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ABSTRACT

Geometric isomerizations about the CaC and CaN bonds

.of a series of diaryl ~,5-unsaturated iminium salts are

inve~tigated in this thesis. These isomerizations are impor­

tant in several unsaturated iminium ions found in natural'

systems. The vision proces~~elies on light absorption by

t~e protein rhodopsin followed by Z/E isomerization. A simi-

lar reaction is used by certain bacteria to convert light

energy into energy the organisms can use for cell functions.

A series .of nine iminium salts, N-methyl,~-aryl-3-

ary~-2-propenylideneiminium perchlorates, with various

electron-withdrawing or electron-donating substituents on. the

aryl rings were synthesized and characterized. Three methods

of isomerization of these molecules were examined--photo-

chemical, electron transfer initiated, and thermal

isome=ization.

The electronic absorption and emission properties of

these iminiumsalts, and the effect of the substituents on

the regioselectivity of photoisomerization, led to some con-

clusions about the excited states involved in the isomeriza-

~'
~~on. Although the molecules reach an initial excited state

whe=e the positive cha=ge of the iminium g=oup has mig=atec

p=ocess i~ not gove=neu by such an i~te=mediate.
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suggested that the state that governs photoisomerization has

biradical character.

E/z isomerization about the C-N bond of the unsub­

stituted iminium salt was accomplished by photoinitiated

electron transfer from the donor, tris(2,2'-bipyridine)­

ruthenium(IIldichloride, the first observation of this

reaction.

The iminium salts'crystallize as the E,E isomers, but

undergo thermal isomerization in solution to produce a

mixture of E and Z isomers about the C=N bond. In strong

acid media, two mechanisms of isomerization were found.

Electron-withdrawing substituted iminium salts isomerize by a

nucleophile-catalyzed mechanism, and electron-donating sub-

stituents cause isomerization by protonation of the iminium

salt .
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INTRODUCTION



CHAPTER .. 1

Vision, the process whereby light refl~cted from

objects around us is translated into images, is currently being

studied from both chemical and biochemical perspectives.

Organic molecules called rhodopsins act as the visible light

absorbing pigments, and are located in cells in the retina of

the eye.~72,3,4 The human eye contains cone cells and rod

cells. The cone cells are responsible for vision in bright

light, and can distinguish colours by absorbing lignt of one

of three parts of the visible spectrum: blue, green or red

light. The rod cells are responsible for vision in .low light

levels, and cannot distinguisn-colours. All species of

animal .that can se~ contain v~sual pigments that are similar

to the human pigments, however most animals have only one

type of visual pigment and do not see in colour. Since

animal retinas are easier to obtain than human ones, our

understanding of the visual process comes from studies of

animal rhodopsins, especially cattle rhodopsin.

When rhodopsin absorbs light, a reaction sequence is

initiated that causes changes to the membrane in which the

pigment is located, and eventually leads to a nerve impulse

that is sent to the brain. There are approximately thirty

million rhodopsin molecules in one rod cell in the eye. These

cells are very sensitive to light, but also adaptable, as they

1
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can detect as low as a few photons ·to as high as 10 6 photons

of light per second. ·Each photon absorbed triggers a series

of enzyme reactions that ends with hydrolysis of cyclic

guanosine monophosphate (GMP) in the cell. Amplification of

~~the original

sensitivity,

absorption event is responsible for the high

in that one photon absorbed causes up to 10 4

-molecules of cyclic GMP to be hydrolysed.

In the absence of light, an electrical current passes

through the cell, generated by a sodium ion flow. Light

absorption causes this current to decrease, possibly through

the action of a transmitter that links the enzymic reactions
~

with the changes in the membrane that stop sodium ions from

passing through the cell wall. The change in electrical

current causes a nerve impulse to be sent to the brain, where

interpretation and creation of an image takes place.

Pigme~ts that are similar to rhodopsin are found in at

least-two other organisms. These light-absorb~ngmolecules

are used not for vision, but for converting light energy into

energy the organism can use for cell functions. Bacterio-

rhodopsin is one of four such proteins found in the surface

membranes of a strain of bacteria called Halobacteria. Light

absorption by t~e protein leads to the synthesis of adenosine

triphosphate (ATP), an energy storage system of living cells. 4 ,5..
A green algae species, Chlamydomonas, moves in response to

light, also because of a light absorbing pigment. 3
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I. Rhodopsin

The chromophore of rhodopsin, 1, is one geometric

isomer of retinal, ll-cis retinal, and is common to all

animals. It forms an iminium bond with a lysjne amino acid of

the apoprotein, opsin.

1 R R - opel"
'-

"

Rhodopsin in human rod cells is red-coloured. The

protein backbone does not absorb light in the visible region,

so the long wavelength absorption band of rhodopsin, the one

that is responsible for its colour, is caused by light absorp-

tion of the chromophore only. The opsin chain surrounds the

chromophore, and exerts an influence on its absorption spec-

trum. Although each species of animal has the same chr~mo-

phore, each has a different opsin, and the absorption maxima

of the rhodopsins are also different, ranging from 440 to 600

nm. 6

Light absorption by rhodopsin initiates a reaction

cycle, Scheme 1-1. The intermediates were initially identified

by their absorption maxima and have since been characterized

--by other spectroscopic techniques. The first intermediate,

bathorhodopsin, absorbs light at longer wavelengths than does
r

rhodopsin. Photocalorimetry studies have found that batho-






























































































































































































































































































































































































