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and tS the well-behaved nature of _!}_-projectivity in

-

INTRODUCTION

. - X Lo *
5 .

We consider the category of topological spaces on
which a partial order has becn defined : PTop .

If we collect those cbjects.of PTop whose partial

order is discrete (i.e. no tro elaments are comparable), we

‘have; a copy of the category Top . Hocever if we collect

thé dbjects of PTop with a discrete topology, & copy of

thoe category of part:iany ordered sets is d:t?ned . ‘,{

Because of the ahove reas(ona PTop appealed to the

author as a frame to generalize results of

Top . This hope
was 'gtronqthcnéd by reading

- " Topology ;md Order " by

- L. Nackbin 7], and * Partially ordered Topological Spaces *

by Iq.t:. Ward Jr. (24) wh:l.ch contain clean generalizationa

of the U:ysohn Theorem ~ |

Baving been expoaed recently to generalizations of , f |

1nject1ve and projectiva - with respect to claues of maps-,

-

Top.,
(see B, ?anaachanki (2] and ([3)) it was inevitable for

the author to wonder sbout PTop and/or some of its swca-
tegories .

-

In order to apply some of the previously knosn re-
sults, Snd because of thes very nature of this thesis, it has ‘
been necessary to keep introducing nes lmcatagoriea o! '
PTop , for which the anthor hopos to have found a notat!.on

4
N
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which will not be too confusing .

-~

’a,' -

£

‘ "It has been a pleasant surprise for the author that

>

80 many atronq ragsults of E could not only be generali-.

zed .in a aimple way but alao into surpriaingly aimple state-

mants .,

Chapter® 0 contains some basic material for quick

-
-

‘referenca .

-

! Chapter I 3 surveys the dojecta,,\a\bobjects, quo—
tionts, initial and final structurea, limits and colimits
of mbcntegoriea of the category we Phall ca\ll HPOTS -\
(Hauadorff«apacea of PTop wjth\ a condition on the order
stated “in [17]) . We d:tain alﬁna essential results to
enable us to apply somg of the strongest stgtements of [10]
~ as aids. in finding re:lect:iva and coreflective atbcntqago—
‘ries of. HPOTS and in estas lishing two different adjdint

aituations botxeen stbcategories of HPOTS and the ,.corree-

~

—-—

ponding stbcategoriea of H. .
Chapter II concerns itgelf with 'c-omplete regu-
- larization®™ in the sense given in ﬁBOI for Top, and ‘
with the related ideas. of .'conﬁactiﬂcat'ion and “"real-
compactification” . A swcategory of BPO'rs is found which
bears an analogous relation to Hpm's as Cr doeu to H.
™O statements compare the tmderlyinq topological
spaces of the "compactification® and‘ !'rpal-conpactiﬂca-
tion® of -(X,¢) with BX and vux . -

]

[}
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-

In Chapter ~III:;a successful effort is made to’ex'—' ' ‘
t'end “ghe iesults of [2]9, to a’ perfect projectivity in |
swcategories of .HPO‘I'S;» . With the @ults of Chapter 1 .
and direct applications of methods in [21 and [3] “the
'_P-projective d)jecta and P—projective covers are found of |
a properly behaved P—projectivity . In & slmilar vay a
~special E—injectivity is atudied and partial results of ‘a
'1ocal'_' proper behavior are cbtained .

Chapter IV concludes thia work by gshoving that
the Horr:( < R)- functor ~has no ‘simple generalizat'ion to
the™well knasn. results about cX in Top .

Counterexamples are provided, followed by more invol-—

ved generalizationn of results by Stone and Shirota .

’




cmnerER 0 . L 2
PRELIMINARIES, . - =~ . . -
" The purpose oﬂmiu chapter is to make this- thenis
. more readsb le by including in it some of the vwell knosn.
raesults which are referred ‘to more often in later chapters .

At the same t.{m_e we take the opportunity to introduce -nota-

LY -2 -

" tion . . S ®

0.1 REMARK: In all of the ca‘teqoriea that';ce shall intro-
‘duce, unless othgx;fi_ae stated, 'thel_ morphisms will be the ,
nt.fuct.ure preserving funct}pha between the undarlying sets
of tﬁo o jects, 'qnd.we- shgll mean by a subcategory a full i

subcategory. .. —— o - 4
S

1. We danota by PTop the catég’oi'y whoge d:ject.s are

0.2 EXAMPLES:

tOpological spaces on which a partial order has been defined

and whose morphisms are the continuous 1sotone mapu .

L2, " we describe the category of I-rings as the one ha-

ving as cbjocts_'algcbrns of the type (X,+,., ;v) . such that

(X,+,.)  is a ri.nq'and. (X,s,v) a lattice . o
" The morphisas will then be those maps,which are |

ring- homomorphisms with respect to. +,., and lattice-homo~-

morphisms with rolipo:t;o A,V . R

e
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0.3 NdTATION:ﬁ If we- represent a certain subcategory of
Top by K » Wo shall mean by ;@lP_T_g_E_ the mbcateéory of
PTop whoae underlying tOpological spages belong to K .-

All aynbola denoting cateqories will be underlined,
and- if K is any category, we shall mean by R(A,B) the

set. of FK-morphisms between the E*dzjecta'\ A2 and B .

0.4 EXAMPLES: We shall depote by ,f.l. the'Hauaﬁg)rff spa-

N ) . ] &
by Cr' the completely regular spaces in H
‘by. C. the compact spaces in H

by Rc the realcompact spaces in H

‘/ - )
"Accordingly, CTPTop will mean the compacté spaces’ in

HETop, and PTop(X,R) the set of continuous~jsotone func-

‘tions with the partially ordered(t_:opologicalﬁspace; X as

1

. a'
their domain, and RePTop as their codomain!.

t 7

0.5 DEPINITION: (Ward Jr. [24)). Let X be a topological

spaée with a partial order ¢, then < is called
1. lower semicontiimous if, whenever "a ¢ b in X,
‘ ’

there exists an open naighbourhcod U of &, such that,

if xeu , then x ¢b - : -

2. upger senicontinuous if for a ¢ b , there exists p v,

an open neigthourhood of b, wsuch that xcV in;p;iu at x

r

s, ‘. emicontinuoul i it is both upper and lover semicon-
s

t‘inmua .

Lt s e
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4. continuous 4if, whenever a { b . there exists U
open neighbourhood of a .and V open neighbourhood of b,

such that if x is in U and y isin Vv, x¢vy .

/ . 0.6 NOTATION: If we represent a certain subcategory Of

H by K , we shall mean by KPOTS the category of all

spaces ‘in HPTop, whose underlying topoleogical space beloﬁgs
to K , and whose partial order is semicontinuous . Similar-
ly, we shall denote by KOTS the subcategory of all the spa-

ces in KPOTS, whose partial order is continuous .

-

0.7 LEMMA: (Ward Jr. ([24]1). If (X,<) belongs to PTop
and < i3 continuous , then X is a Hapsdorff space and

the graph of < in XxX is cloaeh

0.8 DEPINITION: (Nachbin [7])). Let (X,5) be a par-

. - : { ' _\.
tially ordered set and S cX .. We call S decreasing if,

wheniaver a <b and beS, a:S\ . Similarly S will be

increasing if, from a ¢b and acS, DbeS follars .

P

We denote by LS the smallest decreasing swbset of
X containing S, andby M5 the corresponding smallest in-
creasing set . Since decreasing and increasing have the
intersection property, and X ~is'both decreasing and in-
creasing, LS and M5 abrays oxist .

-

) .
0.9 DEPINITIOR:” (Mactbin f17)) (X,<}ePTop will be said

T
Aoy T T




to be Tormally ordered if for aevery two disjoint closed subsets |
A,B of X suéh that A is\decreaa#ng and B incréasing,
there exist tv#o disjoint open sets U,V such that U con
tains A and is decreﬁaing, and V contains B -and is

increasing .

0.10 NROTATION: We denote by NOR the category of nor-

mally ordered ﬁpacea in PTop, and by ﬁORC the intersac-

~tion of ' NOR with HOTS ..59

0.11 THEOREM 1: (Nachbin (17]). In order that

-X,€)ePTop be normally ordered it is necessary and suffi-
cient that, for any o disjoint closed swsets A,B of . X
whera | A  is decreasing and B increasing, there exists a
continuous 1qotqné‘£unction £: X-+R nu‘ch that f(x)-o" for

xeA, f£(x)=1 for xeB and Imf < fo,1l] .

-3

0.12 THEOREM 6: {(Nachbin [17]).* If (X,<)eNORC and A
is a compact swbget of X, evéry continuous isotone func-
tion /f’fzh-_-nR can ba axtended to ¥ 80 as to make the fol-

loring HOTS-diagram commutative : A—X
‘ £

0.13 REMARK: By analyzing the proof of the above ghooz"mn,
it follors directly that given g:A—X , a function ¢ w_ill

oxist for which the ROTS-diagram belar commutes .

-
¢ .
) 2




Hosever, the map £ so cbtained was constructed in
the proof of Theorem 2 [17)pags. .36-42; where, specifically,
if Im igcK, . then Im fcl1. A—X

s/
ii/

We can therefore interpret £ as a map X~—X and

for this particular case obtain the commutativity of A—X

D%
_ ;
0.14 REH\RK: We have already mentioned that the_cateqofl}
PTop is "larger” than Top .

Even for Top the study of the problems we are concer-
-rned with in this thesis required the precise. deﬂnition of ‘

mbd)jecta and. quotient-dbjects of a .category g:lvenvin [101
.paqe 60 and [19) page 20 . For a convenient reference we in-

o

: clu?e ‘those definitions here . .

. Y
0. 15 DEPIKITIO‘H: ‘(Herrlich no}) . Let R be a catago:y.

X an cbject of K, oy and “2 norphims in = K ne say -
: that, m, is equivalont to r’ if and only it an isomor

. phim h exilts such- that the tolloving x—diaqrm commutes:

h‘:",

X

-

‘The bm defined relation 1- clurly an equi.valenco |

relation . . =

X

14



If m:Y—X is a EK-monomorphism, the equivalence
class of (¥Y,m) under the mbove .fequivalence relation is

called a gswbaobject of X . -

One defines dually the quotient cbjects . _

0.16 REMARK: 1In ths caterr;es Set, Group {nd A—mddul’ ’
the swdbjects are completely determihe.fd by the gﬂgerlying '
set of a stbset_, a subgroup ‘and a submodule, respectively,
and their inclusion maps . For other categories like Top,

_}_l_'and\Partially ordered Sets a subset of the underlj;inq set

of X does not uniquely determine a swobject . For those <
categories the concept of “extremal subcbject” is of

interest, as it will be for PTop . o

0.17 DEFINITION: (Herrlich [10]) . A monomorphism

£:A—+B in K 1is called an axtremal mdnomorphimn if

whenaver g and h exist such that g is an epimorphism
and fah.g, then g is already an isomorphism .

The subdh ject corresponding to an extremal moncmor-

phism, igs called an extremal subcb ject . \

thmul epimorphisms and extremal qﬁotiants are

defined dually .

0.18 DEPINITION: (Herrlich (10}) . If S is a sub-

category of K and "x:g_-.-vg_ the inclusion functor we call

-8 reflective in K if E has a left-adjoint R, and

coreflective if E has a coadjoint C.




If S is reflective in K, the fundtor R is .
e .

. called a reflector and it satisfies the Right Universal

~Problem .. The situation for C is symmetric . S is

reflective in K 4if and only if for every XeK .the Right

s

Univérsa]_. Prcblem has a solution ry:X-—rX in K with

rxeS, for all f£:X—Y in K with YeS .
’ ‘ .

0.19 PEPINITION: (Herrlich [10]) . Let A be a swb-

categorjr of B . A diagramm D:S—+B is said to be partially
in A, if for.ev;ry ‘Xe$ , therg exists a YeS such that
'D(Y)cl_k_ and S(X,Y) ¢ ¢ . The swbcategory 5\_' is said to be

strongly closed with respect to §;_11n§1ts in B , if whenever

a diagramm D:S—B partially in A has a limit (L,1) ,
then LeA . -

© One defines dually copnrtialiy in A and strongly
' . - r :

clogsed with respect to S-colimits .
4 ' - : . .
0.20 PROPOSITION: (Herrlich f10]) . If _K_ is complete,

locally small and colocally small, the folloring ltatmr‘xts'
are equivalent : |

1) S is epireflectivs in X |

2) )8 -is sﬁronqu closed with respect to products and
equalis rs in K . |

Lt

0.21 DEFINITION: (Mtchell16]1) . If K i a category
and G an cbject of KX, then Gq is called a generator for

1




K if for every pair of distinct morphisms m,n:A—B there .

is a morphtem ‘h:G~—A such that mh ¥ nh Ce

P

0:22 PROPOSITION: (Mtchell [16}) . If K has

coproducts, then’ G is a ge_nerqtor‘for' X if and only if -

' for each AeK there is an epimorphism eG:LI.[G —~A for some \
. - - \ . R

set- I . Purthermore, in this case we can take I = K(G,A)

with e, the morphism whose u-th coordinate is u for
all ueK(G,A) . S ' , -

i

'0.23 PROPOSITION: (Herrlich [10}) . Let S be a swb-
, >

‘category of K . if "8 contains a-generator of R, the
follaw ing. statements are equivalent : .
1) S 18 coreflective in 5_ FE ®

2) S is bicoreflective in X

0.24 PROPOSITION: (Herrlich {10]) . If K i= a

coconmpleta, locally’ small and colocally small category
such tha;t ;vor?y _!g_-dqject Iis ,:'ln;.tinl or & genarator, the
follow hg_n‘_tatmntl ars equivalent for every subcatogo%jr s’
-:h'ich‘ does not.consist enterely of initial ch'joct- .
1) S is coreflective
2)

LN

i

is bicoreflective

3). 8 i= oloidd’with respect to oop;-oaucts and coeqﬁ.ali- ,
zers in K s ‘ |

4) 8 is closed with respect to coproducts and extremal
quotients in K . ‘

e e i ———— .
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0.25 REMARK: Our notation in General Topology will
include TA TA and A for interior, closure and comple-

ment of A,. respectively .

‘We include the follaov ing definition from Ceneral
'ropd'loqy, in order to have it ready for its geﬁeralizatio'n

t

in Chapter II .

0.26 DEFINITION: Let E,X¥Top . We say that the space

_' X 1is E- regular if it is homeomorphic to a sv.bspace of
"some pover of E . The space X wnl be called E-compact

‘if it is homeomorphic to a closed a\bspace of some POV er

e

of E .
A def}nition from -Category Theory will be useful :
. . \ ]
0 27 DEPINITION- The 'aubcategory S of K will be

caned right- fitting- (wi.th respect to a class ¥ of

maps in ‘K if f: XY in M and xr.s implies YeS .
- Similarly if YeS implies XS, S will be called

laft- £itting .

s

!‘or the study of Ptoject:l.vist.y and Injectivity in

Chapter III, fnrther mterial is included ! . -

0.28 D!!!'Iﬂlﬂom m’t P be a class of epimorphisms of

a category K . 'rhen fcP is canod coessantial :I.f

whenever gtk 'and g.geP geP . We denote by P

~ |
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10 4

the class of coessential elements of P . 1In a dﬁal way ‘
we denote by :E a claas of monomorphisms of K, we define
essential elements of E and we denote by Ex the class

of essential elemants of E . | N

!

’ 0.29 ' DEFINITION: Let K be a category and P a class

\
of itg epimorphisms . An object A of K 1is called P-pro-"

jective if, whenever we have the followiﬁq diagram in K ,
t —— ' . : -

a morphism  heK(A,B) exiéts guch thAt foh = q : y
_ . _ ~
g £
e -
[ B
B feP C
. /Given £:B—A , f (or B). is called a P-projec- \

4 A

tive cover of A if .f is coeqﬁentialaand B g-projeptive.h

Evinjective and the E-injective hull are defined’f

P

in the dual way .

- 0.30 DEPINITION: (panqgnhevski-[i])_. gfp}ojectivity

in the categqory K ;inAsaid to be properly behaved if -

(1), (II) and (IXXI) below are satisfied :
I) Por ‘every AeK, the following statements are
Jequlvalent: - ' , : ‘

AlY: A is g-projective_.

A2): Every £:B-*A such‘that fecP, has a riqhi ‘
inverse . _ : - .

A3): Every coasssntial f:B—A is an isomorphism .

i
R
L
1
N
L

M




.are equivalent .

-

- . R | A ‘ - I.:;ll

S

II). Each object of//é has an essentially unique' P-pro- .

,"‘\‘/
jective cover . .

II;) For every f:B—A in P, the following statements
) Cl): £ is a P-pmjeetive cover of A .,
C2): "f " is coessential and whenever qgq¢K and fq
is coessential, "g is an 1aogi'phism . s

C3): B is P-projective and if -f factors as

. follows, with g,heP and C P-projective , h |is an

isomorghisr‘n : ’ Bh—\,i;éh
c - I

~

Properly behaved E-injectivity is introduced dually.
. g I B ) " '

0.31 CONDITIONS WHICH ENSURE PROPER BEHAVIOR: .
(Banaschewski (2]) _ |
: ‘P__li: P is cloudr under composition and all the isomor-
phima belong to P . A

_B2) ¥ It !,ql:P and gf = £, ¢ 4is an identity . = |

T'P3)': For evu;y gc_g, Ehm exists a :;c!(_’/ such that -

: focht .

_ P4): Every 'diaqrm (X) .in K- can be completed to a

computative diagram ' (II) v
-2 .

'\ c ) -~ p

o "?_‘iq | 5. [(n) —._-ul'!Fg'_‘iq

PS)}: Each well orderod inverse system of P haa a IMt

‘a

.bound - in P .
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4

\

_ PG):\‘Por every object A in K, the c1aa§ of ail
coessential  f£:B—A has, up té isomorphism, a representa-
tive ;ét .- i

| . Dgal conditi?ns to tﬁese ensure also prppér behﬁ—

vior of E-injectivity .

0.32 PRDPOQ&TION 3: (Banaschewski [2])) . Let P denote

the class of perfect surjective maps in B . ih a subcate-

- gory K of H, gyprojectivity is pfoberly behavéd if -

) 1) K is closed ﬁereditary. closgd with respect to pull
‘bac;; in R, ahd_projectivo limits in H of well ordered‘ -

1n§erse systems with P-maps; or _
{1) 'K 1is a full subcategory of H which is left-fit-
iinq with resﬁect to coess?ntial P-maps; or -

iii) X consists of all objects and all perfect map-

pings ffoﬁ a catagof§ 5  which satisfies one of these con-
ditions . -

0.33 COROLLARY 3: (Banaschewski {2]) . In any full sub- e
. . o
category K of H which is left-fitting with respect to

coeasential P-mappings, éhe‘?-projoctival are exactly the
axtxenally dicconnoctod spncon bolonginq to K, and the
'aamu holds , ‘for the uubcat.qory of K with the same objoctl,
but only the po:rtqg_J mappings !to- R. _ ?

0.34 REMARK: (Banaschewski [2]) . Some subcategories
of H, to which all the couaidorations given above apply.
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are qiven‘by the following classes of spaces togefhef with
either all their continuous mappings, or all tﬁéir égrfect
mappings : N |

1) compact spaces 6) regular spaces

2) locally compact gpaces 7) completely reqular spaces

3) paracompact spaces . 8) zero—dimenpibnalkspaces
4) o-compact spaces ' 9) real-compact spaces
5) Lindeldf spaces 10) k-compact spaces

Por these cateqgories gfprojectlvit? ias properly
behaved, and the gfprojectived are exactlf the extremely

disconnected spaces .

0.35 REMARK: In section 3 of [2] the space A(X) of

convergent ultrafilters of the topology T(X) of X is
. i

given . One reads in addition :

0.36 PROPOSITION 8: (Banaschewski [2]%.. Let K be a
, S '
replete aubcateqory-3£ H . If all spaces belonging to X

are semireqular then, for any XeK , A(X) and 11mx
belong to K-, and 1imi:h(1}4+x is a grpr61ec§ive cover
of X in X . In general, a pro1qétiva cover of X is

. given by the mapping determined by 1lim, on the space
A'(X) whose underlying set is the same as that of A (x)
and whose topoloqy is generatsd by that of A(X) toqether

with uu‘x e (X))’ .

