" 11
. ) n . ‘ n
and after simple manipulation of (3.28) and (3.30), we get )
lz 1! l l 12“ It g (3.31)
) z -1 22 ;21 . ;22+l
or K
(z-1=8(z +1). (3.:32)
From (3.32), it follows that
g L A—2zp+1) 22y (3.33)
a ?521 B=2z +1)
where
3.34
8= (2, +1) (’m“)‘ By - e
Also, differentiating both sides of (3.32) w.r.t. &, after simplification, gives
1
= — -— —_— : 3.35
S¢ 22, (1 S)z¢(1 9, ' (3.35)

i.e., 8y can be readily evaluated from zy.

3.3 LOSSLESS TWO-PORTS

Lossless reciprocal two-ports, usually arranged as ladder networks, have

‘_beenvthe preferred circuit arrangement for filters from the time that filters were first

used, Many types of filters, e.g., m.lcrowave. RC-active, digital, and, most recently,
switched capacitor ﬁlters are often modelled ona prototype tossless ladder. Recently,

Orchard, Temes and Cataltepe (1983, 1985) presented new and simple first-order

-
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sensitivity expressions fqr reciprocal lossless two-ports.l From the time the formuias
viere introduced by Orchard et al. (1983) until their prbof' was presented in 1985, three
diﬁ'grght and original proofs were presented by Bandlér, Chen and Daija\."ad (1984a,
1984b, 1985b). In this section, we present;a. proof whxch is based on the ideas r;f the
previous publications, however, it is consistent with the ﬁotation used in this chapter.
Starting with an ad.mitta.nce»matrix Y and assuminé excitation J with its

corresponding conductance Gstgt \Eort 1 and the load conductance Gp, at port 2, we

A

have .. ' -
¢ & YV =UJe, - (3.38)
where | |
Y=Ggeel +Geel +Y. B ¢ & ()
The reason for the part.i't.ioning of Y will become clear as we proceed. We will now
show that, it is possible to obtain Vy/ad and aVy/é@ by solving only (3.36), ie., by
avoiding any auxiliary syé_terp, given'cex:tain conditions on -Y’.
-~ From(3.36), it immediately follows,t;hat

L _ Ty Y '
T . . (3a38)
1 Y
vl y,
J

given that Y is symmetrical, which requires Y’ to be symmetrical, i.e.,
YNT=v. _ ‘ ' (3.39)

. Also, differentiating (3.36) with respect to ¢ and premultiplying it by (V)T gives

v aY . .
VY~ = (v — V. (3.40)
. b - o .
If Y' has the property that _
_ Y = —(Y)*, | - (3.41)

" then
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Y+(¥"T = 2{G.eef +G L eT}-+ Y + (YT

S 11 (3.42)
o T | T
| = Z{C}Sele1 + GLent_an}_ . ‘
Evaluating Y from (3.42) and substituting the result in (3 40) gives
| \' aY .
(V)| 2{Gge o] +Gye on} —(Y*)' \% v 2V (3.43)
Now, by noticing that -
VT YT =gel, o (3.44)
(3.43) gives
LaV. N\ ARE\' 3y o
2G V] — +26, V. =2 g L= _wvT vy (3.46)
o " ob ap :

Finaﬂy, by substituting (3.38) in (3.45) and using the input reflection coefficient p,

givenby
p.= 2Gs ¥y -1 ' - (3.46)
. l J._ ' .
we get
"3V Sy ' . .
._n_ — 1 (p. V_Vt)T ﬂ_ V . . ’ O . (3-47]
% 26 v ! ad .

To summamze the above derwatlons it has been proved that gwen
conditions (3.39) and (3.41) for matnx Y’ aanacb can be evaluated by solvmg only one
system of equaupns, namely‘(3.36). Condxtmns (3.39) and (3.41) translate into havmgr .
h e lossless recipt:océ.l network. | |
We can use (3.47) lto deriv.e some formulas in the formlpresﬁnt'ed by
' Orchard, Temes and Cataltepe (1983) and in the calculatmn of group delay Giventhe
. definition of the transducer coefficient 8 as

(3.48) -
04 enH ,

where

(3.49)

X
<
9]
o

mo
e
[ -

=]
/7]
e



we have
®__ 1% R (350
ap . @ - ‘ '
Using (3.47), weget
. 0 o 7Y . /
. : —_ = (Ve— )tV (3.51) ...
7 a¢ 9 i plv % ‘ .13 .
where Py, is the power in the load, givenby P, = GV, V,.*. P . //

As an example, assume that ¢ represents yij which denotes the admil:tahce( _

"~ connected between nodes i and j, thefefore

. aY. - - . :
s C—= (e.~e.)(e.—e.)T, (3.52)
_ - R A
"and(3.51) gives
R w’ _ V .v) - . s‘-v) (V v) | . .
v, 2p_ Vi=o V) =V -p, VL V=V) .
' ' (3.53)
2 .
_ IVI ~p,V 5
T 2P ’
n

-where Vij = Vi—=V; represents the voltage across no;ies i ;mld j. This f(l)rm of the
. equation can be found in the work by Orchard et al. (1985). C
- We can e'valu;lbe the gr;up delay using (3.51) as
=Im [ I = —Im [(V“—p;V)T i v] oo (3.54)
Many elements of solutmn vector V ;re usually used in caldulatxon of g-roup delay
since 8Y/3w has many nonzero elements ‘
'As has been noted by Orchard etal. (1985) for purely numer:cal work, the |
new f'ormulas for lossless recxprocal two~ports he.ve httle to offer over other metl?ocls '
e.g., the adjomt network met.hod Thelr value lies primarily in their simple anafytic

form. Orchard et al. have alsd' shown the applicatién of the new formulas to actlve :

smtched—cnpacxtor filter design. Thxs is merely an exercise to prove t.he usefulness of .
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first-order sensitivity information in applications where nonideal effects which can'be

« 1

represented by a first-order change are present.

34 CASCADED STRUCTURES

. 3.4.1 Review of Concepts - ' "

The andlysis of cascaded networks plag;s an importax}t role in the design

-and optirhization of microwave circuits. Bandler, Rizk and Abdel-N_[alek (1978, 1981)

’

presented an attractive, exact and efficient approach to network analysis for M’J

%
ey

structures using the concept of forward and reverse arialys,is. The fundamental

assumption is that the transmission matrices for the individual components of the A

nefwork and their sensitivities with réspec_t to possible variables inside them are +*
. ' N - .

available. Bandler et al. discussed the use of their approach in large-change '

—

4

sensitivity analysis, in analysis of simple branched circuits (branches in series or

parallel) and in analysis of 2p-port cascaded networks.

- In this section, we use some of the original ideas by Bandl¥r et al. and D

further develop them to general branched cascaded networks with arbitrary

_ junctions, in preparatioﬁ for the axia‘ljsis of multiplexer structures.

To Afulﬁl>l the requirement of having transmission matrices and their

- -

sensitivities for individual components of the network, we refer to Section 3.2 and

spé'ciﬁcally the discussions on the unterminated two-port. We derived the two-port

.

* impedance. matrix z and its first- and ‘second-order sensitivities for a complicated

subnetwork represbnted by an nXn admittance matrix. The transmission matrix and
its ysiti\fities can be readily evaludted frolm z and its sensitivities. We have—
A= [‘A'B == [zu - Alm T " ©. (3.55)
rcDl Zyy L1 . gy : . .
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and . xS

.. 2 f
A<t Elein kst Pyt a T Cdyt it T Cidgta Tt te|  (3.56)
$ 2 : .
- (221) : -.(z21:¢ ‘222’¢’21_‘221’¢‘22

- In considering the cascaded structures, the network is divided into
subnetworks by reference planes. We define the équivalent transmission matrix

between reference planesiandj by

A, B ..
Qig[r s 8| -ul , (3.57)
iTTE T e p i
v v
where ) E ‘
" A, B.. . : ' ) :
coalf] 85-[01 L (3.58) .
§ C.. ' g D.. . "
ii i

- In a forward (reverse) analysis, Q; is computed by initializing row vectors -
e;T and el (colqmn veétors e 't'md .‘02) at reference plane i(j) and sﬁccessively
~ premultiplying (postmultiplying) éach ti'ansmiss_;ion‘mairix by the resulting row
{column) vector until refereﬁce plane j(i) is reached. e; and ej are unit‘vectors giv_en
i:)y[l 0iTand ([0 117, respecti\lrely. |

Sensitivities of Q;; with respect to any variable ¢ located between reference -

- . planesiandjare evaluated as

(3.59)

L 4 (S
i

Conr (AL B.) 1. '

__.Eau='gu)¢ (u)«blzz_{"_
(D) tel

$ o )

where Iy is an index set whose elements identify the transmission matrices

of
= @)

containing ¢ and dQyf/s¢d is ther resuit of a forward or reverse {malysis_-between

reference planes i and j with the €th matrix replaced by its derivative with respect to

¢. Second-order sensitivities can be derived in a similar manner as
s

ﬂ,= [(Aii)q:m B ] .5 s 7 S (360)
e Ch Dy | cel, mer, B
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\

where Iy and I, are index sets, not necessarily disjoint, identifying those matrices

which are functionﬁ of ¢ and w. Also we defined 32Q;;m/(3pdw) as the second-order

sengitivity of Q;; as if ¢ and w exist only in the ¢th and mth matrices, respectively.

a
-

342" Thevenin and Nbrton Equivalent Circuits

Using tﬂé?nethod of forward and reverse analysis, Thevenin or Norton
equivalent circuits can Ee evaluated at the ports 0[: interest. The equivalents are then
readily employed to calculate the' responses of interest, Consider the network shown
in -Fig. 3.2 where it is desired to evaluate the Theveniﬁ equivalents in a forward

7 . :
analysis and Norton equivalents in a reverse analysis. Denoting the Thevenin

. . . : . T
equivalent voltages and ir{npednnces at reference pointsiand jby Vg', Zs', V¢ and Zg,:

we have
' vi -
Vi = S' (.3-'6”
S a +Zc. .
o S7ij ’
and ' —‘,‘“
. i ;
Z - B, + 25D, | (3.62)
S a . +Zic
‘ o u‘ 87T )
where reference plane i is located towards the source with respect to j. The
sengitivities are obtained as
i ‘ i Lo i .
iy o ey + B (Ciy + B5)y Cyl Vs (3.63)
S A +7ZLC..
ij S7ij
and
. - — j a e N
i S \ A
1 29Q, [ I* @sly ;5= 25 C;) * (3.64)

1
—
At 2C

I‘@

i) =
@), =

]
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r

Performing reverse analysis and denoting Norton equivalent currents and

Il

admittances at reference planesiandjby Ipi, Yii, [Lji and Y, we have

¥
,- :
vi Cij+ YLDij - (3.66)
i
Aij + YLBij
and
' o (3.66)
L . =
I = EL =0.
Also,
_ 1 - .
-_ 1 i ] - l
(-YL @), l Y‘Ll+(YL)“’ (D;;~Yy By (3.67

(Y)), = .
e A.+Y B
ij L Tij

The use of Thevenin and Norton equivalent circuits in evaluation of

various frequency responses in branched cascaded.networks will be described in

" Section 3.4.4.

3.4.3 Branched Cascaded Circuits

Simulation and sensitivity dn.alysis of branched cascaded circuits using the
'r'n"éffabd of forward an’& reverse analysis, which was considered briefly'by Bandler et
al. (19'%'8), has becbme more important due to their applicatiqn in multiplexing
networks. Bandler, Daijavad and Zhang (1985‘8, 1985b, 1986) i(itroduced a uniﬁe;i
notation, considered arbitrary junétio_ns and showed -the effective use of the analysis
in the design of multiplexers. The multiplexing networks will be described in more
detail in Chapter 4. In this section, we consider general branched cascaded networks
. without des;::ribing details of subnetworks.
. A branched cas;:aded structure is show_'m in Fig. 33 For such a s.trlucture,

-we want to calculate reflgction coefficients at the common port and branch output
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- denvatwes are to be calculated

- the form of an arbltrary hybrld matrm must be gwen ‘To s1mphfy the structure toa

cascade of 2 ports the Junctlons are reduced to ?.-port representatmns

- Yo= = Ing 2 and denotmg the transm1351on matnx between ports 1 and 3byD

.main cascade termination, which is designated reference plane 1. Refer to the

o1

tr

_ perts as- well as branch output voltages Si'nlultaneously, first- and second-order

The baslc cdmponents of the structure are 2-port elements or 3-port

_}unctmns The 2 ports as has been mentmned bel'ore ma,y represent equwalents for

compllcated networks such as ﬁlters For the 3- port Junctlons a 3- port descnpuon in

.i,.

Conszder the 3- port Junctxon shown in Fxg 3 4 To carry the analysxs‘

H *

- through the Junctmn along the main cascade we termmate port. 3, e.g., by calculatmg G

i the eqmvalent admlttance seen at thxs port gwen by Y3=.— 13/V3 and represem: the

b

E transmxssmn matnx between ports 1 and 2’ by A, The analysns can also be carned

By

'through the ]unctmn into the branch by termmatmg port 2 e. g calculatmg‘ o ™

As an example,; suppose - the 3-por_t Junctmn is characterxzed by a hybrid G

matrix H such that.

. S, .'1l ' 1T.—.H[v , vt - (3.68)
where H= [hijlaza. ThenA (ajj)ex2 can be l‘ound from . )
e = : (3.69)
e (~1¥-! 'y, 3 ls 3J/(Y +h33)] _ '

Fer varmus forms of hybnd matnces H; the 2-port representation A or D is

evaluated ina 51m11ar manner using elements of H and the equivalent termmat:on at .

‘ port30r2

, Having reduced the j unctiona _'to 2'-port representations, the network
structure is transformed to a simple cascade of two-ports. The reference planes'in the
_ . . .

entire network are defined uniformly and nu'mbered consecutively beginning fr_orn_.the

oo . ) 4 . . ) T .
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HT oV, -
. ; .
I3
I | L2
+ 00— ———0' +
vV junction '_ Vp'
- O—.-__—_- . ‘ o AT ___.—o —
p ¢
Fig. 3.4, A 3-p6'rt junction in which ports 1 and 2 are considered along a main
cascade and gort 3 represents a channel or branch of the main cascade.
T
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\
N : . .
network of Figr3.3 whicfl consists of N sections. A typical section, e.g., the kth one,
" has a junction, n{k) céscaded‘glements oi: branch k, and & subsection along the main
cascade, as shown in Fig. 3.5. Moving qlong the main cascade first, the soux;ce port is
reference plane 2N + 2. The termination of the kth branc!‘l is called reference plane
t(k) and the branch main cascade connection (branch input port) is reference plarne

olk),k = 1,2, ... ,N, where

" 1(1)=2ZN+3
o - | "oek=vk)+nk), k=1,2,.. N . (370
'tk =ok-D+1, k=2,3,.,N. S

3.44  VariousFrequency Respons? and Sensitivity Formulas

lTl.1evenin and N_o_rtolnl equivéiénts evaluated at reference planes of interest
which were discussedl for s‘i“rpple’ca‘lseaded styt;ét.u;es, are used for branched cascaded
networks as well. By" re;duc-tion of ju-nctic-ms to 2—purts along the main cascacie,
(terminating por“t. 3 ‘of the junction) we have a simple cascaded network as shown in

. Fig. 3.2. To evaluate. branch output voltages, 3-port junctions.are reduced to 2-ports

‘l__by: t'ermii{'ating their port 2. ‘The result is-again a simple cascaded structure as
illustrat;d inFig.36. * ' - o ' -

Hav'i;lg numb'eredc'all reference planes, we use Norton equivalent .‘

admittances to evaluate admittances Y, and Yo required in reduction of junctions to

2-port representation.- As special cases '_of (3.65), we have - ’
; k atk) Cq(k'-“.l.ﬂ- (3.71)
Yo=Y, = —— k=1,2,..,N.. ’ S
. o3 L A
. . . Totkd;tik) : . o

Since YL**! = 0. To evaluate Y2*, main cascade termination must be given, e.g.,‘fo_r 'Y

short-circuit termination,

yeoyXo B g9 N - e
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transmission reference
matrix ’ plane
. vl_ -
___'_T_.-._(P____ T
) R: ‘
Ar )
——— Q=== = T+]
————— Q---0——~— r+j-i
element
Arej-1 i

A t slement
-1 n (k)
——————— o0—=-~- &
: - ' ] |
1 | —9
A *h i Sy !
! L S I
<& U T i
i
. Aax { Agx-1 ! J
2k+t 2k 2k-1
: Day .

