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SCOPE AND CO’QTENTS'

The two—body elast;c scattering data and the blndlng
energy ?f-the deuteron do not uniquely determine the nucleon—”
nucleon interaction. "Many. potentials, whieh fit these data, - .

fﬁay g;ye different resuits in.many—body problems duerFo their
_3differen§ off-energy~shell behaviocur. It is-also exﬁected 1
that the nueieon~nucieon‘interac;ion would be nonlocal at
- short.relative dié?ances ane-local aﬁ comparatively 1a;ger
- (r 22 Fm) disﬁances. Thus it is of inserest gorconstru;t -
and study partly nonlocal potentials.
) We have generalised the Jost-Pais theorem for nonlocal
central and noncentre} potentials, A method, based on.the B
‘germalism;pf Feda, has been develoéed te consfruct pektly
n honlecel‘central phaee eéu%valent pdtentials. Theee poten-
tiaie,fconstructed in the S-state} have an attractive local -
part, suﬁerimposed with e-short range repuleive'rehk-one

(1i)




separable potential, We study the behaviour of such partly

‘nonlocal potentials in nuclear matter, with a view to examine

. R s o res e T .
-if these differ significantly from corresponding phase

. : - . - <
‘equivalent separable potentials.

We have also studied the dependence of the threshold

' Coes : - o - + L
cross section for the reaction p+p - 7 +d on the nature of

the deuteron wave function. Phase equivalenﬁ potentials with
- varying D-state prob;biligy of_thé;deuteron have been’gener-
ated using unitary transformations on the two-hody Hamiltonian
which includes a‘logél or sep;gable'QOténtiai: it has been -
shown thaf the crossrseqtién depénds_senéitively not only on
; thé ﬁ-staﬁe probability of the deuteron but also on the form
lof the wave function at short relative distances, énd hénce
' to thg éff-shéll behaviour and thécqgnlocality of the

interaction. = , ' . :

;“‘
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FIGURE 2: Holf—off—shell R—Qatrlx elements R(p;k:kz)”given;
| ' by_III-3.i are'plopted. . These p}otsiore for AG[’
A3, BO, B3 and Sﬁandard Tabakin EST) poteotialsL\

klstakentobelof‘ml v T

: FIGU§£,3:.“D1agonal matrlx elements <k{V|k> of class A
- ’potentials-glven_by III—2.}5—and the phose- _
‘equivaienosclass B potentials given bf:III;2.19
3 . o arefﬁlottod. Figure 3(&3 displays the pair AO,EO
. for.which-thefattraotive parts are -also ghase-‘ 7
. equibalent.- Figures 3(b) - 3{(d) are for the pairs
-Al Bl; A2,B2 and A3 B3 respectlvely. | _ ©
.FIGUREI45 'The boundlstate wave functlon ¢B(k) generatéd by
' the attractive Bargmann potent1a1 III-2. 15 for
rthe 11m1t1ng case A3 and the correspondlng n(k)
whlch is orthogonal to ¢B(k) are displayed._ Also
shcwn, for comparison, are the bound state wave -

function QB(k) generated by the attractive

,component of B3 and the corresponding repulsive

Ly

form factor y(k) ' f
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o ) wv-2.5, isabldfyéd against r;for.éhe potgftia}s' K
' - A0,A2 and_BQ,BZ; The wave nu;ber*kb in each- ‘

cqse'is EakenstO'be,at 6.55‘k§,:wheré'k§ is the

saturation §a1u¢ shown in Table 4.1. T
FIGURE 6: Off-diagonal matiix elements, G(k,ko:f} and
'\V(k,ko)rgiven in ;V—l.l3, are plqtted;for the-

potentials A0,A3 and BO,B3. k, is taken as f

3

“mélssmxg. Fermi momentun at saturation (ki) is

-

’givén in Table 4.1. |
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' INTRODUCTION , ; o

The study of the twabody nucleon—nucléon (N-N)

‘interaction is of central 1mportance fo* the understandlng

of nuclear properties on a nlcrOSCOch viewpoint. Although in a

\ \ A _
system of many nucleons there may exist three- and many—body

derces.-the role of the NN 1nteractl9n remainSJp;edomlnant."

. Genérally; in nugleat physics nuCleons-gre considered as -
nonrelativistic "particles interacting through the R-N
interactioh which is rep?esented by a potential. Experimen-

tgl‘information about the N-N interaction is obtained :-from

~nu¢léon-nuc1eon scattering experimenfs. Th;s is supplemented

* by the propertles of the deuteron Whlch 1s the only bound
state of theutwo nucleon systen. Analyses of these data
yield phase-shlfts 1,2) éor the dlffeﬁant part1a1 waves
ycontributing ;o thg N-N scattering. These scatterlng
experiments and'deutéron properties strongly indicate that

the N-N interaction has the following broad features.
% ' )

£
o L

1. The N-N interaction is of short range (&235 Fm) and is
charge independent. | o

2. It is spln dependent and has a noncentral corzponent.

¥

3. It is repulsive in nature at small relatlve dlstances;

.

= ' 1.




If %é’incorpora;e these featu:es of the N-N interaction in
a Qote#tial we can eéplain the scattering-data and the
properties of the deuteron. Hcwever, fof our stud&, we made
fhe‘siﬁplification that the potential acts ?nlj in the _‘
'S-state and is spin independent. Since the deuteron is é
ver& loosely bound systenm, and the interactién in the 180'
staﬁe falls just short of.binding the n-é system, the above
assumption is ‘not a drastica 11y unreallstlc one.”

. We shall often use the term "low enerqgy" for -
: energies below 10 MeV lab. In this range the low energy | ‘
parameters like scatte:ing length, effectivg range'ahd the
shape parameter are éufficient to describe the experimental
phase shifté. We shall use the term 'high energy' to mean
energles in the v1c1n1ty of the threshold of plon productlon,‘
.whlch is 280 MeV lab. Although at hlgher energies the
phase shifts are not real because_of pion productlon, the
experimental elaétic cross sections are fitted with the .
real phase shifts to obtain a phenémgnoiogic§} potential.
In the study of;the phase equivalént potentials (defined
later), we assume the existenée of real phase shifts at all
gkergies aﬁd obtain a real potential to be used inr the
: region where phase shifts are real. | .
A number of phencmenologgbal potentials . 3- -6) have
. been constructed’ to fit the phase shift data and -to

‘reproduce the properties of the deuteron. A theorétical




basis is sought for such potentials 7-13) by ésing field -

théoretiéél co§§iderations in their derivatioss.f It is

,:suppoéed‘tﬁat‘the long range (>2.5 fm) patt of the N-N
interaction'is.given by the-one-pion—exchange poﬁeﬁtial‘ o
(OPEP).u This is coﬂf;rmed by the fact that_the phase Shifﬁs.
for higher éaftial waves (Lkz_é) in the ehtiré energy range
0-300 . MeV lab are very well reproduced by the one-pion-

exchange potentlal alone.‘ '

The situation for the short range part {r <1 fm)

P

of the interaction is not'so clear. To probe the short

tange part of the interaction one réquires scattering data
at hlgher energles, whlch are limited due to the complica-
tlons arising from 1) meson production and 2) . the contrlbu—
tion due to an increasing number of partial waves taking
paft in th? scattering. At high gnerg;es tﬁe ve}idity-oﬁ
the potential theory is itself questionable, because the
,muitipartiqle productioh and rélatiyistic effects cannot be
acco&nted for in a static potential approach. It appears
that tﬁé'short-ranqe part qf the interaction mainly‘argges 3
.dﬁe'toamﬁitipion exchange processes when the iecqil_of the;
nucleons can hardly be ignoied.;ruhder the Circumstéﬁces
the N—N interaction cannot be represented by oné rad1a1
variable r, i. e.; the relatxve separatxon of two 1nteracting

nucleons. It w111 also dcpend on the 1rmedlate v1cinity of

the two 1nteract1ng nucleons to account for the effects of




‘the recoil. Thus the N-N interaction should be_represented

by V(EE'X which depends-on two variables. r and r'. “ Note

*that'vtggf):has«the;dimensions of energy density rather
than that of energy. The wave funotion ¥ (x) at any pOint

r will now depend on its value at other neighbouring
q‘ r

p01nts r through ‘the lnteractlon V(rr ) The Sohrodlnger‘

\n-l-

" equation for such an: 1nteract10n is - ‘L o o \\
e . _ ‘:‘--! o \._- . " \
k2 5, S A - -

=R e s [vmrvanet s L, 1L

] L)

fl

where. M/2 ‘is" the reduced mass of the two nucleons. Theﬁ:
kernel of this, integral equatlon is V(rr ) whlch is. a
nonlocal potentlal. Since V(rr ) is no longer a dlagoné}
matrlx, it is not possxble to obtaln a solutlon analytlcally, inr
general for any arbitrary form of V(r,r Y. However, if we . '
impose’” the condxtlon that the potential is 10ca1 i.e.,
vV{rr ) = V(r)G(r-r ¥, we obtaln ‘the: fam111ar form of the

Schrbdlnger equation from I-1.1, which-is

-iﬁ'ﬁzwy *VEvE =@, Rz

Thus the local potential V(r)ﬁ(r—r ) is a limltlng form of o
a general nonlocal potentiai The other convenient
representatxon of the nonlocal potential is the separable

potentlal. This form in configuratién space is defined as




e

V(E;E‘) =z 95 (r)g {x* ) . . : : I-1.3
- o i I -

]

In practice one terminates this series after two or three
terms. The form of g{r) is rather arbltrary, and dlfferent
terms may have dlfferent forms. - These potentials are- also
separable in mo@entum space.‘ Separable potentlals are very
confvenient from' the mathematlcal polnt of view because these
reduce I-l.l into a set of algebralc equations whlch are
easy to solve. HoWeve;, physically such potentials are not
a good representet}pn_because the. nonlocality is éiffused
over the whole‘iange .of the interaCtion. Maﬂy separable

potentials 15~ 18)

have been constructed to reproduce the
two-body phase shift data and the deueeron binding energy,
but these do not reproduee other deuteron propertiesilike
form factors, D-state probability etef realisticaily. Some
separable Potentiais'have been cbnstructed-QYGSerduke 19)
which. fit fhe twe body elastdéc scattering data and also have
fairly‘realistic aeuteron properties. Separable potentials
'havenbeen_used in aifferent pany—body-calculations'1iké

nuclear matter 20), tritongzl) and finite nuclei %3{. Thesea
- \ . -

-

potentials, because of their simplicity, are almost

exclusively used for the etudy ‘of three- body 23-24)

e

problens

»1n nuclear physics. ' ¢

r . ’ . -
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The two body scattering data (even if known at all

energiesg are, in general, not sufficient to determine a

-

unigue potential. However, if certain restrictions are

-

imposed on the poﬁential, i.e., it is local and‘does not

N

-

support any bound state, a unique potential for each partial
—

wave can be obhalned 'This procedure of obtaining the
et ’ ™ i

potential starting. from the phase shifts is called the
. . i Y

inverse problem in scattering. For local potentials one can

use the me;hod of Gelfand and Levitan‘zsg or of Marchanko 26).

In .the presence of a-bound state, a family of §OEEntials can
K : .
be generated reprcoducing the given phase shifts and the

"

bound state energy. The inverse écattering problem is also

27-29) 0}

studied for separable -and Yukawa type\i. . potentials.

when, as in the_tealistic situation, the phase shéft changes
sign at high energy, the inverse scattering problem eannot
be salved in .general for a one-term separable potential, At

least two terns: are requlred to 1ncorporate the 519n change

for the phase shift¥. Since the \phase shifts at blgh energies

e
H . - ¥

#Tabakin 16} has constructed a one-term separable poteﬁﬁia{

fittlng the experimental phase shifts. _This potential has

a posxtxve enerqgy bound state in 180
- . {




_ cbserve "that the nuclear matter‘blndlng energy is sensitive

Fiedeldey

-

elements, defined by !glz # IE[Z #'h{l. for such a study.

the hlgh energy phase shlfts. ‘ ' ' _ -

- _. . /\ i h . 7 ‘. ,ue_;

-~

- V - ‘. s = \
are not known experimentally, many potentials with different

high energy extrapeclations oan be constructed. Sore

separabIe potentlals with very dlfferent hlgh energy phase

-

shifts have been studled ‘by us 30 in nuclear nmatter. We

to the changes in -the high energy phase shlfts prOV1ded the

form factor of the seéeyable potential is of very short range.
?2) has done a similar study for trlton and fognd

~

that the binding energy of the triton is also sensitive to
"In two-body elastic scatterlng, the two‘partlcle.
energy is conserved therefore, such-data can only provide

the on-energy—sboll (on-shell‘ traosx*lon-natrlt (T-matrlxi

o™

elements deflned as . i - - . -

’- : . o= . .. - ) ) ’ 1 \. + .

. <EITW)IE> = <?IV‘]§> ‘+ <131V ;;:H_O.Tl-&-vl‘bk> ' I-2.1}
with'[gl2 =a|}5]2 = |w]|. ‘Using the partial wave expansion

(discﬁssed in Chapter II) the op-shell T-matrix element for

th partiai wave can be directly related to the differ-

1

the 2

entlal cross section and obtained ftom the experimental data.
However, in a many-body system, the scattering of two

partxcles does not conserve energy, because'ﬁiher partlcles

can share somg_of the-energy.. Thus ©ne requlres the '_ .o
knowledge of the off-energy-shell'(off-sﬁell) T-matrix

RS
“




i

T e

These can be determined uniquely only if some form of the
two-nucleon potential is assumed. This is equivalent to
_assuming\some‘specific extension of the on-shell elements-of .

the T-matr;x to the off-shell region.- There can be infinitely

many such potentials as péinted out by Ekstein 33), all of

them would be phase equlvalent, i.e., generating the same
. v

i

phase shifts at all energles ‘but hav1ng dlfferent off- shell
'behav1our. All such potentials are called phase shift

- equivalent’ (phase equivalent) potentials. This arbitrariness

of;théﬁoff—shell_behaviour automatically introduces some

‘model dépeﬂi?nce in the many-body calculations. In o -
'briqciple, such a model dependence één be.rémoved‘if we
“had complete knoﬁledg% of the off-shell behaviour.

Experimentg like ele;tron;déuteron scatﬁering,_néutrén—

~ deuteron scattering,f? Edn*proton or neutron;proton

N 3

bremsstrahlung (ppY, and npy} etc. whlch depend on the off-

shell behav1our can prov;de such 1nformatlon£ Some of these

» !

experlments are difflcult to perform and equally,dlff;cult

to interpret. The cross section-is dominated by elastic

o L

processes.. Proton-proton bremsstrahlung (ppy) experlments -

—are conpa:atxvely easy to lntarpret because the final state

i

of thls reactlon consists of only two ﬂtrongly 1nteract1ng

particles and a‘photon which interactsgonly through the

-

\electromagnetic xnteractxon. Typlcal P-p bremsstrahlung

" eross sect;on is smaller by a factor of 10Y than that of
. . . . ' i
p~p elastic scatter;ng. Therefore. a.good‘statistlcal

A . .

L.




b

-properties of the off-eheil T-matrix are not fully known.

b

-accuracy for such experiments is hard to achieve.- Experimental

N

data 34736} g4 incident protons of (10 - 150 MeV lab) are

available and a nunber of calculations with different

37-39) . o : SV

potential models have been done to estimate the.off-

shell effects.7 The present féeling is that thesefexpe:iments
at these'limited energies are not reliable indicators of
the off-shell effects. For these experiments to be useful
in discriminating between various boteﬁtial_models, they
Should be performed at high enough energies such that thF far-
off—shell reglon 1s expiored. Other experiments like neutron-
deuterqn scattering ‘at high energies dre moFe difficult to
interpietubecauee the final‘state eontains more thaﬂ two

Stronglyqintcnact ng particles. Apart from these experimental

£
difficulties, there is another problem, namely the analytic

hS -

Thus aqbexplicie'baramete:ization of the off-shell elements
is not possibie. The other alternative is ﬁo-stuay phase

equi&alent potentiale which may give some}suitaﬁle criterion

to restrict the off-shell behaviour. The earliest

studies . 4? 42)'of this problem were made with potentials

&

f which were’not exactly-phase‘equivalent, their phase shifts

rbﬁghly coinciding up to 300 MeV lab, ahd these were used to

find out the differences in the bindiﬁg energy and the ‘satuyra-
tion property of nucleat,mattei, or to investigate the prover-

ties of the triton. Secﬁ differences may not be rigourously




P : ’ -

aSCribea._ to the variations in the off-shell propertles
because these potentlals have dl‘ferent on~she11 elements .
at high energy.

Thqre‘are scme practical methods to construct éhase 8
‘ 43)
'

equivalent potentials.’ In one .method used by Fiedeldey

'1 A ‘-\ v . B

~a family of phase.equivalent rank-two separable potentials
is obtained'by0choosing,‘arbitrarily; one ‘of the potential. ¢
ot : . .

form factors ahd calculating the other using the given phase

shift data. This is done'by solving ﬁhe;ipverse-scattering:

‘problem. He constructs these potentials to reproduce the
' 42) -

phase: shift and bound state energy given by the Tabakin

potential. These potentlals are then used to study the -~

changes in the blndlng energy of trlton 21)., Some of these . | /

44)

potentlai:_were studled by us to calculate nuclear matter

binding ehergy. Another method has been, followed by Coester

_et_ak.,4§?,'and'Haftél'and Tabakip 46). In this method a - *

family of phase equivalént potentials are generated usingh S
u@it&ry transfbrﬁﬁtions.on a. two-body Hamiltonian. ?he‘tﬁojm‘\
body Hamiitonian may be éhosen with aﬁ} iocyi or ‘nonlocal
potential. The rank;£ﬁ0'separable type of unigary
'transforﬁationé are used in these calculations; some details
oﬁ.these transformatlons are gzven 1n Chapter v. ncOester et_

45)

FJ/““al; used ‘these transformcd potentlals to calculate the

blndlng energy in nuclear matter and found that it increased .

for those potentials which introduce - less distortion in tha

47)

relative two-body wave function.’ Haftel and Tqbakin ﬁsed .




these t ansfoﬁ“ations on the Reid-soft-core potential to

[y

generaté a set of potentials, which are used in nucleax

" matter caIculatlons. They foundfihat the binding energy and

saturatlon den51ty of nuc‘ear matter change sxgnlklcantlv for
the transformed‘potentials. wSome of these potentla are

recently used to calculate the ground state energv of the

oxygen nucle 48) and blndlng enerqgy oF triton 49). A third.
; - :

"method fp géneraté a family of momentum—dependent {pz- \\

dependent) phase equivalént potentials 50-52) -

is to use the

short gange radial scale dlstortlons cn a two«body Hamllton-,

g
ian. Such pqtentlals have been used in nuclear matter 53, 45)

protbn-p:oton bremsstrahlung Sﬁ) and deuteron photon
disintégration 55). Srivastava >6) has studied the off-shell ~

- behaviour of some pz-dependent,pqtent;als inwcomparison with

i

loéal éhd separable'phase equivalent potentials. He also

constructed 7? some local potentlals phase equlvq}bnt to

15) 7)

separable pbtentials of Tabakih and of Mongan 1 uslng'

‘the Marchanko ﬁéthodi‘ >

Fl

We are 1nterestq\‘1n constructﬁng such phase equivalent

potentials which are attractlve and local at long range, and

K
-

are repulsiVE‘and nonlocal at- short range. This form of

_the potentlals is predxcted from neson theoret1cal considera-

tions”‘ We call such potentlals partly nonlocal. The method

58Y

'shy us is based on the formallsm of Fuda and is-very

[
r

nient for our purpose. In the next section we descrlbp
. s - )

-plan that is followed in ‘this thesis. . o .




“We have studied nuclear matter and the threshold
cross section‘of the reactioﬁ ptp - 7+ d with phase = -~
equivalent potentials, to determine the changes produced duve
to'the different off-shell behaviour. We aléo iﬂveétigétq
the variatioﬁs in the fesulés of nuclear matter when partly .