(s




14

0.37 DEPINITION: (Shirota [2)]) . By a translation lat-

tice L we mean a lattice where for evefy acl, and for real

numbers a,‘ a sum a+a is defined, ans which satisfies the
following conditions :

%) a+o ='a ,

2) (a+a)+B = a+(a+8),

3) If a:o0 then a+ta 2 a,

’

4) If a 2 b then a+a > b+a .,

b

0.38 REMARK: If L 4s a translation lattice, eiery real

number r induces on L an. unary operation #:L~L ’ givpn

by P(a):= a+r .

o

0.39 REHAkK: (Shirota [21}) . C(x,R)”jcan be cons%@ered
as a translation lattice by setting (f+a) (x) :m £(x)+a for

a real numbar a and for a funct;pn ’ ttC(X.h) .

.0.40 THEOREM 8: (Shirota [21]) . Let X be real-compact
@nd ¢ a homomorphism of the translation lattice C(X,R)
into the reals . Then there exists ;"point xcX and a real
number & such that for any fcé}i,a) r 9(f) = £(x)4+x

where o = ‘IS) . °

L]

0.41 THEOREM 9: (Shirota (21]) . Any two r.al-pom?agt
hp:cen X and Y are homeomorphic if and only if the s
tfanslatf%n lattice C(X,R} is 1lpibrphlc to the transla-
tion lattice C(Y,R) . - v




CHAPTER 1

STRUCTURE OF PTQR AND SOME SUBCATEGORIES .
. ‘ .

In this chaptér'ue gurvey the subobjects.and
quotients (in the sense¢ of (10]); the_initial and final
structures, limits and colimits in subcategories of EIEE

The existence of initial and final ;i;uctures which
is quaranteed in restricted cases, is sufficient to ahow that
PTOP ‘is complete, cocomplete, locally small and colpcally
gmall . This allows the use of Propositions of [10) to'ahcw'
that  HPOTS is an epireflective subcateqory of PTop . For (’ﬁ

a subcateqorg K ‘of -ﬂ' we show that X 1is epireflective

in H if and only if KPTop |is epiraflectiva in HPTop .
if and only if XpOoTS is epiraflective in BPOTS and if "
and only if - XOTS is epire!lectiva in HOTS . | ! )

For aubcateqories\-_ of H let U denote the na-
" tural functor which a-sociates ch with UX = (X, d)cKOTs
(d for discrete order) . Then ‘g is lett-ad1oint to the
forgetful functor' P KOTS ~+K and has in tqrn,_for a liqt of
subcategories EJ a lntt-adjoihtvgich is not ® but G'i
where G(X,¢)} is obtained from (X,€). oa:ontiaily, by )
jdentifying points a , b of X which can be extrema of
finite chains a = a, ‘1';", a, =b vhere a, ‘and a, .
. are comparable . S

15 .




16

In the last section. of this chapter,Jue'establish

bpat évery nonempty object of PTop is a qenerator, andcyy
usinq results of the previous sections and of {[10] , we show
the dual to our main proposition about epireflective sub-
-

categories . ‘ v

-

I. Introduction to FTop and subcategories .

P

Considerinq the results of [%7], we became interes-
ted in HPOTS ., Hoyoyer, considerationa in HPOTS directed
our search into the more general category gggg‘_which has
already bean montioned in Chapter 0 .,

1 1 LEMMA: Por the following full subcategories or 'PTop
'aubsats of underlyin? sets do not datarmine subobjects

uniquely, and there are anboojecta which are not extremal:

1) HPOTS | a . '\\ 7} Reqular-poTs
2) pors 8 crvors
3)'Coopact-Po¢8 .' : 9) Zero diuansional-POTS
4) Lindel8f-pors | 10) Realcompact-POTS
S) cOuntlbL! compact-POTS 11) CoTS

" '6) para t-POTS . 12) Boolean space -OTS

PROOP: Let S:= {0,1,2} snd Tg be the diacrett

4

topology on 8 . Lat gyim B , Gaim 840110,1)) ,
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sy:= 8u{(0,1), (0,2), (1,2)} , Xp:= (S,Tg,€) ,
j4S

Xat= (S,Tg,%2) "and Xy:= (S,Tg,€3) . The subobject
repreéented by Mmi,s:X1—*Xy where m;,3(s) = 8 is clear-
ly different from le, . 1f, for every elemeh£ 8 of S,
we define m;,2(8) » my,,(s) = s, we obtain in all the

listed categories the commutative diagram :

However, m;,2 is an epimorphism but not an isomor-

phism .

1.2 INITIAL STRUCTURES: We defifie initial structures for

some families of functions . Let X be a set, (Yi’icI a
family of PTop, fi:x-+Yi a family of functions which sepa-
rates the points of X . Let X ha&a the initial topologv
with respect to (£,)y,y - We defi;ie a partial order <, -
on X by :

a<y b in X if and only if fi(a)sfi(b) ( for all deI

Then (X.s*) has the initial PTop-structure with respect

to (f4)4er : 7
PREOP: Prom agy b and b¢, a follows that

g,(a) = g,(b) for all deX . Since (f4), o separate
points of X, a=Db ., Thi refléxive and transitive pro-
perties being trivially satisfied by Sy ¢ Sx is a partial
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oFder and (X,sx) an object of PTop ..

| We show that (X,s4) has the initial structure with
respect to (fi jer + Let 'Zegggg be arbitrary . <If'
q:zF+(x,cx) is a PTop-morphism, so, clearly, is ‘fi°q .

for every ier .. Cbnversely, suppose that fioq- 1s_cqn—
tinuous and isotone for all eI . Since X has the Initial
topological structure with reépect to (fi)ier ¢+~ g9 18 con-
tinuous . Lat a,beZ and a¢<b By hypothesisl

fi(g(a)) = fﬁiog)(a)s(fi-q)(b) - f;g(b)) ‘#?r all ieI.

By the definition of €y ¢+ glalsy, g(b) . Thus we have shown
X X _

- that g , in addition to being continuous, is isotone .

1.3 REMARR; For families of functions which do not
separate the points, a PToE-itructure can still be defined,
but it is not always an infitial structure .

N X . - N P
1.4 PRODUCTS: Let (x,), . be a fadily in PTop, and
the cartesian product of the underlying sets. P, with the
initial PTop-structure with respect to the projoctiona, is
the product 1 Ix1 in PTop .

i

PROOP: From the Qefinition of a cartesian product, we -
conclude that the family of its projectionn separates poigts. _‘
Therefore, P has an initial structure . with this struc-
ture, P satisfies the Universal Property for products. _
Lot f1:N-¢x1 be a family of continuous isotone functions . -




£

- 3

. Since P has initial t0poioqica1 etructure with respect:té

the projections, there exists a unique continuous function
£ such_that"fpiof = £, for all {er . But, then, sinde
P has initial Pﬁog-atructure and pi-f 13 continuous and

"t

isotone for all ieX, £ has to be both continuous and

isotone .,

.);‘"

1.5 SUBSPACES: Let (7,¢)ePTop and X be a subset of . .
Y . The 1nc1usion function of X intp Y certainly sepa-

| .rates the points bf . X and the:efore induces an 1n1tia1 .

structure on X . This kind of subspace is eapeéially use-

a1 . " " -

.

1.6 LEMMA: PTop has equalizers .

PROOP: Let Xét? be qivun in Prop . - S i
. g - S
Let Kr= {xeX|f(x) = g(x)} and induce on K the initial

atructure‘w}ih respect to its inclusion i in X . To ses
* that '(K,I) 1: an equalizer of f,q + Suppose that
(K* , h) is qiven such that feh = geh . It follows that
for every m'  hix)ex , and by defining A:K'—eK by
l(x)=3‘h(x) we obtnin thn unique anp uhich makes followinq
diaqran connutativn ' x-——+x==§:r . . L

R Nl

-

This nap 1: cloa:ly eontinuoun and 1notono .
&,

) ~
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5

1.7 COROLLARY: PTop is a complete category .

PROOF: Since we have just shown that PTop has pro-
ducts and equalizers, we need now only apply Proposition

- 5.8,1 (101 , page 39, to obtain the result .

1.8 REMARK: As in the case of the initial structures, the
j&final structures do not seem to exist for every family of

maps. Having not found a simple condition for their exis-

tence, we turn to the particular cases of interest: the co-

products , the quotients and the coequalizers .

1.9 COPRODUCTS: Lat (xi*‘liis; be a family in PTop .

On' the undarlying‘set af the_space\\wuchxi of Top we
define fdllowinq partial order. : N
(x,1) ¢ (y,J) 4if and only if x $4y and i =3 . Then

2

(liielxi"’ is the coproduct . llicltxi'si) in PTop .

- o

. PROOP: Lat (ai)icI bhe tﬁe family of natural in- < J
jections, ajzxj-‘»uhtxi and sj(x)=- {x,3) . We show
next that" (L, ¢X;,€) has the final PTbgratructurc‘vigh
respect to (81)1c1 - Lat ZcPTop be arbitrary . If

(u xi.‘)-9¢l is continuous and isotone, so,cléarly,is

ieX
ges; for each iel . Conversely, if ges, is continuous .
and isotone for each ic¢I , ¢ 4is continuous, since - )

Uy Xy has the fina;_ Top-structure with respect to o
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(Bi)iCI‘ . Let (x,i) ¢ (y,]) in (Uichi") .

Then i = §J and x €y . Since ges, is isotone,

by hypothesis, g(x,i) = ges; (x) ¢ q‘sify) = gly,i) = gly,3).

This shows that g is isotone and ('uiélxi")

~indeed has the final structure with respect to

¢}

. e (83 ger -
The Universal Property for Coproducts is satisfied:
From tha cobrqduct property of ]Jielxi in Top, we know
that given a family of PTop-morphisms fi:x{—+u; there

exists a unique continuous function £ such that for all

.| /%

( uicl i,¢)

1eI- the following diagram commutec. :

j

All we need now is to eeefthat this unique_continuous
# 18 also isotone, a fact which is obvious from the defini-

tion of <‘ . ‘ ' "

1.10 REMARK: If every  §; in above family of spaces had

‘bean sémicontinuous (or continuos), the partial order <

.would also "have been namicogtinuoul { continuous ) .

Prom this remark, it is a;ear that i¢ (xi"i)icl
is a family in POTS (or in HOTS), so is Il ,(X;,¢;) .
1,11 REMARKR: As is» well known, every equivalence rela-

tion ¥ in a topological spacse X uniquely determines a
quotient X/w *n Top .
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The corresponding situation in PTop is not as sim-
ple; even if we define a congruence R on (X,¢)ePTop as
an equivalence relation for which a PTogfmorphish \

f:(X,()—+Y exists auch that R =ker £f , the pair

((x,s%,Rf- still does not determine a unique quotient .

1.12 EXAMPLE: Lat S be the topological space (0,1}
with the discrete topoloq&. X:= (S,d) hﬁd Y:= (5,0 ¢ 1) .
Let f:X—Y have AS ., as its graph. Then ker 1x = bg ‘
= ker £ , but, since x‘z Y, 1y and £ represent dif-

_‘ferent_quotiqnts .

¥

1.13 DEFINITION: Let f£:(X,<)—Y be a PTop-epimorphism

- and R an equivalence relatjon on X . If R'= ker f, ' .

we call (R,f) a congruence on (X,¢) .

For brevity we describe (R,f) as "ker "

o . - l' . "
1.14 LEMMA: Let (X,<)ePTop , and 'R ‘be an aequivalence
relation-on X . 1If a partial ordesr g ©n ¢X/R, is well
defined by : '

o
Erag

ap $p Pp - if and onlylif; ap = bR or a£b

then (X/R, R) has the final structure with reipect to the

natural "Pp “R- given 5y arap , and R = kgr Va

PROOF: - By the hypothesis on R and ¢, , a¢b o
1ﬁp11en ~aR tn bR _ah@, consequently, Vp ¢ in addition to )
being continuous, is isotone . Let. ZcPTop be arbitrary .

A
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- -

those epimorphisms f:X—Y such that wcker f , and let
R(#) denote the intersection of all the Kernels of maps in
§(r) .. We call an epimorphiam £: x-+Y in PTop .a spe-

cial quotient if there exiats an equivalence relation %

on X such that £:X—Y 18 equivalent to, v:X—X/R(x) as
a quotient, where v is the natural map aad the order on

x{R(w) is the one induced by the sat og- PTog—epimorphismp,
S(x) ﬂ =

L

We call f£:(X,5)—(Y,s) a t-guoéient if £:X—Y

- -

is alreqdy a quotient in Tog_ .

1.17 LEMMA:” ‘PTop has coequalizers .

ya
-

‘PROOP: Let xzqut'r‘ be given ir PTop .
Lat vt:-‘{(f(x).'q(:!lt))[::cx}U((f;(:l:).ﬁht:)).lxcx}\-nsY .

The set S(x) of 1.16 1is ndneﬁpty as one map of the type
Y —{p} , belongs to it . we denote by - (¥y)4,y the family <J
of PTop-epimorphisms in S(¥) . Let R:= f\iclker by o

and let (Y/R, ¢ V;bo the special quotient induced by the

r

family (#,), . - We now show that ViY—Y/R is the coe-

qualizer of the given maps f,9 . \ -

' Let xeX . By the definition of ¥ , f(x)xg(x) .

since YCR, !(an(-x). vhich we can write as 'v-f.(x)- -

-"viq(x) « Therafore vef w yeg . |
Suppose _hs?-ol has been given spch that. t;.f - h-q.'

Then wcker h , and since ker h is clearly a congruence
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If q:X/R—Z 1is a PTop-morphism gev, will also be . Con-
veraely. suppose that gevp is continucus and isotone .

Since X/ﬁ has the final topological ‘structure with respect

to vo ., g is continuous . Let ap fn bR in X/R .
;f ap = bR y qlaR)_- g(bR) and therefore q(aR) € q(bR) .
If -ap o bR , it follows from the definition of £n that

"a ¢ b :; by hypothesis
g(ag) = gevpla) ¢ gevp(b) = giby) .

Thus we. have obtained that g is isotone .

,1**5f“%ﬁﬂnx¥ Let  £;:x—Y; be a family of PTop-mor-
phisms indexed by I. Let R be the intersection of all

ker £, , iel . Define. {ﬁ in X/R as follows :

ap ¢p PR if and only if f,(a) ¢ fi‘b, for all 1ieI .

Then <p. is a well defined partial order on X/R .

1

PROOF: The reflexivity of €, is obvious. Let

ap $p le and. bR €p 3p ¢ theh for every {1cI R

£,(a) ¢ £,(5) € f,(a) . Therafore: (a,bcker f; for all
e and accordingly a, = by - Pinally if a, €p b apd

by ., we cbtain f£,(a) ¢ £,(c) for all icl , from

R 'R %R
wvhich ap ¢p ¢p follows ..

!

1.16 DEPINITION: het - XcPTop . For every equivalence

S "
félation '¥ on X, let 8(¥) be a representative set of

—

P
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on Y, Rc:ker h . without loss of generality, let h be
an épimorphism in (9,), ; . Define Xk:¥/R—Z by
k{viy)):= hi(y) . If v(y) = viy') , yRy® dnd since
R<cker h , h(y) = h(y') . The function k 18 therefore

.
N

~
"well defined . Suppose now that vly) sR v(y') , -~“and

' .duced by a !anlly of all the types of ggggq-orphit-s » -

.fewrite it as. Yr Sr y' R * By the definition of <_ ,

1

R
hiv) < h&y‘) . whiéh means k(ﬁ(y)) € ki{v{y')) . Let U
be an open set in 2z . Since ‘h is continuous, ’
help e (kev) '0 = v'k"'U is open in Y . But Y¥/R has
the quotient topo}dqy, whence kU is open 15 Y/R .
ﬁaving sﬁoun that k 1is a continuous 1§otone‘map, we
should remafk that it is the unique such uhiﬁh makes the fol-
lowing diagram cbu?pt’ative : x__f__“-_"__*y /R

q-hl/'

—

The uniqueness is obvious from the fact that v is aurjecti—'

ve .

I

1.18 PROPOSITION: In "PTop the special quotients are ex-

actly the coequalizers .

» T

PROOP: Prom t§7 proof of 1.17 we have seen that every

N , .

coequali:or is an special quotient . Without loss of generali-
ty let v:!-oxll be an special gquotient vher. K= ker v,

v is the natural map, and the order on XIR 1- the one 1n—

\
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~

with domain X and Kckerm . Let i:K—XIX be fhe in-

_ clusion map . We sho\} nov that v 1is the coequalizer of
piel , pacl’ . Ii is clear that v,oplo-i .'- Vopaei ..

~ Suppose g:X—Y ?ms bean given such that gqgep;ei’ - gepaei .
'rhen‘ Kcker g and a unique continuous function" h exists
such that heyvm g ., To ahoﬁ that h is isotone . let
v(x)'\s viy) in' X/X . By'thé defi:nitioxi of thé order in
X/K , é(x) ¢ g(y) . This shows that- h 1is the unique
continuous isotone function‘which makes tt;e fo‘llowing dia-.

gram ¢commutative : ' ‘
| -t oxmx =Blogx ¥ ox/x

"1/

e

1

1.15 PROPOSITION: An epinorphism £:X—Y is-an special

quotient in PTop if and only if for every PTop-morphism a :
g:X—% such that ker fcker g there exists & unique .
PTop-morphism h:Y—2Z which makes the following diagram com-

mutative : .- x—L oy '

o "

g:X—+% be continuous and isotone such that kir fcker g .

PROOP: Let £:X—Y be a special quotient and let

As in 1.18 we define h and show that it is the unique
continuous, isotone map which makes the diagram commutative .
Let us assums the converse hypothesis. Call £ a repre-

. -

3
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gentative family of all PTop-epimorphisms m with domain

X and.ker fcker m and let v:X~—X/R bg‘the special quo-
tient induced by 4 . By hyﬁothesis there is a unique .
ggggfﬁofph;sm h:Y—+X/R .snch that hef = v ., We apply the

first part of this proposition to the speéiai quotient

v:X-+X/R and f , and obtain a unique map k:X/R-+Y such v
that kev wm £ . Since both £ and Vv are surjective and
thereforérepiﬁorphisqg, from hekev = vy and _kohOf = f , ’
hek = 1y p and k-ﬂ = 1, follow . We conclude ' that f

is equivalent to v and is therefore a special quotient .

-
~

1,20 LEMMA: Let f:X—+Y be a surjective PTop-morphism
whare~ £(a) ¢ £(b) implies a ¢ b . If we define < in
X/ker £ by vg(a) § ve(b) if and only if f(a) ¢ £(b) .

then v, :X—X/ker £ is a coequalizer .

PROOF: Prom 1.6 we find h thé.equalizer of

Vg*P1 , Veop: ~and we claim that v, is the coequalizer

s,
M.

of pi*h , pash .- Since h is an equalizer :
",f. (p‘.h) - (vf.p ).h - ‘vf.p.).h‘ - vt. (pt.h) L]

Suppése gi1X—% is given, such that gepiesh = gepyeh in
PTop . 'Tﬁen‘ ier Ve = ker fcker g . Therefore there
oexists a unique coﬁtinuons map riX/ker £—E given by
r(vf(x)):- g(x) . We nhdﬁ next that r is also an iso-
tone map anﬁlthiroforq the unigue g!ggr-orphiln which makes
the following diagram commutative :
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. |
x-—l‘qxnx%x —f.x/ker £
2

A A

z i

Lot vg(x) ¢ ve(ly) . If Vg (x) -.' ﬁf(y) » then gix) = g(y),

since ‘r {is well defined (in Top) . If vf(x) 4 vf(y) '
f(x) ¢ £(y) , and by hypothesis x ¢y . Therefore

qfx)_s qly) ..

1.21 LEMMA: Every special quotient in PTop is an ex-

tremal qﬁotieﬁt .

.-

PROOF: Let f:X—Y be an special quotient,
£ = heg and "h a mongﬁorphism in PTop .- Tﬁen h is in-
jective and ker f cker g . .slncéﬁ £ 48 a special quo-
tient, there exists k such that kef w g . We obtain
.h-kof = heg » f and keheq = kef w g , Since 'f is sur-
jective , 80 i8 g and ;heretore hek  and keh are iden-

1.22 LEMMA: Let S be a subcategory of PTop closed
with respect to finite coproducts and t-quotients . Then

theAextremalfsubobjectt of 8 are exaétly the equalizers.

-

PROOP: Let h:X—X be the equalirer of g and g .

