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A method pf spatially partitioning a cheémical system into
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fragménts,'and describing tue properties of that system directly in

terms of the gross propertlies of Its constituent fragments, is out-

Iian and discussed. The partitioning .surfaces are fully andruniéucly
def%ned by the topographical features of the three-dimensional electronic
charge density -- anhohservable property of the system. For this ) | .
r;ason, the method [s of high,gengrallty, and may be reédi]y applied
to any ch;mical system,’lrrespeqfivc of its compl;xity or the form of

—_the wavefunctionwhich descrlbes.it. The usefulness of the method is
iltustrated in a study of (l) several Lewis acid-base comp]exéﬁ of
BH3'and”BF3, and (2) hydrogen’bond formation in thé reaction:

~

FR + F -+ FHF .
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INTRCDUCT i ON

I's
1

- The physical laws andu;he'mafheméticai prescription for

obtaining a rigorous gquantum-mechanical description of chemical systenls

were put forth nearly a half ced%ury ago. Unfortunately, the exact

application of.these laws leads to equation¥ which are presentﬂy
. N . ~ .

Ome_tlm§ to come.

-

: intﬁactable, and which wﬂh}rprobably 7emain so for s
- Consequéntly, emphaslis hag been Placeaxﬁn 9ave1opfng_a framework
withfn whlch'abprox!mate solutions to'thes: equations_may-Se obtained.
A variety of appro;lmate mcthoas of.solutlon are prescntly available,
ranging from the slﬁﬁler scml—emplrfcal valence electron technlques
.éo the more rigorous "ab inltlo" mcthodg.."Semi-cmpirich-techniquesu
‘have been applied extensively to a wide varlety o; chemical systems
inclua{ng, more recently, polymers!OO“Ab fnitgo” techniques, on the
other hand; are_notoriously tlmc-consumiqﬁ, and théjr appf!cation to | "
al]'b;t éhc‘slnplest'chcmlcal systems has been gcﬁera]ly impract]cal.
Recent years, howg¥er, have seen a dramatic . increase in the number

of these calculations undertaken. With the present state of advancing

computer technologf..QOOd "ab inigio“ caleculations on systems containing
Jb to 30-40 electrons are ‘now feasable. Only practical and-fiscal'
obstacles prescntly prohibit-calculations for larger systems, ’

. The quantum-mechanical wavefunctions obtaincd'froﬁ these cal-
culations contéin a ;ast émount of detalled information. One of.the
"major concerns of theoretical chemistry today has been to find a-

mathod of relating this information to the .present-day chemical language.

-1 - ' e §l|




J
Chemical intuition has spawned a localized picture of the molecular

electronkf charge-distributlona‘ Most chemists think of molecules in
terms of core and valence electrens, bondedrand lone electron palrs..
Quantum mechanics, on the other hand, gives a completely delocalized
picture of the charge distribution, a picture in which it is no longer
possible to distingulsh between individual electrans, 3; types of
electrons. Several attempts have been made to bridge fhis gap, and a
number of schemes for partitlioning the charge distribution have been
'propqsed to this end. Most of these schemes are b&scd on some special
property of the approximate wavefunction and, hence, lack generallity,
as well as rigorous physical meaning. The few spatial partitioning
scheézé\whlch hgve been proposed (that is, schemes for physically

partitioning the three~dimensional space occupied by g molecule),

although free from the above criticism, generally suffer from a certain

degree of arbltrariness or Intractability.

There s 11ttle doubt ﬁ%t a well-defined and general method
. p g

v

for partitioning the molecular space wquld prove extremely useful
for characterizing the maln featureg of molecular charge distributions --
irrespective bf whether or not It provided a direct link with the
present-day éhcmical language. The full description of a charge
distribution afforded by quantum mechanics is probably unnecessarily
detailed for most purposes. It would be convenient if the main features

o>
of the distribution could be summarized in terms of a smaller numbcr °
of parameters and 1f these parameters could be used tom:kve a meaningful

quantitative comparison of various systems. Jn this respect, a me thod

of spatlally partitioning a chemlcal system/into fragments, and




characterizing the system in terms of the average properties of these

-

fragments, is particularly appealing. N

The concept of a molecular fragment may be more than a. useful
theoretica)l cohstruct. There Is a considerable body aof experimental
évidence which suggests that molecules are, to a good éppfoximatién; . :
constructed from largely Self-tontained fragments -- fragments ‘which
generally undergo surprisingly minor changes upon transfer from one
system to another. It is the q&nstancy of functional group properties,
particutarly with resﬁact:to chemical reactgions, which has made possible
the systemiz;tion of a targe portlon of chemlstry. Electronic and
vibrational transitions can often be assigned to specific molecular
fragments, and it Is the ncar-coﬁstancy of these transition freguencies
from system to system whfch has made It possible to ﬁse spectfoscopy
as an analytical tool. A number of additivity schemes for fragment
properties -- partlcularly bond additivity schemes for dipole moments,
po]arizablllties,daAd energies -- have proved to be quite useful,

These, and other similar observations, lend considerable support
to the concept of.'fragments in molecules', and suggest that there

Al

nay be some ‘best', if not. fundamental method of partitioning the

pace, and hence quantitatively deflnfng these fragments.
In_thfﬁ theslis, a ﬁcthod for spatially partitioning the electronic
charge alstribution is proposed -- a method which may well Eg both

"best' and fundamental for reasons to be dlscussed. The pdrtitinning

surfaces are fully and uniquely deflned by the topographical features

of the three-dimenslional electronic charge distribution -- an obscrvaple

—

property of the system. The method is applied to a study of a series

of boron compounds, and several linear configurations of the bifluwrlde

4
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ion. The wavefunctions employed in this study are of the "ab initio"
- ‘

type. They were computed within the self-conslistent-field framework

and arz belleved to be quite close to the Hartree-Fock 1imit with

respect to most.propBFQIBS- i

Chapterfi~;ontains a discussion of Hartree-Fock wavefunctions,
partlcﬁlarly with respect to-the"posltlon they ogcupy in the general
framework of approximate calculations, and thc'reliability-of properties

computed from them. In Chapter 2 the partitioning scheme is outlined

and discussed. Chabter 3 contalns a discussion and summary of the

Hartree-Fock calculations. In Chapfer L, the partitioning method Is

“applied to a study of (1) the Lewis aclds, BH, and BFy; (2) four of

3

their complexes: BHB-H-, B, 3-co; and BF3-H'; (3) hydrogen

bond formation in the reaction, FH(g) + F (g) + FHF (g). A concluding

-F , BH

‘summary of the work ls given In Chapter 5.

The detallls of the partitioning surface calculations and
numerical integrations over molecular fragments have been omitted
from the main-body of the thesis, and are given In Appendix !.

Appendix |1 contains a general derivation of the molecular ¥lrial

theorem. (A discussion of this theorem, and {ts possible implications

for molecular fragments appears In Chapter 2.) Finally, Appendix-lll

contains a listing of the linear comblnations of terminal d-type

RNy

functions«which form a basls for the irreducible representatlons of

3v 3h
using projection operator techniques and used to simplify, the Hartree--

the.C, and D, symmetry groups. These comblhations were generated

o

Fock caICuiatIon an BF3.

e rd




CRAPTER 1

THE CALCULATION OF MOLECULAR WAVEFUNCTIONS

A. General Framework

The elgenfunctions, and subsequently any cbservable property
fof a molecular system in any of its avajlable.stationary states may,
in principle, be determined by solution of the time-independent

Schrodinger equatlion,

‘ Ho¥, = Eg¥ . (1.1}
. ’ R'R T SRR

where Hp Ts’the fuil }clatlvlstic Hahlltonian for’the system, ¥, is

an cigenfungtion descriﬁing a‘stationary state of thé system, and

ER is tbe energy o% that state. Exact solutions for Equatlon [1.1] have
never been found, even for the simplest éf chemical systems. Nevertheless,

conslderablclprogress has been made in the way of approximate solutions.

The general staﬁting point for all approximate molecular

-calculations Is the non-relatlvistic Schrodinger equation,

H £ [1.2]

¥ = 4
NRNR NR'NR

The non-relativistle Hamiltonlan, H differs from its rclaﬁiyistic

NR?

counterpart, R in that it includes only those particle interactians

R’
which are purely electrostatic in origld. All terms corresponding to
more general electromagnetic Inéeractlons aq? relativistic effects

are omitted, The;e relativistic corrections are generally quite

small for systems bullt from flrst-row étoms. and are usually treated

using perturbation theory technlque;.] For an N-particle system,

-5-
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the non-relativistic Aamlltonian may be written (in atomic units) as
a A ¢

: N N . .
B = -3 5 (9, 2/m ) + (2,2,/r,) - \[1.3]
NR kzz (A SN T 4 2! '

. The first term in [1.3] Is the quantum-mechanical kinetic energy operator

. A
for the system; sz Is the Laplacian operator for the kth particle 4

and'mk Is the mass of that partlcle.' The second term is the potentizal

energy operator for the electrostatic Interactions betweern the particles;

h

%L and Zi are the charges on the k" and £th particles, respectively,

and ry . is_the distance between them.
In 1927, Born and Oppenhelmer2 showed that in most caseS‘?NR
to a good approximatlion, be written as a-single product of an electronic -

can,

and a Auclear wavefunction. Equation [1.2] can then be separated into

Ay

annelectroﬁlc elgqnvaluc equation,
He‘i’é - Ee"ie . (1.4}
and a nuclear elgenvalue equation,

-

Hy =E¥ = [1.5]

Electronic elgenfunctions, ?e; can then be determined for any given
nuclear configuration, {R}. The corresponding electronic energies,

Ee; appaar‘fn the . form of a potentlal function, Ee({ﬂ}),_ln Equation [1.5].

The electronlc and nuclear Hamiltonians are then giwven by

tym 2 - [/ + L) _' | e

. , T
and - \

2 = .
) H, = —}E(va /) + u);s(zaza”us’ + £ (1R}) [1_.7]‘

v

whara the subscripts o and 8 refer to nuclel, and | and | refer to electrons.

V § . h
. . p *
- .- T




. . ~ .
Equation [1.4] forms the basis for the calculation of approximate. B

molegular electronic wavefunctions. Closed-form analytical solutions

rarefhvailablg‘only for simple one-electron systems. Solutlons for the

- !

many-electron case are presently obtained by .expressing the electronic
wavefunction In terms of products of one-electron functions, y;, called

molecular spin-orbitals (MS0's) . ' - - .

e A . -
Any one-electron wavefunction, ?6(5)4,may be expanded in terms

i 4

of a complete set of functions, {y;(x)}. .
g AR O I U

’

Fl

In the above, x denotes the cnnp1et5 set of space and sﬁln—varlables
\ .

for the clecffon, and < denotes an expansion coefficlent. It is
generally assumed that 1f the set {*1}.}; lﬁdeed éomp)etq, then the
sot of all possible N-mémbered products, {¢|(5|)¢J(523 i wp(5N}},
Is'algo complete, and any N-electron wavefunct(on mayxﬂé written as a

1inear combination of these products.
P (xymy oo By) = ECIJ---P wi(zl)wj(5z) - $P(§ﬂ) | [1.9] ,
fhc.fwl}]may be’cﬁosen as ;n'brthonormal set with no loss in generality.
&g - ' ) ‘

The set of. product functlions will then be orthogonal and the expanslon

coefflcients In Equation [1.9] will be given. by

1. ™ Yz (sg) .o [NE RALAE I TR T L [1.10]
From this axpression [t Is easlly seen that coefficients of all spinr
orbltal productﬁ Invdlvlng the same selection of spin-orbitals (differing
S . . — . .

only In thelir order), can differ only in thelr sign. This follows since

the Iab%lllng of tha varlables In [1.10] Is arbitrary, but Y, oust be.

]
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antisymmetric with respect to electron exchange. The right-hand side
of [1.9] can then be written as a linear combinatlon of antisymmetrized
products, or Slater dcterm!nants.3 Using k to denote a particular

set of N spin-orbitals in some standard order, we may write

¥ (5)0%,, . %) = e o (xya%p, -on 5 [y
where
v gdvysy) oo v (xy)
o 0x10%y0 e X)) = Vi (%)v () oo v p) | [1.12]

oy o) vy ) - 9, ()

A complete set of HSO'sc;ould geﬁeraily be Infinite and £he
determinant In [1.12] would be of Infinlte order. In practice, one
uses a finite numbef of‘HSO's, and finite expansions of the form
given in Equation |1, {I] yield the best approxlmatnons to solutltons
. of [l h] calculated to date. |

| Sometimes It i%-possible to cobtain a vedy good a?prOxlmaflon
ta ?; using only a slnéle term of E?e expansion in {l.lll. Hanfunctions
of this type are generally known as slng}c-déterminéntal wave functions’ D

The "best" wavefunctions .of this form are known as Hartree-Fock wave-

fupctions, and It is to a discussion of their calculation that we now

t

turn.®

¥

B. The Hartree-Fock Method

. : ) g
. The equations -for ‘calcutating the ''best' approxlqate wave-

Y ' ' - . L * - o N




*

-
-

3 9

fuﬁctions of sing]é—detcrminantal form [1.12] wereAderkved independently

5 6 '

by Fock™ and Slater.” Thelr work extended the earlier work of Hartreeb

for single product wavefunctlons (i.e., wavefunctlions constructed from

asingle term in [1.9]).

In the absence of spin;orblt coupling, each HSQ;_¢}(5), may
. .

be factored into a spatial function, ¢I(L), gemerally known as a

. L) : .
molecular orbltal (MO), and a spin function, ni(§). The spin funttion
for a given electron may take one of two-possible forms, which wlll be

denoted here as a and B. A single-determinantal wavefunction for an

N-electron system may be written ‘ [1.13]

CHTNNERIE gun)‘*|¢-](;_,)nl(sl)_¢2(_r,2£,2(52) e ol ny (s |

where (NI)_i_has been Included as a normallzation factor (assuming that

" the él and_n'-form orthonormal sets), and the shorthand conventlion of \

. . <
writing down only the dlagonal elements of the determinant [1.12] has

beep employed. A further restriction Is usuall} placed on 9; when It

is assumed that each M0 may occur twice, coupled once with each of the
F R .

e

two posslle spin functions. Wavefunctions of this form are generally
" known-as restricted Har#?ee-Fock (RHF) wavefunctions; those of the more
general form [1.13], where each alectcon Is assigned to its own MO, are

termed unrestricted. All wavefunctions reported here are of the RHF type.
T

In general, single-determinantal RHF wavefunctions are reasonably

good approximatlons to the correct non-relativistic solutions only

for closed-shell systems. Most molecules In thelr electronlc ground

‘states belong in thls category, and hence, these wavefunctions have
R -, y R
rather wide apptlicability. A closed-shell ground state is probably

‘best defined as one fér which there ex!sts only 922.£]ngle—determlnantal‘

i
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wavefunction {i.e., ons term in [i{11])} for which the energy reaches
 Fts absolute mlnlmum.JO This has/several Implications. First, the =~

. /-— . - o
 system must contain an even number of electrons, and each MO in ¢

must be doubly occupied. Hence, for a system of N-electrons’bccupying
n = N/2 HO's, " . ' . : L (
. {1.14]

by o ) = (DT (al) 6 (208(2) 4, (al3) .. o, (BN

~

Further, ¢_must belong to the Identity representation of the symwetry
group for the system. That is, ¢, must be invarlant with respect to ‘

any symmetry oﬁeratlon‘of the point group for the system (see Roothaanlo

ey

for the proof). Since all molecules In this work are of the closed- - -

shell type, we now confine 3@rselvas to the Hartree-Fock method for - ’

this particular cgse.

The electronic energy of a closed-shell system described by

[1.14] Is given by

. . - ,
o T 21.-E.IH“ : i §-l(ZJU Ry . G151
wﬁere . / ,
-Hl‘ - <¢|(I)I'iv] - EF;T[¢I(])> ' [‘.]6]
i . 1 . L. - -
g - <¢1(1)¢J(z)_1,\,—]2-{¢,(1)¢J‘(z)> | (1.7
e ‘ ‘ ]u
\l . ] N .
iy <f,(:)?1(2)lp72-[¢](1)¢,(2)> , n.rm]

| The Integrals [f.l7]*|nd [1.18] are known a3 coulomb and axchange

integrals, respectively. The Hartree-Fock equations for. the "best"

»
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¢; are obtained by applying the variational principle’ 7. to [1 IS] One

searches for the condlitions under which Ee is stationary with respect to
~

variations in the $;» subject to the condition that the ¢, remain ortho-

normal -- a conditfon whlch results in no loss in gencra]lty since the.

°i are defined ?Ply to wlthln a unitary transfbrmat:on among themselves,

&

E, and hence can always_be chosen as orthonormal, The orthonormality

3

conditiSQE\are Imposed using thé method of Lagrangian mu]tiplieré.

One then searches for stationary values of the fuictional

. | n . :
Q - Ee 9-'& I§EIJ(<¢i|¢j> = 5‘}) [1-19]

where the Lagrangian muttipliers have been chosen to be Tielj’ and
Gij is the usual. Kronecker delta. The conditlons for §Q = 0 are

o

that each ¢; satisfy an equation "

Ele, (V)> o jic',jléj(lb ~ Dh2o)
w?;cljc the chi operator, F, Is defined as _
| CFeH 4 J:{:l(u] ~ KJ) _ - [t.21] |
and the Dpar.'a.t-ors H., J\L and K, ar_é defined by | ' e
| g ‘ :
HIop(1)> = (-39, - EFJ)I¢I(1)> {1.22]
- ijl¢i(l)> - <¢J(z) l#lh(zbl?lm; ' ,»[.1.23]
i ‘ KJ“'.“)) - <¢;(2) |-;:-£-|¢,(z)>|¢J(1)? | | . [1.24)

'f.lt is aluais possible to find a unltary trans formation of the orhitals




which brings [1.20] into dlagonal form, leaving F and the total wave-

. . {4] - .
function invariant. \\Each ¢! will then satisfy a pseudo-eigenvalue

-

equation, ’ e t

'r?¥é}(l)> - Ci|¢i(')> : ' - [1.25)

v :
where the operator F actually depends on Its eigenfunctlions, o1, through

the J and K operators. Equation [1.25] may be.solved via an TteratTve

procedure known as the self-conslstent-fieid'(SCF) method. One guesses

at an initial set of'¢i, determines the operator F, and solvgé‘for,a ‘-
new set of;¢i. This process is continued untll the assuaed anq cal-
culated ¢i'agree to within-some prescribed raccuracy.

Completely general solutions to [1.25] must normally be found
using numerical techniques, and are not‘practical, except perhaps for.~
systems of spherical symmetry (i.e., atoms). In 1951, Ro-:)thaan]O
proposedta method for obtalning analytlcaltsoiutlonshto [1.25], a method
wﬁich opened the way for Haftfeé-Fock calculations o: molecular system;.
Specifically, -Roothaan showed that HO's expanhed as linear combinations
of atomic orbitals (LCAO-MD's) could readily be incorporated Into the
Hartree-Fock framework, gregtly alicvlatI;g the éomputatiénal difficulties,
I f one_expahﬂs the ¢, initerms of an m-membered compliete set, {xt}. ,.\,

[1.26)

X] It t
1 . Q

“each equation [l.2§] becomes a set of equations for the expansion coeffichents,

m ’ . ' ) .
Z (F , - )C - q=1,2, ... m £1.27},
‘ at.” i%qt 1 ‘.
| =l — T=1.2, ...n :
where = _ . i |
| th l th + I I ): Cir ISIZJqut - quts] ‘ [1.28)

Jo

oL “jm] rml s=) _ .
" ' £ ’
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and -
Tor = %g (149 [x (1) [1.29)
Z
Vot ™ <xq(1)1-§‘F;Tlxt(l)> _ ‘[1-39]-
Sgrst * KX @ 7=, (%, () [1.31]
Squ = Xq{1 Ixg(1)> 11.32]

A complete set of basis functlons, {x_}, would normally be-

inflnite In number. In practice, oflcourse, one uses a firflte set.
With an m-membe}ed'set, one can solve for m of the ¢., and hence the
slze of the basis set must always be such that m > n, Eéuatlbns [v.27]
for an m-membered basls sét can be written as anm x m matri# equation.
The F matrix Is calculated by occupying oﬁly n of the'¢i. For the o "
ground state of a system, one-would normally occupy the ¢ with the n
lowest orbital eléhnvalues! €;- The remalning unoccupied $; are
callled vlrtualVOfgitals. - |
Solut!ons‘afe again 6btalne§ via an i{terative procedure. The.
method [s basically as fo!lgws::
(1) A set of basis functions, {xr},ls chosen.
{2) The integrals [1.29]-[1.32] are evalhated.
‘-(3) The F matrix [1.28]-ls calculated from an Initial assumed
l set of expansion coefficients. 5 ‘
(4) The matrix equation [1.27) is then solved by diagonallization
of_the F maf}lx whjch Is first transformed to the’basis.of
the elgenvuztbrs of the S_mgtrlx.

&2 . R -
"~ (5) The new solutlons are compared with the input solutions,
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[

| f they agree to within some prescribed limits (generally

P
taken as convergence of the electronic energy to a cprfain
number of -significant figures).then the procedure is
terminated. .If not, the new cocfflcicdts are used as
Input, ana"the procedure Isfreéeatpd untii convergence
Is aﬁhléved.

Since a Fiﬂite basis set |s used in the expansion [1.26], the -
calculatéé ¢I are now én]y quréximatiéns tuftﬁe actual hartree-Fock
o The problem of ;hobslng a good basis s;g when setting up a cal-
culation Is then of prime importance {f one wishes to obtain-a waye- "
function which Is close to Har tree-Fock accuracy.

Two types of Basjs sets are In common use today.” The first,
and earliest set employed, Is the Slater-type basis set with functions
of the form . . : . | X - ‘

' - ) ) .

-Fr'. Loy =N (n~ ')Y}_m£e 9 )e e n>8>|m|>0 (integersy  [1.33]

where-Np is a normallzatlion factor, Yzm(eu,¢u> is a spherical harmon?c,

! Bp is an orbltal expoﬁhnth and the Functloy is defined in Efrms of a

r spherical coordinate system, (r,8,¢), centred.at a (usually a nuclear

coordinate) . ‘fhe second type 6f basls, originally suggested bY BOys,!]
is the Gaussfan-typé set with functlions of the form ;
L m.n _Bpru% > e v
Xp = N X Y 2, © n,L,m>0 (integers) [1.34]

where the deflnltlons are &5 in [1.33], and x, y, and z denote Cartesian
coordinates These functlons have an advantage over Slater finctions

In that the, lntegrals [1.29]- [1 32} required In-the calculation are much

!
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simpler to evaluate, e5peclally the tlme—consumlng, multl-ccntre, two-
electron lntcgrals,[l.Bl]. This Is partially offset since approximateiy
twice as many Gausslan functlons are requlred to give a wavefunction

of the same calibre as one calculated with a Slater basls set,

All wavefunctlons reported in thls-work were computed uslng
Gaussian basis sets.” A complete description of thése sets will be

* given in Chapter 3.

-

E €. Characteristics of Hartree-Fock Wavefunctlons

In any‘analysls based on an a(proxlhatc wavefunction, 1t Is

particularly im?/rtant to have 1 good idea of the quality of the wave-
functlon and hence, the rellability of propen&lss computed from it.
Hartree~-Fock wavefunctlons stand fairly well documented in this respect.
(Tﬁroughout this section, “Hartree-Foék" refers to the "best" general
solutions of [1.25], not the LCAD-MO apprpxlmatiéns to thﬁﬁl The latter - —
are discussed towards the end.)

Brll'l_oulnIz was the first to show that, within the non-retativistic
framework, the Hartreq-ngk enargy Is.corregt to second~order. Shortly
after, Moller and Ple.'..'.‘et:]3 cmpld&ed a perturbation treatment to show
that the flrst-otder corlactlons to both the energy anﬁ the three-

“dimensional ;lectrénlc charge density are zero. Thelr treatmpntrwas
exteﬁded by Cohen and Dalgirnolh to lnc]ude'all one-electron properties.