Y : . .
Fig. 3.5 Detail of the kth section of a branched cascaded circuit showing
reference planes along the branch where t.= ttk) and 0 = o(k).
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reference
plane |

Fig. 3.6

reference
Rg )
: ;:olcmel i Q;j
(] —_ — —0—
|
|
S S
I
].
Zg :
‘ N
A .
- ]
|
1
i
; (4 -
|
- \
Sm—

~—

Thevenin and Norton equivalents at reference planes i and j where
reference plane j is in a branch. Q;; is obtained by terminating port 2 of
the junction. '
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since Y !—w,
The common-port reflection coefficient is also computed using the Norton

equivalenﬁdmittance (at the source reference plane) as
0 _ 2N +2
p =1 —'2RS YO ‘
. (3.73)
' - 2Rs Doy oy
Bon+2a

again by assuming a short-circuit main cascade termination., Notice that 2N +2 is the
" reference plane to the left of Rg, i.e., Rg has been taken into accout@ evaluation of *
S

Y #N+2, The corresponding sensitivity formula is

- ) : (B)¢D-wi¢3
.. (p0)¢=2 RS —_—

(3.74)

3

. Bz
- where BmBoy 42,1 and DmDon 4q 4.
[f the reflection coefficient at the kth branch outpuf port is to be calculated,

oA
we use Thenevin equivalent impedance at reference plane t+1. In this case, {3.62)

‘and (3.64) are specialized to

g B (3.75)
s .2 . o
and
R F1+1 ;
vty o e We?T | (3.76)
S % A ' ‘

where A®Agn +2,1+1, B™BaN+2,¢+1, and tmt(k). This is simply due to the fact that
there is no impedance to the left of reference plane 2N+2, i.e. Zg2N*2=0. The |
_corresponding output reflection coefficient is defined as

- 1+l k ‘
| ca s —R o . (3.77
‘ T g+l k'’ “
L4y Ry

k4

where R X is the load resistance at the kth channel output. Clearly, (3.76) is utilized

- inthe evaluation of (pk)g as
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- 1 k-
g™, (1-p9 (3.78)

+1 k. !
Z}s +Ry _ _

The. branch output voltage is also éomputed by utilizing the Thevenin

(p")qP =

equivalent voltage soﬁrce and impedance at reference plane t+1, For the kth branch,
- we have ) _
k oo
R . (3.79)
ARS+ZEH T

assuming a normalized excitation.at the source .port Thm can be explained by

VE = —

notlcmg that Vk is evaluated using a voltage d1v1der once Vg't! is known. Using
3. 61) and taking into account I:hat V32N+2 51 and Zs?N+2 = 0, we have
V‘“—IIA Alse o

A - B:+ AR

' . . N . .
.The approprmte reference planes are as in the aase of output reflection coefficient, ice.,

A -A2N+z 1, vk,

The ‘'second-order sensitivity of Vk mth respect to ¢ and o, i.e., 32V, /(33 dw),

R

“is obtameda\na evaluation of 8225""11(8(;: am) Substltutmg w for cp in (3.76) and -

differentiating w.r. t o, gived

- *1 4y +1, i+l '
@ty By - 25 W), - ) @, - @, @A), (3.81)
’ 3 [ A] - : A .. - :

- where double subseript ¢w denotes 32/(3¢ dw).

N ow replacing q> by w in (3.80) and dlﬁ'erentmtmg with respect mes %

V9,08, A, A A o _
(vk)¢m % ’ Vk 2 + . ' : \ /
v A ' 3.82 —

Tty ok L oul tHly el
g 4B +257) = @57, g™,

® + 7
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Using reflection coefficients at the common-port and branch output ports

(p% and pK), branch outp;.lt voltages (Vk) and the first- and second-order sensitivities

- (apo' ap* avk vk azv")

we can tabulate some other: frequency responses and thexr sensltlntxes Table 3.3

summarizes some rasponses of mterest and the correspondmg sensxtwmes.

-
)

345 An’ I’ntei‘esting Result in Se;':_sitivity Evaluation of Branched Cascaded
- Networks

11:1' reeorting a novel appteach for si'mulation and sensitivity anelysis of .

multiplexers, Bandler, Dauavad and Zhang (1986a) presented an interesting resu]t

which can be apphed to all branched cascaded networks. . They proved that for a

variable parameter at any part of t.he network the sensitivities of msertmn loss

between source and a branch output port, for all branches located between the
variable element and the mmn cascade termmatiqn, have .identical values. They also .
introduced an elegant notation for treatiﬁétérminntioné.

Considerfthe basic geometry of Fig. 3.7 in wh'ieh a "channel” is equiiraleht

to a branch. We have already discussed the reduction of 3- -port junctions to 2-port

o eqlnvnlents Denoting t.he vector contauung voltage and current. at an arb1trary

refarence plane x by u! ‘we have :

1 ' L - P (3.83)
or
‘ul = D'ua,

where 1, 2 and 3 are the port reference planes for the junctioﬁ (see Fig. 3.4) and A (D)

“is the appropriate transmission matrix. Evaluation of A (D), as discussed in

eection 3.4.3, mqukes the use of elements of the 3-port hybrid matrix H and

@384



" TABLE 3.3

3 VARIOUS FREQUENCY RESPONEES AND THEII;{ SENSITIVITIES

. Response , h Doy Expression for
Type .- Formula + Sensitivity w.r.t. ¢
. . _
rf':t.urn_loss\ ) . : - ' Py
. (commonportor =20 logm]pj .. cRe [—
- channel output port) T : P
o 4|V¥ER (vk%
transducer loss t . ~10log ( _—-) ~ cRe { —
‘ ) : ¥4 .
" T (VMR + RY v
insertion loss © ~20 log [ !——‘I sTh l cRe { o1
. 10 k k
: Ry v
o L ) N AME RS
gainslope ' . o cRg[ © cRe[ o _ “I
o | o Loyk ' vk ve?
S o Covh Vo, V9, v
- groupdelay ¥ ~Im [ ] ~Im l - - I
o | ve I, Lok (VK
. Y
20 |
T T en10
t between common port and channel koutputport -~ - - , "‘"
. - .
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equivalent termination at port 3(2). We also have

3.85)
aTul=pgTud, {

where a and B are obtained from H. For instance, for the hybrid des'cription used in

(3.68), we have

a'=(-h, h] (3.86)
" and . . o . : . .r;
BT =hy, 1. S Gen

" Terminations for the structure are treated in a unified manner. Ift denotes
a terminating reference plane (in Fig. 3.3, t could be reference plane 1, reference plane

2N + 2 or any of the branch terminations t(k)) we have -

- 3.88)
(]-I-t)T ut = c" . ( )\.

For example, for a short-circuit termination,’a terminating load of impedance Z and a

e

terﬁiinating voltage source E, we have g =[1 0T, ¢ = 0, p=[1 -Z]T, c =0 and

p'= [1 0]T,¢& = E, respectively. A termination can be transferred from orie reference’
plane to another if the transmission matrix between the two planes is-known. For
instance, from utt = Qe ubz, it is easily sﬁowﬁ'tﬁat"]-xt? and c%2in (pL‘)T ubz = chare

evaluated from .

. t t . t t . .
=, ., ef=cl, (3.89)
' 12

where Qy,., is the equivalent transmission matrix betweeh planes t; and tz. The
concept of transferring Thevenin and Norton equivalents from one reference plane to

another which was discussed before is a specialized variation of the above termination

transfer., .

- Assuming that the branch outpﬁt. port é.t, say, reference 'pléne T is of

interest, the structure is simplified as shown in'Fig 3.8. In Fig, 3.8, Qu; and Q,y are

_ the equivalent transmission matrices between the appropriate planes. Their

. . -
evaluation involves the calculation of equivalent terminations looking into the

"
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. branch from the main caeeede, i.e., transferring branch output port terminating
reiationehips to the junct.ion.and then redecing the three-port junction to two ports.
éy invokiné (3.85) at the junctio-n-in Fig.3.8, weget ' | |

) aT_Qdu‘ _ g Qu" o, ‘ (3.90)

Also, we have .
' . =éu;“l ' (3.91)
where Q, represents the equivalent trar;sniiesion matrix of the whole structure
between main cascede source and'lead terminetions | To evaluate ul, ut and us
(6 unknowns) we use (3 90) and {3.91) (3 equatmns, notmg that (3.91) yields two
relahonshxps) and three terxmnatmg condntmns at reference planes 1, vands.
Consider an ope_n-cu-cu,:.t termination at reference planert, e.g., by taking a
nonzero load impedance as pai‘t of Qg Also assume a load impedance Z for the main

. cascade and a voltage source E. We have ul = I}{Z 1]T, ut = {V* Q]T and
s = [E [T, Substituting the terminating conditions in (3.90}, we get
ro % To oyt o ‘(392)
uQullll=p Qe vV, ‘ )
: _\ihere ey is the voltage selector vector [1 0]T. Combining (3.91) with the terminating
condition at s gives . ‘
E=olQ,l [ l S (3.93)
_-Finally, elumnatmg Il between (3.92) and (3.93) results in'the branch output volt.age

as

z
<ol |
Vi= — O (394)
®7q,, e)(e Q,,[ l)
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For a short-circuit termination of the main cascade, [Z 1]T is simply

replaced by ez = [0 1]T in(3.94), since Z = 0. On the other ha_nd. for'an open- circuit

termination, we replace (Z 1]T by e;. (notice that [Z 1]T = Z[1 (1/2)jT and Z—w for -

the open-circuit),

'Evalution of the branch output voltage and the corresponding insertion loss

using (3.94) is an alternative method o what was described in Section 3.4.4. Using

(3.94) we cg,n also show an mterestmg property for t.ha msemon loss sensltwmes

From Table 3.3 we know that the sensﬂ:thy of insertion loss between the source and

t.he branch output port t is d1rectly proportmnal to (Vf-)¢ Ve, Now for a vanable ¢ '

located between the branch considered and the source (i.e., mmde Q,y) Qxl and Qir

are mdependent of }. Applymg the mathematical property
a - 1 éx 1&
be - x 3 - ¢ Jp
ifaand b are independent of ¢, and using (3.94), we have

‘ ' , Z
. T .
vy, Q0 l ]

(3.95)

v*

COUNE

It is clear that Q1 and (Qq))y are mdependent. of ¢, ie., for aIl other branches to the

right of the branch conmdered the insertion loss sensxl:nnty w.r.t. the same ¢, has the

' same value An example clanﬁes the resuit of t.he above argument For a varighle.in

section N of the?tructure the msertmn Ioss (between source and branch output port)
for branches N-1,N-2,.. l have identical sensitivities. Sxm:larly, fora vanable in
_.section N —1,the msertxon loss sensmvmes corredpondmg to bmnches N-2,. lare
' 1dentu:al.

The result reported in this section leads to considerable Icompumti'onal

savihg in evaluation of insertion loss sensitivities for branched cascaded networks.

H’
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; . 35 JCONCLUDING REMARKS
" In this chapter we used gsimple algebraic rr:anipuletion of vectors and |

matnces to develop a umfied approach for 5ensxt1v1ty analysis of a general class of

- networks namely, the branched cascaded structures. We' pronded a general scheme

‘ and usefu_l formulas t_.o eval)mfe the unterminated two'-port equivalent’s and their
Lo | . e - L ) ’
' first- and second- order sensitivities for complicated subnetworks. This allows us to

conduct the sensitivity‘ analysis of subnetworks in‘side a i:ascaded structure in an

’ mdependent fashlon Once the transmission matnces of all subnetworks and their

denvahves w.r.t. poesxble vanables in them are evaluated an organized and elegant

-method is used to perform sunulatmn and sens:tlwty analysis of 1arge branched

cascaded structl_u'es. .'.. : ] - ;

‘ bur method of dealing with the sensit‘ivit.i'esris straightforward since the
. ' i
use of the ad;omt network concept has been a.vmded The method is apphcable to

-, ¢

P almostany complex lmear mrcme structure in the frequency domain.

| We pronded the proof ibr a' recent and general senmthty formula for
loséless rechrocal 2-ports and derwed an mterestmg result for insertion loss
. sensmvmes in branched cascaded structures |

| The lmportance of efﬁcmnt sen31t1v1ty analysus becomes ev:dent when the
performance of modem gradJent-based optnmz.atlon algonthme are compared w1th o

[

'theslow non- gradxentolder methods ' o ,‘, e
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4 R
DESIGN OF MULTIPLEXING NETWORKS.

L S
»

4.1 INTRODUCTION 7
The desxgn of contaguous band mult:plexers consxstmg of multl-coupled

cavity ﬁlbers dxstnbuted along a waveguidc mamfo]d was a problem of mgmﬁcant

T..

theo mteres for veral years (Atm 1974 M.H. Chen Assal and Mahle 1976),

.
however, the manufactunng of such structures with more than ﬁve channels did not

appear to be feasible: Recently, the subject has turned into an 1mportant development

l
area in mxcrowa(re ehgineering practu:e due to report£ by Ieadmg manufacturers of

successful production of 12-channel cpnt:guous band multxplexers for satellite
0 3 R R M . ., ‘
applications. The works by Tong et al. (1982,1984) of ComBev, M.H. Chen (1983,

1985} of TRW, Egri, Wzlhqms and Atia (1983) of COMSAT Holme (1984) of Ford

A

Aerospace, and Nomoto (1984) of NHK (Jepan) can be referred to. The employment q{J

optimization techmques to d.au?nmnq the b_est multiplexer parameters has been an
indispensable part of the design procedufes:epbrtad‘. The use of a powerful gradient-
based minimax optumzatmn t.echmque (Bandler, Chen, Daijavad and Kellermann
19&4 Bandler, Kellermann and Madsen 1985a, Bandler, Daijavad and Zharig 1986)

- has reduced sxgmﬁcantly the CPU time required in the desxgn procedure.

Among the many types of contiguous band wavegmde mult.xplexers we |

only consider the manifold tyhs in this t.hesxs M.H. Chen (1985) has discussed the
advnntages of this kind of multlplexer compared to the older types suqlp as common
junction multiplexers or eirculator coupled structures. Only the manifold type can

provide a large number of channels without performance degradation. The équi-

66
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valent network model of a manifold type multiplexer falls into the category of

-
LY

branched cascaded structures.
. [

Evaluation of the exact sensitivities for the mulitplexer structure is based

on the sensitivity analysis ofin'dividu:‘ll filters using the methods describe;i for 2-;;6:15
in Chapter 3 and an application of tl}e branche;i cascaded network sensil.ivit.y
analysis, also covered in Chapter 3.

In this chapter we descrlbe details of a multiplexer structure, ie., the
subnetworks ._ipv_olved. We discuss models for Fitérs, junctions and possible nonideal
effects. A minima‘x formulatio; of passible optimization problems is presented and a ‘
par_ticular imp.l;ementat.ion is described in detail. Fina-ll_v, specific multiplexer design
examples- .are solved which effectively demonstrate the efficiency of the method of

analysis and the optimization ptocedure, reflected in the low CPU times required.

.42 BASIC COMPONENTS OF A MULTIPLEXER STRUCTURE

v

421 The Overall Configuration
The structure used for a multiplexer ihrodghout this chapter can be
utilized in both contiguous and noncontiguous band'multiplexer designs depending on

J
the way in which performance spectﬁcanons aré defined. The possible equivalent

circuit of a,mulnplexer is 1llustrated in th 4.1, This is a specialization of the geneml
branched ¢ascaded network of Fig. 3.3 hence the sensitivity analysis and formulas in

Chapter3 are readJ} apphcable jl\ branch (channel) cunsxsts of a coupled-cavity

- filter, together‘ with input-output transformers, and an impedance inverter. A wave-

guide section separates two adjacent channels, and the junction is the equivalent
. .

circuit modetl for the physical junction between channel filters and the manifold. The

main cascade is short-circuited and the responses of interest are common-port return

/
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loss, channel output retur:n loss, insertio.n loss, gain-slope and group delay between
common-port and channel output ports.

.‘ A ty]'ai.cal‘ ;)ptimization problem could be finding parameters for which
cOmmon'-port.: return loss and individual channel insertion loases; satisfy the
speciﬁcations shown in Fig. 4.2 (3-channel multipiexef).

To apply the general method of Chapter 3 for simulzation and sensitivity
analysis, the subnetworks, namely, channel. filters, waveguide spaci‘ngs. and
junctions must be represented by 2-port transmission matrices. We deal with
.sufgnetworks in the following sections.

4..2.2 Multi-Coupled Cavity Filters .

- The application of multi-coupled cavity microwave filters in modern
. communication systems has received increasing attention since the early 70's.
Williams (1970) ot: COMSAT‘constructed a fourth-order elliptic function filter, in
which two circular waveguide cavitigs, each excited by two orthogonal TE;;| modes, -
were coupled together by a c.ross' slot. Atia and Willinn;s (1971,1972) introduced the
theory of narrowband coupled cavities and described a synthesis procedure. More
recent Advances have been reported by Cumefon (1982) and Kudaia (1982). "l‘ypical
structures for longitudinal dual-moede cavity filberg are illustrated in Fig. 4.3.

| In t:“ecent years, the growing ;'ariety and complexity of the design and
manufacture of these filters has ;lecessitated the eu;ploymen}. of modern computer-
a‘jded design techniques. The traditional approach to.an analytical solution becomgs
cumbersome or Ainappropriate when agsynchronous tuning xjealizgng asymmet;ic

[
characteristics of nonminimum phase designs necessary to meet tight amplitude and

delay specifications are of interest. To facilitate the CAD approach, Bandler, Chen -

~ \
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Fig. 4.3
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Typical structures for longitudinal dual-mode cavity filters.