Suppose h = men where n is an epimorphism :

x.hfx—gﬁ'l | :
it o

TR L

s e

et
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" Since feh = geh , then fomen = gomen , Because
n 1is an epimorphism fem = gem . Since h 1is ihé ;qualé -
izer of £ and g , there exists a unique gfgéfmorphis@
k:Z—+K such that hek = m ., We ;huq«obtain that |
heken = men = h = hel  and, using the fact that h is a
monomorphism, ‘ken - IK . Moreover neken = n and, since
'n 1is an epimorphism. Nek = 12- « Since n 1is therefore
an isomorphism, we have shown that h_ is an extremal sub-
object, . To prove Fho conversae, rlet':h:K-*x be an ex-

tremal subobject , and define R ‘in XUX as follows :

‘Re={ ((h(K),10(h(K),2)) [KeK}U{ ((h(K),2), (h(KD,10) |KeRK}U Ay,

R is an equivalence relation, and we ddfipe on (XuX)/R .a
‘partial order £ by : (x,i)R $n (y,j)R if and only if
(x,1) sl(y.j) or there oxisis kek such that x ¢ h(k)
and h(k) €y . | _ |

To see that sh is well defined, we assume that
(h(a), 1) €, (b,i)p - ?ron the definition of ¢, it fol-
lows that h(a) ¢ b . Since h(a) ¢ h(a) and h{a) < b,
we obtain that- (h{a),j), §p (b,i), . Similarly, if
(b,4), €5 (h(a),1), , then (b,i)y €, (h(a),3)p

It is obvious that tn ~i--roﬂ_.cxiv- . bet (St.i.)R
finition of g ¢ X "§ and y ¢ x . Tharefore x=y .
If 144 h(a) and h(b) exist such that -

Y

-
s
H
’\
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x € h(a) ¢ y ¢ h(b) ¢ x . Therefore. x = yeIm h _ and
(x,i)R - (g,j)R follows .
To show the transitivity of £ suppose

g Sp (vedlp and (y,d)p g (K . If f=3=k,

| . . V)
x ¢y ¢z and _(Vx..i)R $r (z,k)R follows . If { = j§ E

AY
S

-b‘ut i #X% , from the dafin:ltion of tg Vo obtain x € y
and y € h{a) ¢ z , from which' x £ h(a) < z and

(x,i)R <q (z,k)R follows . \inkmloqous aréimeng: is used

“when i¢4 and =k, vhile if 143 and J 4k,

one obtains x § x and & =k , and from it directly,
(x,1), €, (=,X)o .

Once we know that ¢, is a wall defined partial
orderoon (XuX)/R , we call f:= Vpeoy. and g: = Np*O2
and begin to prove thht h dis the eqm;l:lxer of £ and
g .. We.remark first that h, beinq;an_oxtruﬁal ‘monomor-
phism, T)umnt be an cmSeddinq and, by dafinition of R,
feh = qeh . Suppose " k:L—X has beean given nuch that

fek = gok . Then for avery xtL, vnoqpk(h) e v_e0zeki(h).

R
Tt;il means that (k(x),1)R(k({x),2) and therefore k(x)chK .
Prom this and because h is a monomorphism (injective in
PTop), we can define a map m:L—*K by h(m(x)) = It(x‘) ’
and we can conclude the proof by‘aho'ving next that_m is

the unique continuous isotone map which makes the following

diaqru'co-ntlt!.v. 3 K h ~x'—‘—g(xux)/n
q - .

N

ﬁo : L
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Let x ¢y in L . Then kix) ¢ k(y) , i.e.
hi{m(x)) < himly)) . Since h is an embedding ,
m(x) ¢ m(y) . On the other hand, if U 1is open in ‘K,
since h is an embedding, an open set V of X existS\
such that U = hl'v | Prom this we see that

m-'0 =« mh -V « (hm) 'V = k *V which is open by the conti-

‘nuity of kX . The map m is clearly unique .

1.23 LEMMA: Let S be a subcategory of HPOTS closed

‘ 'Mpect to finite coproducts and t.-quot:ieﬁts in HPOTS,

If h:K~~X is an equalixer in § , then h is an extren-

. al subobject .

PROOP: Tha sama argument as in 1,20 may be used .

\

2. Epireflective subcategories of PIop, HPIgp, HPQIS
and ROTS .
- » In order to make use of 0.20 we begin this section

by considering the properties “complete® , "loca‘ny small*®

_and “"colocally small” in connection with PTop .

2.1 PROPOSITION: The category PTop is conplote, cocon-

. pleto. locaily small and col,ocany small .

PROOP: We' have already obtained in 1.7 that PTop
is complets and in 1.9 and 1.17 that it has coproducts

h
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and coequalizers, being therefore cocomplete . To see that
it is locally small we remark first that every monomorphism
in it is injective . For let f:Y—X be a moﬁomorphism and
suppose a,beY , a@# b and f£(a) = £(b) . We define
g,h:Y—Y¥ by gqly) =a and hiy) = b for all yeY .
Since g,h are both continuous, isotonre maps such that
feg = feh bﬁt gy h, we obtain alcontradiction and con-
clude thaﬁ f is injective . Therefore the cardinal;ty'
P .of Y is less than or equal to the cardinality % of x.
Noé, consider the PTop~spaces whose underlying sets are sub-
setg of X . Let 8cX . Its PTop-structure is an eiement
of PPScPPX, where ¥ means “power set of®" . Its partial
drder belonés to TP(SxS)xP(XxX) . Theréfore the PTop-struc- '
tu;e of S belongs to PPXxP(XxX), which is a set . Hence
PTop is locally small -, ' b
" In order to show that PTop is colocally small
we shall first Qhoﬁ that every epimorphism f£:X—Y in EIEE
1s-surjéctivé . Let R be th; equivalence relation defined

on Yuy by 1@
Rem{ ((£0x),1), (£(x),2)) |xex} UL ((£(x),2), (£(x),1)) |xeXIUhy -

Define in (YuY)/R : (a,1)y €5 (b,3)p 1f and only if
(a,i) € (b,4) or there exists ccX such that a ¢ f(c)
and f(c) ¢b .. - o |
Aniin 1122 we may convince ourselves that <. is a
' well defined partial order, and that vo:YUY—(YiY}/R is
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{ | : | | |
continuous and isotona . If we denote by o;. and o¢; the

canonical injections. Y—¥uY , we have
?R-§x°f(x) - (f(x),l)R = (£(x),2), = vRoo§-£(¥) for all

.G;lf =V

xeX . It follows tggt v Rou:-ﬁ , and, since

o

R
f is an epimorphism, R'o‘ = vpeU: . This means that ’

for aﬁy arbitrary vyeY, we have :(y,L)R w (y,2)R ; it then .
follows by the détinition of R, that ycfm £ .
We have shown that 1f £: x—+y is an epimorphism .

then ? < X . Accordingly, for every‘sqch space Y < we can

' induce an isomorphicchpy on a subset of X . There exists
only a set of épacea,'each of which has as its'underlving”
set a subset of X and a PTop-structure ; Therefore

PPép is colocally ‘small .

-

2.2 PROPOSITION: - rhe‘caeagory HPTop is colocally small.

PROOP : first prove that if YeHPTop, -evgrv'p£0per
c10lod subspace U o! ! is an equalizer . Given’ one such -

UcYem » define :

B

R:= {({u,1), (u, znlncu)u{uu 2), (u,l))luw}ua'm,

As in 2.1 ,'we convince onrlolv-s that R is an equiva-
lance relation in "YuY and that the relation ¢y defined
by T (xd)p fp v, 1) if and only if (x,1) ¢ (y.,3) or
thare existsa ucl such that x ¢ u and u ¢ y*® isa
partial order in (WuY)/R . We cafl Zi= ((WUNI/R, ég)




and show that it is Hausdorff . Let (x,i)k . (y,j)R be
two 'distinct points of Z.- If x =y , then 1 ¢ 4 anad
x,yel0 , from which two disjoint saturated neighbourhoods
[UX{;} and [UX{j} of (x,i) and (y,3), respectively,
are found . If x ¥y , there exist V, W, disjoint open -
neiqhbourﬁoods of x and vy, respectively, since Y is
Hausdorff, and we obtain with them the disjoint ﬁaturated_
open sets VWVx{i,§} " and wx{i,9}, which are neighbourhoods
of (x,i) and ({y,j), raspectively » Prom Bourbaki {5]
Chap. 1, it follows that % is Havedorff .

Call f:w VpeO: and qg:= Vp*%2 . By considgr-

i g1 Yr
ing U —=——Y _T;.tYuY  ——

we see readily that" U—ri—-o'l is an equalizer of f,g ., Hav-

ing shown that every proper closed subspace of an space in
‘HPTop is an equalizer, we consider an 'HPTop-epimorphism
a:X—Y . The closure rof its imzge I'Im & can not be A
pf,gper subset of Y, or @& would be an equalixer y
Raving cbtained Time =Y , i.0. ¥¢ 22 by |
considerations identical to thOI.G”nt‘. the end of 2.1, we see

that HPTop is colocally small .

| 2.3 REMARK: In what follows we adopt for limits and dia-
grams the terminology of {10] § 5 and § 9 |

2.4 PROPOSITION: The categories EPTop, HPOTS and

HOTS ar.'. strongly closed with respect to products and uqual-.
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izers in PTop .
' N\

PROOF: A product is the limit of a diagram

-~

P:S—PTop where S = {{s}|seS} and there are no maps be-

_tween {8} # {t} . Therefore oy it P is partially in HPT&B,_

1

for example, it has to be 1n HPTop . See 0.19 .. GivenAa

family (X )8 S in HPTOE, its PTop-product belongs to

HPTop, since H 1s productive . If it is a family in

HPOTS we show that X €HPOTS by proving that its par—

nses
- tial order, given in 1.4, is semicontinuous . Let

a, ben and a ¢ b . Let s¢8 , such that

acS a :
pB(a) ¢ Pg(b) . Since X, is 1in HPOTS , there exis£a~dn
open neighbourhood U of\ ﬁsta)' such that for every uelU ,
u ¢ Py(b) . We qonsi&er'the open naighbourhood pa"U of
a and see that for every vcp;“ﬂ', then Pg{vieU and i

s (V) ¢ Pg(P) and v { b . This shows that the partial or-
der of n’tsx. is lower semicbnti@pouu . A symmetric argu-

ment shows that it is upper semicontinuous, too, and-thore

fore semicontinubuu', If the family (X)) had been giv-

s se8
‘en in' HOTS a similar proof would show that its product
belongs to HOTS . 7 |
-
¢ How, we consider the equalizers. An equalixor is
i
- the limit of a diagram ¥:8—PTop where S can be de-

- scribed by




b -~ ﬂ

It P is partially‘in some subcategory SC 'of
PTop, PS has to belong to this subcateqgory . We show .that
in our cases the équalizar found in 1.6 is in HPTop ,
HPOTS and HOTS reapectivaly . Let xszﬁaxT be given:in

PTop. such that XS:HPTop , (HPOTS and HOTS) - Wa know

that the PTop-equalizer is given by

K:= {xexslftx) = g(x)} and its. inclusion morphism . Since

H is a hareditary subcategory of Top , K——£+xs belongs

to HPTop . Since the semicontinuity }continuity{ of a par-

tial order is trivially hereditary , K-—$+xs is also an

equalizar in the HPOTS and HOTS cases .

2.5 PROPOSITION: The cateqor{as 'Hp'nop,‘ HPOTS and

BOTS are aopireflective in Fiop .
— .

PROOF: Follows from 2.4 ‘and 0.20

2.6 'LEMMA: Lat S be a subcategory of B and

Ed

a sub-
is .

>

category of 8 . If A is epireflective in B ,
epireflective in 8 .

PROOF: Since ‘A is epireflective in B , for every
XcB therxe exists rktA and giix-+:x a B-epimorphism
such that whenever f:X—Y  is in A , there exists a unique

£ in A uhlch nuk-- the tolla-ing dingrn- eo-utativn :

\rxl///f' : - i
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A
1

Since ScB , this is also true for every XeS , and

since ry i3 a B-epimorphism, it is-a S-epimorphism élso.

-

By (101 § 8, see 0.18, A 1is epireflective in s .

2.7 COROLLARY: The categories HPOTS and HOTS are epi-.

geflec;ive in HPTop .

2.8 PROPOSITION: The categories HPTop, HPOTS and HOTS,

are complete, cocomplate and locally Qmall_.
s

‘PROOFP: Prom 2.4, it follows directly that these !

three categories are complete . By the same method uséd in
2.1,~one shows that thé monomoréhisms are injective, anq_con-
cludes that our categories (Jre locally small . One sees
trivially from 1.9 and 1.10 that they are closed with
respect to coproducts . All we need to show then, is that f
they are aiso closed with respect to coequalizeras . Por.
convenience, 1let us denote any one of the cgteqories' Egggg,
HPOTS and EOTE by SC . Let X=i=#Y be two different
SC-morphisms . Uainé the same ideas as in 1.17, we find
h:Y—+Z their .PTop-coequalizer . Since I may not be
Hausdorff or may not have semicontinucus {continuous)} partial
order, we take the SC-reflection rt of 2, which exists by
2.7 . Let r:X-+r2 bae the reflection map. The following'
diagran will be useful in the course of the proof (all maps

will;bo introduced) :
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B x=fgy N .z E .rp | ’“
-\-qk%m . .
: . m
Since h is the coequalizer of f and g ,
hef = heg . Therefore (reh)ef -}r°(h°f) = ro(hoq) = {reh)egqg.
Suppose k: Y-*Z'J’K;s;been given in SC .such that kef = koq.
Since kc___E and h is a PTop-coequalizer, there exists
a unique continuoua-isétone map m such that ' moh = k .
Since r is the §E:£eflection, there exiats a unique ;
lm':rz—*z; in SC, such that m'er = m . ‘Therefore
K = meh = (m'er)eh = m'e(resh) . We complete the proof by
checking that m' is the unique map, such that k = m'e(reh).
Suppose we had another, say m" . By the uniqueness of m
such that meh - k we obtain m"er m m , and by the uni-

queness of m' such that m'er = m , it follows that

m* = m'

2.9 COROLLARY: f K is a productive, closed hereditary A

subcategory of H , KPTop ‘is complete and locgllv small .

2.10 LEMMA: A subcategqory X of H is epireflective

in A if and only if XPTop is epireflective in HPTop .

PROOF: Let K be ‘epireflective in H . Since KX
is productivn and closed Qtfoditary, by 2.9, ____2_ is
" complate . By arguaents similar to those in the proof of
2.4, ggggg is strongly closed with :nlpoct to products and




h

£

;/' \ ‘ | 39

equalizers in HPTop , and by 0.20, KPTop is épirefiec—
tive in gggggl. Conversely, 19t (xi)iel be a family in
K . By considering Uxi;- (X4,d) where 4 is the dis- ‘
crete'qrder, siﬁce KPTop is productive, then |
ni 1VX €KPTop ; By the definition in‘ 1.4 , ni V%3 has
the discrete order and niﬂx1 as its undcrlyinq topo—

logical space . The conclusion that nlex 155 !ollows -

As for equalizers, given x::é::v in B with .- XeR, we
. : - t

congider K(X,d)::é:z(Y.d) and its equalizer KX in KfToE.
K inherita from (X,d) the discrete order, and its under-
lviné'topolbqical space with Yts inclusion map is the equal-
- //"_ 4 .
izer of X=2=3y¥ [ 4n K . By 0.20 K is epireflective

. g P A
in H . ) iy

- /
2,11 PROPOSITION : 1If ‘K is a lubcateqory of H . the

-followinq stateneépl are equivalent :

1) K is epireflactive in R ‘ Y
2) XPTop 1is epirsflective in HPTop
3) XPOTS is epireflective’in HPOTS
4 Eggg is epire!lcctive in gggg. .

PROOP: We already knov from 2 10 that 1) and 2)
are equivalent . Suppose KPTop is tplreflnctivu in

HPTop . By 2.7 'HPOTS is epireflective in HPTop.-
Therefore KPOTS, the intarsection of KPTop and HPOTS , -

is epireflective in HPTop . By 2.6 KPOTS is epi-’
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reflective in /wpors . Similarly, since HOTS is also

epireflective in . HPTop, KOTS is epireflective in HPTop

and in HOTS . If KPOTS  is epireflective in HPOTS, by
th] 5§ 9, ERPOTS is strongly closed with rescht to prod-
ucts and aquaiizera in HPOTS . By analoqous.considera—
"tigna_to the. .ones ;ivan in ths second part Qf the proof of
2.10-, 'K is strongly closed with respect to pro@ucts and
equalizers in H , and therefare epireflective in H .

A parallel arqument ghows that 4)'1ﬂpli§s 1), and our proof

concludes .

2.12 COROLLARY: CPOTS is epireflective in HPOTS and

COTS is epirerlective in ROTS . *

. o :
2.13 REMARK: We havu;:;an in 2.9 that if K° is an

epireflective subcateqory of H, KPTop is ‘tomplete . Prom

2.11 we.obtain that KXPOTS and KOTS are also conplete .

3. Leftadjoints of the Inclusion and Porgetful functors

3.1 LEMMA: Lot K be a subcategory of H, P:KOTS—K
. _— \ S
~ the order-forgetful functor, and U:X—KOTS where
UX:®» (X,8) and where 4 is the discrete order . Then U

is left-adjoint of Pr .

.o

s




\
Kl

PROOF: Let f£:A—B in K and g:C—D in KOTS be

given . Define :KOTS (UB C)—*R(B,FC) by

g,¢?
c(hl(b): = h(b) . Since nB ¢ 18 clearly a bijection,
we only need to show that the following diagram commutes :

n
xo'rs (oB,c) —2C g (B, FC) |

XOTS (Uf, q) . Ki{f,Pg) -

. KOTS (UA D)—————K (A, PD) . .
"a,p

Let heROTS(UB)C) and aeA be arbitrary-.
Then ‘ ' p
(g(fqu)an'c)(h)(a) - E(f.?q)(na'c(h))(a) =

= (Pgeny o (h)ef) {a) = Pginy o (h) (£(a))) = Pg(h(f(a)))

- n

= G(h(£(a))) = (geheUf) (a) = n, p(geheUs) (a) =

- (nh'seggggtuf.q))(h)(a) .o
Since a is arbitrary , (K(f,Pg)eng o) (h) =
- (nA'D'EQZ§(U£.q))(h) and since h in arbitrary ’
E(E.Pq)'nB'C_- nn,;'592§(01'q) . ?hii shows that. n is a

. p - .
- natural equivalence as required . -~ -
3.2 REMARK: K is a corsflective subcategory of KOTS .
PROOP: See [10] § 8 ,

3.3 REMARK: We show naxt that even for C (compact
spaces) , P is not left-adjoint of U .

1
-]

PROOP: Suppose P is a left-adjoint of U . Then,
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for‘every' XeC and ‘Yegggg, there existg a bijection
by ¢iC(FY,X)—COTS(Y,UX) . - | - ]

Define X:« ({0,1},d) and Y:= ({a,b,cl,a ¢ b < c),
' Eoth with the discrete topology . _
Then' g}?&,X) -IXPY has 2! = 8 elements, and i
| COTS(Y,UX) has only two elements, since all isotone func-
. tions coming from a chain into a discrete partiai'order,gref‘

congtant .,

3.4 LEMMA: Let U:K—KOTS be defined.by UX:= (X,d) .

Then U has a left-adjoint for. the following subcategories
/

K of H :

1) Hausdorff 4) real-compact
2) completely reqular 5) zero-dimensional {

¢

3) compact . -6) boolean spaces .

%

PROOF: Since all these ;ubcateqprles of H are pro-
ductive and closed hereditary, they have equalizers and pro-
ducts,_anqoara ther@fore complete . As an qnbeddihg, _U‘ '
clearly preserves limits . By [19] Theorem 2. page 110
{Pareigis), we need only show that fof every DeXOTS,
there exists a set of 'K-objects, which is a solution
get of D with yespect to U ., Choose a set D' such’
that B = 28 . Define _ | o

%:- {(Sh.tnst:b" and t is a topology on 8}

e shall show that -!D is a solution set . Lat p—ewc be
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given . Then ™mh ¢ B » whence rfm b < B . Chooxse a
subsget §, of D' (Buch that gh « ™R, finda a bijection
b:Sy—TIm h and induce on S,, .the topological structure
from TImh . We obtain in this way that s,ed, and b

is an homeomorphism . Call h' the map D—U(FIm h) de-
fined by h'(d) = h(d) , and define k,f, 80 that the fol-

lowing diagrams commute :

\Q' /ﬂuu>4) zi;j;i

U(FIm h) FIm h

*

;ow Ufek = U(ieb)ek = U(iob)OU(b")Oh' = U{i)eh' = h P
‘Shc%b and” the following diaqran coumutes T

S : \\\//6(1)
. | u(s,)

Therefore 'JD' is a solution set as required .

3.5 REMARK: Prom 3.4 it follows that the subcatego-
ries K 1listed therein are reflective in XOTS .

Next we shall obtain a description of the left.ad- _

joint of U . The proof of our first lerma-is trivial .