‘nonlocal potentlals are replaced by separable rank-two

phase equlvalent potentlals. .Slnce we usg a method to
construct the phaae equlvalent potentlals which regquires
information about Jost: functions for nonlocal potentlals,

we have given some s;mple propertles ‘of the Jost function for
the local potentials in Chapter\II. Unlike the local situa-
tion, the Jost function for a noalocal poteﬁtial fs not
equivalent to the Fredholn determinant of.the kernel of the
-Lippﬁann—Schﬁinger eqﬁatign- The expression for‘ﬁhe S-étate
"Jost fuﬁction for a.nqnlbcal central poténtialfwés derived by
59}

.Warke and Bhaduri » we have generalised this result for

higher partial waves in Chapter II. Furthermore, in Appendix

A, we derlve the expressxons for ‘Jost functlons for nonlocal,
"noncentral potentxals as well. The ba51c mathc at1qa1 .
framework for the two-body scatterlng problen is also

éeﬁelopedﬁbriefly in Chapter II. l . . _ -
. H . i ’
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Our methoé éf genetating'phase equivalent potentials
-is given %t Chapter III. This chapter also includes the
construction of separable rank-two phase equivalent pote#tials
~ using our method, and a discussion of some features of these
‘potentials.' We‘ﬁave not used a realistic form of the local
potential becéﬁ;e in that case analytical solutionsrére not
' 60)

rossible, instead we have chosen a Bafgﬁann ﬁotential as the )

°1ocallpart. This potentiél has analytical solutions for,thé.
scattgring and botnd state protlem. The short rangertepﬁlsiva
part is always'takeﬂ to be a ranﬁ-one separable potential, -
The partly nonlocél‘and;rankftwb separable poténtials are
used in nucléar matter to talculaté the binding energy and the @
) saturation’density. The wound iﬁtegfals'for all these
potentxals are also calculated. The detéils of thiéi
caleulation and the results ére reported in Chapter IV. These
calculat:ons are confined only to the S—state, because the
‘S state contrlbutes most to- the binding energy of nuclear
. matter 61’, - o
11; Chapter V we studied the effect of the off-shell
behaviour in the production cross séction of the reaction - ~
p+p -+ ﬂ+ +nd near threshold. It was suggested by Thomas and
Afnan 62) that the study of the cross section for the reaction
v PP +'g+ + d near threaheld nay give considerable 1nformaticn
about the tensor component of the N-N interaction, and thus '

. restrictythe D-state probability in the deuteron to a\mbre precisa

-




.
S
s ~

value than the present one (4 ~ 8%). "We investigate this .
problem w1th dlfferent phase equlvalent potentlals. .Some of

our potentlals are Dhase equlvalent to RSC and others are

63)

separable Dotentlals with varylng D-state probab;llty.

This study is undertaken.with the: 1ntent10n to see hcw fay

.the off-shell behaviour alters‘the cross section and‘whether

o

it is really possible to_pin down the D-state probability

through such a study.

“Finally we summarlze our conc1u51ons in the last

3

chapter. " Two appendlces are glven to supplemegt Chapters II°

A
L

and TII,

S

L[58
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CHAPTER IIX

JOST FUNCTIONS IN SCATTERING THEORY

The Jost functions are important for the sﬁua& of the
- ‘. . - . B - N ) .

-analytical properties of the scattering matrix (S-matrix) and
in potential theory. Recentlf'sa) these have also been used

to generate phase—equlvalent potentials. Jo?t‘dnd Péis'sq),~
65)

as wal as Newton , have studled the analytical properties
of the Jost fﬁnctiéns for local potentxa;S'and their relation-~
ship with the .S-matrix. In this chgpter, we shall éxamine

’ ;he Jost ?unction gér‘a_nonloeai potential and derive_éomer
new relatiqhs.‘ A brief feview of the mathematical framework
for the_scéttéring iheory_is given in Section II-1l. Section
Ii-? deals with the_defiﬂition-of the.Jost functions, their’

s a;alytical properties and theii relgtioﬁ with th; S-matrix.
“~Finally in Section_II-j, we derive the eipfession§ for the
Jost fuhction of@a nonlocal éentral potehtial for‘any'pariial‘

. wave. The more general Jost functxon of a nonlocal, non-— .

central poctential is glven in: Appendlx A.

15
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I1-1 Matheﬁatical Framework

We start with the time independent Schr#dinger

equation for two particles in the center of mass systen:

2 2u

) 2 ' - e . ] 1 ] - | - -
“ (V5 + k )p}f‘(s) "-52 [ <,::|u|§_>y5(£ )d{ 7 II 1.1‘

where r and r' are the relative coordinates, u the two body
potential, and u the reduced mass. The above equation can be

rewritten by defining

4 N

_ 2 - :
/‘ fE‘V|§'> =%-% <E{u|5'> P - ‘ II—l..Z
as 7 B _

v
X

_In_ﬁomentum space, 11-1;3 is equivalent to the prressioﬂ

k]

(152 - gzwk(g) = l <p|vip*>¥ (p")ap' . II-1.4
The transformation from r-space to momentum space i&kauch‘ N

that

R 3
- 4
& &

I <r|k><k|r'>dk = §(x-r') .

oy

16
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It will be convenient to replace II-1.3 by the Lipomann' S

Schwinger 66)

.equatlon, which lncorporates the boundary
cowdltlon that at large dlstances the scattering wave
function consists of a plane wave superlmposed_WLth the
;uﬁgoing_SPhegical wave. In this form the.outgbing
scattering wave7|¢;> is given by
+”ie)-1

o> = %>+ ? - 5,

+ o :
o v]ve> . II-1.5

where HO is the kinetic g;grgy operator in the unlts of

Zu/hz. The S-matrlx and the transition matrix (T—matrlx)

~are defined by the following equatlons 67).
- -+ )
e[St = < lv>
= <plk> - 2u16(p2 - k2)<g|T(k2)[g§\ II-1.6
‘with | | |
. S .
<B|T(k2)|§> = <p| |¢k>
SRR ; 1 ot
- = <p|v]k> + <plVv 3 : vl¢k> .
‘ - Tk -5H° + ic ~

[ : o II-1.7
'Noée'that the S-natrix’eléﬁehtéﬂ<g[5!k? are definedacnly on"
the energy—shell. i.e., p2 --kz, while the definition

11-1. 7 for the T-matrlx elements holds even’ for cases when

‘ p # k .

™
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* Uszng II 1. 5 in r—space, we get, for v = O the wave

functxoh

1 _iker I . L

‘ <r}k> = ——=y z eTn . . . ‘ _ R II-1.8
k?r

we expand the plane ‘wave e '~ - into its part1a1 wave

components as follows

iy .'. ‘@ ® 138 (kr)
R r o 3 ity A

py(cos®) , Co11-1.9
C2=0 ke mREEOTLTO '

. where 9 15 the angle between the vectors k and r.'fThe

-

coeff1c1ents u, (kr) are the Rlccatl-Bessel functlons deflned

" in terms‘ of the cyllndrlcal Bessel functions )_J Ll(Z), as
, ] 5 :

s L3

Ce ugim =i =% 3@ .  II-1.10
‘ S B - A= ) ,
- " . . . 2
k-.,«'.", - ' '
‘These can be deeomposed 1nto the out901ng and the incoming

wave, n51ng the Riccatr—Hankel functlons, as follows-

. vitz) =i’ 2tz
| - iei*&g.-g% ) (o)
el
2,
RACEENC z) = glTt +(z)*
= -izaéz) (3) .o ( . . ‘- l‘o .‘ B | & ‘:' B :1-1011

& - . S

et

@
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Co
.3

'Theffunction uﬁ(z) is a regular sdlution'of the differential

equation ) ‘ ' -

’
—

d?ug % (2+1) | _ _ ,
de - 32‘_ ux(z) + uz(Z) =Q , s I1-1.12

xwhlle Vo (z) 1s the 1rregular solutxon of IT~ 1 12. Th; 

asymptotlc behaviour of the u, (z)}) and vziz) Lor large and

‘small 2 is, ' o L ’

For & "’ & -
‘ s L,
ﬁﬁ(Z) = sin(2 - 1})ﬁ
_ : ing, d
VI;Z) = ~cos(Z - ===
. £37 igl ) B
w(2) = e C, - II-1.13
andqur-z -0 -
’ . 2§ ‘ 243 :
o2 - 1 _2 2+5)
U () = T TyTT T 7 Tzweeyan T 08
v (2) = ~z7 % 2e-11t - 2 27223 1
+ 0z o ) II-1.04

It is convenient to write down the radial part of the

. Schr¥dinger equation I1-1.3 for g th partial wave using . -




%‘l’
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II-1.9 and the expansion f£or potential <r|v|r'>:

- Lo Ay 1 1
Elvlzs = 1 v G1e,,E ety les &
2m 7 -
s , <r|V |x'> ‘
_i (2£+1}P (cos8) -‘—4—_“51—— . - . II-I.}.S'

.
e : ?
' : - - T

Substituting II-1.15 and II-1.9 ihto II-1.3 we obtain:

-

2

ng-wz(kr) + &i&%ll b, (kr) + I<r|v£|rf>¢£(kr')dr' ’
- dar ‘ r :
7Y S

ﬁherelwz(kr) are defined from

| 2T b oy -2' : .wﬂ(.kr) - ‘ »
‘Ei?k>-= —=373 I 17(24+1) —— P, (cos) .
- -~ (2“) &ﬂo . : o .
: _ ' I1-1.16
For the spherically Symmetric potential, ¢; and T have the
following partial wave expansions: |
S + .
e 1 T L vy (k) - |
<5€$§> = —;;;375 050 i (?£+l) f—E;—— Pz(cose) IIF1f17
Lo
) 1 - | 2
<plTik> = I (2240}t (P,k:;k“)P (co88) . -II-1.18
Ll e ‘.2“2 2=0 2 . £ .

and the tzfp,k:kz) are defihed fof.a theral nohlocal potential

i

‘as ' , | _ Co ’ ' S
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L2 1 ' ’ + o
tztp.k;k } = B% I drdr* uztpr)_<r|v2lr'> v, k') .

17

S : ' II-1.19

The Llppmann-Schw1nger equatlon for. the 2th partial wave can

be wrxtten as

' w ul(q;)tgtq.k:kz)kqdq y

. 2 2 . hd
0 .k. - q_ + }e

5

Tyt =, (kr) —f

3 11*1720

It is often convenient to regard the T-matrix as a

- function qf the complex variable w = k2

+ ie, and rewrite
~ -

. II-l.?kas
<plT(w) [k> = <p|V]k> + <plv ;%;— Tw) k> . 11-1.21 -
- = - T - ] - ' S

As the energy is conserved in the scatterlng process,"lt is
not possmble to construct the complete T-matrix from scatterlgg
data alone. However, if the potent1a1 matrix <p|V]k> is known,
we can calculate the complete T-matrlx using-1I-1.21, Elastic
scatterlng data can provzde the inf;;matioanor those T-matrzx
elements which satxsfy energy conservation. These are called on-
;che-energy-shell" (on-shell) T-matrix elements. Those which -
ado cot satisfy‘enerQY'conservation.aré‘called"offfthe-
energy-shell® toff-shéil) elements. The completely off-shell
. elements are functlons of three variables that is why we

used three parametcrs to define the partial wave T-maprix°”f j
eiementé in II-l:iB.“For'completeness we write down thc

t
~
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T-riatrix in the £th partlal wave fov all the three 90351b1e

cases as follows. ' L =

to (o kiw) o p° # k% #lul: off-shell; ..

t,(p,kix%) , p° # & lwl?,kz :-ﬂalf-off-shell:

(k1]

h g (kKik?)

-

£y k) p° = x? iw] ‘on-shell.  II-1.22

b
3 -

B ’ . a ) - i ] . LA
The on-shell -elements tl(ki are related to the zth partial . -
wave phase shifts §, (k) tﬁrough‘the‘fdllcwing relation

o~ e

: - l 16 (k) )'.. ',“"/l . . T

i Fltk) =-pe ﬁ}néz(k) s | , II-1.23.
- : e .

Equation II-1.21 may be rewritten in the partial E
-wavg~expansion as ' <%
- N o | * 2 ‘ ﬁ-vz (ch) ti (q.fkﬂlﬂ qqu
: _ , o w-q

» - I1-1.24

In relation II-1.24, Vz(p,k) is related to <r|V,|[r'> as

follows _ .
ui(kr')
k

. P (pri .
< |V Ik) = -&_,__.<r[v lr!>
PlVgiR7 P A

1

€3
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In actual calculations it is convenient to use the reaction
matrix (R-matrix) defined for-real w with a principal value

integration of II-1,24:

. | , 2 rmrv,'(p}q)R,u(q.ksw)qqu
. ] w_q .
0

I11-1.26

The tltp,k;kz)‘éan be obtained from/RR(p,k:kz) using the

- Heitler- damping equations:

| 2 -3ike(kg)Rg(P.k;kz)Rg(Q.E:sz
' | ' - : 1 + ikR, (k,k;k") '
| - IR I1-1.27

e -.\ :
o - ! \ :
or conversely _ R

. 0 ike(kA e, (pkik?)t, (qkik?)

) +

e

1 +,ikt£(k,k;k2) -
o , II-1.28

_where 8 (x) is the step function defined as

-

v

. x ’ .V : | . s
(1‘+ ']—x-]") .. _ ‘ - . ",, .

>

C9(x) =
0

ENTEE

" The above equations are the generalisation of the on-shell

-

 relation between tztki and R, (k)
. R; (k). .
A o 3 3

-

II-1.29

i




'
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. o]
- o3 .

The relations II-1.28 and II-1.23 imﬁediately give the

re;ation\of_thk),to'the phase shift of the 2™} partial wave. .

) = R ek = - L tans (6 e

- L ",fa
~The R-matrix is real and hermitian and has no cut on the

redl energy éxis from 0 to . The poles of the R-matrix wilir
appear only at the actual positions of the resonances on the

W

plane, and noé on the unphysical sheet, as is the case

.o Y
with ;he T-matrix 69).
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II-2 Jost Functionkfoffa Locai'Potential 4 - .

-

) . \ ‘ ) L o e
- The radial Sbhrbainéer_eqﬁatioq for a local potential

<§|V|£‘>7= V(E)G(E-E')‘écting.in the relative S¥st§te (2 =0)

is given by .

LA

3

S FTkr) + V() etke) = k2 w(kr) . II-2.1

The regular solution ¢(kr) is defined by the‘boundéry-

COnditions'at r = 0 such that . o o

it
o

¢(kr)‘

e . - for r =0

$"' (kr)

it
Lo

,
T . . Ty
o

[

However, in the scattering problem one is interested in}the
solutions of the Schrddinger eguation for asymptotic r,

therefore, one should define the solutions with the boundary
N R o
conditions at r = «, Since r = « is an irregular singular

point of the difgerential gquation'II;z.l énd k2

multi@lies\'
“the term of'highest singu1§rity at r = m,'thé boundary
conditions at rA= » cannot be independent of k. We can
define the solutions £®(kr) of II-2.1 with the following

el

Soundary condition‘
_ 25




-

HED 2 ery =1, - II-2.2

lin e
- and these are called the Jost solutions.’ Théy are linearly -
independent, except at k = 0, and satisfy the following

integral equation:

J ar' sin k(r-r")V(r") £ {kr) .
r

£ (kr) = e™KT %
II-_:?..3

B

. - ) ) >
Jqst-and Pais have shown that f+(kr) for real r is an

analytic function of k, with -‘a continuous k derivative, in

the region Im k 2 0. If the potential satisfies the
condition - . ' | B
I ar V{r) relar\< ° o . II-2.4
0 , :

‘then £'{kr) is analytic for Im k'2 -a. If the potential is
_oé\finite rahéé; such'théﬁrafier somé finite distance it o
vanishes identically, then £'(kr) is an entire analytic -
function of k. #naldgous statements hold fof f-(kr).. Since‘\

L-f#(kx) are linearly independent solutions of 1I-2.1, these
may”pe'used to'construct'other solutions of II-2.1. Let us

define the’Wrohskién W for two‘arbitrary functions, g and h,
ass * _

. - a ‘ - Y .
Wwig,h) = g2 - F-h . 11-2.5

v

g
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A

£ (ke)oE otkn) - & Fknoxn)

then  W(£,$) =

1

fi(k) . . o . 1I1-2.6

Evaluatingﬂi,(k) at r = 0 from II-2.6 and using

‘w(f'* (xxr) ,f (kr)) = -2ik, we can write ¢(kr) as:
okr) = grp (L £ o -1, £k01 . II-2.7

Using II-2.6 we can define the Jost function:
/

£,00) = F 00~ ana L_o0) = Lxe’™ . II-2.8
The integral representation of the gost function can be

;-thained from II-2.3:

-

Y
-] . .
_ _f+(k)_ = 1 + j-]r:- I dr sin kr V(r)f+(kr) . - IX-2.9
" 0 N
The Jost function satisfies the following dispersion relation:

= In log £, (k')dk'

= 1 : -2,
o _ Ly i (k) | -
- Writing £ (k) = |£(k{) le *’, we have the relation:
. . . ) ) ot ey I. i ‘ .
£k} ] = exp[—}; P I -‘.l—ki%]ﬁ-,-} e - XI-2.11
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If we assume that §(-k) = -8 (k) , II-2.1} reduces to : T
: . o ] ‘ '
“|£00)| = expi- 2 p I‘ S 5‘* L1, I1-2.12
. ’ O kl - - ) . ‘:

for Im k 2 0. Equation II-2.11 is true only ‘if the

potential V(r) does not support any bound state. If, on the

other hand, V{r) has a finite number of bound states at = S

energies E. = :ki, then II-2.12 is modified, and is given by
B kz - - ) o
(1'+ Dexp- 2 p f ak 'k’ 8 Uk, ’) . II-2.13

If(k)l =1 >
n k 0 k't - k

—-

O

The relation II-2.13 is very useful because it gives a .

: _directamethod of constructing the Jost fun&t%oﬁ¥in térms of
the phase shifts 3(k) on the real k agiéuand the bound state
energies. These guantities can be-experimeﬁtally obtained.
Jost and Pais have shqwn_tﬁat'fbe Jost function), f+tk), for
the local central potential is identical to the Fredﬁolﬁ
.'dete;minant of the kernel of the Lippmanp—Schwinggr equation
for the outgoing wabé: This is referred to aé_the'JostrPaié
theorem. ﬁewton'hag éxtehded.the definition of Jost and
Pais to inclu&e the nonieio-angular.@opentd as wellyas'gon-
central ‘local potentiaia. ‘prrthé case £‘# 0, the
Schrﬁdinger équation II-2.1 includes the centrifugal tern,

and is given by

: R
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<
“y (ko) + 5i§§ll vgth) + V(r)vz(kr) = kzvz(kr) . *

) - IX-2.14
In the case of a ndncentral force, the orbital angular

momentum & does not remain a cénsérved quanidm number. Suéh
cases are dealt with 1n Appendlx A along w1th nonlocal e ;

.forces. The regular solutlon of II -2.14 1s again deflned Q?x ~

the boundary conditioh;at r

0, which now stands as -
~ K
1im ¢~ D) $, {kx) II-2.15

Yr®

.o
Lo
[ ]

This deéendence of ¢£(kr) on % is due to the fact that r = 0
is a regular éingular point for £ # 0%k The irregular '
'§olu%ions=fi(kr) are still defined bylthe boundafy'conditions
of II-2. 2 The Jost solutlons now satlsfy the following

1ntegra1 equatlon, which is a generalisatlon of 1I1-2.3%
%

N

o
fi(kr) = £ £+(kr) - J dr'__gg(r.r':kz)V(r°f)fi(?cr') '
Lo F 11-2.16

th partial wave component of the

&herelql(fg:‘;kz) is the 2

Green's functioﬁ for the\free particle. Functlons f (kr)
and gxtr. _.k ) are g;ven in- terms of the R;ccati-Bessel

functions of IT-1.9 and II- -1.10 as: * -

z iﬂ_ . : |

£2,kr) =witknie %, -2
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and ; | _ | | ‘ 4f}&“‘*gf

Py

' P ) o
gz(r.r';kz) = %-[ug(kr')vl(kr) - uz(kr)vztkr'fox 05 N
- ‘ =0 r' <xr ., I1-2.18
The Jost function £f,,(x) is defined in analogy with II-2.8
- irt S
as ) 2
' k" e W(E, +04) '
2+7%47 =0 | e
f£+(k) [2L+1) 11 ’ I1-2.19
'Egnd has the following integrélrgepresentatibh:
i.\“\\“‘\-‘ | T . ,
N>l . _im _
f£+(k) = 1.+ % e 2 J dr u, (kr)V(r) £, (kr) .
. 0 o . II-2.20

: K . N
Note that II-2.20 reduces to II-2.9 for £ = 0. The }

analytic properties of the Jost function are de:ived through_

. \ .
the analytic properties of fzi(kr), and are given in Ref. 70)

we summarize scme of then he:e:

(1) ° For each real & and k- :

o

g.0) = £, K)o

(11)' 'Fof'gach'real £ and complex k

a2

£,0%) = £, (k)
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(iii) -£,(x) is a méromorphic function in the lower half

k-plane.