Hartree-FocQ wavefunctions have leo been shpﬁn to satisfy the
Hellmann-Feynman aﬁd quantum=mechanical virlal theorems. The generallzed

Hel Imann-Feynman theoremls'16 states that for any elgenfﬁnctlon, ¥, of s
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some Hamiltonian, H,
oF aH .
-gtx-- <’|‘5‘A_Iw> []-35]
where E is the energy elgenvalue assocliated with ¢, and X is any para-
meter appearing in H, Stanton?? has shown that [1.35] is also valid
for Hartree-Fock approximations to v. .0ne of the maln uses of the
X theorem 1s that It allows one to calculate intramolecular forces on
nuclel by simple electrostatics. Thus, {f one chooses A to be a
nuclear coordinate, say x_, then it can be shown that
i - == -
3 X=X T
e el ' a
-5-;(-;-' (-an) - 'zaIIIp(X.Y:Z) -r—§ dxdydz : [1.36]
a

where p(x,y,z) is the electronic charge density at the point (x,y,2},
o is distance from that point to the nucleus, and Fiﬁ Is the x com-
ponent of the eléﬁtronic force on nucleus a. This sp:cific fonﬂ of
the Hcllmépn-Feynman theorem 1s generally known as the electrostatic: .
theorem. ; |

The quaﬁtum~mcchanlcal virial theorem can be derlved In a number
of ways. The “'scaling" derlvation, originally due to Fockl8 and since
extended by a number of authors (most of the references are glven by
Lawdlhls), shows the valldity of.the theorem for both true solutions to
Schrodinger's equation and propsrly-scated approximate solutlons-ia
category which Includes qutrep-Fock wavefunctions). An‘alternate
der1%atlon has been given by Siaterzo who first proved the validityrr
of the theorem for molecular electronic wavefunctions. More recently,
l:'has been derlved by way of what fs gbnerally calléd the hzggfi!rlal

theor'ctm.ﬂ-23
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For an electronic wavefunction, y_, the virial theorem takes
the form
- in ave
2<¢e|T3'¢e> - <we|1_]qi Ea?lwc> ' | [1.37]

N
o

where Te and Ve are the electronic kinetic and potential energy operators
for the system, respactiveiy, and the summation and integratlons are
taken over the 3n electronic Carteslan coordinates, q;:-with the atd

of Euler's theorem for homogeneous functions, and the Hellmann-Feynman

™,
L]

theorem, Equation [1.37] may be expanded to.read (see Appendix II)
- - -5 AR
-2, =V, - gﬁa-?u ‘ [1.38)

In the above, T

. and V; denote the average values of the electronic

kinetic and potential energies, respectively. ﬁu-dcnotcs the position

vector of the uth

nucieus! and ng denotes the electronic force oﬁ it
(as calculated from the plectrostatlc theorem, [1.36]}). The summation
is over all nuclel In the system. Alternately, [1.38] may be written

in terms of the electronic energy, Ee' as
el '
T =, - gﬁa?a | [1.39)

For an atom, the last term lnl[l.39] Is Identlcally zero'(th -‘0),
For a molecule In Its.equllibrlum geometry, it reduces the nuclear ré-
pulsion poténtlai, V;. and the theorem ‘assumes the limftlng form

T, =E : B [1.40)
where E is the total energy (E, + V) of the system. The virial theorem,
particularly with réspac; to its possible implications for mo]ecular-

fragments, will be discussed in more detail in Chapter 2.




To say a wavefunction gives most properties correct to second
order Is rather vague. In recent years, a limited number of wavefunctions .
of better than Hartree-Fock quéllty have been obtalned, and somewﬁét
mﬁre quantlitative estimates of accuracy have been possible. . On the
basis of the dafé.now avallable, it sppears that the Hartree-Fock
energy is within about 1% of the correct non-relativistic value. The
elcctronfc charge density appears to be correct to wlithin 2-5%, and
most other properflés (the»one—electron properties In particular) appear
correct to withln 2-10% of thelr non-relatlvistic.values;30 In some
reipects this Is.encpuragfng, as It lndicétes_that these wavefunctions
are at leést'capable of giving a good seml-quantitative &és;riptiqn
of molccglar systems. -Howevér,-much of the lntereétlng chemical informa-
_tion I's concernéd with differences between systems, and changes which
occur during chemlcal reactions. These changes are generally qu1te small,
and are éf about the same magnitude as the errors quoted for Hartree-
Fock wavefunctlons. In this respect, the errors take qh a much greater
importance, and the possibillity of using th&se wavefunctions to study
chemical change ﬁay appear rather remote. However, such is not neces-
' sariiy‘fhe casé.
'MheneGhr a serles of wavefunctions is used to study chemical

- ‘changes, 1t Is not so Important that these wavefunctions be absolutely

h?accuratc wlth respect to all properties, but that they be of the same

\relatlvc“accuraquwith respact to the particular propertles under study.

If this Is the case, the absolute errors in the wavefunctions will
cancel aufing the dlifferencing operation, and changes in these properties

will be falthfully reproduced.
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Conslder specifically the energy of a system. The energy of a

Hartree-Fock wavefunctlon lies abovs the true experimental energy by

the sum of the relativistic and correlation energles, The relativistic

energy ls generally defined as the difference between the experimental
and non-relativistic energles, which may, in principle, be determined

by solution of Equations [1.1] and [1.2], respectively. The correlation
energy s most commonly dcfineﬂzu as the dlfference between the non-
re]étlvistic and Hartree-Fock energles.+ The difference is a reflection

of the fact that the Hartree-Fock equationS\déscrlbc a situation in

which each electron moves in the field of the nuclei plus the average

field of the other electrons. Hence, the instantaneous correlations

Y

between the motlons of the electrons are not properlyﬁqescribed. Both

the relativistic energy (Ehel - Eéxp - Euonnet) and th# correlation

energy (Eéona - Ehonnei - EhF) are negative (sﬁabillzlﬁg) quantities.
It Is to be expected then, that Hartree-Fock wavefunctions wil]

faithfully reproduce energy changes when both the relativistic and

+ Actually, Hartree-Fock wavefunctlonsrare already partially correlated
| for electrons of the same spin by virtue of their antisymmetry. As e
CIement[?s has polnted out, because of thls precomrelation, It might
be befter‘from a conceptual point of v!éw to define the correlation .
enefgy as the dlfforen;e betwgen the non-relativistic and Hartrech
energies. Hartree wavefunctions are the ‘'best wavefunctions of single
product form {i.e., are constructed from a single term in [l.?]) and-
hence, treat all electrons identically. However, Hartéeé wavefunctions
are now very rare, and the definition In terms of the Hartfee-}ocﬁ

energy.hai mainly a practlcal value.
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correlation energies are conserng. The relativistic energies for

aFoms are roughly proportional to the fourth power of their ddciear

charges. Ffor atoms in the flfst-row of the pericdic table these

energiés are considerably less than the corralatioa energies. Specifically,

from He to Ne the rglativistic energy v%ries from -.00007 to -.13 au,27

whereas the correlation energy varies from -.042 to -.540 au.25 Since

the main contributions to the relativistlc energy come from the 'core"

regions,.  one can expect that molecular relativistic energies will be
approximately equal to the sums of the relativistic energies of the

constituent atoms, The major changes in correlation energy occur upon

25,26

""pairing" of electrons. For these reasons, one can expect that

relativistic energies will be conserved to a far greater degree than

¥

-correlation energies (at least for molecules bullt from first-row atoms),

and that the conservation of correlation energy will depend, to a large
extent, on the conservatign of number of electron pairs, This has been
substantiated by Snydei-,28 who showed that Hartree-Fock wavefunctions

can predict heats of reactlon (gas-phase) between closed-shell systems

. to a reasonable degree of accuracy (i.e., to within ~ 6 kcal/mole per

bond formed). For molecules constructed from atoms with higher nuclear
charges, the relatlvfstlé energy takes on a far greater importance,

- D . ' )
and methods of estimatinglits behaviour may well be required.

An interesting question arises with respect to the components

of the total energy. When thc‘;elatlvlstic and correlation energie§

‘are conserved between systems, does this necessarily Imply the same

for thelr kinetic and potentlal energy components? (The components

of the potential energy -- viz. the electron-nuclear, electron-electron

.




2] (v

and nuclear-nuclear terms -- will henceforth be denoted as V', V",

v

‘and V;, respectively.) From the virial theorem [1.40], It is obvlous

that the kinetic energy component (?Eoﬁn) of the correlation energy

is conserved to the same extent the correlatlion energy itself is
cofiserved, providing the systems are all at their equillibrium geometrieé.

f
This follows since a true non-relativistic solution to [1.4] and the

Hartree-Fock approximation to It both satisfy the virial theorem. The

! situation as regards the electronic potential energy components (_Eokn

d'_ll . .
aﬁ Vco&k) is not quite as c}ear. Certalinly, one would expect Vco "

L always to be negative (stabilizing) since correlation tends to keep

; the electrons farther apart. Therefore, at least partial conservation

of this component can be expected. The sign of V‘ however, is

omnn’t
uncertaln, and it is not clear as to whether or not therg Is even a

- ' E rved
general rule here. Of course, if Eco&n' Tcunn’ apd Vconn are conserved,

1
L3

—‘ - ' -
| then Vconn,as conserved'by di fference.
The components of the relativistic energy are many, and little
is known about the effects of relativistlc corrections on T, V', and V''.
As long as the total relatlvistic energy is small; it is probably ;3?3”//Fﬁ\

v Tin “on
to assume that T‘eﬂ' Vi ps and V)l , are also small, and conservatio

is-not as important as it Is for the correlation energy components,

Most wavefunctlons -calculated within the Hartree-Fock approximation
(including those reported here) are not true Hartree-Fock wavefunCti??s
but rather, LdAO-HU approximations to them. Hence, the preceding

P dIscuSslon does regquire some quallflcation.

The energy of an LCAD-HO wavefunction Iies abovc the true

s
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Hartree-Fock energy by what might be called the LCAO-MO energy gap.

- The magnitude of this gap depends upon the size and nature of the basis
. -

f set employed. As the flexibility of a glven basis set Is Increased,

)

the slze of the gap decrdases and the LCAO-HO'wavefuncflon is said to

-

approach the Hartree-fock limlt. In order that these wavefunctions,

- faithfully reproduce energy changes between systems, It is necessary |
? ~.not only th;tltha relativistic and co;relation energies be. conserved,
Eut atso that the magnltqde“of the LCAO-MO enarqgy qap be conserved.
So far, the discussion has be;n Iimited to the energy. Some -
extension to other propcrqles’ls now necessary. It. is well-known
that, the total enargy s a falrly Inéenshtlve measure of the overéil
“gquality' of a wavefunctloh. The refinement of a wavefunction, although
it may bring about only a sma)l. change In energy, 6;y bring about a
Quﬁsténtlal change In some other propcr£§. _This is particularly true
'pf LCAQ-MO wavefqncf[ons.- Any wavefuncflon constructed f;om a finite
basis set has llﬁitcd flexibility, and the exact nature of the limita-
 tions depends upon the particular basis setAcmpIchd; The se;sltiy?ty

S

of the charge distrlbution to the choice of basis set was pointed out

sometime’ ago by Kern and_Karplus,29

and has been studied more feccntly
by Cad;30 and‘Llpscomb.3] . Some broperties tend to embhasi;p partidﬁlar
regions of chérgc distribution. When a description of a p;rticular-
.'(egldh In a molecule !s poor, then so too will be the predictlion of
properties sensltfvé to égat description. A property qf ﬁarticular
relevance to this work is the electronic force on a nucleus. These
forces are particularly sensitlve to the charge dlstrlbutfon in the

nuclear .raglons. The charge density In these reglons.ls extremely

high and even relatlvﬁly small errors in the distribution here can, and

S
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do cause larg; errors.ln the forces. Further, most basis sets are
designed for greater flexibility In the ‘'valence'' regions, and a good
description of the ''core'' Is sacrificed.

Thus, Tt can be quite dangerbus'to study changes in molecular

' propertles by comparing wavefunctions which employ different basis

sets. Maximum conservatlion of errors In a series of wavefunctions is

most 1ikely I those wavefunctions empioy closely-related,‘df not

.

R e N e

Identical basis sets. Further, the basis sets must be capable of
glVlng an.equally good description of all the systems., For example.
it is kncﬂn that a bas!s set thch glves a good description’of a’
.Jncutral atom, may give an Inferior description of lts negatlve ion.32
The reason for this Is that the e1ectrons In the negative. ion tend to
Spread out more than they do In the neutral atom. Basis sets which
have been optimlized for the atom often do not contaln enough diffuse
functions to allow for thls, Thus, It is often necessary to aaément
a glven basis set, even a falrlycpxtensive one, wfth addlflonal functions.
‘LCAO:HO wavcfunctlons'do n;t rlgprous]f-satisfy the Hellmann-
| .
) Feynman theorem, and In particular, the electrostatic theorem. Even
If thcy did satisfy the theorem, thls would not necessarlly Tmply- }
rcllablllty of forces computed from [v. 36] for the reasons previously
,digcussed;
Host LCAO-MO wayofunctlons'do not satisfy the virial theorem -

riggrously. Any approx!mate wavefunctlon can be made to satisfy the

Yheorem If It s prOperly "'scaled". That Is, I f all coordinates in thc wave-

function are multiplled by some scale factor, n, and if n is chosen
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such that It minimizes the encrgy,ithen'that wavefunction wlil satisfy

19

the vIri;l theorem. For an LCAO-MO wavefunction this is tantamount

to further optimization of the energy with respect to the exponents
In the basls funct!onéf Most basls sets contain functions whose ex-
. ponents have been energyfoptlmlzea for étoms. During the calculation
of a molecular wavefunction, these exponents are usuall;’%eld fixed,
and the erergy is optimized only with respect to the llnear expansion
coeffliclents In [1.26]. In praétlce, these partially optimized wave-
functlcns. usually come félrly close to s;tlsfylng the virial theorem.

For the wavefunctions reported in Chapter 3, the two sides of [1.38]

génerally di ffer by less than 1%.

S

-
-




CHAPTER 2

PARTITIONING OF ELECTRONIC CHARGE DISTRIBUTIONS,

A. Previous Methods

K

w

There has nevef:béen a completaly satisfaﬁ;ory method fo?
partit!oning electronic charge distributions, 0f coiurse, exactly what
_constitutes a satisfactory method depends upon the use to which it is
to be put. |If a partltlonlng scheme-1s to be used to classify the
gross featu}es_of a charge distributlon,}then it should be well-defined
for any system, regardless of its complexity. If the scheme-is‘po_
provide a framework for comparing a series of chéﬁbe distributions, then

it should clearly reflect the basic differences in these distributions.

- An important prerequisite of any partitioning scheme Is that ig be

\

independent of the particular form a wavefunction might happeh to take.
In this respect, it would seem partlcularly desirable that the scheme
51.

S

be based on an observable property of thf system.
The most popular mathod of charact;rlzlng and cpmparlng'charge

distributions has been the population analysis of Hulllken.a3 When

an approximate;wavefunctlon is constructed frﬁm a series of orbital

products, and when the orbitals are of LtAO form (ﬁguatlon [1.16]); the

total number of-electrons In the .system, nf. can generally be written

‘nT - i X, [ chki K] lj] f2.1]

where the subscript k refers to, orbitals, and the subscripts i and j

refer to basis functions. denotes the overlap integral between

S1;
- 25 -
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“the Ith and jth basis functions, <X‘IXJ>; the c*s ére the expansion
coefficients for the orbltals; Ak denotes the weighilng factor (usually
the occupation number) of the kth orbital. The bracketed term in [2.1]
contains both monocent(lcland.bicentrjc terﬁs.-- that is, termg In
which X and X] belong to the same or different centres, respee;ively.
Mulllken's original proposal was that the population of a given "atom"
in a molecule be defined as the sum of all monocentric terms in [2.1)
centred. at that atom, plus one-half the sum of all bicentr}c terms
Involvjng basis functlons ‘Cehtred at that atom. - Thus, the populatt?p

of some atom, A, would be glwen by

-

n(a) = 3a [} [2.2]
k " a

o Ckaka' aa i L ka® kb ab)
»

where a and a' denote basls.functlons centred at A, and b denotes those
centred elseghcre. The method was originally criticized for lts

equal partltlo&tngro; the blecentric terms between the centres involved,
and a number of alternate crl;eria for apportioning these terms were

34 35

proposed. that even the assign-

.Mulliken himself has polnted out
ment of the mﬁnocentrlc terms can be misleading. The charge density
associated wlth-a basis function on a given centre is always asslgncs.

to that centre, even though that density may be largely localized in
“another reglon of the molecule. Further, It has become apparent that

the method can ylelq\qulte different results when applied to wave-
functions which enpléy dlfforeng basls sets, even If these seés are

of approxlmately ‘the same quallty from an energy crlter{on 23 The basic
deficlency of the nethod Is simply that It requires that the wavefunction

BN
be of LCAD form, and further;, that the basis functions be centred at

~
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nuclear positions. There is no reason why a wavefunctlon-should
hecessarily-havc these properties. l

Another popular method of partitioning the charge distribution
is based on the orbltal concept. When a wavefunction is constructed
from orbital products, the electroﬁlc charge density at Sﬁy point I,
0(5)).can generally be written.as the sum of the orbica’ densities at

that point. That Is,

o(r) = Do (D) 23]
K :
where A Is the occupatlion number of the kth orbital, and pk(L)
the orbital density. It is then possible to analyze and compare charge

distributicns orblital by orbltal. The problem here Is that there is

no unique set of orblitals for a given wavefunction. For example, the

' MO's In a Hartree-Fock wavefunctlon &re defined only to within a
unitary transformation among themselves -- a transformation which
leaves the total wavefunction Invariant (to within a phase factor), and

the physical description unchanged.10 Probabiy the most obJective
- ) L
criterion for chooslng'a set of MO's for Hartree-Fock wavefunctions Is

3 3

that of Edmiston and Ruedenberg. These authors proposed using those s

MO's which minimize the sum of.the:exchangg'Integrals In the expression

for the energy (i.e. , minimize § ¢ (1)¢ (2)‘———|¢ (2)¢ (1)>). These
' i¥]
MO's a]so minimize the off-dlagonal cou!omb sum, E <4 (I)¢ (2)|———J¢ (l)¢ (2)>,
12

iv] T

and hence are termed locallzed molecular orbitals (LMO's). LMO's have
'gdnerally been found to correspon& to core orbitals, bond orbitals, and
lone palr orbitals,37 although a complete spatial separation has never

been possible. Thus, they seem to provida some link between quantum-




mechanic;l wavefunctions and the usual chamical language. Recently
E they have found congldcrable use in studying the transferability of
; ""bonds'' between various sy%tems.sa Again, the basic sho;tcﬁming of
the method Is lts dependence on wavefunction form, %hére‘ls no reason, .o~
apart from present ﬁathematical convenience, why a wavefungction should
necessarlly be constructed from orbltal products -- fct alone be of
single antlsynpnttfzed”product form.
A better method of fragmenting a charge distribution would be
to physically partition the thrcq—dlmeﬁslonal space. Such a method

would at least be Independent of wavefunction structure. Polltzer and

Harris39 have suggested spatially partitioning moleculeéfinto atOmié

9]

«

(mono-nuclear) fragments. Their partl;bonlng scﬁemc.Is arbitrarily
defined In terms of a hypothetical charge distribution constructed by
superimposing the densitles of unperturbed ptoms, placed at theflr
corresponding pOSItqus in the molecule. The surfaces pFobosed are
those for which the atomic fragments In this hypothetical situation
have the same electron populatlon; as the free htoms."of course, any
numbar of surfaces meet tﬁls criterion. \ 70 date, these authors have’
‘applied the sch:me on};,to linear molecules, and considered only
planar surfaces perpendicular to the Internuctlear axes.' Extenston

of this method to non-linear systems Is Impossible.

N

A better spatlal partitioning scheme, at least In the sense ’
‘that 1t 1s completely‘goheral,'and defined for any system, is the

ho A loge Is sln&ly a portlon of the physical

"joge'* method of Daudel.
space of an atom.or %olecule. - Suppose the spacs Is to be dlivided into

v vo!uhns or loges, Vl(x - 1,v). The'probabll1ty of‘f!ndlng simultaneously




29

n, electrons i1 V]' n, inV

2b tees and n, in Vv Is given by

4 -~

P({nkevk}) n 5 {dL}ﬁ] J {d'r_;}n - I {QSJn P(N)(LI,LZ,....EN) [2.4)
) | Vz 2 V\J v v

(N)

. ”I - < - M
where T (51’52""'£N) is the diagonal element of the spinless Nth

order density 1':1:s|tri:nc1”’l“2

for the N-electron system. There are |
bN+V‘|)1/N[(v-l)l = £(N,v)iways of distributing N electrons among v

t B ~y
loges, each with an associated probabllity, P,. Daudel's hypothesis

is that the 'best" decompositzén of the space s that which minimizes
the “missing Information functlon'', |, defined as
i I-(N |V) N ’
L({n,av,}) - lzl P log,P, | {2.5]

where the sum is over all possible ways of distributing N electrons
s" : .

over v loges. Even If pne accepts Daudel's premise, one is stit
faced with substanflal diffliculties. Th;re is péesentlyrgpﬁway of i l
deciding, apart from a process of trial and error, what'thc best value /
| of v is for a glven system, let alonetflndlng thc‘b;st surfaces for a
glven value of v. The trlal surfaces have at present been restrlcted | -
to plén;s and nucleus-&en;rod sphe;cs.
° The partitioging scheme proposeq'in this thesis is a spatial
: ;
scheme. The partitioning surfaces are defined completely in terms of
an observable property of the system -- the thfeefdimensional electronic
charge alstrlbutlon. The method may: be applied dlrectl? to any
chemical system, whether It be a slngle molecute-or a collection qf
holecules, regardless of Tts comp]e;lty or symmetry. The work is
an extension and generalization of the recently published method of .

43,54 ,45

Bader and co-workaers,
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Bt A Proposed Partitioning Scheme
It is proposed here that an ‘electronic charge distribution,
o(r), may be best partitioned by those closed surfaces through which
the flux of ;p(ﬂ) 15 everywhere zero, That 1s, if S(L) denotes a
partitioning surface, then
ap(;)/éﬁ(g)-o for all.r & S(r) (2.€]
where o(r) Is the charge density at the point r, and-ﬂ(g) is a vector
normal to § at thatrpolnt. Alternately, one may write [2.6] directly
in terms of the gradlent vectors, Vp(r), as
[ '69(5)53(;5 -0 for all r & s(r). [2.7]

There are an Infinite number of surfaces of zero flux In a

given system, but only a finite number of these are both closed and

everywhere defined. Every polnt In a charge distribution lies on some

‘surface(s) of zero flux, prgviding the gradient vector, Vo(r), is

defined at th#t point, That is, the dot product In [2.7] can always

be made to vanhish for ; point, I providing ;(Ek) Is chosen perpendicular

to Go(gk). Thus, the surface {or surfaces) of zero flux which pass

through a glven point must always lie tangential to the gradient vectéf T

at that point. Hhen'ﬁp(s) =0 (i.e., when L Is a statlonary point in

the charge distribution) th?re are no restrictions on the orientation

“of these surfaces. The only points . .in the charge distributlon for

whlch.ao(s) is not)defined are the nuclear coordinates, since p{r)

L6-49

»

must satisfy a cusp condition here. Thus, any surface of zero flux

'

~ which contains a nucleus, exhibits a discontinulty at that nuéleus, and

therefore does not quallfy as a proper partitioning surfacel As will

’

v

- A - m
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shortly become apparent, almost all surfaces of zero flux pass through

nuclei. The few which do not always contain stationary points. These

stationary points play In important role In the determination of the

partitioning surfaces,

Stationary points In a molecular charge distribution are

generally saddle polnts {i.e., points where o(r) is a maximum with

respect to certain dlrections, and a minlmum with respf;éll to others).
Saddle polints normally occur on or near the Internuclear axes which
connect pairs‘of so-called "bonded" nuc!e}. When the Internuclear
axis Is colncldent with a rotational symhctry axis of the molecule,
the saddle point will be coincident with the polnt of minimum density
between the nuclel. Otherwise, It will normally lle a short distance
from It. For example, consider the molecule BH3C0 This moleéule

s of C3v symmetry, and the single rotational axls passes through the
B, C and 0 nuclel. There are five saddle points In the charge distribu-
tion. Two lle on the rotational axls and are colncident with the
density minima In the B-C and C-0 lnternucleaf axes, fhe other three

lie in the o, symmetry. planes containlng the B-H internuclear axes,
=

and are close to, but not colncldent with the density minima on these.

axes. As will be shown later, a partitioning Surface passes through

each of the five saddle points. Each surface cuts the .internuclear

~axis assoclatoa with Its saddle point approximately at right angles.

" The molecule is thus partitioned Into six fragments -- (B), (c}, (0),

and three equivalent (H) fragments. The partitioning surfaces all

extend to:fnfinlty, and are closed there. (There is a closed surface
of everywheré zero flux an Infinite distance from any isolated system.\
since Eb(r) s everywhers zero there. Any partitioning surface which 1

extends to Infinity is closed there by virtus of its intersection with
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this surface.)

Stationary points in charge distributions which are true

“minima or maxima are somewhat less common than saddle polnts. One

example of a trus density minimum would bé at or near the ring centre
of some cyllical compound. For example, the benzene molecule has '

thirteen stationary polnts, all of which lie in the o symmetry plane.

h
Six of these are saddle points near the midpoints of the C-C axis

1

connectqu adjaéent carbon nuclel;.slx are saddle points In the C-H
axes (colncident with t;Q density minima In these axes); one Is the,
relative mlniﬁum‘at the centre of the molecule, As wlll be shown‘
later, a partitioning surface passes through each of the twelve
saddle points. The stathnary point at the ring centre is common to
six of these. { |

It is questionable whether one would ever cbserve a'stationary
polnt whch was a true density maximum In a charge distribution, Of
course, nuclei are denslty maxima, but these do not quallfy as s;ationary
points because of'thc cusps. As far as the author 15 aware, the only
example of a true stationary maximum is afitha bond pidpolnt of the Li2
molecule.SD Tga molecule has an extremely long equi 11brlum bond‘leﬁbth
{~ 5.0 au In the‘ground staté) and apparently has a double minimum
along the bondﬁg§1§. Whether this Is a feature of the-true charge
diétribution, or simply a shortcoming of the approximate wavefunction,
s not clear. | ) | S .

Surfaces of zero flux In general, and the partitioning surfaces

3
In pqrtlcula: can generally be described In t%;ms of the gradient paths

which parmeate a charge distribution. The path of steepest ascent

r

0
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rom a point r, (as traced by the vectors, 3p(;)). and the path of

-
tespest descent from r, (as traced by the vectors, -Vp(r)}, together

[

efine the gradient path through that point. The particular property

'pf these paths which is of interest here, Is that they always iie on

4
Esurfaces of zero flux. Thls follows slnce the flux normal to a gradient

' path 1s zero_for all points on It. A path can traverse more than one

! surface of zero flux when it lies slong the intersection of those ™~

surfaces.

