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The two-,body elastic scattering d<;tta and the binding 

energy 9f the deuteron do not uniquely determine the nucleon-
\ ~. 

nucleon interaction. 'Many. potentials, which fit these data, . 

'~ay give different resu~ts in many-body problems due to their , 

", different off-:energy-shell' behaviour. It is also expected 

, 

.. 
that the nucleon-nucleon interaction would be nonlocal at 

short-Je1.ative distances and local at comparatively la~ger 
.' (r ~ '2 Fm) distances. Thus it is of interest to construct· 

and study p~rtly nonlocal potentials. 
, 

'We have generalised the ~ost-Pais theorem for nonlocal 

central and noncentral potentials. A method, based on the 

~o-rmalism..pf Fuda, has been developed to construct partly 

non local central phase equivalent potentials. These poten-e '/ 
tials, cons.tructed in the S-state, have an attractive local 

part, superimposed with a, short range repulsive rank-one 

(H) 



We study ~~e behaviour of such partly 

nonlocal potentials in nuclear :::atter,wit.~- a view to exa:::ine 

if these differ signif-ical'ltly fr'6; corresponding phase 
o 

'equivalent separable potentials. 

We have also studied the dependence of the thre~hold 

cross section for the-reaction p+p -+ -:r++d on the nature of 

the deuteron ""ave function,. Phase equivalent potentials with 

- va:t:ying D-state probability of the deuteron have been gener­

ated using unita~y transformations on the two-body HaJ:1iltonian 
- , , 

which includes a local or separable potential. It has been 

shown that ~~e cross section depends sensitively not only on 

the D-state probability of the deuteron but also ~n t.~e fo=n 

of the wave function at short relative distances, and hence 

to the off-shell behaviour and the n~locality of t.~e 

interaction. 
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CHAPTER I 

INTRODUCTION 

'" The study of the two7hody nucleon-nucleon (N-N) 

"interaction-- is of central ir.Iportance for the understanding 

of nuclear propert-ies on a microscopic vie-..point. Although in a 
\ \' -

system of many nucleons· there-- may exist three- and many-body 

, forces, . the; role' of the ~lf interac1;('ipn r~":lains .predond.nant •. 
. . \ . --

Gen-erally. in nuclear Physi~s nucleon~ are con~idered ~s ... ' .. 
. \ . 

nonrelativisticCparticles interacting through the N-N 
. .' 

interacticm which is represented by a potential. Experimen­

tal . information about .the N-N interaction is obtained··from 

- nucleon-nucleon scattering experimen~s. T~s is supplemented 
c 

by the progerties of the deuter~n which is. the only bound 

state of the two nucleon system. Analy,ses of these data 

yield 
. ~ 1 2) - -Q \ . 

phase~shifts ' for the different part:i:al waves 

,'contributing to th~ N-N scattering. These scattering 

experiments apd deuteron properties strongly indicate that 

the 
~ 

N-N interactio.n has the followin9 broad features., 

1. The N-N interaction is ()f short range ('\,2_.5 Fmt and is 

charge independent • 
. 

2. It is spin dependent ~ has a noncentral component. 

3. It is repulsive in natur~ at small relative distances. 

1. 

, 

" 
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,If we incorporate these features of ~~e N-N interaction in 

a poteptial we can explain the scattering·data and the 

properties of the deuteron. However, for our study, we ~de 

the simplification that the potential acts only in the 

S-state and is spin independent. Since the deuteron is a 

very loosely bound system, and the interacti~n in the IsO 

state falls just short of binding the n-p syst~~, the above 

assu.~ption is not a drastically unrealistic one." 

, We shall often use the term "low energy- for' 

energies below 10 MeV lab. In this range the low energy 
!", 

I 
parameters lik'e scattering length, effective range' and the 

shape parameter are sufficient to describe the experimental 

phase shifts. We shall use the term -high energy- to mean 

energies in the vicinity of the threshold of pion production, 

which is ~280 MeV lab. Although at higher energies the 

phase shifts are not real because of pion production, the 

experimental elastic cross sections are fitted with the 

real phase shifts to obtain a phenomenological potential. 
, -< 

In the study of, the phase equivalent potentials (defined 

later), we assume the existence of real phase shifts at all 

ebergieS a~d obtairi a real potential to 'be used in tho 

];egion where phase shIfts ar~ real. 

A nu.~erof Phenomenological potentials 3-6) have 

. been constructed'to fit the phase shift data and-to 
'. 

reproduce the properties of the deuteron. A theoretical 



• 

basis is S?ught ,for such potentials 7-13) ~y using field 

theoretical considerations in their derivations. It is 

'supposed that the long range (>2.5 f::l) part of the N-N 

interaction'is given by the' one-pion-exchange potential 

3 

(OPEP). This is confi=ed by the fact that the J?hase shifts 

for higher partial waves (L~,4) in the entire ~nergy ~a~ge 

0-300 MeV lab are very well reproduced by the one-:-pion­

exchange potential alone. 

The situation for the short range part, (r < 1 fm) 
r, , 

<.'. 

of the interaction is not so clear. To probe the short 

range part of the interaction one requires scattering data 

at higher energies, which are limited due to'the complica­

tions arising from 1) meson production and 2) the contribu­

tion due to an increasing number of partial waves taking 

part in the scattering. At high energies the validity of 
~ {., \ ' 

the potential theory is itself questionable, because the 

,'muitiparticle production and relativistic effects cannot be 

accounted for in a static potential approach. It appears 

that the short range part of the interaction mainly arises 

, due 'to" multipion exchange processes when the recoil ,of the, 

nucleons clm hardly be ignored." Under the circumstances 
',' 

the N-N interaction cannot be represented by one"radial 
I: 

variable r, i.e., the relative separation of two intera,cting - ' 

c 
nucleons. It will also depend on the ir.:mediate vicinity of 

the two interacting nucleons to account for the effects of 
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.the recoil. Thus the N-N interaction shoulo be represented 

by V(::') which depends -.on two variables. : and::'. ~J'ote 

. -"that· V (:~'). has -the dimensions of energy density ::ather 

than·that of energy. The wave function w{:) at any point 

r will now depend on its value at other neighbouring 
..... 

points r' thiough"the interaction V (rr'). The Schr5dingE;lr - ' ,,~-

equation for such an'interaction is 

I 
! 

'. \ 
V(r,r')1l>(r')dr', = 

........ - '- , I-1.1 " 
.' ' 

~ 

where_ M/2 ·is· the reduced mass of the two nucleons. ~he: .' 

kernel of this. integral equation is V(rr') which is a 

non local potential.' Since V (rr') is no longer a diagoI\jfJ; 

matrix, it is not possible to obtain a solution .analytically, in 

ge~e'ral, "for any arbitrary form of VI::,:') • However, ~if we 
<' 

impose' the condition that the pot'ential is local, i.e., . .,. / 
V{rr') = VCr) Ii (r-r')', we obtain the· familiar form of the 

. -- - - - , 

Schr5dinger equatitm from I-l.I,.which,is 

{2 2 
- '-.V lP(r) M '" _ 

.' 
+ V(r)1jI(r) - - => EW (r)_. -. I-1.2 

Thus the loca.l potential veil Ii (r~r') is a limiting form of 0 

, -
a general nonlocal potential. The other convenient 

~ .' "j • 

representati:on ~~ the nonlocal potential'is ~e separable 

potential. This form in configuration space is defined. as 

\. 
f 

.'. 

\ 
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V(r,r'} = E g. (r}g . .(r') -- .~-~-- ~ 

1-1.3 

In practice one terminates this series after two or three 

terms. The form of 9 (:!:>.' is rather arbitrary, a{ld different 

terms may have different forms. o These potentials are also 

separable in mOfentum space. Separable potentials are very 

corArenient from\the' mathematical point of view because these 

reduce I-1.I'into a set of algebraic equations which are 

easy to 'solve. However, physically such potentials are not 
" 

a good rE;!presentat,ion because the nonlocality is diffused 
0' ' 

over the whole range .. o~ the interaction. Many separable 
. IS-IS) , 

potent~als . have been constructed to reproduce the 

two-body phase shift data and the deuteron binding energy, 

but these do not reproduce other deu~eron properties like 

form factors, D-state probability etc. realistically. 

separable potentials have been constructed by Serduke 

Some I 
19} 

" -. 

which, fit the two bOdy elas~c scattering data and also have 

f~rly realistic d~uteron properties. Sepa~able potentials 

have been used 

nuclear matter 

in different many-body'calculations like 
~ \ . . -

20}, triton,2l) and finite nuclei ~t ThesQ 
... 

potent~als, because of theirsimplici~y, are a150st 

exclusively used for the study of three-body 23-24) problems 
r ~ ~~ ". 

·in nuclear physics. 

," , 

, , 
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1-2 

The two body scattering data (even if known at all 

energies) are, in general, not sufficient to deteroine a 
. ~ A 

unigue potehUal. However, if certain restrictions are 

imposed on the potential, i.e., it is local and does not 

support any bound state, a unique potential for each partial --wave can beobtai~ed.This procedure of obtaining the . .p:::'::'./ ' 

potential sta~ing, from the phase shifts is called the 

inverse problem in scattering. For local potentials one can 

use ~,e method Qf Gelfand and Levitan 2S~ or of MaFchanko 26). 

In "the presence of a'~J:>ound state, a far.iily ,of potentials can 
, 

be generated rep~oducing the given phase shifts and the , . 
, 

bound state energy. The inverse scattering problem is also 

st~died for separable 27-2'9) and Yukawa type ~o) potentials . 
. ~. 

When, as in the. realistic situation, the phase sh~t changes 

sign at high energy, the inverse scattering problem cannot 

be solved in ,general for a one-term separable potential. At 
• ·least. two ~erms' are J?equired to incorporate the sign change 

for'the phase shifttl. Since the~hase shifts at high energies 

*Tabakin 16) has constructed a one-term separable poter.tfa~ 

fitting the experimental phase shifts. This potential' has 
, 1 

a positive .energy bound state in SO' 

6 

\ 
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"­are not known experinentally, many potentials with different 

high ene},gy extrapolations can be constructe? SOJ:\e 
. 

~eparabre potentials with very different high energy phase 
,~ .. ~-- .-:,: '31) . . . 

shifts have been studied-by us in nuclear matter. We 

observe that the nuclear matter~oinding energy is sensitive 

to the changes in-the high en.ergy phase shifts provided the 
\ • r " 

;orm -facto:x:: of'the set:Jable potential is ,of very short range. 
-r 

Fiedeldey 32) has done a s:imila~ study fo~ triton and found 

that the binding energy of the triton is also sensitive to 

the high energy phase shifts. 

In two-body elastic scattering, the two-particle 

energy is conserved, therefore, such data can only provide 

the tm'::energy-shell (on-shell) transition-matrix (T-matrixj 
~ . ., . 

eleJ:Ientsdefined as 

.. . . 

- -

<ptTCW) Ik> = '<plvlk>-+ < IV 1 vi ,+> 
- -. - - ~ w-HO+iE ~~ 

, 1-2.1 

./' 
U;;ing t;.he partial l({ave expansion. 

. . . 
(discussed in Chapter II) the on-shell T-matrix element for 

- '-

'the R. th partial wave can b~_ directly related to the di Her-
. it> 

1,;\ 

ential cross sectian ana obtained from the ex~eri~ntal data. 
., . '- . 

However, in a many-body systeJ:I, the scattering of two 

particles does :not conserve energy, because ~er particles.­

can share somf0.()f theen~gy. _ Thus pne requires the 

knowledge' of: the off-energy-shell (off-shell) T-matrix 
. 2 2 

elements, de tined by I pi- ;l I k I #1 wi, for such a ~tudy. - . - - :. 
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These can be d.etermined uniquely only' if some form of the 

two-nucleon potential is assumed. This is equivalent to 

assuming,some'specific extension of .the on-shell el~~ents'of 

the T-matrix to the off-shell region.· There can be infinitely 

many_such potentials as poin~ed out by Ekstein 33), all of 

them would be phase equivalent, i.e., generating the same 
'"' ~"'-"l--

phase shifts at all energies but having different off-:-shell 

behaviour. All such ~tentials'are called phase ~hift 

equivalent' (phase equivalent) p<?tentials. This arbitrariness 

_ of _the~off-shell, behaviour automatically introdubes""'some 
, 

- mOdel depenqence in the many-bod.y calculations. In 
., \' 
principle, ~uch a model dependence can be. removed if we 

. had complete knowledge of the 'off-shell behaviour. 
( 

Experiments like eles:tron-:-deuteron scatterin,g" neutron­

deuter~n s~attering.'~€on.:.proton or neutron'-proton 
/ 

bremsstrahlung (ppy, and npy) etc. which depend on the off­
\ 

shell behaviour can' provide such information: Some 6f these 
• 

experiments are difficult to perfoi'm and equally.difficult . . . 

to interpret. The cr9ss section is dominated by elastic 

processes. Proton-proton bremsstrahlung (ppy) experiment's 
~ 

are compa~atively easy to interpret because the final state 
. '. .'. :-

of this .reaction consistl? of only two strongly interacting 

particles and. a: photon' which i'nteracts ,onty through the 
., .~ 

, electromagnetic inte#a.ction. Typical p-p bremsstrahlung 

cross sect,ion is smaller by a' f~t~r of 104 . than that of 

p-p elastic scattering. 
, } 

Therefore, a good statistical 

• 

o 



, ,accuracy for such experiments is hard to achieve.' Experim~ntal 

data 34-36} for incident protons of (10 - 150 MeV lab) are 
, 

available and a n~~er of calculation~ with different 

potential models 37-39} have been done to estimate the,off-

shell effects., The present f~eling is that these 'experiments 

at these limited energies are not 
• • reliable indicators of 

the, off-shell effects. For these experiment? to be useful 

in discriminating ~t"ieen various potential,models, they 

should be performed at high enough energies such that thF far-

off-shell region 'is, explored. Other experiments like neutron--
, A 

deuter~n scattering'at'high en~rgies are more difficult to 

interpret"because the final state contains more than two 
. / 

strongly" intcr.:lcting p;;,.rticles. Apart from these experimental 
,( 

difficul ties, there is another problem'. namely the analytic 

properties of the off-shell T-matrix are not fully kn9wn~ 

Thus an. expli~it parameter~zation of the off-shell elements 
~. . 

is not possible. The other alternative is ~o study phase 
¥ ' whl.ch may give some',suitable criterion 

, 
equivalent potentials 

to restrict the off-shell behaviour. The earliest 
40-42) '.. . 

studies" 'of this problem were made with potentials 
,r 

which were not exactly phase' equivalent, .their phase. shifts 

roughly coinciding up to 300 MeV lab, and these were used to 
, . 

find out the differences in the binding e'nergy and the 'satura­

tion property of nuclear .matte%;", .o,r t? investiga'te the proper-
, 

ties of the triton: Such differences may no,t be rigourously 

' ..... 

\ 
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ascribed_ to the variations in the o!f-shell properties 

because these potentials have different on-shell elements 

at high energy. 

There are some practica"l methods to construct phase 

equivalent potentials.' . 43) , In one-~ethod used by, Fiedeldey , 
• 

, a fa::fily cif phase equ:ivalent rank-two separable potentials 
, - . 
is obtained by choosing, arbftrarily; one "of the potential. 

form factors and calculating the other using the 'given'phase 

shift data.- This is done by solving the" inverse'scattering: 

'problem. He constructs. these potentials to reproduce the 

phase.> shift and bound stat'e energy given by the Tabakin 42) . , 

potential. These potentials are then used to study the ~ 
~, 

changes in the binding energy of triton 21). Some of these , , ,. '::! 
44) - , 

potenti~s ,were studied by us to calculate nuclear matter 

-binding ~ergy. Mother method has been followed. by Coester -. . 