The S-matrix S, (k) is defined in terms of f,, (k) as!

£,_(k) 288, (k) . :
S;(k) = W -‘—'-‘ e ‘. | I1-2.21

It is unitary for real k and satisfies the relations'

-~ -

s1) = Szlk) =Stk . | 1I-2.22
The phase shifts GE(k)'are real and are oad functions of K
I&ue to the unitarity of the S-matrix. Normally we define
‘Sz(k) for the real pésitive values of k; Thisziméliesﬂthat
E lies .on the:upper rim of the right hand cut from E = 0 to
E = =, Thislréquirfs that Sz(k)ashould bé calculated

using the outgoing wave Green's function in the Lippmann-"

Schﬁinger equation 11-1,5,' For well-behaved potentials the

A

following préperties of ‘the S-matrix are i}portant: .

i. Péles of the S-matrix on the physical sheet, (upper half
k-plane), which a#e-due to the éetos_of £, (k)

correspond to the bound states.
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Poles of thé S-matrix on the upphyéidal sheet, (iower
half‘k-planej}lgive rise to resongh;és-provided these
poles éte‘close to the poéitive rea;’axis. 1f sﬁéﬁi _

" poles appear cnfthe‘negativeﬁreal a#is, they denote the

3

virtual or antibound states.

4
i
q

"3
L]
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-11-3 Jost ?unc;ion for a Nonlocal Central Potential

~In this seétion we will‘dgriye the expression for

the Jost function for any angular momentum state -due to a -
nonlocal central potential. Our expresf}ons.will reduce
to those of Warke and Bhaduri >9) for the 2 = d'cagé; We

show that the Josﬁ function for a nonlocal potentialiis N
equal to the ratio of the_Frédholﬁ determinants for the,
scattering sélution to that of the regular éolﬁtion. - The
case of the nonlocai*ﬁoncentral potentials is given in
Appendix A. _ _ . |
. We start with the radial part of the Schr8dinger
equation II-1.16, and introduce a strength parameter A for
COnvehience. Throughout this séction we will.suppreséithe
k-dependénce of the functions in order. to simplify the
7 noggtion;._The cdrresPOhding Lippmann~-Schwinger equation for

the outgoing scattering solution is

<r|¢;>;= <r]¢g> + A<r|G: V|¢Z> ' . 1I-3.1
with <r|¢;0>“= u,{r) i ‘ ,%;y , _II~3:2 o
RPN 1 _-ing + ' : ]
<r|{G,|r'> = - = @ u, (kr_Jdw, (kr.} . . . IXI-3.3
| | zl k A < YR > .

a

33
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The fﬁnctions uz(z)(”v&621; wi(z) are defined in Section II-1

of this chapter and their properties are given in II-1.10 to

II-1.14. Similarly the integral equation for the regulaf_

solution is

<r|¢,> = <r|ed> + rerfevie,> , I1-3.4
with  <x[¢d> = (2z+1)11‘§"“+1’ u, (kr)
<c|Gylr'> = L {u, (kr')vy (kx) - uy (kr)vy (kr')} ' < T
=0 Soxt2r¢ , . _11-3.5 °
. . h) i !
and the boundary_condition ' =

Fals

2im D 16 =1 ' II-3.6
L v ‘
r+0 _ ’
. L ' \
.MThe_Joét solution is given by
. o4

. > S 10 = L S ‘ 7 | .
<r|f£> g°§r|flt>‘+‘kfer£V;f£> PO L : 11-3.7.

L

] B - . Y . ) - ’ ) h
. where G, is thé transpose of Gl defined in II-3.5, with

[ /W ¢
) i |
<lff>Fe Fowiam . . . 1I-3.8
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: . N
The boundary condition for-<r|fi> is I N
. . ) \\
p i . | '

Thé Jost funétiéns are defined in terms of the Jost soluticns:

-

£t - ko etiT2 e rer| £l o II-3.10
g ¢ EEDTT 2> v s,

Using the definition of the Wronskian (II-2:5) and the

reiations II-3.1 and II-3.9, it can be shown in general that

o iieman | + - -
W[fr|f£> ' <rlf£>‘] = w[<1ilf£> R fr!f£>]r=0

-]
T o NN

= -2ik . © Ir-3.an

-

£

The equations II-3.4, II-3.7 and II-3.11 lead to the

following relation for the regular solution

ind .
' J 21y T2 - +_ .
ime | 4
I -e? w0 11-3.22

e =

o

=1

Using the reflection propekty of the Jost solutions

. . ' 2 ~im -
+ -t Ak" e T+ . -
£,00) = £, (k) = 1 + Smpgerr M, Ivie,> E ;I 3.13
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and II-3.4, II-3.7, one can show that '
- }-Ir-— . ‘o
e ) . -
a4 .+ X" e -
& 0 = mmmT <fedvley - 11-3.14

Following an approaéh'similar'to that used by Warke and

gBhaduri'sg). we define a function Fy:

-

CcxlEglets - «xliies - <l I1-3.15
. =

'
]

i

where the interacting Green's funttions4%; and‘gi a:e defined

\
in terms of free Green's functions Gz and Glz_ E _
. o \
+ + T O .
‘%z“‘-;z*"czv%.. o
- - ot +o,
R T Mp Ve . ,
£y = 6, + 1q, v,
=G v v Gy - | - © II-3.16

~The function <r|F£|;'>'will satisfy the differential equations

Ty

e..0 dr® r

-
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2

= ( _dz + 1{£¥§) —‘k2)<r|F£Lr'> + l<r|F2Vlr'> =0 ,_
de'T Yy ot =
_ II-3.17
with the following boundary conditions
<r|F, |2’ = 0 r+0 ,
- d ' - £41
- <r|F,|r'> L= - ’
dr [3 ‘E=r'+0 - 28+1
: | ikr® . : ' ‘
<x|F,|r> = e x (Function of &, k, r) . II-3.18
T - |
The solution of II-3.17 whiéh satisfies the boundary
conditions (II-3.18) is
ooim |
kz e -2 ' +._
<r|F, [r'> = - T <ri{¢ ><xr'[£,> . IX-3.19
(28+1) 11 £, (k)
ﬁsihg the prqpefﬁy that <rlf;> is the complex conjugate of
. . : ' .
<;|fZ> and II-3.19, it can be shown that ' 5 - 3
o] ’ » % i o
' coe .. .
» —- - . ? K . -
log f£+(k) = __J Tr(fv)dl e ST  Ix-3.20
. 0 _ - : '

L

Note that ££+(k) +1as A » 0. It is now straightforward to

prove from-II-3.15, II—?éif and II-3.20 that
+ . 4o+

J exp[Tr 1og(1-lG£V)] Det (1-AG V) _ D, (k)

< Ey (k) = exp[Tr log(1-AG,V)) = ﬁet(l-AGEV)'é B, (k) 7|

‘ . T | o 1r-3.21

o
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P

In the derivation .of II-3.21 we Egyé\used-the relation

Det M =:ex§iTr log M] .. : ' . o ii—3.22

a ~

If the‘noﬁlocal_central potential is separable, the relaﬁion

II-3.21-redﬁces to

- (1-ATr GV) 1 : :
=y o . 7 o s 110323

A detailed study of the Prédholm‘determinants for nonlocal
ﬁ ) -

potentials have been made by Bertero et al. 71)3

For:% = 0; II-3.21 reduces to the relation given by Warke

and Bﬁaduri‘59). For théﬂloc%l potentials,

<<:rlvir'> = V(r) 3 (r-x*) | | 1343.23

? ' - -

dftol-xqg%) exp[Tr 1og(1-AG,V)]

[ ‘.
. a%eve,v - .
. o= exp[—Tr{AGiv + ——y— + ..,

<
i

= l‘j Gi(rr)ﬁ(tkgr
0

- =0 ,f since Gztrr) = 0. ' I ) S

o r ] & ) s
A2 J dr J dr' G, tre")V(r')G, (r' 1)V (r)
o o . -

> ‘
fl

=0 , since G, {£'r) = 0 for r' < r . . TII-3.26°
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»

Similar}y it can be shown that the trace of the higher order i

- terms is zerd. Thus ‘ I

-Det(l-lG£V) =-§xp(0) = l‘
" and o | _
£,,(K) = Det(1-G;V) .. I = 2 2

P

ThlS relation is the statement. of Jost—Paxs theorem for the ]
local potential and the relatxon II 3. 21 is the.éenerallsed
Jost-Pais theorem for the nonlocal potent;al. The
fdenomiﬁétor.of 1I-3.21, which is k éependent, can be removéd

by modifying the boundary Eondition for the Jost solution as

.1.‘ |f+ etikr
im <rif)> = — II-3.28
oo L Det (1-G,V)
o : ]
: . . . . s . $ .
" The derivations given in this section have already been -

published-by us, and'tﬁere (section 3) we'havé generalised =
these relations for the case~of nonlocal noncentral potentials.
' ' ’ g - ) . ’

This paper is "attached as Appendix A.
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CHAPTER III |
CONSTRUCTIONA“OF‘ PARTLY NONLOCAL PHASE EQUIVALENT POTENTIALS
In this chapter we describe our method of generating
'phase equlvalent potentlals. There'are mangldifférent Qays
of generating phase equlvalent potentials, some of which are
'!outllned brlefly 1n Chapter I. The long range part of the\
‘N-N interaction (; 2.5 Fn) is well established. Both meson
iheory aEd‘expérimental.data suggest that it;shogldlbe given
b§ the oné-pion—exchanéeapptential.ﬁ,However, the form -of the_
short range part of the N-N interac&ies is uncertain. As
discussed ea&lier we expect the short range part of the~-
' potential to be nonlocal, but it ig difficult to decide on

a specific form,of'nonibcality to'repfésent the short range -

-~

part. Thus we have a lot of freedom to vary the short range
part of the potentlal.ﬁ

The class of phase equxvalent potentlals considered

- . .

) by us has a long range attractlve local part superimposed
with a repulsive one-term.separable potential.‘ These are

 partly nonlocal potentials and :eferred to as class A -

 potentials in the text. We also construct a set of rank-two
separable phase equivalent potentials xeferre&rto as, class
B potentlals. The separable potentiala are such that the

‘ attractive part is independently rhase equivalent to ‘the

40 -
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rat

attractive local part of the class A type. These potentials
are constructed to compare the differences produced by:
introducing the separability in the interaction.

For our class A potentials, we have chosen the local

-

part to be inen by a Bargmann pqtential rather than.thg.more'
‘realistic Yukawa forﬁ.. This ié done beééﬁse for the |
‘Bargnann potential all the required expreséipns_can be derived
analytiéaily: The Bargﬁann potential has an expénential géil
and decays slowly in comparison with the Yukawa potential.
Sections 2 and -3 of this chapter deal with the
"detéils of the method and the humericalfcomputationé of
rthese model potentials. ' In Section 4 we discuss and compare
some features of partly nonlocal potentials to those of

purely seﬁafable potentials. .




III-1 Phase Eqﬁivglent Potentials

> _ .
to constrict

™ We adapt a method suggested by Fuda 58)

phase équivalent potentials. This formalism is similar to
the work of Chadani72),.bpt is more concise. . We will

consider, for simplicity, only the relative S-state

- -

interaction. The basis of orthonormal wave functions in the

&

S-state is taken to be

- . b

<r!p>~= J% sin pf ' 7 IXi-l.1

with o . s

N wo

J"‘rlpxplrw @ = &(r-x"y . .
0 R '

In the literature, it is usual td take a three dimensional

P

basis:

. ‘ n III-1.2

d )

and define the S-state separable potential in-coordinate

space as - !

<r|[v[z'> 3‘53_ oglogzn

N\

III-1.3

~

or in k-space as,
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. . 2 . ~ .
<k|V]|K*'> = = ——- g(k)g(k Y ' III-1.4
~ 2“ - .
with g(k) = J% [_ glr)jglkryréar . ° ITI-1.5
’: I 0 o '. . &
In our basis the same potential becomes )
. ‘hz . - B ) o
> = n_ 2
<c|Vjr'> 5§ rgﬁr)r'g(r') e
or ] ' ' . .
H2 2, | B
<k{v]k'> = - £ kg)k'g (k') .- I11-1.6

Let us consxder the S-wave phase shlfts 5 (k) glven for all
-k, suCh that G(k) + 0 as k + =. These could_be,,fur.‘
example, the known experlmental phase shifts with smooth
hlgh enarqgy- ex§rapolatxon orvcould be generated by a given
potential w1th$ut a hard.core. Our problem is to generate |

a set of phase equivalent potent1als of the type

2

whére Vl is lééal aﬂd aﬁtractiveiéhile Vz iv nonlobﬁl.and
repulsive. These must reproduce the 1nput phaaes. for all
values of k.‘*The input data nay specify a finite number of
bound state eigenvalues g;ichlshould also be reproduced by -
the potential in I1i-1.7. We may also congider the case

.lwhere the input data do not have any bound states ag all.

III—l. 7"

e,
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" This is the sittatipn with 150 potentials, but Vl'may stili
f'have a bounAﬂState; which is eiiminated by adding'a:repulsive _
potential v,. Thus a set of phase equivalent potentlals for
the 180 state are generated, such that the attractlve part
: may or may not have a bound state. .o '_'_ - -

The Eredholm deterninant Q (k) for the scattering
solﬁtion\can.be calculated wéth the‘given input data from
the.éqﬁation, wgich is similar to II-2.13,
2

- - k 3
p () =0 1+ Dyexpl- 2P J —“’—’Pﬂﬁlexp( 16 (k))
n - kT 0. p k

 IYI-1.8

S | |
" Note that we have used the Fredholm determinantin+(k) rather
. than the Jost function £, (k) because for the nonlocal

potent1a1 the two are not the same as dlscussed in Chapter S

s

II. The bound state energzes‘for the n bound states are
[S ;
given by ;hzkﬁﬁa. In practice the triplet S-state has only 1

" -one bound state. _To ensure phase equivalence. it is _
; . . : i} : =
- sufficient that the potentials III-1.7 generate an_ identical

Fredholm determinant. The Fredholm determinant for the poten-

~

_ tial in III—1.7‘shou1d thus be equated to that given by D+(k};

DY (k) = Det(l - GgV) ,  III-1.9

I

% . ) ’ L + v.
where the free Green's funct;onaGo(kz) is
- ‘ ' ’ Y : o
£ s )
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G;(kz) = (% - Hy + iey 7t S | - III-1.10

We have put‘hz/M-= 1 for convenieﬁce and Ho i§ the kinetic
energy operator. The right hand side of ITI-1.9 can be .
written as a product of two dgferminants-using the o
“identities of the Green's'fﬁnc;ion. Let us define GI(kz)‘as
"the‘Green'é'function in the presence of potenfiai vy oniy:

it satisfies the following relations:

=

+ .2 +,. 2 20, A2
61 U%) = 6g %) + Gg(x*)V6) (k%)

3o

20 A2 +, 2. -

Using ITI-1.11
. - + + +, + | + +
(1= GgV) =1 -GV = GVp * G ¥y = Gg¥y * 63V2 = Go¥2

T

- A
- +.; et +, +
o = 1 - GgVy = {6V, = GgV,6V,)
"y *y Yy {1 - é*v ) i o | IIr-1.12
=1 = Gg¥y W) o 12
ﬁhefefore, S . , - . .

Det(l - G'V) = b £l - GV, )Det(l - G'V.) "111-1 13

[ M 01 AL -3

Lo

o
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and

D (k) = D] ()By(k) , .- 1Ir1-1.14

where D (k) is the Fredholm determlnant for the local
potent1a1 v, and D (x) is the Fredholm determlnant for the
potential V2 but,glven 1n'the(5351s of the solutlons -
geﬁeréFed by Vv,: _

D (k) = Det(l - G )

= exp(Tr (1l - GiV,)) . © . III-las

If V2 is a separable potentiai of rank-one, then

T

-

w - exp(Tr nl(l - G;vz)_)‘e (- G*\T Yoo TIIT-1.16.

Since the operator

-~ . . -

oixd = & - wy + vy +ieyt- 0 rmenar

is diagonél in %he basis of the é{qehfﬁﬁctidns generated by
the potentlal 1 it is'simpie to finé its trace in this
basis. Let the regular solutxon of the operator Hl = (H0+V1)
:be denoted by [¢ >, and the bound state solution by l¢a> with |

elgenvalue .fkgz |
K . } -. C ‘

i




&Y
)
@

-
, 27, . 2
Hll¢p>' =P I¢p> P >0 .
. _ ITI-1.18
. S 2 2 .
H,|¢p> = -kglép> kg >0

then, with properly normalised I¢P> and |¢B>' the trace in

the III-1.16 is,

Yy = o 1o, g o
Tr GV, = L <¢p|le2|¢P> +\<¢B!le2|¢a> .

12 P
p ) r . (Y
; | o v l8z>
=T <¢_|v,l6 > + —B22 | IrI-1.19
p k“=-pT+ie P < P X<+k =
: A B
We have assumed in the above analysis that the potential V2 ‘
is separable and of rank-one; let its form in our basis,be
. given by | f ” . . s ' . .

- - . 3

% . .
<r|v,|r'> =nIn(’) o . III-1.20
then it follows that, o | . o !
" 7 h’ 2 i |
< _{v,l¢ > = . III-1.21
<epiValeg Sen® . | ;

with

n(p) =ﬁj-’¢p(r)n(r)dr ' 11I-1.22
o,.

-3




L L et e -

* 48
and , .
<o |V [¢ > = ?{2 g - ' | iII—l 23
. B!Y2'¥g” T B * - . | o3
where’ '
: - @ . Fl . - - R
¥ = ] ¢glrin(riar - o ~ ~ III-1.24
. “0 ‘ . . “
With these simplifications ITI-1.19 reduces to
+ _en?a AR - ,
Tr GV, =J Ry s L III-1.25
‘ k-p--l-ieuk +kB - : L o
Using III-1.14 and IIi-1.16 we get
& ) : ~—"3
+ 2. ﬁz ' | - '
¥ : 2 _ 7, . w2+ 2 2
Dl(k) k p* +ie } kg
Equating the real and imaginary.part'of'III—1.26 we obtg?n, ' o
. o o ' ‘ i :
p* (k) ® (i i)z a jﬁg S
\ Re[—;L—]r-l—P[ e T ITI-1.27
. ' Dl(k) 0 k - 'p‘: k +kB \ - Ca
_ | o | )
and . —. " N .
- + L. ! - ) ——_—
m2 k), - o5 (A xN? . é' III-1.28
D, (k) ' _ :
l : - . -
. : : : : S
: o L . . - ///
- Since D (k) is given, by choosing a suxtable'vl with known
DI(k), we’can determine the-form'factof n{k) of the potential
VzAin the basis ‘generated by V;. ' ‘ - ,J"g
' Some useful relations can at once be ﬁeriéed"using' gy .