(Reproduced from Atia and Williams 1971).
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-

Dauavad (1986&) descnbed a systemanc and efﬁcxent approach to the sxmulatlon and
exact sens:twnty evnluatlon of narrowband multx coupled cawty filters. The approach

is based on the reductmn ofa network described by its impedance matrix to a 2-port

thodel.

g

’ In Chapter 3, where 2-ports were considered in detail, we emphasized that

starting with the impedance matrix instead of the admittance matrix description

_l_eads to. dual formulas. Working ‘with the impedance matrix, we first obtain the

2-port. short-circuit admittance matrix and then calculate the-‘transmission. matrix
required io-the cascaded analysis. In this cﬁapter we describe _the i‘:mlpedance matrix’
meodel and ref'er t,o'Chepter Jor t-he work by Bandler, Chen and Daijavad (1986a) for: "
reduction to 2-porte as evell as eensitivity onalysis,

. The symmetrlcal meedance matrix for a narrowband lumped migdel of an

untermmated filter is given by .
(e ' (4.1)
=j(sl + M) +rl )

where 1 denotes an nXn identity matrix and s is the normalized frequency variable

given by

'Seﬁ(i ﬁ)_r_"(i 5) | ' (4.2)
. @, w Af I'o £/ &

wp(lo) and Aw(Af being the synchronously tuneg cavity resonant frequency and the

bandwidth parameter, respectively. Notice that we could use either frequency.or

angular frequency because of the normalization, We assume uniform digsipatien for

_.all cavities indicated by parameter r where

u

. o (4.3)
AwQ,. ' ¢ B
Qr representmg the unloaded Q-factor. In (4.1), M is the couplmg matrix whose (a,b)

£
element represents the normalized coupling between the ath and bth cavities, as

A
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“illustrated in Fig. 4.4, and the diagonal entries My, represent the deviations from

synchronous tuning. Element Mnh does not necessarily correSpond to a desirable and

des1gnab!e couplmg It may as well represent a stray coupling which is excluded from

the nommal electrical equivalent cireuit. Dlspersmn effects on the filter are mode]led‘

by both waveguide dispersion and dispersion effects-on cnuplmgs, the latter causing a

frequency dependent M matrix. 'We now describe the dispersion effects in detail to

. ’ : s
complete the discussion on multi- coupled cavity filters,

Assume circular cavities for the filters with the diameter d. For a TE),
mode (the dominant. mode ;n cxrcular waveguides), Ehe cut-off wavelength is 1.706d

(or 3.41r, for a radius r). 'I‘he filter cut-off frequency is then cnlculated as

V.

w0 ) " T aa

¢ 1.706d -

" where vq is the veIocity of light in free space. Superscript.'F is used to distinguish the

filter cut-off frequency i'rom the cut-off frequency for the waveguide manifold in @ the

) {
multiplexer structure. At an operatmg frequency f the gulde wavelength for the

~

ﬁl_ter is calculated as —
\Fo 0 ] Lo (4.5)

BV — (Y

Similarly, the guide wavelengths corresponding to the band edges of the filter are

obtained as

P | (4.6u)

f ? -

VA

and v

\ = Yo (4.6b)

Teh T G

;(fh) — (Y

where ' < W
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.. Af - . N
fe= fo-- "'2"' ' L - {4.7a)
and
N Af ’ , ;
£, i;o + 7 (4.7b)
The guide wavelength cbrresponding to the filter resonant frequency is
defined as -
- (4.8)
| Ago—(hsh-i-hge)m N _ N
and corresponding to the bandwidth parameter, we have .
' Ay, - | L (49
N _ AJ\8 A o A gh :
The impedance matrix Z is now defined as .
| Z=jd 1+M+rl . W0
where Ap is the normalized wavelength parameter given by
.7 -
F
- 20 =2 (4.11)
n T AL
. 4

Notice the analogy between this case and the nondispersive model, where for
1 . 1

narrowband applications, the af)prdximate equivalence
' Vg

.e f‘l(,‘:’__ ﬁ)z Ho-a - Rty
T Aw W, w Aw

is often conveniently used. Coimpare (;t.l) with (4.10} and (4.llj with (4.12).
So far, the waveguide dispersion effects have been included based on
classical textbook mnt.eriai (see, for example, Matthaei, Young aﬁd -'Jones? 1964).
Dispe;'sionrefrect.s on the coupling matrix a're now considered. An element of .the
* .. coupling matrix, n:xmely Mab, is modified as (CﬁmDev, 1983)
. - \F Ky -
M, M, (h_x_) . . (4.&3)

g0
where



>

1,  ifM isscrew coupled,

K= (=1, if M,, is iris coupled, L (414

0, ifa = b. .
This concludes the formulétion of the impeda'nce matrix for the network equivalent of

a lossy and. dispersive mult1 coupled cavxty filter. quh Z, the 2-port short-cxrcu;t

admittance matnx yof the network equwalent for the ﬁlter using a similar approach

* asin Chapter 3, is evaluated as o 3\ - -
1 -"’u _ ym] [ ] (4.15)
Yo1. 95 S

" where p1, q; and q, are elements of vectors p and q obtained from solving :
. o J Zp ﬁ'el . (4.16a)
.and A .
| = (4.16b)

Zq =e .

Since matrix Z is gyrﬁmetrical, p and q also provide complete information for
evaluation of first-order sensitivities, Recall that for a general Z matrix, similar to a
-greneral Y matrix, 4 systems of équﬁtions are to be solv-e'ti (réf;ar bo Section 3.2.1).

Given the y matrix, the transmission matrix for the filter 2-port
equivalent, which is required iff the Mdm analysis, i.s;, evaluated as

A v AB] -1 Yz ‘ Il -1 q, 1 @.17)

CD =

2
In¥n - Yuyzl n Y% 'ea,-a; by

e ST
423 Waveguide Manifold

_ Ina rectangular waveguide, for a TE g mode (the dominant mode) the cut-
off wavelength is 2a, where a is the manifold width. The cut-off frequency is then

calculated as '

(4.18)
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where; as in Section 4.2.2, vp denotes the velocity of light in free space. The guide

' ¢ wavelength, at an operating frequency f, is calculated as

om b . (4.19)
8 ViE_g o
. . <
and the phase constant f§'is given hy
- g |
. p=—. (4.20)
g

Faor a wavéguilde section with a characteristic impedance Zg and length ¢,
! .

the transmission matrix s given by .

: 3 - . cws9  jZ sin® @a1)
A: P 9 ' ,
[Ji‘m_ c0sB
ZO .
where _ ,

4.2.4 Junctions
Consider the network equivdlent model of the physical junction between

channel filters ahd the‘waveguide manifold, as illustrated in Fig. 4.1. A series

‘ '
admittance Y, and two equal shunt admittances Y, constitute the junction model.

Recailing the discussions in Section 3.4.3 on the reduction of general 3-port jum':.fionsA

(Fig. 3.4) to 2-ports with the terminating port given;‘the.tra_ansmission matrix for the

junction is evaluated as . ' _ : .ot i
- | _/l [ Y+Y, 1 l (4.23)
‘ Yloy vy+v?  va+y
. ] a . a a
where Y = Y.+ Y3,and port 3 is terminated by Y3. Similarly, we have
. Y+Y ' 1 (4.24)

N .

L
D= —
Y[Y(Y +YI+Y Y Y+Y
. a c a c a



where Y = Y, + Y9, and port 2 is terminated by Yz. In either case, the Jjunction model
is'complete when Y, and Y, are given.

By considering the equivalent circuit for a T-junction that connects two
rectangular waveguides through a slot in Marcuvitz (1951) and experimental results,

M.H. Chen et al. (1976) suggested the following formulas

3

Y _ _ic f, (4.25)
Yo A & |
and ) '
Yo _ S (4.261
Y, L

v ¥
0 .
CFV - Ve~
where Yo = 1/Z; is the inverse of the characteristic impedance, and f, and vg are as
‘defined in Section 4.2.3. Chen et al. (1976) recommended the values C. = 20 and

Cmm = - 1.0 based on their experiments. Note that Ccr = 29 can be used when vyif is

given in inches, ' N

/

] - : ©
42.5 Input-Output Transformers, Impedance [nverters and Summarizing Tables
Referring to Fig. 4.1, input and output transformers and the irﬁpedance
inverters are the only components of the multtip\lexer structure, which have not been
- . / a '

'discussed so far. The transmissign matrix descriptior-ofan 1:n input transformer, an

ny:1 output transformer and an impedance inverter are given by

1
N - 0 ' ’ ' )
: A= [ " I R BENCE 1
‘ 0 ni )
o B . .
i n, Ry . i

. A= [ o 1 l : / (428)
- . n - .t
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i

0 j ‘

.A=[>_-’l, (4.29)
j o .o

respegtively, using basic definitions.

1

¢

Having descnbed the 1nd1v1dual components of the multxplexer structure,

we summar:ze all the transmission matrices mvolved and their sensitivities with . ‘o

"

respect to televanﬁ parameterg and frequen_cy in Tables 4.1 and 4.2; Recall from

. s . . ) L . 7 .
Chapter 3, that-for a 3-port junction the' transtﬁission mntrix is denoted by A or D
dependmg on the termmatmg port. The branched cascaded zmaly.sns of Chnpter 3 is T~

now readxly appllcable

_ . . , X . ) | ' o
, 1 ! - ! *
' B T o . N : . - . i '

43 MULTIPLEXER OPTIMIZATION : - o '

o

PO U S T o
A wide range of possible multiplexer optlmtzauon pmblems can be
J. I i

formqlated arid solved by appropriately deﬁnmg spemﬁcatlons on various frgquency

v

responaes of interest. The branched cascaded analys;s of Chapter3 w*th or wllhout
I .
exact sensxt:wtles is used in conjunction with the ongmal grndxent Based mxmmax o

! ’ -‘l'-‘_

algonthm (Bandler Ohen Daqavad and Kellermann 1984 Bandler Kellermann nnd
[ I
\‘Iadsen 1985&) or with the modified approxlma.te gradlent. algorithm (Bandler Chen
l i
Dauavad and Madsen, 1986) All design parameters of interest, as related to the s

individual components of the multipl.exer structure described in this chapter, can be _ \

¥ ] » o

'directly optimized. For instance, based on specifications on the common port return

loss and individual channel insertion losses, waveguide spacing, filter coupling

i
i

' parameters and input-output transformer ratios may be optimized.

n - ’ u

N
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and -
, 0 i ) '
- a=[0 7). L w2
, : io ) .

respectively, using basic definitions. -

Having described the individual components of the multiplexer structure,
.we summs;rize all the transmission matrices involved ;.nd their sensitivities with
.- respect to relevant parameters and frequency in Tables4.1 and 4.2. Recall from
Chapter 3, that for a-3-port junction the fransmission matrix is denoted by A or D

depending on the terminating port. The branched cascaded analysis of Chapter3 is -

now readily applicable.

4.3 MULTIPLEXER OPTIMIZATION =

A wide range of possible multiplexer optimization problems can be
formulated and solved by appropriately deﬁning specifications on various frequéncy
responses of interest. The branched cascaded analysis of Chapter 3 wi.t.h or without
exact sensitivities is used in conjunction with the original gradient-based minimax
algor'ithm {Bandler, Chen, Daijavad and Kellerrnnr'm 1984; Bandler, Kellermar;n and
Madsen 1985a) or with the modified approximate gradient‘algc;rithm {(Bandler, Chen,
Daijavad a-nd Madsen, 1986). VA_ll design parameters of interest, as related to the
individual components of the multiplexer .structurle described in this chapter, can be’

&4
directly optimized. For instance, based on’—speciﬁcatigﬁs on the commeon port return

’

loss and individual channel insertion lisses, waveguide spacing, filter coupling

parameters and input-output transformer ratios may be optimized.

.
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TABLE 4.1

- TRANSMISSION MATRICES FOR SUBNETWORKS
IN THE MULTIPLEXER OF FIG.-4.1

Transmission Matrix

Subnetwork ; .
Expression Notation ’
' n, 0
output transformer 2 A
ng:1
0 —
fy
. ) ’ _q —_— 1 . .
multi-coupled 1 - 'n A

- cavity filter'

. ' - 1
input transformer — 0

T Ly n, A

\0 n,
series junction ,
terminated at port 3 "1 Y+y, 1 A
by Y3, (Y =Y.+ Y3) Il 2 T
) : kZYn‘-[,+ Ya .Y.+Ya
seriesjunction . CL ' -
terminated at port 2 1 -Y+ -YC- o 1 ‘b
by Yo, (Y=Yg+Y2) v .
YUY, +Y)+Y Y Y+Y

v
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TABLE 4.1 {continued) |

Transmission Matrix
Subnetwork

Expression Notation

v

cos® ] Z0 sinf

waveguide spacing™ A
' i sin®
cosB
ZO ) [y
T pi(qy) is the ith element of vector p(q-) which is the solution of Zp = e (Zq =

ep), where Z = j(sl + M) + rl and s = {(wy/Aw)(w/wg - wy/w) for a filter with
coupling matrix M centered at wg and having a bandwidth parameter Aw and
a uniform cavity dissipation parﬁmeter r. .

tt “a waveguide section has a characteristic impedance Zg and 8 = B¢, § = 2Zn/Ag,
where £ is the secfjon length and }g is the guide wavelength. = i
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r
TABLE 4.2
FIRST ORDER SENSITIVITIES OF THE TRANS'VIISSION o
MATRICES IN TABLE 4.1 :
. Subnetwork  Identificatipn Sensitivitirof the
. o . Transmission Matrix
“ ' . ' =1 ‘0
.output . A .0 ‘
dA. . .
- transformer . — ‘ 1
. B an‘z o . - _AO’ — _2
T
multi-coupled : aLA ) o | .+
cavity filter - . — . 2___ (p ay+ 4P VA +
M, B T
_ je l 9% s 0 ]
o S ©oay; Lpaag +a,pp -9, g, R ppy )
T oA %'(Qr.‘ <l 0y
S 6_ 1P QA+ l T T )
U S - lpa q+qpp—2q1pq PP
) . - a “ - k . 1 ‘.
input transformer ] A S e 0
“ anl - l
.. —— 0. 1
seriesjunction . =~ - E T ~ -
. terminatedat < o8 dEY, YLK
port3™ . - _ 9’ o 3 e ‘3¢' l _
o ' AA T L
G AU (Y ), K+ (V) K,
r a‘A- . o T -'\ .-‘ ) g -' y . .-
W T _ o SYS + Yc)u Kl‘+ '(Yn)g'KZ
w rK/
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TABLE 4.2 (continued)

Subnetwork Identiﬂcatioﬁ Sensitivity of the
. Transmission Matrix
series junction '-a D ¢ .
termingted at. C — €Y (Y) L
D e Y j |
e '1).6, { .u)q’(L] + L)+ (Yc)¢L3
3D ' ' o
.- (Y,+Y) L, +(Y) L.
Lodw - 2 aw 1 aw 2
+ (Y, L,
wavéguide 4’ . [Fein® i%ycos8 :
spacing —_ Bl jcosb
: aé , ——"  —ginf
ZO
v ’ T
. . - s5in@ jZOéusB
" - "BA .o L
e — € j cost .
. ‘ Jw m“’ == —sinB
' 0
S T'-l‘ 2ifaz=b
crT I'Ha;b .
‘H‘ K‘ 1 -Ya 1 I - 1 1 0.
Ty r T Y20+ 1
" v & o - $ :
: . Yooy 1 0.0y 1 L0
Mh=-Tlvy YI'L‘-’“_'?[YH' I'I'L3=?|Y+Y 0
. Y a.c a. . ¢ . B . a
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4.3.1 _ Formulation of the Problem O,

From the possible responses tabulated in Table 3.3, considera pomrnon-port'

response, namely, the common port return loss and a channel dependent rerspOnse,

namely, the insertion loss. Typical speciﬁcations for optimum performance.of con-

" tiguous multiplexers in satellite communicabion applications require the common

.

port return loss to be above a certam value e.g. 20 dB over the entu‘e commumcatlon

bnnd lndw:dual channels are reqmred to have ingertion losses below a value of, say

. 1dB, in thexr pass bands and above a value of say. 30dB “in their stop-bonds 'In

general we can formulate an e.pproprmte ophmxzatlon problem as follows.

The objective functxon to be mmlmlzed isgivenby .