/
Every gradient path through a charge distribution must originate

" and terminate at (1) a statlonary point (i.e., where-;o(g) = 0), or
(2) a nuclear coordinate (where p(r) cusps and-ap(x) Is undefined).
(The point of minlmum p(s) on a given path will now be referred to
as the origin of that path; the point of'maximum p(r) will be referred
to as the terminus.) Almost all gradlent paths-throuéh a charge dis-
tribution either orlglna;; or terminate at nuclear positlons, a;d
therefore do not traverse partitioning surfaces. (Recall that nuclei
cannot lie on partitloning surfaces because of the disconthuffy In
Eo(g).} The gradient paths which do lie oﬁ these surfaces; are those
which both orlglnate and terminate at stationary polints In the charge
d{stributlon¢ _ ,

This can be best illustrated by an example. Fig. 2-1 shows
a contour map of the charge distribution In one of the_cv symmetry
planes of the BH3F- molecule (C3v symmetry) . A number of gradl?nt'
paths in this plane have been traced, starting from polnts extarior

to the outermost density contour shown (p{r) = .00Z au). {The paths

-
actually orlginate at Infinity, where Vp(:) is everywhere zero.) All




Figure 2-1. Gradlent paths Ip a dv symmetry plane of the BBBF-
molecule (C3V symmetry). The nuclel are, from left to right: W, B,
and F {two of the hydrogen fnuclei are out-of-plane)}.

The contour values In this flgure (and in Figs. 4-1 through 4-4&)
increase in value from the outermost contour Inwards In steps of
zhx an, h x IO", 8 x 10". The smallest contour value Is .002;

n increases in steps of unity to yield a maximum contour value of

20.0. The above values are in atomic units.

——




ca. o

(43




-

v - . .
' but four of these paths terminate at nuclel. Two of the four terminate

at the ;add]e point on the B-F internuclear axis; the other two
. terminate at the saddle point-near the B-H axis. Together, these

" four gradient paths define the Intersections of the partitioning sur-

' faces In this molecule with the o, symmetry plane.
,Tﬁat two, and only two grﬁdient paths In a symmetry pl;ne
terminate at each saddle point in that plane follows directly from fhe
toﬁography of the charge distributton. Fig. 2-2 iliustrates some v J
representative denslty contours' In the region of a saddle'point.
Several gradient paths in the vicinity are shown. An important |

property of gradient paths in a symmetry plane is that they RUst run

perpendicular to the density confburs. ' For this reason, only two of

the paths In Flg. 2-2 actuiﬁlyAtermlnate at the saddle point.r These
_are the two which lle In the reglons of lower density aboye.and below
the saddle point in the dlagram. All other paths, no matter how close
they ma; ile to these two, must eventually turn away from the ;adﬂ!e '
point. Whether or not the two paths actuaily lie on a proper partitlioning
surface depends on whetheh or no¥ they orlglnatd at-stationary-points.
In.an Isolated mol;éule (oé., BH3F- in Fig. 2-1} they would normally
orlélnage at Infinity, and therefore would qualify in this respect.
Note that two other gradlent paths In Fig. 2-2 also incluﬁe
the saddle polnt. These paths 1le In the reglons of higher density to
the left and rI;ht of the saddle point, and actually orfglnate at tﬁqt ~
_point. They Xoo will 1ie on partitioning suffacos, providing they also
_tormlnate at stationary pélnts. Normally, in an isolated molecule,

ihese paths would terminate at nuclel, and therefore would not be




-

Gradlent paths In the region of a saddle point, drawn
The saddle point is colncident with the

Figure 2-2,

In a plane of symmetry.
Solid contours denote increasing

Broken contours

. contour crossover at the centre.

density as one moves away from the saddle point.

denote decreasing density. Gradient paths are dencted with arrow-

. heads which point In the directlion of steepest ascent through the

charge distributioen. ‘{\‘ : .

54
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ligible. However there are excensiong (for example, see Fig. 2-14).
g
The above.discussion has bgen confined to symmetry planes for

nictorial purposes. Only in a plane of symmetry is a twp-dimen51onai
representation of a gradient path pOSSible. (A gradient vector in a
symmetry plane has a zero component perpendicular to that plane.)

'In ganeral, one.must think In terms of three-dimensjonal charge distribu-
b

. - 1
.tions and-gradient paths. The three~dIimensional pictucial analogues

éof Figs. 2-1 and 2-2 may be mentally constructed I f one visualizes

{density "shalls' instead of.coﬁtours. (A density contour Is actually
1 . . ’ . .
[ the Intersectlon of a threa~-dImensional shell of constant density with

[ a planﬂi) A saddle polnt occurs where two closed sHelis of the same
E density mget.,'Gradient'paths {n three dimensionsjcan-be readily

E visualized, as they must Pun normal to all density shells. The two- i
; dimensional arguments presented above can readily be extended to the

: three- dimension?1 picture, Only the visualization is somewhat-

- '

more di fﬂcultf A

. \ B}
In most cases, one can define the partitioning surfaCcs directly

in terms of the gradlent paths\ Closed Au&{acea of evenywhena zeno
glux are operationally ‘equivalent to 6un5acaa dedined by the collection
0§ all gradient paths which ordiginate ?nd‘tethnateﬁat stationarny
_podints in the charge distribution. The dlfference Is that the first
definition Includes the closed surface of zero flux at lnflﬁliy, whereas
‘;he latte} d6§s not. (Since'ao(s) is_thrQWhere zero at i;flnlty; no
gradient paths traverse the surface tﬁqre.) The surface at lpfinity-
must be lnc]uded_iflthe closure conditlon in the original definition _;

-

is to be satisfled. Strictly speaking, this closure conditi?n Is

L
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recessary if the_ffagments are to be well-defined. Most of the gradient
paths which traverse the partitioning surfaces in isolated molecules

originate at infinity.' These surfaces are closed only by virtue of
4

-

their intersection with the surface at infinity. Thus, the original
definition, although possibly not as visually appealiné as the second,
is the most complete of the two. The second definition is more useful

from an operational viewpolnt. At present, it appcaré that the only

way of deciding whether or not a given point lies on a pértitioning

surface, is to détermine whether or not the gradient path which passes
through it originatcs and terminates. at stationary points. This segﬁs
to be the only praperty speciflc to points on these surfaces. -

A detailed discussion of the method of su}face ca!culétion used
is given iﬁ Appendix 1-B. Here we glvé only-ﬂ brief summary.

{1) Stationary points In the charge distribution were determined.

]

{Only saddlg\bolntsvwcre encountered [n the molecules studied
5

here.)
" (2) The partitioning surface passing through a given saddle

point was found by calculating several of the gradient

paths terminating at that point. Thls was done by following

paths of steepesf descent through the charge distribution,
starting at polnts a short distance from the saddle point

(lo'6

au), in a dlrection approximately écrpendlcular to
the path of steepest ascent from it. The paths were cal-
culated incrementally, using approximately 1000-1500 points
'}pr;path over a span of about 10 au.

(3) Additional QurfaCQ'pants were found by interpolation

between these paths.
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~

0f course, the gradlent paths and surfaces calcutated in the

bove manner are only approximatlons to the correct ones. However,
.cbnvergencc studles Indicate tHat they are good approximations.
Fragment properties (electronic populations, energies, and forces)

calculated using these surfaces are ganaralfy correct to within

*+ 0.0001 au.

] \ :

Before COﬁc]udlng this section, a few br{éf exanmles'might

- gerve to clarify the above discussion. First, atoms cannot be partitioned ' .

. under the above Qcheme\ Atomic charge distributions contain no

stationary points. Therefore, all gradlent paths terminate at the

: nuc\cugi There are, of csursc, an Infinitc number}of zero flux surfaces

{closed at infinity), but they all exhibit a discontinuity at’tﬁe

. nuclegs. -t

in Fig. 2-3, several molecules and the general characteristics

of thelr partitioning surfgces are ilf;stratad. Solid lines denote

{ internuclear axés in the plaﬁe drawn; dotted llnes represent the !ﬁtcrf
sectlon of the pattltFonlng surfaccs'wlth this plane; stationary points.

'

}  are denoted with an “'x".

" The partitioning surface in a homonuclear diatomicunolecule is

L4

F coincident with the ch_thmotry plane which bisects that molecule. .
This plane extends to infinity in all directions and is closed by
intersection with the zero flux surface there. There is one stationa?y'
point in the charge distribution -- a saddle point coincident with the
density minimun at the bond midpoint. Ail gradient paths which originate
in the o, plane {at infinity), terminate at this saddle point. Those
which originate at points to the left of this plane, terminate at the
nucleus on the left; those which orliginate at points to the right,

-~
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Figure 2-3. Some representative partitioning surfaces: (a)_a homo-

~ nuclear diatomic; (b) a heteronuclear dlatomic; (c) water (sz);
7 (d).ammonia (CBV); (e) benzene (Déh)‘ Stationary points in the U

plane are denoted with an "x'.
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" do not quallfy as partitioning surfaces.

 terminate at the nucleus on the right. 1t is worthwhile pointing out

N

here, that all symmetry planes_érc surfaces_of zero flux. These planes,
in conjunction with® surfaces which Intersect with them and close them,

- . Ll > "
can Qualify as partitioning surfaces providing they are free from-

t nuclear discontinuities. All linear malecules, for example, have an

infinite number of o, symmetry planes which extend to, and are closed

at infinity. Howaver, all these planes contain the nuclei, and thus

-

The partitioning surface through a heteronuclear diatomic

molecule is a-curved surface which passes through the-point of minimum

-

density on the internuclear axis, and intersects that axis at right

angles. Agaln, the surface extends to infinityland Is closed there,

L}
-

The saddle polnt in these molecules is alway3 colncident with the

density minimum on tho'lnte;nuclear_axls. The gradient p#ths which
traverse the partitioning surface o;?;lnate ét lnf{Bity and terminate
at the saddle polnt. These path§ are ident!éal In all a, pianes.
Therefore, the full three-dlmenslpnal surf#ce may be obtained by
rotating a single path through 360° about the iqtérnuclcar axis.

I The H20 molacule 1s of c2v symmetry and contai;s two equivalent

caddle points, one near each of the D-H internuclear axes. These -
o . . ]

-

saddie po}nts lle near the density minima on these axes. The partitioning
surfaces which pass through them a}e&agaln c1ose& at infinity. HNote |
;hat\}n the o, symmetry plane, two of the gradient paths on the surfaces

run nsymptot!c,to the C2 rotatlonal axis,‘és they extend to Infinity.

The par:ltlén!ng surfaces are, of course, Symmatric acros; both a, ‘

planes. Therefore, only one-half of one partitioning surface need be -
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evaluated; the rest may be obtained by reflection,

The NH3 molecule Is of th symmetry and contains three equivalent
stationary points -- all saddle points near the N-H axes In tse a,
symmetry planes. Only one is showhf The sﬁrfaces which deflne the (H)
fragments are all equivalent. Only one surfgce intersects with the c;
plane drawn. 'One gradient path in €ach c; plane rung asymptotic to
the C3 axis as 1t extends to Infinity. C

Finally, consider the benzene molecule. The thirteen stationary
points previously discussed are indicated in the diagram. The surfaces
which define the (H) fragments .pass through the saddlé points on the
C-H axes and are of local sz symmetry.A_ThQSe surfaces, In conjunction
with\thc-three ov‘symmetry planes which bisect the C-C bonds, define
the (C} fragments. The two sets of surfaces Joln and aré& closed at
inflnity;{ The gradient paths yhlch traverse the curvcd'sﬁrfaCcs
originate at7infinity, and terﬁinate at the saddle points in C-H bonds.
There are two ;ets of gradient paihs which traverse the symmetr§ planes.
Some of thc.paths originate at Infinlty and terminate at the saddle
points near the €-C axes. The others originate az the statlonary point‘
at thé'centrc of the mole;ula, and also terminate at the C-C saddle
qunts. | - _

In atl tA; examples given s; far, ﬁolacglcs have been
partitioned Into mono-nLcTéar fragments. It is not always possible

-

to do this. ‘For example, there are no partitioning surfaces passfné
through the charge distrijutions In eH" (X 20%) ond new® (x 1rh).%5
These charge dtstributions are so strongly djijnated bQ the heavier
nuclal that no saddle polnts appear. This i% not a shortcoming of the

partitioning mathod; 1t simply means that the hydrogen nuclei in these
¢ “ R i

~




molecules do, not have sufficient influence over the charge distribution
to define their own fragments. They act only as small perturbations

within the system.

-

i

¢
C. Properties of the Surfaces and Fragments

The partitioalng surfaces discussed in the preceeding section,

and the fragmeﬁts they deflne,‘are unamblguously determined by the \
[]

spatial topography of the electronlc charge d!stribuflon. For this

reason, the partitioning method Is completely general and may be

-

_applied to any chemlcal system, regardless of its symmetry or complexity.
: )

when. a single molecule is consldered, the partitioning surfaces define

the regions of space assoclated with the various nuclei in the molecule.
When an ensemble of molecu!e§, atoms, or ions s considered, the
surfaces also partition the various members of the-ensemble from each T
other. Thus, i} is possible to assoclate a SpécIfIc region of space
with each?constituent In arsolld, 1iquid, or gas.’ f :

Further, ;he definition Is a dynamic one. .thn the ;hargc
distrlbution undergoes a continyous change {e.g., as in a molecular
vigration; or during the course of a chcmical reactidn}, so too do the
partitionlng‘surfaccs, the fragments they define, and tgc propcrti?s

<
NN -

of these ‘fragments (see below). It Is Interesting to note that the
. r

number of stationary points In a charge distributlon, and sometimes -
even the number of partitioning.surfaces, Is not necessarily conserved

during changes [n nuclear cohf!guratlon. Consider, for example, a

» : P . ; .
portion of “the potential surface for the Hy +.i - H3 reaction.

. 7 e

‘\




(a)

A sketch of partitioning surfaces and stationary points at

several points on the potential surface for the reaction: H2 + H ~ H3-

ny''s partitioning surfaces are

Flgqure 2-h.

Statlonary points are marked with an

denoted by dotted lines.
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Fig. 2-h illustrates the behaviour of the partitioning surfaces and

Y I AP ST S T A

stationary points as the H atom-approaches H2 along a C2 symmatry

o e

axis of that molecule. ({a) The statlonary polnt in the H, molecule
is, of course, a saddle point coincident with the density minlimum at

the bond midpoint. The partitioning éurface Is coincident with the

oy, symmetry plane which b!sectg the moleculte. {(h} The spproach »f

H is marked by the appearance 6f a new sa;;T:\Bblqt on the C2 axis,

and a new partitioning surface. The origlinal partitioning surface In . ‘
H2 now terminates at thls surface. The ori;inal saddle point s;ill

lies in the original oy plane, although }t is no longer constrained (by
s;hmqtry) to remaln on the H, internuclear axls. (c) As H approaches
more closely ghe density In the région of the new saddie point in-
creases, and lt eventually splits into three -= two saédlc points, one

on each side of the C2 axls, and a-true density minimum on that axls.

Ngte that the.numﬁér of partitioning surface§ does not change. As

the Fea;tion-proceeds, the density minimum continues to move down the

C2 axls)with the H, and the two new saddle points gradually move away

from each other. ({d) When the three nuclei are equidistant, tﬁe ?
three saddle points become equivalent, each lyling along g 9,7% symmetry
plane intersection; a ;hort distance from an H-H internuclear axis.

The fourth statlonary point Is now colncldent with the density minimum

at the ring centre. | |

The approach of nuclé!l can also lead to the dfsappcarancc of

stationary points and partitioning surfaces. Conslider, specifically,
a heteronuclear diatomic molecule, AB. As the A-B internuclear distance

is decreased, the saddle point bctwqgn'tha nuclel will eventually dis-

+
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appear'as the charge distribution approaches, in a very real sense,

the limiting case of the 'united atom''. When iﬁé”nuclear charges on .
A and B are very different, this will occur at much larger Inter-
nuclear distances than when they are similar. {(Recall the example of -
FH+ and NgH+ mentioned in Section B of this chapter.) When the charges
are identical (i.e., in a homonuclear diatomic), the stationary point
will persist for all nuclear configurations.

a We now consider some of the properties of fragments defined -
by these surfaces. -

1. _The partitioning method appears to yield chemicglly
identifiable fragments by maximizing the rctentionﬁof the distribution
of charge and of propertlies of a fragment wh;n it occurs in different
environments. The changes in the charge distribution which ocgur when
a fragment is'£ransferrcd from one system to anothe;, are largely , 7 -
Yestricted to the reglons of low density surrounding the nuclel. Th;re
is considcrable evidénce tﬁat constancy in the charge distribution of
a fragment in different systems may accbunt for the.near-additivity
of properties often observed experlmcntaily -- an additivity which is
no less than remérkableiconslderlng the tremendous changes in environ-
ment which often occur upon transfez'of a fragmcnt from one system to
anothcr9.l We return to this point shortly.

2. Each fragment has a well-defined electronic ?opulatjon
and energy. The population of a fragment (a), N{A), may be obtained

by integration of the electronic charge density, o(s), over the region

o
of space occupied by (A).

K )
W(A) = [plr)ds” | (2.8
. A




An expression for the electronic energy density may be immediately

written down in terms of the first- and second-order density matrices

O(E{EI) and T(rl, Lo ;-I;) as

e (r) = -}Vzp([;.c"')r,,r. + cE}l(“zulra)p(‘t_j) + [rlr.p ) gy rpldr, (2.9

where Zu denotes the charge on the ath nucleus, and L denotes the distance

“from the point r to that nucleus. The above expression may be abbreviated

to

Ee(g) - K(r) + v'(r) + Vv'(r)

[2.10]
where K(r), v'(r) and Vv"'(r) denote the local contributions to the
kinetic energy, and the one- and two-electron potentlial energies,
respectively. The electronic energy of a fragment E;(A). may then be '
obtained by integratlon of [2.10] over the volume of (A). .
b l ' / ?
E (A) = [k{p)dg + Jvi(r)dc + [Vi{gldr -
© A AT A
' - K(A) + V' (A) + V''(A) [2.11]

V'(A) is equlvalent to the-attractive interaction of the c%arge density

in‘(A) with all the nuclei In the system. The twb-elcstron potcntial'

encrgy of (A), V' (A) lslequivalent to the self-repulsion of the electrons
in {A), plus one-half the repulsion of the electrons in (A) with those

external to (A). in general, the six- -dimensional Integration requxrcd

The integration of Y(EI'LZ) over (A) may be written as [£d51£d£2+£d5’fd£ 1T
= Ta(A) + Vg(R) = V{A). similarly, Vi(e) = Vy(B) + V(). Vi(A)is
the self-repulsion of thexclectrons in TA), and ﬂE(A) rus ¢ equal one-half

of the electron-electron repulsion between (A) and (B) since VR(B):VB(A).

=
» .




48

to determine Vi'{A) 1s rather time-consuming. When Hartree-Fock wave-

functions are employed, the term may be evaluated Indirectly (see -

Ll

_Appendix 1A for detalls).

In addition to the usual Schrodinger form of the kinetic
energy density, K(t), 1t Is possible to define a function, G(r),
which upon Intégratlog over all space also yialds the average electronic

92

kinetic energy, T;, of system, G{r) may be written in terms of the

natural orbltalsh‘ of the system, {y‘}, and their occupatlon'numbers.

Pl

{A]}, as

6l) = 4wy, () 9y, (D) (2.12]

(For a'Hartrée-Fock wavefunction the nagural orbitals are equivalent
to the occupied orbitals.) K{r) and G(g), although they both yield
the average kinatic energy of the system when integrated over all
space, are generally quite different locally and are related by the
expresslon,
L(E) = k() - &(5) = 7% (p) (2.13]
. , <
K{r) exhibits all those quantum-mechanical pecu}iaritlcs (1.e., negative
and Infinite values) which are Irreconcilable wlih the classlical
concepts of the kinetlc energy. YThese pecullarities are isolated in,
L(r), and hence G(r) Is classical-like to the extent that it Is flnite
and positive for all finite values of r and tends to zero as r, tends
to inflnity. -

The difference between K{A} and G({A) fér a given fragment,

(A}, Is given by




T(A) = R(A) - G(A) = ~&[[[#P0(r)dr (2.14]
A

The volume Integral In the above equation may be transformed into an
integral over the surface defining the fragment (A) by means of

Green's theorem, and therefore [2.14] reduces to
— - .
T(A) = -&Ifao(;)-n(glds : [2.15]
A s

- i -
where n{r) is the outwardly directed unit vector normal to the surface

: . N
at r, and the integration s performed over alli r € s(r). For the

partitioning surfaces defined in the preceeding section, the integrand

in [2.15] 1s everywhere zero (recall Equation [2.7]). Therefore,

-«

L(A) = 0 for all fragments defined by these surfaces, and the electronic

kinetic energy, TE(A); may be obtained by-integration of either K{r)

or G(r) over the voiume contained by (A). 3

b

L4

: | RAOEROENIO R S el

In the sense that both K({A) and T{A) are identical for}fragments

, /
defined according to [2.7], the kinetic energy. of these fragments is

well-defined.

b}

”

3. There Is substantial.evidence that a regional virial
theorem may hold Fgr fragments defined according to Equation [2.7].
The exlstence of such a theorem was first suggested by Bader ?nd
Bcddall.%'gI and.based prlﬁaril§ 6n two observations regarding tﬁe
charge distribution: ' :

(1) The additivity of properties (including the total energy)

. often observed experimentally appears to be a direct

consequance of charge distributions of fragments remgining
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upaltered upon transfer between systems;
(2) To the extent that the charge distribution in a reglon
- of space remains unaltered upon transfer, so too does
the kinetic energy dens];} as deflned by G(L);
These two obsgrvatlons, taken together, suggested the existence of a
relatlionship hetween the totak energy of a region of space and the
kinetlc energy of'that region. The relatlonshlp between these quantitles

for the full system is, of cburso, given by the virial theorem, [1.39].

It was therefore suggestéd that a regional relationship might paraliel

[1.39] and take the form

(0 = - TR FEHR) (2.17]
a

-

where T,(A) and E_(A) are glven by- Equations [2.16] and [2.11], respectively,
and Fgﬁ(A) Is the alectronic force exerted on the qth nucleus by the charge
density in {A). The last term in 12.17] will henceforth be referred to as

the nuclear virial (see Appendix 11}, and denoted by VH(A). ,

Equatlon [2.17] is not a definitive statement of a fragment virial

. . +
relationship because of the origin dependence in VB(A). That ls, the

’

+ +of .
+ The nuclear virial for, the total system, Vh = “ERQ'FG , Is origin in-
a

depéﬁaént. -This ls easily seen if one considers & shift in the origin
by an amount, é&. ' The nutlear virlal evaluated at this new arigin Is
ek e, +d -+ +of - +of + *of
then given by Vn - -):(Ra-dn)-rcx - - ERB*FG + dR-LF = U + dReIF ™.
G -
The term i%ii must-egial zero as required for translational invariance
a «\ "d - -
of the system (note that Fc 1s equivalent to the net force on c minus

the nuélear force). In general, this is not true when the forces are

~ el
_ evaluated only over 2 portion of the charge denslty (1.e., E;a (a)¥0),
u .

and ther’eforc Vn(A) is an origin dependent term. / “
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[
relatlonshlp could conceivably hold for any fragment, (A), providing

one chose the proper origin to evaluate V;(A). Shortily after the
original proposition, Bader, Beddall and Pe51ak4h published a theoretical
development of [2.17] whlch provided an Inﬁepcndent condition for the
determination of the orlgin. Further, numerical evidence wasrprescnted
to show that only for fragments defined by [2.7] does the equallty_in
[2.17] hold.

"The deQélopment, whlch we briefly review here, closely parallels
. Slater'520 original derivation of the molecular virlal theﬁrem. This
derivation proceeds directly from Schrﬁdlnger's equation, H(-fe+ﬁc)we = Eepc,

which may be written

n 2 2 - /
-i‘zl(a v, /3a)) + (Ve'Ee)*; -0 | (2.18]

where q; denotes an electronlc Cartesian coordinate. By operating

on [2.18], Slater was able to show that

. [2.19]
. s 3y _/3q ' .
K ZI 2 _ ] 2 e - - T
;ve (3%, /3q)) - &@a/aq‘[?e a/aql(}J:qJ _—72371')} %qj(ave/BqJ)VE by
Upon integration over all space, Equatlon [2.19] yields
S{=-2T + 4} = V{-V9+Vn) ™ {2.20]

That ts, the flrst term ln-[i.IS] ylelds miﬁus twice the kinetic energy
of the lystem. -zTé;xthe second term reduces to a surfaces term, o

to be evaluated at the boundary surface of the integration; the third
term (i.e., the r.h.s. of t2.19]) yleldsrthe virial for the system, V,
which may be expanded as the sum of the electronle potential energy,

V;, plus the nuclear virial, V; (see Appendix 11 for detatls of this

5

S i
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expanslon). When the Integration Is carrled out over all space, 2
vanlshes because of the vanishing of ¥, at the boundary surface, ' i

q, = . One is, therefore, lead.directly to the general form of the

virial theorem.‘—ZT; = UV (Equation [1.37]). When the Integratfbn is

performed only over a fragment of the system, # does not, In general,

z.

vanish. It is this term which plays an important part in defining those

!
fragments for which a regional virial theorem holds. : |

Consider now a system gartitloned into two fragments, (A) and 1
(8). The integration over [2.19] may be performed in such a manner as

to yleldhh

4

fs;"(;n\) + 5(B) - T(A) + V(B) [2.211°
S(A) is equal to -ZK(A)‘ + B (A), where K(A) 1s as previously deﬂn‘ed._
(Equations [2.91'- [2.11]), aﬁd é(ﬂ)fls a term to be eval;atcd over
- the surface defining (A). The virial of (a), T(A), is equal to the
electronic potcntlal‘enérgy of (A), V;(A) = V' (A) + V*(A) (again see
Equations [2 9] - [2. ll]) plusithe nuclear vlrlgl of (A), Uh(A). -
Equ.valent&dcflnltlons hold for S(B) and V(B}. A non-trivial fragment

virlal relationshlp would require that .