IIX~-1.27 ?n@.III-;;28. ‘If we assume that the total potgntiél

et
A
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V has only one bound state of energy‘-kg, then D+(jk } = o;
Using- III-1.26 at k.= ik, we obtain '

£

o Q_- - . 2 ) . V N -
A2l -xdn+ [ lpd)_dpy | prz-eieeg
] + ]
~ Since V, is;mpre attractive thaé v, kg > kg and ip the
limiting case when k2:» k2, IIT-1.29 implies that
. (- -] ’ . ’ e
g = J ¢glrinizlar + 0. ‘as kg - k% - 111—1'.39

0 ‘ . . ) +

This could be transformed to the momentum space by defining

n (p) =EJ, n(r) sin pr ar , - ¢+ III-1.31
0 . : Y ¢ '
~ and
Y2 dod : o . o -\.‘ ’
":’B(P) “EI " 9gix) sin pr dr . - - F<\ 111-1.32
. e | ” ) _
g : : ' A
We can then rewrite III-1.30 as
© N e '2 2 Lo
Mg = I ¢g(PIn{p)dp = 0. kB =ky . III-1.33

Equations IIT-1.30 and III-1.33 imply that for the limiting
situation kg =.k§' the”fprﬂ factor of Vz.is“orthogdﬁal to
the two body bound state wave function ¢é:generated by Vi.

e I

-, T e . ~

B et

ISYTALT & counss

T
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Such potentiais have quite peculiar effects on the binding

 _7energy_of'triton and in nuclear matter, as shown by

Fiedeldey 21) .ng by us 44 . This effect will be discussed

in detailvat a later stageij'Iﬁ.the_phasé shifts éenerated

hy potentials V and Vl axe denoted by & and 61 respectively,

-fand we define : e

§' =8 - & | SR . :  III-1.34
- . o ~
then'dsing III-1.8 and IXI-1.28 we. get B
D+'k) _k2+k§ - 2 .' ® 5,(‘) s
2Ry - cDyexpt- 27 | LUBEIRY sin sr g0
_Dl(k), ) “k +kg 0 p -k X
i1 T g 2 PR
. o -, - - " !
The above equation demands that for n(k) to be real, we must, i
have S : Cooe , /
_ : s

8" =6 -8.°S0. . : v < ITII-1.36
1\. . . ) . .

Furthermore by multiplying III-1.35 by (k+k3), and putting
k =—ikB. we find that

[ C 5

sm FY (ikB) =90 . .' . - ITI-1.37




Since fi(k) is finite, we can rewrite III-1.27, using

III-1.8, as

. s
Lk

. ) . , 2 4 .

+ k +k ©

ReZk) = (—Dyexp(- 2 ¢ [ &Lp)
D, (k) d +k -

o~

} cos & (k)’

o P -k
- II1-1.38 .

Evaluating IIX-1.36 at k =3ikB,‘and using IIi—1.35, we get

tigl® = k2 - xbyexpl- 2 » J & lplpdey | 111-1.39
i . . 0 p +kB .

. . +
.We can also consider the.case when D (k) corresponds to

-

some given inpuﬁ‘data without Qny bound state,’e;g., in the
S0 state. The'ggpations 111-1.27*toui11—1.39 ;re.modified,
because D+(ikD) is no rore defined. Fer such cases we have
the freedom to choose v, with'or without a bound;state. Let
us first consider the case when Vv, does not have a bound

state. Equations III-1.35 and III-1.38'will be modified in

the fof[lowing way.

Im [D (k)] =.- expi- % P Jm ﬁ_iglE%E} sin 6’(k)

D} (k) o - PTk°

T o= 2 ' | . -1
= 5% (% (k)] . S 1;1 1.40

and - o : J

e .. -
RelZHK)) - expi- 29 J S (PIpdRy 155 50 (k) . ITI-1.41
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We do not have any ﬁB because ¢B(k) is‘not-defined as there
iS'ho bound state in thelaﬁﬁraqtive potential Vi.
For;the case when Vl has a bound state of energy
--kB we cannot calculate nB u51ng III-1.28, because this
equatlon was the outcome of the fact that D(lkD) = 0 which

is no more valid, Therefore, we have to find out some

other way to calculate i

B° We can rewrite 111I-1.27 as
T d D {k) ' ey
| =[1-p [ A{p)dp _ po R k)yy | IIT-1.42
L k‘-i-!-kg y & -p? n {x)

This relation can .be used for any‘ieal value of k, as ﬁB is
a'constant and independent ofﬁk.‘ Since Vl has a bound _
state, the phase shift 61 will start from v according te the
Levinsion's theorem. If we euperimposeie'oneeterm
separable“repulsive potential, only‘one bound state can be
elimineted} because the S-matrix for the one Ferm separable
‘potentlal can have only one sxmple pole. Thes, for the
‘present case, we can have only one bound state in the local

potent1a1 v For a general case one can start with N boundﬁ

.- .
states in the local potential and ellmlnate these ofie at a

time by N rank-one separable potentlals.‘ This can be

understood wlth the help of the generalised Levinson's theorem

73)

for the nonlo¢a1 potentials given by Martin '+ which states

that
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8§(0) - 6(=) = (vto)w , -

o | III-1.43"
6100 = 8y (=) =nw. .
8°(0) - 8" (=) =

(v-n)T + o . - , III-1.44
The phase shifts are defined in the notations-of III;1.34,‘

and v is the number of ‘bdupd states in the total potential,
while n is the number of the bound states in the local -

- potential. The number of degenerate states of positive -

energies is denoted by 6. Martin 7:_” has shown that the

only negative value permitted in'III-1.44 is -v. This value °

occurs when we take v = n-1l, n# 0 and 0 = 0.  Our case of

150 'corresponds to the choice of n= 1 and v = 0.

-

\.

¥
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III-2 Kumerical Construction of Phase-Equivalent Potentials _.
In order to construct a set of phase equivalent RN
. 'f-r&“ . .
partly nonlodal potentials, we first have to decide what

input phases‘ﬁ(k), or equivalently, the Fredholn Qeterminant.

D (k) to. choose.. We chbése, for simplicity, the ihput S {k).

42),

generated’ by the rank- two separable potential of Tabakln r

" These phase shifts are also used by Fledeldeym43)

to constrqct
rank-two phase equlvalent separable potentxals. In our basis

the potent1a1 is of the form

2 . - 7 o o
alv]x™ = B 2kt [-g(iigk!) + h(0R(K)) ., TII-2.1 -
with
' e
alx) = -5
k +a0 -
Fh(k) R pzkz - I11-2.2
((k-d ) f) (ke ? + )

'\
- 3 < -
This spin independent potential is an average of the poten-

tials acting in the 130 and 351;states.. It has a s&all
bound state energy equal to -0.428 MeV. The parameters for
this potential are:

-
The’ potentlal we actually used was potent1a1 1 of

Table 1 of Ref. 42) and is refe:red to as IST) in thla text
54
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3/2 ’ | | -3/2

o, = 2.074 Fm .y = 2.664 Fm .
- o S A -1
ag = 1.199 Fm ~ , by =1.248 P = , 4, = 1.441 Fa 1,
\ |
and  Ej = 0.428 MeV or k_ = 0.101603 Fm . . III-2.3.

_ / S N ]
. The Fredholm determinant -for a potential of the above form is

given by the following expression '

+,." + | 2 o
DT(k) = (1 = 61, () (L + G5, (k)) - G,k ,  TII-2.4
with
¢t =2 Jw gz(p) 2‘62; ]
11 i kZ - p T4 1ﬁ
+ _2 (" h (p) p? dp
G22 T ’
. 0 k - p + ie : A =
Co ) . -\ ‘
+ _ 2 [° g(p)h(p) e ’
e, "%?f W .o S ammes

i . -~ p + i€

. O - ) ) . R .
.The above quantities are cbtaihed analytically using III-2.2

and III-2.5, and are found to belss): o

+ kz—ag
Gtk =« Tag

- ik)gz(k) ’
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/

+ . (5p% - 3a5 + mgaZ - alp?) m2+ adH? .
+ o 0 0% 0°0 0 0
G, (k) = [{ + -
22'% = 2 !
12,02, a2y 3 4 2 2 3
, x“(5bg + fi.o) + 3dg + 15b, + ,2dobo_}/1sb0
\ -
. 2 i
+ ik]h“(x) . , .
+ o a (dg + b ) 2 2.2 '
Gy, (k) = [{( : k2 ' + (4 + bo‘)! + a5(2b, - a,)
b ” . - ) R 1]
x(d +b)+4a2b2 k(d + p2 +2a ))
\ o 070 0 0 0
| ' J2 y -
X s x /2b°(d0 + (ao + bo} Y}i - k]?(k)g(k? .
s' III—Z-G
60)

. The Fredholm determinant for the attractive local Bargmann

potentialrvl_ié simple, and is given as

<
1

+o4 _k =—da . - _
Dl(k) )?—_r—i—b- ' a,b > 0 ’ | Irx-2.7
@ -

and N k= ;a) = 0, g1v1ng only one bound state. the
blndlng energy of thls bound state, in unlts of %./M, is az.

If there is no bound state, Dl(k) is ngen as’
+5, 5 k + ia ' : T - e
Dl (k) = m 2 ab >0 .’ . Irx-2.8

The constants a and b are real. The harg@;nn"potentiaI in

terms of these constangs‘iswéiven as:
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—2br
_ 2 e 7 : | _ _
V,(xr) = -8b"8 — - - T I1I-2.9
with B = %;% " for the case when there is a bound state._
_'b-a . ' ‘
and B ba otherglse.

The S-state éhase_shifﬁs 61 genérated by‘ﬁhe,potential Vl

are,

-

~ . . . »

' + 8 : ' ;
. Im D,(k) . S X A
tan 67(k) = ~ —5F— . . - 1114210
\ . " Re D, (k) g ’ '
//\‘ - € F) ‘. )
The:Bargmannupotential III-2.9 generates an orthonormal set

of regﬁlar_wéve functions given by-Newton and Fulton 74{; 2

<r|é > z ¢ _(r) = .__Ji__q J- [Sln 2 (% b-a)b
LR o] (o) | p?ap?

"Zbr T : - -Zbr &
(1+e ) };!‘COS pr{ (b—aL(,f }

; b-a -2bnt 2,,2 b—-a 2br

(1 + b¥a e ) . (p"+b") (1+b+a e )

v . , . : I1Y-2.11
If we change a to--a in III-2.11 we get the expression .

for the case when theré is a bound state of energy ra?. The

normalisation of &p(r) is éuch that,

! . -~
%f ¢p}r)¢p.(r)d: = §{p-p*') , I11-2.12
o ) .
. - g N I )
.and it has the following asymptotic behaviour




_¢P(r) + 0 as r-+0 ,

, - o I31-2.13 °

2 s : : -
- J; sin(pr +_§l) as , r>e .

«When there is a bound state, the bodhd_staie's_nprmalised

wave function generated bxﬂgpig potential is,

' N -ar y _ .=2br,
L T ocrleg> = 4ptn) = 22a2 1/2(él+b) e t-e ") .
i b | (1 + e 2P¥ |

) o111-2.14
The set of the phase equivalent class A potentials that we
generaté are all of the form

-

) 2 . - . . -
<k|v,ik'> ='§_4_[<k|v11k'> + nlkIn(kl .. I1I-2.15

These potentials reproauce the input Fredholm determinant -
D+(k), i.e., the input phase shifts as well as the input
bound state energy. Once the parameters a and b are fixed

" for the potent1a1 V). the form factor n(k) can be imnediately

ll
obtalned from I11-1.27. For calculatlons we require ni{kl in

the basis defined in III-l.1:

n(kl_5.<kln$ - g <k|¢p?f¢plﬁ’ +,§k|¢8><¢8|h> o

- -~

BB RN LI ST S 111-2.16

1

0
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ke
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"

The regﬁlar solution l¢§> in IIXI-2.16 obeys the following

integral equation’

p - B

|¢p> = COoSs Gl(p)|p> + P 5 vll¢p>_,' _ IiI-2.17

0

cos Gl{p) in t?e first term of the right hand side is for
the proper asymptotic form of'|¢>>°‘wifh6ut it, the
asynptotic form would be ¢ (r) ~ sxn(pr + 61)/cos 61
Substltutlng irr-2. 17 1nto III-2. 16 we get

= n{p) <k|v1|¢P>

n(%{ = cog-&l(k)ﬁ(k):+ PI —3 5—=— dp

R K {35 S - B 1T1-2.18

The above relation is used for numerical computation.of n(k) --

+ from n(k). The details of numerical calculations are given

in Appendlx B.

We ' also construct the class B type of phase
f/

S

equlvalent rank-two separable potentials?

<k|vB|

g

’ whiphmrépiodgce.the same input data as the partly nonlocal
'fotentialsrof.III-z 15, Additionally, the separable
attractlve part -E(k)&(k )} is chosen to be phase equ1Va1ent

to the Bargnann potentxal <k|v |k'>, which“yields, usxng

.
k'> =.% {- E(kli(k') + y(K)y(k’ )l ’ - III-2.1%

e g g SRR ke w
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I1I-1.28, | S o .
+ . . - - i ‘ ) R
Impj (k) = - gl = - bl
5 : .k + Db :
E'(kl)'- = F k(pra) /2 N 111\-—2' 20
_ i :n (}:'2 + b_2)]_./2 4 i ‘..  |
Tt;e bound state wave function, normalised to unity, geneﬂrated
by the ,seéarabig potential -£(R)E (k") i_s' |
. ‘ “-‘_: | s - (. -~ <
‘%(k) = JZalbra) g-(k)/(k:", + az) . . 'iLII-2§'21
The bound state enerqgy for the attractive sefparablé part 1s
again ~a2, ‘Once the parameters of (k) are fizxed, ¥ (k) can
bzobtained as before. "w
1"}) . \_i . o . . ‘
We construct the following' potentialg of class A and
| ﬂa_ss B type. The parameters.a and b are the same for both
of, them and are given in Table 31 ' ' )
. é . : = ) )
e
/—/\ |
i : -J"'/k s
3

=
7
.
b
e

-




Pr

v

i

3.1 The partly nonlocal potentials of class A are

denoted by A0 to A3, while those of class B are

denoted by BO to B3. - ‘ , | _5
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. k]
: TABLE 3.1 ‘
\ ) |
R L | :

Potentials 7 a in Fm b in Fm - ‘ )

A0 , BO 0.5000 1.0

Al , Bl . . 0.2500 . 1.0 - AT &

: | R . | o

’

a2 , B2\ 0.1100 1.0

+
5
e
et
}
L1 ]

H

A3, ‘B3 0.1016

[ ]
o
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L
o1
Rt
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III-3 Half-Off-Shell T-Matrix Elements | 5 A

The half- off-shell T—matrlx has been deflned earller
i; 11:1.7. In practlce it is. convenlent to calculate the
" R-matrix defined in II-1.26 for real w. qhe\halfnoff—shell
meatrlx elements R(p k:k%) in our basis TII-1.1 for the S

relatlve S-state are given as -

. | = Y2 .
R(p,k:k?) = V(p,k) - P ; Vi, Rlg.kikNdg pyro3.a 2
We have usedtth ethod of mat:ix inversion for solving the 5%
integral equation IXI-3.1, This method is similar to one | ;é
. N > . . : . . : iu
used by Haftel and Tabakin 46); To replace the principal .f Ei
valﬁejconﬁiiioﬁ by'a smooth integral we add a zero term in -
. . i , T3
R . ad . -
III-3.1 and rewrite this as, - N [3
P : 2 L2y
B | = [V(p,q) R(Q,k:k“) -V (p, k) R(k,k;k") 1dq
R(plk;k )y = v(p!k) - j . . i 2 : .
' ' . < .0 q -k
‘ - - III-3. 2

The 1nf1n1te 1ntegral has been mapped to a finite sum. using

the transformatron : .

g=CTang (1 -y) et sysl . I3
o ' . . ,

/

-
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The constant C is édjusted(to distribute the integrégion
points intq.ihé most important regidﬁ of integration. We
chpose:thg mesh-fér q such.tﬁat no point of it is eéual to
K. We'require to. invert a (N#l) x'(N4l)‘matrix, vhere N is
the number of points in the Gauss quadrature used for
1ntegratlonh The starting energy correspondé to k whlch is

always denoted by the (N+1) point in the integration mesh.

Using ITI-3.3 we can rew;ite’lfi-B.z as

4
B -

N+l | ' -

The F-matrix in'III—B.J is defined as? o ' ' ;}
' a
F(ki,k ) = Gij + m5 V(ki,kj) ' 7 | I1I1-3.5 I

™
1.1:}
i

]
o
e

with ) 2
) 2 2 .
=@, /(k -k =N 2
mj NJ/( 3 ) 7 3 ]
N i N”‘ w < .

C m=1 (k n

*

‘where tﬁe 65 's .are the corresponding Gauss?ﬁeights. The .
nonsinéular F—watxix is inverted to obtain on- and off-energy-

shell R-matrix elements:
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o

N+1

. ‘2 .
ROk ey oen) = 2

j=1

-1 : . '
F (ki,kj)v(kj.kN+1) . III-S.?

€

The on-shell R-matrix element_déhoted‘ﬁy-R(k) is such that
ky = Kgep and related to the phase shift, §(k), through the

relation: - . : _ . ‘ , y

R(k) = - 11,}5- tan §(k) . - _ I1I-3.8

We have calculated R(p,k k ) for(the potentlals of Table 3.1

for different k. Some of these are plotted 1n Figs. 1 and 2. )
The half-off-shell R-matrix elements are plotted in Fm ;' : i
agéinst p in Fm_l.r The values of k chosen are 0.7 Eﬁflxand
1.0 P L correépondin;to 40.64 and 82.94 MeV lab. These .

ShTaand iy
a

i

-y

values of k are chosen because the behav1our of the R-matrlx ' _ 4%—
.7’ ;)

correspondlng to these energies is important for nuclear 5
b

matter. We observe the foglowing features from these. plots.

!
)r

1l. When p > k different potentials give dlfferent ha1f~
¢off-—shell behav1oun. At p = k all potentlals have the
same value of R(p,k:kz) due to their phase equiyélence.f

.

?. Forfp < Kk, the differences are not large. AThése

differences increase for large k as shown 'in Fig, 2.
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3;- The half-off-shell elements for our potenﬁlals become :
constant for large values of P. This is due to the fact
that_R(p,k:k ) in our basis has an extra'factor of —%E

_c0mpargd to the three4d1mensional basis, ' ‘

4. The half-off-shell elements for the standard-Tabakin 42)

potential in our basis goes to zero indicating that the
decay of the R(p,k:kz} for Tabakin potential is much

faster™than our potentials.

S. The half-off-shell variations given by the partly nonlecal
potentials (A0 , Aj)'are more than given by the corres-
pondingly.;:separable phase equivaleht potentials (B0 , B3).

A simple qualitative explanation for the above

observations is obtained through the following picture. The

R-matrix for S-state may be written as 74),
'4 , \ " , ] L
RENED = B Ry + 2 2 [ ar sinpE
Pl -,k g T . T .
(W(kr) - ulkr)) ., | .- III-3.9

where u(kf) is the wave £ tion produced by the potential

,and EIkr)ris the asymptotic £ of this wave function

1nterpolated up tor = O.JﬁFor fixed k and p the first

f. el

term in RHS of III-3.9 wxll remain the same for all the .

phase equivalent potentials. Thus the differgncea in

S/

CA¥LL
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3(p,k:k2i will be c&ming due‘tq the differenéeé iﬁ the
inteéral of iII-3;9. When‘p > k, and 1arge,—the signifiéant
contfibupion to the iﬁteg:aI will come from'the term

(G(kr) - u(kr)) for small values of r. Sigce'ﬁtkr) is the
Same for all the ghase eéuivélent'potentials, it is u{kr)
which wili<decide the magnitude‘cf R(p,k;gz).'.We are
looking at small values of r, where u{kr) will be suppressed
if the potential has‘arlargePshort range rebulsion. Our
poﬁentials a{e such‘that the strengthlof,the repulsive term
falls as-we approach towards the 1iﬁiting case, i.e., A0 to
A3 or B0 to B3. Thus-u(kf)._fo; small r, wili be'enhinced
for the 1imitin§ cases,;reducing the overall value of
(E(kr)-ﬂu(kf)). This reduction is seen as a fall in -
}R(p;k:kz) for the limiting cases. It is alsoltokbe nqtea" g ,fw
from Figs. 1 énd 2 that as a ;iass, thg pa?tly nqnlocaL_ /
potentials have more effective-short range repulsion than

‘ST, whereas the_separablé potentialS'have 1es§;shor£.raﬁge
-repulsion. Thus for large p the class A'pbtenfials have

larger values of R(p,k:kz) than Standard Tabakin and the

opposite is the case for élass B_potentials; This behaviour
of'R(p.k;kz} also suggests that ihe wave function u(kr) for the
separable potentials is larger for small r than the correspond-
ing wave function for the pj;Lly ;ohlocal potential. A‘similar_
trend is obéérvedifor the,bound state wave functions of these

phase equivalent potentials. It is known from earlier

.

et L
Ci? ST
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étudies 7€) fhat_the_wave function for the separablé
‘potentials is larger at small r than those of the local
poténtials. -

In thé region p . < k and small p, we'have to examine -
the behaviour of (u{kr) - u(kr)) for large values of.ri' In
this region u{kr) is almost equal to_ﬁ(kti and
(U(kr) - u(kr)) is very much reduced.  Therefore, we do not
observe-a largé variation in the half—off—sheiliR-matrix
elements. However, if we increase k some'diffgfencés are
observed due to éianges in ufkr)- ‘

Althouégtall-these poteﬁtials are phase équivélept,
they have considerab}y different matrix elements? The’
diagonal matrix elements in k-space are plotted in Fig. 3.

g
For convenience in comparison, the pair (a0, BO) is plotted

in Fig. 3a; likewise the other three pairs are plotted in

Figs. 3b-3d. The following characteristics should be noted:

P

(1) | All the potenéials haﬁe matrix elements which are
_attractive for low values of k (1ess than gboqt
1;5$me1) but turn repulsivé‘for higher momenta,
reflecting thé change in'sién of the s-wave phase

shift.