3.6 LIOM: Let YcROTS . Define in Y a+ b if and
only if {a,b} has an upper or a lower bound, and aw,b
if anﬁ only i¢ there exist la.....lncl*' soch that a ~ a;, °
A1 v Baseee Ry ~‘b . Then ¥, is an equivalence relation

- On Y .




3.7 .NOTATION: Laet 5. be an epireflecﬁive subcategory
of H . Let YcKOTS. Let tY denote the topological
space Y/f, , and h:Top—H and k:H—K the epireflexions.
We see that the natural map Y—*Y}ty is isotone, as %Y
has been cbtained by identifying all the points which can ba :
Eoﬁp&fé&wéé are extrema of chains c;,...;wn where -4

L™

can be compared to c1+1 . ,
We denote khtY by GY 'defininq in this fashion a
A

functor G:KOTS—K , as will be shown in the next‘prOposi-.
tion .

3.8 PﬁOPOSITION£ Let K be an epireflective subcateqory
of _F_!_ . Lat 'GzKO'rS—vE as defined in 3.7 ., 'l‘hen'G “

is the left-adjoint of U ,

S

RROOP: G s éertalnly a functor . Given A-—£—+B
—_—

in KOTS , we consider :
— A-—g*a-gg*tﬁ'-_——‘hta‘EESE*GB .

Por tyef and t, ,f° is unique . For hypef’
and hy, , £° 1is unique and for Xy.,ef* pnd Ky,
G(f) 1is well defined . It is an easy routine to check all
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A\

the functor properties of G . For every YeKOTS , call

Gy:= khtY°htY°tY E Let Xek and . YeKOTS and define AY,X

as follows: XY'X:E(GY.X)-*KOTSti,UX) and kY,X(f’:-,f°qY .
Since t& is a natural map and h " and k are epireflec-
tions, g, is continuous and isotone . Therefore
fquskOTS(Y,UX} . We claim that A is a aatural equiva-

n

lence .
L 1

Let ly'x(a) f AY'x(b) . Then aeg, -‘§qu . Since
ty is surjective and h,k epireflexions, we obtain that
a'= b. Therefore 1y y is injective . Let y—SeUx .

. v,

To show that iY

gince UX has discrete order ; c(a) m c(b) . If a~ ay,

cker ¢, let a,beY and ath . If a~b,

81 % Az s...,8_ ~b , similarly c(a) = c(b) . Therefore

n
there exists ¢, such that the following diagram commutes :
| ‘e lx
v Y‘-—F‘".Ux-_‘x _
] a . .
o ” tt//A:: : .
tY .

Moreover, since h and k are epireflectors, there

.exists c; and oy , such that Cash = cy’ and cyek = c2. 7
Ca | , N

h ' A N ' .
htY y _ /

xl . . '

Gy v :

- - PO : : . R

;hcxetoro‘ Oyokpbhet @ ggehet w gjet w ¢, which can be .
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revritten as ¢ = cyeq, = AY x(c,) » and shows that A,
H r

is surjective

_ To show that A is natural, let A-S+B in K and
i

c2ep in KOTS . Consider th® following diagrams :
AD A Ar—esao
K (GD,A)—=4=+EOTS (D, UA) %p
K(61,c) lKOTS(i,Uc) | Uclacqoi
RiGC, By oxors(c,oB) cedeGirrceasGiog,
I

. By the definition of Gi, we know that Gleg, = gp*i .
Since Uc 4is the same map as <, we obtain
_ Uceaeg ei = coa-Gioqc and the diagram commutea . Thus A

is a natural equivalence and the proof is complete .

3.9 LEMMA: Let X be a reflective subcateqory of H ,
R:H—K the reflector and E:K—H the inclusion !nnétor .

Then URG 1is left adjoint to UEF .

A
a

pﬁoor: Conaider the adjoint situations :

KOTS — *Ev—:gf + HOTS

U R G

Let n ,u ,i be the corresponding natural equiva-
lences : The composition of them will clearly be a natural
is a bijection and,
ocquivalence as nx’!ryoucx'r!olaax.r ‘ bij _
since every one of the interior squares in following diagram
is commutative, so is the extserior one .
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A IERL
ROTS (URGX, ¥) 522 ¥ (max, py) - SX:F¥q (x, mrY) X mors (x, UEPY)

KOTSLJRGB,B)I——'—;E(LZA,PB)mE( ,BFB)EHOTS‘A UEFB)

d —.

3.10 LEMMA: Let K be a corefleci:ive subcategory of H,

and C:H—K the coreflector . Then URG is left adjoint
to UCF . '

PROOYF: Similar to 3.9 .

4, Coreflective Suhcdtogori.es .

- - ‘
4.1 LEMMA: Evary nonempty object of PTop is a generator.

PROOP: We use 0.22 . Let G be a nonempty object
of PTop and AcPTop arbitrary . De:ina ‘_aG:___g(G.J\)!G—-A
by e (v,x):= v(x) . Let U b4 an open neighbourhood of
v(x) . Since v, in pirticulgr is continnoﬁs, vlu is
open in G . Therefore (v,v-lU) h open in PTop(G,A)xG
which is the coproduct ui_’!_bg(G.MG of as many copies of G
as PTop(G,A) has elements .

Since oG(v,v"‘U) - v'0 cU, is eonti.nubua . If

_.G . -
(v,x) ¢ (v',x') 4in PTOP(GA)XG , v = ¥v' and x € x* .
Therefore catv.:) » yvix) ¢ vix?') - v'{x') - .c(v'.x') and

thus we -ses that s is isotone .
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Laet aeA . If HA:G-A 1is defined by alg) = a
for all geG, acPTop(G,A) and 'AeG(i,g) = alg) = a. §1nce

G 1is nopempty, it follows that e, is surjective .

G .
4.2 REMARK: Since HPTop and HPOTS are cocomplete,

and therefore have coproducts,. every nonempty object in these
N /

catoegories is a generator .

4.3 REMARK: If X is a subcategory of Top , KPTop

is closed with respect to limits in PTop if and only it K
is closed with respect to limits in Top . Moreover.if

KPTop is closed with respect to colimits in PTop, K is
also closed with respect to colimits in Top . ~

A% - -

PROOP: This follows djirectly from the definition of
products, coproducts, equalizers and coequalizers given in
R 8 ' : .
saction 1, and the ocbservation that K is a subcategory of

KPTop and Top of PTop .

4.4 PROPOSITION: - Let K be a snbcateqorg of Top(H) .

Then XPTop 4is coreflective in PTop(HPTop) if and only if

_!_{ is coreflective in Top(H) . " X}

PROOP: The necessity follows directly from the pre-
vious remark and 0,4 . Let K be coreflective in Top .
We show that XPTop is closed with respect to coproducts
_ém!,coequnlinru in PTop . If (R, §4)y.y 1o a family in

r

oM

-~

Il
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space of uieI (x, , £) 1s ichi Since K is co-

reflective in Top, Use1Xi€K . ‘Therefore

Lyer Xy +¢)eRPTOD Similarly, given (x .c)—iﬂr <)

in KPTop , we found in 1,17 that the coequalizar in

PTop had ag its underlying tOpoloqical space a quotient of

Y ‘; Since YeK , since K 1is coreflective in Top , and

since every quotient in K ia a coequalizer in K, tﬁen |

the coequalizer of (f( ,c)%:(!r 7€) 4in PTop belongs to
If . K is a coraflective subcategory of H we show

exactly as above that KPTop 1is closed with respect to co-

products . Given (x ,s):&:(! <) in 52292 ¢« W& congtru

~ ita coequaliser in HPTop by obtaining first it¢s coequal -

izer in PTop and then its KP'!bz—ratlectlon (See the

—- proof'oi' 2.8). But the PTop-coequalizer already belqnqs to
‘ KP'rogc HPTop and itp re!.'lection is therefore j,tuelt .

4.5 REMARK: It should be noted that the underlying
topoloqical space %, of the coequalizer h: (Y ")-‘(z. +6€) |
of (X .c):f—-:(! +8) 4n PTop, may not be the Coequalizer
of xésy ln Top |

f 4.6 LEMMA, Let 8 be a subcategory of B and A a°

_oubcategory of 5 . 12 A’ 4 coreflective in B, A 1p

coreflective in g8 .
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PROOF: Dual to 2.5 .

r

4.7 LEMMA: Let K be a subcategory of Top(H) . Then

K is coreflective in PTop(HPTop) 4if and only if K is

coreflectiva in Top(H) .

PROOF: -The necessity follows by 4.6 . Conversely

if we consider K as a*subcategory of PTop the: coproducts
and coequalizers of K  in P'noE' will have the discrete
order and therefore belong to K . Similarly for HPTop . |

4.8 PROPOSITION: If K is a subcategory of H, the fol-
lowing statements are équlvalent : @ |
1) K 18 coreflective in H
2) KPTop is coreflective in HPTop
3) Egégg is coreflective in HPOTS

4) KOTS 1is coreflective in HOTS .

PROOP: We already know from 4.4 that 1) and 2)
are,equivalent . Suppose KPTOp 1; coietlactiva in HPTop.
Let (X ,$1)eHPOTS and Oy :c(X ,€i)—(X ,€i) Dbe its

reflexion . We shall show that c(X ,¢) has a
semicontinuous partial order . Lotlgdx:dx-wx ‘pe the

K~coreflexion of X . By 0.23 we can assume without loss

' of generality that the underlying sets of X,dX and

c(X ,<1) are all the samg, and that the graph of the maps
¢y 2ond d, 1s the diagonal . Since (4X ,<;)eRPTop , and

f
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the map dx:(dx 1) — (X ,s;)‘ is in HPTop, there exists a:
unique continuous and isotone map £ which makes the fol-

lowing diagram commutative : . dy,
. . {(ax ,51)—_"—’(){ 1)

3 ‘
c(X ,_S;)

Let a¢b in '.c-(x eS1) . If cyla) <, cy(b)
then dx"cx(a)_ £ dx“cx(b) and a = fdx"cx(a) $ f "cx{b\i = b
which is a contradiction . Therefore cy (a) $: ¢y (b) .
Siﬁce €1 is semicontinuous in (x' ;‘l) , Wwe £ind two open
‘neiqhbourhoodp. U of cx(a) and Vv of ¢, (b)« such that
cyla) $ v and u § c,(b) for all uel and vev . This
shows that U = cx"tf and V= cx“v are two open neighbour-

2

hoods in ¢{X ,<1) such that a { v and u} b for all ~
ueU and veV . Accordingly the partial order of c(X , &)
is gemicontinuous . _ E)

We have shown that if (X ,’sl)cHP.___g___l'rS , given an ar-
| bitrary £:Y—(X ,$<;) in HPTop = such \that YeXPTop , there
exists c(X ,£))¢KPOTS , cx:c(x”..c;)-'(x (1) in m 7
‘and\“ f cdntimious_ and isotone such that the following dia-

gran commutes : v-fex ,6)
§ r ‘ " e v%3)
This will be true in particular vhenever YeKPOTS cKPTop

The same argument shows that 2) implies 4) .
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Let KPOTS be coreflective in HPOTS ., 1If

XeHPOTS ' has thé digcrete order, it is clear from 0.23,

that it; KPOTS-coreflection has the discrete order . There-
fore 'K is coreflective in H . Similarly 4) implies 1).

I\




CHAPTER IX
SPECIAL EPIREFLEXIONS IN HOTS'

This Chapter is devoted to generalizations of
complete reqularization, compactification and real-com-
pactification in_ ROTS, and fo comparing those spaces with
the éﬁrreﬁpdndinq for the underlying topological spaces .
Haéing'beén unable to generalize some of the characteriza-
tions of completély reqular spaces in Top , to CrPOTS or
to CrOTs , we considar, as did WNachbin [17) , sub-

categories of thass as more suitable qeneralizations of
complete reqularity . Using the obvious generalization of
the concept of E-regular - see 0.26 , we see that X-reg-
ular , in PTop _senge, is equivalent to R-regular and both
ara characterized by the evaluation mapi being embeddings

iaa in Top) . We call CrORR the category of IX-regular
spaces, and this is a aubcatoqory of CroOR, the class of
spaces defined as completely regular ordered by Nachbin (17].
_The category 95953' is epireflectivé in 'gggg . In a very
similar way, we introduce the I-compact and R-compact
spaces and study the corr&ypondiqq epireflexions . The cate-
~ qsry of I-compact partialiy ordered iopoloqical spaces coin-
.cidas with COTS, and the category of such spaces which are
R-compact includes the realcompact spaces of Top .

- 53
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A comparison in the last section i)et\feen the func-
tors B8, and  v; introduced heié, and 8 and v, leads
to the fact tﬁat B;{x;d) ~ (8X,d) -qnd u;(x,d; > (vx,d) .
Aowever we introduce :-nepa'rable topoloqical spaces for‘ar-
bitrarv infinite cdrdinals ¢ , and by using these spaces we

I
are able to exhibit a space (X ,<) fn CrORR for which
P8 (X ,<) %78x .

S. Complete requkarization

4

-In this section we study the category of I-regqular
and R-reqlar spaces in the sense taken from p.26, and
adapted to phrtially ordered topological spaces just by

suﬁstitutihq 'P'mp—‘isomrphic' for “homeomorphic® . We
E ]

compare these with the class of "completely reqular ordered
spaces® introduced by Nachbih and with CroTs .

i b

5.1 NOTATION: Wo denote by 'ggég the category of
 "completely reqular ordered spaces® as introduced by Nachbin
({17), Chap. II, pages 52 and 58) , and we denote by

Ir0OT and RrOT the cathoi'ies'of I-re;;ular spaces and
R-mqularipaéﬁs in PTop" teinCtivuly . As we ghall usc
the sets HOTS(X,R) and _;_w_r_g_(x.t) often, we shall abbre-

viate them by C;X and ‘x.x : respocti.vplvl .

.
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5.2 LEMMA: XrOT <CrOR cCrOTS

Q

PROOF: Let XeIrOT, and S a set such that X is

a subspace of . By [17) Theorem 7 pagé 55, we have

>

XeCroR . If XeCrOR, it follows by [17] Prop.8 page 59
and {24) (Ward Jr.) Lemma 1 page 145, that X has a con-
tinuous partial order, and by [17] Prop.6 page 53, that the

underlying tépoloqical gspace of X is completely regular .

5.3 LEMMA: Let XeCrOR and let p:X—R°3%

I,X

and
X —X be defined by p(x)(£f):= £(x) , 3I(x)(f):= £(x),

respectively. Then p and J. are monomorphisms .-

PROOP: We consider only p as the argumehta for 1
afe cémpletely analogous . éince m? has-the product
structure and since, for every feCaX, tha f-projection
of p is f , a continuous and isotone pap, o Iia con-

" tinuous and isotone . Let x,yeX and x (_y . Since
XeCroOR , by [17] 1) page 52, there exist two continuous
functions ¢f,g .where £ ia isotone, g decreasinq,

Im fc;I ' Irhgct, f‘;(‘;:)-l,‘ g(x) = 1 and ‘
inf{f(y),g(y)} = o . It f(y) = o; then p(x)(f)/;4£(x) -
mldo=fly = o) if gly) =o then plx)(l-g) =,
(1-q) (%) = © #1le (1-gq)(y) = D(Y,(I-Q) . Thaerefore

pix) # o(Y) and p in 1njectivo .

-

S.4 REMARK: If Xe¢CrOR , and piX—8°!* ig the avalua-

-

tion , then p 4is.an order-embedding °.
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PROOF: Wa know from .5'3 that oo is a monomorphism .
Let 5(xf < oly) and suppose that x § y . By [17] 2) page
‘5%, an feC X exists Qﬁch that £(x) > £{y) i.e. : |
p{x) (£) > p(y) (f) which is a contradiction . Thérefore
X’SY . '
5.5 PROPOSITION: Let X be an space in EIEE . X is
I,X

I-reqular if and oniy if the evaluation map J:X—X giv~

en by J{(x) (f):= £(x) ‘is an embedding .

PROOP: Suppose X i§ I-reqular ., By ‘5.2 and 5.3,
3 1is an injgctiva monomorphism . We show now that J is
an érder embedding . By the dafinition of I-regular, there
exists a sat S ‘and a I_’_'I'_O_B-embeddinq e:x-'-IS . If
4(x) € 3(y) . then for every feLX , £(x) = 3{x)(f) ¢
§{y)(f) = €(y) . Hence, for every seS, e(g)(s) -

e

= (pgee) (x) ¢ (paoe)(yi = a(y) (8) sinée paoéxlxx . There-
fare e(x) ¢ e(ly) , and e being an embéddiﬂéf X $Y -«

To complete the proof'%pat i1 is an embe&ding, we show that
" it i8 open in its image . Since e:x-*ls is an embedding,

the topology on X is generated by

Bim {e"p""Uth, U open in I}

Call £ := pgee . Then p!'Oj(x) = J(x)(£,) = £,(x).

Given a set (paoe}"U of B , we have : j[(p’oc)"ul -

= $1£,'01 = J({xex|£, (x)cU}} = {3(x}e3X]p, (§(x))eU} =

‘ - s

= pgt UN3§X which is open in 3X . The converse is obvious
8 ' .
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from the definition of I-regular .

5.6 COROLLARY: Let X be an space in PTop . X 1is
R-feqular if and only\if the GValuationrﬁap\ p:x—aag‘x

given bvr p(x) (f):= £(x) 4is an embeédinq .

PROOFP: The proof is like that given in 5.5 .

5.7 LEMMA: Every completely reqgular topolegical spacé
(wijr discrete order) is X-regular .

PROOP: Let X be a completely regqular spaca.;ha is
Cc(X,K)

©

well known the evaluation 3:X—X is a Top-embedding,

and since the order in X is assumed discretes, IiX = c(x,n.
Therefore in order to obtain X % 3Xx in° PTop , all we need
. is that the order in 13X be discrete . -To this eng, let
x,yeX and x #y . Since X has discrete order x $y

and y 4 x . Since X 1; completely ragﬁlar, there exists
£eC (X,X) auéi that f£{x) =0 and f£(y) = 1 .. -

We have J(x)(f) =f(x) =0 } 1 = £(y) = J(y)(f) |
and §(x) (1-f) = (i—t)(x) =1¢o0w= (1-£f)(y) = jly)(1-f).

Therefore 3J(x) ¢ 3(y) and Iy) § 30 .

5.8 PROPOSITION: IrOT = RrOT .

: , k 5 _
PROOP: Since for an arbitrary set 5, tscst_ s MO

ceo that ErOTcRrOoT . To ah;ov the ‘com-ret\ae, we firat provo
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that RelrOT, and in particular.-m & lo,1[ .

A
r “f

Define : f:R—]o,1[ by f(r):= % MV IGTEVE
' ! . ™~

1f o<r<a,2r<25,2rs+2r<-2rs+23,ﬂ%n.<n.:_q.y,

T

: ' r 8 8
<
If r<o<s., T+ <ox« IR R I CO VR

If r <3 <0, =2rg+2r < -2rgo+2s , whence

2(1s141)x < 2(iei4l)s , and yTERYT < T{rereLy -
Therefore f ig cdontinuous, isotone and injective .

Lot us .now dofine: f:lo,l(—+R by f(Y"'EzT it

Y?y and f(y)ﬂ—g-— if y<%- . E‘iaclearlycon-'

tinuous and is the inverse of £ . Hbfeover. f\wis isotone

since, if " f(x) < €(y)., y ¢ x and therefore x <y .
Having shown that ® & Jo,1[ , let XeRrOT -and

X%¥vecr® . Then x Qi ver® ¥ .}o,l[f;cls' . Therefore

XeEIxrOT .

5.9 REMARK: Because of Proposition 5.8, in order to

avoid emphasizing the properties of spaces in XrOT = = RrOT

e

ag I-mqﬂlar (or R-regular), we choose a neutral name for

thio category : CroRR .

By CIORR 1o obviously productive and hereditary, and

wo c;hnll give a further interesting characterization of it
aftor wo have shown in noxtJaecti.on that the category of

£
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| E-compact spaces 1is precigely COTS .

5.10 PROPOSITION: CrORR is an epireflective subcategory .

of ROTS .