T(A) = -2K(A) + B(A) = TV(A) ’ - [z__.zz]

Further, a relatlonship of the form [2.17] Nbuld_require that

' -Z—T_‘(A) = T(A) | (2.23)
2 (A) is an origin dcpendcnt term through the presence of the 9 in
(2.19] .. Therefore, so too Is S(A). Similarly, U{(A) is origln dependent
through the nuclear virial, U;(A) (recall the footnote *, page 50)f

There s now conklderabfu evidence that for fraggcnts dgfined according

~

i N
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to [2.7], and only for these fragments, Is the origin which causes
A(A) to vanish Identical to .thaf which brings the two sides of {2.22]
into equality. For these fragments, K(A) is equivalent to 'I:(A)
(recall page 49), and therefore, [2.22] is ;zquivalent to [2.23].

To. sumarize then, in analogy with vanishing of @ over the total
system, the vanishing of .S(A), provides :an independent cordition for
the determination of the origln for Vn(A). Only fragments defined
by [2.7] appear to satisfy f2.23]. The surfaces which enclose these
fragments are uniquely defined, by a property, of the system. Therefore,
so too Is Vn(A) unique., and deflned completely by a property of the
system. ‘ .

The non-zero contributions to B (A) come from the _i_"_l_n_l_ti
portions of the surface defining (A), i.e., from all bortlons of the
sﬁrface except those at rnflﬁlty. In polyatornl;: molecul%s/,' one always
encounters interior fragmnnts (1.e., fragments bounded by more than
one finite surface) fn addltion to extarlor fragments (fragments bounded
by a single finlte surface). For exam!e. in BH3F , (B) is an interlor
fragment boun_ded by four finlte surfaces, t!;_u'ee which 1t shares wlth
the 'exterlo;' {H) fragments, and one which it shares with the exterior
(F) fragment. It is clga:‘r from the precesding discussion .that the vanishing
of ¢ for a given finlto surface reqﬁlres the dgflnltlon p'f" an orlgin.
Thus, the nuclear virial of a fragment r?qulms as many origins fdr
its evaluation as there are finite surfaces bounding it. One may: obtaln
a general 'expre,_',]m'for 'u— (A) 1f one defines it by difference, I.e.,

V (A) = --ZV‘(I) where (1) Is an exterlor fragment sharlng lts surface

with (A), and UL denotes the origin assocliated with the vanishlng of
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& for the finite surface defining (1). 1t Is then a simple matter

to show that

T (A - -JROFEW) - IE e ) [2.24]
a ] o )

where'iz denotes tha po;itlon vector of nucleus-a from any origin, Ho'',
and-;‘ denotes ~the position vector from "q" to "', When (A) is an
exterlor fragment, [2.24] reduces to'vg(A) -'-XE::?iz(A), ghé 1imiting
fork of vE(A) which appears In Equation [(2.171 . -

The evidence for a fragment virial theorem ls, at present,
numerical in nature. No analytical proof for the rélationshlp [2.23]
has'yet been found. Unfortunately, the hypotheses are rather difficult
' to check for polyatomic systems such as those reported In the foTléwlhg
chapter, because of the larger/prrors lﬁ the total virial theorem, and
more especially, in the forces assoclated with these wavefunctlons;

We will, thorefofc, in this work, assume the validity of [2.23] to the

extent that we will take -T;(A) = E(A) for systéT§

7

with no het forces
acting on the nuclel, l.e., here, systems “in theﬁé nqulllbrlu; geomgtrlas.
In thls-gase,.V; reduc;s to V;, the nuclear repulsion potential, and

. hence -?; - E. V;(ﬁ) is theﬁ equivalant.to that portion of Vh asslgned

to (A), and when added to E;(A), yields the total enargy-bf (A). -

(n that the virlal relationship appears to hold for fragments defined

by [2.7] , we will, henceforth refer to the partitioning scheme as the'.

*

virial partitioning scheme. .
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NOTE ADDED IN PROOF: \\/,,

At press time for thls work a paper appéarcd in the literature
on regional stationary princlples and virlal theorems: [A. Mazziotti,
R. G. Parr, G. Simons, J. Chem. Phys., 223‘959 {1973).] These authors
have shown that If thé‘Born—Oppenhcimer:Hamiltonian for a molecular
system is averaged oveF all séac& for electrons 2,3,...,N, but for
electron | 1s averaged only over ¢he volume A, bounded by a surface

‘ )

s, the regional ‘expectation value S0 defined is stationary with respect

Yo change of a parameter £ in the exagt wavefunction, provided that

I[(a/aE])PE(1,1')] ds
S

=0
1'm} '

1

@

- -
where n Is a vector normal to S, and for nodeless v,

ﬁg(l,l') = o e 2, NTU(1,2,000 N)

(a/aa)ﬂn[v(l,2,...,N)/w*(l',z,..;;n) dr, <. dry

Under this condif!on a reélonal virial has béen showﬁ to hold for
the volume A, In the sense prevlously described in this work. *The
above conditlon 41 ffers from fhe condition given In Equation [2!6],
but, in the opinion of these authors, the surfaces defined by it

should be very similar to those defined by Equation [2.6].
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CHAPTER 3
A SUMMARY' OF WAVEFUNCTION COHPUTATlONS‘ e
511 computations were performed on Control Data Corporation 6400
and Cyber 70 computcrs with a locally upgraded version of the ﬁbLYATOH/Z
SCF program system (programs PA20, PA300, and PALO (PA4OO for the
open-shell atomlic sys;cms)). ThOSc.for BH3. HFB, anh'l aH3c0 and FHF
are the best’;cportcd to date in terms of the total energy. To the

author's knJEJedge, no previous computations have peén performed

on BHBF_ and BF3H_;

A. Boron Systems

Y

1. Basis Sets

*

A1l wavefunctions for the boronzbystems cmpqu Huzlnaga'553

(10,6) Gaussian hasls sets on the first-row atoms, and his 6s expansion

[

on the hydrogens. fhe (10,6) sets were contracted to [5, 3T“a¥/suggcsted

by Dunningtsh The 6s hydrogen set was contracted™2.2.1.1 for all ex-

v

cept the BH3C0 wavefunction, where the contraction was 2.2.2. A

complete set of d-type polarization functlons (xz, yz. zz, Xy, Xz, yZ)

was added to eacﬁ first~r0§ atom (cxB = 0.57; . = 0.92; = 0.91;

%0
ap = 1.00); a complete set of p-type polarization functions (x, Yo z)
Was J;dcd to each hydrogen (uH e 1.00). Exponents of the polarization
function are close to optimum.

In addition, for the negatively charged molécular lons, BHh-
and BHBF', (
function per atom (cB - 0.30; a. = 0.11; oy " 0.032), and one diffuse

the sets were further augmented with one diffusg s-type

-55-




d-type function per first-row atom (cB = 0.022; a. = 0.073). This
additional {sp/s) ?ugmentation was done to ensure thaf the wavefunctions
for thasé molecular fons, with their more QIffusc electron distributions,
would be of about the same quality as thosé for the neutral molecules.
For the BF3H- molecular'lon, only the H set was augmentcd'wlth a

di ffuse function. The reason for thls was partially a fiscal one, for
augmentatloﬁ of the entire b;;?; s;t would have nearly doubled the
already large amount of calculation tlme required. Further, it was

felt that additional flexibility on the H could prove to be'more important
than on  the (BFB) fragment. 1f the extra chargé &ensity in this mole-
cule wds largely localiied on the (BF3) fragment (specifically, on the
fluorines), it would be shared among the various constltuents, and

extra flexibility in ;he basis set would not be quite as Important:

1f, on the other hand, the extra density was locallzed fargcly in the
region of the H, additional flexibility here would be almost mandatory.

It was expected that the add{tlonaf diffuse functions wohld have
little effect on the neutral species. In order to che¢k this, calculations
with and wlthout the addlitlonal {sp/s)} augmentatlon were pcrfo?mcd on |
B, H, F, BH, BF, and BH3 lt was found that although the addlitional
functions had very }ittle effect on the total clcctronlc energy, they

sometimes had an appreclable effect on the various components of that

energy (T, V', and V). For this reason, whenever possible,«cgfgarisons
Y

- 4

are made only between systems and fragments which employ identical

-

~

basis sets. - o
A sumary of tho wavefunctlons and the basis sets Is given In

Tables 3-1 and 3-3. Both the augmented and non-{sp/s) augmented results
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are reported for B, H, F and BH,. The shorthand notation used for the

3
hasis sets employed on the first-row atoms, {A), and the hydrogens,

{H), is as follows:

Al: Huzinaga-Dunning (10,6) = [5,3] augmented with d functions
(uB = 0.57; a, = 0f92; oy = 0-91f ag = 1.00)
A2: The Al set plus additional s (uB - 0.30;‘3F = 0.11) and

p {ag = 0.022; a = 0.073) functions

Hl: Huzinaga (6) = [4] augmented with p functions (o, = 1.0)

H2: The Hl set plus an additional s function (a, = 0.032)

H3: 1dentical to Hl set, except (6) = [3]

2. Geometries

Molecular geometrles for the boron systems are given in Table

56 BH C0,57

3
8 and BF..S9 The BH3 molecule was found to be of D3h symmetry,

in accordance w}th the work of other authors.60-62 The B~H bond

3-1. Experimental geometries ware used for BH,55 BF3,

-

co,”

length in this molecule was oﬁtimlzcd with a smaller basis set
(HuzinagaSB-DunnIm_qSL| (9,574) = [4,3/2(3.1)]), augmented with 2

set of p functions on R (aH = 1.0), and was found to be 2.25 au.

0 62

Other authors have reported Q;!ucs of 2.25.6 2.191,6] and 2.3} au,
using smaller basis sefs. A totrahedral geometry was assuned for

: vBHq-: The B-H bond length In this ﬁolccule was found to be 2.336 au,
’JQaIn via an Bpflmlzatlon proccdufc using a smaller basis set

{huzinagas3-DunningSh (9,5/74) = [h,2/3(2.1.1)]). Previous theoretical

values are 2.1 = .263 and 2.24 au.6h The value obtained here is in

f
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qond agréement with the experimental value of 2.37 = .04 au 651n crystal-
llne Na=, K-, and Rb-BH,:

BHBF‘ and BF3H" ﬁave not yet been o?served experimentally. Both
molecules were assunidto be of F3V symmetry. The geometry of the
(BHB) fragmen; in BHBF- was taken to be ldentical to that of a_(BH3)
fragment in BHh-; the gecmetry of the (BF3) fragment In BFBH- Was
taken as identical to the experimental geometry of a (BFB) fragncﬁt in
crystalline BF,*_.66 The B-F bond tength in BH3F~ was'calculated to
be 2.817 aﬁ,_USIngxthe imallér basis set aescribed above for 833,
augmentgﬁ with-s‘(uB = 0.032; ap = 0.1{0; oy ™ O.QS) and p (EB‘— 0.022;
ag -.0f086) functions. The B-H bonq length in BF3H— was fixed at /
2.31 au,‘an average of the BH3 and BHQ- values.

Two calculations are also reported for'BH3 in"a bent (C3v)
configuration. In one case, QES BH3 geometry is Idertical to that of
the (éH3) fragment in BHHH and BH_F . ‘]n the otﬁer, the gecmetry is

3
the same as that for the (BH3) fragment In\BHBCO.

3. Energetics ‘ ) . ' - )
The total energies and their components for these systems are .

listed In Tables 3-2 and 3-3. The dissociation energies for the larger

‘molecules are given in Table 3-4. These were obtained as follows.

(a) BH3 /_/\

The Hartree-Fock value for the dlssociation energy (Dz) of ,

BH (as calculated from Tables 3-2 and 3-3) s 63.40 kcal/mole. This
LY '

compares to an experimental value of BL_32 kcal[@ole. o Thc:dpfferencnf

betwsan these two values (20.92 kcal/mole) should serve as a good

estimatg'of the correlation energy correction for the reaction,

B i



59

et b = T
e e e
4 Doy

B {g) 3 B(g) + H(g). The Hartree-Fock value for the BH, dissociation
energy ls 233,46 kcal/mole. An'estlmate of the correlation correction é
here may be taken as roughly twice that for the BH dIssoclatIon;’slnce‘ )
three electron pairs are broken during the reactlon BH3(g) + 8{g) + 3H(q), ‘\\' ;
and one new Ealr is formed In going to the boron 2P ground state.
This ylelds a DZ value of 275.3 kcal/mole for the'BHE\dissociatIon.

The Dg values for dissoclation of B,H, lInto atoms, and into two
BH molecules, have previously been estimated as 566.36 kcal/mole 68
and 37.1 kcal/mole,69 respectively. These two values may be toupled to
yield a 00 value for the BH; dissociation of 264.7 kcal/mole, in

3

reasonable agreement with the DZ value reparted here. t '

(b) BF3

The Hartree-Fock and experimental Dz values for BF are -
139.23 and 197.9 * 11.5 kcal/mole,70‘respectlve\y. The Hartree-Fock
value foruBF3 ls 366.23 kcal/mole. Applying the same reasoning as for

3

agreement with the experimental Dg value of 460.5 kcal/mole reported
n

BH yields a o: value for BF, of 483.6 = 23.2 kcal/mole. This Is In

by Dlebler and Liston.

(c} B, , BH,F , BHg 3

The dissociation energies reported for these compounds were

CO,iand‘BF‘H-
1

:computcd directiy from the Hartree-Fock energies. Mo correlation cor-
r;ctions were made since all species Involved ;r; closed shell systems.
{Recall the dls;usslon in Chapter 1-C.} The value of D: (BHB-H-) - 62.7
kcal/mole Is In good agreement.-with a previously reported theoretical

vatue of 62.0 kcal/mole.7z Sevpral experimental estimaFes.for DO(BHB-CO)

Iy . : .
o '

\

-~
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b Y

have been given. McCoy and Bauer/> report 0300 = 18.8 kcal/mole;

0
Feldman and Koskl69 glve 0200 = 23.1 + 2 kcal/mole. A previous theoretical

74

calculation »ith a much smaller (5,3/3) basis set gives Dz = 22.7 kcal/mole.
The value reported here (DZ = 6.3 kcal/mole) is considerably less than
all of these. No previous theoretical or experimental data Is avail-

able- for BH3F_\and BF3H'.

q
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TABLE 3-4

h=

Some Calculated DIssociation EnerglesT

( REACTLON DZ(kcal/mole)
By (g) + Blg) + 3H{g) 275
BFB(Q) + B(g) + 3F(g) 484 + 24
Bde(g) -+ BH3(g) * H-(g) T 62.7
BHBF“(g) - BH3(g) + F (g) ) 60.7
BHB‘co(g) + BH3(g) + €0{(q) ‘ 6.3
.BFBH-(g) + BF3(g) + H (g) 66.4

+ Dissoclatlon energies are for 0°K and do not
include a zero-polnt vibrational energy correction,

T~
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L

81 fluoride Reactlon

|2

|. Basis sets

All computatlons on the bifluoride systems were parformed with
Csizmadla' 575 (!3 7/%) Gaussian basis set augmented with a set of -
p functions on hydrogen (a = 1.00). Thls set was used In uncontracted

form (except durlng geometry optlmlzatlons. where the contraction was

to [4,2/2]),thus providing a rather large amount of (sp) fiexlblllty.

2. Geometrles
Four configurations along the linear reaction path for

HE(g) + F (g) + ?HF'(g)_are reported in—Tab\eq 3-5 and 3-6,
along with results of calcuiatlons on F,'F—. and HF. ;¥e HF geometry
is the experimental one. 67 The geometflés of the FHF lon were all
optlmlzed wlth the contracted basis set descrlbed above.

| The FHF  lon, In Its equilibrium geometry, was found to be of
ﬁm symmetry,’ wlth ‘an F-F distance of 4.24 au. This is consistent with
other recent theoretical values76 73 Which range from 4.20 to 4. 34 au.

' 8
The most recent experimental value is 4.331 t .008 au 0 in crystalline

- - - . )
Na~-, K-, and NHh HFZ'

[y

3. Energetics
The total energy obtained for the equillbrium configuration
of the blfluoride ion (see Table i—S) is surprisingly low, even though
no polarfzation functions were added to the fluorines. The value Is
~ b kcﬁl/mole below the previously reported best value,76—;nj lies only

.01 au above the ostlmated Hartrees-Fock energy.

From the data of Table 3-6, the valuo of D (FH -F") is computed

)

A
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to be 43.2 kcal/mole. This value compar?s well with other rec;nt
theoretical valups77-79 which rahge from &0 to 52 kpal/mole. Experimenta}
estimates of the hydrogen bond energy in this molecule have var;ed .

from ~ 27-58 kcal/mole. The best estimate to date is probably that

of Harrell_ and HcDanle\al (37 £ 2 kcal/mole). The reaction apparently

proceeds with no actlvation energy.
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- CHAPTER A
APPLICATIONS OF THE VlRIAL PARTITIONIRG METHOD

We now employ the virial partitioning scheme outlined in -
Chapter 2 to a study of the changes in the charge and energy
di$trlbutlons which occur during Lewls acid-base reacitons séction
A opens the chapte{ with a dlscussion of BH, ' BF, BH, and BF3.
This section is intended to acquaint the_reader with the concepts
of fragments and fragment properties, and how they may be used in
the description and interpretive study of chemlcal systems. The
analyses of the Lewls aclds, BH3 and BFB,are preparative to the
study of thelr complexes. In Section B we discuss the four com-

3773

respect to the charge redlstr!butlons whilch occur upon complex

plexes, BHB-H , BH,-F , BH,~C0, and BF3-H , particularly with

formatlon. and the reasons underlying them. in Section C we look

at the changes whlch occur during hydrogen bond formation in the
reactlon: FH + F o+ FHF . Flnally, Sectlon D conc]udes the

chapter with a discussion of transferabliity of virially partitioned
fragments between molecular systems, and the possibiiity of em-
ploylgg“%hem In quantum-mechanlcal calcu]atlons All data given

In the tables and quoted In the text are in atomic units, unless

explicitly stated otharwise..

-73 -
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The notation which will be used has, for the most part, been
previously defined. It will sometimes be convenient to break the
clectron-nuclear attractive potential of a fragment, V'(A),.Into its

~

internal and external components. The internal component, denoted as
H

e

f(A)' is simply the attractive interaction of the charge density

o
in (A) with the nucleus (or nuclei) contained by (A). The external
component, Véxttn), is the interaction of that density with nuclei -
exterior to {A). The electron-electron repulsion potential, V'(A),
may be divided in a similar manner. The internal component, Vznx(A),
is the self-repulsion of the charge density in (A). The external com-
ponent, Vgx{(A), is equal to one-half the repulsion of the -charge
density in {A) with the charge density external to it. ({(The other half
is assigned to the external fragments.)

Note also that the virial of a fragment will always be denoted
with a script V, whereas the potential energy will be denoted by a non-
script V. The electronic component of the virial, Vé, is always equivalent
to the sum of V' and V''. The nuclear compouenf, Vn, reduces to the
ﬂuc]egFJFEDulsiOn potential, V;, plus a net force term (thg virial
of the external forces) when a molecule is not at its equilibrium
geometry. (See Appendix 1! for details.) As stated cariier, we will
in this work assume the operation of a fragment virial theorem,

‘ZTE(A) = T(A), and for equilibrium geometries take -T;(A) as equal
to the total energy of the fragment, E(A).
.-Finally, we define the.net charge on a fragment as C(A) = ZA-N(A).

where Z, denote; the total nuclear charge interior to (A}, and N{A}

denotes the electronic population of (A).
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A, A Comparison of BH, BHB’ BF, and BFE

The fragment populations and energy components for all the

horon system are given in Table h-1. The changes in fragment properties
~n bond formation In thé above compounds are summarized in Table L-2.

v .
All values are relative to the constituent atoms in their ground states.
contour maps of the charge distributions and partitioning surfaces for

3
Fig. L-2. ‘ Vs

BH and BH_ are shown In Fig. 4-1. Those for Bf and BF3 appear in

The formation of BH from its constituent atomsthjs marked by
the transfer of .78 electrons (e} from (8) to (H}. In BH3 the transfer
drops to .71 e per (H), a result which one might well. expect-as the
(B) fragment 1osesrmore and more of its valence density. In BF 029
observes a larger transfer of .93 & consistent with the so-called
velectronegativity" difference between F and H. The transfer in BF3
drops to .86 e per (F), paralieling the BH to BH3 thange.; Thus, in
both BH3 and BF3 the (B) fragment 1s hléhly électron-deficféﬁt. This
deficiency is more pronounced in BF3 where the (B) fragment has a net
charge of +2.59, compared with +2.14 in BHB' [1t is instructive
at this point to compare these net charges with those obtained vla';
Mulliken population analysls == +1.10 for BF3 and +0.14 for BH3.
it is even more instructive to compare these population analysis results
with those of other authors. Schwaftz and Al\en82 give +1.39 for
BF3 and -.57 for BHS; Armstrong andﬁéerkln583 quote +.82 for their

(5,2) BF3 wayefunction and +1.42 for their (7,3) BF3 wavefunction.

The tremendous fluctuations in N(A) values calculated via the Mul liken

Schemé are not cbserved when the method proposed 1n this work is used. v

|

/




Figure L-1. Electronic charge distributions and partitioning surfaces
for BH and BHB' Both the o and o, symmatry planes are shown for BH3.
solid crosses denote in-ptane nuclel; dotted crosses denote out-of-plane

nuclei. Contour values are as listed In Fig. 2-1.







Figure 4-2. Electronlc charge distributlions and partitioning surfaces
for BF and BF3. Both the o and 0, symmetry planes are shown for
BF3. Solld crosses denote In-plane nuclel; dotted crosses denote

out-of-plane nuclei. Contour values are as llsted in Fig. 2-1.
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-~mpare, for example, the values for the two BH3 wavefunctions reportéd
in table 4-1. The Mulliken method yields ¢(8) values of +.27 and +.14
far the smallerland larger wavcfunctions,‘respectively. The partitioning
<cheme proposed here gives +2.13 and +2. 14, Comp?;Isons batween Gaussian
~avefunctions obtalned in this laboratory and Slater wavefunctions of
~ther authors give simllar results.) .

Consider now the energies of formation (from atoms in their
electronic ground states) of these compounds. Ve begin with some
general considerations. The virial theorem for an atom takes the
form -T; = E. For a molecule in its equilibrium geometry (no net forces
acting on tﬁe nuclei), the form of the theorem ls ldentical. There=

fore, one may immediately write

-87, < E [4.1]
where a?; denotes the change in the kinetic energy oOn bond formation

(i.e., the kinetic enérgy of the molecule minus the kinetlc energies

of its constituent atoms) and AE denotes the change in total energy

on bond formatién. In order for a molecule to be stable relative to

its constituent atoms, AE must, of course, .be negative. Thus, one

has the well-known resuft that a positive value for AT; indicates an

increase in stability, whereas a negative AT; indlcates a decrease.

Alternately, Lh.l] may be written- as

ST = OV' + AV + BV o [4.2]
e
where AV“, AV'" and AV; denote the changes In the elcctron-nuclcar.
clectron-electron, and nuclear-nuclear components of the potential

ehergy, respectively, upon bond formation. Therefore, in order for 2



cyctem tO achieve stab{fity (AT; > 0), we must have AVY + AV + AV; < 0.
1ean bond formation AV < 0, AV > 0, and AVF > 0. Whether or&hot
. cystem can achieve stability depends upon whether the charée re~
dictribution accompanying bond formation is such that the overall
Jecrease in V' Is sufficient to offset the destabilizing increases in .
V' and VB. That 1s, for an increase in stability one must have
AR AV + AVB. The extent by which lﬁvﬁl excéeds av'" + AV; is
given by 28T. " -

Since the partltloning procadure yields fragments which

separately obey the virlal relatlonship, we have, in addltion to

[4.1] and (4.2],

-ATe(A) = AE (A) , [4.3]

and

-287, (A) = &7' (R} + AV (A) + &V _(A) N\, [4.4]

where, for example, A? (A) 1s the kinetic energy of the-fragment (A) in
the mo\ecule mlnus Its value in the free atom, and sim}larly for the
other properties. Thus, a positive AT (A) immediately implies an
increase in the stabillty of (A); whereas a negative’ AT (A) implles 3
decrease in stablllty. The season for any change in the stability of
(A) -in 2 g]ven situatlon may be traced directly to the values of
VLAY, 2(a) and &V _(A). A
~Table 4-2 summarizes these values for BH, BH3 8F and BFB'
in addition to the total values for aV' (A), the internal and external
components, AVLnI(A) and AV' {A) are biven. &V¢nz(A) measures the

changa In the attractlva Interaction of the chargo denslty In (A) with




j .

its internal nucleus,'upon transition from free atom to ﬁolecu!ar fragmcn;.

v LI(A) is equivalent t? the lnteﬁactlon of‘thaldengity-ln (A) with the
nuclei external t; it in its new molecular environment, ag interaction not
experienced by the free atom.™ With these definiiions in mind, we now proceed.

we first note that in gll four molécules.-thc (B) fragment has under-
gone, a. decrease in'stabllity (relative toia'B atom in its ground state).
The overall stability of these molecules may therefore be'af;ributedﬂdirectly
to increases In the stabilitjesrof the (H) and (F) fragments -- increases
which are more than suffidient to counteract tﬁérdestabilization\experibnced
by the (B) fragment. ﬁhy does a fragment stabl{izé d"’destabillze in a
given bonding situation? We consfider first the BH mdlecule. Recall that
the (B) fragment in this molecule has Jost a conS{derablg amount of
electronic cﬁarge (0;78 e). fh]s is immcdiétoly reflected by a positive
Avlnifﬂ) value of 1.99. The attractive interaction between the charge |
density remaining In the (8) fragmcnt and th¢ external H nucleus,,AV' (8),.
is only -I .52, not sufficlent to counterhalance the lncrcase in Vinz(a).
Overall then, aV'(B) is posltive. Uhenevcr a fragmcn; has a3 positivé*’
aV', 1t invarfably undergoes a decrease in stabillty~ AV'(A) and AV (A)
are generally positive and destabilizing. Thus, a negatlve value of

AV'(A) is mandatory if a fragment Is to have any chance Pf sgabilizing

ifself.+ In BH, V'*(B) undergoes an increase of..lz.\ Thus, the decrease

4 q

+ A negatlve value for aVI'(A) Is most unllkely~upon bond formation. . 1t
would require (1) that (A) lose a substantial amount of charge density
and (2) that the decrease in V" (A) assoclated with this loss not be
outweighed by the positive external repulsion term,. Vit (A). The
lowest valus of AV''(A) yet observed is +.053 for the (56) fragment in
Bek. 45 Occasionally, one does observe negatlve Av {A) values upon .
bond formation {eg. the (B) fragment In BH3) Houcygr. these are always
small In magnitude and have never led to stability.