,e~al. 45), and'Haftel and Tabakin 46). In thisroethod'a 

~amily of phase equivalent potentials ~re generated using ; 

unitary transformations on a two-body Hamiltonian. :rhe- bfO-:'" ' , 
botly Hamiltonian may be chosen with any loc~ or'nonlocal 

potential. The rank-two separable type of unitary 

. transformations are used in these. calculations; somedej:ails 

of, these transformationS,are given 'i~ Chapter V'. .Coester et 
, , ~, , -

'al. 45) used these transformed pote~tials to calculate tho 

binding energy' in n.~cle'ir nw.tter and found that it increased , 

for those potentials which in,troduce 'less dis-tortion in ,tho - . , 

relative two-body wave function." Baftel and Tabakin,47) used ". 



these transformations on the Reid-soft-core'potential to 

generate' a set of potentials, which are' used in nuclear 

11 

matter calculations. 
.• ~- , '."of.- - ' 

They found"that the bin9-ing energy and 

saturation density of nucle~ matter change significantly fo:: 

the 1;ransformed'---P9tentials. " SO::le of these potentials 
, I 

are 

recently used to calculate the gro~~d,state energy of the 

oxygen nucl~ 48) and binding 
. . 49) 
energy of triton • A third ... 

, . 2 
method to generate a family of momentum-dependent {p - \ 
dependent) phase equiv,alent potentials 50-52) is to use the 

short ~~nge radial scale distortions on a two-body Hamilton-
,f 

ian. Such potentials have been used in nuclear matter 

proton-proton b;emsstrahlung 5~) and deuteron photon 

53,45) 

-
~isint~gration'55) • 

. 56) . , 
Srivastava . has studied the off-sh~ll ~ 

• 2 
. behaviour of some p -dependentpo,tent~als in comparison with 

" 

local a'nd separable' phase" equivalent po~entials. He also 

cons truc ted 57) s'·om. e . 1 - . 1"" .. ' local potent~a s pha~e equ~va-",~nt to 

separable po~entials of Tabakin 15) and of Mongan 17) using 

the Marchanko metpOd~ ~ 

We a're interest~ in construct:'!ng such phase equivalent 
. 
potentials which are attractive and local at long' range, and 

... 
are repuls~ve'and nonlocal at short range. This form of 

) 

the potentials is predicted from meson theoretical conside~a-
. 

tiOI~ • We call s'uch potentials partly nonlocal. The method 

,by us' is b'ased on the formalism of Fuda 58)" and is very 

In the next section we describe 

that is followed in 'this thesis. 

, 
. \ 



1-3 
\ 
'\ 

, . 

We have studied, nuclear matter and the threshold 

cross section of the reaction p+p ~ ~+ + d with phase 

equivalent potentials, to determine the changes produced due 

to the different off-shell behaviour. We also investigat"l, 

the variations in the results of nuclear ~atter when partly 
\ 

,nonlocal potent:'ials are replaced by separable rank-t\~o 
, ..' , 

phase equivalent potentials. Since we use a method to , 

cons'truct the phase equivalent, potentials which requires 

information about Jost/functions for nonlocal potent~als, 

we have given some simple proPerties of the Jost function for 

the loc.al potentials in Chapter II. Unlike the local situa-, 
tion, the Jost function for a nonlocal potential i's not 

equivalent to the Fredholm determinant of the kernel of the 

'Lipp~ann-Schwinger equati9n~ The expression for ,~he S-state 

Jost function for a,nonlocal central pot~ntial was de~ived by 

,Harke and Bhaduri 59), we have generalised 1;his result for 

higher partial waves in Chapter II. Furthermore, in Appendix 

A, we derive the expressions for'Jost functions for nonlocal, 
'" ' 

rioncentral potentials'as well. The basic~athemati~al 
• 

framework for the two-body scattering problem is also 

developed briefly in Chapter II. 

12 

~. I 



, . 
I 

13 

Our method of generating phase equivalent potentials 

is given in Chapter III. This chapter also includes the 
-~ 

construction of separable rank-two phase equivalent potentials 

using our method, and a discus~ion of some features of these 

-potentials. We have not used a realistic form of the local 

potential beca:use in that case analytical so_lutions i'\re not 

possible, instead we have chosen a Rarcinann60) Potential as the ; 

local 'par:~. This potential has analytical solutions for _ the 

scattering and bound state problel:l. The short range repulsive 

part is always taken to be a rank-one separable potential. 

The partly nonlocal- and_, rank-two separable potentials are 

used in nuclear matter t~ calculate the binding e~ergy and_ the 

saturation density. The wound integrals for all these 

potentials are also calculated. The details of this 

calcula tion and the .resul ts'- are reported in' Chapter IV. These 
_ L 

calculations' are confined only to the S-state. because the 

S-state contributes most to ,the binding energy of nuclear' 

matter 61). 

In Chapter V we studied the effect of, the off-shell 

benaviour:inthe production cross section of the reaction 

p+p+ +' -
~ + d,near threshold. ,It was suggested by Thomas and 

Afnan 62) that th~ study of the cross section for the~reaction 

• p+p" n+ + d near thresh~d may give considerable info~tion 
." 

about the tensor eomponent of the "N-N interaction, and thus 

restric~the D-state prob~ility in the deuteron to a more precise 
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" value than the present one (4 ~ S%). 'We investigate - ' 
this 

problem with different phase equivalent potentials. ,Some of 

our potentials are phase equivalent to RSC and others are 

separ~ble~potentials 63} with varying D-state probability. 

This study is undertake~ith the' intention to see 'how far 

the off~shell behaviour alters the cross section and whether 

it is really possible to pin down the D~state probability 

through such a study. 

~ Finally we sUI"~rize our conclusi~ri-; in the last 
, , 

chapter. 'Two appendices are given to supplement Chapters .II',· -
and 'III. 

/' 



CHAPTER II 

JOST FUNCTIONS IN. SCATTERING THEORY 

-A 

The Jost functions are important for the study of the 
'-.. 

analytical properties of the scattering matrix (S-matrix) and 

in potential theory. 
'. 58) 0" 

Recently' these have-also been used 
• 

to generate phase-equivalent potentials. Jost 'and Pelis 64), .• I 

as w~ll as Newton 65) , have ~tudied tlte analytical properties 

of ,the Jost functions for local potentials and their relation­

ship with the S-matrix. I~ this ch\pter, we shall examine 

the Jost function f6r"a nonlocai potential ~d derive some 
/ 

new relations. ' A brief review of the mathema~cal framework 

for the scattering theory is given in. Section II-I. section 

1I-2 deals with the defiriitionof the Jost fun,ctions" their' 
, , 

analytical properties and their rel~tion with the S-matrix • 

. ~ Finally in Section. 1I-3, we derive the expressions for the 

Jost function oi<a,nonlocal central potential fQrany partial 
\ 

wave. The more general 'J,os't funcJ:;ion of a nonl?cal, .non-

central potential is given in 'Appendix A. 

, " 
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I 

I 

11-1 Mathematical Framework 

We start with the time independent SchrBdinger 

equation for two particles in the center of mass Syste::l: 

= ,21l J <rlulr'>t;I (r')dr' 
~2 - - 5 - -

; II-I.1 

where ~ and r' are the relative coordinates, u the two body 

potential, and 1l the reduced mass. The above e,quation can be 

rewritten by defining 

/ = 21l <rlulr'> 
,t,.2 - -

, II-1.2 

as 

II-1.3 

} 

,In momentum space, II-1.3 is equivalent to the expression 

= J 
• 

<plvlp'>$ (p'ldp' 
- - k - - .' II-1.4 

.. 
The transformation from r-space to momentum space i~. such 

that 
t;; 

J <rlk><klr'>dk .. 6 (r-r') • ... ~ <!;'_... .... - -
~, 

16 



It will be convenient to replace 11-1.3 by the Lippmann­

Schwinger 66) equation, which incorporates the boundary 

condition that at large distances the scattering wave 

function consists of a plane wave superimposed with the 

outgoing spherical wave. In this ~orm the outgoing 

scattering wave I¢~> is given by 

where HO is the kinetic e~rgy operator in the units o'f 

17 

1;I-L5 

21.1Al2 • The S-matrix and the transition matrix (T-matrix) 

are defined by the following equations 67) 

<~lsl~>= <w;lw~> - -~ 

11-1.6 

'with 

= <fl~> - 211i6(p2 _'k2)<~IT(k2)1~ 

;fIT(k', I~> • 'f~I';: 
., 
II-L7 

Note that the S-matrix ele'mehts <plslk> are defined"only on' '- -
• 
the energy-shell, i.e., p2 = k 2" while the definition 

11-1;7 for tho T-matrix elements holds even for cases when 
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/ ' 

" " Using II-loS in r-space, we get,· for V = 0, the wave 

functioh 

. ' ' 

II-lo 8 
~ 

ik'r we expand the plane wave e - - into its partial wave 

components as follows 

u .-
·..-ik·r '.., 

i 1.'(21+1) 
u1. (kr) 

e _ - :: 1: PR.(cosS) , 
1.=0 kr II-l.9 

~ ~ 

where S is the angle between the vectors k and r. The . , 

coefficient~ u1.(k~) are the Riccati~Bessel functions defined . .. 
in terms- of the.cylindrical Bessel functions 

" 

These 

wave,i 

'; ~ 

can 'be 

using 

~-? __ -,,J-

J ' 1 (Z) 
1~ 

• 

• 
decomposed into the outgoing 

the Riccati-Hankel functions, 

= i~id -J'IIZ H (1)1 (Z), 
2 1+-

'. , 2 

.w~on = ,W~(-Z).= e1w1. wi(Z)* 

" . 

.. -iZh (2) (Z) , 1 • 

and 

as 

68) J • (Z), as 
, R.+! 

2 

II-LIO 

the incoining 

follows: 

II-I. 11 
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/ 

. , 
The function ~(Z) is a regular solution of the differential 

equation 

-' 1{ HI) u. (Z) + u. (Z) = (l 
Z2.· oN .. 

, 

... 
while v t (Ze) is the irregular solution of It-1.12. The 

)t 
asymptoti~ behaviour of the u t (Z) and VtJ(Z) tpr large and 

'small Z is, 

For Z ~ .. '. 

~.rJ{Z) " sin (Z _ ~Tf) 

Vt{Z) " -cos(Z _ i~t) 

+ wi (Z) , 

and for Z .. 0 

• 

It is convenient to write down the radial part of the 

Schr~inger equation II-I.3 for tth partial wave usinq 

1 , 

11-1.12 

11-1.13 

II-I.14 

" 

• 
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II-1.9 and the expansion for potential ~=Ivl='>: 

1I-1.15 

/ 

Substituting II-1,.15 and 1I-1.9 into II-l.3 we obtain: , 

, 
-. 

where, ljI 1. (kr) are defined from 

CD 

i1.(21.+1) 
1/11. (kr) 

<!I*k> 
J: , .. = 

(211)3/2 E li'1.(cose) 
1. .. 0 kr 

• c 

II-l.16 

, For the spherically symmetric potential, *~ and T have the 

following partial wave expansions: 

<pITlk> .. ~ 
. - - . 21T 

CD 
+ ' 

1.
,1.(2"+1) ljI1. (kr) 

N kr p.e.(cose) 

'. . b' 

.. 
t (2Hl)~.e.(P,k;~2)pR.(cose) 

R.=O 

1I-1.17 

, II71.18 

, '2 
and the tR.(p,k:k ) are defined for a g:eneral non1oca1 potential 

as 

, ... 
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(' 2 
t1 p,k:k ) = • 

II-l.19 

The Lippmann-Schwinger equation for. the 1th partial wave can 

written as 

. , 

J~ ~1(q~)t1(q,k:k2)kqdq o k2 - q2 + ie: 
• 

+ 2 W.(kr) = u (kr) +-.. 1 err 

It is often convenient to regard the T-matrix as a 

function of the complex variable w = k 2 + ie:, and rewrite 

11-1. 7 as 

<pIT(w)lk> = <plvlk> + <plv ~ T(w)lk> 
-. - " - W-HO -

II-l.21 - - • 

As the energy is conserved in the scattering process, it is . ~ . 
, ~ 

not possible to construct the complete T-matrix from scattering 

data alone. ~owever, if the potential matrix <t>lvl~>: is knowit, 

we can calculate the complete T-matrix using ll-l.2l. Elasti,c 

scatte:dng data can provide· the information .zorthose T-matrix 

elements which satisfy energy cons~rvation. These are called ·on­

"the-energy-shell" (on-shell) T-matriJt'" elCll'.ents. Those which· 

odo not satisfy energy conservation are called ·off-the-
. , 

enerqy-shell· (off-shell) elements. The completely off-she!'l , 
elements are functions.of three variables: that is why we, 

~sed three 'parameters to define the partial wave T-ma~rix' 
. 

elements in II-l.fa •. For completeness we write down the 
) 
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T-r:iatrix in the R, th partial wave for all the three possible 
""-

cases as .follows: 
.4 

t 1 (p,k;w) ,. p 2 i k 2 ,.qwl : off-shell; ./ 

- .' . 2 
p2 k 2 /'011'" $.2 

-, 
tt (p,)c;k ) . , ;I, : half-off-shell: 

'.)" . 

- 2 
t R, (k) pc2 k 2 ;;, Iwl : on-shell. ' ro. tt(k,k;k ) - , == 11-1.22 

- ; 

The on-shell 'elementstR, (k) are related to the oR, th partial,., 

wave phase shifts 0R,(k) through'thefollowing relation 

" -

II-l.23 

~---.~ j ~.' 

II-l~2l 'may be rewritten in the partial 

expansion as 

II~~.24 

In relation II-1.24, VR,(p~k) is related to.<rlv1Ir'> as 

follows , -. 

V,,(p,k) drdr' • 

. II;:-1.25 

, , 
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In actual calculations it is convenient to use the reaction 

matrix (R-~atrix) defined for" real w with a principal value 

integration of 11-1,24: 

• • " 2, 
Vt (p,q)R

t 
(q ,k;w) q dq 

2 w-q 
£ P J'" To 

o II-I. 26 
2 • '2 

" 'The tt(p,k;k } ,can be obtained from Rt (p,k;k ) using ,tP.e 

." Hei tIer damping equa~ioris: 

'-
or conversely 

( • 2 RR, p,q,k ) 2 - tt ~p,q;k ) 
ike (k2) tt (p,k;k2) tt (q,k;k2) i 

+ 
1 +,iktR,(k,k;k2) , 

II-l.28 

,where e(x) is the step fUnction ~efinedas 

= 1(1 + x} 
2 TXT 

The above equations are the'generalisation of the on-shell 

relation between tR, (k)' and R,2. (k) 

Ri (k)',' 
t,2. (k)' = 1 + ikR,2. (k) • 11-1.29 

" 
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The relati.ons 1.1.-1.28 and II-1.23 i=ediately give ,the 
. -i • 

, th 
re~ation,of.Ri(k) to the phase shift of the i partial wave. , 

1 ' - tano(k) k , . i 

" 
.' 

../ 

',The R-matrix is rea'l' and hermitian and has no cut on the 

II-l:.30 

\ 

real energy axis from 0 to "'. ,Th~ poles of the R-matriz will 

appear only ~t the actual positions o~ the resonances on the 

w-= k 2 'plane, and not on the unphysical sheet, as is the cas~ 

with the T-matrix 69) 

, .. 

• o 



-11-2 Jost Function ,for -a Local Potential .. 

The rad~~l Schr~inger eqUation for a local ROtential 
~. ..; 

<::lvIE'> = V(::)o(E-E'} acting in the relative S-state (~= -a) 

is given by 

~~n(kr} + V(r}~(kr} = k 2 ~(kr) 

The regular solution <> (~r), is defined by the boundary 

conditions at r = 0 such that 
: 

<>(kr) '" 0 

, , for r = 0 

9' (kr) '" 1 

II-2.l 

• 

However, in the scattering problem one is interested in 'the 

solutions of the SchrMdinger ~quation for aSymptotic r, 

therefore. 
"­

conditions 

one should define the solutions with the bOundar~ 
, ' ~ - , 

at r = m. Since r '" m is an irregular si~gular 
2 ' 

'-.BSJ';>.nlO of the differential ~quation II-2.l and k mUltiplies 

the term of highest singularity at r = m, the boundary 

conditions at r = m 

define the SOlutions 
. 

boundary condition 

cannot be independent of k. We can 

f±(kr) o('II~2.l with the following 
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IiI:! , II-2.2 

and these are called tbeJost solutions" !hey are linearly 

independent, except at k = 0, and satisfy the following 

integral equation: 

±ikr 1 = e - k J
'" + , 

dr' sin k(r-r')V(r')f-(kr) 
r 1I-2.3 

, .~':.... 