PROOP: Given XeHOTS , we can always define

_ C1 X ; S .
p:X—R . by p(x) (f):= €(x) . This is a continuous,
igptdhe nap. (Although it may not be injective) . We call

a;X:= pX , and in order to show that a,:BOTS-»CrORR: is

the desired epireflector . wae first show that' for aevery

fcCyX a un £ x-*k exists such that fop m £
i.0., such that tha‘follouing diagram commutes : , £ o
o] 4
- ulx

~ To obtain this, let £1e peei where i is the
inclugsion and p, ,Ehe f-projection’:. u1x-—i;+a$'x«_21wa-
f i5 clearly continuous, isotone and fep = £ . Moreover
since p 1is surjective on o X , f is unique with respoct
éﬁ thaso_propértien s |
Consider now the more general case where f£:X—Y 1is
an arbitrary Egggfnnrphilhtsuch that YeCrORR ang lot
‘h:Y—ﬂRS be an embedding . Prom the result just proyed, we
| find for avery 8¢S a unique continuous, isotone map f;’J :
osuch that !BBp h‘p.’hof . Prom the Unt 1 Property of
the product Rsij again, thare exiafa\p :jz::a continucus,
icotonc map ¢ ouch that for overy 868.\‘pu°§ - fg .

™
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We include the corresponding diagram for the benefit of the

: P
reader : X £ v h _S 8

|

. a;X 8

Raving obtained for all seS that psa'éop = pgohef,
we see that, since the family (pn)ses is universal, .
fop = hef . Therefore, fa;X = fopX = hefXcImh . Let
aca; X and ?(a) = h(y) ; since h is an embedding, y 1is
unique and we can define a map £:0:X—Y by f(a) =y .
Consider #%:;a,X—hY given by f*(a) = £(a) , and h':hy—sy
by hlth(y)) =y . Both f* and h!' are continuous and
isotone, and so then“wiil be the map f = h'ef® _ We ob-
serve in addition that, since E(p(x)) = h{f(x)) , 'we have
(fep) (x) = £(p(x)) = £{x) . The following diagram having

been ghown to commute for £ , x—Loy

o| £

a1 X

it follows that, since p is su;jectiva, f is unique .

— -
1
3

5.11 REMARK: We could have given a parallel proof using
InX

the evaluation §:X—I instead of p . Suppose we had

 de£ined aiX: = 34X . Since (p,a;X) and (4,a:X) would

then be solutions to the samo Univnxggl Problem reprosqnted
by tho Rofloxion Property, we would have obtained

Glx - ng_ -
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6. Compactification and Realcompactification

6.1 NOTATION: TIf °XeCrORR , we denote by 8,X the clo-

IiX o §X *, and by u;X the closure in gC1¥X

sure in : ¢
of pX . TcOT and RcOT will mean respectively the cate-
gories of ¥-compact and‘of R-compact partially ordered

topological spaces .

6.2 REMARK:
1) X & X an&f X is a dense subgpace of ;X .

2) xq? pX and pX is a dense—aubapucé;of nm X

6.3 PROPOSITION: ‘The categories of T-compact and of

R-compact spaces are epireflectivd in CrORR ., The epi- N

reflectors are 68; and u; respectively .

N

PROOF: -We congider firgt v; , since g; could only
be easier . BY practically the aame‘staﬁs agﬁin 5.10 )

we thain th&g for every feCX ,_thgré axiséa a unique
f;ufx-ﬂR such that fep = £ .. In this case, the uﬁiggeness‘
is asgured because b is now dense in u;X . We generalize
hefq to-thg case where f:X—Y is a gggggrmorphism _andd
YeRcOT . "As in 5.10, we obtain an embedding h:Y—R>
(with hy élosed) , fan fa 4n EEQZ Fuch that

£ op = psohtf ; 16;/;;ery geS , and, from the family

(fa)acs '

the map £ which makes,the‘fblloying diagram
commutative for all seS T

4 - ¢
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\ J fohEs Pﬂm
| f
g .
v X

For thls case :

fuiX = frpX ePfpXcIIm h » Im h
- . _

and we can therefore complete the proof by defi;lng £, f£*
and h! as in 5,10 ..
If we consider B8, we pass through exactly the same

'

steps using J 4instead of p , and I;X instaad of C;X .

6.4 LEMMA: ¥cOT = COTS C RcOT .

PROOF: It is obviocous that IcOT cCOTS. Lat XeCOTS
I,X

Ag in preﬁious cagses the evaluation map J:X—X is
continuous and isotone . We show that j is injective . By
171, Theoremlﬂ,p§ge 48, we know that X is a normallv-or-
5;;;q space :' Let x,y be.two distinct points of X, angd,
without loss of generality, let x ¢y . Since theﬁpartiai
order on X is continuous, ihe sets \Ly = {zeX|z ¢ vy} and
Mx = {zeX|x ¢ 2z} are disjoint and closed, and we conclude
from ([17] that a éontinuoﬁa isotone function feC;X exists
such that Im fc¥ , £(y) = o and 'f(x) -1 . We obtain ‘
essentially the same function on I,X and _jgxi(f) “ £(x) =
=1ldom=f(y) »jly)(f) . Therefore J(x) # jly) .. Since
X 1c.cambact. gl ¥ Rnusdorif and 3 contiquoﬁa, we con-

clude that j io a closed map, and all that isc left to fin-
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ish our proof is to show that if J(x) ¢ jly) , Fhen X < ?.
Suppose it were not so; say x ¢ y . As in our consider-
ations to establish that -} is injective,.there exists an‘
feI,X such that J(y)(£) = £(y) = 0 < 1 = £(x) = §(x) (£) ,
a contradiction .

‘We have shown that 4 is anlembedding'and 3X clo-

sed . Therefore XeIcOT and ¥cOT = COTS .

By the same mathod we show that the evaluation -

CiX

0:X—R is an embedding and pX closed in CaX . Accor-

dingly, COTS cRcOT .

6.5 PROPOSITION: Let Y be a space in HOTS . Then Y

( :
is in CrorRR i?f and onLy if Y 1B a subspace of some space
X in. coTS . IR

PROOP If YeCrORR , YCIS

———

versely, let YcX and XeCOTS . By 6.4, X s in ¥cOT

-

for some set S . Con-

and therefore in XrOT . Since IrOT is hereditary

YeXIrOT = CrORR .,

6.6 LEMMA: An\apace X in CroRR is in COTS 4if and only
if B2 X3 X , and it balongs to RcOT if and only if

U[x ax-

[

' PROOP: Lat iccors . By tho Universal Property
uhawﬁ for B8; in 6.3 , thoro exists a unique map g:8;X-+X

nuch\thﬁt géj - 1x ., and bince j#q 5nkqa the following




64

diagram commqtative ; -X _,J_+3,x
11\/
//E '

it follows, again by the uniqueneaa of the Universal Property,

that jeg =1 Therefore X & 81X . Since g,X is

ByX °
cloarly in COTS the converse is obvious . The statement

about u; is proved in exactly the same way .

6.7 REMARK: Let Cl be the class of all spaces YeCrORR

‘which satisfy the following Universal Propﬁfty : "For every
XeCrORR and coptinuous, igotone map f:X—vY, there exists
a unique continuous, isotone map £:8,X—+Y such that
f—:'ojﬂf."i

In the proof of 6.3, we have shown that COTS cCl .
~The converse is easy to prove, and a parallel remark

can be made for v; and RcOT .
: , ; —

PROOF: Let YeCl , then a unique continuous, isotone

map -g:8;Y—+Y exists such that the following diagrams com-

mute = 1Y
Y ———Y ' Y-————‘*HIY
1YLA 'JY[\ /J/
B1 ~
BIY

72 obtain ag in 6.6 that qon L] 1? v 1Yoq U] 18;? R
Y 2 8;Y and therefore YeCOTS . Tho remark for " v; and

RcOT 18 now obvious . /
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6.8 REMARK: Since. COTS {;8 epireflective in CrORé , and

CroRR epirefiectivg in ROTS , we obtain that COTS is

reflective in HOTS and by the corregponding considerations

RcOT 1is reflective in HOTS . We had already obtained theose

results in 2.11 .

6.9 LEMMA: Al)l real-compact spaces (with discrete partial
order) belong to RcOT . _

- PROOF: Let XeRc . Then CX coincides with C,X
p:X—*ch is a PTop-embedding, X X pX = B8X , and one shows

as in 5.7 that the partial neder in oX 1ia discrete .

’

Since X ¥ 8X "1s in HOTS and BX = 8,X , we obtain
XeReOT . W

Y

-~

7. Connections batween f and 8, , v and v,
' -~ »
Let F be the /fforgetful functor HOTS—H such that

F(X ,¢) =X . If (x +§)eCOTS , XeC and therefore

8X & X . On the other hand B8;(X ,¢) ¥ (X',¢) and this
shows that FPB;(X ,<) & BX . Similarly, wa obtain that if
(X ,<)eRCOT , Pu(X ,¢) ¥ uX . In this section, we show
that B:(X.dj 3 (8X,d) ard exhibit a space (X ;13 in CrORR
such that FB;(X,,G)‘* BX . | ) : . ]

7.1 PROPOSITION: Por every (X ,€) ~in CrORR |

Bi(X,8) ¥ (BX,d) and thero exists a perfect, isotone purjec-
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tive map p:(BX,d)4*B;(X ,€) .

PROOF: Let (X ,s)eggggﬂ . By 5.2 and 5.7, we
have (X,d)eggggg . Since X is completely reqular, for
every continuous, isotone £:(X,d)—(Y ,¢) with
(Y ,<)eCOTS , there exists a unicue continuous, isotone map

f SPEh that following diagram commutes : (x'd)__i*(y , <)

1xl /
(8X,d) '
This shows that (8X,d) and B8,(X,d) are both solut;ons to

the same Universal Problem, and therefore
(6x,d) & B;(X,d) .
Let h:(X,d)—(X ,¢) be given by h(x) = x for

all xeX , %We ghow that 8;h 18 a perfect, isotone aqg

surjective map . Since B8;:CrORR-+COTS 1is a functor, 8;h

is a COTS-morphism , and therefore perfect and isotone .

Since dy (X 1<) = $yoeh (D = (Bi)edgy(X,d) cIn Bin we

obtain B;(X ,<) = rjx‘(x 8} clPIm Byh = Im B8,h .
We set p for the composition of 8,h and the
isomorphism 8;(X,d) ¥ (8x,d4) .

7.2 COROLLRRY: For every (X ,§) in CroRR ,
v (X,4) & (uX,4) and there exists a bontinuﬁun, isotone

‘denso m:ip q: (uX,d) =y, (X,€) .
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PROOF: As in 7.1 we obtain u;(X,d) ¥ (uX,d) , and

7.3 REMARK: Let U:H—HOTS be given by UX:= (X,d) .
Prom 7.1 and 7.2 we obtain a commutativity condition of

functors :

cr —2—CroRR cr ——+CroRR
Ll e i B e
—— S- COT
i.e.:
B0 = w3 and  v,0 = Uy

The space B8,;(X,d) is the Stone-Cech compactifica-
tion of X with the discrete partial order, and similarly

7.4 REMARK: 1In order to show that the underlying topolo-
gical space of B;(X ,¢) is not necessarily 8X , we first
introduce the concept of «-separable topological spacea‘fbr
an infinite cardinal number x . We also introducp diatiﬁ-

quished intervale on the set P({X)\{X,¢} with inclusion as
R

the partial order . We dencte 2 by c .
The proof of 7.6 below is a generalization of the
_proof given in [6) VIII 7.2 . : \\

7.5 DEPINITIO
[

We call a topologic

et x be an infinite cardinal‘number.

space x-separable if it contains a

dense gpubgot of card lityuat moat ¥ .
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Let P:= P{X)\{X,¢} and 3<P . We call J a dis-

tinqguished interval of P if there exist two finite subsets

S; , S2 of X , such that J = {T<X|S;cTcX\S;} . We denote

J by ISI:-Szl -

7.6 PROPOSITION: Let A be a set of cardinality at most

2% ., and (Y,),en 2 family of «x-separable spaces . Then

M. .Y, 1is x-separable .

PROQF : Withqut loss of.qenerality; let & = 2% .
Let S be a set of cardinality « and s eS ’

Let P:= P(S)\{S,6} and 9:A—P be a bijective
function . Por every aeR let y#:S-*Ya be a function such
that Da:- Yas is dense in Yy | -

Por every finite pairwiﬁe disioint family of distin-
quished intervals J,,..., J

k

define a point p(Ji,..;,Jk:s;,...,sk)cnacnva bv

Valsy) if e(a)edy

of P and 8,;...,skcs ., we

p‘J ""'J :al’coo’S )(a) - .
' K k y,(8,) otherwise

Let Dt-{P(Jl,-..,Jktﬂl,...,ak)'311(31,...,Jk:8|,--.,Gk),nll k}

Clearly D = 8 = « .

hY

To prove that D 1is a dense subset of nacAY&.'

we ghall show first that given Ua,""'ua open sets of
n

Ya‘ ""'Ya respectively, there exists a fanmily J,....,
n

3. of pairwise disjoint distinguished intervals of P ouch
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that w(ai)eJi .

If n=1 and %(a) = S, where beS; and d¢s3

, 3
we set Jy:=[{b};-{d}], and {J,} is the required family .

Given U_ ,...,U

a, a U open sets in Yo seeee¥ Y

k  k+, 1 A B4,

respectively, suppose that the family ([8,:-T:1, (S2:-T2l,
- [Sk,-Tk] of pairwise disjoint distinquished intervals '

of P has been given such that ¢(ai)E[Si,-Ti] .

Let he¢(°k+1) and q¢¢(ak+l) and Qenote f{{h};-{qg}}

by Iy4y,o - If heTy or geS; , we set J::-[Sx=fT1] .

If htTl and th, , since ¢(a;) # ¢(a we have two

k+1

posibilities : There exists xe¢{a,;) such that xﬂ’(akH '

or there exists ycw(ak+l) such that vy{¢(a,) . In the
a

k+1,1

In the second case J;:=[S;;-T,VU{vy}] and I,  :=

=[{h,y};-{q}) . By using the samoe method sucessively with

first case we set J;:=[S,U{x};~T;] and I ta[{h}:=-{q,x}].

. -/
viaz) o ¢(ak+‘),.v*$fak) ¥ 9(a,, ) we define Ja,....,J and

Ik+1,z""'1k+. x . BY setting Jk+1‘-1k+:,k the required
family 19 obtained .

Given arbitrary open sets ?al,...,Uan 'of Ya,""'

Y, and a corrasponding family JrseeerTy of tinquished
n .
intérvalo of P as above, since for each 4, vais is denso
in Yui » thero exists s8,eS guch that Yaitni)cuai .
Thio phowa that p(J;,...,Jn:a.,.;.;an)ctﬂpélua

-
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and D is dense in HacAYa .

7.7 REMARK: We denote by AB as costumary, the sget of

C C
functions f:B—A , and by AB A(B )

. We denote by A \

the cardinality of the set. A . If a,b and ¢ are cardinal

c c
numbers, we. shall mean by aP ’ a®%) -

g

7.8 COROLLARY: If S 4is an infinite set , ¥ - ig

g-separable .

PROOF: - If we denote A:=I" and ,Yo=I for everv

xS - 5 .
aer , I ., i3 naeAYa . We apply 7.6 because A = I |
= cg - (2"')5 = 2&_3 - 2§ . : .

7.9 COROLLARY: If S is an infinite set, and we denote

the discrete topological space on S also by S, then
g

B a2?
PROOF: Since 83 1is a closed subget of 1 ,
- ™ g | - ' 5
BS(II - 22 . By 7.8 Ixs is 8-geparable . Let DecI
. - ]S
be a denge gubset and b:S—D a bijection . If i:D—X is

* L)
the inclusion, the map bzss—*tls which extends i.b is sur-

B =8
jective and therafore 22 -_!I < B8 .

7.10 PRbPOSITIbN: ?or (X ,€)eCrORR . tho underlyinq_f

topological gcpace of “8;(X ,2) is not necoguarily BX .
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PROOF: Let S be a set of ordinals of cardinality
at least ¢ . Let X be the topological space-with ¢ as its
ufiderlying set and 'the discrete tOpoquy. Leé ¢ be the
naturallorder on S , . g
By 7.9 we know that = 22

We show that (X ,¢)eCroRR and E,iﬁ <) £ Zg.

The evaluation (X ,¢)—xT* X 1€} yo oooo contine
uous and isotone . Let j(s) ¢ j(t) . If g $ t st <8
and we can define ¢q:S—1 by g(x) =0 if x ¢ ¢t e g(x) = 1
if x>t . fThen g(t) = 0 <1 = g{(s) is a cont¥adiction .
To show that 3§ iam open in  4x , given g8eS , we define’ ?
h:S—X by h(x) =o if x €°s , h(s) =3 and h(x) =1
it x> 8. Since heli(x,¢) and ptlo,1[N4X = (§(a)} ,
{j(s))} 1is open in 4x . fherefore 1_‘13 an embedding and
(X .55895953 . _

To see that BTT?'TE) é Zg R we notice that since
S 1is well ordered, evervy isotone function f:X—X can be
described by theisubset of graph f «cSxX where f i3 stricly
increasing , Thérefote the cardinality of I,(X ,<) is at

most that of the set of countable subsets of SxI , which is
o=

(sx1) " = 8% B .| sinca B,(X ,¢) can be cmbedded into
gl (X <) , and ¥ X <) < cg o Zg we obtain

: .8
BT (X .?) 14 2g . Having obtained E,I! '€} € 2g < 2(2 ) o "

it i5 clecar that B;(ﬁ ,<) dox .
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CHAPTER IIX
PROJECTIVITY AND INJECTIVITY

In this Chapter, we use a result of § 3, see 3.2 ,

to connect the projectivity in subcategories X of H with
the‘projectiv;;y in KOTS and KPTop . If we have a class P
of epimorphisms in'~5 which contains all isomorphisms, and

we denote the class of continuous isotone maps m of KPTop
such that F(m)eP by Pi, we can show that an object Y 1is
Pi-projective in KPTop if and only if Y = UX for a P-pro-
jective X in K . The corresponding statement also holds

for KOTS . If P 1is the class of all the epimorphisms in

H the projeétivity is too trivial, the projectives being ex-
actly the discrete spaces. Banaschewski [2), has studied with
very interesting results the P-projectivity in various sub-
cateqories of Top when P means the class of perfect sur-
jective méps. In this Chapter, we éxtend some of his results:
to our partially ordered spaces, by showing that for the sane:
list of sﬁbcategories K menticned in [2], the Pi-project-
ivity is properly behﬁch in both KPTop and KOTS and by
characterizing the free and the Pi-projective objects and

the Pi-projective covers. The author found thesc reoults
particularly interesting by their very nature (the same ob-

jects which are P-projective in K happen to be Pi-pro-
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jectiye in the much larger category " KPTop {) "and by the
rather simple way in which they could be derived by applica—
tion of the ideas contained in [2] .

As for injectivity, if E contains all the monomor-
phisms, the Efinﬂectivity is tfivial in-most subcatégories
of PTop, leaving as E-injective only the one-point spaces.
We therefbre select a more appropriate class of maps to re-
place the monomorphisms, namely the embeddings, and show that
the E-injective objécts of CrORR are connected spaces with
greatest and lbwest elements . A space is E-injective in

COTS if and only if it is a retract of a power of I , where

1= [0,1]c®R . 1In the category of 2-compact spaces (where
?2 denotes the set {o0,1} endowed @ith the discrete topology
and partial order o < 1), a space is E-injective if ahd
only if it is a retract of a power of 2 . The finite E-in-
jectives are lattices . We examine E-injectivity for proper
bchavior ahd for 2-compact spaces, find it is properly bg-
haved at X whenever X is a finite space .

Chapter 0 contains some of the definitions and re-

sults of Banaschewski (2] , for convenience of refercnce .

8. Pi-projectivity

. In this scction we relate projectivity in KPTop

and in KOTS with the alrcady known projectivity in K,
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where K 18 a suitable subcategory 65 H . After remarking
that the projectivity in the general sense is not very inter-
esting in theée‘categories, we laSeI the class of perfedﬁ,
surjective, isotonefhapg as Pi and gtudy Pi-projectivity,

extending results for K from [2] to KPTop and KOTS in

¢

this way .

8.1 PROPOSITION: Let

IR

be a subcateqory of H, P a

class of epimorphisms in K which contains all the isomor-
phiems, Pi the class of continuous isotone maps m in
KPTop such that F(m)eP . Then (X ,§)eKPTop 4is Pi-pro-
jective if and oniy if X is P-projective in K and ¢

is the discrete partial order .

PROOP: Let (X ,¢) be Pi-projective in RPTop .

Suppose ¢ i non discrete , i.e. there exist a,beX ,
a ¢ b and a ¢ b . Consgider (X,d)h whera d 1is the
discrete order . Then f£:{X,d)—(X ,¢) given by f(x): = x
is in Pi but thore is no continuous isotone map
(X ,€)—(X,d) which completas the following diagram to a
comnutative ono : (X ,<)
P
(X,d4) ——1{x ,9)

. This contradiction shows that ¢ has to bo tho dis-
crato partial order . To cee that X ic Rprojective, wo
conoider tho diagrams (I) in R and (II) in KPTop .