L F@=mesog@), C o LT @3
o FE JeJ o T S

wherecb isa vecbor of desxgn parameters (wavegmde spe.cmgs, couplmgs etc ) and

{1 2,...,m}is an index set. The minimax functmne f (q>) jGJ can be of the forln

.
Fa "o

Wuk(m)(F(cb co) Sy (co)) B - t4.3_1_')‘
"""u(w)(F (4) m) S (m)) ; .,.’_. ,‘ .’..(4..32‘)
"".l‘w (m)(F2(¢ ml-.s (m',)) o o 3y -
] ' J}w)(Fz(nb m}-s (m‘)) | | L ‘.(4‘3'4)

N where 'ng((p; wy) is the msertlon loss for the kth channel at the ith frequency. -
U F2 (tb mll is the return Ioss at. the common port at the 1th frequency, SUkl(mJ(Sml(m.)) o
s the upper (lower) spec1ﬁcatmn on msertlon loss of the-kth channel at the 1th

- frequency, Su2(mi)(SL2(m1)) is the upper (lower) spec1ﬁcthon on the return loss at 1th

fretluency. and wUkl kal,-wU'f-’ wL2 are the arb:trary user- chosen nonnegatlve )

o we:ghtmg factors _



A ‘typicnl example of the sp_eciﬁcat_ions that can be ‘handled for a five-
. -

charinel multiplexer is shown in Fig. 4.5. Frequently, linear constant or piecewise-

linear. constant specifications, such as the ones shown in Fig. 4.2 are to be met.

o
-

43.2 The Overall Structure of a Computer Implementation

" The sensrtwlty analysis descnbed in Chapter 3 was specmllzed to the
multiplexer structure and the models dlscussed in thlS chnpter were utlllzed to

develop a highly efficient, state- of‘-the art computer program packnge in Fortran for

simulgtion, sensmwty analysis and optlmuatlon Havmg descnbed the general

_approach for sirmﬂgt;m and sen51t1v1ty anaysis of branched- cascaded structures we

-discuss the details of e‘p_e.rtxcular implementation in Section 4.3.3. It should be

enlphasl‘zed 'l:he.t this ’implementation is highly speclalized to the multiplexer

structure and the generalxty of the approach in Chapter 3 has been sacrificed. In this

*

sectwn we present the hlgh leVel overa® structure of the xmplementatmn The

* Options of the ODtimiration Mode -~ ‘: ) L

computer program developed was tested in close cooperatmn with members ol’

I

'ComDev (1983), du'ectly mvolved in multlplexer desrgn and postproduction tumng

-Functmnal blocks of the package are, shown in F:g 4.6, which 1llustrates the

user-eelected options as related to the requ1red mode of operatxon. .

4

If the mult1plexer opt1mrzmon optron rs “selected, t.hree modes of

.

optrmxzatmn are allowed for namely, only return loss optlmlzatlon onl'y msertlon '

loss opt1mlzat10n or simultaneous return and. insertion loss optlmi‘zaton, all at-

user- deﬁned sets of frequency pomts Lower upper, ‘both or no specifications on a

response of mterest ata certain frequency pomt can be handled.
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&8

gw‘ ng Rglated'to the Selection of Optimiration Variables
. ‘The packago allows a flexible choice of optimization variables. In general,

all parameters are candidates for optimization variables, however, the user can

declare any of the parameters to be fixed. | —

&

Options Related to the Modgl of the Multiplexer . -

“The pac]{ug'o 'allo‘\fr'é. the user to select.the junctions to be ideal (no jum’:tiou -

' ‘susceptances) or nonideal and the ﬁlters to be lossless or lossy, dispersive or non- .

. dispersive,

.

: 43.3 Detaxled Descnptxon of an Implementatmn for Response and Sensn:thy

Evaluatlon C

r éj

' Here we describe-the'details of é. ;ié.rticuldr.fmolementation for evaluating

reflection coeﬁ'icxent at the common port and channel output voltages as well as thelr

. ﬁrst-order senmthtxes w1th respect to ﬁlter couphngs mput output transformer_‘

Table 3.3 therformulas for calculatmg common‘port return loss and channel insertion '_

\
. v "

losses and thexr senmtw:tles usmg the reﬂectmn coefﬁclent and chnnnel Uuput‘

Y

vo—[tages and the:r correspondmgﬂenmtxwtles are expl1c1tly gwen

Y

i -—;;1,2 .. N, terminating at an outpit. load conductance Gpi. Also, assume a
. normatirgd excitation with a source resistance Rs. Multi-coupled cavity filters are -

assumed to b of the same order'n for all channels..

Assume that there are N c‘he_mne.ls (as sl'_lown in Fig. 4.1) with channel i,

-

_ ratios and wavegu:de secﬁon Iengths in the multxplexer structure of Fig. 4.1, In



- used in'sensitivity calculations as well.

39

The following ‘step-by-step approach ig designed to calculate all the
* required responses and sensxtmtxes ata smgle frcquency f. Therefore, the u.erutmn

I
on frequency is external to the steps below,

steQ 1 ' . . . - ‘nir .
Wé cé-lqulat_e the },ﬁort-circuit admittance matrix for the filters in all

channels by solving two éystefns of eduation.s, a ;otdl of N { mes: The solutions will be

,

The sytems of equations to be solved are
o o lce il < - 435
o ' ) z-‘p - l_' l_-]t 2'..”1'-\{ . -
-and
Z.:qi-= e, i=1 ,:'2, N (4.35b)
‘where . _
J(s 1+ M‘) +r1, ﬁdispem'dn ianot included, g
" Z = ‘ . - (4.38)
! J(A‘ 1 +M ) -+- r 1 . if dispersion mmc]uded ‘
'(see (4.18), (4.1) and (4.10)). For the sake of sxmphc:ty, subscnpt. i for matrix Z and

?
' _superscnpt i-for all other quantltles whu:h is used to dlstmgu:sh different channels )

" will be omxt.ted from here on. However it should be clear that all the quantm '

defined in the followmg steps are channel dependent w:th all the calculatlons d_

A

everychannel separately N $ |
IR ‘\

Repeating (4.15) for convenience, we have the short-circuit admittance

matrix
. , el ‘
. [ Yu Y2 ] [pl - (4.37)
y = : = . .
q, 9,

Yo1 Y2



and Y, (seé (4.25)) and (4.26)), respectively, we can cqmbine Ye and‘Yi',, as

90

. combinations as seen in the waveguide manifold, for'all channels.

«  For each: qhahnel;'th-e s.c. édmittam_:e matrix y of (4.37) i modified to

include the input and output transformer ratios é,s '
- o n? "m,n ,

. , MY MYy

y — B . B "‘ 2 g

MMV MY

{4.38)

sl
’

This modiﬁba:iion is illustrated §¢;hemétically~-‘by Fig. 4.7. Next, we find the input
S t : - . . B .
admittance Y, of the filter terminated by & load conductanc@ Gy, as

4 . 2
B O 2 e
..- . y22 + GL

4.39)

(sée.E‘ig. 4.8). Taking the effect of the impedance inverter into account, we assign as . -

per Fig. 4.9

For a junction modelled by the complex:series and shunt adinittzi{lces Yc- N

"

Y=Y. +Y‘.' T e : ..‘ (4.41)
in e’ - ) T :

Y e UYL T e
in- in* - C

In this step, we calculate the transmission matrices of filter-junction .

and calculate the transmission niatrix of the filter-junction combination, namely Ty, *

We now calculate the transmission matrices of all wave‘gu;'dé spﬁéings (one-

. waveguide section per channel).

as . .
: RS U P T L (a2
o Y ey yay? vev [ o
. o . . a a, a), | .
(see (4.23) and Fig. 4.10). - T o
Step3

. -
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Yir Y2
YIn - ; ' GL

Y21 Y22

a

-

-admittance for a filter terminated by conductance G, after

Fig.48  In
ificlusion of “1 and ns as mdlcat,ed by Fig. 4.7.
é
A
s ) . h ’
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P

- Fig. 4.9 Effect of an impedance inverteron Y, of Fig. 4.8.
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<
. k]

-Recalling (4.21), for a waveguidg sp'qcing‘of, length & nr;d characteristic

impedaqce Zy, the transﬁlission matrix denoted by Tg is 53%1 by
cosBe . §Zsin BE)

T = i

, (4.43)
- ’ g ._
Z,sin B

cos.D.f N
where f is calculated at the operating frequency fusing (4.20), (4. 19) and (4.18),
Step 4

After evaluation of T¢ and Ty for each Section, we find the transmission

.matrix of a section, namely T, from (éee Fig. 4.11) .
: T=T,T, : ' . (444
g . . . B
Hence, we have T, i = 1,2,...,N. -
A The multiplexer structure is'now a simple cascade of N sections,’wherg each .
section is represented by its T matrix (see Fig. 4.12).
To prepare for-a complete sensitivity analysis, all possible products of

adjacent section matrices are needed, i.e., all products shown in Fig 4.13 should be

‘-calculated. ‘Denoting the products byAj;, we evaluate

Ti-lTi-z"Tj" ifi>)
T ‘ = . vor s . 45
. t Ay = Ly i ifi=j : ‘ (4.45)
not defined , - ifi<j,

forj=1,2,...,Nandi=1,2,...,N+1. B

Computationally inten'sive caleulation of all possible productd, as opposed‘
to the simple forward t.md reverse analysis, is required in evaluating the sens-itivities
of chanﬁel- output volt.ages with respect to variables located between the
;::orresponding channels ar_xdithe short-circﬁit_ termination. [fonly the responses were

to be evaluated (common port reflection coefficient and channel output voltages), a

© reverse analysis would be sufficient, i.e.,only Ay ;,i = 1,2,...,N+1, were needed.

.
-

-u‘. ’
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Fig.4.11  Cascade combination of a filter-junction and waveguide spacing forming
- acomplete section. . L ' o
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Ty Ty TeeTy o T Ty

‘ F1g 4.13 All the possible products of adjacent séction matrices as defined by’(4.45).
) ‘ _ o

-

e



- 99

Sfeg 5_

2]
u

- "The reflection coefficient at the common port and channel.output voltages

‘arecaldlt;zlated at this stage. ' ' st
"- d .‘REferfihg t’-‘-".Fig- 4-1“4_, we have

| 4 = ¢ Al.N+1 2

B . in e AI.N+1 .
and’ . . L N
o L Y

where el [1 0T, eg = [0 1}'1' Ay, N+1 was calculated in Step 4.

To evaluate’ the output voltage for the ith channel we sxmpley the ~

"

v

®*

¥

'mult.iplex‘er structure as shown in Fzg 4. 15 where VS is the voltage excitation and 'l‘n-

1s the transm1351on matmx for a mu1t1 -cavity filter mcludmg input and putput

transformera After s1tane algebraxc mampulatxorb we get

b}

10

. >
e, Y' TlAuezvs .
vis -
( . 1,0 0y 1 0 ( - Rg | -
Lyl *-i jo G'L- 1] %1A% A’}'N.Hef_
: ' . /
- Recali:ng{4 17), we have . S &
n . . ‘.‘ l i -1 . ‘ y22 ) 1.
) qu_z-—-—- , ._' R ],
. Yoo Yy yll?'zz‘f(yzx) Yn-to ¢
and V(i becomes | : e .
e L _';'j'j[Y 1T A, e, Vg e
Vie ———lras
SN TR ES N B R
( - - =Y 3’2:)([1 R ]Al‘{+l 2)
Y . .
]
. o
' . ' 3

Ty

(4.48)



.. Fig.4.14

.

Simplified 'multipléxer'stl:ucture; for the calculatio
reflection coefficient. .
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Note that tha superscnpt i, needed for yy;’, yzl cya2', Y, Y and G, is omxt.ted for

31mp11c1ty

' §‘ gegﬁ o
The remaining steps are requlreq‘ to evaluate the sen51tw1t1es of the
responses calculated in Step 5.

. InStep 6 we calculate the derivati@és of individual transmission matrices T

"(a complete sectlon) with respect to vanables in them The pnssxble variables are

ﬁIter couplmgs cav1ty resonant f'requenmes (contro]!ed by dlagonal elements of the
couphng matrix M). input-output traq;former ratios and wavegu_xde spacings.

—. .. From (4.44), we have

oT (ng)T', .'f‘i’?{Mnba"l»“z} (4.51)

ad 3 o
(&), e
AT LA .
Recalling'l‘able@.z', or simply differentiating (4.43), we'have =
i —sin B¢ jZ;cos pe

e Sl @
88 g B jcospé —smﬁ& C :
L 0
- kTo calculate daTgdad, we need to have 3¥n/ad. Usmg (4. 41) and (4.42) and
‘ ' .
knowmg that Yaand Y, are mdependent of <b, we have
. an" _1 3y, o
: 4.53
3(;, Y2 ad l ¢G{Mnh’nl’n2} : '( )'

Now BYm/a(b is evaluat.ed using (4. 39) and recalhng (4 40) as ‘ . ‘//‘_

P

aYin___ vz |28 § ol 2.3'21 (ay21)'+( Yo )(a?’m)] S (4.54)
T T Ml e T T ST ©
-a¢_ - Mlaent y 4G 9 Yo +G /30

Thxs means that the sensitivities of matrix y’ are needed. From (4.38), we have |

)
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-
a9y Y9y
n — n n, ——
g dd -1 _2 3d
S ifo = M
. ' ab
8y21 ‘ 26y22 ’
nn— n, — 4
1"23¢ 2 a9
ay' . S : _ ‘ ‘
ap _.[2?1-3"11 “2%1 ) e ' ' (4.55)
] =n
. . N L 2 - . 1
oo 0
. | - 0" myyy : ' |
| 4 [ .]' | ifq’:nz.
' L LMYy 2Ry¥0 |~ -

Finally, 3y/aMy;, is obtained using (4.35), (4.36) and (4.37) as

zpnpb puqb+pbqa

2w, , (4.56)
; ?M"h " ' anb +pbqu : anqb
" where .
' (1, ifa=b ' '
W = [ i . 4sm
! los, ifa=b - ‘
and . ' i
Ai? . Ku.b oo ] ;
( h—“) . ifdispersion isincluded, {4.58)
W2 ={. ) '
1, . ifdispersion isnot included.

(recall (4.13)).

.
| ._;_;_..__'_ T In this"ste-p, we caléuiat.e the sensitivities of the common port reflection
‘ .co'eﬁ'iéient with r_espe‘ct,to alt variables in the mult'iplexer structure,
| Diﬂ'érentiating {4.47), we have

ap 2Ry o7 (4.59)

%" @ +r? @ .

‘From (4.46) we can calculate 9Ziy/3 as
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azin. F‘! 1.2) A(2.2) - Ft2.2) A(1.2!

3 LN +1 VN +1 T (4.60)
. . - \2 ]
2 (A(m
. LN+1/" .

where superscripts (1,2) and (2,2) indicate that elements (1,2) and (2,2} of the 2x2
. matrices Fand A __»}.,.‘1 are taken, 'e.g., 3 fmmm

N o (4.61)

) BN+ LN+1%2°
" F denotes the derivative matrix AL N+ 1/ad and is calculated as 7

=2 = \(a T )a | (@62
F‘“M,( N+ T AN 5_(5 i) , o

* . where ¢ is assumed to be in section j.

. Steg" 8

Finally, we evaluate the sensitivities of channel output voltages with

respect to all variables,

L)
Refei'ring to (4.50), we can write
i - K, o . (4.63)
L ’ - R
KZK:)_ : o
~ where
=yt E : )
K =Y, 1T A eV, (4.64a)
‘ e iy s it N

‘ (v, +GA+Y (v )M iy : -

2_ ( " )i.' - cyzl) ’ . (4.64b)

. K, =\[‘1 35151N+192 - o (4.64<;)
" andi=1,..,N | '

If we assume that the.variable ¢ is in section j, -we can consider three
‘different cases for evaluating sensitivities of ,(4.63).
Case 1: Section j is to the right of section i in Fig. 4.15, i.e., j<i. In this case, Kg is.

independent of the variable and we have



05 -~

D G ')K o

= (4.65)‘

‘3¢ , (K K ) '
Wépanwrite _ _ o
dK ‘

) I P if 9 o (4.86)

( By =[Y, 1]'1“3(&¢ A.l'i)azvs , _
and . ‘
3 . R : |
-a—q—’Ali = Aj+ 1 ( 5 Tj) AIJ' (4.67)

Recall that the product (3Ty8¢) A, j has already been calculated 1(1 evaluation of F in

(4 62). Also we have

g o aK“ RSI

:[1 Rsl.F‘ez“ K (4.68)

I.N+1

Case 2: The variable is in the same section as the ohtpht voitage,.ie., i =j. In this

case we have

(oK, oK,
% (3)5% |
| ['Kq;{ - = 2 o=t
avi oty (KQKS) P ; '
—L = ' . R (4.69)
g | aK,\ 3K, .
' H_j[(Tp)K K +( ad )K K I -
2 ‘ ] i if‘pG{Mubl nl: nz} ‘
X (KK )? S ‘
and i ‘ _
oK, (“‘ ) (4.70)
E Y, uy ad Au"zvs ' .

where aT,/3€ has already been caleulated in Step 6. Also,
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3K,  UptGY, (5y11)+ M+ Y y) (ayﬂ)‘

] R L -
¥ 4 9% Yo = d)'
- P FGDA+Y i\ ayay - -
_(Y.-+(V22 y.n )( Yzl) . (4.71)
[ Y a‘t’ , .
Gy ..
where superscipt i is again onutted aK3/aq> is calculated as in (4 68)
s
Casu 3: Sectlonjxsbothe lefl:ofsectlonnn F:g 4.15,ie. ,J>1 In this case, we have
' o _ : aK3 '
. avi CiEK o : o
i . L_ 12 &Q) : . , (4_725 -
&, K)” ‘ B

where 6K3l&¢) is calculated asin (4 68).