Jost-and Pais have shown that f+(kr) for real r is an 

analytic function of k" with 'a continuous k derivative, in 

the region Im k > O. If the potentiai satisfies the 

condition 

J 
.. 

dr VCr) re2ar .< ... , . II-~.4 

o 

then f+{kr) iS,analytic for Im k'~ -a. If the potential is 
. ,\,' ~. 

of ,finite range, such that after some finite distance it 

vanishes identically, then f+(kr) is an entire analytic 
'i.."-.. • 

Analogous statements hold for f-(kr) •. Since function of k. 
+ ·f- (k.r) are linearly .independent solutions of 1I-2.l, these , 

may be used to cO,nstruct other solutions of 11-2.1. Let us 

define the'Wronskian W for two arbitrary functions, g and h, 
.\ 

as: 

W(q,h) II-2.5 

, 



then' 

'" f. .. (k) 

EvaluatinsJ,(k) at r = 0 frO::! II-2.6 and using 

W(f+(kr) ~f-(kr» = -2ik" we c~ write ¢(kr)' as: 

Using 11-2.6 we ~an define ~e JO,st function:. 
/ 

f+(k"O) "':t (kl- and 1._(k) = -! (kei ,..) + . 
• 

, 

The intesral representation of the 90st function can be 

obtained from 11-2.3: ' 

. , 

,f+(k). = 1 + ~ r dr sin kr V(r)f+(kr) 

o 
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II-2.6 

II-2.7 

11-2.8 

II-2.9 

The Jost function satisfies the following dispersion relation: 

Re loS 1
- 1m lOS f (k')dk' 1 . + 

f (k) = - p k'-k + 'It , 
II-2-.l0 

-co 

Writing f+(k) = If(k) le-1O (k), we have the felation: 

If(k)1 = exp[* pIe dk~~~~')] • .II-2.11 

-... 
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If we asSUr.le that ,0 (-k) = -;-Ii (k) " II-2.11 reduces to 

If (k) I exp[- £p r dk 'k' 0 (k') = k,2 _ k 2 ] , 
1T 

0 

II-2.12 

for 1m k ~ O. Equation 11-2.11 is true only 'if the 

potential VCr) does not support any bound state. If, on the 

other hand, VCr) has a finite number of bound states at 
2 energies En = ~kn' then 11-2.12 is mOdified, and is given by 

If (k) I = II (1" + • II-2.13 
n 

The relation 11-2 .13.is very useful because it gives a 

direct method of constructing the Jost function in terms of 

the phase shifts o(k) on the real k axis and the bound state 

energies. These quantities can be experimentally obtained • 

. Jost and. Pais have shown. that -the Jos~ function-, f+ (k). for 
-

the local central potential is identical to the Fredholm 

dete;minant of the kernel of the Lippmann-Schwinger equation 
. . . 

for the outgoing wave •. This is referred to as the Jost,""Pais 

theorem. Newton has extended. the definition ot Jost and . 

Pais to include the nonzero angular momenta as well as non-
~ . ... 

central, 'local potentials. For the case .l ." 0, the 
., 

Schr~inger equation 11-2.1 includes the centrifugal ·term, 

and is given by \ 



; . ' 

.:.*;, (kr) + .t (.t?) , ¢.t (kr) + v (,r) ¢.t (kr) = k21j1.t (kr) 
r " 

In the case of a noncentral force, the orbital angular 

momentum .t does not recain a conserved quantUm number. 

II-2.U 
, ' 

Such 

cases are dealt within' Appendix A along with non local '.' 

" ,forces. The regular solution of 1I-2.14 is again defined b\... 

the boundary condition at r ':' 0, which now stands as , 

~ 

, , 
clim r - (R.+l) ¢R.{kr) = 1 II-2.1S 

" 

r~ 
, 

This dependence of ¢ R. (kr) on R. is due to the' fact that r = 0 

is a regular singular point for R. # O~, The irregular 

~oluhons' f~ (kr) are still defiped by ,.the bo~dary conditions 

of 1I-2.2. The Jost solutions now ,satisfy the following 

in~gra). equation, which is a generalisation of 1:1-2.3: 
~ " 

() = f.t+(kr) - , f
a. 

dr' gR.(r,r':k2)V(i:)f~(kr') ~ 

II-2.16 r 

where 9.t(r,r':k2) is the R.th partial wave component of ' the 
o , 1) , 

Green's function for the free particl~. Functions fR.±(kr) 

( , ·k2') an!i g.t r,r, • are given ~nterms of the Riccati-Bessel 

functions of II-l.9 and 11-1. 10 as: 

11-2.17 

, ' 
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and 

r' > r 

= 0 r' < r II-2.lS 

The Jost function f H (k~' is defined in analogy 
11ft 

with II-2.S 

as 
k

i e 

- ""2 .. 

, 

. \~nd has the following integral x:epresentation: 
",~ , 

~!+ (kl = 

\ 
Note that 11-2.20 reduces to 11-2.9 for t = O. The 1 

II-2.l9 

II-2.20 

analytic properties of the .;rost function are derived through , 
the analytic propertie~ of fh'kr), and are given in Ref. 70) 

we summarize some of them here: 

(i) For each real t and k 

. ; 

(11) For each real t and comple~ k . ., 

.. 
\ 



i 

.. 
(iii) ·f 1 (k) is a meror:lorphicfunction in the lower half 

The 

It 

k-plane. 

S-matrix 

is 

S1 (k) 

" 

unitary 

S* (k) 
1 

S1 (k) is 

f 1_(k) 
= f 1+ (k) 

for real 

defined in terms of f!± (k) as: 

2iO 1 (k) 
= e • 

k and satisfies the relation: 

31 

II-2.21 

II-2.22 

The phase shifts 0R.(k) are real and are odd functions of k 

due to the unitarity of the S-matrix. Normally we define 

. S1 (k) for the re'al positive values of k. This. implies ,that 

E lies On the upper rim of the right hand cut from E = 0 to 

E = '" This reqy.ires that S1(k).should be calculated, 

using the outgoing wave Green' s function in the Lippmann~" 

'. Schwinger equation II-L 5. F.or well-behaved potentials the 

following prQperties of the S-matrixare ~portant: 

i. Poles of the S-matrix on the physical sheet, (upper half 

k-plane), which are due to the zeros of f 1.+ (k) . 

correspond to the bound states. 

.. , 
, , 

~.
" •. '. 

'" j 
i 

,1 
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/ 

ii. Poles of the S-niatrix on the upphysical sheet, (lower 

half k-plane), give rise to reson~nces provided ~ese 

poles are'close to the positive real axis. If such 

poles appear on the negative real axis, they denote the· 

virtual or: antibound states. 

, 

a 

\ 

-j:; 
.. '~ " 



11-3 Jost FUnction for a Nonlocal Central Potential 

In this section we will derive the expression for 

the Jost function for any angular momentum state due to a~ 

nonlocal central potential. OUr expressions will reduce 
./ ' 

59)' '. 
of Warke and Bhaduri for the i = 0 case. We to those 

\ 

show that the Jos~ function for a non local potential is 

equal to the ratio of the Fredholm determinants for the 

scattering solution to that of the regular solution. . The 

case of the nonlocalnoncentral potentials is given in 

Appendix A. 

We start with the radial part of the Schr8dinger 

equation 11-1.16, and introduce a strength parameter ). ,for 

convenience. Throughout this section we will suppress the 

k-dependence of the functions in orde~ to simplify the 
o 

notation., The corresponding Lippmann-Schwinger equation for 

the outgoing scatteJing solution is 

with 

= -

• 

1 -i"lTl. 
k C 

33 

II-3.l 

7 
1;1:-3.2 

II-.3.3 

. , 
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+ 
The fUnction:; uR. (Z) '. ·v.R. e,zI; wi (Z) are defined :l.n Section II-1 

. of this chapter and their prope~tiesare giv~n II-:1.10 to 

I1-1.14. Sir.ri.larly the integral equation for the regular 

solution is 
, 

<rl ¢R.> = <rl¢~>'+ A<r~GR.vl¢R.> , 
• 

with <rl¢~> = (2R.+1) 11 k-(Hl) uR. (kr) 
'\ 

= 0 

and the boundary condition 

lim 
r+O 

The .Jost solution is given by 
~ 

.\ 
, where GR. is thE! -t;ranIJpose of 

J " 
bR. I --~ + 

r' ~ r , 

GR. defined 

<rlf~±> 2 ,.je wi (kx:) • 

-' I 

, 
11-3.4 

'11-3.5 ' 

II-3.6 
• , 

II-3.7 

in 1I-3.5, with 

II-3.8 

, ' 

, 
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, .. 
The boundary condition for <rlfi> is , t 

\ 

lim • II-3.9 
r-+<» 

The Jost functions are defined in terms of the Jost solutions: 

k 1 e±id/2 
= (21-1) II 

lim. 

r+O 

Using the definition of the Wronskian (II-2~5) ,and the 
c 

U-3.l0 

relations 11-3.1 and 11-3.9, it can be, shown in general that 

= -2ik • 

The equations II-3.4, 11-3.7 and 11-3.11 lead to the 

following relation for the regular solution 

h1 
<r l ¢,.>, (21+1) 11 [e-"'"2 f:(k) <rlf+

1
> ' 

N = 2i k 2 "-

/ . 
" 

h1 

_e"'"2 f1 (k) <r! f~>1 • 

Using the reflection property of the Jost SOlutions 

, , 

, II-3.ll 

II-3.l2 

11-3.13 

" 

, . 

• 
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, 
..< 

and II-3.4, II-3.7,one can show that' , 

• II-3.14 

, Following an approach smilar to that used by Warke and 

:T>hadurJ." 59), d f" f t" F ~ we e J.ne a unc J.on 1: 

, 

where the interacting Green's functions~~ and~ ~e defined 
+ \ 

in terms of free Green's func,tions G1 and G1 : 

.,1 = G+ + AG+ v1f -' 
1 1 

G+ + A1~ '+ .. V G1 , 
-'~ 

1 
,~, ';" 

~ .. G 
- 1 + AG1 V~1 

, .. GI. + A~ V G1 • II-3.16 

The f~ction <rIFl.lr'> will satisfy the differential equations 

-. 
2 

R. ~ R.+l~ k 2) 
. ' 

Cd + <rIFR.lr'> + A<rIVFR.lr'> .. 0 • 
dr2 r2 

..: .. e' • 

) 



2 (...::.!L + i (i+1) 

dr'~ ) _ r· 2 

.with the following boun9-ary conditions 

r ... 0 , 

1.+1 
= - 2i+1 

.~ 

. ' 

, 

ikr' = e x (Function. of i, k, r) • 

The solution of 11-3.17 which satisfies the boundary 

conditions (11.-3.18) is 

37 ' 

, 

11-3.17 

11-3.18 

II-3.19 

Using the property that <rlf~> is the complex conjugate 6f 

<rlf;> and 11-3.19, it can be shown that 
.' 

0 
, 

'log f 1.+ (k) = - r Tr(FV) d)" • r II-3.20 

0 

Note that fi+(k) ... 1 as ). ... O. It is ,now straightforward to 

prove from"II-3.1S, 

I 

vi/fU(k) = 
exp[Tr 

exp(Tr 

" . 
1I-3~ and 11-3.20 that 

log (l-)'G~V)] 'Det (l-)'G~V) 
log (l-XGr.V)] = Det!l-XGr. V) -

11-3.21 

.. 

/ 
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In the deJ;:ivation_ofII-3.::~ we ~~used-the relation 

,j~.:). 
~ - \ -

Det M = exp[Tr log M] • 11-3.22 

• 

If th~ nonlocal central potential is separable, the relation 

1I-3.21-reduces to 

(l-ATr 
f 1+ (k) T= (l-XTr II-3.23 

A detailed study of the Fredholm determinants for non~Ocal 
1J -. 

potentials_have been made by Bertero et a1. 71). 
- .. 

For': 1. = 0, 11-3.21 reduces to thE;! relation given by Warke 

and Bh-aduri .59). For the lochl potentials, 
, ~ 

, . 
~rlvlr'> : V(r)~(r-r'l 

rlrt,<)l-A~{V) = exp[Tr log (l-W.t V) 1 

I 

, . 

• 

= exp[~Tr{AGiV + 

\ 

TrAG.tV = A 'fm G.t(rr)v(r)~r 
o 

. . ;}] , 
< 

II-3.2S 



, 
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, 
Similar~y it can be shown that the 'trace of the higher order 

terms is zerCi'. Tnus 

, 

. and 

, . II-3.27 

This relation is the statement,~ of Jost-Pais theorem ,for 'the , 

local potential and the relation II-3.21 is the generalised 

Jost-Pais theorem for the nonlocal potential. The 

,'denominator of II-3.21, which is k dependent, can be removed 

by modifying the boundary condition for the jost solution as 

lini <rl f~> 
r ..... 

tikr e 

• 

~ 

. The derivations given in this section ,have ilready been 
: <;. • • .. • 

II-3.28 

published by us, and there (section 3) we have gene'ralised '? 

these relations for the cas~f norllocal noncentral potentials. . " 

This paper i~'attached as Appendix A. 
i 

• 



qIAPTER III 
, 

CONSTRUCTION OFPART~Y NONLOCAL PHASE EQUIVALENT POTENTIALS 

In this chapter we describe our method of generating 

phase equivalent potentials. There are rnan~ different ways 
~, .,. 

of generating phase equivalent potentials, some of which are 

outlined briefly ,in Chapter I. The long range part of .the 

N-N interaction (~2.~ Pm) is well established. Both meson 
• 

theory and, experimental "data suggest that it., should- be given 
~ 

by the one-pion-exchange-potential." However, the fo~'of the 

short range part of the N-N interaction is uncertain. As 

discussed earlier we expect the short range part of the-

. potential to be nonlocal, but it" i!j difficult to decide on 

a specific form ,of" non locality to represent the short range 

part. Thus we have a lot of freedom to vary the short range 

part of the potential., 

The class of phase equivalent potentiais considered 
~ 

~ ~ 
by us has a long range C1cttractiv,e local part superimposed 

with a repulsive one-term separable potentfal. These are 

partly non local potentials and referred to as class A 
• potentials in the text. We also constru~t a set Qf rank-two , 

separable phase equivalent potentialS xeferred to ~s, class 

B potentials. The separable potentials are such that the 
-

, attractive part is independently phase equivalent to the 

40 



attractive local part of the class A type. These potentia,ls 

are constructed to compare the differences produced by 

introducing the separability in the interaction. 

For our class 'A potentials, we have chosen the local 

part to be given by a Bargmann po.tential rather than, the more 

realistic Yukawa form. This is done because for the 

Bargmann potential all the required expressions. can be derived 
, 

analytically. The Bargmann potential has an exponential tail 

and decays slowly in comparison with the Yukawa potential. 

Sections 2 and·3 of this chapter deal with the 

details or the method arid the numerical computations of 

these mod~l potentials. In Section 4 we discuss and compare 

some features of partly nonlocal potentials to those of 
J,' 

" r 
purely sepa.rable potentials. 

\ 



, 

III-l Phase Equiv~lent Potentials 

~ We adapt a ~ethod s~ggested by Fuda 58) to constrUct 

phase equivalent potentials. This formalism is s~lar to 

the'work of Chadan 72) "b~t is ~ore concise., We-will 

consider, for simplicity, only the relative S-state 

interaction. The'basis of orthonormal wave functions in the 
"'" 

S-state is taken, to be 

<rip> -= ~ sin pr , III-lol 

_~th ~ 

Jm <r!p><p!r'> dp ~ o(r~r') 
o ' 

In the literature, it is usual to-take a'three dimensional 

basis: 

1 ik'r 
= -( -2 n-=)=";3:-lJr:.'2 e, - - ' , III-l.2 

, ' 

and define the S-state separable potential in'coordinate 

space as 
" ../ 

\ <rIVlr'> 
412 ' 

'" M ~ g(r)g(r') , III;,.1.3 
, 2n 

> 

or in k-space as, 

. ~ 

42 

, 

v 

\ 
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<klvlj('> = t2 l g(k)g(k') 
M 2112 

, UI-L4 
, 

. ... . 

with g(k) = ~J. g(rljO(kr).r2di • 111-1.5 
I o ' 

In our basis the same potential becomeS 

<rIVlr'> 
-\}2 . 