)/

-




in the self- repulsion of the (B) electrons due to ;he +9ss of .charge

density, vznz(a), Ls outwalghcd by the repuision bctwecn\the charge

1-

density In the (B} fragment and the denslty external to It. Vn(B)

slso undergoes a small increase (.04) upon bond formation. Thus, all

three cOmpOnents of v(8) contrlbute to the destabilization of the (B)

~

fragment in BH. The extent of. this destabilization Is given by -AT (B),

=

and is—therefore egual to 193 kcal/mole I

LS . -

The nuclear vlrial of a fragment requires some additlonal comment.
It is determined primarily by the extent to which the charge density In
a fragment counteracts the nuclear repu]s!on-forces. The direction and
magnitude of the forces exerted on the,n;clei by the ;hgrgc‘déésity in

various spatial regions is characterls;ld of the binding in the system.5°’93

f -

+ The internal and exta?nal camponents of AVV'(A) are not reported here.

/

" Unfortunately, there Is no way. of obtalnlng (A} apart from » time-
consuming, six-dimensional Integratlon of P(ri.rz)llr"le over the fragment,
(A) . Recall that the total'vaiues of V"'(A) reported here were obtained

by an alternate method (sse Appendfx‘la.\iq; [At.10]). :




:

For examplg; in‘BH. because of the net chérgq transfer from‘fﬂ) to (H),

Lo 1 . . [ |/\ ’ K
the (B) fragment is positively charged and, as a whole, exerts a net

ant;binaing (repuilsive) force on thelH nﬁcleus. Vln-brder to counterg
balance this, “the charge density in'tﬁe (H) %ragment is polari;égf\.
iqgarés {towards the B-H bond), and £hhs exerts a net bindjng force
’ s

on its own'nucleug Slmxlirly, the (H) fragment is negatively charged

- 3
"and thus exerts a net bnndnng (attractlve) force on the B nucleus.
'n order to counterbalance this, the (8) dcnslty }s Polarized away-
from the B-H bond, and thus exerts a net antnblndnng force on its own

nucleus. This back-po1ar|zat|on is eyident in the contoutr map o#xthe

BH chargc.dfstributidn (refer to Fig. 4-1). In summary, the chérge

density in the (B) fragment does little to tounteract the nuclear repulsive

, forces. It exerts an antlblndang force on its own nucleus, and’ because

~— %

of the loss of charge denstty, a reiativcly small b:ndlng force on the

H nycleus. The orlgnn deflned by the partntlonlng surface in BH is
near the bond midpoint. Thus, the bindlng force, f (8), gIvcs
positive Eontrlbutlon to the nuclear virial of ‘the {B) fragment (I.e.,
Ry Fu (B) > 0), and the antibinding f@rce; ?gL(B). gives a négativél
contribution {i.e., ﬁ ?ei(B)'<l0). The two contributions are nearly

equal in magnitude and almost cancel. Thu;.'v;(a) [E.AVA(B)] Is reduced

" to a relacvely small value (.04).
—
We now return to BH. The stabilization energy in this mole-
cule comes entirely from the (H) fragment. The charge t ansfer to this

fragment resuits in a decrease ln its intcrnal V' (Avint } = -.74).

There is also a signiflcant stabilization from the lnteractnon of thc

L

{(H) dcnslty wi;h the +5 charge of the B nucleys ‘“"Exx(“’ = -4.12), nnq

SN N -

[

\
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therefore ?“(H) ﬁndcrgocs a‘significaﬁt decrease upon bond formation

(AV'{H) = -4.86). [{t Is interesting to note that‘the charge denslty'
transferred from (B) to (H) interacts with the B nuc%gu&ég}most as

strongly on (H) as wh;n 1t was on (B). 'Tﬁc portion o}-AleI(H) attributable
to the transferred elect{ons should be approximately equal t6

(aN(H)/N(H)) x ﬁVExz(ﬁs = -1.81, since there are no core electrons

in the (H) fragment. The Interaction of this same densjity when on the

B atom is approximately giveé by'-AVlnz(B) -_-1.59.] v (H) undergoes

an’ increase, Iﬁternally as well as extarnally, because of the chérée
transfer to {H). Further, the bulk of the nuclear repulsion forces

“

are balanced by the charge density in (H): It ?xerts a bindiné.force
on its o;n nucleu§,'§lus a rclatlvel§ large.blndlng force on the
B nucleus due to its net negative charge. The stabllizing deqreése R
in V'(H) is more';ha; sufflelent to balance ‘che destabilizing increése; \
in V“(H)'and V'(H). KF (Hi Is. therefore posltive, and AE(H) negative.

r

The (H) fragment is stabilized by 256 kcal/mole, an amount which is
—&\“/;orc than sufficient to counterbalance the 193 kcal/mole de;tabilizatlon

of the (B).fragment. Thus§ the molecule as a whole is stable by

63 kcal/mole, relative to the separated atoms. ;

The results for BH3, BF and BF3 are similar E? those for BH.

in each case the {B) fragment loses charga density and is destablllzed“

Thus, the entire stabilization of these molecules comes from the (H)

and (F}) fragments. The changes in BH3’closely parallel those‘ln BHr

Note that £h$ loss af 2.14 e from the (B) f(lgfjgﬁ’sgle again cdusgs

a large Increase in Its internal V', an Increase which Is not counter=

balanced by the external Interactions with the H nuclel. Therefore, av




for this fragment is Bgain positivgf AVI'(B)} s ?gain only slightly
positive due to the Iérg; depLgtlon;of charge density{ and subsequent
decrease in the iﬁternal electron-electron repulsions. These values,
coupled with ﬁhe small contridution érom AU;(B);‘once again yield a
negatlive AT (8) value an héﬁce, a ﬁositive AEYB).‘ in BF:ahd BF3,
the changes are somewhat masked because of the larger nuclear change
of F. The loss of charge density from (B) is still evident in the
positive AV}HI(B) values. ﬁowevér,\thc.n;gative vé};és of Avéxt(a),
are now.mudh larger in magnitude because of the syronéer [nteréction

< - ’ -
with the F nucleus (or nuclel), and AV'(B) is overall negative and

stabilizing. This, however, is not sufficient ‘to balance the larger

destabilizing increasg; in V'(B) and V;(B). [Mote particularly the @
much larger indféaﬁes in V'(B) relative to those in BH and BHj. Althobéﬁ
the internal compodent.of thlﬁ quantity undergoes a dcc;eaﬁcdéimllar
to those in BH and BH3' the high repulsion betwccn‘fhc ﬁB) and (F)
charge dcnsitics causes V!'(B) to undergo a much more substantial increase
than in BH and BH -] . |
We point out here that the value of Av'nt (and also of Avrnil ; .

for any.fragment. (A),, should reflect not.only the charge transfer to

or from (A), but also any net expansionm or contraction of the charge

deﬁﬁfty in (A). The reader should note that we make a careful distlnction
o~ ’ -

‘between contraction and a simple losg-of charge density, as.we do
between expansion and a simple gain of charge density.[_A, loss df ’
charge densfty from (A) will result in an increase im VLnx(A), whereas
2 net contraction of the charge density In (A) wlll result In & decreage

in ant(A). Similarly, & gsin of charge density by (A) will cause

*
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Vb__»(fll} to decrease, whereas a net expansion of its charge density will.
e By )
<

. - . ! )
cause It to increase. Thus, net cgntractlons or expansions can reinforce

or counteract the dffects of chargeftransfer. Simple charbe transfers
@ o '

are always reflected by egatlve AV' (A)/&H(A) ratios. Hhen'e net
contraction or expansuon counteracts the effect of the charge transfer,
the magnitude‘of this ratio will decrease. !n extrem2 cases, the ratio
may even be positive, lhe above effects are largely absent for tne
 compounds studied in this sect10n, artd the AV (A)/AN(A) ratios parallel

the charge transfers very closely. There le, however, one significant

exception. o : 2l

-~ —_

. . . —
Table k-3 lists the;values of hvint/AN for thd (B), (H), and -
LN
fragments of Table k =2. Also reported are values of ¥, measures '

of the average dsstance between the nucleus in a fragment and the chhrge

'density transferred to or from.that fragment. [e.g., The (B) fragment
in BH has lost .782 e. The resuyltant’ lncrease in V! (B) of I 987 is
equivalent to that which would result from a Yoss of 782 electrons

e

d:str:buted over the surface of a nucleus- centred sphere of radlus

1.97 au. 1 Fnrst note that the {avt :/A—] ratios are relatively constant

" for a gnven fragment. For example, in BF3, IAV' (F)/aN(F)| = 6.618 au/electron.

-

{1n BF, this decreases slightly to 63342 au/electron. The decrease is
to be expected. When more and more charge density is(}rénsferred to
a fragment, It will accumulate in more ootlylpg regions of the fragment.

3 »
) . e
a distance of 1.36 au from the F-nucleus. in BF, a lar

-

. Thus, in BF_, the .B6A electrons transferred to (F) arel on the average,
r charge
transfer of .933 electrons occurs,_and/tho average distance between

the transferred charge and, the F nucleus increases to 1.42 su. Ihls

- / * . - “~
3 .
' .




is immediately reflected by a deTrease ln IAV' (F)/AN(F)] _Note
that the {H) fragments, upon trqnsitipan?om BH3 to BH show a gImilar

trend. Conéidet now the (B) fragments. The four moiegufes aré,

\

in.order of increasing iass Qf charge denmsity from the (B) Fragment
BH < BF < BH3 < BF3. Accordlngly, one would expect the values of

T(B) to show a continual deerease from BH to BF3, and the IAVint(B)/dﬁ(B)l

A |

values to show a contlnual Tncrease (the charge density stripped from

the (B) fragment comes from areas ever closer to the B nucleus). The

r(B) values in the above BH + BF3 series are: i:97, 1.89, 2.0§, 1.87.

The |aV'[B)/aN(B)| values in the same series are: 2.54, 2.65, 2.40,

2.68. Note that ‘in both cases‘the third value (the BH3 value) is ont

of place. Thus, in BH (B) does not increase to the extent one

3’ :
would expect on the basis of the_chaqge-loss alone. _The Increase has
becn'counteracted-by a contraction of the charge density In the (B)
f};gment, r.This_has a conslderabie affect on tne_total energy change .
experienced by this fragment. Table 4-3 also lists the AE?IAH} ratio

for each fragment, or what could be called the 5taBiIizat!on (or

destabulizatlon) efflciencx of a fragment “(l.e., the total energy
change experienced by a fragment per electron lost or garned as the
case may be). In BH3. the AE/[d—] ratio for the {B) fragment Is
5|gn|ficantly les§ than in BH (222 kcal/mole-electron 0pposed to -
247 kcal/mole-e}ectron). - Thus, the (B) fragment undergoes considerably
less destabillzatlon par electron lost !n BH3 than In BH. Compare
thls to the relatlveiy constant AE/IAﬁ] ratio for the (B) fragmcnt In-
BF and BF '

3 :
This effect accounts directly for two observations: (1) the . o

»




' ’ . ) - b
bond length In'BH3 (2.250 au) ‘is éctué]ly shorter than that in BH,

(2.336 au),\and 42) ‘the B-H bond_strgngthlih BH3 (78 kcal/molé) i§_\
greater than that in'BH (63.kq§1/molejf This -difference jn bond
strength is Fufther:enhanced by the (H) fragments, which_have ajslightly’
greatér stabilization efflcieqcy in BH3 (—333‘kca1/mole-electron) than

in BH (-327 kcal/moléFeléctron) -- probably due to the larger nét ‘.i - ‘
posifive charge on tﬁc‘(B)'fragmenF in'BHB, ana fhbsequgnt]y, tha

greater stabilizing eff;ct it has on the (H) fragments in this moleculé.;

Contras; thi§ to the resuits for EF and BFB' wheré the B-F bond leﬁgth

than In BF (2.391 au), and the B-F bond

. é . .
strength Is less (122 kcal/mole In BF3. as opposed to 139 kecal/mole in

is greater in BF3 (2.447 au)

8F). The lower B-F bond strength in BFj, relativeAto BF, results from
a decrease in the stabilization efficieﬁcy of the.(F)‘fragment. That
is, the ~E/!aN| ratio for (F) in BH is ~433 kcal/mole-clectron, as
compared to =422 kcal/mole-clectrdn in BF3. ‘Note tﬁ?‘ this is directly
opposed to the trend In the‘AVEHX/Aﬁ'Va[ues for (F), and Is probably
a result of significant repulsions begween.the (F) fragments in BFB'

{n summary then, the B-H bond strength s gréatgr In BH3
than in B8H because (1) the (B) fragment undergoes a net contractjon_
and (2) the stabilization efficiency of the (H) fragments is greater,
a result which is largely due to tﬁ? higher positive charge on the

4

ncighbouring (B) fragment in BHy. The 8-F bond strength In BFy Is

A

iess than EHVBF because the stabiflzatibnqg?fichPcy of the (F)
fragments has decreased due to substantial repulsions bstween.thqm.
These rcpJ?slons In BF3 overide the effect of the larger positive charge
on the (B) fragment. The variation In bond strengths Is not specific

Eo the wavefunctions reported here. The experimental values shdw

i *
s . . : .




the same trends (see Chapter- 3-A-3).

Table 4.3 also reveals a number of other |nterestlng features.

The average value of r for denslty transferred to an (H) fragment is
~ 1 au. The same value Foc‘ﬂensxty transferred from a (B) fragment

iacreases to ~ 2 au. The T value for density transferred to an (F)

-
-

fragment has a surprls:ngly low value of ~v LG . uhereforc, awy

charge density transferred to (F} is bound very tlghtly, and does not -

accumulate, as one mlght'expect, in the outlyling regions of the fragment:

The [AV}HI/AF] value for this fragment is, Enerefore,_anomalously

”

high. This is the oasis of the high electron efflnfty of the F atom,
and also accounts‘for'the significantly greater stabilizing ability
of the (F) fragment { -uad kcal/mo]e-electron) than "the (d) tragment
(v =330 kcal/mo[e-e!eotron) ln theselcompounds.

A-glance et_the chenges‘in the-energy cqmponents listed in )
Tabte 4-2 once .;"géln-reiterates,what might be .called 'R he curse of ‘
theoretical chemlstry", l.e.. that the total energy change In any
chemical reaction is an extremely delicate balance of very large »
competlng effects Hhether or not & compound can_ echleve
stability relatiye, to Its component parts'depends upon whether or'not

‘ .
the electronic charge density can shift and polarize in such a manner

so that the final change In V' Is sufficient to ‘counterbalance the

tremendous destablllzing increases in V“Aindéf. Gne of the most

attractive features of the pertitionlng method proposed here ls that

&
it allows ¢ne to discuss the lerge chenges in the electren%c potent:al
energy components in terms of Iindividus! fragmént chenges. A fragment

virtal theorem further deflnes 2 pertltlonlng of the nuciear repulsive

o~ R ‘ - -

b

s adem




- g R
potential, and allows one to assign to qacH(fragment a toé;I energy.
: }

The total energy change in any chemical reaction may then be viewed as
a balance ofufragment energy changes, all of which are df-reasonable*

rhemical magnithde.

: L
. R

g. Four Lewls Acid-Base Complexes: BH;TH—, BH,-F;, BH,-CO

and BF,-H* -
S i ! <
Thc_generaIIZﬁg,(or Lewls) acld-base reaction '

./ i - '

A+ :ai\; A:B .
is }qobably‘the mos t importaét of éll-é%emicﬁl rgactlons, In that-

almost all.molecules can be'd[ssected (mentally at.least) fnto constituent.
acids and stgs.' Hence, a considerable effort has been expended {ﬁ
dcveloﬁing a method of predicting the velatlve stablllqlés_of A:B;'

complexes from the propertles of A ;nd :B. EarlIerAwo}k centred

on developing. a scale of agla and base stxénéth and hence pradlctlng‘

the stablllty of any compleﬁ on the H'FIﬁ of th§ strengths of Tts

cdmpdhchts, The problem here .1s that the relitfve sFréng;h of an

acid or base (however one may define strpngth) Is Invariably a sensltlv;
}unctidn of the reference base or acid to which it Is coordinated. ¢

Thus, relative to soma base, :B, A mayfge a stronger acid than A';

relative to a new base, B', thls order may well ba reversed. |

In 1963, Fea’rsonq5 put fbrth his principle of hard and soft

!

acids and bases (HSAB). The useful qualitative rule He proposed o
was that "“hard acids prefer to coordinate with. hard bases and'soft

acids prefer to coordinate with soft bases." Hard acids and bases

have been qualitatively defined as possessing a number of related -

"
"
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. ) ) .
properties, the basic one bclng a tightly held valence charge density

which Is not eaﬁi!y distorted.or removed. In the case of a hard

acid thl; is often’ assoclated wlth'smaJl-sizé and a high positive
charge. Soft ac¢ids and bases have the opposite properties. One

of the.orliginal reasons for undertaking a study of the above four
complexes was to determine whather or not there was ény correlation
between the stabllity of an acld-base complex and the relative hard-
nass or softness of its constituents, and if so, to relate it to

the changes in the charge and energy dlstributions accompanyling bond
formation. Under Pearson's scheme, H™ and CO are clagsed as soft

bases and F s classed as hard. BH3 and BF3 have been classed as ‘
s;?\\and hard aclds, respectively, largely due to a predlcéed difference
in the effective charges on the (B) fragment Tn.thf two systems

{(~ 43 in BF3.a"d << +3 In BH;).SQ The partitioning results qbtaincd
here substantlate thils predicted trend (recall C(B) = +2.59 in BF 5

and +2.14 in BH;). Note als® the small size of (B) in BF, (Flg. 2-2)
relative to (B) In B, (Fig. 2-1).

The fragment populations'ané energy components for these systems
have been listed In Table 4-1. The changes In these quantities upon
complex fbrmation (relative to their values in the free acld and bas9
reactants) are summarized in Table L-4, We bag}n with two general
observations. First, all complexes, with the exceptlion of BH3C0,
have nearly [déMtical stabilitles of ~ 60 kcal/mole. The lowbitabllity“
of BH3CD (v 6 kcal/mole) Is.cskslstont with experimental rasults
{recall Chapter 3-A-3). Indeed, the Fa:} that this compound is stable

at all, whereas BF300 s not, has been rationalized on the basis of

9k
soft-soft and hard-soft Interactions in the two cases, respectively.

-



‘Flgure 4-3. Electronic chérge‘d!stributlons and partitioning surfaces
for the moleculés: BH,™, BHiF-, BH,C0, and BFH . All molecules

are shown in 3 o sympetry plane. Solid crosses denote in-plane
nuclel; 'dotted crosses denote out-of-plane nuclel. The Lewls acid
fragment (BH3 or BF ) is afways on the left and the Lewls base on

the right. Contour valuas are as listed in Flg 2-1,
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Figure "i-3 (Continued)
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In a sense, it Is surprising thag the stabilities of BHB-H-,\BHB-F
and'BFS-H_ show 50 lltt{e disparity. }t Is perhaps qﬁesttonable
whether BH3 should rcally be classed as a soft acid, as the (B)
fragment does have a substantlal posltlve'éharge. _Qn*thé'basis.of
this préperty alone, It l; probably not as dlffcrcht from BF3 as‘
-Pearson p%cdlctad.gh However, H™ and F lie very much at-opposlté
ends of the hardness-softness scale. Tﬁus,/bne might well exgect
some dlfFerenccs~to show up. partlcularly In comparing BHB-H and
BH3-F_; 0f course, the relative stabilities predicted he(e are
speciflc to the gas phase, "The energy of a frqgment in a molecule
is a senslitive fﬁnction of lts'envfronmenGﬂ and cbuld be signtficantly .
effected upon solvation, Thus, a soft.solvent could conceivably .
sta_IlIze.boih the acld and base fragments of a soft-softhombinatlon)\‘

- ' : . z.
whereas a hard solvent could stabillze-both fragments of a hard-hard

c Y

combination, A ioft-har& combination might undergo.égagllizatlon of
one component and posslbly even dastabilization of the other com- :
ponent, in elther a hard or soft solvent. Thus. experimental dissociation
énergles,takan,In solvents could ylelﬁ dl fferent results than gas-phaso‘
moasurement;. , ‘ ‘ t | ’

o " The second general observation we make Is that upon'cdmplax
form@tlon. the gase always undergoss an Increase In stablifty,

whareas tho acld undcrgocs a decrease. For example, in BH3-F-

the (F) ffﬁgmnnt Is stablll:od by 237 keal/mote relative to the free

N

F~ lon, and the (BH ) fragn.nt lsadostablllzod by 177 kcal/mole
relative to the free acld, BHS' Th.l. obsorvatlons also’ apply to “T'

0
other Lewls acld-base adducts studied In this laboratory,9 lnclud!ng_

3
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-

the FH-F complex to be discussed in Section C §f this chapter.
With these opening remarks, we now‘examinﬁf;hn four complexes

in greater detall.

Compare, first, BHB-Hﬁ and BH3-F_. Although these two

complexes are of almost identical stablllity (relative to thelr acid _ {
and base constltdents), fhe nann;r irn which they achleve it i; quite
different. The relatlvc hafdness and softﬁess of the ¥~ ahd.H‘-
jons, rcspectlvnly. Is well- reflected In the charge transfers to
6H3[ in BH3_H the H loses .25 e,.ln BH3 F the-F lon Ioses.qnly |
.08 e, In'ascordanCQ with Its tightly held charge distribution and
high clectéonegativlty. However, the most str]klng difference
between the two comp!exqg s In the dlsposlllon of the transforfed
charge' In Bﬂa-ﬂ » this charge is falrly evenly dlstrlbuted with .)2 e
golng to the (8) fragment and Oh e to each (H). [n BH3 F , the
charge lost by F Is transferred entirely to the (H) fragments, along
with an additional .08 e from the {(8) fragment. Tbls-ls the only . .
one of the.four complexes in which the (8) fragmnn;\actually loses ’
charge ddhslty One would expect that, 1f anything, this f?agmcnt
'should gain charge d&nslty partlcularly because -of its high net
positive charge. That ls, charge denslity’ transferred to (8) would
ckperience the\full +5 charge of the B nucleus, but only the repulsion
of 2.14 elncirSns in that‘fragméng.-.From th!!'PO!“F of V““-_'
chargé/transfer tﬁ.LB) would be ?nergotlcally favouraSIP In that ‘ X
tag(B) + V“ (B) would docraaic. Charge transferred to an (H)
fragment, on the other hand, ﬂould .xporlonco the rtpulslon of 1.7

clectrons In that fragment -- & slgnlflcantly gredter d!ltlbl‘|='ﬂ9

b
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effect than the stabilizing Interaction with the +1 charge of the ) %
Q nucleus. That charge is transferred solely to the (H) fragmcﬁisf

~

in BH3—Ff may be explalned only.on the basis of a stréng rebtusfve
interactlon betwé;n the electrons in fﬁe-(B) and (F) fragments. That
is, the (F).fragment 1iterally forces the chqrgé denslt} In the (B)
fragment back to fhb (H) fragmcnts in order fhat the system as a
whol:\may achieve maxlmum stabillty.+
The propertles of the (F) fragment explain a_ Targe amount of
fluorlne chemistry, and in particular, Its often encountered anomalous
behaviour. Tha domlnant property of th!s fragment which has been
conslstently observed in this laboratory ls a strong-gesistance to
change. In the compounds studied here, the population of the (F)
fragment is always between 9,7 ¢ and 10.0 e. Compare this wlth
the variance In the populat!ons of the (8) and (H) fragments ——
(Tablas 4- 1 and h 7) . Further, the charge density Is very tlghtly G
held (rccall the earller discussion of the Aant(F) values for BF
and BF ) This Is reflected even in the contour maps of the -
density dlstrlbutlons"ﬁhere the (F) fragment always looks very much
like a fluorlde loq\and the c@ntours‘near the partitioning surface .
exhiblt a dlstlnct\"p!n'chad;' offect (see Figs. 4-2, k-3, and later,

FLg.'h-h). The reason for this Is purely an energetic one. Transfers

of charge density from (F), or large polarizations of the (F) density

. -

+. The reader should note that the total AV' and AW values reported
in table h-h do not reflect the offoct: of the charge transfers dlrectly.'
They are nat values apd include all new interactions of -the charge

' density In s fragment after the chlrgc tronsftrs have taken place.
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cost.dearly in terms of the energy. Thus, when the charge distribution

|

shifts to stabilize\\:e system, the (F) fragment literally forces

the changes to occur in other parts of the molecule. Furiher, sinca ‘ f
the (F) fragment alwayg¥hg; a net negative charge, there is a
substantial'repulsive interaction between (F) and the charge density
in neighbouring fragments. |

h-d

‘This high resistance to change, and strong répulstve\inter-

action with nelgthuring.fragments also explains why In BF3H: one

/

observesfa charge transfer of only .24 e from H to BFj -- nearly . _
3 ‘ : S . .

identical to the .25 e gransferred frém H to BH3 in BH3-H: ‘Again,
; .

on the basis of electron deficiency. one would expect a larger chifa
transfer to BF3 than BH3 because of the larger positlve charge on Jh
(8) fragment. The strong repulsion between the electrons in the (F)

and (B) fragments severely limits the charge transfer to BF3. Once agafn,
N

any S:gnaficant polarization of the charge density’in the (F) fragments '

which would alleviate thc additional repulsions due fo the transfér. has

unfavourable energetic consequences. This is the reason BF3 is not a °

better electran acceptor than BH3' and ‘therefore not as.strong a Lewis

87

acid as was once belleved

The destabillzing repulsions between (F) and its nelghbouring ﬂ\

fragments are also evident In-the &E values for these fragments. Recall
-Y« from Table.h-z that the (B) fragmeﬁt in %H3 has becn‘destabilized by
L76 kcal/mole. In BF3. theidestablllzation s 727 kcal/mole -~ wcll
in excess of what could be rationalized on the basis of the greater

_loss of charge density from (B) in BF 5. ‘In the formatlon of BH,- -F,

the (8) undergoes an additional destabilization of 117 kcai/mole,

-

u
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considerablf gFeater than the 30 kcal/mola destabilization observed
in BH3—H-.A This is partlally offset by the (H) fragments, which

experience a further dcstabilizatiov of only 20 kcal/mole in BH -F-,

3
as opposed to 38 kcal/mole in BH3-H-' The difference here may
largely be attributed to the higher net positive charge on (B) in

BHBJF_ (+2.21, as opposed to +2.01.in BHB-HT). The adﬂ?kion of H-: )
o BF3 causes only a small further destabilization of the (B) ™" ~ - \
fragment (11 kcal/mole), and the bulk of the {BF;) destabilization in
BF3'H- comes from the (F) f}agmeﬁts (62 kcal/mole per-féagmcnt). The
destabilizations of the (M) and (Fj fragments in BH3.and BFB‘which _
occur ypon complex formation are largely due to the changé in geometry.
That is, when BH3 and §F3 change.from‘a planar to a bent configuration,

the H-H and F-F distances decrease, and hence the repulsions between

+

the terminal fragments increase. Note how much‘largéf the destabilization

: > _ ~
is for the (F) fragments .in BF_ than for the (H) fragments Im BH,.