(ii) Potentials of class A are rmore attractive for lower
values of k, but beconme much more repulsxve for

'”hzgher momenta than the potentxals of class B.

St
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Figure 3c shows the near*limiting,case‘with kg
slightly greater than k., while Fig. 3d shows the
1imitihg situation when k§.= kg.. It will be seen
from theseffigures that in potentials of class B, a

large repulsive hump develops for low values of k.

This hump is particularly prominent in Fig. 34 for

the potential B3, and results 'in its-being much less

attractive than the qdrfesponding potential A3. = The
repuléive hump is absent in cases where kg is quite
_dlfferent from kD' as in Figs. 3q and 3b.’ %his
characterlstlc of: the potentlals has an important
be§r1ng in the nuclear matter calgulatlon, and will

‘be discussed later.

" The orlgln of - the repu151ve hump that is produced

for the llmltlng potentlals can be simply understood in

terms of theAbehaviour of the two-body bound state wave

functions ¢y and ¢g that are generated by the attractive

parts V1 and -£(k)E(k') respectively. Note, from III-1.33,

that

in the limiting case the overlap integral

[0 QB(k)n(kjdk
I ¢J(k)7(k)dk'; 0. In Fig. 4, we have plbtted -} (k);
0

generated by the Bargmann potential XIII-2.9 and ¢B(k)

II1-2.21 generated by E(k) for the lg;ltlng situation. It

will be noted,that whxle both N and ¢é_qre positive

eIl
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0, and likewise for class B potentials,
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~

throughout, ¢} Of the separable potential has substantially
more high-k components, and, therefore, decays more slowly

in k-space. 'Since the overlap integréls ﬁB and ;B are

identicai}y;iero‘iﬁ this case, both ﬁ(k) and y (k) have to
deveiop negative hﬁmps at 1o§er vélues of k,‘as shown in
Fiqg. 4;_bﬁ£ the négativé humb in yv(k) is more pronounced to
counte¥bal§nce the slower decay of ¢é(k§ with inéreasing k.
This effect is enhanced in the dia§onal mafrix elements of

the potentials where the fepulsive parts appear as;nz(k)
75) |

o

and Yz(k). Fiedgldey , working with phaéé equivalént

rank-two separable potentials of Yamqéuchihtypeikorm

factors, alsc noted similar effects in the limiting cases,
According to him, this effect is responsible for the
enhancement ‘of the triton:binding energy for the limiting

potentials.

i
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CHAPTER IV

- -~

NUCLEAR MATTER AND DEFECT WAVE FUNCTIONS ' .

Nuclear matter is essentially an infinite medium
with an eoual number of neutrons and protons, with the
Coulomb force between the protons switched off€f. Such an
idealisatioﬁ’of Fﬁe realistic nucleus is necessary to
simplify the many;body'problem, and nuclear matter may
resemble the interior of a heavy nucleus‘Where surface
effects are smail. The physical Quantities aseociated with
nuclear matter are the binding energy per nucleon (BE/A,
being tfe number of nuclecons) and the saturation density og-
Saturatlon in nuclear matter is necessary because we find
from experlments that the average central density for the.
finite nuclei is practically constant. These quantities
for nuclear matter can be calculated for a given Ewo-body

I3

potential, and compared with those obtained from the mass
"formola 77)  ana high ehetgy electron scattering 78)
experiments respectively. 1In nuclear maﬁter; it is important
to examine the vafiation of the BE/A and p, with various
phase equivalent”ootentiels. These calculations are carried

out with the'hope that the results would lead us to

dlscrimlnate between the various phase equivalent potentials.

x,
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These calculations are carried out in the framework

of the Brueckner-Bethe-Goldstone many-body theory wvalid for

strongly interacting fermibns, particularly at low density.-

Good reviews /°-81)

calculation; ara_available in‘thé literature. : |
’ In Sectj:;\iNGE”EEEtion some salient steps and
appioximations which-wg use to calculate BE/A ahd Pg for
our'phase‘equivalent potentials. Secticn 2 is devoted to a
| derscrig.)tion of the defect wave f\inction and the ;:alculation
of the wound integrai for du /aet%als. Flnally in the
¥s

last sectlon we report and discuss our results.

A

of 'nuclear mattér theory and details of




V-1 Nuclear Matter Calculation

OQur method of calculatlng BE/A and'p- for nuclear
matter is the same as that of Ha‘tel and Tabakin 46), but our
‘expressions are in a diffexent basis. We have not tried to‘
rederive the general expressions available in the‘literafure:L '
Only those expressions are given which are nécessafy for our

calculation. In nuclear matter, the single particle .wave

functioﬁ'¢k..and the corresponding energy E{k) are
-1 __— ) —_— )

- 1]‘ i .ri _ .
o (x) =—=e “A~E o, | : o Iv-1.1 3
+ =1 ! P . - -
-1 \ / ~ E s
N \““\J-—'\\ - ‘:}
. i ) Ay ‘ <!
. ’ . ‘»—4-4!
) = i U(k. . ' v-1.
E(ky) = T(k;) + U(k;) | ) V-1 2 §
i3

~where T(k;) is the Kinetic energy, and U(k;) is the potential
enerqgy of a nucleon in state k.. 'The'igttgr is obtained from
the‘interaction in a self consistent way. In ﬁuélear matter
each single particle ‘state Ei islfour—fold degeneraté..and )
all states up to the Fermi momentun{ kF are occupied. c'rhe
Fetmi mﬁmentum kF is related to the ntc%ear matter densiiy

by the relation p =~(2/3w2)kg. In Brueckner theory the

effective N—N-interaction is given by a Gjmatrix as

.

# * The wave function Qk is normaliﬂed in the volumc : o
i

2 such that as A and Q *» =, = A/Q remains constant.

~ : 72




.w>,§ IVS le

k) k,le® lelo

%20 K10 X207
P V1Y :
-5k x |vs le-k-> 2 kix3)
. ~1 ~2 ETk ) + E(kl) - w
Kk 2
152
. (\ " -~
IS T K s
<E1kz|G k10 K207 - . 1v-1.3

In IV-1.3 V (the free N-N interaction) and G depend on the

spin'(S) and iso-snin (T)*states of the nuoleons. However,"
for 51mp11c1ty in wrltlng we have dropped the superscrlpt

S and T on V and,G. The Pau11 operator Q is such that it 1
-is 1 if Ik | . [kzl > ké and 0 otherw1se. The startlng energy

w depends on the lnltxal states of the 1nteract1ng palr, in.
e v

.

iy

" From IV-1. 3 and IV-1.5 the G—maﬁ?gx becomes a function of

k k(K and w, whlch ue denote by G(k X ik w). The initial
-0 <0’ s

© -

and. f1nal state relatlve momenta are denoted as ko and~k S
@

. v -
. ' - ) ¢ ’ ’
. ’ .
: .

the spec1a1 case when;both kl0 and kzolare ogoupxed,_lt is
- : N . ) - - /~ . . .
L ” ,k—/ b -
W= ('gg) (x “‘5 ST ©mveig
w = E k + E k - - ’ ’ : . “de
Q- ) o ' . . © S : '*\ ’
B I . R ’ ? ._ . o ] . _\' : 8] | o
The relative and center of mass momenta are defined as
-—-ﬁt% ’\ A
- = [] ) =
Ry + Ry = ki Ky = Ky ¥ Ezo 2’
- ] -‘ - 'L
- k., = 2k IV-1.5
ky —ky; =2k - _
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[

respectively. The. total nuclear matter energy E is:

E=4 I <k10|-r|~10 5 L . I (28+1) (2T+1)

. kykg ky Kp<kp S,T
T e | - -
X <k 2IG Tk Ky -k k> wv-1.6 =

where T is the single.partiCIe kinetic energy operator.
Using IV-1.4 the G-matrix expreesion IV—1.3 beeomes;

-

| n V(kk 10k} K)G(k',ko,K w)
G(kr korK W) = V(}f 1}50) = J dlf' r -
‘ - E(k',K) - E(ky,K)
- _ | o S IV-1.7

e
'

- ' . ;
: i

2

=
%

a4

E(k',K) - Bk K =5 [0 2-k2) + ulliekt )+ v(x-k']) :
- U(|§+§0|) - u(|§—§0|)] . Iv-1.8 %i

The above G-matrix integral equation is difficult to solve
because'of the dependence on the center of mass momentum

vector K. In order to 31mplify we fol‘ow the usual approach o

N
‘1
o

of using the angle averaged Pau11 Operator and the effectlve

mass_approxlmatlon. The angle eve:aged-Paull operator Q is .




75

2 kF“+ K

o K2+k'2—k§ T _ |
- E ee— " - LI -
2Rk \Jka <R S kgt Ko, IVLLS

and the single particle energyhin the effective mass

approximation is

S 52 52 |
| ) . o
Elkg) = = ~ Y. Ka = kp
h? k2. - | -

where M* is defined as the effective mass'of the‘nucleon.

" The G-matrlx expression IV—l 7 along w1th the 51ng1e partlcle

energy of Iv-1. 10 is g;ven by

) , ® -V(kk')b‘.(k:x)ctk',ko;x) \
‘G(lf.}_t_o:K) =V(1_:.1§0) -~J dk —— ~ —

| o Ey(K) - E (kKD
S | o . Iv-1.11
where ' : . - . ™
b2 42 | | )
2 .- . ]
M E> M (K™ + k'7) . o \_/
42 ’ﬁz BN ' ' _
BB = b (2 + k) -l20) . ) . IV-1.12
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Using the method of partial wave expansion, we obtain the

S-state G-matrix equation in our basis, defined in III-1.1,.

| ° - VOKTKIKIGK koK)
G(k k iK) = Vik,kg) - J‘ aw’ E, (k KY - E_(kjK) "
0 . . IV-1.13"

¥ .
The above integral equation for G is solved by thé‘matrix‘

inversion method similar'to-the onéAused in séiving III-3.l.:
The 5lngle partlcle spectrum U(kﬂ is calculated usxﬁ@ the
dlagonal elements of the G-matrlx. Following Haftel and
Tabakin 46), we %eplace K by its avefage (Kav) in the

calculation of G, where ng is:

2 _ .2 2 < <
k2 e k2 - L2k o+ k- kD) (2K, + K+ k)
i 0 1 0 3~ Ky o 4T TF
“ ) —‘ < - < o‘ ’ \ . . . - - 4
for. ‘kF ky = 2k0_kF+ki“ S i I‘_rll
The single”bartiéle potential‘energy is given by L
SR SO B L,
0 B bl
1 ,1,.2.,2
* kg (Flrp=ky) = ko(ko I?)G(k ,ko.x av! )
‘ ' IV-1.15

wd i

RS
ek dek il LD
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Since our potentials (a0-a3, BO—B3) are Spin 1ndependent and

are’ actlng only in- the S state; we get the factor of 24 by

sum@lng over the spin and iso-spin states. - The G—matrlx

equation  IV-1.13 is solved with Brueckner's self con51stency condi-

tion. Slnce the G-matrix depends on the U and M* (IV-1.10),

0

‘one starts with scme §u1table choice of Uo_and M and_

calculates U(kg.; The new U(k? is then used to obtain another '

‘set of values for Uo'and M*., .This process is repeated until

self consistépcy is achieved. For obtaining the values of

U, and M* from U(k) we use the following relations:

e SV

0~
-y, = 1 (253‘ - 217,) 3
0”1 2 LS ki
L IV-1.16 5
o 1
— 3
3
th . - . B!
where the n~ moment of U(kg is 7 B - 2
g =22 ’ U(k)ky dky . - IV-1.17
ke %o » ‘ R

The values of.Uﬁ and M* cbtained in this wdy are dependent
on-the- whole single particle speetrum U(k) , rather than
//4ﬁst two values of U{ky) normally used. Once the self-

‘tcnsxstent values of Uo and M® are obtalned, the evaluation
\

of the potential energy per “artzcle in nuclear natter

1 . <

tPEfﬁ)\(IV-l.G) ls'strazghtforward,=and_1s_g1ven by
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- . s
PE ='E 12 IkF dk, (1 - 3t , -1-95119)G(k X ;%)
A M 0 L2k 2/ 3 o’To't *
° . B IV-1.18
. L% -
In the derivation of IV-1.18 we replaced the cénter of mass
momentum K by its average value K which is. = |
k.- k./k
=2 _ 3,2 0 o/ F , - ,
K" == k(1 - =)(1 + ) . Iv-1.19
5 °F Kp 3(2 F Ky /kg) - G

ey

Note that f # Kav of IVv-1l.14, The average center of mass
momentum (K_) is defined for a pair of nucleons with fixed
relative‘momentum,and the momentum of one of fhe particles is
also fixed; whereés.ﬁiis,the avérage when only the relativeL

>

momentum of the pair is fixed. The BE/A is the sum of the

average kinetic energy and the potential_ehergy per particle.

This is written as:

IV-1.20

P — e

i

RV T ST, diud L J"
"‘ PR N - - -
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IV-2 Calculation of the Defect Wave Function and the Wound

Integrel‘

n

In nuclear matter the unperturbed wave function of

the relative motiog\of a pair of nucleons, |¢k>,,is a plane

wave, but the-pertu;bed wave function |4, > is very different

from the unperturbed waverfunction. éhe latter is also

differeht from the scattered wave function, beca&%e i£

rapidly - approaches the plane wave w1thout any phase Shlft.

‘The distance at which these two become the same is called KH

the healing distance.r The difference between the unperturbeé/
and the perturbed wave function is aeflned as the defect

wave function |xk>. The absence of the phase Shlft in the

perturbed wave function of nuclea: matter 1s\due to the fact

that -all the scattering states. are virtual. These virtual

=

i ’ .« - :. . . ’ . ) AN,
~scattering statés are considered to incorporate the high

k components . in the nucleer matter wave function. Theﬁgefect‘

wave function is given by , o J})

le> = |¢k> - N’k’ -

Using the following definition ef;{$;;7\\\u_

V> = Gle> o

79 It

< T Iv-2.1
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and the equatibn‘IV-l.B, one cbtains the relation of |xk>

with G:

%> = 2 6le> | Iv-2.3

where e is the energy denominator of the second term in

IV-1.3. The healing prOperty demands that
<xix >+ 0 as 1+ . 1v-2.4

The coordinate and the momentum space representations of the

defect wave function are as,follows:

/

K

<r|y, > = Xy (r)

Z 0™ .18 e v . S
J; f <k|e_G(E'k0'K)lko>Sln krdk,

0 0 :
and’ 5 o _
Q{k,K)G(k,kyiK)
<klxy > = ¥ (k) = — — . T IV-2.6
o 70 E, (k,K) - E_{k,/K)

.

one can define the woﬁnd integral ¢ as the-integral of the
,SqP/“X\Of <k|xko> or <r|xk0> over the whole space, multiplied

!
by the den51ty Ds

In order to make K a dlmensxonless number and

equlvalent to the deflnltlon normally gsed in the literature,

46)

e.g.,‘Haftel and,Tabaklh , we define it as:

~

' S 512 ' : C1v-2.7
=60 Iy [ lakly P :

RN

J— . ) \

[ S i i ¥

et h s 134

L B e
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where, - the factor of 6 is due to the spin and isqfspin >
weighting, and’ﬂz/ékg is due to the relation of G.in our
basis, to that of the three-dimensional basis generaily used.
This relation for the S-state is |

Glkiky) = gmge Glkikg) . ‘ - Iv-2.8

4nkk0

We have used IV-2.5 for the calculation of xk'(r). For this
) 0

calculation the Fermi momentum k. is taken at the saturation

point k3 and k, is taken to be 0.55 kb. We have plotted the

‘defect wave function for our potentlals AQ,A2 and BO, Bz

(Table 3 1)in Fig. 5. ‘We nmotice that for the partly -

nonlocal potentials (A0,A2) Xy (r) is positive aﬁ small r
N 0 )

st N il b,

indicating a short range repulsion, whereas for the purely

P

separable potentials (B0O,B2) the deféc% wave function is

Pt o v g st

negative showing that the interaction is attractive. This
behaviour can be understood from IV-2.5. For small distances,

the main contribution to Xk (r) comes from large values of k.

0
The factor Q/e would be positive for k > kg, and zero for
k < JkE - RE. Therefore, the sign of Xk (r) will be decided
' 0

by whether G(k k K) is attractlve or repulsive for large k.

Koi
For our potentials the contribution to G from the éecond'term
in IV-1.13 is small compared to that of the first term, i.e.,
V(k,ko) except for A0. This could be seen from the plots of

V{k,kq) and G(k,ko;ﬁ) given in Fig. 6. Thus the sign of the G

- for large -
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kX is determined by that of Vik,ky). In the case of §artiyl

nonlocal potentials, (30,33), V(k,ko) = Vé(k,ko) + n(k)n(ko).

a

The first term VB(k,ko) is attractive and goes to zero as -

0

positive constant x n(ko). "The form factor n(ko) being
. - -4 '
positive, the sign of G will be positive for large k.

k + «; therefore, for a fixed k, and large k, V(k,ko) >

(r) will be positive and the magnitude of

Therefore, Xy
0
Xy (r) will depend on the strength n(k,). In case of
0 ' .
separable potentials V{k,k,) = —E(k)E(kd) + v (kK)y(ky)
(III-2.19) and the form factors are such that E{k) or y (k) ‘ 3
goes to a positive constant (C) depending en the parameters : j'

of the attractive.part as k goes torw, hénce for large k,

Vi{k.kg) = C(=Elkg) + Y(ky)). Thus the sign of V(k,k,) for |
large k will depend on the relative strengghéfof the two i
terms ahd‘not only on the repulsive form factorhy(ko). At ' ;
kg =‘o.55'k§
than Y}ko), hence botﬁ\V{F,ko).and G will be attractive.

for the potentials (BO-BB),.E(kO) is stronger d

The defect wave function is ?egative for ‘such potentials.

It is ?o-be,notea that for some other choice of ko,.the
signs may chaﬁge.' This reflects thé peculiaf_characteristic
of the separable potentiais that attraction and repulsion

are diffused over the whole range of the interact}on in the

moﬁentum space. It is their relative strengths which decide
whether the total interaction is attractive or repulsive.

The same characteristic of éeparéble potentials is also




responsible for the variation of R(p,k;kz) as noted in

Chapter III-3.
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IV-3 HNuclear Matter Calculations and Results

The partly nonlocal potentials (A0-A3} as well as
the two term separable phase equivalent potentials (BO—B31
are used to obtain BE/A and Py for the nuclear matter.
Results for the standard Tabakin potehtial are included for .
compérison. The saturation density Pe 1s obtained by
plott%pg the BE/A as a function of kF and then.noting the
minimum of the curve. Self consistent qalcﬁlations for a few
k afound the minimum-are sufficient té-provide an accurate

¥
saturation'densityi The direct matrix inversion method given

et Sl minmd i Y g

in Chapter III has been used to solve the matrix eguation,

IV-1.13. The aim of this model study is twofold: -
; |

i

ek ¢

(i) To compare thé nuclear matter results for partly
nonleocal potentials with those ofwseparable potentials,

and B -

(ii) To study the dependence of these results on the
Limitiné parameters for the two sets of phaaé

equivalent-potentials. These limiting parameters are

defined in Chapter III.

84 .