44 'EXAMPLES -
441 12-Channel 12 GHz Multiplexer \

A 12-channel, 12 GHz multlplexer thhout dummy channels was,

cons:dered The contlguous band multxplexer has a channel frequency separatxon of *

-

40 MHz and a usable bandw1dth of 39 MHz mth the center frequency ofy the ﬁrst, '
channel at 12180 “Hﬁa Gth-order multx—coupled ca\nty ﬁ]ters thh scre couplmgs L

V!lg Maq and \155 and i ms couplmgs Mgg M45 ancf Mas are usedior all channels. Filter

A -

--cavmes are cxrcular waveguxdes w1th a dxameter of 1 07 mches The estunated .

’

unloaded Q fact.or for filters is 12000 The wxdth of the wavegmde mamfold is

oor . . . . F

0. 75 mches

Supposa we‘&ant to des;gn thm multlplexer such that a lower specl.ﬁcatmn

of 20 dB on the common-port return loss is satlsfied over the enl:n-e frequency band of

- ‘mtenest We start the desxgn process w1th t.welve 1dentlcal Gth order filters with the

e
coupling coeﬁ'icwnts g'wen in the followmg matnx (’I‘ong and Srmth 1984)
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0 0594 0 o o o ]
0.594 0 0.535 0 0 0
0 0535 - 0 0.425° 0. —0.400
0 0 0425 0 0834 .- 0
0 o 0 0.834 0  0.763
Lo o -0400 0 0763 0

In selectir}g (:pe starting values of waveguide sphcings, for each section._the _ 3
: half:guide waveleng;ch‘evaluated at the center frequency of the corresponding channel
filter, ag s;.xg-gested'by Atia (1974) was'used,_ This means .that for'the kth channel
.\éw’iwas u'sed: whe.re Agk is c_allt;ulated_ by evaluatiné (4.19) at the center frequency of -
. the kth channel filter. The spacing evaluated in this u.rayl ig measu;ed aloﬁg the
manifold from the adjacent (k—1)th channel For the ﬁrst channel the spacing is the
) ‘d1st.ance from the short-circuit, Waveguxde dlSpersmn for both mamfold and ﬁlters
were ta_l_ce_n into accoupt. Nomdeal. Junctlons mth,.Y? calculated from (4.26) and
Y. = Owere a'é.sﬁmec.i. |
_ - Figure 4.16 shows the com;xlv;)n?port 't;eturn.loss and .channel in-se'rtio'n loss -
;esponses of the mulhplexer at the st.art of the optlmlzatlon process The specxﬁcuhon
on the common- port return loss i is sermusly vmlated especlally in the lower frequency‘
range.
The optiuii.z'ation was performedl in‘ sevéral stage’s with the judicious .

addition of new variables at each stage to :mprove the overall response or the response
- over some specific portlons of the total ‘frequency band. [n particular, the ﬁrst stage
' \._vas the optimization with respect td only wavegmde spacings, i.e., 12 variables and

the last stége involved 60 variables, namely, 12 section léngths, 14 variables for each -
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of channels-1 and 12 (all six possit?le inteijcavity couplings, six cavity resonant
frequencies, inl;ut and output tralnsforrr’xer ratios), and four variables for ep.ch of
cﬁanriels 2, 8; 9,10 énd 11 (inpu£ and out.put transformer ratios, resonant frequency of
the first ;:av{t);,'angi coupling My9). In selection of the frequency points, l.x‘niforn.lly
distributed pointsl 10 MHz apart over the‘whole 500 MHz band, are taken ip the e_urly
_ stages. .However, a simple interpolation technique effecti\(elyitr‘éating sample points
1 MHz a;ﬁart is iﬁtroduced in the final stages of the 'o'ptimization.r The total CPU time
on the Cyber 170/815 system was about ten m.i.nutes.. The results lof the final
optimization are shown in Fig. 4.17. EQuifipple return loss _.rez;p_onse satisf_vihrg the

requirements over the entire communication band has been achxgved.
N "

442 3-Channel Multipiexer Design without Network Sensitivities

~The 12-channel examplé was solved usiﬁg the origiqal minimax algorit_hm
which requires t;xact sensitivities. Therel‘ore, cdmplete sen.sitivity analysis of the
structure was performed. As discussed in Chapter 2, the use of efficient gradient
apﬁroxima_ti-on te_chniqueé obviaﬁes the' evaluation of nétwork sensitivities. Therefore,
.a -modified _minim;ax algorithm may be used (Bandlel‘, Chén;'Daijavad and Madsen

Vo |

1986). To.examine the efficit.ency of the new algorithm in large problems, 'we‘
: considéred the design of a 3-ch-;mn,el;m_ultiplexer wi.t_h 45 nonlinear varinl;les without
r.1etwork ‘.;sens‘;itivitiés, i.e., by only evaluating the re_sp(:mses themselves, Using the
sam.e types of {ilters aé_ in the 12-él;aﬁnel ex;.m'ple, a ldwer specification of 20 dL;’ on
_retu:_'n loss dv.er the whole band of interest should be satisfied. Alsg, the following
upper specifications én Iins:rtion loss for all three c;hannels should be met

wo* 10MHz  1.12dB

@+ 12MHz  1.24dB .

-
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wo £ 14MHz = 1.41dB

wgt 16MHz  1.77.dB T

@t 18MHz  279dB - :
'Fig: 4.2 corresponds to the specificetions of this example. 15 veriab'les for each
chennel namely six mtercawty couplmgs six cavity resonant frequermxes input and |
output transformer ratios and waveguide spacings, were con51dered In selectron of i
frequency points, 15 passband points were .used for '.each-chennel. Both return loss
and insertion loss .speciﬁcations were considered at-each point. Moreover, two
'crOSSover frequencies namely, 12l]00 MHi and 12040 MHz for return loss only ware

-

selected Consequently, we Have a total of 92 error functlons and 45 variables. The

"

return loss and msertmn loss responses for the multiplexer', at the starting pomt and
at the solution are shown_ in Figs. 4,18 and 4.19. Fhe CPU time on the Cyber 170/730- )
’ system was about 15 minutes. lt. is clear from the computabionel ti'me that the

*

modified mmlmax algonthm is. not as fast as the ongmal algonthm since this
"problem cah be solved in about 8 minutes usmg the network sensxtwrt:es However
*as d1scussed in ChapterZ ‘the modlﬁed algorlthm relieves the user from prov1dmg

network sen51t1v1t1es whlch in many apphcatlons are tremendously compllcated or
“even 1mpose1ble to eveluate. - |

T 443 - 16-Channel Multiplexer -
. As ‘the" number-_ of'cl‘lan'rlels" for the tnultlplexer increases, the dimen-

sionality of the problem _ln._terrrls of the nurrll:)'er‘ of parameters and l'unctions.to be
' clee.lt w‘itl'l.‘in.cret.ises. This reclluires;t.he use ol'.inc‘reasi'ngly powerful comuuting
| facilities. A\'T‘o o'vercome the dimensionality urol:llem, the desiﬁn of a continguous band

'multipl_exer structure withl an -érb_ltrarily,large number of channels and design
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‘'such as common port return loss and channel msertmn losses are to be satxsﬁed

- ' . 114

L.
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L}

parameteps has been formulated as a seqiience of é.'ppropriately defined -simaller

opt:m.tzat.lon problems (Bandler, Chen, Daijavad, Kellermann Renault and Zhang

g LQBS) The smaller problems correspond to growing a multiplexer by adding one or-

more channels, at a txme tothe structure. ] it 3
Suppbse we .want't'o design an N-channel ﬁiultiplexer. To achieve this goal

we could perform a sequence of N-T optlmlzatxons In each of these optlmlzatlons we

add a new chennel” to the ex1st1ng k-channel multiplexer. The resulting (k+ 1)

: channel structure is then optimized with optimization varmbles taken from channels'

-
k and l-c+1 and specxﬁcatmns 1mposed on response.s in channels k-1, k and k+l

Samp;e frequencies are selected from the 'frequency_ range covering channels k-1, k

s

andk+1. ' _ . o .

A 16-channel multiplexer was _désigned starting with a 12-cHannel optimal

désign of Fig:4.17. The procedure described abové was used, i.e., 4 optimization

T

'proble-mé were solved by adding one channel at a time, - The responses for the

'16-chaninel multiplexer obtained after the last optimization are shown in Fig. 4.20. -~

~ ‘
. - ¥
4.5 CONCLUDING REMARKS _

In this chaptér we applied the sensitivity formulas and the method of

W analysis developed previously to design one of the most important microwave devices
* in communication satellité appl'u:ations namely. the manifold type contig‘uous band

" multiplexer. Models for individual components of the multxplexer with nonideal

-

‘effects such as dmmpatmn dispersion and Junctxon,_susceptances were discussed in

- detail. Using a fast and robust gradlgnt-based rmmmax algonthm we formulated '

appmpnate optimizatiort proBlems in which engineering ,specxﬁcanons on responses‘

ﬁ-

- L]
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A Tlexible computer program was developed which utilizes the models
described in Chapter 4 and the sensitivity analysis of Chapter 3. The calculation of
responses and sensitivities were described in detail.

Some of the largest nonlinear optimizatioﬁ problems ever demonstrated in

" microwave circuit design for a reasonagl\e computational time ha_ve been presented in

-this chapter to design 3-, 12-, and 1_6—chai_1nel multiplexers.
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MICROWAVE DEVICE MODELLING

51 * INTRODUCTION -
The problem of approximating a measured response by a network or system
response has been formulated -as an optimization problem‘*with respect to the equi-

valent circuit parametelrs of a proposed model. The traﬂitional approach in modelling

is almost. entirely directed at achieving the best possible. match bétween. measured
. ’ . . T — A
and calculated responses. When the presence of nonideal effects causes an imperfect -

match between measured and modelled responses or when the ‘equivalent eircuit.

.

parameters are not umque with respect to the responses selected, the traditional

modellmg approach has serious shortcommgs In such cases, a fam:ly of solutions for
’ e

-

circuit model, parameters exist which produce reasonable and similar matches'

between measured and calculated responses. - o

Ty

In this chapter, we bnefly rev1ew the concepts in modellmg including the

forrllolauon utxhzed in popular microwave so&ware systems. The advanced techmque
of model evolution through automatic modlﬁcatxon' of circuit topology presented by
Cutterldge and Y.S. Zhang (1984} is also reviewed.- We then present a new formula~
“tion for rnodellmg using the concept of mulu-cxrcmt measurements (Bandler Chen
and Dauavad 1986b). The ob]ectwe of thxs nev: techmque isto achleve self—conslstent
| models for passwe and active devmes usmg an approach that automatlcally checks tha

) val1d1ty of the model parameters obtamed from optimization. If successful the

. method provided conﬁdence in the valld1ty of the model parameters otherwise it

proves their incorrectness. The use of the €] norm, based on its theoretical properties

17

-



118

¢

which were discussed in Chapter 2, is an integral part of the approac}i. The use of an

- efficient gradient-based Cllalgorithm‘, e.g., thé Hald and Madsen algorithm (1985) in

conjunction with the gradient approximations deséribed in Chapter 2, makes it
possible to'employ a state-of-the-art optimization algorithm with any simulation -
package capable simply of providing responses.

The new modelling technique has been tested on two microwave devices

that, because of their application in satellite communications, are. of ‘significant-

interest at the present time, These devices are mu-lt.i-coupled cavity filters which -

were described in Chapter 4, and GaAs FET's used in wideband ampliﬁers:.
,We conclude this chapter by dlscussmg the apphcatmn of efflc1ent

m.ndelhng techmques in develomng algorithms for postproduct.mn tunmg We provide

an e&ample to.illustrate the use of modelling in establishiqg the relationship bgtween :

- physical parameters of a device and its circuit equivalent model parameters. -

. 5.2 , REVIEW OF CONCEP‘TS IN ‘\JODELLING

5.2.1 The Apprommahon Problem

- ’I‘he traditional apprnxxmatwn problem is stated as fpilowé ‘ S ‘

minimize [€] . - B

where a typical component of f, namely f; evaluated at the freqﬁency.po;'nt Wi, is given

by

£, 8 w(F ) -FM), - 21,2,k .. (B2 -

’,

"Fi™isa mqaéured Tesponse et mi,hnd Fi® is the response of an appropriate network

which depends nonlinearly on a vector of model parameters x %'[xi- X2 ... xn]T and

wi denotes a nonnegahve wexghtmg factor. []ﬂ denotes the general £, norm given by

L ]
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Iei= ( 2. [rf|) : [(5.3)

i=1

The.le_ast-st[uares norm or €3 is obtained with p = 2. As p—« (5.1) becomes the

minlimax'problem. Using the €, norm, {5.1) becomes . -
k .

- minimize | F| 2 IAP v (5.4)

X i=1 ' : :

o0

1,,\5.2.2  Typical Software for Modelling

‘_Wiflelj used microwave design and mt;delling programs, e.g., SUPER-
COMPACT (1986} and r:I‘O_UCI;i'S'I‘OI\l'E (1985) as well as most in-house software

‘systems utilize the popular‘S-parameters in device modelling. For an n-port network
. e

equivalent, mpduli or phasés (alternatively, real or imaginary parts) of all or some of -

) .
the nZ S-parameters are used as Fy's (calculated F;® and measured Fi™ in (5.2) to

N A -

evaluate the error function fi's. Least squares bptimizatx"&n (p=2in(5.3)) is used'in

almost all existing software: The popularity of €7 is largely due to two factors. One is
the smoothing property' of éz in handling small measurement erzors with, say, a |

. normal distribution. These errors which usually result from the limits on the

accuracy of the measurement equipment are difficult to overcome. The second reason
for-applying the least squares optimization is that efficient €5 optimization techniques

have long been known.

-

The use of the €, norm in modelling is becoming popular due to the recent

developments in £, optimization techniques. As discussed in Chapter 2, the use of ¢,

as conﬁ_pared to the other norms €, with p>1+has the distinctive pr()per‘ty that some’

large components of f are ignored, i.e., at the solution therq' may well be a few f's.

“which Az:e\n‘iuch larger than the others. This means that, with the components of f as



e

.

.defined by (5.2), a ) few large measurement errors can be tolerated by the & norm

better than any othe:' norm.’ However we do _pot need to assume that such large

errors exist. Later in this chapter we use a newforrn'ulation f'or modelling in which

P

< . sorne components off are designed to have large values at the solutlon Justlfymg the
.. . " use of ¢ 1 w:th or without posmbler measurement errord.
Y. ... ; 7 ’ )
- e et o,
iy .- q . .t CL . -
5.2.3 Advanced Techniques in Modelling . o /\

“Along w:th the new multl cm:uxt techmque wh:ch will be intréduced and

’ C - -

dlscus;ied in detail in th1s chapter another powerful and ad@anced method in linear -

v

. modellmg of microwave devu:es is the model\evolutlon techmque deseribed by
Cutterldge and Y. S Zhang (1984) ag applled to h1gh—frequency bipolar transistors,
.. ;nnd ,by Baden Fuller and Parker (1985) as appl‘ed to mxcrostrlp spiral indictors. In

‘thts_ techmque. based on a heuristic algorithm,‘ a com;juter program modifies the

eircuit_topology in an itérative fashion to obtain thé best topology as well as the
7- o Ty -

4

. i . .. +

. S-parameter measurements,

w
L 3

The scheme adopted for model evolution cornprise. three distinct proce-

",. . dures, namely, (i) renioval of elements and nodes within th ‘exﬁ;ting topology which-

, ¢an lead to greatly aunplxﬁed clrcuxts wzthout any loss of performance (iD) add:tion of

: eloments \v1thout mcreasmg the number of nodes ‘and (iii) add1t1on of . new
tooographnc nodes together with new elements to the e‘xisting xnodel : | "

As an example Cuttendge and Y.S. Zhang (1984) used the S—parameter

measurements at 12 frequenmes between 0.1 GHz and 1.0 GHz to model an npn

transistor in the common-emitter conﬁguration. Starting with the initial model ‘of

- -

parameter values for which the equivalent circuit responses match a set of
ot " . . . .o .
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Fig.5.1a, the éircuit_waé fnodiﬁed in several stages with the model at an intermediate .
smée-and thé final lmodel shoWr; in Figs. 5.1b and 5. Ic, respectively.
. Thén:mjor difﬁcu.lty in the construét.ionl of programs that achieve. topo-
lo'gi.'cal modification of a‘ network entirely automatically,‘ is the strategy .for element
+and node addition. The number.of possibilitieé 'fo‘r the addition of n singlelelement
'iricreases enormously with increasing .complexizy df the neﬁvork, and the number of
,' ‘. pi\assibilitie_s for simultanecus addition of two or more eleﬁlents increases even more
rapidly. A Trealistic hig_h.aiéyel strategy for topological medification must bé empldyed

to keepjthe overall ¢computing time reasonable. At the present time, such strategies

are heuristic and usually highly limited. ~

5.3 A N_EW AISPROACH IN MODELLING USING MULTIPLE SETS OF
: MEASUREMENTS
. T 531 ’Intrd}lucwry Remarks

¢ . r
The use of multiple sets of measurements for a circyit was originally

thought of by Bandler,.Chen and Daijavad (1986b) as a-'way of increasing the

"ider*.ifiability""of the network. The ideais to overcome the problem of non-

.