FE

. - 757

N
X - (x,d)
) 9 , g
i ‘ (1) A-?Eg—+ (II)-(A,d)-—?é;I—*(B,d)

Since (X,d) i Pi-projective in KpPTop ,. there“
. exism/ §:(X,d)—+(A,d) in KPTop such that fog =g .
/J This g isg, in particular, a continuous map X—A . To
prove the converse, suppose that x is P-projective and
consider £ and pePi in the following diagram : (X,4)
: _ | 1,
(Y, s)——s—f(Z.s)

Since X ig ‘P-projective, . f,p are continuous and
p = FpeP , there exiats’a continuous map %}X;fY such that
pef = £ .,  But since (X,d) has the discrete order f is '

lalaooisotone . —

'

B.z‘ﬁEMARR: An examination of the proof of 8 1 vyields

IR e T Y] f\*'_‘;i"[\“‘;' giioErivn

that, for g an in 8,1, (x ($)eKOTS is Pi—projective if
and only if X is P-projective in K and ¢ is the dis-

" crete ﬁartial order .

8.3 LEMMA: If KPTop (KOTS) has an object (X ,<)
which is free over a set S, then ¢ is the discrete or-

der .

PROOP 1 Let P be the class of all cpimnrphismn and

app1§ 8.1 . Evory frea object is then P—projcctive . . {

-
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8.4 PROPOSITION: Let S be a set and K a subcategory

of H . (X ,€) is freaon S over KPTop (ROTS) if and

-

only if X 1is freeon S over K and < is discrete .

PROOP: If (X ,¢) im freeon S, by 8.3, ¢ is

discrete . Let is be the universal map S-+({X,d) . We

also denocte by is the map . S—X having the same qraph.
Let f£:S-+Y' be an arbitrary map where Yeg-h. Also denote

by £ the map S—(¥,d) having the same graph. Since (X,d)

‘ T

is fre@fon S over KPTop (KOTS) , there exists a unique

morphism £ such that fois = ¢ . Since £ is defined as

a continuoug X—Y map, (x,is) is free on S over K.

-l

Conversely, let (x,is) be free on S over K

given f:5—(Y J?) , we define f':S-*(Y,di and
_ .
i: (y,d)—+(Y ,¢) by £'(s):= £(g) and i(Y)=;-Y . Since X

is free on S, there exists a unique continuous map F:X—Y
such that ?Q;s o« ¢' . Setting g:= 1of we find the
unique continuous, isotone map which makes the following dia-

gram cormmutative : ¢ .

SV' L~

(¥,a)

1g
. (X,q)

Thorofore (%,d) is free on S over KpPTop (KOTS) .

8.5 conngggg§= The free object on S over CPTop (COTS)

LR PSS TN A LN SIS FUe s S L Ag 3 |

megryr

m.



77

i{s obtained by considering S as a discrete space and taking

(8s,d) .

8.6 REMARK: The first choice for the class P in tﬂe study
of projectivity in any category, is to take all the epimor-
phisms . However this projectivity in H and some of its
subcateqgories is trivial . A space is projective if and only
if it is discrete .

A suitable choice of g,xhas been the class of all
the perfect aurjective maps, whicﬁ; in the important case of
compact spaces, coincides with the class of all epimorphisms.
Since we have some interesting results on this kind of
g—projectivity (bea 0.29 to 0.36), €from now on we sghall fe—“
serve the symbql P for the class of "perfestrsugjectiye

maps” .

8.7 COROLLARY: For the following subcategories K of
H,(X ,s) is Pi-projective in KPTop (in s) 1if and
only 1f X is extremely disconnected and the’ rtial order

< is discrpte H

1) Hausdorff ' 7) Lindeldf

2) reqular . ' 8) real-compact

3) completely regqular 9) _k-compact

4) paracompact 26) compact

5) loéally compact 11) zero-dimansioggk—\\“

6) o-compact ;\\

PN e AR

EETEN I
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PROOF: Since the class F- of perfect surjective maps

satisfies the hypotheses of 8.1, we siﬁply apply 0.34 .

8.8 REMARK: We obtain directly from 3.8 that, if Y is
projective in KOTS, thon GY is projective in K . How-
ever if )Y is projective in XOTS , its.order is discrete

and GY X Y . /

8.9 REMARK: As in H we call a surjective morphism

f:X—Y of HPTop minimal , if the image of every pi:oper

closed subset of X 18 a proper gubsat of Y .

8.10 LEMMA: A rmorphism £ of Pi is coessential if and

only 1if it is minimal .

PROOF: Let f£:(A ,5)—(B ,%) -ba coessaential . We

-
-
]

-
-
»n
]
i
3
ja ]
3
3
‘)
-+
¢

shall show that f:A—B 13 coessential in H as well,
because we can then apply {2] page 69 and conclude that f
is minimal . Let g:X—A be continuous ;ﬁnd‘ foch . Then
g: (X.d)—'(h'-fx; is continuous, isotona and fegePi .

Since fePie , then gePi , whence g:X—+A belongs ‘tt‘) P,
and therefore' fePs. Conversely, let f:(A ,<)—(B v§) be
minimal , h:(2 ,¢)—(A ,g) con't':?.nmun' and isotone and
fohePLi . By {2) page 69, since ¢ 1is minimal, f is
coessential in H , and since foﬁeg v, DEP "o Considering
that h i isotone by assumption , hePi and we have provcd
that f£ePis . | |
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8.11 COROLLARY: If f£:(A ,¢)—(B ,<) belongs to Pis

R¢2? .

| PROOP: By B8.10 £ is minimal, and the result is ob-
- — ‘

tained from [2] Lemna 3, page 70 .

8.12 PROPOSITION: Pi-projectivity in HPTOP (HPOTS,

HOTS) 1is properly behaved .

PROOF: We show that the axioms P1) to P6) of (2] ,
see 0.31, are satisfied . P1) and P2) are obviously satig—
fied by the perfect, isotone au;jective maps. Considering
8.10, P3) follows by the same arqumehts which are used in
the case of P-projectivity in H (see [2] page 69 and 70) .
Similarly using 2.4, we can consider essentially the same
explicit descriptions of the puilbacks and projective limits

in .HPTQE_ (HPOTS , HOTS) as the ones given for H in [2)

page 70, thus obtaining P4} and PS) . Pinally, P6) |is

obvious from 8.11 .

8.13 REMARK: The statements 0.32 to 0.34 have been
proved in (2] by analysis of the proof of tzl Lemma 2
pago 69, which correupohda in our casé to .12 . S8inco
our proof of 8.12 follows all the detailg of Lemma 2,as Was,
just mentioned, the corresponding statements for HPTop
(HPOPS, HOTS) follow .

tascarion b L dAJert=es

"

NPVEL,
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8,14 COROLLARY: If § is a subcategory of HPTop (HPOTS,

HOTS) , Pi-projectivity is properly behaved in S whenever:

i) S 1is closed hereditary, closed with réépect to -

pullbacks in HPTop (HPOTS, HOTS), and ﬁrojective 1imits in

HPTop (HPOTS , HOTS) of well ordered inverse systems with

Pi-maps; or

ii) s is a full subcateqgqory of HPTop (HPOTS , HOTS)

which is left fitting with rcapect to coessential Pi-maps: or
iii) S consists of all objects and all perfect isotone
mappings from a category L which satisfies one of these

conditions ,

8.15 REMARK: Every (X ,¢) 4in HPTop (HPQTS , HOTS) ,. is

the homomorphic image of a minimal Pi-map from a discretely

ordered, extremely disconnected space .
ﬁﬁOOF: Follows from 8,12 , 8.1 and 0.34 .

8.16 COROLLARY: In any full subcateqory S of HPTop

(HPOTS , HOTS) which is left-fitting with respect to coessen-

tial gifmabpinqs, the Pi-projectives are exactly the dis-
cretely ordered, extremely disconnected sFacee belonging to
S and the same holds for the subcategory of S with the

game clané of objects, but uhose-morphisms are onlv'thﬁ per-

fect , isotone mappings from S .

8.17 RRMARK: The rogult of 8.16 follows algo if S is

EIERTE T Y ILT S

FIRY

- R P ]
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productive and closed hereditary .

These statements follow directly from the proof of

.12 and also froﬁ B.1-

8.18 PROPOSITION: The mapping £:(Y,d)—(X ,£) is a Pi-

projective cover if and only if f:Y—=X 1is a P-projective

cover .

PROOF: By . 8.1 , (Y,d) is Pi-projective if and only
if Y is ,gfprojecfive: by 8.10, £ 1o gifcoesggntial

if and only if f is minimal 4i.e. P-coessential .

8.19 REMARK: As we haﬁe explicit descriptions of the
P-projective covers in H and gome of its gubcateqories K,

Proposition 8.18 provides an explicit descriﬁtlon of Pi-

proiective covers in HPTop, HPOTS,-HOTS and KPTop , KPOTS,

KOTS , for those subcateqories K .

9. E-injectivity

As in section 8, injectivity is not interesting, in
the_qéneral sense and we select the claasc E of all embod-
dings . E-injectives in COTS are the retracts.of powers
of ¥, while in 2-compact spaces they are the retracts of
powers of 2 . .E-injectivity for 2-compact spacco io lecally

properly behaved at the finitc opaces .

[EREE Py & N Ry 3 )
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9.1 LEMMA: In the following subcétegories of PTop, if

E is the class of all monomorphisms, every E-injective

space is trivial (has only ona point) -

1) HPTop 6) ZerodimoOTS
2) HPOTS 7) 2c0T

3) HOTS : 8) RcOT

4) CroORR 9) BsOTS

5) COTS

PROOF: Because the product of two non trivial chains

is not a chain, it is enough to show that every E-injective
is a chain .,

5, Let .S be one of the above mentioned subcategories
of PTop, ané let XeS be an E-injective space such that
a,beX and a¢bta. Let Y be the subspace ({a,b},d)
of X, q:Y-+X the inclusion and f:Y-fz defined by .

f(a) = o and f(b) =1 . Since feB and X is E-injec-

tive , there exists a continuous, isotone map £ such that

Y ———s2

]

Then a = q(a) = fef(a) = £(o) < f(1) = b , a contradiction .

the following diagram commutes : £

" 9,2 NOTATION: Por the rest of this section, we shall

denote the class of all erbeddings by E .

Ak SEES AN

(X T

-t A

Y

s oegees.
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9.3 LEMMA: If X is E-injective in one of the catego-
ries mentioned in 9.1 , X has a greatest and a lowest

element .

PROOF: Define B:= XU{x} = ¥u{llUu{(x,2)} and

Cim {x}UX = {(x,1)}UXx{2} with coproduct topoleqgy and

lexicographic partial order . Consider the following two

commutative diagrams : i X 1 .c o

17 e

We note that f and g exist because X is E-injective .

It is clear that for every acX , a €g X and accordinqlf
a ¢y £(x) . similarly q(x) ¢, a .

9.4 LEMMA: Every E-injective space in CrORR is com-

pact and connected .

PROOF: Let X Dbe EfinjectiVG in CrorRR . By 5.5
IX

belondn to E, and gincea X is
1,;X

the evaluation §:X-=X
F-injective, there exists a f:I"""+X continuous, isotone
map such that. fej =1, . As f is surjective and contin-
wous , and EI'* g compact and conneqted,‘then X is also

compact and connected .

9.5 PROPOSITION: The Erinjecéive spacegs in COTS are

exactly the retracto of powers of I .

R e



84

PROOF: To see that eﬁery retract of a power of I

is E-injective, it suffices to ghow that T is E-injective.
But this follows from 0.13 COnBiderind {17) Theorem 4,

page 48 . Conversely, if X 1is E-injective in COTS ,

I:X

then the evaluation J:X—I belongs to E by 6.4, and

X,y

there .exists a continuous igotone function ¢€:I such

that fej = 1

G

x - This shows that X 18 a retract of

9.6 LEMMA: If U ig a closed subset of a gpace X in

COoTS , LU and_ MU are also closed .

et

PROOF: Let y be a point which is not in LU . Then

for every xcU we have y § x . By [24], Lemma 1 page 145,
for every xeU , there exist two open.neiqhbourhooda Ux

of x and V_ of y sguch that v 4§ u whenever ueU_

and VeV . Therefore vxr1LUx « & . Sinco X io compact,

there exists a finite open cover of U given by
n n
Ug, reees U+ Let Vis ﬁhlvxi , N:i= \Jiulnuxi .
n o |
Since LUCN, and VNN = ¢ , we have vy = & ;3 it
then follows that’ V< Ly , and LU is cloged . One ghows

similarly that KU is closed .

9.7 LEMMA: Lot S be a get and U a closed and open

subget of 25 . Then LU io closed and apen .

- w——--— ==
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PROOF: Since 2 1is in COTS, so is 25, and, by 9.6
r1 is cloged . To show that LU is also open, let xelLU
and x ¢ u, uelU . Since U is open, and ZS has the pro-~

duct topoloqy, there exist s8,,.. 8o, ti,... ,tm in S
such that n . m .

Therefore :

m

n n
xef\iﬂlpél(o) = L{( r\iﬂlpglfo)) n (\jn1p£;(1))]c;Lu.

9.8 LEMMA: Let S be a set, A,B two disjoint closed sub-

gets of 25 . A increasing and B decreasing. There

1
]
[
1
!

exists an increasing open and closed neighbourhood U of A
such that UNB = & .

PROOP: By [17] Theorem 4, pago 46 thore exiots an
open increasing neighbourhood U' of A such that
U'NB = 2 . Since the topoclogy on 2% 1a zero-dirensional,
thera exiots a family of closed and open sets (C,), . ; ouch
that U' = U, ,C, . A finite oubfamily C, ,...C; then

n
covers the compact set A. We lot

n . _ _
= U nd
U: Uj-lmi - By 9.7 avery ch_1 is closed and open a

co, therefora, is U, HNorcover, since UcMU®' = U' ,

UNB e &

9.9 PROPOSITION: If X 4o o opace in COTS, tha following

statczonts aro equivalent @
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1) X 1is 2-compact.

2} Por any two disjoint closed subsets A,B of X, such
that A {is increasing and B decreasi;q, there exists an
increasing closed and open neighbourhood U of A such that
"B = &.

3) For any two disjoint closed subsets A,B of X, such
that A 1is increasing and B decreasing, there exists an
increasing closed and open neighbourhood U of A and a de-
creasing closed and open neighbourhood V of B, such that
UNV =& ()

4) PFor any two points a,b of X, sucﬁ‘that a b,
there exists a continuous isotone function €:X—2 sguch

that f(b) w 0o and f(a) =1 .

PROOP : To show that 1) implies 2) , wo assume,

without loss of generality, that xc2® . Let A,B be
cloped diﬁﬁoint subgets of X, A increasing and B de-
creasing . By 9.6, considering that X is compact, MA
is cloged increasing anq LB closed decrcasing in zs .

Since LBNMA =« & , it follows by 9.8 that there exists

an increasing, closed and open neighbourhood U' of MA such

that U'NLB=g¢ ., Lot U:= U'NX . U s clearlg in-
crcacing and closed and open in X . 8inco AcMANX C.U
and UNB =g , 2) ic proved . To ghow that 2) implies 3)
onc just donotes by V the complement of U . hSuppoﬁe 3)
io cotioficd and lot a,beX and a 4 b . Apply 3) for

JUpP— |
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t» and Ma , and let U be the increasing, closed and open
neighbourhood of HMa guch that UNLb = & . Define f:X—2
bv £(x) =1 1if =xeU and ¢£(x) = o otherwise . Since U
ig closed and open , f 1s clearly continuous, and all
wa have to show to obtain 4) 1is that f is isotone, |
f(h) = o and f(a) =1 . Now if x ( y and yeU, then
f(x) ¢ fiy) = 1 , while, if éc[U , 8ince U is increasing,
it follows that xe[U and fi(x) = 0o < 0o = £(y) ; Moreover
atMa cU and bclb ¢ (U, whence f£(a}) = 1 and . f(b) = o
To finish the proof we must now prove that ' 4) implies 1) .
Consider the evaluation u:x-wzggzg(x'z) defined by
u(x) (f):= €(x) . Since it is a solution to the Universal
Problem for the Product ,

X heCOXS(X,2) .5

Py

COTS (X, 2)

u
2

u is continuous and isotone . Let a,beX and a #b .

Without lons of generality a § b . By 4) there exists a

contfnuoua, icotonoc map ¢f£:X—+2 oguch that f{a) =1 #0 =

= £(b) . Thareforo ufa)(f) =1 ¢ o = u(b){f} .,

py(a) # u(b) and u 4o injectivo . Since X and

zggzg(x'z) are both compact, u 1o a cloged map . By 4),

if u(a) ¢ u{b) , onc obtains a ¢ b .. Therofore u is

an ccbedding, X iso 2-cozpact and tho propcéition ig pro-

et ..
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9.10 NOTATION: We denote by Bs the subcateqory of H
which consists of the boolcan spaces, i.e. éompact

L

tausdorff and zero—-dimensional .,

9.11 PROPOSITION: Let B be a closed hereditary full

subcategory of BsOTS, such that 2¢B . Then-‘z is E-in-

jective in B 1if and only if B <c2cOT .

PROOF: Suppose that 2 |is -§71n1éctive in B . Let :

XeB . Let A,B be cloged, disjoint subsets of X, with A
increasing and B decreasing . By [17] Theorem 4, page 46,
there exist two disjoint open neighbourhoods U' of A and
V' of B . Accordingly A and B are cloged and open in
AUB and we can define a continuous igotone function
f:AUB—=2 , by f(a) =1 for aeA, and f£(b) = o for
beB . Since 2 is E-injective, thore exists a continuous
isotone funcion ¥:X-+2 such that-if. g:AuUB X 1s the in-
clusion, the following diagram commutes : ’A\JB-—9—4¥
, fl /
= 2

Now, fA = {1} and £B = {0} ; thgroforo, we obtain
A.cf-‘(l) which is increasing, closed and open, while
Bc:f-‘(o) which is decreaaing,-cloned and open . By 9.9
Xe2cOT . ‘

To ghow tho convorse, cupposo that B c2cOT and
consider diagran (I)kin B whoro,'without loso of genorali-

-

1

_A_,_H,_...._..._a‘-‘*.
R,

e
T T L



ty, 3 is assumed .to be an inclusion, and where « y is an _ -

embedding . . - '
a—lx =~ CR—diex B S
fi ) . - ) N .fl o ' '_
(1) | C o (I1) 2 '

The geats uoj[f“(o)] and ue{[f "'(1)] . are clear-

i

ly closed and disjoint and Luei{f - (0)IN Muej (£ ' (l))lm &. . -
) . S ..

By 9.8 there exists an increasing open.and closed neigh-

bourhood U of wuej[f'(1)] such that

UNLuej(f ()] = . , - .

We define #:X—2 by f(x) @1 4iF xeu"'U  and
f(x) = o otharwise . Since f is cbnpinﬁous and isotone
and fej = £ , we have shown that ® is E-injective .

9.12 COROLLARY: .2 is E-injective in 2c0T .. -

q

9.13 PROPOSITION: The Efihjeqtivaa'in uzcof -‘are exqct#

ly the retracts of powers of 2 .

A
‘

\PROOF: By 9.12 the retracts of powers of 2 are

E-injective . Conversely, let Xe2cOT be E-injective . '

As ve observed in the proof of 9.9 the evaluation map .

u:x¢2993§‘xv‘) is an embedding and since X }ip fgrlnjéc& .

K

tive , there exists 2 qontinnous‘énd isﬁféne,auch that the

following diagram is comsutative: x 1, 9COTS(X,2)

frg

\ , o
Tharefore X iz a retract of
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9.14 COROLLARY: 2:= ({o,1},d) -is not E-injective in
, - ] , L _ Y
PcOT . .- E o

PROOF ¢ Suppose 2 E-injective, andﬁcénsidér the dia-
cgram . 5 32 ) = (o,1)
- Izl B 3= @,9)

' | N

This diagram cannot be extended to. a commutative one by any
continudus iBotOné map l 2%—+2 BiAge avery" such map woull

be constant .