= 11 ; rg(r)r'g(r') ., 

or . 

<klvlk'> = 1i2 
£ kg(k)k'g(k') 

M 11 ' III-L6 

Let us con~ider the S-wavephase shifts 6(k) given for all 
\ 

. k, such that 6 (k) .. 0 as k ... "'. These could be,. for, , 

example, t~ known experimental phase shifts with smooth 
, ' ... ,'-

.' 

high energy· extrapol"!-.tion or could be generated by a given" 

potential with~~t a ~ard,core. 'our problem is to generate 

a set of ph~5e equivalent potential~ of the type 

.' 
" 

v'- V + V - 1 2'· III-I. 7 

~ 

where v l is local and attractive while v2 isnonlocal and 
~ .". 

repulsive. , These must reproduce the input phases, for all 
, ,-

values of k: ,The input data nay specify a finite number of 

bound state eigenvalues ~ch, s~ould also be reproduced by 

the potential 'in IIi-l~7., We may also con,ider the case 

~here the input data do not have any boud states a~~~li:- . 

, -
, 

L 

- ' 
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This is the situation with IsO potentials, but VI may still 

have a boundcstate~ which is eliminated by adding 'a repulsive 

potential V2 • Thus a set of phase equivalent potentials for 

the IsO state are generated, such that the attractive part 

mayor may not have a bound state'." . ' 

, + 
The Fredholm determinant D (k) for the scattering 

sol~tion.can be cal~lated with the given input data from 
. 

the equation, which is similar to II':':'2.13, 
, , 

D+(k) !,,'!l (1+ 
n 

~p 
1T 

/ 

III-loS 
", 

, Note that we have used the Fredholm determinant D+(k) rather 

: than the Jost fUnction f+(k) because for the non local 

potential the two are not the'same as discussed 'in Chapter 

II. The bound, state energies ,for 'the n bound' states are 

given by _t2k~fM. In p;actice the triplet s:state has only . ' 

one bound state. ;ro ensure phase equivalence, it is " 

" - sufficient that the potentials 111-1.7 generate an,~dentical 

Fredholm determinant. The Fredholm dete~nant for the poten-
" 

Hal in III-I. 7 should thus be equated to that given by D+ (k), 

; 

, , III-l.9 

""J 

where the free Green's " + 2 function GO (k) is 
, (; 

, 
" 

I 
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· .' J:II-lo10 

We have putt2/M = 1 for convenience and HO is the kinetic 

energy operator. The right 'hand side of 111-1.9 can be 

written as a product of two determinants using the 

identities of the Green' s function. I.et us define G~ (k2) 'a!'i 

the Green's function in theprese~ce of potential V1 only; 

it satisfies the following relations: 

III-loll . 

Using III-loll 

III-Ll2 

therefore, 

III-l.l3 

'. 

""', .. --, •. 
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and 

, III-lol4 

.' + 
where Dl(k) is the Fredholm determinant for the local 

-+ 
potential Vl and D2 (k) is the Fredholm determinant for·the 

potential V2 but given" in' the basis of the '~olutions 

genera~ed by Vl : 

-
'') 

If V2 is a separal;>le potential o'f rank-one, then 

.-' 

exp(T~ !n(l .'- G+V » = (I - Tr G'YIV.-'2') 
1 2 . • • 

..... 

III-l.IS 

III-l.16 

III-l.17 

I 

is diagonal in the basis of the eigenfunctions generated by 

the potent~al V~. it is simple to find its trace in this 

basis. Let the regular solution of the operator 

'be denoted 

Hl ,= (HO+Vl ) 

and the bound state solution by l¢a> with 

eigenvalue 
,; 

, 



17 
<" ~ 

i./ 

p21c> > 
£:' 

p2 B11 C>p> = >0 , 
P 

III-lola 

B11 C>B> = -k~IC>B> ~> 0 , 

then, with properly normalised Ic>p> and IC>B>' the trace in 

the III-1.16 is, 

+ E <9 IG1V21¢ > + <c>BIG1V21C>B> Tr G1V2 = 
P P p. " 

< • u 

= E 1 <c> IV21¢ > + 
<cj>Blv2 1c>s> 

III-lo19 
22 . P P k2+k 2 

P k -p +1.£ \ B 

We have assumed in the above analysis that the potential V2 "-

is separable and of rank-one; let its form in our basi'lbe 

given by 

<rlv Jr'> = n(r}n(r'} . 2 

then it follOWS ~at, 

with 

, 

, III-lo20 

III-1.21 

, III-l.22 

j\ 

, 

" 



, 

- and 

, 
" where-

¢B(r)n(r)dr 

with these simplifications III-1.19 

-
(Ti(E» 2 + 

J dE T,t: G
1

V
2 = + 

k2 '2 
- p + ie: 

~ 

Using' 111-1.14 and 111-1.16 we get 

(ii (Ei ) 2 dp 
k 2 _ p2 + ie: 

reduces 

; 

-2 nB 

k2 + k 2 
B 

", 

to 
, 

. 
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lII-1.23 

III".10 2-4 

111-1.25 

111-1.26 
1 

Equating the real and imagi"nary part of IIl-1.26 we obt~n, 

+ r (ii (E) ) 2" dE! 
- -2 

Re(D ~k)] = 1 - P - " nB " " III-:1027 
D~(k) 2 2 ' 2 

+ k 2 , 
k - - ,p k 0 " B 

. 
) 

and 

lII-l.28 

". ///./' 

. Since D+(k) is given, by choosing a suitable"V
l 

with kn~;m 
+" . -Dl(k), we'can determine the form factor ~(k) of the potential 

V2 in the basis generated by VI' 

Some useful relations can at once be derived"using 
," 

IIl-l.27 ani', III-Li8. If We assume that the total po~entilil . -
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,2 + 
V has .only <?ne bound state of energy -JeD, then D(~) = O. 

using· III-1.26 at k. =. iko we obtain 

• 

(~ - ~) [1 

" Since Vl is more attractive than V, ~ > ~ and in the 

limij:ing case' when ~ '( ~, III-1.29 implies that 

n B = r ¢B (r) n'(r) dr + O· 

o 
• 

III-l.29 

III-l.30 

This could be transformed to the momentum space by defining 

Q 

n (p) = J! r n (r) sin pr dr 

o ~ 

and 

sin pr dr 

, 
We can'then rewrite 111-1.30 as 

iiB .. r ¢B(p)n(p)d; ~'O, 
o 

• 'III-l.ll 

• 

~ 

III-l~33 

EquationsIII-l.30 and 111-1.33 imply that for the limiting 

situation ~ =~. the"foorm factor of V2 ,is orthogonal to 

the two body bound sta~.e wave £,unction ¢~, generated by Vi' 

• ~. t'", 

, 

, , 

;, u 
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Such potentials have quite peculiar eff~cts on the binding 

energy of triton and in nuclear matter, ass~ownby 

Fiedeldey 21) and by us 44) This effect w~ll be discussed 

~n detail at a later stage7. I£ the phase shifts generated 

by potentials V and Vl are denoted by 0 and 0
1 

respectively,' 

and we def~ne 
7 

0' = 0 

then using III-l.a and III-l.28 we get 

+ 
.Im[D. (k)] 

D~ (k). 

. UI-l.34 

~ 

sin 0·' (k) 
, . 

III-l.35' 0 

The above equationraemands that for n(k) to be real. we must, 

have / 
/' 

6' = 0 - 0 l' < 0, • 
" III-l.36 

I. 
Furthermore by mu'ltiplying III-l.35 by (k2+k~)' and putting 

k = ikB, we find that 

sin 0" (iks) =0 • III-l.37 



j 

. , 

. -< 

Since Ti{k) is finite, we can rewrite 111-1.27, using 

111-1'.8, as 

-"< '-

~p 
.11 

51 

III-1.38 

Evaluating 111-1.36 at k i :k_ 
='; ~--a' and using 111-1.35, we get 

[n- 1 2. {2 2. { 2 = k - k )exp - - P B B D 11 f
a> 

III-lo 39 

o 

.We can also consider the, case when D+{k) corresponds to 

some given input data without any bound state, e.g. , in the 

1S state. o The e<:tuations III-l. 27 -to 111-1.39 are modified_ 
<", 

because O+(ikD) is_no :core defined. FO:r such cases we have 

the freedom to choose V1 with·or without a bound state. Let 

us first consider the case when V1 does not have a bound 
, 

state. Equations 111-1.35 and III-1.38-wi11 be modified in 

the following ~lay: 

and -

- . 

expt- ~ P 
11 

, 

sin 6' (k) 

III-1.40 

cos cS' (k) • III-1.4l 

I 
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We do not have any nB because ¢B(k} is not·deflned as there 

is' no bound state in the attractive potential Vl • 

For ,the case when Vl has a bound state of energy 

2 -JcB, we cannot calculate TiB using III-l.28, because this 

equation was the outcome of the fact that D(iku} = 0 which 

is no more valid. Therefore, we have to find out some-

other way to calculate nB• We can rewrite III-l.27 as 

[1 - p r o 

ij2(p}dp 

k
2 2 -p 

III-i. 42 

This relatio'n can .be used for any real value of k, as TiB is 

.a constant and independent of k. Since Vl has a bound 

state, the phase shift 01 will start from n according to the 

Levinsion's theorem. If we superimpose a one,..term 

separable repulsive potential, only one bound state can be 

eliminated, because the S-matrix for. the one term separ~le , 

potential can have only one simple pole. Thus, for the ' 

'present case, we can have only one bound state in the local 

potential Vi'" For a general. case one can start with N bound· 

states in the local potential and eliminate these o~ at a 
~ 0 

.time by N rank-one separable potentials. This can be 

understood with the help qf ·tqe generalised Levinson's theorem 

for the nonlocal pot~ntials given by" Martin 73), which states 

that 
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0(0) - o(~) = (v+cr)~ 
" ,~, , 

III-1.43 ' 

0'(0) - o'(-} = (~-n)w + a~ III-;1044 

:rhe phase shifts ,are defined in the notations'of III'-1.34, 

and v is the number ofboupd states in the total potential, 

while n is the number of the bound states in the local 

potential. The number of degenerate states of positive 

energies is denoted b~a. Mar~in 7~ has shown that the 

only negative value permitted in III-I. 44, is -~. This value 

occurs ,when we take v = n-l, n '# 0 and a = 0,' Our case of 

lS corresponds to the choice of n= 1 and v = O. ,,0 

\ ' , \, 

... 

I 

" 

\ 

~', . 
.... 
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\ 

III-2 Numerical Construction of Phase-Equivalent Potentials 

In order to construct a S?t of phase equivalent ',,-
, ~ 

partly nonlodal potentials, we first'have to decide what 

input phases Ii(k) , or equiV'p.lently, the Fredholm determinant 

O+(k) to,choose. 
, 

We chOose, for simplicity, the input Ii(k). 

of Tabakin 42) * 
f generated by the rank-two separable potential 

These phase shifts are also used by Fiedeldey 
~ 

43) to constr~~ 
rank-two phase equivalent separable potentials. In our basis 

the potential is of the form 

2 ' -
= hM ~ kk' [-g(k)g(k~) + h(k)h(k')] 

,~ 
w 

with 

g(k) = 
PI 

k2+a~ 
, -

/' 

, 2 
, P2k 

he!;:) = 
b 2) «k+d) 2 b2) , '«k-d ) 2 

• 
+ + 

0 o 0 0 

III-2.2 

'\ '::r_' , 

This spin independent potential is an average of the poten-

. tials acting in the 1~0 and 3Sl _states. It hasa~ll 

bOund state energy' equal to -0.428 MeV. The parm:leters for , 
this potential are: 

,/ 

The'potential we actually used was potential l,of 
, 

Table 1 of Ref. 42) and is ~efeli,red to as (ST) in this text. 
54 
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,/ 

.... 
2.074 -3/2 2.664 -3/2 

PI = Fm , P2 = Ft:! , 

~ 

1.199 -I b O 1.248 
' -I 

dO 1.441 -I a O = Ft:! - , - Ft:! , = Pm , 
. , 

and ED = 0.428 ~~v or ~ = 0.101603 Ft:!-~ 

) 

The Fredholm determinant of or a potential of the above form is 

given by the following expression 

O+(k) (I - Gtl(k» (I + + + 2 III-2.4 = G22 (k» - G
I2

,(k) , 

with 

r 2 " 2 ~ + 2 g (p) pdp Gll = , 
'Il k2 2- + il '0 - p 

+ = £ I~'h2(p) p2 dp G22 
, 

'IT k2 2 + ic 'I o - p 
\ v 

+ ~r ~(p)h(p) 2 2 dp 
Gl2 = k2 __ pi + 

, . , 1II-2.5 , 
0 i£ 

c , . 
. The above quantities are obtained analytically using 1II-2.2 

and 1II-2.5, and are found to be 56): , 

.. 
, 



+ -
G

22
{k) 

, 

\ 

"' 

+ iklh2 (k). , 

, , 

, '. 

56 

,(b~ + d~) 4 
+ , 4 

k 

III-2.6 

The FredhoL~ determinant :or the attractive 'local Bar~60) 

~~tential VI is simple, and is given as 

D~{k) 
C> 

k -·ia 
= k + ib , a,b > 0 , 

" + 
and DI{k ~~a) = 0, giving only one bound state. The 

III-2.7 

J 

binding energy of this bound state, in units of £2/M, is a 2 • 

If there is no bound state, Dt{k) is gi~en as 

+. 'k + ia 
DI{k) = k + ih " • IIl-2.8 

The' constants a and b are real.. The Bargmann potentiaI in 

terms of these constants 'is given as: " 



. ' 

, . 

-2br e 
(1 + Be -2br) 2 

57 " 

III-2.9 
'I. 

»~ "-

<..; 

with B ,: b+a 
b:"a 
'b-a 

for the case'when there is' a bound stat~~ 

and B = b+a otherwise. 

Tlle S-state phase shifts cS 1 generated br .. the .potential V 1 

are, 

The Bargmann ,potential III-2.9 generates an qrthonormal set 

of regular wave functions given by· Newton and Fulton 74~: f 

= ( p ) 

ID~(p)1 

(1 + e-2br) } 
x (1.+ ~:: e -2br) 

, ' 

+ cos pr 
f i 2b .• • .J - r • 

{ (b-~ - e )}. 
(2+b 2)(l+b-a -2br) 

"P " b+a e 

III-2.11 
If we change a to·-a in 1II-2.llwegetthe expres~ion 

2 for the case when there is a bound ,state of energy-a,. The 

normalisation of ¢p(r) is such that, 

~r ¢p.(r) ¢p I (r) d;- = ~(p-p') , III-2.12 

0 
~, 

. and it has the following asymptotic behaviour 

" 
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J 
, 9p (r) ~ 0 as r ~ 0 , 

f 1II-2.13 

~'- +, (51) ,- ~ iT sin(pr as r ~ C> 
J . 