umqueness of parameters that exists when only one set-of multi- frequency meaéure-.
‘ments at a certain number of ports (or nodes) are used for 1dent1ﬁcat10n By a new set
of measurements we t_nean multi-frequency‘measurements on one or more responses
after making a physical adjustment on the device. Such an adjustment results in the
dehberate perturbation of one or a few circuit parameters there!‘ore to have multiple
sets of measurements, multiple circuits differing from ea_ch other in one'or a few
parameters are created. In the above context, the t,er;n‘mt_zlti'-circuit idehtiﬁt:lation

may also be used.
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Fig. 5.1 Modelling of an npn transistor. ,The initial rﬁodél, the model at an
. © ... . intermediate stage and the final model are shown in a, b and ¢,
SO - " respectively. (Reproduced from Cutteridge and Zhang 1984).
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In this section, we first use a simple example to iilustrate the usefulﬁess of
multi-circuit measurements in identifying the para‘uﬁeters uniquely. We forrnglate
an ai:propriate optimization problem and. also c_iiscusg its limitations. F‘inally, we
develop a mo&el verification method and forﬁulate a second optimizatio"n problem
\a;hich exploits r'r_mlti-circﬁit measurements and the properties of the €, optimiiution
in device modélling. | "

5.3.2 '-Uniqu'e Idéﬁtiﬁcation of Parameters Using Mult.i-Cix"cuit Me;surements , ‘

Consider the simple RC. passive circu'it .of Fié. 5.2. The.pdrumet,ers

x= [R1 Ry CIT are to be 1dentnﬁed Ifwe have measurements unly on Vz given by
' ’ CR R, . L :
v = _SCRE, | (5.5) -
2 1+5CR+R)’ '
it is clear by inspection that x cannot be uniquely determined regardless of the
* gumber of frequency points and the choice of frequencies used. This is because Ry and -
Rz ére obsérv'ed'in exactly the ;same' way bylvz. F ormally, the ndn-uniqueness is ,
: proved usmg the concepts discussed i the. subject of fault d:agnosxs of analog circuits’
. (Bandler and Salama 1985a) in the follomng way Gwen a complex valued vector of

responses h(x, si) i= 1 2, ... 0 {from whlch— reql-valued vector F(x,w) is obtmned)

the measure of 1dent1ﬁabxlxty of X is determmed by testing the rank of- the nan

J acoblan;natnx ' - : : o . Lo
' : 58
J & v hTl Y !
If the rank of matrix J denoted by p is'less than n, x is not umquely 1dentxﬁable from

h For the RC citcuit example we have

LS v,
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ng. 5.2 Simple RC network.
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s,CR(1+s CR)" - s CR(1+sCR) ~ " sRR, ]
[+, CRFR)P 0 #5CR+RIP (1 +5CR +R)I

J = .o 1. &m
: 'sn CR1+s CR) s CR(l+s. CR) s RR,
. w Cw w - . ) A
[1+s C(R-H:g,‘.n2 _ [1‘+’-s'.c,(R +R)12 e +§n C(R,+R)
f.d : LW B -
Denotmg the three columns of J by J1, Jz, and J3, we have .
e URove C(R -R)- . :
Jl—(“ﬁg) J, + ._h.z_J:}:o' ‘ . . (5.8},

i.e., J cannct have a rahk:'gréater thz}.n 2. Therefore, X i3 not unique with respect to

V.
" *a.q . . 'Now suppose that a second circuit is created When'Rg' i.;,'adjusted by an’

unknown amount Usmg a superscnpt to 1dent1['y the c1rcu1t (1 or 2) we have

. - sClR R1
vl =, : (5.92)
‘ L1 +-.S.C' (R1+R2) N
and L _ )
B

St et sC'RIREL L '
e SRR B (5.9b)

! -' R '_2' 1 +sC (R1+R2) -

CL notmg that R12 and C2 are not present smce only Rg has chnnged
Takmg only two frequencms 51 and 52, the expanded parameter vector
X = [Rl1 Ryl CU Ro2]T is uniquely 1dent1fiable becauée the Jacoblan J given by

L]

s -
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.-

\
~ Lol = Alply Ipl 1l 1pl :
s C'R}(1+5,C'RY s C'RI1+sCR)  sRR, . B
[1+5,C'R}+RYP (1 +5, C'RI+RY) [1435,C' R +R)YF
C gl 151 I 1. lnl colal
S,ZC R2(1 +s.ZC R2) .52C RI(I +92C Rl) ,isl R2 .
(1+5,C' R+ RDP (1 +5,C R +RDP [1+5,C R} +RDF
J = : . . N - »
15?2 in2 S plp2 151 1l
5,C'RX1+5,C'R) . ' s, RIR2 s,C'R(1 +5,C R)
1+sC'R}+RD s (R_;mgf (1+s,CR+RIP
152 152 x o 152 1ol ; 1‘1
5,C R(1+5,C'R) . s,R, R ‘ .5,CR (1 -&-'SZC R)
L 1+s,C'®R{+RDP. © [4sClR{+RIF [1+5,C R +RIF |

(5.10)

is ofrank 4 Lfsl = 89

'I‘o summarize the approuch it can be ‘'stated that although‘the. use of
unknown perturhatmns_ adds t.o the ngmber-of unknown parameters, the add1t10n of
new measu}ements could increase the nlmk-o-f J by an amount greater than the
increase in n, therefore mcreasmg the chance of uniquely. ldentlfymg the parameters.
The ongmahty of the tecbmque lles in-the fact that neither add1t10nal ports (nodes)
nor addmonal frequenmes are requu‘ed. The additional measurements on the
pertur_bec_l éystem can be performed at! i:_he ports (nodes) or frequencies' which are
’subset§ of the ports (nc;;i"es) or frequencies empl'oyed‘forthe unpert.urbed system.
| Based on the above ideas and for nc c1rcu1ts. we formulate an 81 :
ophmmatmn problem as follows: | ‘ |

minimize z Z Ifti SRR (5.11)
t=1 =1 - ‘ o ‘ :
where - .

£ WFEE-Fm - G

1
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and "

x =| - L ' . 51D

nC
x .
a
- -,

v.ﬁth superscript and index t identifying the t-th circuit x,t represents the vegtor of

‘r;uiditional pa_::ameteré introdué:ed aftér .the (t-1)th adjustment. It has only one or a
few 'elements. compe:red to n elements in xt wlﬁch contains all circuit parameters after
the change, i.e., including the ones whic}; have not changed. k. is an index whose
value depends ;jr;‘ t, therefore a differ_ent.numb_ér of frequencies may be used for
Jifferent circuits. ‘ J- T 7 : T

L

5.3.3 An Implementation of the Multi-Circuit Mddelling Technique

In this section we describe an’implementation of the multi-circuit

—

modelling technique to per.foi‘m'the optimizati():n prdblem_ given in (5.11) with

- variables defined in (5.13). The emphasis is'on the way in which the probiem is set up

.such that different circuits are processed individually while the optimization works

onall :circuits simultaneausly.

Assume that a gradient-based ¢, optimization package is a)ﬁilable which

requires user-defined functions and gradients. Also, assume that a dedicated module '

with a fixed circuit tgpology is provided by the user which calculates all S-parameters

i . [N

" {or other relevant responses) of the network, at a given frequency and for one set of
- .

netv{o;k parameters. This module also calculates the sensitivities of S-parameters

%

e
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L

""wtth respect to gll parameters of the circuitaf the freque;cy of@-atmn and at the
_ b

} glven set of pammet,er values.

¢
Now suppose that after measunng the S—perameters of a device at I{1
»

.

frequenc:e’ we make an adjustment to theé dev'.ca-and measure the S—parameters at

. K frequencies. In general the second set of frequencies share some common points

with the ﬁrst. set. We can kbep making adjustments to the device a total of nc—~1

t1mes so that a total of n c1rcu1ts (mcludlng the mltlal c1rcu1t before any adjustmeht)

exist.. . After each adjustment, the %parameters are méasured and recorded. For the

t th circuit, tho;e are K, frequenc1es at wh:ch S-parameters are measured Vote that
ot

aft.er each ndjustment we may or may not recover the lmtml settmg before making
b“
AT Y

ario;her adj ust;;n_ent. _ ,
. s * - \
The ﬁrst step in the 1mplementat10n is pre processmg of the avaxlable

measurements to select responses and frequenmes u;ed for each cireuit in the opturu-

e

zation. For the t-th circuit, any or all of the Kt frequencles may be chosen For each

-S-parameter it is possible to select its magmtude or phase-r(real part or xmag'mary

' part) or both. After thns step, we have K, fremxencxes ami l-:t measurements for the

5.}‘
t-th circuit, where measurements correspond to dxﬁ'erent responses and different fre-

quencies. ‘As an example suppose that S-parameters of a two-port network after one

~adjustment are measured at 5 frequencles We have Ko = 5. If ‘the real and ima- -

P

glnary parts of So; and Sy5 for the first and ﬁﬁ.h pomts and the real and 1magmary
parts of all S-parameters for the third point are selected for 'the optimization, we have

Ko =3 and kg = 16. It is clear that when the responses of the t-th circuit are

;calculate,d based on its model (F°(xt) in (5.12), -where i=1,...,ky, the user-defined

module for simulation and sensitivity analysis of the network which caiculates all

/—\ '?l‘*f"l‘ B
“ - Iy
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complex %parameters at one frequency is called only K,' times. For instance, in the

. I
above _hy'p&hetical example, the module is called 3 times fort = 2,

N

~

Based ori the selectlon of responses at frequency i', i’ = lf,r‘.\ K,, for .J

cu’cuxt t, we form a true-false code which sxmpl.)fjfxﬁqlm whether a parucd‘lnr é:esponse
was selected or not at i'. Thls true- fa[sehcodc; ‘will be used to form exactly k,_ errur
functions corré'éponding to cxrcuxbt:. in the optimization. -

Asis er‘nphasized in the term Fi&(zt), we hg've .to‘ensux:e thah the rhhponses
for each circ-uitl_'axje evaluated at its corresphndir%g set of kparﬁmeters.' We propose
setting'up an index matrix as part of the irhplementat.ion'. Assu’me that there are n
variable,par‘amete.ars in the circuit eqhivalent for the device (f;opblogy is preselected
and ﬁxt_zd). These are the parameters.wh_ich'can change as a resulg of a ﬁhysiéul

adjustment. Based on the knowledge of the likely parameters that change after each

adjustment, we set up an index matrix B with the following rules. -

1) B= [btJ} is an X n matrix, -
2y _Wehaveb1J=j,' j=l,....,n 7
3) | byjis an integer which identifies the pasition of the jth element of xt (xt has

n elements) in the overall x vector of (5.13).
An example will c!afify the above set'up. Suppose that there are 5 variable

) parameters in the equivalent circuit. After the first adjustment, it is expected that

-

the first and the ihirq- variable changé. -A secqnd adjustment.is Made such that the

5th vs;riabie changes. If we make t,hé: second ddjustmeht aﬂér :"eciover'ing the i'nitial.

setting, matrix B i§ given by .

] 1 2.3 4 5 |

B=|6 27 45|. (5.14)
1 2 3 4 8 |
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.

On the other hand if the second adjustment is performed without recovermg the‘
initial settmg, we have

. 1 2 3 4 5

.. B=|6 2 7 4.5]|. | (5.15)

6
6 2 7T 4 8

In either case, xl has 5 elements x,2 has two elements, x,3 has one element and the
“overall x vect.or has elght elements. - H0wever dlﬁ'erent circuits are achleved usmg

(5.14) or (5.15) and therefore the index matrix plays an 1mportant role.

' .~ - ' Using the elemenqts 6f B, the _tot.al number of variables and the number of
' elementsinxgt, t = 2,.. ., , are automatically obtained. We-have
' _ . (B.18)
& Nt = max {bt,j}' . .
i ) ‘

where N, dcnotes the total number of varlables after the (t— 1)th adjustment. Clearly,

Nnt is equal to the size of vector x in (5 13). The size of Xyt denoted by ay is calculated

a8 - .
o a=N-N_,. IR 2
- -1 ’
- Havmg deﬁned matnx B, we can recover the xt vector for each circuit from’

the overall xina strmghtforward manner. ’_I‘he jth element of xt is given by .

4

fexo o, - = . L (518
N L . . (5.18a)
" where ‘ . |
index =b ! . ‘ (5.18b)
: ti’ S ‘ -
- For instance, from (5.14), we gt 2
%
. Mx 7 - . = -
*s 1%
X, "xz '
- . (5.19)
12 =| Xq and_ g o= 'xs | _
Xy Xy
x -] x
- L8
\
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At this point, we can develop a simple algorithm éorresponding to one

iteration of the €; optimization prof}lem defined in (5.11). Given the x vector (initial

guess for the first iteration and determined by the optimization routine in the

subsequent iterations), we want to calculate all functions and gradients.

tep 1

tep 2

EE

-
[r]
£ -

\:n |
[
2]
e

Comment

’

Fort =1, 2 ..., Ty, execute Steps 2 to B,
Obtain xt from x using (5.18).

Fori'=1,2,..., K;':_execute Steps 4 to 8.

" Call the user-defined module which éalcu]atés. all S-parameters and n
. derivatives of each S-parameter at one frequehcy {i'th frequency of the

t-th circuiti, and at the.parameter values in xt.

Chéck the true-false code for each possible response at 1';he i'ith frequency
i.lnd for each t';'ulta answer, form one error function fit. .

Based on each true ansWer, one fit in (5.12) is formed aﬁd the index i
which is ihitially zero is incremeﬁted by one. In this way, ati’' = K., i
au_tbme.litic;ally reaches k. |

Forj=1,2,...,n, executé the foliowing

aff  aft ' SR i
*index 9

3

For each fit formed in Step 5, I;here'kare n derivatives which are readily

-~

caleulated using the derivatives obtained from the user-defined module

(derivatives of Fi*(xt)) and weighting factor wit. These n derivatives

correspond to n elements of the x matrix which are positioned accordiné

-

to the index byj. It is assumed that 3f;%/ax has been initialized to zero,

therefore, the derivatives of f;* with respect to the remaining elements of :

x (ie:, except the ones given by X;n4qy) are zero.
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534 Model Veriﬁcution Using Multi-Circuit Measurements -
Although the optlmuatmn problem formulated in‘(5. 11) w1th the vamables
given in (5.13) enhances the unique :dentlﬁcatwn of parameters, its limitations

should be conszdered carefully. The limitations are related to the way in which model

- parameters x are controlled by physxcal adj ustments on the devzce

Parameters X are generally controlled by some physical parameters
b2 (1 &2 ... tpng. “ For instance, in active device modelling in_trinsic“netv.r'ork
parameters are controlled by bias voltages or currents, or in_wavegulde filters the

penetration of a screw may control a perticdlar element of the network model. The

actual functional relationship between (b and x may not be l{nown however, we often

know which element or elements of x are affected by an acllustment on an element of

#- The success of the optimization problem (5. 11) is dependent on. th1s knowledge ie.,

after each physxcal ed]ustment the correct cand1detes should be present in x. To.
ensure tlue, we should overestimate the number of model paramerters wl'u(:h are lll_cely
“to change after adjusting an element of . On the other hand, \ﬁre would like to‘ have ~

as few elements as possible in each x, vector, so that the increase in the number of

_vanables can be overcompensated for by the increase in rank ol' matrix J resulting

: l'rom t.he addition of new measurements

'In practice, by overestimating the number of 'elernents in %, or by making,
physical adjustments which indeed affect many model parameters, (a ehslnge in bias..- -

voltage mey -affect all intrinsic parameters of a transistor model) the optimization_

problem of (5 11) mey not be better- conditioned than the tradltmnal smgle c:rcuxt

.. optimization. This me_ans that the chance for unique identification of parameters may

-not increase. However, multi-circuit measurements could still be used as an alter-.

®
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¥
nativg to séiecting different or more frequency points as may be done in the single
" cireuit 8[;)})1‘08:(.‘:1’). T ' ) L
We now forn‘lgln‘te‘anothen optimization ﬁroble'r'n whilch either vet-'iﬁes the
model parameters obtained or proves their in(\:}héistency with respéct to physical
adjustm?nts. The information about which elem'ents of x are affected by adjusting an
" element of ¢, although us\gd to judge the'cor:sistency of results, is not required a
~ priori. Therefore,'t.he f.orm.tilation is applicable toall practicalqéses.
| Suppose that we make an easy-td-achieve adjustment on an'element of ¢ o
such that one or a few compo.nents of x are changed in a dominant fashion and the rest
' rémai.n conlstj.ant'; or change slightly. Consider the following £, optimization problem

mlmmm Z z

X t=t i=1 ,1=1

(5.20)

.
L}

where ; represents.an appropriate weighting factor and x is a vector which contains

circuit pa:ramete';s of both the original and perturbed networks, i.e., )

] .

