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ABSTRACT

This thesis examines receh'er stI'Uctures based on ma:umum likelihood sequence

estimation C\ILSEl for receiving quaternary phase-shift-keyed (QPSKl signals over

bandlimited. non· linear satellite channels. in the presence of additive down link gaussian

noise. Two satellite channel models are considered. In the first channel model. the effects of

intersymbol interference caused by filtenng followed by A_\l/A~l and A_\lIP~l.conversions are

taken into account while the second channel model includes a post-nonlinearity filter.

An e:<plicit e:<~ion for t.he output of the bandpass nonlinearity (BP);"U for a

QPSK signal is obtained .in terms of an ;nphase (1)-quadrature (Q) path mem?ry parameter

Pk. The computation of the output of the BP);"L requires a knowledge of its transfer
-_/

characteristic. The transfer characteristics may be specified either analytically or through

experimental measurements.

An optimum MLSE ~eceiver structure for bandlimited. non-linear satellite channel

is derived and its performance e\'aluated usin.g computer simulation. Simulatirog the ~ILSE

receiver in optimum form is too time consumL"1g. so we estimated the I-Q 'Path history

parameter Pk'S by using a simple procedure analogous to decision feedback processing.

Although this method is not thecretically equivalent to an optimum computation. our results

show that it performs essentially as well as an optimum computation. For :noderate to high

S);"R. an upperbound on.the prob~bilityof symbol error is obtained. using the concept of error

events. A si::lplified expression for an upperbounci on probability of symbol error, for the case

when single-error error. e\'ents are dominant. is also obtained. A sub-opti~um reee:\'er

structure is then derived using average matched filter responses. The sub-opti~u:::1 receiver

which turns out to be a complex' filter followed by a decision device. is a relatively sim?le
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structure.. The performllnce of the suh-optimum receiver wns estimated for two different

uplink filters. The effect of var~..ing the BPKL input drive level was also studied. Our

simulation results indicate that the performllnce of both the :'1LSE and the sub,optimum

receivers approach nsymptotically the same optimum performance band.

Finally, we extend our results .on an optimum receiver structure for receiving

QPSK signals over a digital satellite communications channel. to include the effec~s of

filtering' following the non,line,,, satellite transponder. It is 'shown that the complexity of the

:'ILSE receiver is primarily determined by the uplink chllnnel mem"ory The error perfor­...
mance of the reeeivcr at low sign111~to·noise ratios is evaluated by computer simulation. An

upperbound on the probability of symbol error at modera;.e to high S:\R is also obtained. .\
'.

sub-optimu;" re<:eiver similar to the uplink channel filtering case is developed and its

performance evaluated using computer simulation. The deg-radation in performance of the

sub--uptimum receiver compared to the optimum :-eceiver is found to be small.
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CHAPTER 1

INTRODUCTION

~lodern satelliq, communications systems suffer from both power and bandwidth, . .
limitations. Becaus~ of the power limitation, digital satellite cO(ll!nunication systems are

normally operated with a non-linear amplifier, usually a travelling wave tube amplifier

(TWTA), in the satellite transponder. In the non-linear region of qperation, a TWTA e"hibits

both a non-linear input amplitude to output amplitude (A.\1-AM conversion) charact~ristic

and a non-linl!ar input amplitude to output phase (A.\1-PM conversion) characteristic. In

addition, because of the limited availability of satellite bandwidth, the transmitted signals

must be tightly band-limited, and this introduces intersymbol interference (lSI). The lSI

combined with non-linear amplification causes significant degradation of system

performance.

In this thesis we are concerned with the problem of developing an optimum receiver

structure and"'estlmating its performance for quarternary phase-shift keyed (QPSK)

signalling over bandlimited, nonlinear satellite channels. In deriving the receiver, the

ma;timum likelihood sequence estimation (MLSE) approach will be used, so that the receiver

. is optimum in the sense of minimizing sequence error probability on the bandlimited non-

linear channel.

A satellite must share its capacity among a large number of earth terminals. This

sharing is achieved by some form of multiple-access technique. The multiple-access problem

is fundamental to satellite communications, because it is by this means that the wide,

geographic coverage capability of the satellite channel is e:<ploited. The satellite channel

model in this thesis assumes in particular Time Di"ision :I1ultiple Accessing (TD~1AL In

1
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oreler for us to-bring out the point that current trends are toware! using TDMA, we briefly

---describe severnl \asic multiple access techniques.

1.1 A Brief Review of Multiple Access Techniques for Satellite

Communication Systems

Commer~ialCommunicationsby satellite began officially in April 1965, when the

world's fll"st Communication Satellite INTELSAT I (known as "Early Bird"), was launched.
..

The fully mature phase of satellite communications probably began with the installation of

the L.'ITELSAT IV into the global system starting in 1971. The INTELSAT system serves

most of the countries of the world and has satellites over the Atlantic, Pacific and Indian

Oceans.

Frequency-Division Multiple Access (FDMAl, is one widely used multiple access

techniqu·e. In FDMA, different carrier frequencies are used for each transmitting station.
,

This allows use of the same transponder amplifier until finally the overall noise level limits

the capacity of the amplifier. The presence of multiple carriers in any non-linear amplifier

produce intermodulation products which raise the apparent noise level. To reduce

intermodulation noise, the TWT drive level should be "backed-off" to avoid non-linear

operation. The carrier received power level now is less and thus the effect of thei-mal noise

generated in the earth station receiver is increased. This reduction in input drive level must

thus be optimized. Even after optimization, the effect is not trivial and the reduction in

capability ofa transponder over what it would have ifall the available information was multi-

plexed on a single carrier frequency can be as much as 6 dB. :-;evertheless, FD~IA remains a

very popular technique for high capacity transmission commercial communication satellites.

It is efficient if one is not power limited, and it is the natural expansion of terrestrial

communications methods.
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FDMA can be implemented in two ways. One is to multiplex, in the conventional

terrestrial manner, many channels on each carrier that is~mittedthrough the satellite.

Another is to use a separate carrier frequency for each telephone'or baseband channel within

the satellite. If many carriers are used, the intermodulation problem is still more serious. On

the other hand, it does approach, .asymptotically a li~ting level that is usually acceptable.

This sin:;le-channel per-earner approach has particular advantages in systems where there

are many links to be made, each one having only a few circuits to be handled at anyone time.. .
:-<"ormal multiplexing is very convenient terrestrially but may be economical only if each

carrier has traffic, for example, in a group ofl2 channels or more.

Both systems are in extensive use today. INTELSAT uses both systems, the

SPADE (Single Channel per tarrier, Pulse Code modulation, multiple Access, Demand

assignment Equipment) being a single channel per carrier modulation-access system.

Ca'nada, Indonesia and A!geria, to mention a few, countries who use single-channel-per-

carrier sy~tems.

Time-Division :>1ultiple Access (TDMAl is the next basic technique of multiple

access. Here each earth station is assigned a periodic time slot for its transmission, and all

the earth stations use the'same carrier frequency within a periodic particular transponder. In

terms of the total satellite performance, this is the superior method because the

intermodulation noise is eliminated and. there is an increase in capacity. The required

transponder back-off is much less, just that required to achieve acceptable spectrum

spreading. T'he price paid is an increase in complexity of the g;ound equipment.. It does seem
. ..

as if the long term trend will be towarcl...~ more TD1-1A since it fits natUI:ally with the

digital communications systems tJ:at are rapidly proliferating terrestrially, not only for data

transmision but more and more fo~ digitlzed voice.

r
































































































































































































































































