_"'"hen there is a bound state, the bound state's ,n9rmalised 

wave function generated b~~~hi~ potential is, 

e-ar (1 _ e-2br) 

(1 + Se -2br) 
III-2.14 

The set of the phase ~quivalent class A potentials -that we 

generate are all of the form , 

<klv Ik'> A .' 
+ n (k) n (k' )] .. I·II.,.2.15 

These potentials reproduce the input ~redh6lm determinant 

O+(k), i.e., the-input phase shifts as well as the input 

bound state energy. Once the parameters a and b are fixed 

'. for the potential V 1-' the, fo_rm fact<;>r ii (k) can be itmilediately 

obtained from III-l.2T •. For calculations we require n(kl in 

the basis defined in 111-1.1: 

n(k) :: <kin> .. E <kl¢ ><9 In> + <kI9s ><9s ln> 
p p. p 

.. r 9p(k)ii(p)dp + 9s (k)iis 
o 

III-2.16 

~ 

, 
.' 
I 
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The regular selutien 19> in 111-2.16 ebeys the fellewing 
P 

integral equatien 

" 

1 c}- > 
P 

cO's , 1II-2.l7 

cO's of(p) in the first term ef the right hand side is fer 

the preper asymptetic ferm ef 19p>: 'wi thC;ut it,' the 

asymptotic ferm weuld be:: 9p (r) '" sin (pr + 0 I) Ices 01 • 

SubstitutingII1-2.17,inte II1-2.16 we get 

.. (k) roo, il (Pp"_~ <k_1 V
k12

1 <l>p> dp " =ces'6 l (k)i)(k)+P - .. 

o 

II1-2.18 

The abeve relatien is used fer numerical cemputatien.ef n(k) 

, fron ~(k). The details ef numerical calculatiens ilre g~i~en 

in Appendix B. 

We alsO' censtruct the class B t~ of)?h,!~e 
-,Y " 

equivalent rank-t~~ separable potentials: 

, 1II-2.19 

whi~h reprod~ce, the same input data as th~ partlY non local 
, .' 

potentials ef 111-2.15. Additionally, ~e separable 

attractive part -f;,(k)<;(k') is' chesen to be phase equivalent 
~.;; c -' 

to' the Bargmann potential <It Iv 11 k' >, which "yields', using 
-::: .. , 

< 

I 
J 



,11 

111-1.28, 

1m Di-(k) 
1 

F;(k) 

= -
o 

1T' 2 
2~,F; (k),= , 

60 

\ 
III-2.20 

, , 
The bound state wave fUnction, 'nOrmalised to unity, generated 

-
by the separable potentiai ~F;(k) F; (k') is 

.;;::l ,-

The bound state energy for the, attractive s,eparable part is 
~ 

again _a2 'Once the parameters -of F; (k) 'are fixed', y (k) can 

bc.--,obtained as before. "', 'i . 
We construct the following' potentia~ of class A and 

class B type. The parameters a and ~ are the same for both 

of\them and are given in Table 3.1 
. , , ) 

• I 

" 

., 

". 



, 
) .' 

, 
v 

-.-~ 

/--. 

\ 
) ,-

, .... 
",,' 

\ '--

'-

" 

3.1 The partly nonlocal potentials of c,lass A are 

denoted by AO to A'3, while those-of class Bare " 

denoted by BO to B3. 

I 

", 
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" 

TABLE 3.1 

..:.<f' 

Potentials a in FIn-I 

AO , BO 0.5000 1.0 

Al , Bl 0 0.2500 
(".. 

1.0 
'-

, 
\ A2 , B2 0.1100 1.0 

A3, , 'B3 0,.1016 1.0 

" 

.. 
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III-3 Half-Off-ShellT-:Matrix Elements 

The half-off-shell T-matrix has been defined earlier 

In practice it is convenient to ~alculate the 
( " " 

in II-I. 7~ 

R-matrix defined in II-I.26 for real w. '1he\ h,alf-off-shell 
i " 

R-matrix 
. 2 

elements R(p,k:k ) 
J -

in our basis III-I. I for the 
'(;.. 

relative S~state are given as 

'. 2 
R(p,k:k ) = V(p,k) - P 

, 2 r'" V(p,q)tffq,k:k )dq 
~o q2 k 2 III-3.1 

.~ ~. \ 

We have used tjth~ethod b~ matrix inversion for solving the 

integral equation III-3.l. This meth9d is similar toone 
46) . 

used by Haftel and Tabakin To replace the principal 

value,' condition by a smooth integral we add a zero term in 

III~3.l and rewrite this as, 

-J"" 
·0 

V(p,k) 

. 2 . 2 
[V(p,q)R(q,k:k )-V(p,k)F.(k,k:k )]dq 
------------q~2~_-,k~2~--~--------· 

UI-3.2 

The infinite integral has been mapped to a finite sum using 
. .~ 

the transformatron , 

-1 ~ y ~ 1 
'-

• q = C Tan 1 (1 - y) UI-3.3 

I 

I 
• 

62 
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{/ 
The constant C is adjusted fto distribute the integr~on 

points into. the most important region of integration. We 

ch?Ose: the mesh for q such that no point of it is equal to 

k. We 'require to, invert a (N+l) x (N+l) matrix, where ~N is 

the nUl1lber of points in the Gauss quadrature :used for 
"-

integration. The starting energy correspond~ to k which is 

always ,denoted by the (N+l)th point in the integration mesh. 
;. .. 

Using 111-3.3 we can rewrite 111-3.2 as 
! 
'j 

\ 

III-3.4 

The F-matrix in 111-3.4 is defined as: 

F{k. ,k.) = 0l.'J' + w! V{k. ,k.) , 
~l. J J l. J' 

III-3.S 

with 

w! 2 k2) j < N = w./{k. - , 
J J J 

N wm 
= 1: 

(k2 k2) 
j ='N+l , 

~l·, m=l - , 
m 

III-3.G 

• 
'where the w! • s are the corresponding Gauss ~weights. The" 

J 
nonsingular F-matx:ix is inverted to obtain on- and off-energy-

shell R-matrix elements: 

• 

I 

-
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N+l 
I: 

j=l 
III-3.7 

The on-shell R-matrix element de'noted -by 'R(k) is such that 

ki = ~+Land .related to the phase shift, e(k)., through the 

relation: 

R(k) = \2-k 
1II-3.8 tan elk) - -

11 

We have calculat'e'd R(p,k;k2} forfh~ potentials of Table 3.1 

tor d'i fferent k.. Some of these are plotted in Figs. -"I and 2. 

The half-off-shell R-matrix elements ,are -1 plotted in Fro 
. -1 
Ftl· .. and 

-1 against p in Fm The values of k chosen are 0.7 , . 

1.0 Fro-I correspondi~to 40.64 and 82.94~eV lab. These 

values of k are chosen because the behaviour of the R-matrix 
'. \ 

~' 

corresponding ,to these energies is important for nuclear 

matter. We observe the following features from these. plots. 
, V 

'. 1. When p > k, different potentials give different half- ' 

.off~shell behavio~. At.p = k all potentials have the 

same value of R(p,k;k2) due to their phase equivalence. 

1. For p .< k, the differences are not large. These 

differences increase for large k as shown 'in Fig: 2. 

, , 
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3. The half"-off-shell ele.'Ilents for our potentials. become: 

constant for large values' of p. 
that. R(p,k:k2) in our basis has 

This is due to the fact 

an extra factor of ~ 
'IT 

compared to the three-dimensional basis. 

4. The half-off-shell elements for the standard'Tabakin 42) 

potential in our basis goes to zero indicating that the 
<;OJ 

. . 2 decay of the R (p ,k, k ) for Tabakin potential i,s much 

faster"'than our potentials. 

5. The half-off-shell variations given by the partly nonlocal 

potentials (AD , A3) are more than given by the corres-

pondingly.\separable phase equivalent potentials (BO , B3). 
. v 

A simple qualitative explanation for the above 

observations is obtained through the following picture. The 

R-matrix for S-state may be written as 74): 

I 

sin pr 
r 

- u(kr» , 1II-3.9 

where u(kr) is the wave f 

jand u(kr) is the asymptotic 

interpolated up to r = O. _.For 
\~), 

produced by the potential 

of this wave function 

fixed k and p the first 

term in RHS of 111-3.9 will remain the same for all the 

phase equivalent potentials. Thus the differences in 

/ 
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2' 
R(p,kik ) will be coming due to the differences in the 

integral of 111-3.9. When p > k, and large, the significant 

contribution to the integral will come from the tert:l 

(u(kr) - u(kr» for small values of r. Since u(kr) is ,the 

same for all the phase equivalent potentials, it is u(kr) 

which wil:l: decide the magnitude of R(P,k;~2). We are 

looking at small values of r, where u(kr) will be suppres~ed , 

if the potential has a large short range repulsion. Our 

potentials are such that the strength of the repulsive term 
.~ 

falls as-we approach towards the limiting case, i.e., AO to 

A3 or BO to B3. Thus'u(kr), for small r, will be enhanced 

for the limiting cases," reducing the overall value of 

(u(kr) - u(kr». This reduction is seen as a fall in , 
2 'R(p,k;k ) for the limiting cases. It is also to be noted 

from Figs. land 2 that as a class, the partly non local 

potentials have more effective ,short range repulsion than 

ST,whereas the,separable potentials have less short range 
• 

"repulsion'. Thus 

larger values of 

for large 

2 R(p,k;k ) 

p the class A potentials have 

than Standard Tabakin and the 

opposite is the case for class B potentials. This behaviour 

of R(p,k;k2) a~o suggests that the wave fa~ctionu(kr) for the 

separable potentials is lar~ f~r small r than the correspond­

ing wave function for the par~lY nonlocal potentiaL A similar, 

trend is observed for the bound state \-Iave functions of these 

/ phase equivalent potentials. It is known from earlier 

, 



studies 76) that the wave function for the separable 

potentials is larger at Slllall r than those of the local 

potentials. 
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In the region p.< k and s~ll p, we have to examine 

the behaviour of (u(kr) - u(kr).) for large values of r. In 

this region u(kr) is almost equal to u(kr) and , 

(u(kr) - u(kr» is very much reduced. Therefore, we do not 

observe' a large variation in the half-off-shell R-matrix 

elements. However, if we 
.;::, 

observed due to changes in 

increase k some differences are 

u(kr). 
. ~.- . 

Although~11 these potentials are phase equivalent, 
? ' 

they have considerab~y different matrix elements. The' 

diagonal matrix elements in k-space are plotted in Fig. 3. 

For convenience in comparison, the pair 
>. .' 

(AO, BO) 1S plotted 

in Fig. 3a; likewise the other three pairs are plotted in 
\ 

Figs. 3b-3d." The following characteristics should be not7d: 

• 
(i) All the potentials have matrix elements which are 

attractive for low values of k (less than about 

-1 LS.,Fm ) but turn repulsive for higher momenta, 
I 

reflectfng the ch~ge in sign of the s'-Wave phase, 

shifjt. 

(ii!) Potentials of class A are !:lore attractive for lower 

values of k, but become much moi~ ~epulsive for 

. higher momenta than the potentials of class B. 

( 



(iii) Figure 3c shows the near-limiting ca:;e with ~ 

greater than ~,' while Fig. 3d shows the 

68 

slightly 

limitJ..ng '2 2 
situation when k8 = kO· It will be se~ 

from these. figures that in potentials of class B, a 

large repulsive hump develops for .low values of k. 

This hump is particularly prominent in Fig. 3d for 

t~e potential B3, and results 'in its'being much less 

attractive than the corresponding potential A3. The 

repulsive hump is absent in cases where ~ is quite 

different from ~, as in Figs'- 3a., arid 3b~' This 
/ 

characteristic of the potentials has an important 

bearing in the nuclear matter cal9ulation, and will 

be discussed later. 

The origin of the repulsive h~p that.is produced 
- " . ~ 

for the lirni ting . poten'tials .can be simply understood "in 

terms of the behaviour of the two-body. bound state· wave 

functions 9B and 9S that are generated by the attractive 

parts VI and -~(k)~(k') respectively. Note, from III-I.33, 

that 

nB = 

YB = 

iIJ 

10 r 
·the limiting case the overlap integFal 

9B(k)n(kidk = -9!.and l~ewise for class B potentials, 

¢8 (k)y(k) dk =; 0.. In Fig. 4, we ha,;oe plotted ¢B (k) 

generated by the Bargmann potential III-2. 9 and 9S (k)' 

III-:-2.2Igenerated by ~(k) for the S:'iting situation. It 

will be noted.that while both ¢B and 9S are positive 

) 
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throughout, ¢s of the separable potential has substantially 

more high-k components, and, therefore, decays core slowly 

in k-spa~e.Since ,the overlap integrals fiB ~d YB a,re 

identically zero in this case, both n(k) and y(k) have to 

develop negative humps at lower values of k, as shown in 

~ig. 4; but the negative hlli~p in y(k) is more pronounced to 

counterbalance the slower decay of ¢s(k) with increasing k. 

Tl),is effect is enhan.ced in the diagonal matrix elements of 

the potentials where the repulsive parts appear as D2(k) 
j' 

2 . 75)' 
and y (k). Fiedelde.y , working with phase equivalent 

.~ 

rank-two separable potentials of Yarn~guchitype~form 

factors, also notetl simila~ effects in the limiting cases. 

According to him, this effect is responsibl:e for'::;he 
, 

enhancement 'of the triton binding energy for the limiting 

potentials. 

, / 

) 

.' 



CHAPTER IV 

NUCLEAR ~ATTER AND DEFECT WAVE-FUNCTIONS 

Nuc~ear matter is essentially an infinite medium 

with an equal number of neutrons and protons, with the 

Coulomb force between the protons switched off. Such an 

idealisation of t~e realistic nucleus is n~cessary to 

simplify the many-body problem, and nuclear matter may 

resemble the interior of a heavy nucleus where surface 

effects are small. The physical quantities associated with 

nuclear matter are the binding energy per nucleon (BE/A, A 

being ~~e n~~ber of nucleons) and the saturation density Ps' 

Sab~ration in nuclear matter is necessary because we find 

from experiments that the average central density for the. 

finite nuclei is practically constant. These qpantities 

for nuclear matter can be calculated for a given two-body 

potential, and compared with those obtained from the mass 

formula 77) and high energy electron scattering 78) 

experiments respectively. In nucle-ar matte-r, it is ir.1portant 

to examine the variation of ~~e BElA and Ps with various 

phase equivalent potentials. These calculations are carried 

out with the-hope that the results would lead us to ., .. -. 

discriminate_between the various phase equivalent potentials. 

70 
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of the ,Brueckner-Bethe-Goldstone many-body theory valid for 

strongly interacting ferrnions, particularly at low density~ 

Good revi~ws 79-81) of 'nuclear matter theory and details of 
. 

calculations ar~Vailable in'the lite~ature. 
! 

In Section 1 we men ion some salient steps and 
'; ('"-, 

approximations which we use to calculate BElA and Ps for 

our phase equivalent potentials.' Section 2 is devoted to a 

description of the defect wave function and the calculation 

of the wound integral for our ?~als. Finally in the 

last section we report and d~cuss our results. 

/ 

;~ 

':1~ 
. .. 

',' 'I 
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IV-I Nuclear Matter Calculation 

OUr method of calculating BElA and Ps for nuclear 

matter is the same as that of Raftel and Tabakin 46) but our , , 

expressions are in a different basis. We have not tried to 

rederive the general expressions available in the literature.'­

Only thOSe expressions are given which are necessary for our 
i 

, 
calculation. In nuclear matter, . the single particle .. wave 

function* ¢k. and the" corresponding energy E (k)are 
_1. 

IV-l~l 

IV-1.2 

where T{ki ) is the ~inetic energy, and U(ki ) is the potential 
, 

energy of a nucleon in state ~i. The latter is obtained from 

the interaction in a self consistent way. In nuclear matter 

each. single particle state k. is four-fold degenerate, and . _1. . 

all states up to the Fermi momentUlll kF are occupied. ,The 

Fe~i momentUlll kF is related to the nuclear matter density 

by the relation p =. (2/31f2)~. In Brueckner theory the 

effective N-N interaction is given by a G-matrix as 

• The wave function ¢k is normalised in the volume 
_i 

n such that as A and n + w, p = A/n remains constant. 

72 

" '4 

·1' ":·0 

;. . 