(5.21)

Notice thgt, despite its-appearz‘ilm':e."‘(S.20) Ean be rewritten easily in the étandarfi £,
-éptimization fo:tm-,‘ which is' ﬁinimiiingl z|, by taking the individual functions from
_ e'it:.he; the nonli;1ear part fit,or the lin;éar ﬁ;art x;l — x;2,

| * The above formalation has the followmg propemes

» \
1) - - Considering only the first part of the objectwe function, the formulation is

Al -
- L

o equxva_lent to performmg two optimizations i.e., matching the ¢aleulated
response of the original cxrcun; model w1th its correspondmg measurements

and repeatmg the procedure for the perturbed circuit.
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2) : '..By adding the secogd part to the objective fu:lction, we tul&e advantage of
| the knowlédge that only one or a few mdel parameters should change l
dominantly by perturbing a component of 4) Thergfore, we perlsllize the .
objective function for any difference bet\:reen x! and x2. However, since the
!1. norm is used, one or a few large changesfrom x! to x2 are still allowefli.
Discugsions on the use of the € norm in Chelp'fer 2 should be: réferl’ed to. - ,/
‘The confidence in the validity of thé e(lui\lalent ,‘circu-iﬂt parameters
increases if a)_an.' optimization using the objective fuhétio‘n of (5.20) resﬁlts in a
rensonable mabch‘-bétween calculated and measure(l respoﬁses for both cireuits 1 and
2 (orlgmal and perturbec}} and b) the e‘f'ﬁhnatlon of the solut.mn vector’'x reveals -
~ changes from x! to x2 wl’uch are consistent with the ad]ustment to cb i.e., only the
expected components have cl‘l/anged signiﬁcantly. We can bulld upon our confidence

even more by generallzmg the technique to more ad_]gstments to ¢,-i.e., formulating

the opt.lmuatlon problem as , . oY
. . . -
N
< n .
minimize z Z | + z Z x - x . (5.22)

. Tot=l Q=1 " t=2 i o

— -

where nc cu'cu:t.s and their correspondmg sets of. reSponses. measurements a.nd
~ .

parameters are considered and the first cxrcmt is t.he reference model before any
adjustment to . In this case, xis gwen by

—

ain
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By observing inconsistencies in changes of x with the actual change in ¢,

the new technique exposes the existence of nonideal effects not taken into account in

" the model. Having confidence in the pafa‘meters as well as observing a good match

between measured and modelled responses meﬁns that the parameters and the model

" are valid, even if dlfferent responses or dxﬂ'erent frequency ranges are used.

The 1mplementat10n of optumzatmn problem (5.22) with variables given in

.

" (5.23) is similar to the 1mplementat10n of Sectwn 5.3.3. The structure of x is simpler

" and dispérsion gffé_cts were presented in detail. Modelling of the fiiters, i.e., deter-

<o

in thxs case and the elements of the index matrlx B are automatxcally given by

=(t- UXnﬂ, i=L¢m. i=1,..n. (5.24)

5.4 . MODEILLI'NG OF MULTI-COUPLED CAVITY FILTERS -
In Chqpter4 we discussed t_hé multi-coupled cavity filters in the context of

multiplexer desigﬁ.. The impedance matrix description of the filters and dissipation

mining the coupling valﬁgs by processing the measured responses such as input and
outpui return loss, insertion los group delay, is of significance in both filter and

mul\tiplexer tuni/ﬁg. We will further comment on the tuning problem in Section 5.6.

L ‘, - ( : : ‘ .

54.1  6thOrder Filter Example
A 6th order multi- coupled cavity filter centered at 11785 5 MHz with a

56.2 \fIHz bandwxdth is cons:dered Measurements on input and output return loss,

Sonf-

’ in'_sertion Toss and group delay of an optimally tuned filter and the same filter after a

" deliberate adjustment on the screw which dominantly controls coupling M_m, were
provided by ConiDev (1985). Although-the passband return less changes signifi-

cantly, we anticipate that such a physical adjustment affects only model puram_eters :



M2, M;; and Mao (the last two correspond to cavity resonant frequéncies) in a
dominant fashion, possibly with slight changes in other parameters. Vi

Using the new technique described in this chapter, we simultaneously 'pro-- ‘
cessed me.t.isﬁrements on passband return loss (‘input reflection coefficient with a
weighting of 1), and stopband insertion loss (with a weighting of 0.05) of both filters,

i.e., the original and perturhed models The 81 algorithm with exact gradmnts was'

used. The evaluatwn of sensitivities is dlscussed in detail by Bandler Chen and’

Daijavad (1986a). The model parameters identified for the two filters are summarized

in Table 5.1. Figs. 5.3 and 5.4 illustrate the measured And modelled responses of the
ori‘gindl filter and the filter a&er‘w?djustment, respectively. Anexamination of the
results in Table 5.& and Figs.A5.3-'§.4.$hows that not only an excellent mﬁtc.h between
measured and modelled re.sponses has been achieved, but’ x.aIso the changes in

parameters gre cofnpletel y consistent with the actual physical adjustment. Therefore,

by means of only one optimization, we have built confidence in the validity of the equi-

valent circuit par.am.eters. The problem ipvolved 84 nonlinear functions (42X 2

.respoﬁses'for original and perturbed filters) and 12 linear _furictions (change in

parameters of two circuit equivalents) and 24 variables. The solution was achieved in .
1 v -
: <

72 seconds of CPU time on the VAX 11/780 system.

5.4.2 8th Order Filter Example

In this exafnple we used the new modelling technique to reject a certain set

of parameters obtamed f/r an 8th-order muiti- cavu:y filter by provmg theu‘
. .
inconsistent behav:our thh respech to physmal adjustments We then 1mproved the
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TABLES5.1 N

RESULTS FOR THE 6TH ORDER FILTER EXAMPLE

1 - r

" Coupling Original Filter . Perturbed Filter Change in Parameter

*

My -0.0473 01472 -0.0990*

© Mg -0.0204 . -0.08%6 . -0.0492°
My -0.0305 ~ ~0.0230 0007
Mg 0.0005 00066 7 0.0061
Mss T . 200026 - 1 0.0014 o 0.0040
Mg 0.0177  _0.0047 _0.02é4
Myg 08489 e 7 01300
Mag . 0.6064 05969 : ‘l'-o.oogs
Maq 0.5105 05101 o -0.0005

My 0.7709 0.7709. . 0.0000
Msg 07898 - 07806 -0.0092.

© Mgg. -0.2783 ~0.2850 - | ~ -0.0067
. : . ,

significant change in parameter value. -

-t
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- (a)
11%50. 11780 : ‘a1@00 - : 11820
Frequency (MHZ) '
(b)
=0 . " : —— s
‘ 11730 11780, 11790 ‘ 11820 - 11850
' Frequency (MHZ) ‘
'InputreturnIoss(a)and1nserhonloss(b)responsesoftheSthorderfﬂter

Fig. 5.3

‘before adjusting the.screw. The solid line represents the modelled -

response and the da\shed_lme shows measurement data.

A
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()

11780

.112800

23180 -

Frequency (MHZJ

(b)

e i s

5 —
© 11730 117680 11780 11820 11850
- R ' Frequancy MHZ) - T
Fig. 5.4 Input return loss (a) and insertion loss {b) responses of the 6th order ﬁlter

after adjusting the screw. The solid line represents the modelled
response and the dashed line shows measurement data.
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rr}o.del by including an ild-eally ‘zero gtray coupling iﬁ the model and obtained
pgrameters whi‘ch riot on‘ly prodqce'a Igoo'd ‘mut:ch_ between measured and modelled
P résponses but also behave consistently wh;an pérturbeﬂ'by a physi.cal adjustment.
‘ ' The 8th-order filter is centered at 11902 5 MHz w1th a 60 MHz bandmdth
7Retum loss and msertmn loss measurements of an optlmally tuned ﬁl.téi‘ and the
. same filter after an ad]ustment on the iris which' dommantly controls coupling \'I
were provided by ComDev (1985) Based or} the physical structure of the filter, sé
couplmgs Mlg, Ms4; M55 and Vl-m, the iris couplmgs Moag, Myg4, M45, Mg7 and Mgg, as
'._well as all cavity resonant frequenme-s and mput output couplmgs (transformer
.-ratms) are antmpated as possnble nen-zero parameters to be 1dent1ﬁed
| "In the ﬁrs; attempt, the stray coupling Mgs’ was.ig’nored and _passBand
} measurements on input and eutput return loss and .stopband isolation for both filters
were used to iden.tif.y the paraxﬁeters of the filters. The pﬁramegers aré,sunllm.ariz:ed in} '
. Tab‘_Ie 5.2. An examination of the‘x_'esults shoIWS o apparent -treﬁd for 'the change in
parameters, .i.e., it would ‘have been unpossuble to guess the source of perturbatmn‘
(adJustment on the iris c'ont.rollmg Mos) from these results, This i is the kmd of incon-
'S,Qtency that w.ould not have been d:sc_overed if only t_he original circuit had been
considered. ' | |
In a second attempt we mcluded the stray couplmg Mgs in the cu‘cuxt‘
model and processed exactly the same measurements as before Table 5.2 also
-cont,mns the identified parameters of the. two ﬁlters for this case A companson of' the
ongmal and perturbed filter parameters reveals that the s1gmficant change in

. couplirigs Mlz, Mos and M34 and cav:ty resonant frequencxes Mzz and Mjs 1s°‘

ahsulutely consnstent with’ the actual achustment on the iris, i.e., by inspecting. the

-
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*ABLE5.2 -
RESULTS FOR THE STH ORDER FILTER EXAMPLE
g
Mg ignored ’ Mgg present
Coupling | Original_ Perturbed. Original . " Perturbed
My ' -0.0306 -0.1123' - -0.0260 " _0.0529
Maz . 00026  -0.0243 00354 06503
Mas 00176 . ' -00339 20.0674 . —0.6113*
43{144 ' .-d.'O_lDS, .. 70.0579 | ~0.0078 . /mrﬁ :
Mss | -0.0273 - 00009 ' 00214 00506
Mes 00256 . - 00457 . -00i79 -0.0027,
My -oos02 ‘6._{_)679 o -0.04'24 L. 00278
" Mgs o043 . 00584 " -0.0426 -0.0272
My 07789 . o7asz 03879 - 02876°
Mg “—-,.'J"".~=,0.806'1"_“- 0836 | 0.9990 ©. 0.8180
"Ma;‘ " 0.4d60 . 04205 - - 00270 T —0.1250°
TMys ' '! 05335, - 05343 , 04791 '0.5105ﬁ’
CMss o -osal 05373, _‘p.édos " 05026
-Ms'r." 07260 - 07469 . . 0.6495 ' 0.6451
My 0.8330 © . - 08476 08447 - 08463
oM om0 - -03532 - 4.7{54'3_.‘ -0.7959
Mss . -0,1895 . 01892 N 01000 -0.0953
Mg - e 0.131;‘-\\' L 01459

%
14-

input and output couplmgs n12 =ng? = 1. 067
.

s1gmﬁcant change in parameter value,
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changelin parameters, i-t 'is possi}:le to de/duce which iris has been adjusted. ’The
gieasurtz\d and m'odelléd input return loss and insertion loss \ree{ponses of the two
: ﬁiters are illustrated in Figs. 5.5 and 5.6. It is interesting t,o m%ion that the match
between measured ‘and modelled responses in the ﬁrso attempt where Mgg was
- ignored and inconsistent parameters were found, is almos.t. as good as the match in
Figs, 6.5 and 5.6. This justifies ihe.essehoe of the new. modelling technique which
. attemptélbo identify the most consistent sef of paraméters among many that produce a.

reasonable match between measured and calculated responées.

55  .FET MODéLLING ,
5.5.1 . A Brief Introduct;ion
| -Dom_and has been increaoing for low-noise receivers and driver amplifiers

for oommercial sa@elli'té communications, eé;pocially at X;band frequencies. The
. fr:equenc; rohg'o froro 10.7 to 12.7 GHz covers the internaf‘.ionol, do?estio, and direct
‘ b}'oodcas?;ofnmunication bonds_. The Ga},’}o _MM'iC kmoﬂolitﬁic microwave integrated
circuito) épproaoh offerg the potential for lower-cost ampliﬁcation modules.and a
s1gmﬁcant reduchon in component. size compared to hybnd MIC modules. MMIC.
fabncauon also prov1des performance umfornnty, reduced pha'se vanatmn and
potent:ally higher relmblhty Hung et al (1985) have described design
cons1derahons fabncatmn process and performance for the newly developed MMIC
B amphﬁer modules operatmg in the X-band. 7

o Demgn of these MMIC'S begms w1th the development of an equivalent
ol;cﬁt model for the FET devme Fig.5. 7 shows the eqmvalent circuit of a carrier-
mounted FET —Th15 cn'cuxt equwalent. (Curtice and Camisa 1984) or shghtly dlﬂerent '

*y

circuits used by other researchers are small- s1gnal models For large-sxgnal analysxs
s a »
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Fig.5.5 Input return loss (a) and insertion loss (b) responses of the 8th order filter

before adjusting the iris. The solid line represents the modelled response
and the dashed line shows measurement data.



Decibels

Decibels

144

2t

L

11880 ‘_ .+ . 1a900
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Fig.5.8  Inputreturn loss (a) and insertion loss (b) respenses of thé 8th order filter
o -afteradjusting the iris. The solid line represents the modelled response

. and the dashed line shows measurement data.
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of GaAs FET amplifiers, a non’liﬁear circuit equivalent is used and timé—domain
analysis is performed. Nonlinear models are subjects of interest in ‘hlgh power FET‘

{see for example, Curtice and Ettenberg 1985; Vlaterka and Kacprza.k 1985) however,
- their analysis is out of the scope of this thesis. To apprecmte the phy51cal d1mensmns '

- for a n-FET configuration, Fxg. 5.8 illustrates the cross section of the FET structure. .

- In this section, we apply the new modelling technique déscijibed ;ii'evibusly ‘

to determine the parameters of the equivalent circuit 5.7 from’ S-pa'rameterf C

. measuremér_its. Unique identification of parameters for the FET equivalent circuit is L

of prime interest to researchers at the present time, since most of the available o ’

~

software runs into diffeulties in doing so. -

552 NEC700Example ~*~ -
Device NEC700 for whlch measurement data is supplled th:h
TOUCHSTONE was considered. Usmg S-parameter data, sm'fle-mrcuxt modelhng

- w1th the € 1 pbjectwe was performed The goal of thxs expenment was to prepare for
- the more comphcated multi-circuit case by tgstmg some con’:mon formulas:s:md_'
assumptions, The eqmvalent‘mrcmt of Fig. 5.7 at normal operat.mg bxas“(mcludmg
. the carner) with 16 posmble vanables was used An 81 optxm:zatwn w1th exact
- gradmnts whlch are evaluated usmg the formulas denved in Chapter 3 was’
" performed \‘Ieasurement data was t,aken from 4to20 GHz Table 5.3 summarizes the

'1dentlﬁed parameters and Figs. 5. 93, 5. 9b and 5. 9c 1llustrate the measured and

modelledresponseS._ s : - , ]

=



147

. NT

[

o



T 148 B
TABLE5.3 ‘
RESULTS FOR THE NEC700 FET EXAMPLE
Parameter . - Value
-
Ci P o 0.0448
“Ca  (pF) 00058 ]
Cag P . 00280 \
Cgs  (pF) - 0.2867 5 Coe
 Cas* (F) . 0.0822 : L
R _' 0.0100 *
Rg (M ~ 35000 & -
- : St -
R (@ - 2.0000
R, @ - 3.6270 /.
« RO@ - - 1.3178
| Ga-t (k)  0.2064
[ ‘ L em 0.0585
Ly H) . 0,049
Lo (aHR, - ) 0.0379 |
: gm (S o 00572 -
e (e S s '
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Fig.5.9a ) " Smith Chart display of Sg91”in modelling of NEC700. The frequency

e

range is from 4 to 20 GHz. Points A and B mark the high {requency end -

* of modelled and measured responses, respectively.
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Smith Chart display of Sy3 in .modelling of NEC700. The frequency

range is from 4 to 20 GHz. Points A and B mark the

| 2 high frequency end
of modelled and measured responses, respectively. . ;

A



151

Fig. 5.9¢

Smith Chart display of Sy, and Spg in modelling of NEC700. The
frequency range is from 4 to 20 GHz. Points A and B mark the high
frequency end of modelled and mensured responses, respectively.

\
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553  B1824-20C Example °
| Using S-parameter data for the devxce B1824- 200 from 4 to 18 GHz ,
Curf:ce and Camisa (1984) have achxeved a very good model for the FET chip. They.
have ust;d the traditional least Squares optimization of responses ut1lmng SUPER-
COMPAC'I‘ ’I‘nelr success is due to, the fact that they hav.e reduced the number of
p-osstble variables in F:g 5.7 from 16 to 8 by usmg dc'and zero-bias measurements
We created two sets of artificial. S-parameter measurements with TOUCHSTONE:
one set using the paramete;‘s reported by Cuftice and Camisa (operating biaé_
. =8.0V, V = —2 oV and las= 128.0 mA) and the other by changmg the values of
Cy, Cz, Lg and Ly to simulate the effect of taking different reference planes for the
~ carriers. Both sets of data are sbo'wn in Fig. 5.10, where the S-parameters of the two
circuits are pl;)tted on a Smith Chart. ' : - .
. Using the technique descfibed in this .chapter.' we pi:ocesééd the. measure-

"ments on the two ci;'miits éimultaneously by minimizing the‘ function defined in
(5.20). The objective of this expenment. isto show that even if the equwalent cireuit
pnr.ameters were not known, as is the vase using real measurements, the conmstency
of the results would be prov;ad only 1f' the intrinsic parameters of the FET remain
unchanged between the t\;ro circuits, This was indeed the Easé for the experimenf.
performed. Although the max.imum‘number of possible variables, namely 32". (16 for
each circuit), were allowed for in 't};e optimization, the infrinsic parameters were'
found to be‘ the same between the two circui!:s and, as expected, Cy, Cg, Lg and Ly

. chnnget; from circuit 1 to 2. 'i‘able 5l4 surﬁmarizes tﬁe _parameter va:lués obtained. |
The problem involved 128 nonlmear funct:ons (real and 1magmary parts of 4 S-
parameters, at 8 frequencles for t.wo cxrcmts) 16 lmear functmns -and 32 variables.