Many nuclear matter studies have been made earlier

with phase equivalent potentials. However, all such studies

14-20)

are made either with two term separable potentials wi th

Yamaguchi type form factors or with the potentials obtained

45-47)

by applying unitary transformations to the two bédy R

Hamiltonian with soft core local interactions. As far as we
are aware no systematic study has been made with partly .
nonlocak potentials. We confine ourselves to oﬁly S—state

potentials as their contribution. to the B“/A is by far the

,f
largest 61). The results are presented 1n‘§a le 4.1. The

numbers in the first row refer to the saturatlon k in Fm—l.

~

1 I

The next row lists the values of x evaluated by using w-2.7"
at 0.55 kg. The average kinetic eneréy pefAnucleQn at kg is
given in the next rxow. The potentiai energy per particle
(PE/A) , given by Iv-1l.18, cén beusplit into two pafts By

using the relation:

i

.1

[ P

GUs,k) = V{k/,k) -I dk‘V(k;k')xk(k') S V-
0 , |

o
Lo

where we have suppressed the f deﬁehdence in the notation.
We have accordxngly shown the first-order contribution to
PE/A, comlng from Vvik, k), and the hlgher order contributions
arising from the last term 1n=IV—;:11,sep§rate1y in Table
4.1. It will be seen that all the pbtentiais that”wé

consider here are quite soft except for A0 and B3, with most

[ LTI T Jy ,u¢‘,.4..;r-;

e
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Nuclear matter results for partly nonlocal.phase g
equivalent (class A), rank-two separable phase ‘ ? .
. ' : 4
equivalent (class B) and Standard Tabakin (ST} II
potentials. All energies are in MeV. N ‘
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§ ol
kF in Fm
K

" Kinetic energy

per nucleon -
.at kg

1st order
contribution
to PE/A
ﬂigher order

contribution’
- to PE/A -,

" Total PE/A

BE/A

Partly nonlocal phase equivalent

TABLE 4.1

VoM

T

‘potentials potentials
A0 - AL A2 A3 BO - « Bl
K = T AP
1.85 2.05 2.08 2.1 - 2.05, " 2.0
0.0296  0.0099 0.0040 0,0036 0.0050, 0.0071
42.58 52.28  53.82 - 54.86  53.28 - 49.76
) o T
-44.69  -76.64 -77.24 -13.94 =67.92 -58.29
‘r - ' o
ho ) - - e T
~26,89 - 9.11 -4.90 ~-'5.91  -10.09 . -13.60
v . N . ’ -
-71.58  -85.75 -82.14 .-79.85 -78.01 ' -71.89
29.00  33.47  28.32  24.99  25.73  22.13
- = S S

»

‘-,{1

B2

1.89
0.0129
44. 44

- -22.49

 -58.04

1

13.60

P

;o

Separabie rank-two phase equivalent

-

/
B3
S 1.83
“0.0165

.

S/ 41.66

y ~35.55 °

0
| 5448%1

ST.</'

2 I'l" : .
.001
82.61

2.06

4.67
29.81

98
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of the blndlng comleg from the flrst—order te:m Accor&inle{
four calculated values of <k|G|k> 1ook»very Slmllgx to
'<k|V|k> as a functlon of:k, and we do not plot these
separately.k'We now : go on to p01nt out some 1nterest1ng
'aspects aof the results glven 1n Table 4.1
The flrst %eature;whlch we Sbeerve from the reSults.r.
2 i o -

is that the wound integral k decreases with the increase*in .

the saturation density,'ih spite of a rmultiplicative factor o]

!3.;“3

- in the deflnltlon of x given in IV-2. 7., This is found to

be true for potentials of both types. ‘As was pointed out

by Bethe °2)

1

» the contribution of gthe eecohditerm in the - i
equation iv43 lvto the PE/A, which is calculated using‘the i
equation IV-1, 18, will increase less fast w1th ké as ’I O
compared to that of the'flxwéfterm due to V(k,k).' ;n the E |
context of perturbetion theory.-thxs.comes about due te the’; '
Pauli operator_thet effectively reducee the available,ghase‘
space for.the'integmediete‘states'ﬁith incfeasinﬁ k?; : i
Add;t;onally, with 1ncreasxng k the 1ntermedlate states k'"
has to ua/crease, thereby damping the matru: elements V(k k') '
.and also increasing the energy denqmlnator. "It is also to |
—~ be noted that.when hzgher order terms are appreciable. the -
' wound 1ntegra1 k is large. ' Since these higher order térms

help in saturation; largez values of x also imply. in

general, smaller saturaxion densities, despite the multipli-

cative factor p in the definit%on_of Ko




~

' repulsise components become’ﬁeaker; though nbt the net
_from Flg. 5 y AS Ny {r) for A2 (nearly llmltlng) ig sm ller
' 0

this chapter'we have shown that for the class A type

- ‘potentlals Xk (r) will depend on the strength of the repulsive =

as the limatlng condition is approached. hence the wound S e s e

x
™ . B

k]

" A very intereSting”feature emerges from a comnarisOn

. of the wound 1ntégral of class A and’ clase B type potent}als,.‘~ Ch

/

For class A potentlals as these approach the 11m1t1ng
_51tuat10n,'the wound 1ntegra1 K decreases monotonlcally.——
while -just thé'opposite is the case’for class B potentials: . . :

a

This behav1our can be understood;,in the follow1ng way. e -

‘ . X ‘ et
C0n51der flrSt the potentlal A0, where S
Tk = 0.5 >> k, = 0.1016 Fm oL In this potentlal both" the L
attractlve ahd repu151ve components are strong and thlS -
yields a large x as well as a large higher order contrlbqtlon .
to the potentlal energy per hucleon (Table 4.1). As the -1 < §{V€

limiting situationiis approached, both the attractive and P

El
-

F R T
—

<k[V]|k>. This makes the defect wave functiof |x> and hence

K smaller as observed in Table 4.1., This can also'be seen

* ¢
e
Preow

_in magnitude than that of AO0. In the previous section of | ;

)

0 N .
term. An anamolous s;tuatlon exlsts in this respect for the R

pclass B potentials. As we have dlscussed before, xk (r) for
. ’ . § 0 -

these potengials depend on the relative-strengths oi—ﬂ;~~ SR
attractive and repulsive part of the potantxals. This N S o

relatlve strength correspondxng to kq {= 0.55 K> P i reaaos

* . R
- . . - 3 “ .

%




o | S S, se
integral K is inereased‘ For the‘seperable ootentfals of
class B a Iarge hump develops in the repulsmve form factors
j(Flg- 4 ) malnly because of the slow decay of the ound state
wave function eB(k)‘ln kfsp ce. This repu151gg/;i:; foxn iah
potentials B2 ahd.33'not only reduces the attractlve flrst-
order contribution ﬁroh <k|V|k>, but also increases the
defeCt;waie.function and hence the wound integral. 'Note-that‘

~““this has the etfect of ihéreasing the higher order contribu- _~'J ~
tions in the potential energy as shown iﬂ'Table 4.1. This
increase; however; is not‘enough\to compeosate‘for the

-drastic fall. in the flrst order contrxbutlon, with the net:

result that the blndlng energy per nucleon drops sharply as

f
e o
P e
. 4

the limiting condltlon -ig -approached. o - .

T

.

Flnally,“We note that the partly nonlocal potentlals | | , i

~

A0-A3 glve more blndxng in nuclear matter than the potentlals

BO-B3 when' compared pair-wise. The maximum fall in BE/A for

—

““c%iés A potentlals is 8.47 MeV, while for class B potentzals

it is 16. 17 MeV. . Similar sharp fakl in the BE/A for tite
44)

T

llmltlng«potentlals have been. observed by us, while p

worklng with rank—two separable phase equivalent potentlals

=

o,

Al e .

" thh Yamaguchi type form factors. We suggest that such a
A sharpﬂdrop is . associatea w1th the behav;our of the two-body
bound state wave function of eeparable %otentials in general ‘ : ';t

and is absent for local or partly nonlocal potentxale..~

ré .
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CHAPTERVr | o

' OFF- SHELL EFFECTS IN THE REACTION p+p. > T +d AT THRESHOLD .

.As seen before the.tgo-body experimental'deta,‘}i:e,J
the phase shifts-and the energy of the-bound'etete) do not, - . .
uniquely'determine.the N-N interaction.' To inVestigateftne
., interaction further we have constructed phase equrvalent ' d
-‘potentlals whlch are all on ‘the- same footlng as far as the |
above dat is concerned, “and examlned nuclear matter. K - . .;.
Another alternatlve would be“to investigate the.nature of‘ ,

i - -

‘the bound state wave functions that these phase equlvalent

S

.’potentlals generate.
To be speolfxc) we wish to enalyse'an experimental
.eituetion where the obeervable reéuit'ié‘veryasensitive'not
.- only to the taiil of the deuteron wave~fnnction'but:elso
dependent on its short range characterlstrcs. Such is the-
-case in the hghavxour ot/the cross sectxon reactlon ptp +. 1 +d
neay the threshold of plon oroductlon. Woodruff 83) first
.calculated this cross section, hls calculatjon was repeated
84)

3jfby-Koltpn and_Reltan who obtalned good agreement with S B

“the experimentel results available at that time. They = .
emphasized the sensxtLV1ty of the cross section to the spape’

of the deuteron wave functlon, a sensitivity that comes about .
due to the cancel;ation of the contributions of the S- and - -_?;;

-

%0
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'D~wave componente.: It is expected that such a. calculatlon

. w111 be’ sen51t1ve to thé’D-state probab111ty,~ b’ es well as
the shape ‘of the wave,functlon. Even 1£_the deuteron,blndlng
‘efergy as wellias PD are fixed, the wave function will change
w1th the form of—the 1nteract%on, 1.e., 1t will be dependent |

: N
on the off—shell behav1our of the T—matrlx. The calculatlon

‘

of the threshold cross sectlon may be of 1mportance in -
determining the D-state probab;llty PD' and thus give

'_valuahie 1nformat10n/about the tensor component of the N-N ‘f
interaction in the 351-3D1 state. Recently Thomas and o A

62)

Afnanu 1nvest19ated thzs pr blem u51ng various local and.

nonlocal separable potentlals and found that the cross 8

section is sensitive to both PD

and thé nonlocality.of the '
dnterection.l ' - | j} ’
- Weqhave undertaken‘tne same'gelculetien with the aim "
to sort out the varlous factors contributing to. the sensitzv-'
ity, in partlcular E ~of the deuteron and the’ off-shell
behavxour of the xnteract;on. WQ feel that only after suchh
'a study can any conclus;ons ahoﬁ{ flxxng P from such &n ‘. | oY
experlment be drawn. Keeplng the interactlon 1n the p-p C -
channel fixed,’ Whlch is taken to be exthggaiyneid—Soft*COre 31 : lf_

{RSC) local’ potentxal or a Tabak;n 15? ‘separable potential

in 3P1-§tate. We study the variation of the threshold cross’ L ‘ "{
section with different déuteren wave Eunetions-genereted bf
a set of phase equivalent potentiala. Tnese‘are'denerated ' &-;Q~;
by tub:ecting the deuteron wave functions for RSC and for

r
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5T
)

our rank-two separable potenﬁihls-

unitary tfansformation of Ref. 47).!

. . . L4 : . .- :
analytical expressions for the wave fynctions of our

potentials are used. .

v .

—

~
™~

63%:ﬁith varying P

'itnction for BSC is tdkén ffbm'Réidfs pape:.whereés

N

The deuteron wave

92

r

D ?o'the

a

1

In Section V-1 we briefly';e?iew the piqn—nucleon~

intéraction and the-methodfpf calculating the cross section.

In Section V-2 we report our'resulﬁsjand conclusions
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V<1’ Theory - , '_ Eaca - s | ¢

- The pion-nuclecn interaction density has been taken ’
to be of the form usedﬁﬁygwbodfhff 83),?and-Koltun and .
Reitan 847, | LT

V) =Hy(3) + H(3) + B () S v

.
" “ el

-where j denotes the jth-nucleqn at position xj,

Hot = m 2 ('f./u)ié'{zﬁh\‘?(x)‘] DR
4'*"(251)-__1.[91-1?(:{) ':* t‘ﬂx)g] }‘. . - ' '.v‘-.-l.z‘
‘\"Hl.{x) = 4ﬁx<u % tx) ': V B “
Hz(x{ = ;%lzu r-Q(x{ x'ﬂix;f.-w “:' - ‘.:lv—1.3
| ' L * ' - ‘ “
- - - =

Here, g and T are nucieon”spin énd iso-spiﬁ.opeiators, p is’
thelnucleon momentum operator, and M- and u are the masses of
the nucleon and pxon respectively. The gradlent V operates
only ;n the plon field &(%) and zts conjugate v'x) “hc_

Hamiltonian H 15 the pion—nucleon 1nteraction dénsity. The -

«

0

-,}ﬁ'.

&
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w
i -5
=, LRl R rsﬂ;!kfmc:-i

oseudoscalar coupllng constant f2 is related to g2 by - e =
. 2 - A e .o 5
£2 = %; ( >4 f_ The flrst term in Ho iS'the‘usual static . o

-

:e\P-wave -interaction densxty, The second tern feQresents the
.S-wave oart 1nc1uded to nake. HO Galllean-lnvarlant. The
terms Hl and Hz are dlrect and charge exchange 1nteractxons

"85,86)

introduced to,exolaln tﬁe low—energy S—wave p;on—nucleon

scatterihg: Slnce at the thresheld the pion’ emerges in the L f;
Sawave, the lowest order process ;s given by the second term o
in HO It is customary to include the second order process | i}é
which reoresents the pion produced at one nucleon, through f" ,7-!i
e;ther of -the terms  in H, » &nd rescattered into the S-wave ‘
by the second nucleon through_Hl or H,.. These seconc order
prdcesses will compete with the lowest order process partly.
because;of the factor u/M in:the second term of Ho.r'The

coefficients Al and A, are fixed phenomenologically, although

2 g
in principle tﬂese can be ébtained from meson theory through ﬁ_g
. K ;

a Foldy-Wouthuysen transformatxon 87{: The transition _ _ .

amplltude up to the second order is given by

' + : o S
T = <xd|T|xp> . . : S . ‘ 3

dp
TN : .
T, = I Hy() ~
131'2
L
_ . ) e : - -
T I B ,(i)(E-H* i) 1H°fj)_ | A

12 345




4 N o Tt . j"

The tcual Hamlltonlan for a system of two 1nteract1ng [ N .
nucleons and-a-free;plon is denoted by H 1n-V—1.4 and E_ié- ' '
- \ B - B

. the initial channel ‘energy in the,éehter‘of'hass frame. - The'Q
- N \ . )

initial and final channel wave functions xp

scatterlng wave functlon for’ the two protonSrand the wave

and Xd are the

‘;functlon for the deuteron Jvd) plus ‘a free pion, resnectxvely %

" -

These - are’ given as'

\ . . -

L
3 .

) ) X;(g) = $‘§ﬁ'3)l{i i exp 6; 1 —l—%iil yiiil Cv-ls Lo
: s “ ] ., -
k ) - . s
LSIT | s T

‘Here YF”  is .the generallzed spherlcal harmonlc, f is the

relative coordlnate .0f the two nucleons and the normallzatxons

are given by = . = .

™

= g b S
EN ‘ P AT . i - ) .
uLJ(rL/r - sin{pri@ %'RL 4+ GLJ)/P?_ R . i
) . - r +'m. . ' \ . . y X “
Y .
> N
for the scattering wavé and - S
w0 A . . . 'wo
f w? +whar=21 ;, - < | v-1.7

o o
for the deuteron. All Coulomb interactions are ignored.
- Following Koltun and Reitan wa first evaluate the m&trix

elements of po betWeen -£ha initiar‘(no picn) and fxnal




o
v,

1Y

'(v with momentun qQ plon states, and/then u51ng éhe

_nucleon states, v-1.5 and V-l 6, obtaln the expression

o8

fof.

" the absolute)square of the transition amplitude surmed over, -

initial and final spin states, .
: °’ LT . ., ' / N
- 2 -2°-3, 8 2
R » |Td | ¢ = 8(4'rr) 2¢2y “n ]z Iil '
‘spin P . i=1
| N \ =
where 3 i
: #cég “f>\ L(, ‘ . 1
u. ‘
- - Ve 2 u{r) 1,1
. 11_ M I dr’' r . ( ) =
y 0 -
. - I = - L’!-_ ® d 2 W(r) ( _];) ulrl
T2 5 r dr x  r f
- 0
- ” 2 ulr) .o 2, U1,
13"' cl J dr r F()(dn 4\\_ ) T 1] -
0 J . E
¢ o - .ul 1
I = ij ar 2 ¥x) F(r)(-— Ly Ll
4 1 3 r
N o 3 Y :
o ’ .
i b u
_ 2 ulr) 1,1 -
15 = CZ?J dr r = F'{r) T '
. ' 0 )
I.=2C __]_-_I dr 2 wir) FT &X 1:1 ,
3 2 3 r r _
: 0 . ¢
and - . -
= ~ + i
c, Ay + 1 sxz ¢ Cy (2 w)c K

‘y-1.8
-
&
'
V"l-g
' .

oy

s

PrRE
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The lowest order term of the T-matrix, To, givés rise to Il and
12. The next .and only higher order terms includéd, 'I‘l and .

yield the other inteérals I, - I1.- The cross section

3
for the reaction‘§+p > nt+d at the threshold is giverr by

6 ., o
o = 161 £2(uM) -3/2 nl 1%, | v-1.11
) - i=1 S .
where n = |§[/U- We have used two sets of the potentials for n

the initial p-p channel: 1) RSC and ii) Tabakin. vIn the
case of RSC, u ]fr)‘is obtalned by solvxng the Schrddinger
equatlon numerlcally, whereas for the Tabakln interaction S 3
it is obtained by analytically solving the Schrbdingarr ' _ | .
equation in the momentum space and tﬁéh fourier-transforming
the momentun space wave function. .Our deuteron wave functions. H '
are%generated by i) RSC and a set af'phase equiéalent pé%ena
" tials to it ‘and ii) a number of nonlocal rank-two separable

potentlals with varying P and a set ‘of phase equzvalent

Dl‘
potentials to each of them. It is not neceésary to solvn
for the bound state of the Schrddinger equation in the case

of every phase equivalent potential, rather one can directly _;?

v

obtain;the corresponding deuteron wave funqtionlwd by noting
that Ed = Uﬁa'ﬁpere*U is the unitary transformation such that

it generates a phase equivalent potential as.follows:




. _ =~ u 2
, 98 e
H=7T+V |
R . :
B=0m =71+ [uru’ - 7+ ovo') ;
~ . " - : - | . ' - ;
=TV, e S V-l.2 :

-
t

where V is the transformed or phase equlvalent potentlal. i

17}

“Follow1ng Haftel and. Tabak;n we have con51dered the

unitary transformatlon U such that,

U=1-20 with A% =2, . v-1.13 L
and ) .
sz ST JT L'SIT _..JST
<r|Alr'> = Ty = u"s (r)Y* .
T Y gsMTT. L MT, (IYALL' -
LLI z M V-l.ld .
JST a Y S o

- The matrlx A is such that ALL = 1 for uncoupled channels

and - .
sin®9 sinbBcos® o

S 9 _ ' dv—l.ls
sinfcosé cos. '8 ) ) ,E

JST

Appr = Sppe oF

for toupled channels. The radial functions gL(r) are real
and square integrable. If we demand that <rlnlt'>‘+ 0, as
r+ o, 'r' + o, sufficlently rapidly, not only doeu_ giﬁgj/ -

' the same phase shlfts as v, but it also retains the,long

range behavxour of V. .For the 381-3D1 states we need only e
g%lo and 9;10. which we:take_qf the form[- |

Bl
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o | - ﬂ i
- go(r) = Cd:exp(—cor)(l - Bor) '
. 9p(x) = Cy exp(-a,r)ir(l - B,x)
: u » 2-; NI | ; : o
or | Cé gxp( aé:?r.(l Bzr) v , )  V-1.l6 .
! | . - Ny '
where we have omitted the superscript JST. The constants
Co and 63(C3) are determined by requxrlng J' r2 dr g%(:) = lii
0 .
We have five free parameters ao, 80, uz, 8 (uz,B ) and 8. ;
The transfbrmed deuteron wave function “is: . ,L
wd(r) = ud(r) + gO(r)y°11°{B 31n26 + B sinecose)(
frgztr)y211°(8 sxnecosa + ﬁ“tos 6) . V-l.i? f
with B, and B, given- by, ’ }
. 3 . ) . .
%) Sewuwm Lo
B ' o s A
) ® fa ' . £ d ‘ . ' '
t Y .
B, = g, {r}wi{r)rdr . - v=-1.18 o
2 J 2 . . . . . S £
The choige of 6 = n/z {0) affects only the S (D) components
~of the deuteron wave function. Intermediate values of sina N . t75
g;ve m;xed transformations, which change tha D-gtate ‘é
probabnity. The separable potentials. with varying ? are . o

8)
ccnstructed using the formalism of Hahxotra and San Gupta ?

f

) A wo : I TR

‘L S T e o

S S TR e
. : v ]




and modified by us 63). ‘fhe form ‘of the potential actiné in
3. 3 ' : C
=D

57Dy

eigenchannel\is:

, : Xp e | -
<k[Vlk'> = - 5 {gk)glk") - hik)h{k")} .- v-1.19
w1th g(k) C(k) + T(k)S(k)//§ . and the forms of various

(..._
factors are:

A
cx) = 1/(8% + x%
Tk) = -tkZ/ (v + k2, ’
nix) = nk?/ (0% + x3H2

and the momentum space tensor ogerator'

s - 3o,k o

.k Cn \0 g c. )
k 2 s . "'l "'2 o

The parameter Q gives the strength of the potential,.whereas f
t and n repiegept resﬁecti#ely the strength of thejtensorf'
componenttand the repulsion ielative'to the cantrailttt{ac—
tion. The reﬁaining three parameters B, vy and p are the |
so-called range parame ameters of the central attraction, tensor‘
and repulsive form faqtors, respectively.r It'is possible to
obtain, using this potential,\snalytical expressions for the
binding energy u and quadrupole moment Qd of the dauteron,

i _ ‘ N h

) ~
Y

TR e R T AN e
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and the triplet scattering length a Given

e
e . o

experimental values of these guantities, analytical

exore551ons deternlne the strength parameters (A, t and n)\\

in terms of the range parameters (8, vy and p). We adjust

'these parameters until a reasonable phase shift is obtained.