_L

3

The_qylnxfaﬁ'values for these compounds are summarized below
in Table 4-5. . [Values for A?lnt(B)IAﬁ(B) are not reportedl _The -
integrations in these molecules were performed only over the exterior
fragments and the propertles of (B) were obtqlned by differance.
Hence. no breakdown of V' (B) into Internal and'exte;nal components
wés-possible.] .

TABLE 4-5. gV}ntldﬁ ratios for exterior fragments Ip BHA'. BH3F .

BF_H , and BH co; Valued are glven in au/electron.

3 03 _ | , C
. (H) ;527 L ’ (F) - 626 . -
BH oK (W) 1.293 : BFBH“ {H) 1.669
it (W) - .20 o W -9
BH,-F (F)  8.736 Bi,CO (€O}  -7.206

3
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Note. that H_ and F , although they both lose charge density upon

forming adducts with BH3 and &FB,'have positive AV! b/Ai'ratlgs.- Thus, -

the fragments both undergo considerable contractlohs upon bond forma-

tion which are. sufficient to offset the Increases in V! resulting

int,

from the loss of charge density. Note aliso_that contraction of H™

is stronger wﬁen'!t islboupd to BF3 than when bound to BH3, ﬁre;umébly
because of the -larger positive chafg; on the (B) fragment in BF3;

The charge transfer to (B) In BH3-H7 appears_tO'cause«a significant

‘-./

expansion in the terminal (H) fragmcnts of BH Note that the nearly
3" :

identical transfer to (B) in BF3-H does not cause any expafsions in

the (F) fragments, a result which is again consistent with arlier
. . \

observations regardlng this fragm?nt, and its strong rfélstance t?
change. : ' ' ul -,i
| F!nallyi conslider BHB-CO. 'The results for this moleculq
provide a rather striking contrast with those for the other threa.
rllt is‘by'far the leaﬁt'stablo of the 59‘} Furtﬁer the charge
transfers which occur upon Its‘fsrmatlon are completcly di fferent
from those observed“fqr the others. Recall that the {(B) fragment. In
BH3 has a net charge of +2. Ik The (C) fragment In the‘to molecule
“has a net charge of +1.36.° ‘Thus. formation of BH,CO Involves the
“JOrn‘ng“ of two posltlvely charged fragmants. tn order to stobl!lze‘
the complex, electrons are trg&ﬁferred from both the (H) and (0)
‘ragments to the (B) and (C) fragmants. - Each (H) fragment donates
07 e, and (0) donates ¥ 06 e. The population of- the (s} fragment
increases by .09 e; ‘that of the (C}ufflgﬂlﬂt increases by .18 e.

It Is Interesting to note that the-overall chlr9° transfer '“ the .
. . ’

.
-
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complexiis from BH3 to €0. Thus, the Lcwis acid, BH3. actually Toses

charge density and tho Lewls base, CO, ga}ns charge density. The

weakness of CO as a Llewls base Is thefeforgr well reflected by its

behaviour here. | A
Note that this is the only one of the four complexes in which

the energy of the (B) fragment actually decraases upon bond formation

(AE(B) = -26 kcal/mole}, a rosult of the charge transfar to the fragment

and its subseguent interaction wifh the pos)tlbél; charge nebghbouring

(c) fragment Similarly: the lncroase in stablliity of CO is due to

an increase In stabllity of Tts' (C) fragment (AE(CO) = -157 kcal/mole)

which 'agaln gains charge denslty‘and experiences a substantlal

stabilizing }%téractlon with the positively charge (B) fragment. These

effects counteract the destabllizations eiBETlenced by the (H)} and

(0) fragments. Although the complex does achieve stabllity, it is

by a very small margin. The AVlnz/Aﬁ3ratios,(Table 4-5) for the frag-

ments do not Indicate aoy oignlflcon:(fragwant ;kpanslons or contractions

upon bond formatlon. Thc loss of charge density by the (H) fragments

is reflected by increaies in v.nt(H) as is the ga!n by CO rof!ected

by a decrease in ant( 0)

The transfer:of electrons from the (H) fragments s interesting -

]

_in that it sﬁb;tantlates prevlous predlctlons and rattonallzatlons of
the abll!tylof (H), tn. cortaln circumstances, to ionate charge via

e “hyperconjugatlve" mechanism of electron relna;e. 8 Graham and
Stonea7 have ratlonallzed the stability of BH3C0 on the basls of
overlap of the w’orbitals of C ylth those of a "pseudo-atom" cons!stlng

of the three H stoms acting In concert. The net re;ul: of this overlap

4 .
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would be a charge transfer from (H) to (C), an effect analoéous to

the hyperconjugative release of density often invoked by organic

chemists. A similar effect has also been observed In this laboratory

for the isoelectronic molecule CH.CN.

{isoelectronic with C0) f; agaln positively charged (C(C) = +.78},

and the formatlon of_CH

charge density from-the (H) fragments. In CHBF' a molecule isoelectronié

3

3

90

The (C) fragment of CN_

CN is again charazterized by a small loss of

with BHBF-, this transfer does not occur. These results suggest that.i

the (H} fragments tend to release denslity when BH3

to a net'posltlvely charged fragment, and not when bonded to a net

P

[y

3

or CH., Is bonded

negatively charged fragment., These results are also consistent with

(A
the predictions of Pople and Beverldgesh based on their method of

population analysis.

A comparison of BH3F- with the isoelectronic CH3F’ and of BH3C0

with its lsoeiectronic counterpart, CH3E§. provides a striklng
illustration of the Impdrtance of the stabllizing effect of V', and
of how it effects the charge.distribution.

fragments in these compounds are summarized In Table 4-6. The transition

TABLE 4-6. N{(A) values for two sets of Isoelectronic molecules:

(1) BH3F' and EH3F;

‘ BH,F
(B) or-(C) 2,786
(H} 1.764
(F) 9.923

té) of (EO) or (CH)
(0) or (N)

-

(2} BH,

CH3F
5.297
.935

9.717

Cd and CH

3

The populations of the

cN.,

BH3C0
2.563

1.638

b,821
.9.302

-

~

L.

CH,CN

5.787

107

-

958

4.896
B. 444
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J SRR
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from the charge distribution in BH3FT to that In CHBF may be made
<imply by increasing the charge on the B npcleys by +1 (ﬁlus a minor
geometry change) . ‘Tth results in the migration of 2.51 e to the néw
(r) fragment. As one,would expect, the major portion.of this cbmes
from the (R) fragments (2.31 e) and the (F) fragment donate; a

relatively small amount ( 20 e) A transition from BH3C0 to CHBCN
involves an increase In the nuclear charge of Blby-+l, and an equivalent .
decrease in fhat of 0. Again this causes a strong migration of 2.82 e
to the new (C) fragment, mostly from the (H) fragmentﬁ which each
lose .68 e. The {0} fragment, upon transition to (N}, loses .86 e
and the population its nelghbouring (C) fragment remains relatively .
constant. -

In summary then, thé'propertles of the Lewis acids, BH3 and
BF3 are not so much determlned by the proﬁerticé of their (B) ffagments.
as by the properties of their terminal (H) and (F) }ragments. BF3
is not as strong ah electron-acceptor as one might a;pect on the
basis of the high positive charge o&x(B). The strong fepulslyu ,
intcracfion between the electrons of the (F) fragments and those of
the (B) fragment severely limit the extent of charge ;ranéfur.to .
this acid. It appears that charge‘tfanSfers, and even Egsgl_ena}gy
changes experienced by the individual fragments upon complex formation,
can be ratlonallzcd {and predlcted) solely on the basls of changes !n
the electron-nuclear attract!ve forces and electrpn-electron repulsive.
forces experienced by the fragments. It is apparent that the Iatt?;'

play. an extremely Important part In the chemistry of fluorine.

We close this section with an spplication of these flndings_




" “to a problem in organic chemistry. The halogens in general, and
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fluorlne in speclflc have long been known for their anomalous behaviour
a5 substituents on aromatic rings.88 in benzene, most elactron«wlth--
dréwing substituents deactlvate the ring towards electrophillic
substitutfon, and are meta directing, The halogens, thever.J;re
ortho-para directing. Further, the order of deactlvation is

F<cCl <Br <1, the opposite from what one would erxpect on the.basls,
of the relative oloctronagﬁtlvlfles of the halogens., This has gener;lly
been explained In one of two ways. fhe first argues that although

the halogens withdraw electrons from-the }lng, there is a concomitant
back-donétlon fFom the wiorbltals of the'halogen to. those of the

88

ring. It .Is argued that the extent of back-donation depends upon

the degree of overlap between the fllla&ibut;r P orbltals of the
halogen and tha 2p orbitals of tge ring carbon to which it is bonded
This overlap should decrease ln the order, F > Cl > Br > I due to
increasing carbon-halogen bond length, and lncrea;lng disparity between
the sizes of the carbon and ha!ogen'pﬂ"orbltals. "Thus, since the

c- F bond. Is the shortest of the fohr. aﬁd the p_ orbitals of F the most
s!milar to those of C, tha feedback of aloctrons should be greatest :
{n the case of fluorine. The ucond explanatlon argues that there Is |
"a repulslve Interaction batwoen the outer Pq orbltals of halogen and
-the 2p orbltals of the ring, particularly those of the carbon to
which tHe halogen is bonded. 8 This ropulslon should have the effect
of pushing the aromtl:c x electrons sway from the substltuted position,

and lead to charge hulld up at the ortho and para poslitions.

The results obtllnod ln thls uork strongly substentiate the

>

I
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latter hypothesis. The (F) fragment in fluorobenzene should exhibit
very similar properties to the (F) fragments studied here. It can/

be expected. to have a net negative charge (C(F) ~-.7), a tightly bound
chérge dénsit;; and exert a strong repulsion on the electrons of the
adjacent carbon. Some of the charge denslity on this (C) fragment will
be forced onto the nelghbouring ortho (C)‘?ragments, thus leaving It
with a net positive charge;- This effect should decrease In the order
(F) > (c1) > (Br) > (1) for the following reason. The tightness with
which the halogen-slectrons are held, add Hence the sensitivity of

the energy to small changes in the charge dlstributlons of halogen

fragments, can be eXpected to decrease In the order (F) > (c1) > ABr) > (I).

Thus, a (Cl) fragment 1s more capable of undergoing Internal change;
in order to counteract external streass (such as electron repulslon)f
than is an (F) fragment which will force ‘wost charge redlstrlbut!o;s
to occur in other parts of the molecule. This "fragment maleability"
should lIncrease In tﬁc oraer (F) < (€1} < (8r) < (1}). These rasult;l
are In agreement with those of Polltzer and Tlmberlake.86 These
authors have evaluated the overlap and electron repulsion integrals,
between valence v orbitals on ; and X (X = F, C1, Br, 1). The relatfva
magnltudes of the overlap Integrals do not support the back-donation
theofy. The trend In the eiectron r.pu\sion lﬁtegrals, howaver, doa:-.‘,,t
lend considerable support to the repulsloﬁ theory. ) V
We also polnt-out that the activation-deactlivation sequence
around the ring (and hcnca the activation of the para.posltlon) may

also be explained on the basls of inter-fragment alsctron ruPU'S'OU‘-

The lowest external elactron-electron repulsion terms (Vtxx) between

2

-7

P



neighbouring fragments should arise when the populations of those.
fragments show the greatest disparity (e.g., 'If R denotes tbe distance
between the effective centrolds of charge In two fragments, (A) and

(8) ,_ then N(A) x N(B}/R Is largest when N{A) = N(B), and smallest

alone, one should observe "populat!pn1;lteknatlon" around”é ring,
since It leads to a' lower energy. The changes in the;?qternal éqm-
ponéntg of V' (C) and V(C) with varlatlions in N(C)} will, of course,
play an important part in the charge distributions in n;;gﬁbouring

(¢} fragments. HNevertheless, provldfng the mean population of the

(C} fragments was such thaf the variation of thelggg.of:;hese Internal
components with N(C) was falrly smail, an alternating arrangement of
pobulatlons could be more stable than a non-alternating one; _Charge

*

alternation has also been predicted to occur In allphatic chalns by
84 B L

Pople and Beverlidge. = 7 -

N\

C. The Formatlon of the Blfiuoride ton’

We now apply the partitioning method to & study of the Lewis
ac}d-base reaction, ° |
, F(gh + F (g) + FHF (g)
primarily to j1lustrate a number of additional features of the method
not generally encountered uggn'app\lcatlop to statlc systems. The

fragmnt'populatlons.and enirgy components for FH, F , and four

configurations along the 1inear reaction coordinate are reported In

Table'h-7. The changes in fragment propsrtias which occur during

when they show tﬁe,greatest disparity). On the basls of thls term .__.

*

s

1H
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the course of the reaction are shmmarized in Tab%elh-B. All changes

are given relative to the F fon and the FH molecule (or it's constituent

Fragments).f The charge distributions and partitioning surfaces are

pictured in Fig. G=4. Throughout this secélon, the F base fragment

~will be denoted as (F ), and the fluorine fragment of the FH molec;le

as (F). ' | ' . ’ o /
One of the mos t attractive features of the partitioning nﬁthod

is that wheéever a charge distribution undergoes a contlnhuous change,

so too do the partitioning surfaces ah& the fragments they de}lne.

Thus,ﬁlf is possible to fdllow the course of 2 chemlcal reactlon by

monltoring chénges in fragment properties. The bifluoride reaction

proceeds with a Lontfnuous decreasa ln eﬁergy until the system reaches

its symmetric equillbrlum geometry, and achleves a total stab!llzatlon

energy (relative to separated reactants) of 43 kcal/mole. Note

PP S PEAE

(Table 4=8) how smoothly the fragment propertles change as” the resction

proceeds to complet!on During the course of the reactlon. the Incoming

e e

fluorine lon contlnually loses charge density to the FH molecule (speclflcally.
to the {F) fragment of FH), to a maximum of .104. e at equilibrium
geometry. In accordaénce with iho results for the Lewls acld-base’

_reactlons studled In the previous saction, the base again increases

In stabllity (8E(F") = -142 kcal/mole), and the acid decreases In

-

stabllity (aE(FH) = 99 kcal/mole).

3
p
p
]

4

E

!
H

One Interesting-feature of this reaction I's that at some
. point durlng the flnal stages of the reaction, the partltloqlng
surface betwean ‘the (F) snd (H) fragments in (FH) dissppears, snd then

reappears. That Is, at one. polnt the charge distribution In (W)




Figure 4-4. Electronic charge distributlons andfpartltlonlng surfaces
for FH, F , and four linear cﬁnflgurat!ons along the potential surface

for the reaction: FH + Fi. + FHF . g Contour values are as listed In
Flg. 2-1.
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Figure 4-4 (Continued)
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hecomes 5o dominated by the F nucleus that the stationary point

(density minimum) along the F-H internuclear axis vanishes. The
disappearance of this stationary point is actually foreshadowed by

the changes In fragment populatlons. During the reacflon, both (F)

and (H) lose chargc denslity to (F) In the early stages of the reaction,
the (H) fragment actually transfers more density to (F) than does (F ).
Thus, at R =7 au, (F7) has lost .007 e, whereas (H) has lost
.6hl‘c. By the time‘RF_F reaches 6 au, (F) has transferred .019 e
and (H) h;s traqsforrep ,053 e. In the FH molecule, the population -
of the (HY fragment 1s only .258 e, and the  (H) fragment barely has
sufficlent contro} over the charge density to define its own fragment.
{n the bifluoride reaction, It hag‘transfcrrad ~ 253 of this density
‘to (F) when the F-F dtstancg.ls st111 6 au. Thus, it is hardly sur- é

prising that the (H) fragment as such should disappear by the time

Re_ F = 5 au. (Recall the lack of a pariltionlng surface in FH+
dlscussad earllier In Chaptqr 2. ) Durlng the final stages of the
reactlon, (F ) transfers cons |derably more charge to (FH), and soms

of this is actually “transferrad to the reglon of the proton. The

reappearance of the (H) fragment Is due largely to the shift of the
proton away from the F nucleus tn (FH) to a point where it finally

regains sufficlent cowtrol over the chlrdi don;lty to radefine Its

-

- fragment., B ' -

- ', The chungos ln the lntornal .components of: v'(r) and V' (F")

» 4

provide some - lntarostlng lnfbrmatlon about this roact!on. As the”

s

~_(F) -fragment galns charge, Vlnt(r) undergoes a contlnuous decrease
from -243.409 au-ln FH to ~243.925 au in the equlllbr}um conflguratton ) .

+
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~f FHF . The ratio Av' (F)/N(F) s ~ -7 au/e during the Initial
<tages of the reqption. During the remainder it drops to v -2.3 au/e,
suggesting that-tﬁg electrontc charge Is being transferred to the
outer regions of the fragment and that it is undergoing & Qlighé -
expanslon. Contrast this result wlfh that for the approaching (F-).
Since this fragment continually loses charge denlfty durlng the course
of the reaction, one would expact v&nt(F ) to show a continuous
increass. Up to RF P 6 au thls Is indeed the case.” chever, from
this polnt on, [t undergoss a sharp decrease, and at equlllbrlun
geomstry Is actually .360 au below Its value_In the free lon. Thus,
the (F ) fragment undergoes a considerable contraction durfng'she
final stages of the reactlon. This contraction (s aJ;o-avldent in
the contour maps (Flg. 4-4), although the small scale makes Tt
rather dlfflcult to see. >

it is always possible to-foliow changes In the slectronic
enargles of fragments during the coursi of a roictlon. However, this
s not true of th; total energy. The reason for this Is that at
non-equl } Ibrlum confligurations of the nuclel, T; always Includes a
contribution from the net fbrc.s.,?a. atting on the nuclel. Thus,
the vlrlul theorem for any gcnoral nuclesr conflguration of tha-blfluorlde
lon must be written, JT' E- Iﬁ ? T‘PJFH molecule and the F_
lon, to which the & values In Tabu A-8 are referenced, both setlsfy
the relattonship, JT; = ¥, since the net force term Is zero. Thus,

thﬁ'ralatlonshlp botwicn'AT; and aF Is glv-n-by

-7, = oF - Zﬁn.ru | - ‘[k.S]
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Note (Table 4-8) that AT; for the system indicates an increase in
stability only for the equil!brlumlconfiguration of FHF , even though
the total energy undergoes a continual decraase throughout the entire
course of the reaction. This is %hé expected result. The net force
term, -iﬁa-?;, in Equation [4.5] 1s positive on the éttraétive portion
of the ;otential curve, and therefore makes a negative cqntriputlon
to AT;.' For the three noh;equilibrlgm configurations in Table“h-a,
this contributipn is greater in magnitude than thét from AE, and thus
leads to a negative value of AT;. i o

The difference between the (H) fragment in the bifluoride ion,
and the (H) fraéments in the systems discussed earlier is striking.
In the boron compounds, the population of‘(H) was always within a few
. per.cent of 1.7 e. In FH, this has dropped to- .26 e. Upon reaction
of FH wltE‘F-, the (H) frégmen; loses an addltional{.OS e. Thus,
“in tke equilibrium configuration of FHF~, the population of (H) is a
mere .Zi £ The {F) fragments are near-fluoride ions with populations
of 9.90 e apiece. To describe the FHE compiex'és two fluoride lons
held togcthgcaby a bare proton Is; tharefore,‘not far off the mark.
" In the light of the earlier dlscussions‘of'the (F} f{agment: its
strong reslstanca\té change and repulsive lntgractlons'wlth its
neighbo;rs, it s surprising that FHF should‘exlst at all. Relatlve
;o two free fluoride tons, it Is stable by 421 kcal/mole -- a rather

convincing demonstration of the power of a lowly proton.

4
. D.~ Constancy and Transferability of Molecular Fragments v{:)

On§ of the most Strlklﬁg features of fragments duflqed according
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to [2.7] is the extent to which they often remain unaltered upon o

-
transfer between systems. Consider, for example, the (H) fragment

in BH and BH;. Reference to Fig. k-1 shows that the fragment appears
to be nearly ldentical in the two systems. Acéordlngly, one finds
(Table 4-1) that the population and kinetic eneréy of the fragment
diéfer by only .07 e and .03 au (13 kcal/mole), respectlveiy. anca-
both systems are at thelr equilibrium geometries, 3 fragment virlal
theorem implies that the total energy of the fragmgh{ also differs by
19 kcal/mole, and the total virial by 38 kcal/mole. The enviéonment;
of' the fragment is, of course, quite different in the two cases, as
reflecteh in the Individual contf!butions to the virial. V'(H) differs
by 486 kcél/mole, V'{H) by 280 kcal/mole, and V;(H) ﬂy 245 kcal/mole.
Similar observations hold for the (F) fragment in BF and BF3; The
charge distributions (Fig. L.2) are agaln very slmliar; N(F) and . _
oF) (= “E(F) = ~3V(F)) differ by .07 ¢ and 17 kcal/mole, respectively.
The individual contributlons to the total virial show much larger
deviations, now ranging from ~ 13000 kcal/mole Im the case of V'(F}
and V'(F) to 26000 kcal/mole for V'(F). Thus, a simu!taﬁeous near-
constancy in p(r), N T and U is maintained in spite of large changes

“in the Individual contrlbutlons to the total vlrlal.

Fragments, then, appear to remain unchanged to tha extent N

that their total virials remaln unchanged.'and spechICflly, the votal
external contribution to the virials, Further, uhpnevér a fragment

is transfarred from one .envi ronment to azpther. the changes It undergoes

appear to be such as to mlnlmlze the change in its virial. For exaﬂple. :

consider an {H) fragment in BH3. Upon additlon of H to form BHu ,



o

~

the e{ectron—elecfrén repulsion, V''(H) , undergoes a_dlsproporfionate

increase because of the excess negative change on H . Reference to

Figs. 2-1 and 2-3 shows that the charge dlstrlbutlon of (H) in BHA

is more diffuse than In BH3 (more so than one would expect on the basls

~

of a population increase of only .04 e )‘ thus lowering the internal

contribution to Vt(H). - Further, by small polarizations of p(g), the

(ﬁ) share of.the nuclear virial is actually decreaused, an uncommon
result when nuclei are added to a system. Finally, the small Increase
in N(H) causes an addlitional arop in.V'(H}, and thus the change in the
total virial of the (H) fragment is }edeced to a relatively small
value. Analogous results apply to (F) in BF3 when H is added to.
form BF.H . Note‘thet upon additlon of CO te BH3' ﬁﬁere the adjacent

3
{C) has a Eositi charge V' (H) undergoes a disproportlonate decrease.