<l The CPU time on the VAX 11/780 system was 79 seconds. ‘
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‘TABLE 5.4 .

RESULTS FOR THE GaAs FET B1824-20C EXAMPLE .

.
Parameter ' _Origihal Circuit - , . Perturbed Circuit.
T3 T Y I " Gozoor
Cz - GE) - o038 . - ~ 0.0200°
Cag  (PF) . o ' o04i6 S 00416
Cpn (0P . oesss . 06869
Cas P o . 'o.~19‘oo - . 0.1900
C. ®F) . 0:0100 .. 00100
Ry (@  =0.5490 L 05490
Rg (@ 13670 . ‘ 1.3670
Ry (@) S 10480 B i 1.0480
Re (@ .  lose2 EE ' 1.0842
Gyt (e 0zt61 . C oames
L' @H) 03158 .. 015000
La -@H) . - 02515 o ; 0.1499*
Ly H) 6.0105 . 00J0s
&m . (S " ooz doam
i v (e . 74035 ""7.4'93"5
. t-_

significant change in parameter value.
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56.  TUNINGBASED ON EFFICIENT MODELLING

- 561 - Fundamental Concepts

In this section, we disciss the possibility of using an efficient modelling

'technioué in conjorlction with algdrithms de\"eloped for postproducti'on tunlng of

microwave devices, In partmular we have in mind the tunmg of such dovxces for.

' whlch the physlcal parameters used in tumng {e.g., physmal dl%enslons screw pene-

_ tration, etc.) are different in nature from the model par,ameters of the equivalent "

‘c’ircuiti. R B

. \ v

Bandler and,l Salama (1985b) have dxscussed the use of a functmnal
approach to microwave postproductlon tunmg In their approach, the phys:cal
parameters used for tumng are the citcuit model parameters themselves (actually,

-~ 1

subset w1th the smallest 'possihle number of parameters) with uncertainties due to

. tolerances assoc:ated w1th them Wlthout attempting'to determme parameters of the

manufactured circuit, i.e., ﬁndmg the network element valdes the functional tumng
algonthms carry out a sequence of tunable parameter adjustments until the
performance specifications for the device are met.

Based on' the notation used earlier in this chapter'l'or model and physical

‘parameters ie., x and d. respectwely, in Bandler and Salamas approach bisa

-

) subset of x with unknown values throughout the tumng process

Now cons:der the tunmg of a device for which the physical parameters are

. completely drﬁ'erent in nature from the model parameters For instance, the physical

parameter is the size of an iris or the amount of a screw penetratzon in a cavity and

the model parameter is a coupling value in coupled cavity filters. As a special case,

. the physical parameters could be the controllable nominal values of unknown circuit

model parameters. An analytical relationship between ¢ and x may not exist or mfy
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T

be very di.fTicuIt. to achieve in a global sense. Although it is possible to carry out a
‘ functmnal tumng directly usmg &, ie. adlustmg q) until specd'xcutlons on responses

. are met w:thout considering any circuit equivalents, the approach could be extremely

mefﬁclent and time-consuming if we start with a highly detuned device. This is due

’

to the highly nonhnear relatlonshlp between circuit responses and physmal -

parnmeters A more efficient tuning nlgonthm for such devxces can be developed if

efficient and reliable modelhng is possible.

" - The nenlinear relntienship between circuit reponses, anel q>- can be broken
down toa nonlmear relationship between responses and x and a mildly nonlmear
relatmnshlp between x and . Since the responses are analytxcally calculated from x,”
and conversely x can bq found from the responses using a reliable modellmg
techmque 1he ‘tuning is sxmphﬁed to a less non.hnear problem which is effectwely
o . e

from'¢ to x instead of from q; to responses,

Apart from 1dentifying x from responses at each stage of the tuning process,

" modelling is alsb used to establish a local relationship between x and & at the start of

the tuning p}'oce;s. This relationship which predicts.the change in x as a result of the

.

change ind ie bpdated in the tuning process. The modelling technique described in
t.his chapter \Ivas used to establishxrelationsbip beb\eeen physicel and _model
p&ﬂnéters ofa multi-coupied cavity filter. Tbe resnlﬁs veriﬁed that the.relationship
between x and dis mdeed m:ldly nonlmear (m fact, it is almost linear) and therefore
a tumng elgonthm mvolvmg the mt.ermedxate model paremeters is more efficient

than a dxrect functional tunmg algorlthm Ior such filters. . ¥ |

v

xn
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5@\2 ‘ Exarflple in Establishing the Relationship Between Physical and Model

Parameters .

¢
Consider a 6th order multl-coupled cavxty filter centered at 11783 MHz

w1th a 56 MHz bandw1dth The estlmnted -unloaded’ Q factor for the filter is 7600.
From the physical structure of the filter, we have screw couplings Mg, Mg4 and Msg,

- ' : . . N
and iris couplings Mag, Mys and Mjg. We want to establish the relationship between

t.

‘the position of the screws (thair pen.etratlons in the cavities) whic_:'h are physically

adjustable, and the coupling values which are the model parameters in this case. To

achieve this, a filter was manually tuned to achieve a reference optimum response.

Starting from this reference tuned filter, the 'strew which is supposed to control

coupling M1 wab adjusted four. tim'es;'twice in the clo.ckwi'se di‘rection (screw '
penetrates more in the cavxty) thh 90 degree and 180 degree turns as compared to'the
reference, and tw&ce in the ant:clockw1se d;rectnon again w:th 90 and 180 degree
turns. Al'ter each ad_]ustment ﬁlter responses (mput output return loss msertmn loss
and groupKdelay) were megsured and récorded. U_sing lhé modelling technique of this
cl’lapter, the r::_aeasliremlarlls “reré processed (pasébandlnpl.xt return loss and stopbahd
insertion loss) to identify lﬁlte-r par_amél:ers (coqplingrvall.le.s) m each case,

Figure 5..11 illustl'al;es the y'ari-slatic.)ﬁ' of coupling values {mode! parameters)
as the p(llsition of the screw changes (gdjﬁsttﬁento‘n the pl\ysical parameterl. Clearly,
the coupling value Mjg incréases alfnost.linearly as the screw penetrates more in the

cavity whxle the other couplmgs remain almost constant (shght changes) The

behavmur is h1ghly de51mble as. far as the. tumng is concerned The experiment was

_ repeated w1th the serews controlling Ms4 and M55. The reference' filter (angle zero for

the screw) was the same optimally tuned filter as used in the M7 case, The plots of

-

model parameters versus change in physical parameters are shown in Figs. 5.12 and
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COUPLING VALUES
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-Fig. 5.11 .

=90 .30 ’ 180

CHQNGE IN THE SCREW QNGLE

"The vanatlon of couplmg values in a 6th order filter as the position of the
screw whxch dommantly controls Mm changes.
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(1986).

© 161

. - — -
i

r

' 5. 13 whxch correspond to the M,u nnd Msgérews respectively. Again, we have

-

a]most lmear or almos!‘. constant llnes 1'n bot.h plots

rI‘he measuremente used in Fhls e'xperiment were all provided by ComDev

57 CONCLUDING REMARKS

P

RUREEI ™ this chapter, we discussed the traditional formulation fof-mode]ling and

presented a new formulation exploiting multi-circuit measurements, The way in

- 8 N ]

which the multi-circuit Measurements may cohtribute_ to the unique identification of

paraeletefe has been.descri'bed mathematically with the help of a simple example. An

optimization problem which is directly aimed at overcoming the non-uniqueness of )

?

. parameters ere'e'fo;mulated and its imple’ment.atipri was described in detail. A second

f'ormulafinn which is.aimed at. the ‘automatic verification of model parameters by

‘checkmg the consxstency of their behavmﬁ'r with respect to physmal adjustments on

- the dence was proposed.

‘ Promxsmg results in mbdellirig of narrowband muiti-coupled cavity filters

" and wideband GaAs FET's were obtained which justify-the use.of our multi-circuit

‘approach é'nd formulation. The author strongly believes that the use of multiple sets

+

of measurements anda formulatmn whlch ties modelling: (performed by the computer)

to the actual physmal adjustments on the device will enhance further development.s in

u

_modellmg and tuning of m:crowave devmes The use of modellmg in estabhshmg the

.

_.'relauons!up between physma] and model parumeters has beenillustrated.
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+

- This thesns has cons:dered the apphcat.mn of recent mm:mux and £

opumlzﬂtwn techmques in the. d—é}gn and modelhng of microwave cxrcmts The

dlﬂ'erence between design and modal]mg problems is the way in whmh perform ce

specifications are given. In the design of microwave circuits in the frequency domigin,

_ there are upper and lower engineering spéeiﬁcatibns over different frequency bands of

interest w!u a maﬁufactured,desig:n must meet. In the medelling problem, an
& h . L ’
equivalent ciscuit tmust be obtained such'that the circuit resporises match the
Ny ‘ ) P , :

measurements on a device as closely as possible., The measuremeénts pla‘§ the role of ¥

e
’ ' [

specifications in modelling. SN
Both design and madelling problems are formulated as optimization

problems with the Ei:;hject'.ive being the norm of the error functions resulting from

4
i

Apecifications on performance functions of interest. The minithax norm for design and

ton

.

the £; norm for mod'elling have been used in this thesis Fast and efficient algbrithms

for winimax and ¢, optimization originated by Hald and Madsen which may be the

-

best of theu' class currently avaxl.able are utxhzed

+

The use of_gradlentrbased optimization algorithmns requir_eé efficient sensi-

. tivi;x ﬁnalysis. The approach presen.ted in Chapter 3 d_eals with the sensitivities in a

stralghtforward mnnner ~It is applicable to a large f'lass o[ h:.ear circuit structures in
the frequancy domnm The approaches for-senst w:ty ovafuatmns in cascaded and

branched cgscaded networks were developed w1th microwave applz:ations in mind. .
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- Optimal design of multiplexing networks has directly . emer{ed from the
lhflem'etlcal foundations of Chapters 2 and 3.’ The size and complexlty of this problem
with the design exump!es involving up to 60 nonlmen‘.r vnriables and as many as 100

nenlinear error functlons necessltates the use of Fast and reliable Optxmlzntlon
techr'uques which 'in turn require the gradiénts to be supplied. ‘To maintain the
engmeermg reIevance of the wo_rk, nonideal effects in the multiplexer structure were
considered. Close cooperation with industry has resulted in a realistic imple-
mentation of the theoretica}\{esults. This implementation has had an impact in terms
of achieving maior reductions in CPU times required for practical designs,

The multiplexer d;sign examplle, apart from being a problem of current
interest in microwave research and practice, gives enormc;us credibility to the use of

' 1

optimization techniqﬁés‘ in large engineering problems in general, and microwave
problems in particular_. In recent years, many commercially available soﬂware
systems have been developed in the miqrowave area. It will not be very long before

the flexibility, user-friendly‘features and graphical capabilities of these systems,

combined with powerful .optimization techniques which have been employed in this

'. thesis, form an indispensable tool used by all microwave engineers.

Based on the theoretical properties of the €1 norm applied to multi-circuit

‘easurements, a new.mod'eliing technique was presented in Chapter 5. Two

- .
optimization problems were formulated with the aim of achieving unique equivalent

v —"\/\

circuit parmﬁ(eters which remain valid and consistent as the experiméntal envxron-
v

ment changes, &g, as a result of making physicel adjustments to the device. By

reldting the concept’of modelling to actual physical aQustmean the relntlonshxps

LY

between model and physncal parameters are estabhs}wd end a framework !'or

developing new postproduction t.umng algorithms is created. Industrial cooperation

e W
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1
o
1]

in testing the new modelling technique has affected the theoretical work extensively.

The mode! verification method preseh‘ted in Chapter 5 was developed only after some |

limitations of the experimental environment became evident as the real data was
. : 3

pro'cessed.

For‘microwavef;ievﬂ:es such' as amplifiers realized using MMIC's
(monolithic microwave integrate& ‘circuit.s). ‘modelling is used to pfedi;:t device
scattering param'ett.ers at millimeter, Wav;"e freciuencies where they cannot be measured
with current commercial equipmept. By applying the new modglling technique to

GaAs FET's, it is felt that this thesis can contribu‘te to the subject which haslbeen of

tremendous interest to microwave engineers in the past few years.

One of the most recent methods for efficient gradient approximatior{\s, .

*

applicable to both minimax and ¢, optir‘zations, was reviewed in Chapter 2. It is

predicted that this technique will realize its full potential in sblving those microwave

problems which involve nonlinear devices or complicated field equaﬁons, in the near

future.

A number of problems related to the topics in this thesis are worth further

3

research and development.

< {a)- In Chapter 5, an advanced technique in model evolution, i.e., automatic

modification of network ibpology was discussed. The technique is sequen-
tial in the sense that different network topologies are tried one after

gnother. Apart from further theoretical work in developing strategies and

N 4

criteria for the automatic modification, it would be very useful to combine

the modification techniqe with the simultaneous processing of multiple

~ .

circuits which was introduced in this thesis. The idea is to process

simplified models such as fow frequency. models of & microwave device
. L 3

4
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!
simultaneously with its more complicated models at normal operating

frequencies, with constraints on consistency of the parameters.

As was discussed in Chapter 5, an efficient modéi]ing technique has appli-
cations in developing new postproduction -tuning algorithms. In such
algorithms, the functional relationship between the model parameters and
physicaily a-djust-able or designable elements of a device are approximated
automatically and adaptively. The involvement of model parameters
whqul usually have mildly nonlinear dependence on physjcal perameters,
and the fact that the nonlinear relationship between ‘respons;es and model
parﬁn;eters is under céntrol by using a reliable 'modelling technique gives
us an incentive to develop new tuning algorithms. These algorithms will

+

enhance large volume production of complicated microwave components.

e

It would be of great practical value to investigate an implementation of the

modelling technique described which exploits the latest developments in

hardware-software systems reported by industry. The most recent .
advances include the introduction of systerﬁs capable” of simultaneoulsy .
processing and displaying measurement data obtained from a network
an;a.lyzer, and the simulation and/or optimizatioﬁ results computed using

- -

compatible personal computers.

Modelling of power FET's under large-signal conditions where the equi-
valent circuit is nonlinear is & topic of significant current interest. It would

¢

be useful to study the feasibility of extending or modifying the current
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modelling formulations to nonlinear systems where time domain analysis

becomes more appropriate.

(9) In the multiplexer structure of Chapter 4, some nonideal effe;:t._s such as
dissipation, dispersion and ;iun]:tion susceptances were discussed. These
nonideal effects were modelled using empirical formulas obtained I:i:hroug'h
experience or 'expgriment.s. The problem of modélling some of the nonideal

-_ effects present in the multiplexer structure using measurements on the

device is worth further study and will result in multiplexer designs which

will require less effort in postpioduction tuning.

-

. _(Di . From a theoretical point of view, it is worth further research to st_udy the

) \ implications of the sensitivity fort'nulas obt.aine(.i for lossiésé reciprocal

.‘-.'2.-port networks of Chapter 3 in sensitivity analysis of lossless reciprocal
n:\p'ort.h. :

-
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SECOND-ORDER SENSITIVITY FORMULA

FOR TERMINATED TWO-PORTS

a

.the port voltages of a terminated twosport, as given by (3.26).

Using (3.25), the first-order sensitivity with respect to w is given by

(Vp)m =Hz, Ip - sz Vp] .

Differentiating (A.1) with respect to-d, we get
(Vp}m = I-_I[zq)-m Ip-i—z@(lp)‘b— z, T, Vp—z T

.t H¢(zw Ip - z'I‘u

VP) .

Using the definition of H in (3.24), we have

H",(zm Ip -zT, Vp) =

dw

Vp - sz(Vp) 4’] :

-1 ’ r
- H(H )‘b H(z Ip—-z T, Vp)

—H(z¢T+ zT‘b)(Vp)m .

The sensitivity of the port current vector is p.btained using (3.22) as |
(Ip).p = --[T¢ VP + T(Vp)¢] .

Finally, substitlnting (A.3)and (A.4) in (A.2) and colnlecting terms, we get

(vp)dm = —H{ zm['I"b Vp + T(VP)¢] + z¢[Tm V‘p+ T(Vp)m]

+ z['I‘¢(VP]w + :Fw(Vp)¢ + TW Vp]—z

167

wlp}'

+

Here we present the derivation of the second-order sensitivity formula for

A

(A.2)

{A.3)

(A.4)

(A.5)
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