, 
, 

<k'k'IGs',T 1k ~20;w> -1-2 " _10 - . IV-1.3 

-, 
In IV-l.3 V (the free N~N interaction) and G depend on the 

spin (S) and iso-spin (T)' states of ,the nucleons. ~owever," 

for simpliCity in writing we have dropped the superscript 
" 

S and ~ on V and G. The Pauli operator Q' is such~that it 
~ 

,is I' if I ~i I; I ~i I > ~ ,and O· otherwise. The starting energy 

~ depends ,on the ,eini~;al states of the interactflig pair; in, 

tlie special case'~hfm,both k~O and k20' are oc::c:Upied'; it is 

:' 

• ,IV-1.4 

-":.,. f 

~>-'.>-. 

" 

The ~elative and center of mass mOmenta are defined as 

-""""" \ 
k + k - k ',+ k' - k + k' - 2K -1, -2 - _1: _2' - _10 -20 

-
~l - ~2 = 2k 

" -
/ 

, 
\. 

IV-loS' 

From IV-i.3 and IV-,l.5 the 'G~rnat~ix becomes a function of 

1! ~O ~ and w, which "e 
\... '" denote bY.G(l~'~~<i;~ w). The 

~ 

and final state rela~ivemorneritaare denoted~s ~9 
~ . 

~ , 

initial 
~ 

and..- k ': ---

::Cj 

',·1' , , 
.. -~ 

,,/~ ~, 
.. -... ' 
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" respectively. The, total nuclear matter energy E is: 

E = 4 L <~lO I T I ~lO> + 1 L L (25+1) (2T+l) 
2 k 

. 
kl<k k2<~ S,T , F 1 

x <k k IGS,T 
-1 -2 ' -, (w) I~l ~2 - ~2 ~l> , IV-l.6 

where T is the single particle kinetic energy operator. 

Using IV-I.,4 the G-matrix expre:>~ion IV-I. 3 becomes: 

G(k, ~O;~ w) =V(~,~O) ~ J dk' 

with , , 
" 

, 
'-.r 

V(kk'.)Q(k~K)G(k',k ;K w) 
-- - - - -0-

E(~',~) - E(~O'~) 

IV-I. 7 

The above G-matrix integral equation is difficult to solve 

because of the dependence on the center of mass momentum 
,,-

vector K. In order to simplify we follc0w the usual approach 

of using the'angle-averaged Pauli operator and the .effective 

mass approximation. The angle averaged Pauli operator Q is 

"\. 
"­v\:-...: 
\\-> 

;,. 

, 

:j 
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Q(k' ,K) = 0 k' ::~~ _ K2 

<> 

= I k' > ~. + K 

, 
K2+k,2_~ 

= ~ k 2_K2 < k' < ~ +K IV-1.9 2Kk' - , .po 

and the single particle energy in the effective mass 
, 

approximation is 

V ·2 
k 

E(k
a

} = a 
UO, k < kF -2M* a 

112 k 2 

= a 
ka > kF IV-1.10 2M , 

{., 

where M* is defined as the effective mass of the nucleon. 

The G-matiix expression IV-I. 7 along with the single particle 
" 

energy of IV-I.IO is given by 

, --;. 
E>(~',K} - E«kO,K} 

IV-1.l1 
"-
) 

'----/' 

• IV-I.I2 

" 

. , 

" 'J 

" 
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Using the method of partial wave expansion, we obtain the, ' 

S-state G-matrix equation in our basis, defined in 1II-1.1" 

as: 

= V(k,kO) - Jeo dk' 

o 

V (kk' )Q(k.,K) G(k' ,k
O 

:K) 

r:>(k'K) - E«kOK) 
IV-l.l3 ' 

The above integral equation for Gis solved by the 'matrix , 

inversion metp.od similar to the one used in solving III-3.1.. 

The single particle spe5:trum U(k1) is calculated usi~\ the 

diagonal elements of th~ G-matri~.' Follo\iing Baftel and 

Tabakin 46) , we replace K by its average (K ) in the av 

calculation of G, where Jt2 is: av 

K2 = k 2 + k 2 
2kO < kF ~ kl av i 0 -

= k 2 + k 2 - 1 (2k
O 

+ k1- kp) (2kO/ + kl + k F) i 0 '4 

,0 

" -
k i ~ 

< IV~1.14 fore kF - 2kO - kF + kl 

The single'particle potential energy is given by , . 

x {o <!(k;-kf) - ko(ko-\l)G(k'o,ko:Kav)) • 

IV-l.lS 

, 

j 

" 
-- '\ 

, '.. ". ';" 

" 

'; 
'l 

j 

, 
, , 
" ') , 
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since our potentials (AO-A3, BO-B3) are spin,inde~dent and 

are 'acting only in-the S-stci.te; we get ;J~e factor of 24 by 

summing over the. spin and iso-spin states~- -T~e G-matrix 

equation-lV-l.13 is solved with Brueckner's self cons~stency condi-

tion. since the G-matrix depen~s on the 00 and M* (IV-l.lO), 

one starts with some suitable choice of 00 and M* and 

calculates U (~ .; The new U (~ is then -used to obtain another 

set of values for UOand M*. -This proCess is repeated until 

self consistency is achieved. For obta~ningthe values of 

UO"and M* from U(~ we use ~e following rel~tions: 

-u o 

, 1 
iii* - M _ (1 + 35 (U 

M* - 2 4 

wllerethe nth moment of ° (~ is 

= n+l 

k n 
F 

, 
lV-l.l6 

IV-l.l7 

The values of Uo and M* obtai~ed in this way are dependent 

on the whole single particle spectrum U (lit), rather than 
/' 

/Just two values: of Utkt) normally used. Once the self-
(. . 
"consistent values of Uo and M* are Obtained, the evaluation 

, \.., 

of th,~ potential energy ~er .:;;;article in nuclear matter 

(:PEtA)T(iV~l. 6) is straightforward, and. is given by 
I 

\ I 
\ J 
'~ ./' 

., 
-, 

) 

j 

-) 
1 
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,/ 

, ' 
I 

7S· 

PE -\;2 12 
'A = M 

J~ 
o 

IV-Ll8 

In the derivation of IV-l.1S we replaced the center of mass 

momentum K by its average value K which is, 
, 

+ 3(2 IV-1.19 

Note that K f Kav of IV-l.14, The average center of mass 

momentum (Ka;> is defined for a pair of nucleons with fixed 

relative momentum, and the momentum of one of the particles 'is 

also fixed; whereas K is the average when only the relative, 

momentum of the pair is fixed. The BElA is the sum of the 

average kinetic energy and the potential energy per particle. 

This is written as: 

BE 3 -112 
k 2 + PE/A - A = 10 M F 

IV-1.20 

\ C 

\ 
\ 

, 

.' 

i 
I 

i 

\ ( 
~~ ....... ! 

\' '/17 

) 
'/ 
/ 
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/ 
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j 
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IV-2 Calculation of the Defect Wave Function and the Wound 

Integral -

In nuclear matter the unperturbed wave function of 

the relative motion of a pair of nucleons, I ¢k>' -is a plane 

'" wave, but the perturbed wave function I~k> is very different 

from the 1.lnperturbed wave function. The latter is also 

different from the scattered wave function, becaSse it 

rapidly'approaches the plane wave without any phase shift. 

The distance at which these two become the same is called \_ 
v 

the healing dis~ance. The difference between the unperturbed 

an<1 the perturbed wave function .is defined as -the defect 

wave function I Xk>. The absence of the phase'.shift in the 
'" 

perturbed waye ~unction of nuclear matter i~due to the fact 

that 'all the scattering states _ are virtual. These virtual 
. , " ' 

-, 

.scattering states are considered to incorporate t~~'~h 
k components in the nuclear matter wave function. The'defect 

wave function is given by 

Using the fo~lowing definit'ion 

79 

, 

I~ of A'wk>, '" 
-. " , 

-, 

) 

IV-2.1 

IV-2.2 

~ ... 
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~~d the equation IV-l.3, one obtains the relation of 1Xk> 

with G: 

, IV-2.·3 

where e is the energy denominator of the second term in 

IV-l.3. The healing property demands that 

as r ... CD • IV-2.4 

The coordinate and the momentum space representations of the 

defect wave function are as follows: 

and·· 

<rlXk > -
o 

<klxk > -
o 

=~ r <kl~ G(k,kO;K)lko>sin krdk, 

IV-2.5 

Xk (k) = 
o 

o 

Q(k,K)G(k~kO;K) 

E>(k,K) - E«kO,K) 
IV-2.6 

one can define ·the wound integral K as the integral of the 

"sq,.~of <klxk > 
\ 'I.. 0 

by the density p. 

or <rlXk > over the whole space, multiplied o . 

In order to make K a dimensionless number and 

equivalent to the definition normally'~sed in the literature, 

e.g., Haftel and. Tabak~ 46) , we define it as: 

, IV-2.7 

. . 

"' ... 

;I 

j 
j 

1 

, 
I 

.J , 
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where,· the factor of 6 is due to the spin and iso-spin ~ 

weighting,' and 112 14k~ is due to the relation of G -in our 

basis, to that of the three-dimensional basis generally used'. 

This relation for the S-state is 

IV-2.8 

We have used IV-2.5 for the c~lculation of xk(r). For this 
o 

calculation the Fermi momentum 
·s 

point kF and kO is taken to be 

kF is taken at the saturation 
S 0.55 kF • We have plotted the 

defect wave function for our potentials AO~A2 and BO,B2 

(Table 3.1) in Fig. 5. We n'Otice that for the partly 

non local potentials (AO ,A2) x. (r) is positive at small r 
• AO . 

indicating a short range repulsion, whereas for the purely 

separable potentials (BO,B2) the defect wave function is 

negative showing that the interaction is attractive. This 

behaviour can be understood from IV-2.5. For small distances, 

the main contribution to Xk (r) ~omes from large values of k. 
. 0 

The factor Q/e would be positive for k > kF and zero for 

k :: ~ k; - K2. Therefore, the sign of 

by whether G(~'~O;K) is attractive or 

Xk (r) will be d~cided 
o 

repulsive for large k. 

For our potentials the contribution ~o G from the second term 

in IV-l.13 is small compared to that of the'first term, i.e., 

V(k,k
O

) except for AO. This could be seen from the plots of 

V(k,kO) and G(k,kO;K) given in Fig. 6. Thus the sign of the G 

for large 

I , 

1 

J 
1 , 
J 

,

.! .... ' •. 
\ 

. 
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k is determined by that of V(k,kO). In ~e case of partly 
,~ 

nonlocal potentials, (AO,A3), V(k,kO) = ~B(k,kO) + n(k)n(kO). 

The first term VB (k,kO) is attractive and goes to zero as ' 

k ~ m; therefore, for a fixed kO and large k, V{k,kO) ~ 

positive constant' x n (kO). 'The form factor n (kO) being 
I 

positive; the sign of G will be positive for large k. 

Therefore, Xk (r) will be positive and the magnitude of 
o 

Xk (r) will depend on the strength n(kO). In case of 
o . 

separable potentials V{k,kO) = -~(k)F;{kO) + y{k)Y(kO) 

(111-2.19) and the form factors are such that ~(k) or y{k) 
,~ 

goes to a positive constant (C) depending on the parameters 

of the attractive. part as k goes to m, hence for large k, 

V(k,kO) ~ C(-~(kO) + Y(kO». Thus the sign of V{k,kO) for 

large k will depend on the relative streng~ of the 'two 

terms and not only on the repulsive form factor y{kQ). At 

kO = 0.55 
S ' 

kF for the potentials (BO-B3), ~(kO) is stronger 

than y (kO)' hence bOth'-v{k,k.o) and G will be attractive. 

The defect wave function is negative for such potentials. 

It is ~obe .noted that for. some other choice of kO' the 

signs may change. This reflects the peculiar characteristic 

of the separable potentials that attraction and repulsion 

are diffused over the Whole range of the interaction in the 

momentum space. 'It is their relative strengths which decide 

whether the total interaction is attractive or repulsive. 

The same characteristic of separable potentials is also 

.\ 
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responsible for the variation of R(p,k;k ) as noted in 

Chapter 111-3. 

I 
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, 
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IV-3 Nuclear Matter Calculations and Results 

The partly nonlocal potentials_(AO-A3) as well as 

the two term separable phase equivalent potentials (BO-B3) 

are used to obtain BElA and Ds for the nuclear matter. 

Results for the standard Tabakin potential are included for 

comparison. The saturation density Ds is obtained by 

plott~ng the BElA as a function of kF and then,noting the 

minimum of the curve. Self consistent calculations for a few 

kF around the minimum are sufficient to provide an accurate 

saturation density. The direct matrix inversion method given 

in Chapter III has been used to solve the matrix equation, 

IV-I.13. The aim of this model study is twofold: 

(i) To compare the nuclear matter results for partly 

nonlocal potentials with those of 'separable potentials, 

and 

(ii) To study the dependence of these results on the 

limiting parameters for the twc:> sets of phase 

equivalent potentials. These limiting parameters are 

defined in Chapter III', 

84 
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Many nuclear oatter studies have been made earlier 

with phase equivalent potentials. However, all such studies 

are made either with two term separable potentials 14-20) wi~ 

Yamaguchi type form factors or wi th the-potentials obtained 

by applying unitary transformations 45-47) to the two pody 

Hamiltonian with soft core local interactions. As far as we 

are aware no systematic study has been made with partly 

nonloca~ potentials. We confine ourselves to only S-state 

potentials as their contribution ,to the BE/A is by far the 
,,' 

largest 61) The results are presented i;~~le 

numbers in the first row refer to the saturation 

4.1. 

kS 
F 

in 

The 
-1 

FIn • 

The next row lists the values of K evaluated by using IV-2." 
s S at 0.55 kF • The average kinetic energy per nucleon at kF is 

given in the next row. The potential energy per particle 

(PE/A), given by IV-l.18, c~n be split into two parts by 

using the relation: 

'. 
" 

G(-l<;,k) = V(k,k) -r dk'V(k,k')Xk(k') 

o 
.. IV-l.l 

A1 
where ~lf'have suppressed the K dependence in the notation. 

\"e have accordingly shown the first-order cOlltribution to 
, I 

PE/A, coming fromV(k,k), and the highe~, order contributions 
; , ' 

arising from the last term in·IV-3.l,,-,sep~rately in Table 

4.1. It will be seen that all the potentials that we 
if 

consider here ar.e quite soft except for AO andB3, with most 

) .. , 
j , 

, 
1 



TABLE 4.1 Nuclear matter results· for partly nonlocal·phase 

equivalent (class A) r, rank-two separable phase 

equiv~lent (class B) and Standard-Tabakin (~T) 

potentials. All energies are in MeV. 
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Kinetic energy 
~r nucleon 
a't kS ' 

F .. 
.' 

1st order 
contribution 
toPE/A 

.1, 
Hiqher order 
contdbution' 
to PE/A . -. 

Total PE/A 

- BE/A 

, ' 

TABLE 4'.1 

i 
! - f;l-

/ ' 

, -

( ) .' 

/ 

" 

Partly non10cal phase equivalent Separable rank-two phase equivalent 

potentials potentials 

1\0 
" 

Ai. A2 A3 BO Bi.' 
I 

(> B2 B3 
,iJ - ~ -- . , , 

, 
L85 2 .. 05 2.08 2.3, 2.05 2.0 L99 L83 

. 
fO.016~ 0.0296 0.009,9 0.0040 O,~ 00~6 ' o ~ 0050, 0.0071 0.0129 

42.58 ' 52.28 53.82 . , 54.86 
4 

~ 41,0,66 52.28 ' 49.76 44.44 

4 

-58.29' i '-35.55 -44.69 -76.64 -77.24 -13.94 -67.92 -24.29 
,,' 

, 
'-26.89 ... 9.11 - ,'4.9.0 -,' -5.91 • 

-10.09 -13.60 -22.49 ...26.93 
, F , .. . ' " . 

-71.58 -85.75 -82.14 .-79,.85 -78.0'1 . -7-1.89 -58.04 -51.22 
.' 

29.00 33.47 28.32 24.99 25.73 22.13 13.60 9.56 
/. 