!
This is the only case In which {H) actually loses charge density, thus
counteracting the decrease.
The near-constancy of N, T anéfv often observed for fragments

is largely a consequence, of the surface definition, [2.7]. The most

noticable changes In the charge distribution occur In the areas of

’

lowest dens!ty between the fragments. The partitioning surfaces

‘ pass dLrectly through these regions, minimizing the amount of the change

assigned to each fragment, and hence, max!mlzlng'the retention of
& .

fragment identity. Any other surfaces would either Include portlons

of the charge dIstFTbutlon which changed ‘too much upon transfer, or

neglect those reglons which remalned relatively con;tanff

He have noted hure that when ﬂTAJ remains nearly constant upon

transfer, so does the charge’ distribution, p(r), in (A). 1t has

been pointeq out by this laboratory§3 that when TB(A) remains gnchanged-

N\
L

[ S e
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o .
so too does the kinetic energy density as\dafincd‘by 6(r). Even
more strik?ng Is the observation that changes in p(;) parallel changés
in G{r) very closely. This suggests that both o) and G(g) are
determined by some total field, aﬁdrthat a fragment wlll undergo the Z/’/j
least change upon transfer between systems when the fle}d experienceh
by the fragment remains neariy constant in the t;o systems. The

t -
fragment virtal theorem previously discussed in Chapter ZtC, suggests <

the total virial fleld, V(r), as deflncd by

U(r) S VD VD) (D ' [s.6]

where V! (F) vi*'(r), and V (“) are as previously defined (Chapter 2-C).
Indeed, it has been demonstrated!‘3 that the virial field, U(r)\

over a fragment exhlblts the same degree of constancy as do p(h)

and G(r), whereas the components of vir) -V (r), V"(ﬂ) and Un(;) -
generally undergo substantlal chang%? upon fragment transfer ) -

The variations In fragment propertles for the boron systems

of Table 4-1 are-summérlzed'in Table b-9. Noté p;rticularly the

small variatlons in N and T for the (F) fragment. In & virial fleld
language one would say that an (F) fragment Is character!zed~by a
strong internal virlal field -- one that few qther fragments can
compate with. The total vlrial field experienced by (F) in a given
environment Is, therefore, ;o strongly dominated by thls ‘internal
component that Itg propartlesrremain virtually unchanged The (W}
- fragment, on the other hand, has a very weak internal virial !ield

This Is purticularly evident 1f one compaftes the properties of ()

In the boron systems with i1ts properties [n the bifluoride ?ystems.

’
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The external virial field expsrienced by (H) In the boron compounds
is very similar. Thus, N(H) = 1.71 £ K.2% and T;(H) = 0,86 ;u + S.Sffh
rhroughout the series. 1in FHF , the efternal virlal field experienced
by (H) changes dramatically; ExHiﬂdrops to 0.21 and T;(H) drops to
0.27‘au; The weak Internal vi;ial flgld of (B) is also evident In
Table hﬂ7ff Ngte the fluctuations, pgrtl&ularly tn N(8), ag the external
virial fleld changes. Espocially, note the di Fferences hetween the
mono- and poly -valent (B) fragments.

The near constancy of a given fragment In s!mllar bondlng
situations (and especlally, In similar virial flelds) suggests that
it may be posslble to pmp!Oy fragments in the construction of larger .
molecules. That Is, one can envislon a bank of standard fragment
‘charge distributions. In order to construct a given molecule, bnq
would ﬁlmply select . from that bank those fragments which exhibit |
maximum simllarity (both in terms of fragmeﬂx'"Val;nce“. and the total
field exparlenced) to those In the molecule under construction. Such

a process would be feasible If one could (a) properly Joln the fragments

ey P s
P .
B

and (b) calculate all properties of & system fram its charge dlstrlbuthn
Both ;roblem; may have solutions. The “marrlaga“ of fragmants

ls probably best handled by some self-conslstent procedura. Suppose

that one:knew the exact form of a:charge donslty-vlrial fleld relatlonshlp

One could begin by placing .all fragments In Fhelr proper respective

6osltlons in the n. molecula. A flrst correction to the éha[ge In .

(A) could then be'catculated from the new éxternal virlal Fleld experisnced

by (A) from the other fragmants.- One would then proceed in a similar

fashion for (8), (€}, (0}, and 30 on down the line. Afcer the first
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' ’ ) // \.‘ i
corrections to D(E) for dach-—-fragment had been obtained, the second

v -

iterative cycle could begin, using the corrected frag@ent charge
d{stributions to calculagé the sécond cycle corrections. This procedure
could be repeated untii convergence in p(:) was achievéd, and the new
mo]ecular charge distributlon obtained. of cﬁurﬁe,,a number of problems .
would have to be sqlved (apart from that of first finding a charge
density-field relationship). For example, the boundary surfaces of

the fragments would not match at the beginning of the [terative procedure
and a method of defining the fragments throughout the calculation

would be necessary. Also, the total number of electrons would not sum

to give the correct Integral fIgure'at the beginning. Presuhab]y, Tf

the starting frag@pntg were yell-chosen,la small scaling procedure,
cither prior to or during the calculation, could be Emplpyéd. of coufse,'

the constralnt of conservation of charge would have to be .imposed.

o
-
-

f/ The problem of relatlng the charge distribution to the energy
is an unsolved, but hcavl?ﬁ/studled problem.95 From the theorem of
Hohenberg and Kohn?6 it Is known that the energy must be a unlque
functional of .the chglge density. Unfortunately, the exact.Yunctionai'

form of this relationship Is not_yet'knownk

R
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. CHAPTER 5
T CONCLUDING SUMMARY

fhe virial,partltlonlng me thod outline&,ln this work .is a
viable and practical method for the study of chemical systems. The
partltionlng surfaces and the fragmcnts they defina are fully “and
uniquely determlned by the topographlcai features of the slectronic
charge dlstributlon -- an observable property of the system. For this
reason, the method Is of high generatllty, and may be applled to any
chemical system, Irrespectlive of Its cnup}cxity or the form of tha.
wayefunctlon which dgﬁcribes it..

" The proper):les of any system ‘may be summarized, In a well-
aefined and non—arbltrary manner, In tarms of the gross propertles
of Its constitUsnt fragments. The obsorvable properties In chemistry
are one- and two-slectron propertles. fhat portion of any. one-alectron
~ property asslgned to a fragmant (A) may be obtained by pey forming
the appropriate Integration only over the volume of spaca occupled
by that fragmant. Thus, 1f Q (5) denotes the operator assoclated
with some one-elagt(on property, 0y, and p(x,x') denotes the first-

order (or one-electron) density metrix for the system, then‘n‘(A) i

Is given by

' T (A) = [3,0e) ' d : ' {5.1)
DI(A) {al(g) o(;.; )5_5.5 ‘
Slmllarly, | f Qz(x ,52) denotes the operator associated with a two-

“electron prop.rty, 3, and T(x, 52,;‘,52) denotes the second-order

! ' - 128 -
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(two-electron) density matrix for the system, then HE(A) is given by

— . 9 | ;
RO ,I 8, (x) 52%) Ty 18932y 222 dx,9%, [5.2]
all -A . X4m%; "
space . 52-§é'

A ] .

where one lntegratnon is performed over all spacc, and the other'
is carried out only over that portion of the space occupied by (A).
In this work we have been primarily concerned with the

electfonic population of a given fragnznt, and the components of its ’
electronic ehe?gy Changes in the one- and'fwo-elcCtron components

of the potential energy provide a valuable Inslght into the reasons
‘behind any redistributlon of thc charge density which takes place

during a chemical reaction. Changes In the Internal components of

these quantities provide a u;eful measure of any net expansions or

f

contractions undergone by a_.fragment In the course of a reaction.

There I a considerable growing body of evidence that these —

fragments each satisfy a faglonal_virlal‘;heorem.- This implies that
when the nucleas conflguratlon is such that thers are no net forces
acting on the nuclel (1.e., when a system ‘Is at Its equllibrium
geometry, of In the transltlon state of a reactlon) the t6tal
energy of a fragmcnt Is equal to the negativa of lts kinetic energy.

This immediately deflnes 8 partitioning of the nuclear repqlsion

potential, somathing which could not previously be dono -in a non-

\ D - ‘

arbltrary manner. . ./‘

Whenever 8 charge distribution undergoes & continuous change,
)

so too do the part!tloning surfaces and the fragmnnts they define

Thus. the partitioning mathod 1s dynamlc In that it may be appiled

-



e

to study chemlcal reactlons as well as statlc systeﬁs. The changes’
hich occur during the course of a reaction may be followed by
monitoring the properties of ‘the fragments involQed. It Ebould be
noted that, although we have been concerned solely with isolated
molecules, there is no reason why the partltionlng method could not
be employed in the descrlpt!on and study of large chemical systems

such as crystals or polymers. The propertles of the surfaces which
partitlon Isolated molacules are l%bntlcal to the propertles of
those which partltlon the varlous members of any ensemble;éf mole--
cules, -atoms, or ions from each other.. Thus, through this ﬁethod
1t I; possible to assoclate a wall-defined feglon of space, and well-
defined properties with each constituent of an ensemble. - |

To view a molecule as 2 collection of fragments Is quite

d1fferent “from the traditional plcture -- a picture In which the
concept of a chcmlcal}ﬂbondﬂ plays such-an lnportuﬁglgole: The .
partitioning surfaces bisect what are normally conside%ed’t@ be
cheiical bonds. In view of the tremepdous amount of e;perlmental~_
evidgnce regnrdlng.;::}-constancy of group prqpertlas, the fragment
picture doms nOL appear to be an unrodsonable ona. Concepts such a3
bond additivity are not at varl nce with the fragment approoch when

additivity of bond properties Is observed, it simply means that the

130

propertles of the two "bondlng" frognnnts aro very simllar In dlfferent X

sltuatlons. and the "non-bond!ng“ fragments undargo only mlnor changes
when the bond Is formed.
One of the most Interesting properties of the fraqﬂeﬁfs s

the extent to which they often remsln unaltorfﬁ upon transfer botueen

-
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systems. This suggests the possibility of employing these fragments
directly in quantumjmcéhanlcal calculations. It Has been suggesteé
in thls lagoratory thaf the charge densit; at each point in space

is detarmined by som: total field acting at that poing {Chapter &-D).

Lf there Is Indeed a cﬁarge_ density-field relationship, and 1f_Jts

exact form were known, 1t might be possible to perform 'sel f- . -
consistent-fragment [sc(F)] calculations. in such a calculat{on,

one would select frop some bank “of standard fragment charge dis- -
trlbutlror’\‘s,_those fragments expected to ‘axhibit the strongest

simlTarity to those in_the molecule under study, and through some

lterative procndurc contlnually correct the charge distributions of

the fragments for the effects of tholr( new environment. Thls posslbllity.
although highly speculatlvc in natire, does have some excitlng con=~ o
" sequences. Under the present mathod: of ca!culatlng molecular wave- /.
functions, the time requl r%:i is appAroxlm'tely proportional to the
fourth power of the number of elecfmns -ln the sy.-;tem. Thus, on a |
machine such as the c0C_6h00, vd';o’rels the calculation on BH

3
reported In Chapter 3 requlired approxlmtely 45 minutes of central

processor time, & projected calculation of tt:e nma quallty on C6H6
s;eould require over 300 hou'rs.’ Grantcd, the COC 6#00 Is about 3

_ factor of ten slower than the best tuchlnes lvallable today. Houever.
computer technology as we now know It Is rapidly npproachlng

its upper 1imit.. Thus .- under the present framework, vab initio" quantum-
mechanlcal calculations on largér systems -- particularly those of

biologlul Importance == wiil slupl_y never be fesssble. In order to ? '

study these moleculss wlthin any rigorous frmrk. 8 new CPRPON?'

to quantum chemlstry ‘Is necessary. A frwt‘ appiooch may woll bf '

.
! 1
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tha answer.
The study In Chapter 4 1s far from exhaustive. Unly when
the partltloﬁing method hqs-been applied to a-large nﬁmber of chemic;l
gystems, will 1ts full pot;ptialltlgs {and shértcomsngs) be reallzed.
in view of the tremendous amount of time and effort which is now §§pendcd
on obfalnlng molecular wavefunctlén;, it seeﬁs only reasonable that
an equivalent amoung of t!mp,and effort go In:o'ex:ractlng f rom
these wavefunctlons, ‘useful and physically meaningful Information.
The virial partitioning method appears to be a|v§ry promising means

to this end.
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APPENDIX |
|INTEGRATION OVER HOLECULAR FRAGHENTS

A. The Quadrature Hethod

The three—dlmenslonal fntegratlon over molecular fragments was
accomplished with the method of Gaussian quadraturegy( a) The quad-
cature over a glven fragment was daflnad In terms of a nucleus-centred,
spherical coordinaf)/;ystem, slnce this best suited the néar-spherical
character of the molecular charge distribution and its related properties
around any of the nuctel.- For the spherlcal coordinate system defined

in Fig. Al-1, the Integral of a functlon, £(r,0,¢},

0""-ﬂ0
GD"—-'-(D

2 Ry
f f(r a.é)rzsinadrded¢ [At.1]-
1(“k\ '

is replaced by a dls;rate'summa;lon.

. n¢ ne n L : _
© pepear T 1 T flr,ep8)r 25108, wowow . [an.2]
> : Kol Je1 1l AR I IR

s ) .
where A9 = Ioz-cll. 46 = [92-8‘|, and AR = 1“2'R|\i n andlnr'arq

L
the ﬁunber of polnts used in the quadra.ture over the ¢, 0, and r coordinates,
rcspectlvoly; and Hk'k"j' and w4 a}a tha welghting factors for the inte= -
gfaNd at ¢ = ¢, 0 J) I and r = rp, respactl//jy -- coordinates which
are‘calculated from another corresponding set of walghtlng factors.

Vi vj, aﬁd vy : ‘ ' )
in the Integration program we dlstlngulsh between two sels

of right-handed ﬁurtisian coordinate systems:, {1) the lntegra:lon

" coordinats sy;tcm (ics) and (2) tﬁo moleculsr coordlggtc system (MCS).

-433 -
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urface and some of the gradient
f the 1CS, and Its relation

quadrature Is shown.

Figure Al-1. A tyﬁlcal partgitioning s

The orlentation ©
ystem used 10 the

paths which traverse lt.
to the spherical coordinate ¢



The iCS, illustrated in Fig. Al-1, is the system in terms of which

the coordinates (r‘.ej,¢k) in the quadrature formula [Aa1.2] are defined.

The MCS is the system In terms of which the molecular wavefunction is

spechfied. Transformatlion from one system to another 1s accompllished

by means of translation and rotation matrices

% X Ix

135

Q
y| = R{¥ + Y, [ar.3]
z| MCS zf I1CS z | MCS (
x X=X "
: - 0 _
\ ‘ Y - R ll y-yo . f [Ai .l!]
z] 1CS z-zo MES

The rotatlon matrix, R, and Its inverse, R_I, are cqlculated from

the Eulerlan” angles ?8 which rotata the 1CS Into the same "attitude"

A

as the MCS (l.e., ICSﬂ,‘MCS' YICS’ YHCS’ ICS’ ;HCS) The elements

of the translation matrix (x_ , v, and z ) are the coordinates of the
origin of the ICS, relative to ;he MCS. "By ;anentlon, the origin of

the 1CS is always taken at a nuclous contained by the fragment being

integrated, and the 2 axis of the ICS always polnts to a statlonary . -

point in the surfacs defining the fragmnnt {1.e., to a point In the
charge dlstribution, p{r), where'ﬁo(r) - 0) The program can handle
only one partitioning surface at & time. Fragmen;s bounded by more
than one surface must be lntegr;tod in sectlons..

Under the sbove conventions {refer to Fig. Al-1), each value of
L [A1.2] defines a plane which contains the z axis of the 1CS,
and Intersects the partttloning surface. The thres-dimensional quad-

rature over (r,8,4) sy then be viewsd a3 2 series of two-dimensional




-
quadraEUFES over (r,8). The area over which each two~-dimensional
quadrature is performed [s defined by the position of the p‘a"f:.¢k'
and the Intersection of that plane with the partitldnlng s;;face.

A typical plane is shown In Fig. Al-2.° In order to facilitate
an accurate quadrature with a minimum number of polints, each pféné
was. divided into several regions. These regions were Integrated
separately, and the results then ;unnnd to give the totals for each
olane. Regions were denoted as type 1, 2, 3, 4a, or kb, according

A

to thelr surface dependence. If we ‘denote the bouﬂﬂarles of-a fype .

u

n reglon as R?, Rg. e?, and e;, then the surface dependence may be

summarized as follows (refer to Fig. Al-2):,
(1) Type | =- no surface depenﬂonc; - )
(2) Type 2 -~ Rg = r(6,9) o
(3) Type 3 -- 33 - r(g?,¢)— e
* (h) Type la-- B?a e 8(r,¢) and R?a - r(B?,é)
(5) Type‘k;-- B?b - 9(r,¢i'
The actual spoclf!catlon of surface-independent reglonal boundaries
(eg., R% ?. and e for a type 2. reg!on) was based on both the shape
of the partitlonlng surface, and the spatial distribution of the functions

xpt

to be-lﬂiegratcd:- Both showed 1ittls enough varlation with ¢ to warrant
using the same surface-1ndepehdent regional boundaries f&r each quad-
rature plane, ¢k' A speclfic example of region speclflcatlon is
given in Sec. C of this appendix. '

We now summarize the propertles calculatad by the Integration
program, For ngtree-Foéi uavefunctlgns, the proﬁhrtlgs may all bg

expressed in terid §f the occupled orhitals, {gﬁ}, L
: )

. ' PP
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o(r) = ?licﬁ?([) " R | | ‘r—[-Ai.Sl
X(x) = -&}}jxm(;)v%,(g) . (aL6]

Q(E) - *}}i:kﬁnbiil;)'%él(z) | - -[m.n

L{r) = K(r) - 'G(.':)' | [(A1.8]

Vi(r) = - (:-)Z‘L(Zu/'rc) | {Al.é]
) V“(r) - &):(cip (r) k. (r)n- {(r_'))' | | [,At.lol.r

e (r) = K(r) +'V'(,r;) + V“(r;) . o . [Al.lli

?iﬁ(g) - V‘l(_g)-rtu/r 2 , | | [a1.12]

The notation employed in [Alf;] through [Af. 12] has, for the most part,
been prev10usly defined (Eqs. [1.36], {2.31, [259] [2 10] [2.12], a
[2.13]) Note that V"(r) was not avaluated‘from the’cxpresslqn ghven
in {2.9]. ‘Such a procedure would prove to be rather time-consuming ‘
because of the Integration required. In [Al.10], Di(f)' k;([) and
vi (r) denote the orbital components of o(r) K(r) and; v(r), respectively
(i.e., single terms In [(AY. S] [AI .6}, and {al. 91}, € denotes the |
energy eigenvalue of the it th molecular orbital. This ‘alternate e:x-.
pression for V"(r) may be readily derived .from Eq. [1. 25] by multiplyiﬂg‘
through from the left Py iGl). Note that this expression is smchi}
to closed-shell tysten\s.

Theoretically, the value of t over a fragmcnt (a), defined
- by 1;2;7] shoulc;, of course, be zor?. For this reasdp, 1t proved tov
‘be a useful check on th1e accuracy 6f both the quadrature and the surface

. % i
calculation. tin practice, T(A) normally ranged from 10 to 10.

e ———————RRY ¢

—a
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8. Determinatior of Partitioning Surfaces

Integratlon over all but the type 1 regions requires a know-
ledge of certain specific points along the Intersections of the parti-
tioning surface with. the Juadrature planes, ¢k. Operationally, the .
partitioning surfaces are defined by the collection of gradient paths
which originate and terminate at statlionary points Tn the charge
distribution. In Isélated moleculésl these paths generally originat=
at infin]ty, and terminate at séddle po{nts.

A representat:ve partitloning surface, the saddle point it
contains, and several of the gradient paths which traverse It is
il1ustrated In Fig. Al-1. The method of surfaCc calculation used
was to evaluate several of the paths of steepest descent from the
sadd\e point as traced by the vectors, -Vp(r) Points on the-parti-

/ tioning surface lying between these gradient paths were 1;; ermined °
( by lnterpo\latton - 0f course, it Is irnposilblﬁ to begin :calculation
\_ of a gradlﬂnt path at the saddle point, since Vp(;) is ;ﬁnull vector
\\\‘Tﬁéréf’ in practlce, the starting points for the paths of steepest
descent were taken 10 6 from the sadd\e point, ln a ring centred
’3; that polnt,-perpendlcular to the z axls of the 1C5.- Each path to
be calculated was spec!f??d by its initial ¢ coordinate.’

.Thc outer|llmits of the integration were generally taken to

ba 10 au Fr;m the origin of the 1CS. Hence, calculation of the gradient

paths was also termlnated here In general, 1000-1500 points were

evaluated along each path. Each successive point atong a given path
’ ) -
was determined by a linear merapolatlon-8|°ﬂg the vector, -¥o(L),

calculated at the previous point. The spacing between points .Is much

- &
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—ore critical near a saddle point than it Is some di;tancg away.

This is because the direction of a gradient path often changes quite
rapidly near a saddle point. It is Imperative that one stay as close
as possible t6 the path during the Initial stages of its calculation.
1f one wanders too far from the correct gradlent pafh at this polnt,

It cén cause serlous\errors in.the remalnder of its calculation Also,
the local values of the properties [A1.5] through [a1.12] are much
larger near a saddle point than they are some distance f}om;it. Hence,
it is more lmportant to have an accurate partltioning surface here

than it Is farther out. The inttial spacing between polnts was
gcncrallf taken somewhere between 10-8'and 10-6 au. This was lngre*
mented at‘each successive point vlsﬂan arithmetlic progression. The
progression was redefined-each time the gradient path crossca a
regional boundary. A spacing of 10 au was found to be quite satis-
factory near the outer boundaries of the lntegﬁatlon The xxample

given In Sec. C of this appendix should clarl fy the entire procedure.

\W‘fﬁou turn to the problem of interpolating between the gradient
paths to obtaln .the surface coordinates requ! red by the Gaussian \\\
quadrature schema. For what follaws, it Is important that the reader
be qulto clear about the notation. R‘, R2' 9], and ?; will again
denote the r and 8 boundarles of a type R reglon. Coordln.tes of
pointg.deflﬁhd;SQ the Gausslan quadrature formdla will be denoted
as T 9]. and 9y, whereas general coordlnates will appear without
subscripts. Functional relationships among coordinates will appear in



parentheses. For exampie, Rg = r{8,0) ihdic;tes that the R, boundary
of a type 2 region_ls a fuﬁction of both 8 and $.

The r and & coordinates of some representative gradient
paths are plotted in Fig. Al-3. Paths 1 and 5'lie fn neighbouring
symmetry plancs and their & coordinates remain constant. The dotted
vert:cal line labelled ¢ = o represents one of the & planes defined
by the quadrature formula. The methods of determining the ‘inter-
sectioﬁé of the partitioning surface with any plane, ¢ = ¢k, were

as follows.

‘(a) Type 2 reglons - Here, we must find the values of

R§ - r(ej,dk) for each plane, &, . Consider a specific

g - 8j as iliustrated in Fig. Al-3. Each gradient path

was evaluated untll Its e'coordlnate axceeded Bj. The

coordinate, (r eJ,¢), was calculated for each path using

a three- polnt Lagrang!an Interpo‘atlon formula, 97(b)

based on the last three coordlnates obtained for each

99

path. The method of splines was then used tQ

obtain cubic polynomlal fits to the functlon, R - r(ej,¢),

{n the intervals between the gradient paths. These poly-
nomlals were then used to calculate R2 -_y(aj,¢k) for each

‘u\\ . i
plane, ¢, . The process was repeaféd for each °]'

(b) Type 3 reggpns -- For these reglons we requlre only the -

intersections, R g - r(e‘,¢k). along the line tabelled

6 = Bi - e%-ln Flg} Al-3. The procedure was identical

to that described for type 2 regions.

(c) Type ha regions -= These are the most troublesome regions.

4
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Fngre Al-3. A plot of the (r,8) coordinates of some typical |
gradient paths as they pass through type 2, 4a, and &b reg{gns. o s

Paths 1 and 5 lle In neighbouring symmetry pl?nes. 8 =8
" denotes a plane defined by the quadrsture formula.
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Here we need to evaluate the boundary coordinates,
eha(r;,¢k). The difficulty is that R?a Is a function
of ¢, as depicted by the line Iabellgd B = ei = 0?
in Fig. At-3. Hence, tﬁe values of re from the quad?ﬁture
formula are di fferent for different values of ¢. Con-
slder a typical ri(¢)\as i1lustrated in Fig. Al-3.

We eveqtually require an equation for B?a - a(ri,¢),
where r. is jtself a Function of ¢. The method was as
follows. As before, each gradient path was evaluated
until fts r éoordlnate excead T 0f course, now the

value of . at the crossover ‘depends upon &, Each time

a point.on a gradlent path was calculated, " the polynomial

fit to Rg

: . 4
regions, was used to obtain the valueigf‘kla at the

- r(el,¢), previously calculated for type 3

" value of ¢ defined by the point on thc gradient path.
This, coupled wlth R2 ‘was used to evaluate i 1f

the r coordinate of the gradient path exceeded r . thcn

the coordlnate (ri, 8,4) was determined with the three-

point Lagranglan Interpolatlon formula. The interpolation

d

was based on the differences, (r-rl) for the llast three
polnts on the path. This procedure waﬁ repeated for
each gradlent path. The method of splines was ‘then used

La
to obtaln a fit to the function 0, - 8{r,,$) In each

interval. The polyﬁomlats obtained werdg used to calculaiT

La
%
peated for each e

e(rl'°k) for each plane, ¢, . The ptocess was re-

]




o oo . lkh v

(d) Type 4b reglons -- the value of Rkb( R#a) is now constant’

and the r; are no longer functlions of ¢., The method was

the same as that for type 4a regions, except that R?b,

and hence fl' no longer needed to. be re-evaluated for

each point on the gradient paths.