9.15 REMARK: The bbservaéidn of th§ proofs of 9.5 and

9.13 leads to the follbﬂinq qenerai statement : If chTnn,A
N

all E-injectives in the category/of x-reqular or X-compact
spacea are retracts of powers(Bf x. To cbtain statements
similar to 9.5 qnd 9.13 one has to test X for E-in-

jectivity . This 10 £of7éxamp1e the case for RcOT . We

©

consider again 2cOT . g

il

\3.16 LEMMA: Not aevery retract of. a po&ar of 2 1is itself
a power of ‘2.
PROO?- Let ‘A= ({o a*b,c,l} afb\é\ ) 4 since
- K o' ) . . | 3
‘A to finite and q§ want it to be Hausdorff, we endow it with.

thd‘diucrate topology . Define’ !:Ad*la by  £{o):= (0,0,0),

" f{a)r= (0,0,1}, £(b)1= (0,1,0) -, £{0):= (1,0,0) ,

Kl

"

0
A e
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i »
. -
rd

£(1):= (1,1,1) and q:2°%A by g(0,0,0):= o, g(o,0,1) 1=
a, gfo,li0}t=D>b , .g(l,0,0):= ¢ and ‘ ‘

gl (01,1) , (1,0,1) , (1,1,0), (1,1,1)} = {1} . Since f
. . <
is an embedding-, g is c&%tinuous 1sotone and fog = Th .

-

T

we have.shown that A 'ig a retract of 23 which is not a

C -

power of 2, ) £ R

'9.17 LEMMA: Evéxy finite lattice is §~injectﬂyé in

2¢cOT .
PROOF: We show that if X is a finite lattice, it is
a retract of . 2992§‘3'2? . 'Let' ”X be the evaluation
x 2S9TS0GE) ang g, X=X aiven by : 1(ux(a))-= a . For
every ae2S0T8 (X, 2) define the finite set .
- O corsix, 2) :

S, {ux(x)cuxxlasux(x)} gnd g:2i—= X by

ezt = .y - . \S
q(a): luxx if 5, =& and g(a):= AS; otherwise ince
2COTS (X, 2) - {0 einite and Hausdorff, it has the discgetd

topology and@ q is therefore continuous.. Let .a ¢ b’ in

COTS (X, 2) e - , ' '
p oAbl , then Sbc:sa ' Asa < ASb and- gla) ¢ g(b)‘.
Let h:= jeq . Then h is continuous and isotone, and
. COTS (X, 2
h°ux = 1* .m Therefore x is a reotract of === OTS ( ’

accordingly E-injective .

9.18 LEMMA: Let S be a subcategory of PTop uhich

contains the finita,spaces of 2c0T . If wo denoto by I

LIE R R,

.
im et st b _ b ARr a7 v W T

—



the class of its isomorphisms, we have' I ¢ E*¢cE .

PROOF:  Let BeS 'such that - B > 1 ,.and consider the
maps h:B—B given by h{(b) = o for all béBt;_qg= lBuh ’
FiBBUB given by £(b) = (b,1) . It is clear that £€E
and gef = £ , but g{E . Therefore fiE* . To find an

éssentiql map which is not an isomorphism, let A be a space
[ .

in $ ‘without a greatest element (for examplé ({a,b,c} ,

~

o, < ) ) . Let B:= Aii{p} with the coproduct topology
N/ o S

and’lexipoqraﬁhic part{al order : (a,l)<(p,2) for all agA .
Define f:A—B by f{a) = (a,l) for‘all acA . Now,r f is;
obviously ﬁot an isomorphism, so it remains only to- show ﬁhat'

it is essential . 'Clearlv, f is an embedding . Let
gefcE . Suppose there is aeA such that

gfa,l) = g(p,2) . Then g(é{,l) $ gla,1l) for all a'eA and.

since’ qix,l) = qgof (x) and‘ gefeE , we obtain a' ¢ a for
- - . B ) .

all a'er , a_contradiction . Thereforo _q{f)(q')

= g{a',1) ¢ g(p,2) for all a'ern , and gq(Audp})

= gfAulqg(p,2)} > Aun{p} . Since geE, 1f£§f .

"9.19 REMARK: Somc examples of subcatcgorioa of . PTop .,

-

which satisfy the hypothesis of 9.18 are : HPTOp, HPOTS,

HOTSp .CroRR, COTS, Zcro—dimOTS 2c0T, RcOT and BBOTS .

9.20 LEMMA- E- 1njcct1vity in COTS does not satisfy the

‘axiom E3 (Dual of 3 - - seg 0.31 -) ..

PROOF: Let £:2-X be the inclusion map , To shqw

!

Vi
g
o
%
it
'f.
4
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¥ :

that ,for every ‘g:I;+C _such that ge°feE , then gof{E* :.
we first show that gofeE implies gXE x X, . Since geofeE ,
Q(o) # g(l) . Let a,beql , .and‘.;,yel such that a = g(x)
and b = g(y) . "Without 1653 of‘generality,lae may assume

x ¢y and thérefore_ a<b . Since qlg'which is a subset
of Y5 for some S ' is.a éonnected chain,-we-haéé

gl % ¥, Since é(o),q(l)Eqiczts and g(o) # g(l) ,

there exists seS such that ps(q(oz) # ps(q(l)) . Consi-

der 2 §+1;$+c'i+15‘95+1 * and cail hi= psoi. . It is
clear that hoq0fE§ . -if h 1is not iﬁjective, we would
obtain that géf is not essential énd our proof would be
complete

| Suppose therefore that h is injective, and let
c,degXcC 'such that 'g(o)\c c < d‘c q(l) . Then.
o ¢ hg(o) § h(c) € h(d) ¢ hq(l) < 1 . Define k:I—I by

kix} = x if x € h{c) ,

h}ﬁ{h(c) {f h(e) < x ¢ W) , : - L
k(h(ah + A(1-h(d))] =,h(c) + A (1-h{c)) for .0 ¢ A ¢ 1.

Then k is 0ontiﬁuous and isotone . Let L:= keh . Then
X .
Legef (0) = Rfeg{o) = koh-q(o) = h(g(o)) < h(c) = keh(d) ¢

keh(q(l)) = Leogef(l) , and, since loq-f(o)  Legef(l} , we

I

-~ have LegefcE . But fL(c) = kxeh(c) = keh(d) = £(d); l.e. ¢

is not injectiée . Therefore gef¢E* . .

9.21 REMARK: As the conditions El1-F6 aro sufficient for

proper behavior, it remains still open whether E-injectivity _

| N

C.

S T |

g i T L

has Ld

Vo e e

f

. o e
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in COTS is or is not properly behaved .

9,22 LEMMA: Every finite-Space'in- 2cOT" has an E-in-

jectivé holl .

PROOF: YLet X be a finite space in 2cOT , DX the

Dedekind McNeille Completion of the undérlyinq vartially or-

dered set and UX‘ the natural POSet—embedding U :X—DX .’

4

Since X 1is finife,- DX 1is also flnite and we con-
51der the dlscretc topology on it so that DXc)cOT . From:

[3] we knom—that~ U is embedd;nqseessential in POSet .

X
Suppose h:DX—Y ~given in 2cOT ' such that hBchg.

Since thx is also an emboddino in POSet, h uisAaﬁhembed-

ding in PQSet . Moreover since px' is coﬁpacﬁ Hausdorf and

=3

finite , so is  hDX and accordingly hDX has the discrete

topoloqy.-‘Tﬁis showo that h:DX—hDX is an homeomorphism
and therefore heE and u, is essential .

By 9.17 DX is E-injective .

9.23 COROLLARY Let X be a finitQ 2¢0T space . Then,

for every f:X—Y in E , there exists g Y—Z in ZCOT

such that qefeE* . . . ;o

PROOF: Consider h:x-ii thef-gfinjective hull of. X.

!
'

9.24 LEMMA: E- 1njoctivity in_ 2cOT (and in COTS) satig-

b
fios E4 and 86 .




-~ r

PROOF: This is a‘“consequence of the fact that both

cateqories are locally épali and have enough g—ihjectives P
) e LN, =
See [2] and " [3) . -
i N » - =

9.25 PROPOSITION: E~injectivity in 2cOT is properly

behaved at every finite "X .

—_—

PROOF: This follows from a proof given by
1

B.Banaschewskil to show’thaﬁmthe conditions El1 to . Eb are
sufficient for proper behavior . :B.Banaschewski uses E5

only to show that there exists an.injectiVe hull, a fact

which we have shown in 9.22 ; - )

—

i
~ N
) . he 4
' .
;
. . ’ ;
;

.
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CHAPTER IV _ -

s v A

GENERALIZATIONS OF STONE AND SHIROTA 'I'HEOREH)S.
. N . SEV

1

"

The work covered by this Chapter started with our ‘ '

attempt to extend to éégg  the theorem given in [é?] page
127"bv T.. Shirota, which, for real-compact topological
spaces X, Qtaﬁes tha; the lattice CX detgrmipes the space.
This result Bﬁpercedes earlier results of-K;plansky [13])
about the lattice CX ; of M.H. Stone[23} about the'ninq.

' CX ; and of #aN. Milgram {15] about the mulfiplicativel

_ . \ _ '
SGMLgroup CX, for X compact;ﬂauado&ff, and of T. 'Shirota.

] ’ v,
' ——

4211 for the translation lattice and for the semigroup 'CX ,
and of E. Hewitt {12] for the ring CX where .X is real-

compact”

LY
)

' We call c,x the set.of continuoua 1sotone real
valued\functions on a partially ordered topoloqical space X. ‘,}
This set is a subset of- cx and therefore contains less
information than' CX .. If the qenaralization had been suc- -
cesaful, this small set uould have provided the infom.at:ion N

not only on the topoloqy of X , but on its partial order

ags well ., ', . -

ﬁavinq becn unnble to genaralixa the abova mentioned
Theorem. we rastrictod ourselves to cu-pact Bauldortt X and
to rings, t-rings, L-groups and trnnalation latticol..

gonarating them with c;x vhen necessary . rhip led

. . 96

(—":



to counterexamples for rings, Lerinqe andlﬁor.pointéd

-
-

t-qroups . ' -. . ., Lo

; However, ‘we do define cateqories of paire with first“ T
component a rinq, an L-ring, a pointed z—qroup, or a pointed "
tranf;ation lattice, and diegiay‘new objects which actually
characterize*compact ordered ‘topological specee. In some of
these caees .(Cx,clx)‘ characterizee reaI-compact ordered : T
topological spaces . Our reeulta, when specialized for

-

spaces with discrete partial order, deliver the' correepond-

ing rfeultn on CX in Top . _ _ .

-

é.

%Q‘ General statements about C;X. .

-

" We include here an statement which we feel will be of
interest for the rest of this Chapter . ,FX (or CiX) may .
characterize X, but we are interested in whether tho characff

. B
terization happens in such}g/yx& that ¢:¥X ¥ Y , implies

- ¢

1

the existence of . €:¥ ¥ X such that ¢ = P(f) and

P (£4(h) 1= hef .

10.1 NOPTATION: For the rest qf this thesis we shall de-
note by C;X the set of all coné!nnoun. isctone, real val-
ued functions defined on the pertiallybgrdorod topological

—

space X . ~

“w

) N
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A

10.2 LEMMA: Eyery space X in CrORR:_has the ‘initial .
- R - _ -

PTop-structure with réspéct’to 'clx .

PROOF: "By 5.6 and 5.8 the evaluation map
C,X

p:X~—+R is an embedding . This-shows}that C:X sepa-

rates points of X , and, 'b9‘ 1.2 , there exists a PTop-

initial structnfe i on X with respect to L,x . Now

consider p' -Xi-+R X

given by .p (x):y,a&x).ﬂi since
i . ' '

C;X = CLX » ‘then” p is also an embedding, and we have

X % pX = orxt oy xt |

-

-
kY

10.3 PROPOSITION: Let A be a category such €hat

Cy:CrORR + A : : &ng Cy () (q) -‘éef defines a functor.

X ~CX ' L T

Let - ¥:C,¥' % C;X din A . Than the following statements

are equivalent :

4
’

1) There exists a bijegtign CEIX—Y such that
- ' . . }

Pyo¥ = Pgryy 0T all _xéX .

2) ‘Tﬁere exists a . CrORR-isomorphism f£:X—Y such thats
| ) ) - . .
Ci(f) mp . // | -

J

. 1 S
PROOF: Let £1X—Y bo a bijaction as in 1) ., Let

<

hBC:Y .' and xecX be arbitrary . Th?n
p(h)({x) = (p o9} (h) = p" )(h) - (ho!) (;t) . 'Therefore

$(h) » hef ., To prove 12) (it i» ;hen sufficient to " show

.that f 4s continuous and 1aotona.'aiﬁcc the same ?rqument

R

1

N
>

"
k
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wiil give £ -} continnoua and isotone . Since v 1is bi-
2 .
jective , we have C1X = {h.f|hecly}/1. since .¥ has ini-

tial structure with respect to c:Y, it follows-that f is
continuous and isotone . Converaely, suppose f:X—Y is an
isomorphism in CrORR ., such that C;(f) - ¢ . Clearly £

is bijective and s%nce (p °¢)(h) = v(h)(x) = C;(f)(h)(x) =
a(hef) (x) = h{£(x)) = pg ., (h) , we obtain 1) .

;10,4 RE@ARK' If we define a parLial order oq“éux by )
£sq if and only i4- £(x) ¢ q(x) for all xeX )  then

C1X is a lattice . . _‘ 3
T

10.5 PROPOSITION: Thé following statement -is false :

" If $:C,Y—C,;X 1is a lattice isomorphism, there exists
~an isomorphism in COTS, £:X—Y _such that ¢ -.Cj(f). .
PROOP: Let X:» Y:= 2 and denpte by (a,b) the
function (a,b):X—+R where (a,b) (0) = a. and (a,b) (1} = b.
. , ‘6' ) .
Define ¢:C1Y—CiX by ¥ (a,b) = (22+1,2b+l) . Obvious~-

ly' v is a lattice isomorphism , but the above statement
would 1mp1y tg;\exiatence of a bi1ect1va £:X—Y such that
P,°Y = p!(o) yhi.ch means _ ‘ _ ?
3 = p,(3,3) = poottl 1) = Peyo )(1 1) =1 , a cogtradiction.

10,6 REHARK: The above exanple leaves op-n-tho quostion
of whether there exists f:X &Y in COTS , such that

Cy(f) is anothor .isomorphism of C)X ,and‘ CY ., th ﬁc
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.

. : A
include the example here because thg statements which we

shall prove later ard@ of the type just discussed

1. Counterexamples

In the effort to generalize the Shirotg Theorem men-
tioned in the introduction to this Chapter, we had to be

content with more modest results, similar to those available
for CX 4in Top . Since C;X fails in general to have thé

algebraic structures considered for CX, we conaider the

subalgebras of CX generated by ;X .

11.1 NOTATION: Let P:CrORR—Cr be the order-forgetful

functor, U:Cr—CrORR the canonical inclusion, given by
X—({X,d) . We seat ‘Cx:- Cr(fFX,R), RX for the subring of
cX qeneratéd by® €;X , LrX for the sub-t-~-ring of CX gen-
erated by C;X and Lgx].for the nuﬁ-z—qroup qf CX gen-
erated by C,X . As an éxample,_wa remark that R([a,b]) is
the set of continuous functions on (a,b) which are of
bounded variation . We shall introduce more functors when

we neead thgm .

11,2 PROPOSITION: ‘The following statements for

X,YeCOT8 are false ; |
1) RY % RX in the category of rings, then XY /in COTS .
2) LrYanrX in the category of t-rings, then XaY in COTS .
3) Lq!giqx in the cqtoqo;y of t-groups,then X¥Y in COTS
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PROOP: If we describe, 4s in 10.5, the functions in
C,2 by (a,b):2—R 'Buch thqt) Sa,b)(o) = a and o o ,'
{a,b) (1) = b , C,;2 |is {(a,b)eaz]a < b} while €2 is the
whole R2 . Sinée at b- implies b ¢ a and therefore

-a ¢ -k , the group generated by C,;2 ig C2 and so is

Lg2 = Lr2 = R2 = C2 = C2 =-R2 = Lr2 = Lg2 .

But it is clear that 2 g 2 . - L

12. Generalization of theorems on cx .

We introduce categories of paifs, with firat compo-
nent a certain algebraic system and second component a sub-
set of the underlying set of the first . - We show for RcOT
and for some of these -algebraic structures that tée pair
{CX,CX) qharacterizéa the space X . A characterization
which depends more strongly on C;X is achieved for COTS

where  (RX,C;X) , (LrX,C;X) , (IgX,C1X) characterize X .

12.1 NOTATION: If AK denotes an algebraié categoryl.
we denote by p-AK the\category whose objects are pairs
(X.Y) such that XeAK and Yc:x , and vhose morphisms are
m: (X,Y)+(Z,W) whaere mix—2 is a jggzhomgmp;phism and

nY) ew .
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12.2 DEFINITION: ~A translation lattice L with a nul-

lary operation zeL will be called a pointed translation

lattice .

12.3 REMARK: Clearly, CX and C,;X are pointed trans- -
lation lattices, whereswé shall choose as its point the
conétant zZero functioﬂ: ; A PTL-homomorphism will he of
coursé a function f£: L—+L' such that f£(z) = z*' , f(avb) =

fla)vf(b) , f{a.b} = £(a)af(b) and f(a+r) = £{a)+r .

12.4 THEOREM: If X, YeRcOT , and ¥¢:(CY, C;Y)—*(Cx C;X)
- is a p~-PTL-isomorphism,  there gﬁ?sts f: x-+y a RcOT—iao-
morphism such that o= Cy(f) .

PROO For evary xeX -, the map . Py -cx—*a given by
P, (f) = £(x)} is a translation 1nttice-homomorphism (see
0.37) . 1If consider CY-—!Lacx-—Bx—*R in the category
TL (translation lattices), it follows by [21] Theorem 8
paga 35, that there existe a unique point which wa call £ (x)
such that P,V = Pe(x) * the uniqnnnest ari:ing from the
fact that Py is injective . Wa show that the associating
rule x~+f(x) defines a bijecuve‘ function . By the u- /
niquanaas of !(x) ’ it is a tunction . Lat £(x) = £(y};
then p o) = pf(x, pf(y) - p sy and since 1- an iso-
morphism and hence surjective , Pe " Py - This shows for
'chcor  that x e« y . 7To show that g is lnrjoctivo. 10{)

ycr and consider CX o -CY pi»a « By th._lll.fqunl?nt
| -

i e
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as above , there exists a uhique element of X , g(y) such

hat ' N m . : . -1 =
tha py°¢ Pg (y) {Eherefore' pY pyo@_ o? pg(y)o¢

which teans that y = f(g(y)) . We have that #(C;X) = Y ,
that £ 1is bijective and that, for every xeX , the fol-

lowing diaqfam commutes : c,y-3—+c,k

: P
Pe (N ‘1\ b 4
. \

R ;
S .

. It then follows from 10.3 that , £:X—Y is.a RcOT-iso- °
- morphism .
"12.5 COROLLARY: 1If X,Y are real compacf spaces, and

Y:CY¥—CX a PTL-isomorphisem, there.exiéta_a homecomorphism

f:X—Y such that ¢ = C(f) .

-

PROOF: We simply note that C;X = CX and C,Y = CY .

. i ‘
. 12,6 LEMMA: F?E#ggssyl XeCr , let SRX denote a subring

of CX which contains all the constaht_functiona . If
h:SRY—SRX 48 a surjective ring homomorphism, then
h(F) = ¥ for all reR . ‘ |

. PROOF: 'For' r=1, since 1¢SRX and h is auﬁ—'
1éctive, there exists qgeSRY sqch that 1 = h(g) = hig.1) = .
= hig).h(1) = 1.h¢15 = h{l) .\ Suppose h(n) = for a
posii!.ve integer n . -Then BT = blaed) h(n)+h(1) =

wntl enel . If n is a negative integer © = h(-n+n) =

=3
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.= h(=R+R) = hfzﬁ)ﬁb(ﬁ) = Zn+h(n) . Therefore h(n) = n .
s e R S | - 1.
Moreover 1 = h(l) = h(m.2) = h{m)-h(3) = m-h(Z) and we ob-
- : : . |

. - v f
. Por rational numbers, h(%) = h(ﬁ-é) -

EIHI

i
“tain h(a) =

il

= h{ﬁ)-h(%) = n- . If reR and T > 0o, there exists

i)

_seR , r =8 . Then h(r) = h(s).h(s) > o . Let reR

and r = 1imneNrn. where T, is rational for all neN . Let

\

€ be an arbitrary positive rational number . Let NeN , be

o

such that whenever n > N , r-r <e orr-r <e¢€ ‘and let

n>N. Tf r -r < e , e+r-r_ > 0 , and E+h(r)-h(r ) = .
n n . ~ n

= h(E¥¥-r_ ) > o . Therefore ?n—h(E) < T - and, similarly,
if r=r <€, then h(i)-fh'< € . For every xeX , we
'thgn have : rnéh(E)(x) < g or h(E)]x)-rn < ¢ which means

that h(E)(x) = lim = r for all xeX , and can be ex-

neN'n
pressed as h(r) = r .
C Y

. 12.7 PROPOSITION:If X,YsRcOT , and ¥:(CY,Ci¥) —(CX,CiX) ,

4

is a p-Ring-isomorphism, there exists an RcOT-isomorphism
f:X—Y such that ¢ = C;(f) . - 5
PROOP: Since 9:CY—CX 48 a Ring-isomorphism, it

can be interprétad as a ggkfiaomorphism because t(o)_- o
itilt(i) = 9({f)+r , see 12.6 . By 12.4 we

and B (£+T) = ¢

obtain the désired result .