/ , 
~ 

( ,'",.', ~.-"", • < ..... - •• ' ....... "f __ '''-"_-....0 _ 

// 
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~f t.~e ,binding "coiililg from the first':"order te.z;)ll. Accordingly, 

OJl~ calculat~d .vaL~esof <k!G!k>, look,. very, sjmha\: to 
• 

<k ! vi k> as a funct;ion' of ,k, and we do not plot these 

separately. We now: go on to point out _s.9::1e interesting 

, aspects of th"e results given 'in Table 4.1. 
. -'. 

The first'featurewhich we Observe from the results" 

is that' the woun¢ integral K decreases with the increase',in 

th~ saturation density, 'iln spite of a multiplicative factor p 
.'~I" .' ~t in the definition of K given in IV-2. 7. This is found to , 

be true fOr poten'tials of both types. As was pointed out 

b B th 82) th 'b' f .... d "th y e e , e contrL utLon 0 ~.e seconter.m Ln e 
-

equation IV-3.l to the PE!A, which i's calculated using the 

equation 

co.:npared 

IV-l.18, will increase' l~'fast with ~ 
'\/' . 

to that of the'filith.-f~bn 'due to V(k,k). 

as 

In the 

context of perturbation theory, ,this, comes about due to the~ 
Pauli operator th~t ~ffect'ively reduces the available l!hase' 

~ace for .the inte;rmediate states wit,h fncreasin9 ,~ •. 

Additionally, wi'~ 'increasing'k
F

,' the intermediate s,~atelJ k' 

has'to rJ::t:ease, thereb; ~~ing the ~tr~ elements V(~,k'), 
o . ' • 

'and 'also increasing the energy denOl!linator. 'It ,is also to 

be noted that. when higher ord~~'ter.ms are appreciable, the 
, , 

wound integral K is large. Sinc~ these higher order terms 
, , . 

help, in ,saturatiqp; larger values of II: also imply, ,in . 

general, smaller satura.tion den~ities, despite tho multipli~ 

cative factorp in the definition ,of Ie. 

: » 
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, 
, 

A very interesting fe~ture emerges from a c~parison 

of the, w?Und integrgl of, cla,ss A and:61ase B type potent,ials. 

For cl,ass A potentials as these approach the lilni.ting : . ' ' 

situation, the wound integral' K ~ecre,ases l!Ionotonically,- >0 

while -j~st, the opposite is the case' for class B pote.ntials: 
, . . 

This behaviour can be understood(in the following way. 
" , 

Consider first the potential AO, where 

'~B ~ 0.,5» kO = 0.1:016 Fro-I; In this potential, both'the 

attractive and repulsive components are strong 'and' this 
, , 

yields a large K a;:;~ell' as a large higher order contrib~tion 
\. -

to the potential energy per nucleon (Table' 4.1). As the • 
, , 

limiting situation is approached, both the attractive and 
.' :. ' .. . 

repulsive components become weaker, though ntlt,the'net 

<krvlk>. This makes the defect wave functioh lx>"and hence 

K smaller as observed in Table 4.1. This can'also'be seen 

, from F'lg. 5, as ')(k
O 

(r) for A2 (nearly limiting) is s~ler 
in magnitude than that of AO. In the ~revious section of 

this ch'apter' we have shown that for the <;lass A type 

potentials Xk(r) ~ill dePenc1 on the' strength of the repulsive 
o 

\ 

, . 

term. An anamolous situation exists in this'respect for the \. 

class 13'~tentials. As we have discussed before, Xk (r) for 
, 0 

these potentials depend 'on the relative strengths of--, , ,~ , 
~ttractive and repulsive part of the potentials. ,\,is 

relative stren~th ~or~e~pondin~ to kO (= 0.55 k~~ i~~~~~es 
as the limiting condition is approached, hence,the wouna 

, 
, , 

" , 
\ . 

,C 
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integral K is increased. For the'se'parable potenti'als of 

class B a large hump develops in the repulsive form factors ' 
-' 

mainly because of the 

wave function ¢B (k) 'in k-sp 

slow decay of th~ound \ s~~~e 

Th,is repu1si~ hump fOll- ' , 

p<?tentials B2 and,B3 not onl reduces the attractive first-­

order contribution .h·orn <k I V I >, but also increases the 

defect 'wa~e function and hence the wound inte<:!ral. 'Note that 

ft this has the effect of increasing the higher order contribu- " , 

tion,s in the potential energy as shown in Table 4.1. This 

increase, however, .is not enough'to compensate for the 

-drastic fa1l,in the first order cont~ibution, with thene~ 
, " 

re~ult that the binding energy per nucleon drops sharply as 

the limiting condition is approached. 

Finally, "we' note that the partly nonlocal'potentials 

AO-A3 give more binding in nu~lear matter than the p~tentials 
• 

BO-B3 when' compared pair-wise. 

~s A potentials is ~;47 MeV, 

The maximum fall in BElA for , , 
while for class B potentials' 

< 
, ' it is 16.17 MeV. Similar sharp fal,l in th!'! BElA for tHe 

limiti'ng -po~entials have been observed by us, 44) while 

woik;i.ng with r,ank-two separable phase equivalent potentials , . 
with Yamaguchi type form factors.' We suggest that such a 

" ' 

sha;p'drop is associated with the behaviour of the two-body 

bOund state w~v~functionof se~arable'PotenHals in gener<11i 

.and is absen~ for local or partly nonlocal potentials. 

(,. 

I 
" 
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CHAPTER V. . ~ - . 
OFF-SHELL E~rECTS IN THE REACTION p+p. ~ 1T ++d AT THRESHOLD 

• 

As seen before the. two-body experimental da,ta, (i :e .•. , 

the phase shifts'and the energy of the ,bound state) do not, .. .' uniquely determine.the N-N interaction. To investigate'the 

interaction further we have construc~ed phase equivalent c 
, , 
potentials which are all on the same footi~g as far as the 

above data'~s con~erned,-and examined nuclear matter. 

Another, alternative would be' to investigate thQ nature of 

the bound state wave functions that these phase equivalent 

'potentials generate. 

To be 'specific', we .wish to analyse an experimental 

.situation where'the observable result' isvery.sensitive not 

only to the tail of the deut~on wave·function but 'also 

Qependent on its short range characteristits. Sticb is the ,,' , + 
'case in the ~haviour of/the cross section reaftion p+p ~,1T +d 

nea;- the threshold' of pion production. Woodruff 83) first. 

calculated this cros~ section:hiscaiculaefon was repeated 
~ 

" ~by' Kol,t;\ln and Reitan 84) who obtained good agreement with 

.the experimental results available at that time~ They 

emphasized the sensitivity of the cross section to the s~ape 
o -

Of ,the deuteron wave function, a sens~tivity that comes ,about 

due to the cancellation of thecontriputions of ~eS- and 

90 
• 

" 

;1 
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D-wave components. It is expe<?ted that such a.calculation 

will be' $ensitive to th~) D-state ·!?robability, .PD, as ~ell as 
I"'" I 

t,he shape 'or the wave .function. Even i~ ,the deuteron binding 
, , 

energy as well as .pD aJ;e fixed" the wave function will change 

with the form of- the interactton, i.e,.,' it will be d~pendent 

on the off-shell behaviour of ~e -T-matrix. -Th~ calculation 

of the threshold cross section may be of ilI!Portance in " 

determi~ing the ~-:-sta:te pr~babUity PD' arid thus give 

. valuabie info~ati~n about the tensor component of .the N-N 
I. , • J _ --. 

interaction in' th~' 3s1- 3Dl state. . ~e~ently Thomas' and 

A~n<ln- 62) investigated this. p7b~em ~'USing' various lOC~; and 

nonlocal sepat;.abJ,e potentials and found that the' cross Q 

,~ection . ~~ sem.iti ve to both P D and the nonloci1-li tYjOf the 

1nteraction. . , , 

We haye tmdertaken the s~ 9alculation with the aim ., 

to sort out the various factors.contributing to.~e sensit~v-' 

i1:' in par~iCUlarpDo~ the-de1:lteron and the.off-s'hell 

behaviour of the interaction. ,We feel~ that only after such 
o 

a study can any conc~usions ~abO~ fixin~ Po from such an 
experi.ment be drawn. Keeping the' inte~action . in the p';p, 

channel fixed,; whiCh is taken to ~ either a_R~id';'Soft.eore 5} 
~:yj' 

(Me) local' Potential or a Tabakin l5)separ~I!'l potential -
3 .-'. \ 

in Pl-sta.te. We study the' vari,:,tion of the threshold cross -

section with different deuterOn wave functions'generated by 

a set of phase equivalent potentials. These ar\'!'generated 
':-;, 

by sUbjecting theJdcuteron wave .~unctions for RSC and for 
'. 

r 

, , 

J 

• 

I ' 

. , 

. , 
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~ 

our rank-two separable potenti'als 631 
• I 

, 
with varying PD to·the 

unitary transformation of Ref. 47) .1 The deuteron'wave 
I 

-function for RScis taken ffom Reid's 
, 

paper. whereas 

• analytical expressions for th~.w~e fqnctions of ou~ 

potentials are used. " 

• ! 
In Section V.-l'we briefly review the pion-nucleon .-

interaction ana. the methodo!: calculating the cross section. 

In Section V-2 we report our results:; and conclusions. 

! • 

/ ,-
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V':'.l 'Theory _ , 
.. The pion-nucleo':n i~teraction. densi ty ha~been. taken' . ,",,;' ,"'"' ., 

to be of the form usedj)y_woodruff 83), and,Koltun and 

Reitan 84), 

, 

where j denotes the jth nucl.,~on at posi~ion x 
j' 

, HO (x) = (4~)1/2. (f/\.l)i~'{V [T'Q(xl] , _ _11 ' 

oj, -1 
T'lI (xlf]) '(2l-1) ,[pT'n(x) + , - . , 

• 

"ij (x) = 41rAi\.l-1¢2 (x) ,,::'S 

, 1 , 

• , 

H2 (x) = 41TA2\.1 -IT' Q (x), x n(x) • >.. 

, 

, 

. V-I.l 

V-I. 2. 

V-i.3 

Here, 0 and Tare 
~), 

nucleon'spin and iso-spin operators, f is 
, , 

the nucleon momentum operator, and M and \.I are the masses ,qf' 

the nucleon and' pion respec,tively. The <;Jrlldient ~~ oporates 

only on the pion field ¢ (x) and its conjugate ~ {xl '; '!'nc 
. ,~. '. 

Hamiltonian HO is the pi~n-nucleon interaction density_ The" 

93 
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, 
pseudoscalar coupling COn&tant f2 is ,related to g2 by 

2,-
'2 ~ ~ ) 2 
f, = 4 (2" " ·11 '-,r The first term in HO is 'the' usual sitatic 

94 

, "-

! 

i:; 

~P-waveintgraction densityr The second term 'r~resen'ts th~ 
, , -. .......' .. '. . 

S-wave part included to make Ho G~lil~an-invariant; The,' 

terms Hi and H2 a~e "direct ~d charge' exchange interac:tions 

85 86) 
,',' , , , 

. 't d d ., t I' th I "S . ~n ro uce , 0 A!xp a~n' • e ow-:energy -wavepJ,on-nucleon 

scattering. Since at .the threshold the pion.' e.'llerges in ~e 

S-wave, the lowest order process'isgiven by the se~ond term 

~n HO' 1 It is' customal:y to include the second order process, 

~ich represents the pion produced at one nucleon, through 

ei ther of -the terms, in HO' ~d, rescattered into the ~wa"e 
. . , 

by the second nucleon through HI or H2" These second 'order, 

processes will cO,mpete with the lowest order process partl:y,' 

because' of the:- factor \lIM in, the second term of HO" :rhe 

coefficients ~l and ~2 are fixed phenomenologically, although 
~ . 

in principle these can be obtained from meson theory through 

a Foldy;'Wo1.lthuysen transformation 8Jr, The, transition 
, ' ' 

amplitude up to the second order is given by 

T
dP 

0: <Xd IT1x;> , 
" \, 

r 

T = TO + T' 
1 + T2 

3 

~ , 

t 81,2(i) (8 - B ~ ic)-lsO(j) 
i"j 

• V-1.4 

• 

, ' 

, • I, 

I 1 

\ ~ , 

1 • 

D 
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, • -....,........ . " " J " 
'The' 'tctal, Hamiltonian for, a system, of two, interacting, , . 

, , 
r . 

• , .., 
nucleons and'p'free,pion is denoted bY,H in'V-lo4 and E is,' 

. \ ' 

. the initiai fhannel 'energy in the, center 
< ' , . ~"+ 

initial and final ,channel 'wave functions Xp,and,Xd are the 

of !nass frame.' The . , 

scattering wave functio~. for' ,the t:w0 I>rotons' and the wave 

, , , 

", function .for the deuteron .(1)1 d). plus' 'a free pion,' respectively. '/ 

These·are·given as: 

".;,;. 

\ 
'" 

+ X (r) 
p -

. 1/2 . i(\ 1 u L 1 (t') 1111 
= +(47['3) 'i exp .' Y r Y:±ll 

, , 

* (r)' = u (r') 0110 d _ -r- YMO' 

V-1.5 

V-1.6 

. LSJT 
Here y is ,the. generalized'spherical harmonic,t is the MT ' 

z 
relative coordinate.of the two 'nucleons and the normaliZ'ations . . 
are given by, '. 

" {t 
• ., .. 

. -, 1 ' ~(r)./r .. sin (pr'"- '2 '!TL-+ t'iLJ)fpr , 
r .. CD' " , 

" ,.. 

for the scattering wave and 
• 

r (u2 2 ' 
I, + w ldr .. , ,V-lot 

0' / 

for the deuteron. All coulomb interactions are ignored. 
....) ~. 

FollO'..ting Koltun' a,nd Reitan we first e~aluate the Datrix 

elements of Tdbetween -tho initial' (no pion) and finlll 
P.' , 

, . 

." 

-~ 
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\ 
, , 

• . , 

- 0 (1T+ with oomentumlJ} pion states 7 and;:o,then using {he 
i I '\ 

\ 0 ' 

nucleon states, V-: 10 5 and V-l.6" obtain ,the expression f'or 
, -----

the absolute ,square of the transition amplitude summed over", 

initial and final spin states, 

where 

and 

L 
spin 

\ 

~ I = , 2 

13 = 

to-

1,4 = 
~ 

l 

IS = 

I6 = 

" 

I. 12 , 
~ 0 ' 

\ • 

'\ 0 

'1 

, 

" 

~r 
12 0 

drr
2w(r) d 1 u1 ,1 

. r (dr - r) r ' 

C1 r dr 2 u (r) of Ii) (A ~ .£) 
rr d:c ,r 

u1 ,1 
r 

, 
0 , I 

r . u 
1 dr r2 ~ F (r) (.2... -:!) ::..ld C -112 r dr r r 

0 <). \ 

Go u 1 ,1' 
C2' I dr 2 u (r) F' {r) r , 

r r 
0 

1 r r2 w(r) F'-fr~ ur,l C2 ".II' dr 
, 

r : ' r 
0 

" 
, 

.... 
• 0 

F(r) '" ; CXP(~Jl \lr) , F' (r) 

V-l.S 

-
\ 

. , 

.. 
V-109 

,-. 

, 
V-LlO 

- . 

, , 

, \ 

'! 
• 
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The lowest order tero of the T-matrix, TO' gives rise to II and 

12 , The next .and only hfgher order terms included, Tl and. 

T2 , yield the other integrals 13 - 1 6 , The cross section 

for the reaction'p+p ~ n++d at the threshold is give~by 

o = 
6 

n I 1: 
i=l 

, V-loll 

where n = I~I/~. We have used two sets of the potentials for 

the initial p-p channel: i) RSC and ii) Tabakin. In the 

case of RSC', ul,l{r) . is obtained by sOlving_ the SchrOdinger 

equation. numeri,cally; whereas for the Tabakin interaction 

it is obtained by analytically solving the SchrOdinger 

equation in the momentum space and t~en fourier-transforming 

the momentum space wave function. Our deuteron wave functions 

are generated by i) RSC and a set of phase equivalent pOten­

tials to it 'and ii) a number of non local rank-twosepar~le 
\ 

potentials with varying PO' and ~ set of phase equivalent' 

potentials to each of them. It is not necessary to solve 

for the bound' state of the SchrOdinger equation in the case 

of every phase equivalent potential, rather one can directly 

obtain the corresponding deuteron wave funqtion ~d by noting 

that *d = U9ci w~ere' U is the unitary transforinlltion such ~at 

it generates n phase equivalent potential as, follows: 



• 

.,. - -

• • ·98 
• 

H = T + V 

~ 

= T + V , 

~ 

where V is the transformed or phase equivalent pot~ntial. 