V4 ' ‘
C. An Example: The (F) Fragment of BH.F_
. J——

In order to clarify some of the points In the preceeding sectignsa

'ﬁ' we now take a specific exanplé -- Integration over the F fragment in

BH3F-. The orientations of the 1CS and MCS are.shown in Flg. AI -k,

Note that the 1CS Is centred on the F. nucleus, and that its T axis

points directly to the statlonary point In the partltlonlnq surface

(In thls case, the poI;t of minimum density on the B-F dx}s) ‘ The x

axls of the ICS (the ax]s in the ¢ = O plane) was chosen to lle in the

symmetry plane conta!nlng the y axls of MCS. The Eulerian angles

relating the two coordinates systems were ‘specified as (90°, 180°, 66).

v

. [The conventlon usad In the partltlonlng rogram was qhat the rotations

ba performed around the z, X', ‘and flnally. “the 2 axis of the 1€5.]

The BHBF molecule and Its (F) fragment are both of 3y 8 ymuntry.
For this reason, It s necessary to perform the Integration only over
one-sixth of the fragment -- a wedge-shaped section lying between any
two symmetry planes. The boundaries for the Integratlon‘ovar the 9
coordl;atekwer. thcrofoéﬁ chosan as 0‘ - 0° lhd"z - 603. A S-point
quadrature grid was used between these b'oundarlesf

Each [ntegration plane, ¢, Was divided lnto'slx regions. |
The reglon types, boundorl;s; the number of points used in the quadrature

over r and 0, and the Initiatl grids snd grid ‘increments for the gradient

e




F?gure Al-4. Speciflcation of quadrature regions for, Integration

over the (F} fragment of BHBF'.

Solid crosses denote nuclel in the

plane (left to right: H, B, and F); the broken cross denotes the

" projection of the two out-of-plane H ;hclel. The dotted line
denotes the intersection of the (F) partitioning surface with the

C

v plane shown. The two Inner typse 1 regions and the outer

boundary of the type 4 reglon are not .shown. The positions and
orientations of the 1CS and MCS are glven. Both coordinate systems

are‘rlght-handed.

’
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wath calculatibns in these regions, are listed below.

TYeE R, R, n 8, 6, ne' " GRID 7 INCR
! 0.  0.006 10 0. 180. 10 S
\ 0.006 0.06 16 o. 180. 10 -—— -
1 0.06 0.3 16 o. 180. 10 —— ——--
2 0.3 ---- 2h 0. k5. 16 |.0E-4  3.6E-b
3 0.3 ceem 24 k5. 180, 16 1.06-4  O.

R T N O 16 1.0e-3 6.8

onl the boundary of the outermost type 1 reglon Is I!lustratéﬂ In
Fig.“nl-ki The boundaries of the inner reglons were determined from
the behaviour of the funct}ons K and G arqund the nucleus. ‘A scaled
plot of p, K, and G at fluorine along the C3 symmetry axis Is glvgﬂ
in Fig. Al-5. The plot is typica1 of first-row nuclel ahd Gaussian
basis sets. It becomas successively more spifad out for nuclel with

" smaller charges. There Is. generally little angular varlation of the
dlstributloﬁ. For flrst-row nuclel, the R2 boundary\d# the first type
1 reglion waﬁ aiwtys chqsen'roughly.colncfﬁent with the maximum [n the
G functlon, The r boundlrle; of 1He/[;cond type | reglon were cho§en
such that the sﬁoulder in'thelu function was approximately in the
centre oé the raglﬁn. Boundarles of typs 2, 3, and 4 reglions were
chosen qu:ccordancn with the shape of the partitioning surface 1In

the var{;us ¢ quadrature planes. ‘It 1s somotimas noccsiiry to choose
"ﬁompromlsa" reglonal boundarlies when the surface varlies signiflicantly
with ¢. As can be 3een from Flg. Al-h, the surface for BHJF- shows
little variation wlth 4. The lectlon of the surfaso below the €

[-]
axls ls ldentical to the surface at &, = 60°. As ¢ varles from 0

146
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Flgure Al-5. Behaviour of o(r), K(g), and G(r) within .03 au of the
F nucleus in BH3F.-. The three functions are drawn to different scale
factors in the diagram, At the F nucleus, p(r) ~ 4.3 X 10? au, .
K(g) ~ 1.7 X 106 au,"and G(g) ~ 2.1 X 102 au. The Galue of G(r} at .
s Apefgk is~1.8X 10" au; at Its shoulder, G(r) ~ 1.bx 10" au.
This type of behavla'ur\is specific to wive functions constructed from
Gaussian basis sets. When 2 Slater basls set is employed, p(g) cusps,

K(r) becomes infinite, and G{r) exhibits a discontinuity.’
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to 60°, the shape of the surface varies between the two extremes shown.
As a general rule,.the 82 boundary for a type 2 region was chosen such
that there was fairly little variation In Ri over the region.” Type 3
‘houndaries are, of course, determined by the type 2 boundaries. A single
type 4 region terminating at Rg = 10 au was generally sufficient. .Addltional
type b regions were generally inc{ﬁdcd only when it was felt that there
was too much varlation In function values ov;r a single region (i.e.,

if R? was < 3 au from a first-row nucleus). Of course, the choice of
regions and their boundaries ultimately depends upon the number of

points used !n the quadrature over those regions. It 1s best If a

novice experiment a Iltgle with a simple mofecula to familiarize

himself with the technique. .

The stationary point in BHBF- was found 1,90790218 au from
the F nucleus. The calculation of each gradleﬁt path was commenced
10—6 au from thI; point, In a direction parpendléular to the B-F_axls.
Seven paths were evaluated, with Initial ¢ coordinates of 0, 23, 7,

15, 30; 45, and 60°. ' Note that the 0° and 60° paths begin {and, of
course, remain) in symmetry planes. Also note that the Initlal
spacing between § coordinates }s nof even. The varlatlon of the ¢
coo}dlnate; Is simllar to that {llustrated for the paths in Flg. At-3.
It is best ta have a‘rglutlva[z even spacing of paths over the surface
as a whole, and the Inltial ¢ coordinates should be chosen with this

In mind. . This genarally means a few paths should be studied before

attempting Integration over any fragment.

D. The ldtagration Program

(!

it is ix;octod that coples of the integration program, and
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a1l detalls regarding its use, will shortly be avallable from the
Quantum Chemistry Program Exchange Centre,. Chemistry Department,

Indiana University, Bloomington Indiana. Any additional information

A

may be obtalned by writing to the author, c/o Professor R. F. W. Bader,

Department of Chemistry, cﬂaiii: University, Hamilton, Ontario L8S 4M1,

Canada.

————




APPENDIX 11
EXPANSION OF THE QUANTUM MECHAN!CAL VIRIAL THEOREH.
‘ : ~
The virlal theorem, in its most general form, for 3 system of

N iQFeractTng particles, may be written

}\\_

3N
- av
2T =-<) q =—?> , _ [att.1] -
k=1 K 9qy

.
where T is the average kinetlc energy of the'system, V is the total
interactive potential operator, and the g denote the 3N tarfesiah

. gl
coordinates of the particles. For electronic wavefunctions calculated

within the Born-Oppenheimer approximation (i.e., solutions of [1.4]),

the theorem becomes

.. , - | 3n 'aﬁe All.2
\ - —2T.e - —(izl ql —aq—i\> ‘ g [ 1. ]

where T now denotes the average electronic potential energy, Ve denotes
. e . !

the electronic potential energy operator. (the last two terms, in [1.6]),

and the summation on the right-hand slde is carried out only over

electronic coordlnates. A . 7’ﬁ&

Al

Euler's theorem states that for homogeneous functlons, f(qjquv-'-qr)’

of degree’p,

) K
i af(q]nq2f°'-aqr)
q
Pk %

- pf(gi.qz,....qr) [A11.3]
k= LI

The electronic potentlal energy operator, Ve. when con§idered as a
functlon,of both thé electronic and nuclear coordinates, q; and q, >
resﬁéét!vely. is homogeneous of degree minus one. If a sunmmation

- 150 - _
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BV EY]
aver nuclear coordinates, <- z q, 52— aq z Qg 363~> is added to the
a

right-hand side of [All.2], Euler H theorem may be Immediately applied *

to yield

— —— e ) .~
2T =T+ <§ Qg = 7 [AIL.4)

a
where V; denotes the average electronic potential energy of the system.

For solutions of [1.&] we have, from the Hellmann-Feynman theorem,

L o OE aH 3V '
A ~F ..a_e.-<ac>-<ae> [A11.5])
-v i qiu q qu qqu R - )
ol N~
where F Is the component of the electronic force on nucleu§ a in the

Q
g direction. Multipiying [AII 5] by Q> summing over a, and substituting

into [Al1.4] ylelds
Zr

. 2T, =V, - {unq | : [A11.6]

th nucleus and’?ﬁt denotes

If'ﬁ denotes the posltlon vector of the a

the electron{c force on that nucleus, [AII .6] may be rcwrltten as
97 =V - R FF [A11.7]
e a dﬂ a

The right-hand side of Equation [51{;1] Is called the virial, V,
A

of the_system. In the expanded form given ln [Aa11.71, V' will be termed

the electronic virlal, V;. and [ﬁ -Fez w!ll be known as the nuclear

: ; th-
virlal, V;. Since the.electronlc force exerted on tha a

et

nucleus.

. -
1s equal to &he total force on that nucleys, Fu, mlnus.the nuclear

replusion force, Fgun' the nuclear virial may be further expanded ﬁ?

b
- Eﬁu'?;m - gﬁd:;-u \7{3 [A“'B_]
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Alternately, Vg may be written in terms of the external forces,_FEXI = -?u
- b . . -t -

which must be app¥led to the nuciei to hold them Fn any othgr tﬁfz“fﬁflr'

equilibrium configuration. The nuclear virial may then be viewed as

the virial of the nuclear repulslon forces plus the virial of the external

forces. The virial of the nuclear repulsion forces, Eﬂ;:quc, reduces to

the nuclear repluslon energy, V?. U; may {hgn be written as
v R = wext o
UV =V + R F (Al1.9]
" substitution of [Al1.9]) into [All1.7] yields
Qe
T -V + IR et . [A11.10]
e - La o

\
where V ¥s the average potential energy of the system {(nuciear plus
electronic). Alternately, Equations [A11.7] and [A11.10] may be
written in terms of the electronic energy and tota{dﬁﬁ;rgy,'fe and E,

respectively, as

' .‘ . . At
-Te-Ee-gﬁu?du _ [‘“ ]
and
—- ext _ ‘
_Te- E + [Ka u-?a [Au.l_z]

From Equation [Al1.12] 1t follows that when a system s in its equilibrium
geometry (i.e., when all.}gxx are zero), E = 5F€ Wheha a system Is‘
| not at egquilibrium geometry, -T' will differ from E by an amount which

depends upon, both the direction_and the magnltude of the external forces

/
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APPENDIX 111

SYMMETRY ORBITALS FOR D, SYHMETRY GROUPS CONSTRUCTED FROM

TERMINAL GAUSSIAN d-FUNCTIONS

L}

The following symmetry orbitals were céhstructed‘us!ng pro-
jection operator technigues. For the E' and E' {rreducible representations,
the operators were construgted from corresponding elements of the 2 x 2
matrices which formed a representation In the (x,y) basls. This gave
the projected symmetiy orbltals the correct orthogonallty’propertles
with p_ and Py functions on the central nucleus. '
The molecule s assumed to be in the xy plane. The origln of
thé coardinate system s at the central nucleus. The y axls points
towards terminal nucleus 1; the x axis polints towatdé terminal nucleus 3.
In what folloWs,'xxn, Yo 22 W XF and yz_ denote normallzed

.d-type Gausslan orbltals on termlinal nucleus n. The symmetry orbitals

are not normallized. s

A, _symmetry , »
, y
oy * 1/8(xx, +_xx3) + 3/hlyy, + yv3) - W2k, - xv3? Vo

vy * 1/4lyy, + yy3) + 3/ (xx, + xx3) + ¥/2(xy, - xy4)

2z + 22, + 223 ¢ 'y

u

| 1/2(xy, + xv3) * 3/ (xxy - X%g) - 3/hlyy, - ¥Y4)

. _‘53 -

' C T s ‘ .
. ) M
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£'(x) symmetry

Ilﬁ(xx2 - xx3) + 3/h(yy2 - yy3) - i/2(xy2 + xya)
llh(yyz - YY3) + 3/h(xx2 - xx3) + l/2(xy2 + xy3)
2 xy, + 1/2{xy, + xy3) - 3/‘*(3.0(2 - xxg) + 3/4lyy, - yY3)

~22(2) + zz(3)

£'(y) symmetry

2 xx) - llli(xx2 + xx3) - 3/#(Yv2 f_YY3) + 1/2(xy2 - xy3)
2 vy, - 1/4(yy, + WB) - 3/A(xx, + xx3) - 1/2(xy, - xy3)
3/h(XX2 + xx3) - 3/h(yy2 + yy3) - l/2(xy2 -'xy3)
2 zz(1) - (zz2 + 223)
Ay_symmetry
2 xz - (xz2 + sz) + /3 (yz2 - yz3)

Ry_symmetry
2 yz - (yz? + yz3) - /3 (xz, - sz)

E'(x) symmetry

boxz, + (:r.z2 + xz3) - /3 {yz, - yz3)

V3 (xz, + xz3) + (yzz - yzB)

E'(y) symmotry | ‘ o J

4 yz, + (yzz + yz3) + 3 (xzz - xz3)
_ | ,
/3 (yzy *+ vzg) - xzy - xz,)

1t jsruorthwhll; noting that when a projectlon"oporator Is applied to.

»




an unnormalized function, all components of the projected symmetry

orbital must also be considered as unnormalized. A program such as

POLYATOH52 requires that the coefficients in a given symmetry orbital
aultiply normalized basis functions. This is not important when one
is dealing with s- or p-type Gaussian basls functions. In this case,
the components of‘any g}ven symmefry orbital have identical normaliza-
tion coefflcients, and the coefficients obtained from the projection
operators may be,used In the program directly. Hoaever,’?or d-type
G:ﬁsslan functions, the normalization factors for the xx, yy, and 22
components are different than those for xy, Xz, and yz components.
For this reason, the coefflcients dbtained from a pro]ect!on'0perator
may have to be adjusted to.take account of thls.differenﬁe before
they can be used in a program such as POLYATOH. (This adjustment

has already been made to the symmetry orbitals listed above.)

155




13.
14,

15.

6.
17,
18.
19.
20.
21.

22.

REFERENCES

A. Froman, Rev. Mod. Phys., 32, 317 (1960).

M. Born and J. R. Oppenheimer, Ann. Phys., 84, 457 (1927).
J. C. Slater, Phys. Rev., 34, 1293 (1929).

D. R. Hartree, Proc. Cambridge Phil. Soc., 2k, 89 (1927).
V. Fock, Z. Physik, 61, 126 (1930).

J. C. Slater, Phys. Rev., 35, 210 (1930).

C. E. Eckert, Phys. Rev., 36, 878 (1930).

E. A. Hylleraas and B. Undheim, Z. Physik, 65, 759 (1930).
J;.K. L. MacDonalJ, Phys. Rev., 43, 830 (1933).

C. C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951).

o

s. F. Boys, Proc. Roy Soc., A200, 542 (1950) ; see also !. Shavitt in

nMethods of Computational Physics', Vol. 2, Academic Press, New York,

-

(1963), p. 1.
L. Brillouin, 'Les Champs 1sel f-consistents® de Hartrec;Fock“,
Hermann et Cie, Paris (1934), p. 19.

C. Moller and M. §. Plesset, Phys. Rev., 46, 618 (1334).

M. Cohen and A. Dalgarno, Proc. Phys. Soc.'(London). 77, 748 (1961).
H. Hellmann, “Elnfuhrung in die Quantunchﬁﬁic", F. Deufickg, Ltelpzig
(1937), p. 285.

R. P. Feynman, Phys..Rev., 56, 340 (1939) .

r. E. Stanton, J. Chem. Phys., 36, 1298 (1962).

V. A. Fock, Z. Physik, 83, 855 (1930)..

P.-0. Lowdin, J. Mol. Spectry., 3, 46 {1959} .

J. C. Slater, J. Chem.. Phys., 1, 687 (1933).
J. 0. Hirschfelder, J. Chem. Phys., 33, 1462 (1960).

J. H..Epstéln and S. T. Epstein, Am. J. Phys., 30, 266 (1962).

-

156




73,

LEN

75,

76

27

78.
29.
30.
31.
32.
33.
34,

35.

36.

37.

38.

39.

Lo.

41,

L2.

= 157

J. 0. Hirschfelder and C. A. Coulson, J. Chem, Phyﬁ., }é; gkl (1962).
p.-0. Lowdin, “"Advances in Chemical Physics'', Vol. 11, Interscience,
New York (1959), p. 207.

E. Clementl, J. Chem. Phys., 38, 2248 (1963).

E. Clementi, J. Chem. Phys., 39, 175 (1963).

H. Hartmann and E. Clementi, Phys. Rev., 133 , Al235 (1964} .

L. C. Snyder, J. Chem. Phys., 46, '3602 (1967).I B N
€. W. :K.em and M. Karpiu's, J. Chem. Phys., ﬂ.’ 1374 (1964) .

p. E. Cade, Trans. Amer. Crystallogr. Assn., EJ 1 (1972).

Q .
W. N. Lipscomb, Trans. Amer. Crystallogr. Assn., §9 79 (1972).

A. J. Duke and R. F. W. Bader, Chem. Phys. Lett., 10, 63] (1971).

R. S. Mulllken, J. Chem. Phys., géJ 1833 (1955?. . | -
See P. Politzer and R. Harrls (Ref. 39) for most of the rcferﬁhces ‘
to this work. ' _ . . %

R. S. Mulliken, J. Chem. Phys., 36, 3428 (1962)..

C. Edmiston and K. Ruedenberg, Rev. Hod.{Phys., 35, 457 .(1963) .

W. énglana, L. S. Salmon, -and K., Ruedenberg In’hTopics In Current
Chemistry', Springer-Verlag, New vyork. (1971), p. 31.

S. Rothenberg, (a) J. Chem. Phys., 31, 3389 (1969); (b) J. Am. Chem. "
soc., 93, 68 (1971). ' ‘

P. Politzer and R. R. Harris, J. Am. Chem.. Soc., 92, 6451 (1970). ‘. '
C. Asiangul. R. C;nstanclel. R. Daudel, and P. Kottls in '""Advences

in Quantum Chemistry', Vol. 6; Academlic Pqus, New York (f973). p. 93.
P.-0. Lowdin, Phys. Rev., 97, 1474 (1955) ..

R. McWeeny, Rev. Mod. Phys., 32, 335 -(1960) .




"1

c0.

51.

52.

53.
54.

55.

56.

57.
58.

59.
- 60.
61.

R E. W. Bader and P. M. Beddall, J. Chem. Phys., 56, 3320 (1972).

= F. W. Bader, P. M. Beddall and J. Peslak, Jr., J. Chem. Phys.,

58, 557 (1973). %

R F. W. Bader and P. H. Beddall, J. Am. Chem. Soc., 95, 305 (1373).

T. Kato, Commun. Pufe Appl. Math., 10, 151 (1957) .

£. S‘teiner, J. Chem. Phys., 39, 2365 (1963).

W. A. Bingel, Z. Naturforsch, 18a, 1249 (1963).

R. T. Pack and H.VByerQ-Brown, J. Chem. Phys., 45, 556 (1966).

R. F. W. Bader, W. H. Henneker, and.P. E. Cade;, J. Chem. Phys., b6,
3341 (1967). ‘,

H. Primas, Int. J. Quaﬁt. Chem., 1, 493 (1967).

0. B. Neumann, H. Basch, R. L. Kornegay, L. C. Snyé;r, J. W. Moskowitz,
C. Hornback, 5. P. Leibmann, 'The POLYATOM (Verslon 2) Program System'',
Quantum Chemistry Program Exchange, Chcmlsfrx Department, indiana
University, Bioom!ngton, Indiana 47401, U. S. A.

S. Huzinaga, J. Chem. Phys., 42, 1293 (1965) .:

T. H. Duﬁnlng, Jr., J. Chem. Phys., 55, 716 (1971) .

S. H. Bauer, G. Hertzberg, and J. W. C. Johns, J. Mol. Spectr., 13, \
256 (1964) . | | ”

A. H. Nlelson, J. Chem. Phys., 22, 653 {1954) .

W. Gordy, H. Ring, A. B. Burg, Phys. Rev., 78, 512 (1950) .

D. H. Rank,JA. H. Guenther, G. b. gaksena, J. N. Shearer, anﬁ T. A,
\n'-lgglns, J. Opt. Soc. Am., A7, 686 (19{57,)_.

. Onaka, J. Chem. Phys., 27, 374 (1957).

v. E. balke and . N. Lipscomb, J. Chem. Phys., 33, 3948 (1966) .

6. D. Joshl, J. Chem. Phys., 46, 875 (1967).

158



a3
L

65

R

h7.

68.
69.
70.

7.

72.

13.
74,
75.
76.

77.
78.
19.
80.

159

~ .

s 0. Peyerimhoff, R. J. Buenker, L. C. Allen, J. Chem. Phys., 45,
734 (1966) .

0. M. Bishop, Theor. Chim. Acta (Bertin), 1, 410 (1963).

E. L. Albésihy and J. R. A. Cooper, Proc.lPhys. Soc. , 82; 289 (1963).
P: Y. Ford and R. E. Richards, Disc. Farad. Soc., 19, 230 (1955) .

L. E. Sutton, Ed., 'Tables of interatomic Distances and Configurations
in Molecules and lons', The Chemical Society, London {1958), Special
publication No. 11, p. MIl7.

G. Hertzberg, “Molecular Spectra and Molecular Structure. 1. Spectra
of Dlatomic Molecules', 2nd Ed., D. Van Nostrand Co. Inc., T;rontp (1950) .
S. R. Gunn and L. G. Green, J. Chem. Phys., %QJ 1118 (1962). |
T. P. Foldmann.and'w. S. Koskl; J. Am. Chunj.Soc., §;) 409 01965).;

A. G. Gaydon, hDissoCiat‘Oh Energlies §nd Spectra of Diatomic Molecules'',
2nd Ed. (revised)’, Chapmann and Hal¥, London (1953).

V. H, Diebler and S. K. Liston, lnorg. Cﬁgm.} 7, 1742 (1968) .

R. A. tegstrom, W. E. Palke, and W. N. Lipscomb, J. Chem. Phys.,

46, 920 (1967).

R. E. McCoy and S. H. Baver, J. Am. Chem. Soc., 78, 2061 (1956) .

D. RL Armstrong and P. G. Perkins, J. Chem. Soc. Al044 (1969) .

. G. Cslimadla, private communicatlon.

A. D. McLean and M. Yoshimine, wTables of Linear Molecule Wavefunctions'',
1.8.A. Corp., San Joﬁe ﬁc:earch Laboratories, San Jose, california (1967).
P. N. Noble and R. N. Kortzeborn, J. Chem. Phys., 52, 5375 (1970) .
o A. Kollmenn and L. C. Allen, J. Am. Chen. SoC., 92, 6101 (1970).
J. Almlof, Chem. Phys. Lett., 17, 49 (1972).

H. L. Caerll and J. Donahue, 1sr. J. Chem., 10, 195 (1972).




R

%)

RG .

R7.

88.

89.

90.

91.
92.
93.
94.

95.

36.
97.

98.

160

<. A. Harrell and D. H. McDaniel, J. Am. Chenm. Soc., 86, 4497 (1964).

M E. Schwartz and L. C. Allen, J. Am. Chem. Soc., 92, 1466 (1270).

D. R. Armstrong and P. G. Perkins, Theor: Chim. Acta (Berlin), 15,

13 (1969). '

J. A. Pople and D. L. Beveridge, "Approximate Molecular Orbital Theory",
McGraw-Hi11, New York (1970), p. 119.

R. G. Pearson, J. Am. Chem. Soc., 85, 3533 {1963) ; Science, 151,

172 (1966).

P. Politzer and J. W. Timberlake, J. 0rg. Chem., 37, 3557 (1972).

U: A. G. Graham and F. G. A. Stone, J. lnorg. Nuci. Chem., 3, 164
(1956/57) .

C. K. lngold, "Structure and Mechanism in Organic Chemistry", 2nd Ed.,
Cornell University Press, lthaca, New York (1969) .

p. T. €lark, J. N. Hu}rell, and J. M. Tedder, J. Chem. Soc., 1250 (19631j
R. F. W. Bader, A. J. Duke, and R. R. Messer, J. Chem. Phys. (1973}

(in press). |

R. F. W. Bader and P. M. Beddall, Lhem. Phys. Lett., 8, 29 (1971).

R. F. W. Bader atd H. J. T. Preston, Int. J. Quant. Chem., 3, 327 (1369) .
R. F. W. Bader, |. Keaveny, and P. Cade, J. Chem. Phys., 47, 3381 (}1967).
R. G. Pearson, Chem. Brit., 3, 103 (1967). | -
N. H. March and J. C. Stoddart, Editor F. Herman, “Computational Solid
State Physics'', Plenum Press, New York, pp. 205-218.

P. Hohenberg and.d. I(ohn'.3 Phys. Rev., 1368, 864 (1964).

See, for example: J. B. Scarborough, ‘'Numerical Mathematical Analysis',
Sth Edition, John Hopkins Press, Baltimore (1962): (a) p. 150, (b} p. 74.

See, for example: H. coldatein, ‘'Classical Mechanics", Addison-Wesley

Publ. Co., Reading, Massachusetts (1965), p. 107.



™
/

T . . 161

49. C. H. Reinsch, Numer. Math., 10, 177 (1967); Numer. Math., 16,

451 (1971).

'ng.  J4.F. 0'Shea, "A Molecular Orbital Theory of Polymers', Ph.D. Thesis,

McMaster University (1973).