.2

These ﬁctgntials give differeng P We take Qd 0 282 Fri -,

S
-1

-3, = 5.4 Fm and @ = 0.2317 Fo . The potentials we list

vield effective range rOt = 1.78 Fnm, the‘asymptotic ratio

o

-of the D¥ and,S—wave compqnent'ié obtained to be 0.025 to

0.633, and P is varied between 2.69 and 7.943. The deuteron

. \ i
wave function may be easily obtained in analytic form as,

4

B - /2w N e VZ 7 Nyl
' u(r) = —5————%-(e °or . 78T *1'-"—-%—5
; - B - a : D tp2-a?) .+
-Qr D]é y 02 - 0-2 e "‘ h 1.21
x [e (1 + =—z—pn)] ., v-1.
% . " .
and . ’ .
- f. ) V-Q
27 N,.t
2 2 3a 3 -ar
wir) = ——5—s" [(a® + — + e
(Y’_Z-az) Fooxt

'~ V-l 22
where N, = zﬂl . 2. is a function of. the parameters of the
“potential and N, is determined through ;he no:malzzatign

i o . - . g

‘condition [ (qf

4 wz)dr w'l.
0 o




V-2 Results and Discussion

2 - by
.

AN 7 . ' ' - .
In.this section we present. the details and, the

results of our ‘calculations. First we list in a schematic

way the various interactions we studied.

. B : )
.
b : : : (n . : -
T * - N ’ - )

b

Initial p+p ' Final n¥¢é:' _:
. channel - : channel . , T ‘ -
’ . ’ . . -Q _- / -
'i.J RSC | ' ng wave “function Aqé its uniéaiy'i '):
' jtransfoims‘ o . %
ii. RSC ) _ .wave function obtaineé,fﬁém our | , ;

‘separable potentials "and thir

- | unitary transfdrmg h B t

iii. Tabakin - - RSC wave function and- its unitary o,
S “" - transforms = . ’ | ‘
v, Tabakin‘ ".. T " wave function obtained from ouxr | v

) . ’ ;‘ ";;parable potentlals and their .. .
P : _) \ | o unitary trgnsforms. o o L

-

. We use the same values of pion—nuclepn coupling constants

4y " .2 ‘
as those used by Koltun and Reitan 8 ), £f° = 0. 088.. _ \

Ay o= 0.005 and A, = 0. 045. More recent values 89;.‘ __1?\ ‘-;
2 2 0.0822, A, =0. ooss and xz = 0.0487, slightly change the
102
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results but. 1n.no way affect our conc1u51ons. We useﬁ ‘

= 139.4 MeV and M/u = 6 73. Table 5.1 lists the paraneters

of the unltary cransformatlons consmdered, some of which are -

taken from Haftel and Tabakin 47). _Transformatlons 175, N

8-9 and 11-13, when-agplled to the wave. function obtained

for RSC,;give the same electric form faccor cf-thc deuteron -

as obtained ﬁor)RSC, within.experféental efcor,” Transforma~

‘tion 6 borders on an unacceptable fit to the form factor. oy
We also study the transformations 7-10 and 1416 which alter

the focm factorrbeyond the limits spacifiedey.the exéerimen— -
‘\tailerggr. Trapsformationl;l—T affect qnl§ 3Sl-.com.poneqt of
theideaéeron Va;e funct%on:;s-loraffect only 301 compcaent; :-
‘and éﬁe‘rest are miked (0° < @ <190°). .Thé mixed transfor~' j—

mations change thé deuteron D-state probabxlity Ppe T _ 3

" Our two texn separable potentlals do not yleld a good

S

- fit to the form factor data.: This 15 in accordance with the
: fact that the two term separable potentials w1th simple

90{ of deuteron wave

analytical forms yieéld a Bulthen-type
function pd(r) (modhlated at short distances for the Tabakin E . _‘;*

‘potentlal), which, untike the wave function of a local

R

poﬁential'with'reéulsive core, does not fall rapidly enougﬁz

“for small r, as demanded by the deuteron form factor data.

o I3

No fixed crlterion exists,’ therefora. to classify, as in the

-

se. of RSC. the unitary transformations for the separabla
potentials,~we note that generally all our uniga;y | '
\ 7 \j

s b B o . e
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TABLE 5.1 Parameters of unitary transformations in the (

. ~ o . :/'. s ;
3Sl~3D1"éhannel..-The asterisk in'the first a7 P
.’ column indicates a transformatlon which on co-
apprlcatlon to the RSC deuteron wave function T o
PR A
does not ylelT a satlsfactory fxt to the deuteron ¢ \ ) T_‘
. electric form factor as explained in the text. . *
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Ti:aI-ISfOI‘ . oy 30_ - a, - 82 e : ui gi . e ‘
mation | _y - " i
. o ) (F7) (degrees) AN

L
7

1 2.4  0.80 +/ - - = = 90
2 .. 2.4 0.83 -. = - - " 90 -

-~ 3. 2.7 0.88 - - - - . 90

& - 2.7 0.9 - T - - e .

5 4.0 1.30. - - - - 90 ' ;
veE 2.2 0.80 ° - < - - 90’ L

. .2.2' 0.83 - - - f—" 80 SR

8 - 4 - = .- 3.5 0.8 o,

S\ . - - 2.4  O0.72 - - 0 ’
10*\\-. - . - - - . 3.50  0.50 o H ;

- 2.4 6.83 2.4 0.72 - =7 60 - - ‘fj

‘12 2.4 0.83 2.4 o 0.72, . - .'« - }45 o o

o

13 2.4 0.83 2.4 072 = - 30
© 1 2.7 o.88n - . ‘3,5 o©0.50 .60 - +
C1se 2.7 0.88. - - 3.50 0.50 45 .

16% - 2.7 0.88 - . = 3.50 0.50 .30, | g

t
¢
= %
. v . . .
N i ~ . . . . Y .
e . . S . o £l
. ‘ . . - P
- '
n
~ !
B ! v 4
N . ~
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- (]




'-—-—..._._/"

105

. '\ |
transformatlons change the’ forn factor in the direction of
agreement w1th the experlmenta.‘ _ s 3A

- In Table 5.2 we list our results for separable

potentlals W1th varylng P ;n‘the_nhd channel. For eagh
separab}e potentlal we have generéted phé§e equivalent R
" potentials ad shown in'column 2. Fot each sudh potential in
the w'd channel we galculate the cross section UR/n with RSC
in the p>p ?hannel and cs/n with fhe{Tapakip potentialiin
the p-p channel. Table 5.3 givés similar results for RSQ in
) the T d channel where we also show the deuteron quadrubole

nd%ent Qd for the various phase equlvalent potentials. °

l“ Results for the mixed transformation are llsted'only for tgé‘&:

1~ Ver V2

% 7%. 'For the

RSC and separable potentials v, énd-vs: out of V

‘yields the best phase shift fit and Vs,has Py

nixed transformation the{chhngea,valnes of 'P_ are also™

-

D
1ndlcated. °

-~

4
Tables 5.2 and 5.3 reveal the following trends'

1) For evei; case brzz'os.;'rhqf the cross section depeanLG
on the.non-loéﬁiity.of'the nucleonjpuclgon'1nterqct%on,,

. ThgVscatterinéﬁwd§e fﬁndtion'x;(r)fbr small_r_is gmalle?
for RSC'ﬁhanﬁfdr Tabakin potentials, hence OR < Og- A
.cdmpa:ison:of the cross %ectiohs_wi;h RSC and Vg ~ |

f(PD %,?é; i;%the w+d'¢h&hne1 lgags to .the sa@é ;cncl?sioa:

i :
Ly

S
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; h 4 - . . )
2) The cross section, either Op0r @ ,‘generally decreases

_w1th increasing P Pyr i.e.,. Wlth 1ncrea51nq strength of

the tensor fogﬁs. However, this is. not the case for the

~

nixed tra:jfzziet;o?s which change PD bY_dlStortlng the .
'shortyrange neOi§Lomponent. | ' 7

3) The cro;s section is sensitive to the off-shell behavjpur

of - the nucleon;nucleon‘interaction, rThis sensitivity is

very much reduced in the case of RSC in 74, esﬁecially

¥ : Pl

Jf we omit transformations 6§, 7, 10, 14, 15 and 16 that

effeqt the ferm'factor considerably. We £ind that off-

shell veriations may produce very different reSuits-for

sepa;able poteﬁtials-then for a local ihteraction, e.g., - f'
transforﬁatiép 1 which changes o, for RSC by less;thant: |
7% changes ‘it for the separable potentials by 200-300%.

hS
l’ ]

It is thus clear that the cross section for the
threshold s-wave pion production 1e_sensit1ve to the shape
. of the entire deuteron wave function, not just the Pn'which

= E - . -
‘is an integral over it. This point is further illustrated

L -

by the structure of the integrals'Ii * I defined in V-1.9, 3

‘that enter the expression V-1.8 for the cross section. The h\ ;
presence of the damping factor Flr) means that relatively

' A'Short range (r < ull) part of the d;eteron wave function is ~
-1mpprtantfin Isl- 15_ The 1ptegr§15_14 and 16 ipvolvinq
wfr) are expeeted'to be smaller than I; and: Ig, which depend ~ '
on u{r). ?urtbe: Is is enhagted over 13 by;tbe:fecto:

L . , . 2




\)

T : : % Lo 0 E
Cross section for threshold s-wave pion production s L

-

for a number of non-local separable potentials

) ﬁith varying déuterqn D—statelpfobabi}ity PD &pd
the phase—eqqi#alentnpotentials fo# each of #hese. ;.
The_lgst tyo”¢61uhns gi§e oR/h agétﬁsjn'ﬁhich‘are

3

the cross seétions obtained with the P Reid soft-

core and Tabakin potentials, respeétively“in the
p-p channel. The index 0 in the 'second column

réfers ﬁo the untransformed. potential.

~ .

i

-t -

Fal
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Q

| TABLE 5.2 S
Potential in the | Unitar:y R | - .
wq';d chénne]b\ : Transior- "D UR./n GS/_n' |
(381—3513.1) , x::i:\tion ®) “(‘Ub_): A (ub)
N vy S0 2.69  312.7 = " 343.%6
1 | '94.0 | 116.0
2 128.9 .  155.2
.5 7 2884 349.7
7 174.9 - 201.8
1 9 345.0 385.8
20 o 262.7 - 293.1
v, 0  3.76  264.3 f‘ 295.3
. 1 / 88.2 1‘67.5r
) 2 . ] 12004 143.4 .
3’ . 135.0 165.3° ’
- ‘4 | 160.7 193.1 :
~ Is ;43.? uzas.;ﬁ\l |
6 120.6 = *140.2
» "7 166.7  180.7 -
’ 8 . 286.6 321.4-° |
~ ! 9 ; 280.6 :3}3.¢ ‘
10 196.4 219.3 "
1y 4.48 109.5 128.3
] 12 &hs; 13427 154.7
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_TABLE 5.2 - continued = " 198

13- - 4.34. - .178.2 - .201.4

14 '3.43. . 88.5  111.7
15 - 4.15 . 91.7- " 112.9
‘16 £70 ° 112.5  133.3 8:7 .
v, o " 4.38 226.9  255.1 E -
< - . 1 ' 103.6 - 123.7
2. | 135.8  -158.9 -
.({;. _ 5 - | .'?géa.ai 255.1 - }§
7 187.7 o13a ‘
9 232.3  261.1
h 10 C T 183.6 172.8
e, ' 0 | 5.91 1936 . 216.1
. - . 90.2 106.4 |
2 ‘ ©'119.3  ©138.1
5 192,10 2161
~ 7. . ' 168.8 189.7 :
9 174.8 195.1 v
10 105.0  117.1 .
Ve, \ 0. s.ai S 172.2 191.1 B
| 1 84.2 - 98.2 E
2 111.5 127.7- :
) 3 114.5 ‘}33;8
s v 13600 1580 © 1
| 5 172.2 a1
6 {' 1201 135.3 !
7 | 160.3°. ‘17&.4"/ |
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TABLE 5.2 - continued o o 109

8 157.2 173.8
9 140.9 156.4

10 78.9 87.3

1 6.89 " 85.8 98.5

12 7.02 °  87.3 99.3

13 7.07 1 98.4 110.8

14 | 4.95 44.7 57.9

15 5.15 - 32.3 42.6

16 6.20  33.4 42.3

Ve : o . 7.94 178.5 196.2 . ?
1 .64.9 76.5 # :
2 190.3 104.1 .
5 170.7 - 196.2 '
7 132.3 147.3 . i
| 9 Cims w42, ?
10 ' 72.4 78.8 ;
; g
" 3
]
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TABLE 5.3 <Cross section for threshold s-wave pion production
for Reid soft-core and ‘its phase~equivalent
: g . - -
potentials. The notation is the same. as in __— S
Table 5.2.° " ' ‘
?' .‘.'
%
-&td - *
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e 5.3
Pc;Fé_fittial in the C . = ,
Tr+d"c‘hannei | , Elnltar? P N 9. op/n oi/n :
3 3p - Transfor- . b g R fsn
TR = aen T R
" RsC G R f
N 0 ©6.47 .280 152.6 162.0
e 1 .280 142.6 151.7
2 .280 172.9 182.7 - | !
3 .279 T6l.1 170.2 o
L -4 - .280 179.4° 187.3
. .279  167.9 -162.1 1_ | ;
S 6 i ; .279 195.5 206,8 . “" ©
o 7 277 239.9 éSz:sL S
R 8 .278 .162.6 173.5 |
: 9 .281.-1§7.2° 156.2

10 . S 212 7135 76.2
o T a1 649 2717 17222 182.5
R £ 3 . 6.49 278 166.6 176.7

13. 6.8 .278 159.2 169.0°

14 5.37 .279 84.2. 93.2
3 15 - 4.90 .276 60.2 67.2°
16 - 5.21 .276 50.6  56.1
. ; :
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cz/ci ~ 12. The asymptotlc part of the deuteron wave
- function becomes important~ through Iliand 12 To understand
the nature, of. the contribution of these integrals we f'

replaced u(r) and w{r) by Hulthen wave functions. This, in

fact, turns-out to be a very good approximation for_l and

1 :
I2' We used the fourier expansion J gll(klji(kr)kzok_for

l/r.' Thesoperators (d/dr + 2/r) and (d/dr - 1/r)
operating on jl(kr) vield kjo(kr) and (-k;z(kr)) respectlvely.
One 1mméé§3tely expects from this that I1 and 12 (and
51m11ar1y 13 and 14) would come out preferably with opposite ‘
signs. Moreover, the 1ntegralsll dr r (u/r)Jo(kr) and » {
J dr r {w/r);z(kr) whmch determine the relatlve magnltudes

of I, and‘I2 can be ea511y worked out analytioally in the

HuIthen approximation, and this reveals the curious fact that

Dyn

the contribution from w(r) is so enhanced- that I1 i I2 for
D N~ 6%. We note that such enhancement 15‘suppressed in I,
by the damping factor F(r). We list the values of I1 I¢:

for the untransformed potentials vl. V4. V and Rsc in the‘ |
1 xta channel and both RSC and Tabakin in the p—p channel in - - f

g Table 5.4. Thls table confxrms our. observations about the

structure of the integrals glven in V—l 9. The largest . | v
contrxbution to the cross section comes_from Is and off-shell
variatione affect it considerably. At the same time, it is . -
'pointed out that extremely short range transformations, .g.,_

-transformation 5 of Table 5.1, diﬁifrt wd(r) only for very

A,
b

B
-
cy

small r (r <<:u l) andahence do not alter the cross sﬁbtion '
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TABLE
Potential in I?oi:ential in
" the 77d channel the p-p channel I,
3, _3, i 30 -
("8,="Dy). Cryy
A ' - Tabakin ~.1043
(P = 2.69%) .. RSC  ~-.1008
v, .- Tabakin  -.0809
(py = 5.918) . RSC -.0799
v B Tabakin -,0785
'((p[‘)' = 7.948%) h RSC - =.0772
RSC | Tabakin ‘-.0665
(Py = 6.478) RsC . -.0695 .
¥

».

5.4

,0157
.0146

.0134

0123

.0134

L0124,

- ,0111
- .0103°

~.0008
~.0007
%

- -.0012
-,0010
-.0011

-.0014

-.00121

-.1613
b 1502
~.1504
-.1378
-.1472
~.1361

=417
-.1294

#

~.0161
-.0148

"'.qo 03 51

-.0321

~.0846

-.0407

-.0373

1

-.0339 -
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significantly. If P, .is increased the cross section is found
to reduce, since the change in (il + 12) tends to cancel the
~ . ; »
change in (Is +'Is)f u
Are we in a position to determine PD7and,,therefore, e
.’ : v. . - _ ~ -
the strength of the tensor component of the N-N -interaction,

62), from the threshold S

as conjectured by Thomas and Afnan

s-wave pion productzon? The answer can hardly be afflrnatlve, '_ .
- at ieast, in the eongexs_of one,or‘two term separable poten-
tials of simple_anelytical ﬁorm. It might be poSsible that
éhis3reaetion enables bpe torffg Py and,\therefore,\the'. ) i?
‘streng;h of the tensor fo;ce'in‘the'context of a loc£1 |
interaetien, euch as Rsc; which reproduces deuteron form
factor data in additiop_tgftherteo bodytzeta.. we‘npte that .
thevariatien in the cross secé&oh is severely constrained

(to about 10%) in the case Brpotentials, phase equivalent

[1ig

to a 1cca1 potential (RSC) , which reproduce the deuteron
forn factor w1th1n experimental .error.- Similar constr ints
on the varlation of the binding energy of the triton have ) .

been observed recently by Haftel 49). However, we note that

,:
L

the value of the threshold cross section (¢ = 170 2. uh) we -
get using RSC in both PP and n*d channels and the more |

_ Tetent values of the parameters fz. 11 and Ay (Samaranayake '
and wOolcock\_g)) fgll considerably short of the experimﬁntal o
.result {c = 240 # 20 ub) of Rose 91}.‘ The experimental - 3&

result of Rose itself is in considerable disagreement with

£
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-

92)‘w'ho‘fc:mnd

earlier work by Crawford and Stevenson
- = 138 * 15 ﬁb. Moreover the'contfibution to the cross
.section froﬁtﬁerms of higher—qrder in.pipn-nucleoh
inleraction remains to‘be;éstimateé. We have seen that thé
contribution. of the segond-order terms (sum of the integfals
I, --;6) dominates over the 6ontribution of the first-order
,Eermsxlﬁﬁélsum of.Il and,I;):. ?his sugges;s.;pgt the_higherf
order effects may be ihportant;‘ Until the theoretical and
'experimeq;ai situation bécpmes,clearer, we feel that, the

. . ;
. Y

cross section for s-wave pion production near the threshold

‘ . . )

in ptp » nt+d cah\at best<bn1y‘support other more concluéive‘
souréés, e.g., 7~d elastic scattering data (Michael and |

( Wilkin 93)),-1n determlning the D-state probability of the'

' deuteron and hence the relatlve strength of the tensor to

T

the central component of the nucleon-nucleon interaction..