12.8 COROLLARY: If X,Y arxe realcompact spaces, and
\ ' . ¢ .
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v:CY—CX a ring isomorphism, there ekists_an homeomorphism

£:X—Y such that v = C(f) . ' - ’

-~ ~

{ PROOF: The proof is.the same as in 12.5 .

‘
/

12.9 DEFINITION: An ft-group G with an unary operation

leG will be called a pointed f-group , PLG . An PLG-ho
. \
momorphism h:G—G' is an t-group homomorphism. such that
h{l) = 1' . . .
A

\ . /
12,10 PROPOSITION: .If X,YeRcOT,and ¥:{CY,C1¥) +(CX,C1X)

+
’

is a p-PLG-isomorphism, there exists an’ RcOT-isomorphism
f:X »Y , -‘sich that ¢ = C, (£} .

PROOP: As in 12.4 , we consider for avery xeX ,

CYéfE*CX—EE*R in PLG (for -CZ we ﬁalectﬁgpé unary oper;-

tion ecz , and for R, 1leR) . By [211wTh00F8m 10 page

36, considering- its proof,.there‘axistﬁ a point £{x) in

Y ., which is unique as ' YeRCOT , such that Py¥ = Pg(x) °, :

By following now all the steps in 12.4 , we finish this

i

proof .

L}

12.11 COROLLARY: If X,Y are :eil-compact spaces and
———————— . -
v:CY—CX {8 a PLG-isomorphism, there exispts an homeomorphism

f:X—Y wsuch that v = C(f) .

-

PROOF: The proof is the same as in 12.5 .
~ ' - .
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12.12 NOTATION: We define Z:RX—PX and 2Z;:LrX—+PX by
zf:-‘f"(o) and Z,;f:= f ! (o) respectively . We denote

ZRX by 2X and 32,LrX by Z:X . By a filter in 2ZX we

mean a filter in the set 2X ordered by the inclusion .

12.13 REMARK:

1) Zo = X iv) 2f.q = Z2fUZg

ii) 2zl = & v) 2Z(fi+g?) = 2£N2q = 2;(|£]+{qg]) ,

n ' =

iii) 2f = 2¢ vi) If g = £f.1 , then 7,f = Z:g9.

12.14 DEFINITION: Let I be an ideal of the ring RX .

" Wecall 1 a distinguished ideal if IN{feRX|2Zf =g} =3,

12.15 LEMMA: The intersection of any family of distin- S

gquished ideals ig itself a distinguished ideal .

' PROOP: trivial .

i

12.16 PROPOSITfON: For every distinguished ideal I of
- . o L .

-

RX , 2I is a filter of 2X .
’ T wd

PROOP: Since I 4is distinquished, J{¢2I . Let

~

2f , Zg be two sets'in I such that f,gel . Then
fleglcI and therefore IgNEf = T(fl4gh)ezI . lLet feI
and‘szczzgczx . Then gqgfel and zé w ZfUZg:= E(f.9)e8I . ’ "

12.17 PROPOSI?ION: If ¢ 4is a filter in X,
z-lg1m {£cRX|3fcy)} 48 a distinguished ideal .

R
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W d
PROOF: Using the notation of 11.1 we remark that

C,UPX is CX and thérefora RUFX = CX . éince ¢ ‘has the
finite intersectién property and $ c2UFX , it generates a
filter & 4in Z2UPX . By [9] Theorem 2.3 b) page 25, .2°'9
is a proper ideal of cx , i.e. zf ﬁ e whepevgf fez Yy .

Therefore 2 !¢ = Z-'$/M\RX is a distinguished ideal of RX .

1
12.18 REMARK:" The'iqeal generated by f and g is dis-
tinquished exactly if sz\zé i d_, i.e. if f24qg? 'is non-

|

12.19 LEMMA: Let ¥ be a filtefin X, and I a dis-

invertible .

tinguished ideal of RX  Then 229 m ¢ and IcglzI .-

PROOP: This is trivial, as we have defined Z:RX—PX \

v

S

as a map . L .

~

> ' . _
12.20 COROLLARY: If I is a maximal distinguished ideal”

of RX, then I mwgl2r . If ¢ is a filter in 3IX , there’
exists the dintinggjshed ideal Tim s"o such that ¢ = 2T .

12,21 pnoﬁosxrxou: Pot avery diltinguishod 1doal ® of
RX , z°'ZM is a maximal distinguished {deal if and only if
X . .

zM is an ultrafilter .

PROé)rr lat M.be a dl-glnquilhod _1du1‘-. gSuppose
2-3zM is a maximal distinguished ideal and let ¢ - be a

; - g -1
filter in X suth that IM<ce.. loobtlin that 2 f::!cz ’,,




P

and since z-laM 4is a maximal dlatinguiéhed ideal, we have -

Z27'ZIM = 27¢ . By 12.16 and 12.19, IM = 22 1M m .

= 2Z 1y =y . Convei:;s?.[ir, suppose that 2ZM is an ultrafil- -

ter'and I a dist;fnéuished ideal‘snch that 27 'z2McI .— Then

ZM = ZZ "1ZM c2X _and éince zM ig an ultrafii’ter, ZM = 21 .

Therefore 27'ZM = 27!21 . This, together with co >
zlZM eI 2 21 , gives 28 = 1 , which shows that Z"ZH._

is a maximal distinguished ideal . o .

12.22 LEMMA: If— u 1is an uftr&f_ilter in ZX and. .
2£NZg ¢ @ for all Zgeu , then 2Zfeu . If M is a maximal
- diastinguished ideal of RX and’ 2£(13g ¥ # for all geM ,

!

then feM ., ' ' ' - - .

PROOF::? This is immediate by the maximality.of u and

the fact that 2M is an ultrafilter . {(See 12.21 ,)

12.23 LEMMA: For xeXx , if p sRX—R is the x-th pro-.

jection, pr“ (o) is an ultrafflter . . | P

PROOP 1 p,; -1 (o) is clearly a distinguished {deal
- - - n ] ; / .
since xeZf  for all fecp, ' (o) . Since the map p, is a sur-

jective rj.nqs-hmbndrphim. RX/p 'lo) 3 R and p, "' (0)

.is a maximal ideal . By 12.20 p:'" o) = 27'23pt(c) , and ,
: . .

.

A

by 12.21 ’ pr““(o) is an n;l..tra!nur . - ; ‘ [

12.24 NOTATION: We denote 3p, ‘(o) by A, . :
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12,25 REMARK: 1In order to characterize all the maximal
dtstinqﬁished ideals of RX as sets of the form px"fo) ’
we need to discuss convefgence in our filters .

i . .
12.26 REMARK: If we denote by N(x) the set of all (not

. necessarily open) neighbourhoods of x , a filter ¢ of 2X

{s said to converge to x if the set of all 2f in N(x)
belon&&\go ¢ . This means that ¢ ‘cohverqes to x if and
only 1if A;{\N(x)c:ﬁ . A point. x is said to be an adher-

ence point of ¥ 4if xe{l$ . If x dis an adherence point

af ¥ , quWZf ¥ ¢ whenever ZgeN(x) and 2fey . There-.
" fore , in this 1ast casa, there exists an ultrafilter u

such that %cu and u - converges to x .

12.27 LEMMA: If X is a locally compact space in NORC,

every filter ¢ in  2X converges to at most one point-. .

gggég;- Sﬁppose: v converges to two distinct points
x and y . Without loss of generaiity x$y . Sincq <
is contihuoua, there exist noighbourhoods U of x and
V of y such that LVf\HU'- & v Without, Ioss of generali- -
ty , since X 1is Iocally compact, U andA .V are compact
and theretora LV,\HB are two disjoint closed sets which
satiufy the hypoth;lll of !17] Prop.4 page 44, Let £¢C1 X
be such that FLV = 0 and g0 =1 . Then LVcf (o) = 8¢
and thoroto;. tfen(y) . Similarly HU¢=(1-1)"(0) - 2{f-1)
vhich meais that F(£-1)¢fi(x) . Having assumed that ¥

2
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converges to x and to vy , Z2f,2(f£-l)ey which is a'contra%

diction as ZfMN2Z(f-1l) = & and ¢ 1is a filter .

12.28 LEMMA: - Let XeCOTS . 1If a filter ¢ of 2X con-

- N
verges to x , No = {x} .

PROOFP: Since X is compact and ¢ isa a family of

closed sets which éatisfv the finite intersection property,
Mo gF . Let y¥x. If x ¢y we reason as in 12.27
and find fcqif ‘sucﬂ that  f(y) = o and z(f-l)cN(x)f:¢.,
Therefore v#Z(f-l) and accordinqgly vtf\w . If y i,
‘we similarly find compact neiqhbﬁurqoods V of y and, U
of x such that LUMMV = ¢ , and a function g in C;X
such that gLU = o and gMv =1 . It followa that A
g ' (o) = ZgeN(x)c¥ and véZg . Therefore, in both cases, .
th\¢ » a fact that together with N\¢ ¥ ¥ completes this‘
proof . S g

15.29 EEEEE’ If an ultrafiltax ¢ of zx‘ has an -adher-

oy .

o

\ L]
ence x , ¢ converges to X .

anor: We show that Ax(\N(xlszt . Let 3feA NN{x) . |
Por every Zgew , xesggf.. Since ¢ is an ultrafilter, \

zfed .
| o

12.30 PROPOSITION: Let XeCOTS , The ultrafilters in 22XV

are exactly (‘x’xcx . (

i
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PROOF: Since X is compact, by the finite intersec-

tion propertf évery ultrafilter has an adherence point and
therefore converges. We know from 12.23 that every A, is
an ultrafilter in 2X, and it ig obvious that A = Zp "' (o)
converges to x . Let ¢ be an arbitrary ultrafilter in

2X which converges to x . By 12.28, (¥ = {x} . There-
fore,'every set 2f~k3¥ ¢ satiafies the following: xezf ,
£(x) = o , fcpx"(o)., -chpr“(o) = Ay - Tﬁis ;eans that
v<A, and, since ﬁ is an ultrafilter, ¢ = A, .

-

12.31 REMARK: A_ 1s the unique ultrafilter of IX which
converges to x, and every filter ¥ which converges to X i

is a subset of Ax .

&

12.32 PROPOSITION: Lat XcCOTS . The maximal distinqui-

" phed ideals of RX are axactly (Px"F°))x¢x W

. PROOP:' By 12-23‘ Py "fo) is a maximal distinguished
ideal ; COnvoraely, let M be an arbitrary maximal distin-.
quisﬁed jdeal of RX . By 12.20, M= z-'2M and, by 12 21,
ZM . is an ultr;filter . S8ince 2IM satisfies the finita in-
tersection property and X is cong:ct. there oxists an XX
sucﬁ that IM coﬁvurqis to x , By'l2.31, lince IM 1- an
ultra!ithq, IN = A . Therefors N = l"lu - !“l! - )

- z"sz-' (o) and by 12.20 and 12.23, !"lp:“ (0) = p, "' (o)

o 12,33 mrm:; We denote by NRX the set of all -xm1
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distinguished ideals in 'Rx,‘which by the above proposition

is {px"(o)lxex} .

12.34 LEMMA: For every 'XecCOTS, the natural map bxzx—+mnx'

given by bx(a) e pa"(o) is a bijection ..
. M !

PROOF: Thésurjectivity is obvious . Let- x £y be

given in X .. Then 'Mxr\Lyfm ¢4 and we can find a function
feC1X <RX such that £(y) " ¥ 1 = £(x) . This means that

fep. ' (o) and £¢p_"'(o) . Therefore p "(o);# P, “1{o) .

b4 x - T - Y
12.35 THEOREM ': ° If -x,Yegggg, and ¥: (RY, c,Y)—+(Rx c1X)
is a p-Ring-isomorphism, there exists A:X—Y -a COTS iso-
morphism such.that ¢ = Ci(A) . Similarly, if
0:(LrY,CY)—(LrX,C1X) is a g:l—ning-isomérphla@ there
exists g:X—Y a ggggyipomorphism such that o= C,(g) .
;

PROOF: Let X,Y be spaces in COTS. such that

¢ (RY,C,Y)—(RX, CIX)' is a p-Ring- 1uonorph1sm . Since.

$:RY—RX 18 a Rinq-isomorphilm, it induces a‘bijective func-

a—

tion ¢:MRY—*HR! + iDefine lzx—wt as

b, ,
Y .y . Let xeX sthen

-

X1 Q;‘-i"-b : X ?xfuﬁx ;'!euni hen
Pl () = By x)) = (b,m (x) = (Feby) (x) = r' (o) . |
Let gepyly, (0) 1 then #(g) (x] = glAlx)) . We show L..xf. o
that w(g) = ge) for all qcu! . Let xeX and qtRf Calljl o
ri= qQA(x)) . Then (g-B) (A(x)) = o and thersfore
g-FEpy i) (0) . But, for this ase, un,gavo jult shown that
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9(g-T) (x) = o = (g-E) (A(x)) . By 12.6 y(F) = ¥ and we ob-'
tain  $(g) (x)=r = v(g) (x)=9(E) (x) = g (A (x))-F(A(x))=
= {(geld) (x)-r . Since x was arbit;r&ry; v(g) = ged and we

_have shown that, for the bijection 1 the following diagram

commute g8 3 RY 2 RX N \

O e o
*’Jklx c e

_ \
Since ¢(C,Y) = C;X we can interpret this diagram as

c,y —¥c,x’

- le lpx

. R
| By 0.‘3. it follows that A:X—Y is a CrORR-iso-
morph_iamr' 20: a COTS-isomorphism “:\
. The statement about (LrY,C,Y) -{is proved in an analo-

gous way .

12.36 COROLLARY: If X,Y are compact spaces and
$:C¥—CX .is a rinq’-ibonbrph:ln. there exists an hopeomr-
phism AiX—sY such that ¢ = CO\) .

PRQOPS The proof is the same as that of 12.5 «

12.37- REMARK: We introduced in 12.9 the concept of
pointed t-group (t-group with a unit), PLG . If X is a
' PLGC we ¢all a subset Y;_sub-znqroopvighunlto! x ir.

¥ is an t-group and.hutb-cfa‘aounitu X . The inter-
s ' ' (

<
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gsection of a family of sub-f2-groups with unit is clearly a 9. ;

sub-t-group with unit . S
. -

12.38 NOTATION: Let XcCOTS . We denote by Lgu(X) the
NOTATION coTS :
sub-t-group with 1 of CX which is the intersection of
all L, sub-f-groups with 1 of CX , which contain C;X
and such that, with felL and f invertible in ¢x , fleL.
“we define 2,:Lgu(x) »PX by 3Z,f = f l(o) and, as in 12.12

by %,X we mean Zz(Lqu(X)) .

12.39 LEMMA: Let XeCOTS , and h:Lgu(X) =& be a sur-

jective PLG-homomorphism . Then h(r) = r for all reR .

PROOPy By the definition of h , h(l) =1, and

since Lqu(éi\\}s a latticé we_can repeat the rest of the
4

proof of 12.6, proceediﬁg directly from r -r < € to

r -h(E) = h(F 7¥) € hiE) = ¢ .

12.40 LEMMA: Let Xegggg and h: Lgu(!)-ﬂn a uurjective
LGO-homomorphism . If N(f) = 0o , then h(lg]) = o and -
zzfﬂsﬂ.

PROOP: If h(f) = o , h{(-f) = -h(f) = o.. Therefore
h([£]) = h{fv=f) = R(2)h(-f) = 0~ = O . Suppose If = &-
Then ofmm £ and £7'eCX . Therefore £ 'clqu(x) . We
show that h(l£~'[) # o . suppo- n(je-*|) = 0o . Since
n(le}]) =o . htjgl«je?|) =0 . But icielole?l amd.

F |




115
7
"1 = h{1) < h(l€]v]€7!|]) = o , a contradiction . Let
h(]£-*]) = a > o . We apply 12.39 and obtain :
h(|£1|-a) = h([£}|)-h(a) = a-a = 0o . Prom this it follows '
that h((|£']-a)v]f|) = o . To obtain the contradiction
needed to reject 'izf = 6" , let e > 2a‘ and d:= min{a,é}.
We shall show that “ (| '|-a)v|f] »d >0 . ’Since . for each
xeX , f£(x) # o, it follows that f~'(x) # o and
£ 'x)] #o . 1€ o< (£ (x)] <a, % < %a-<'§ <-T?7%T§TT

£(x)| and we obtain 4

Lo N Fod

€= < g . If
I-f“l(X)l < 2a , then %<§n<ﬁ:¥m-lf(x)!

>
Pinally, 4f 2a ¢ |£-'(x)]| , clearly |£7'(x)|-a > a >4d.

This completes the proof .

12.41 LEMMA: Let XeCOTS, and h:Lgu(x)—R be a surjec-
tive PLG-homomorphism. Then 32,h “1(0) is an ultrafilter in

zzx .

PROOF :- Since h is a group-homomorphisnm, h(o) = o ,
and we have deh (o) , B, = XeI h“(o)'. Therefore

z,h~'(o) ¥ . By 12.40/ ;nurn-'(o) . Let f£,g¢h~'(0) 1
then |£l~|u|th"(o) and 5,N3,9 = 3, |f|v|Q|)t8 h"(O) .

To see that zzh“(o) is a filter in gzx , we need nov.show
that if fch-'(c) &nd S,£c3,q for gelgu(X), then

geh-) (o) -. Suppose g¢h (o) and hig) =a-do. Then
q-ach ! (o) and lz(c'"l)tlzh -1 (o) . Prom this we obtain a

il
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-"'lco_ntradiction, ‘because it then follows that
2,£N2,(g-3) € 2,012, (g-8) = ¥ . Having shown that 2Z,h-! (o)

i’s, a filter, suppose"there igts a filter ¢ in’ 2z.X

2
'_{uCh. tﬁat Zzh -1 (6) c¥ . Le zzcjct\rzzh “1(0). . Then
_’h(q) «aado, and we obtain again that g-ach™? (?)- and
Zz(lg-i)ezzh"'(o)cv . Since, by assumption, zzqet and
zzqﬂ_zz(g-i) --?5 . this is a contr’adiction . Therefore

Z,h -1 (o) is an ultrafilter .

12.42.PROPOSITIONs Let XcCOTS and h:Lgu(X)—® be a
' surjective PLG- homomorphism . There exists a unique xeX
such that h(f) = £(x) for all fcLgu(X) .

s 7/

Pm We have just shown that 3Z,h “1(0) is an ultra-

filter in ‘zzx . Since ‘X ism in cors , and is .thgrefore- -
locally compact and nbnially ordersd with continuous order,
we concl;lde as in 12.27 that nzzh ".' (0) has at most one
'element . Since X is compact, it follows by the finite in-
‘tersection property of 2,h~! (o) that there exists _. '
.xenzzh - (o) , and accordingly n:zh 1(o) = {x} . :

' Let' feLgu(X) , and h(f) = b . Then h(f£-b) =o ,

- _imd -!-'!'ggl:g"‘(b) fol#qum.. Therefore xcﬂ:zh.'(o)c: 23(2-5).'

and wa ocbtain o = (£-D) (%) = £(x)=b , which means
" h(f) = b = £(x) .

- ' ' ~

R N
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12.43 THEOREM: If X,YeCOTS , and
¢:(Lqu(Y),C;Y)-*(Lgu{x),clx) is a p-PLG~isomorphism
there exists f:X—v, a COTS-isomorphism such that ¢ = C, (f).

PROOF: If ¢:Lgu(Y)—Lgu(X) {is the given PLG-iso-
morphism and xeX , we consider Lqu(Y)—2+Lqu(X)l§L*R ’
which is a surjective PLG-homomorphism, and, by 12.42, therer
. exists a unique element of X,f(x) such that pxotn Pe(x)*
Ag in 12.4, we see that the ¢ thus defined is a bijective
function and since ¥C,¥ = C;X , the following (diagram com-

mutes : A

C;Y—L'Clx : \\

Pfk'lg"“x

; R N ]
By 10.3 f:X—~Y is a COTS-isomorphism .
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