\
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CHAPTER VI
© ' CONCLUSIONS

x

In thxs chapter we summarlze our main conclu31ons of
thls study. ' o o 1/} -

We have generalised the Jost~Pais theorem for
eohIOCal central and noheentral'potentials. We -have showe.
that, unlike the local eese, the—Jost function for the
nonlocal potential is given by the ratio ef“the Fredholm

" determinants of the kernel of the Lippmann-Schwinger

equatioh;for the scettering solution to thatfbiﬂghe regqular . -

e

solytion.‘ -

Adaptlng the formalism of Fuda, we have developed a

method of constructzng partly nonlocal phase equlvalent '
| petentxalg.;.These potent;als have a local ;teractlve part
éuperimposed with a repulsive rank-one separable poteetial.
The attractmve part has a comparatxvely larger range than
.the repulsxve part. Although we constructed such potentials
only in. the S-state, the method can be used in any uncoupled
chanqel, ' Rank-two aeparable phase equivalent potentials can
so be genereéed u31ng the sawe method. ‘
The study of the partly nonlocal potentials along

with rank-two separahle potentials reveals the meortance bf

the role of the two-body bonnd state wave function in. nuclear

BRI * 4

T
-
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-

matter results.” The separable potentials, fcr this study,
have been constructed such that their attractlve part is
1ndependent1y phase equlvalent to the attractive part of the

partly nonlocal potentlals. The speclal case when the

_v-|

~

repulsive form. factor of the potential is orthogcnal;tc the-f
two-body bound state wave fucctien is rererred to as the
‘llmltlng potent1al whlch is unlque for a given attractlve
x potentlal, For’ such a sxtuatlon we have found a large drop

'ic nuclear matter binding energy for the separable case.

No such drestic drop has'been observedric the ccrresponding

. situetioh‘of the bartly noniccalapotentiais. This is

| attribpted to'the'high momectuﬁ'compdnents~of the bound State -
wave function of the attractive separable potentlal, Wthh is
very dszerent from that generated by the . local Bargmann
potentlal.” These potentials have beea constructed and
studied for the S-state only, because its contrlbution to
nuclear matter bindlng energy is the largest‘ :

Different phase equlvalent potentials have been

Vgenerated ‘by usxng short range unitary transformatzons on
the two-body Hamilt ‘with a Reid soft-core or separable

' petential.f These tentrals heve-autenscr component and
generate different deuteron wave functions. The deuteron
wave functions generated by different phase equivalent N
potentials have been csed in the study of the threshold cross ‘ f
‘section for the reaction p+p.*-ﬂ++d;, It has b¢¢?_3h°wnlthaf :

the cross section is sensitive to the form of the entire

-




>

deuteron wave function as well as the D-state probability af

. . . - 5 {
the deuteron. Thus it would not be reasonable to0 expect
that thisﬁreaction would enable us ﬁo fix the D-state .

probability, which is only an integrated effect over the

‘square of the-D-state‘deuteEOn wave function. It has been
shown that the variation in the cross section is redﬁcéd when

the phase equivalent potentials are constrained to reproduce . -

»

gocd deuteron form factors.

| The resulté of nuclear matter and the threshold cross.
‘ - € , " )

. _ . o A

section for ptp +_n++d strongly indicate ‘that for a meaning-

ful comparison of the .off-shell effects in many-body
problems, the phasé equivalent potentials should be
constrained to gonerate déuterdn wave functions which can fit

the available experimental data on the form facto:.

@

=~
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\_——_. APPENDIX A

Generalizaﬁons of the stt-P:;is Theox?gm for Noalocal Potentials!

YOGESHWAR SINGH? AND C. S WARKE®
Physics Department, MeMazxter Unicersity, Hamiiton, Ontario

-

Received Deécember 4, 1970

We derive general expressions for ke Jost function of a nonlocal central potential in any angular
raometijum stzle, and pencralize these resuits when there is a tensor component o the nenlocal potential,
These resuits relate the Jost function to the Fredholm determinants and are pencralizations of the  «

Jost-Pais theorem for the corresponding local case.

<

- Nous déduisons des expressions générales pour la {onction de Jost d’un potenticl contml not local dans
n'importe quel élat de moment cinclique, ¢t péndralisons ¢S résullals au Cas ou unc composante ten-
sorigile est presente dans ke potenticl non local. Ces résuitatd relien: 1a fonction de Jost aux déterminants
de Fredholm ot constituent des générabisations du thégréme de Jost-his pour Je cas local correspondant.

 Caadiag Joarsal of Piysics, 49, 1629 (1971)

: . 1. Introdnct:ion

The thcorem thai the s-state Jost function of
ceatral local potential is equal tq the Fredholm
determinant of the integral equation of a scatter-
ingsolution (Fost and Pais 195ty has been general-
ized by Newton to higher partial waves (Newion

T1061). It is ko Ynown (Newton 1966) that the
“determinant of the Jost matrix, fof the local
noncentral potential, isequal to the Fredholm
determinaat of theset of the integral equations of
the scatiering solution. Recently, it has been
shown (Warke and Bhaduri 1971) that the s-state
- Jost function for a nonlocal potential is equal 1o
the ratio of the Fredholm determinants of the
integral- equations of the scattering solution to
that of the inlegral equation ol the rcgular
solution. In the first section of this paper we
. generalize this fesult to the nonzero angular
momenta. The derivation of a similar relation
between the determinant of a Jobt matrix of a
noncentrat, nonlocal potential and the Fredholm

equations is given in the second section. This
change in the relation of the Jost function fi(k}
to the Fredholm determinant, in going from locad
to the nonlocal potential, gives rise to additionzl
zeros of f(k) on, the positive imaginary k axis.
These poles da not correspond to bound statzs.
These redundant zeros of f{k) could casily bz
removed with the change of asymptotic boundary
condition for the Jost solution of & nonlezel
potential. This would trivially modify the relation

%y of the spectral function to the new Jost Tuncti:?::.

2. Jost Frnetion of Higher Angular Moments
- with a Central Nonlocal Potential .

In this section we assume a central, nonlocal
interaction between two scattering particles. In.
‘order to clanify the notations and the approach
ol the derivation of the Jost function, we willtreat
this section in more detail, The usual expansion
of the wave function in partial waves gives the

determinants of the corrcsgonding integral  radial Schrodinger equation
2 , r D - . - ! *
0 - =S D e vtve = kv

where the nonlocal two-body interactionyl' in the diagonal Isj channel is related to Fas follows:

v S L Fwaueyr =gy

Hereyisthestrengthof the potémial and pis t!ze reduced mass. Tﬁréughoul this paper we will suppress
the k dependence of the funstions in order t6 simplify the notation. The corresponding Lippmann-

'Work supported the National Rescarch Councit of Canada
10n kave ef'hb‘sﬂtgt from Rouotkee University, Ro2ahes, India.
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*On feave of absence from the Tata Instituic of Fyndamental Rewarch, Bombay, Indis. -
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Schwinger equation of the outgoing scattering solution is

B3} L Y =Y+ vrIG YD
where : ) TNt = ufkr)

and . . /,l |

T GG = = T Rl gw, )

The functions uf(z), rfz), and” w, {z) are defined in terms of sphcncal Bessel fmmons Jfz) and
Neuman functions n,(z)

5] uf2) = Zjz), ofz) = fz), w,(z) = —[vg( ) + D] W) = e =)

Similarly the 1ntc~ra] cquano'; of the regular sofution is .

16) <rign = (ri¢:°> + 1(r;G,V¢,)
where S :
Cr}dD = (21 + l)!!k"”"u,{kr)

(7] - LGl = [udkrYodkr) — ulkryodkr )Nk for r<r

’ . = ( otherwise
And it obeys the boundary condition . a
8] : lim r O+ rigy = 1 - ’
Finally the josi_ solutions are givea by
) I . Crlfity = <rm.41 + G
In [9), G, is the transpose of G, defined in [7), and > : .
(10] L Gl =e “‘"w ’(kr)
The boundary conditions for {rlf;*) are - 7
(1] hm ¥ “’(ﬂf:*) -1
In terms of these solut:ons the Jost funcuom are dcﬁned as foliows
(12)  pwe ———5,1 lim Prif) }
From [L] and [} 1]one can prove in gtnml that the Wronskian = | E
(13} : WI('U': % i e = W{(rlfn‘). {rifi dbag = =25 }
Using {6}, 9], and [l3]oncobtams -
00 ey = G DT "'”f.-(eru.*) = MAYEAS)
and | _;
[1s} , j;’(k) -l =1+ Tl'e‘“'<v.‘ 'IVM'.)f(ﬂ + ')" ‘
From [6), [9}, aad [15] it can‘further be shown that o
ne - drf"“‘) - k‘c""’”(f.‘mm)l(ﬂ + N1

4 L

-
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- 7 FINGH AXD WAXXE: GENERALIZATIONS OF THE JOST-PAIS THEQREM ._120
Following an approach sa:m!a.r to that used in Warke and thdx.ﬁ (1971) we defina s functién
) ‘ (AFED = = (riF, Py~ (gl
Whmthcmmmng(im sfuncnonsmgxmby
18] g = Gl +7G,* ms = G; + 19.'VG*

gl - Gl + YGJW‘ = G| + ﬂ'VG;
Itan bcdmved from {4], [7] and {18] that

&  +1
(S 20 i + 1ivRi =0
5] :
| (e B k’)(ﬂﬂk’)n(dﬁnr') 0.

20d that F; obeys the bo&.ndary condmons

\ o <'lF.lr'> =0, —-r(rlF,lr’) -+ 1) 1) .
: [20] . l Py -9' w ?‘) .

("if" :!r’)l = ¢®’x (afunction of I k, and r)

rfeo

“

The solution F, of [l9] that satisfies the bouadary eondmons [20]is
k' -hlil

(3} I . (’"" ) - W ("i¢:)<r' Lt

. Using [2! ]and the propctty that CUfDis thccomplex conjugate of {rlf;*), eq. [16] further reduces to

Sm tog £, (k)-—-f"rrrmr o S

In the derivation of [22] we also used the fact that f;* (k) — 1 asy — O.lmnowstmgmfomrd to
prove from [17], (18], and [22)that -

{23} ' L RE) - exp [Trlog (1 — YG;""V)Uup [Triog(1 ~ 1G]

= Det(l - vG,* V)[Dct (I — YG¥)
In the case of a local potcnual the determinant in the denominator of [23] becomes

[24] ’ : Det(l — yG,¥) = 1

Thus the fi* (k) in {23] n:duccs 1o the Fredholm determinant of the integral equ:mon for t!u: scattering
. solution. In the case of a nonlocal potential the denominator in [23) introduces redundant zeros of
- . Ji* (k) which do not cérrespond to bound states. This k-dependent constant !'actor can be rtmovcd by .

modxfymg the asymptotic boundary condition as follows: R

22 _ hm(ru.*)-e“'roetu 16,

It czn 2iso be shown that tbe spcctml function ccmSpondmg to a nonlocal pozmual has the same
relation to its- Jost function as that in the case of a locz! potential. Thus any multiplicative factor, 25 in
[25), would introduce a trivial modsﬁcanon in this relation. Fora spemal nse ofa scpamb‘.c potential,

eq- [23] reduces to
(26} | _f;(&) =@ -y TG M 4’>ﬂ'r G .

I et A o v rr— e T e g ek

o
-~ e gt

o
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3. Determinzat of the Jost Matrix for a Nonlocsl, Noacentral Potential

In this section we assume that besides the central and spin—orbit forces there is also a noncentral ~
tensor foree component present in the nonlocal interaction {r|Ujr"). This interaction conserves total '
spin 5 and the total angular momentum j, but not the relative angular momentum /. The partial wave. -
analysis now yields a set of coupled integral equations ana!ogous to egs. [3], [6}, and [9]

[27] _ ’ (’N’f) ("N’;o> + ¥¢riG,? V‘%")
28] iy = <r18.°) + Y(riG Yo, |
I TCE = Y G T

Because the angular momentum componcm l = lis coupled by ¥ te thel; = / + 2 component, the

solutions of [27] to [29] now will be two component vectors. Theré would be two such mdcpcndcnt

solutions of cach equation depending on the incident wave component (y == 0 solutions) present in

either the J; or /; channel. Itis convenient to carry both these solutions togetherin a matrix form where
* the two columns of this matrix are the two vector solutions of the imcgral equation. Thus all the

symbols used in [27]t6 [29]are 2 x 2 matrices in the /space. [n this section the Green’s functions and

the interaction will be considered - s matrices in the r as well as in the / space together. For the sake
\;)f completeness we quote the del. * tions of various quantmcs used in [27] to [29]:

% 3’:?'(15.-:10('- WY -<r.,m%> : S RS

where Y, (P, ) dcnolcs the usuzl normalized wave function with spmsand orbital angular momentum C
Icoupled 10 toial anpular momentum j. Because of the rotational invariance of the interaction, Vwill ' ’
nat depend on the projection of j on the 2 axis. Therefore its dependence is not indicated explicitly in )
{30). On the left-hand side (LHS) of [30] the angular integrations and the spin summations are
carried out. The y = O functions in [27] to [29] are .

B > = (('m"ﬂ> ) '. T

where {r|x,°) can be Ly, (1ot rl f, .9, which are defined in the previous section. Similarly, - _
the unperturbed Green's functions arc alto defined in terms of their earlier definitions. ‘ She O

| | _{ciG Iy o '
(3] <iciry = ( ¢ o) . \ o
Lastly the boundary conditions on the various matrix ;-olutioxis are - " / ' :
33 - - 'u?;'(r'm,) - r?? ) | ) i B
B4 @ “m. ('Uf) "' 1et® ‘ : ] |

We will assume here that'the O‘Ef-dngoml elements of ¥ in the matrix eqs [27]to [29] arising in the .
matrix product are not davcrgcnl atr = 0. This condition on the potential can be svoided by modifying X
the inhomogeneous term in these equations (Newton 1966). In {33} and {34} Lisa diagonal 2 x 2
nnlnx with c!cmcnts 1, and I; and 1 is & unit matrix. The Wronskian malm is defined a3 .

9} WLAre()] = T@(0) = Tr() <\

The bﬁrnltheiOp‘(;famntrixfdeno : mumposemthe2 x 2 lspace.
* From the matrix differgntial equa of {rlf;* ) and <rlf; )nmncwlyhcp«mdw

36} : mw, > <.|,-> — WKrU}’). <olfy >1,..- —2%

N T
a

-
ey .y - ¢ A
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m AND wm cmmm OF THE JOST-PATS THEOREM

The right-hand side (RHS) of [36}is a2 x 2 unit matrix. Proceeding in exactly the same way aswe did
in deriving [14] to [16], one obtains the corresponding matnx cquanons from [28], [29], and’ [36].

[37] <r|¢,> - m KSR = <if ™ )_f,*(k)] c"”zk"‘l(ZL + nn

. The Jost matrices f,*(k) are given by -

B8l . SR =U I =14y f e XAV drr‘-mk‘;(zz. + D
S Dxﬂ'mnﬂamg [38] with respect to ¥ and using [28] and.[29], we get the followmg relation
B9l f,*(k) f drdrif;™> Y (riVé,y dre” "HANRL + Hl

{f'l‘hc matrix gcnérahmtzon of [17] is straightforward. The irteracting Green's matrim are

\ ol AT ARSI AL AR AR 19, VG,*
o . 9=Gy4AGS, = G+ 1I,VG;

and the F matrix we take as ) o
[#1] . (AR = 9,7 = <r|9,tr'> S

From this definition and [40] one obtains

- (e s 5’%—" 5 (ﬂFIr'>+'f(ﬂVFlr’> =0
421

(;I

L+n

( dr? + — K AR + y(rfFPIrY =0

With our assumptlon of the behavior of {r| Vlr') forr,r' = 0, itisnot dsﬁicu!t o ﬁnd outthe boundary
conditions of F f romn {40] and [41]. 7 .

{HF17 Yo = ‘ha(riﬂr’)h-r ~o = — (& + DL+ 1) -

(HFIP lw o = €' x (2 matrix funct:on of I, k, and r)

The solution of the coupled differcntial egs. [42] whnch sat:sfy the matrix boundary condmons [43] is -
-

M3

: - + -1 "‘""#
. " Multiplying [39] on both sides withig mstri [f’(k)]‘ and taking the trace over the Ispacc one .

" obtains } -

145} o a—;!og [Dct f,*(k)] w ~Tr FV

The trace in [45] is now over the 7 as well as over the ! space. In deriving [45] we used thc mvamnce
ofal trace with respect fo. the cyclic p:rmumuons ora mtnx product along with [44} wuh the p:openy
that

[461 " A. (r!f,')* = (rlf,. )_

From [40]and [45] it can now be shown that o o
47y - < mh#(k) Dct (l _..-,{;‘ V)IDC"(I TGJV) . ) , _
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The determinant on the LHS isoverthe 2 x 21
space while that on the RHS is over both the »

and I space. Equation [47] proves the desired
result that the determinant of a Jost matrix is
equal to the ratio of the Fredholm determinants

of the coupled integral equations of {r[\r,*) and

{ri¢y respectively.
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 APPENDIX B

In order to calculate <k|VA|k‘> given by III 2:15,

we have to evaluate ni{k) by III-2.18 as well as the matrlx.
elements of the Bargmann potent1a1 <k|V1[k‘> numerlcally. l 5
The calculatlon of n(k) involves the evaluatlon of ¢ (k) |
and ¢é(k) which are deflned 1n~the coqrdlnata space_by, : - 0

III—ﬁull and III-2.14. Forfexample,

A

o -ar -2br . - '
¢g (k) = E—- (Zaﬁ)l/2 l ar & (1 Ezbr L sin kr :
- - . L + . . o
- 2 a2 —E =+ B xay Bl
n S (k +a Yy : ’ ) . ' i
w;e—ar Sk ‘ . o I
with I(k) = Im I . —r - dr, where & = 2b. Making the
; {1+Be ") :
transformation '
Be-ur =Y ’ B-2

we obtain

: a ik . - a _ ik %
oL 1 -S4+ = 48 RS | 1""; P .
1 = i e o ° | ey Ty %L T

o E . v 3
. - o R .
[

Note that 8 > 1; hence the above integral can be decomposed

into two parts: from 0 £y S 1 and frqm 1Sy S8. The
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rlntegrand in the two parts can be expanded in power series.

K+

- of ¥y and y‘l and 1ntegrated ternm by term The flnal result,

although cdmplidated,_can'be evaluated véry fast in the
computer: - ' : N i .

ko . o(1-a/a@) ,.:.k log By _ aa
I(k) = — 5,.+ B [sin )

2a 5 . 22 (u%4x2)5, -+ cos(E 109

a 2 0.3 .
2
ka 2k 2% ,.2..2 )
x -2k ¢ _ 2K (a%%ys, 1 B-3
22 @ 2 3 3 h

e

vwhere S,, 52 and S, are defiﬁgd as follows:

® - -n’ .
s, = L — (2) B . s
, n=0 (n"’“l) 9__ . 2 (n"’l) a [ -
2 L] 2
: . . (4]
s.= I O @n? . -
' 2 2
; n=0 [(n+1;3:+*E_ - 3312 PR L
- ‘d ‘a a
. « - ('._.)n N "
and\ S = z v - -
: a° a ' a

Comblning B-3.and B-1 we obtaln ¢B(k) accurately even for

very large values of “%. A sim;lar method is nsed in

evaluating ‘integrals comlng in ¢, {x)- and <k[v [x*>. and thisg:

turns out to he much. faster than using Simpson s rule




‘ o E . & L

-

directly. We do not give the detailed expressions for these,

which are obtained in a straightforwaré'manner. y

hY

W

*f
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