~ollowing Haftel and. T~bakin 47) ~e' have considered the 

unitary transformation U such that, 

U = I - 21\ 

and 

with 

1: 
JSMTT 

LL'. Z 

V-1.13 

gJST (r) gJST (r' \ ~JT (A) Y.L' SJT A '.1LJST 
L _ - L' .", MT . r MT (r)-.,L' '. z . z 

V-1.14 

The. matrix A is such .that ~T = 1 for uncoupled channels 

. ~~T, = ~ 
-l,L u LL ' or 

Sinecose) 
2 . 

cos e 
- . 

, V-LIS 

and 

for coupled channels. The radial functions ?L(r) are real! 
-

and integrable. ' If we demand that <r I J\ Ir-, > 0, as square + .. 
~ 

~ivvl r + CD, "r' + CD, ,sufficiently rapidly, not oii1r. doe!! V 
'" -, -

the Game phase shifts as V. but it also retains the/long 
-, / 

range behaviour of V. ' For the 3Sl-:30l ,states'we nbed only 

g~l~~d g~lO, which we tru:e of the form,· 

, !' , 
~ 
,:~ 

, .. 
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, 

where we have omitted the'superscript JST. The constants 

Co and C3 (C3) are determined py requiring '1'" r2 dr ~ (r) = If 
e 0 

We have five free parameters Qo' Bo' Q2' B2(Qi,Bi) and 6. 

The ,transformed deuteron wave function~s: 

-

with BO and B2 given-by, 

BO = J'" gO(r)u(r)rdr 
o 

, 

B2 a J: g2(r)w(r)rdr, • 

, . 

'. 

V-1.17 

~J 
V-l.la 

The choi~e of 6 = 1T/2 (O) affects only the S (D) components 

of the, deuteron wa':efUnction. ,Intermediate values of' s~e, 

give mixed~transformations, which change the D-stato 

probabili,ty. The separable pOtentials, wi th varying' P~ are 

ccpstructed using the formalism of Hehrotra and Sen Gupta aa) 

I, 
r 

. l , , 

" 

, . , 
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and Il\9_dilied-hy-us 63) . The form "of the potential acting in 

3S1~3Dl eigenchannel\ip : 

= ~ ;\.'{ M g(~)g(~') - h(~)h(~')} V-1.19 

with g(~) = elk) + T(~)S(~)/18 I. and the forms of various 

factors are: 

~\, 
elk) = 1/(62 + k2)' , 

I 

I 

and the momentum space tensor operator 

V-l. 20 

The parameter I;\. gives the strength of the potential, whereas 
" 

t and n represent respectively the strength of the"tensor 

component an~ the rep~lsion relative to the centralattrac­

tion. The remaining three parameters 6, y and p are the 

so-called range ~ters of the central att?action, t~nsor 
and repulsive form fac~orsl r~spectively. , It is po~si~le.to 

, 
obtai,n, using this potertt,~,al' \&nlllytical expressions for tho 

binding energy a and qua~p?le moment 0d of the deuteron, 
i, 

. , 

, . 
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. 
and the triplet scattering length. at' Given 

;>< - • 
experimental values o~ these quantities, analytical 

expressions determine the strength parameter~ (A, t.andn)\ 

in terms of the range parameters (13, y and p). We adjust ' 
, . 

these parameters until a reasonable 
, ...i 

phase shift is obtained. 

These ~ntials give different PD' We, t~e 'od'= 0.282 Fci
2 , 

. -1 ' 
at = 5.4 Fm and a = 0.2317 Fro • The potentials we list 

, ~ 

yield effective range r'Ot = L78 FIn, the asymptotic ratio 

o~ the D- and ,S-wave component is obtained to be 0.025 to 

0.033, an~ PD,is varied between 2.69 and 7.94\. The deut~on 
" wave fUnction may be easily obtained in an~lytic form as, 

u(r) 

and 

w(r) 

~ 
= 

1T Nl 

13
2 a 2 

x Ie -ar 

\ 

12 1T N2t 

= (y2_a2) 2 

(e -ar -Br .Pi ,11' ~;a2 
e ) +c 

(p2_a2)'2 , 

p2 _ a2 
e -pr (1 pr)] V-lo21 + 

2ai , 

where N2 = ZN1 ,Z. is a function of the parameters of the 

potential and N
I

' is determined through the normalization 

'condition r-(U2 .+ w2)dr • 1. 
o \ 

c 

" 

, , 
. ~ 

, 

I 
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V-2 Results and Discussion 

r 
In-this section we present:the details and/ the 

results of our 'calculations,. First we list in a schematic 

way the various interactions we studied. 

Initial p+p 

channel 

i. RSe 

ii. RSe 

if],. Tabakin 

, iv.' Tabakin 

Final '. 
channel 

RoSe wave c'function and its unitary 

transforms 
- • I 

,wave ~unction obtained from our 

'separ~le potentials 'and their 

" uni tary transformS ~ 

RSe wave function an.d, its unitary 

transforms 

wave function obtained from our 

"~eparable ~tentials and their 

,unltary tr~sforms. 

We use the sam!il' values of pion-nucle,on coupling constants 

as those used by Koltun and Reit'an'84) ,£2 .. '0.088.:' 
'89)' 

.. 0.045: More recent values " Ai - O.OOS'and A2 , ' 

f2 .. O.O~, Al -0.OpS8 and A2 

l 
102 

_ 0.?487, slightly change ~e 

, 
, 

" 

. . 
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results but in no way affect our conclusions'. 
, 

We use 

jJ = 139.4 MeV and M/jJ = 6.73. Table '5.1 lists the p,arameters' 

of the unitary tr,ansforr.lations considered,', some ,of which are, 

taken from Haftel and Tabakin 47). Transformations '1-'5, 

8-9 and 11-13; when aI;'plied to the wave, function obtained 

for Rse,;give the same electric form factor of th~ deuteron 
/ 

o 

$IS obtained for R,se, within experi'mental error. T:ransforma- I. 

tion 6 borders on ~n unacceptable fit to the form t'actor. 

,We also study the transformations 7-10 and 14~16 which alter, 

the form factor beyond the limits specified by the experimen­

tal erx;or. 'Tra~sformation' ~-; affe~t qnl~ j35l compone~t of 

the deu~ron 'wa've function; 8-10 affect only 301 component, 

'and ~e'rest are mixed (0° ~ e <90°). The mixed transfor­

mations changethe,~euteron O-state probabil~ty ~O' 

, Jit 

, Our'two ~.sep~rable ~t~~tial~ do not Yiel~.a 

to the form fa~tor data.' Th~s ~s in accordance,w~th 
, .' 

fact that the twO term separable potenti~ls with simple 

good 

the 

analytical forms yi~ld a Hulthen-type 90), '~f deuteron wave 
- --0 • 

function 'ljId (:) (modulated at short distances' for the Tabakin· 

potential) " which', unlike. the wave function of a 19cal 

pot!ential with repulsive core, does, not fall rapidly enough 

for s~all 'r, as demanaed by the deuteron form factor data. , 

No fixe9, criterion existS-, therefore, to classify, as in the 
, . 

case. of RSe ,the un!. tary transformations for, the ,separable 
" ' 

potentials. 'we n'ote that qenerally all our unitary 
;J 

. \ 

• 

1 

I 

• . , 



TABLE' 5.1 

. / . 

.. 

• 

Parameters of unitary transformations in the 
"- . I 

. 3 3' -
51- D1 . channel. .. The asterisk in the first 

,t; 
column indicates a transformation which on C' 

application to the'RSC deuteron wave function" 

does not 

electric 

yie\d. a sati,i,.facto?, .fit to 

form) factor as explained,in 

the deuteron < 
the text. 

. . 

.. 

\' 

~ ;, ; -. 

.. 

, 
i 
! 

i 
1 

.. 
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,\ 
transformations change the"forrn factor in the direction of 

agreement wi ththe experiments. 
;. . . .\."". 

·~:lt. 

In Table 5.2 we list our results for separable 
. , + . 

potentials wi th, varyi~g Pn in ,the 1f. d cl1annel. For each 

separable ~tential we have generated.pha~e equivalent 

• potentials aJ shqwn in column 2. For each such potential in 
+ ' 

the '1f~Channe1 we calculate the cross section oRin with RSC 

in .the p"p 7hanne1 and (Js/n with the, ~a~akin potential ~ 

thep-p channel. Table 5.3 gives similar results for RS9 in 
, ' 

the 1f+d channel where we also show the deuteron quadrupole 
, . 

moment Qd for 'the various pha~e equivalent potentials. ' 

Results for the niixed transformation are listed only for ~~, 
RSC and separable potentials V 2 and VS: out of V 1 - V 6' 'v 2 . ' 

- '¥ields the best phase shift fit and V5, has Pn ~ 7%. 'For the 
", 

m~xed transforrnation the "changed, values of Pn are a1so--" 

indicated. '. 
v • 

1) 

'J 
Tables 5.2 and 5.3 reveal the following trends: 

r ' ~ 
, J 

FOr every case 10 R < . (J .' Thus the cross section depends 
SO) .-I ..0 

on the non-lo~ity o~the nucleon-nucleon interaction. 

The scattering\wave 

, ' 

function x+(r) for small r is smaller p 

for Me' than) for Tabakin potentials, hence (J R' < (J 8 • 

'cOmparison"of the cross sectionswi~ RSC and VS' 

A 

JP
D 

~,'%) in the 1f+d channel leads to .,the same conclusion. 

: 
, .\ 

-. 

I 

• . 
, , 

", , , , 
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The cross section, either a
R 

or a ,'generally decreases s . 

. with increasing PD, i.e., with increasing strength of 

theterisor for'ae. However, this is not the case for the . . ,\ . 

mixed trru:sforrn~iO~s which change PD by llistorting the 

short.ran~sor~component. 
3) The cross section is sensitive to the off-shell benavtpur 

of·the nucleon-nucleon interaction. This sensitivity is 

~ very' much reduced in the caseof'RSC in 1T+d, ~speciallY 

\if we omit transformations 6, 7, 10, 14, 15 and i.6 17hat 

effeqt the form factor considerably. We find that· off­

sheli variations may produce verry different results, for 

separable potentials·than for a local interaction, e.g., 

tra'tlsfomation 1 which changes aR for RSe by less than . 
. " 

7% changes ·it for the ,separable potentials by 200-300%. 

, 
lJ 

It is thus clear that the cross section for the 

threshold s-wave'pion production is sensitive 'to the shape 

of the entire deuteron wave function, not just the PD which 
. "-

is an integral over it. Thi~ point is further_~ilustrated 

by the structure of the inte9rals II • 16 defined inV-l.9, 

that enter the e.xpression V""1.8 for the cross section. The 

presence of,the damping fa~tor F(r) ~means that relati~ely 
. w ' . . 1 . 

'short range (r < p- ) part of the deuteron wave. function is 

important in 13 - IS' The intcgralsI4 and 16 il.lvolving 

\ 

w(r) are ~pectedto be smal+er than, 13 ~d' IS' which depend ~ 

on u(.r)·. Further IS is enh~~ed 0,"rI3 ~y. the. factor 



, . 

TABLE 5.-2 Cross section for threshold s-wave pion production 

for a'number of non-local separable potenti~ls 

with varying ~euteron D-state probabi!ity PD and 

the phase-equivalent potentials for each of these. 

: 

o 

The_ h,st t,wo coluMns give oRin aTld~?s/n which are 

the crof\s s~ction~ obtai!led with 'the 3Pl Reid soft-

core and Tabakin potentials, respectively in the 

p-p channel. Tl;1e index 0 in the 'second column-
" refers to the untransformed.potential. 

, '. 

( 

• 

. . 

1 , 
I 
I 

I 







. ,,~ , 

'-~ 
TABLE 5.2 - continued 109 

8 157.2 173.8 

9 140.9 156.4 

10 78.9 87.3 

11 6.89 . 85.8 98.5 

12 7.02 87.3 99.3 

13 7.07 98.4 110.8 

14 4.95 44.7 57.9 

15 5.15 32.3 42.6' 

16 6.20 33.4 42.3 
l 

V6 0 7.94 178.5 196.2 

1 ·64.9 76.5 

2 90.3 104.1 .. ' 
5 170.7 196.2 

7 132.3 147.3 

9 131.5 144.2 

10 72.4 78.8 

"' 

.. . 
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TABLE 5.3 Cross section for threshold s-wav~ pion production 

for Reid soft-core and -its phase.-equivalent 

potentials. The notation is the same as in 

Table 5.2." 

, > 

c." 

• 

I 
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C2/C l ~ 12. The asymptotic part of the deuteron wave 

function becomes important'through II and 1 2 , To understand 
. . 

the nature, of, the contribution of these integrals we '. 1 , 
replaced u(r) and w(r) by Hulthen wave functions. This, in 

fact, turns-out to be a very good approximation for II and 

I 2 • We used the fourier expansion J gl1 (k)j 1 (kr) k 2dk for. 

ul,l/r. The6perators (d/dr + 2/r) and (d/dr - l/r) 

operating' on h (kr) yield kjo(kr) and (-kj2(kr» respectively • 
. :.-':-~ • ~ I 

One ilim{ediately expect,s from this that' II and 12 ·(and 

similarly 13 and I 4) would come ou~ preferably with opposite 

signs. Moreover, the integrals J dr r2 (u/r) jo (kr) . and 

J dr r2 (w/r) j2 (kr). which determine the' relative magnitudes 

of II andI 2 can be ea~ily worked out 'analytically in the 

Hulthen approximation, and th~s reveals the curious fac~ that 

the contribution from w (r) . is so enhanced that II ~ 12 for 

. Po :t 6%. We note that such enhancement iS'suppressed in 14 

by the damping factor F(r). We list the values6f II - 16' 

for the untransformed potentials VI' V 4" V 5 and RSC in the 

n + d channel and both RSC and Tabakin in the p-p channel in 

Table 5.4. This table confirms our,observations about the 

structure of the integrals given in ~-l.9. The largest 

contribution to the c,ross section comes. from IS and off-shell' 

variations affect it considerably. At the same tlime, it is 
...... 

pointed out that extremely short range transformations, e.9:., . 
. ' : '" 

. transformation 5 of Table 5.1, distOrt 1/Id(:lonlyfor very 
-' ~ . 

small r (r «'1I-1 ) and., hence do not alter the crosllscfcti'On' 

. 
;; 

, . 

1 . 

:, , 
• . ' 

. , 
;. ~' 

• 
I , 
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TABLE 5.4 Radial integrals 
, 

I {i = 1, 
~ 

... , M. for various 

potentials. !l'he integrals are defineJ in V-l.9. 

'. . . 
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,~ignificantli'. If Po' is ~creased the cross section is found 

to reduce. since the change in (II + 12) te~ds to cancel the 
"-

change in (IS + 16). 

Are we in ji position to de.termine PO' and, the~efore, 
./ 

the strength 'of the tensor.co!:lponent of the N-N'interaction, 
. 62) as conJectured by Thomas and Afnan., , from the threshold 

s-wave pion production? The~answer can' hardly be affirmative, 

at least, in the context of one,'or two term separ$le poten-
, 'c r-

tial~ of simple analytical form. It might. be possible that 
; ,.' fI" 

this reaction enables one to ,fix PD and, ,therefore, the', 

'strength of the tensor force' in the context of a local 
" ," 

interac~ion, such ~i;, RSe, which reproduces deuteron.form 

factor data in additio~ ,tq/the two body data. We note that 
, 

the variation in the cross section. is severely constrained 

(to about 10%) in the cas~.potentia1s, phase equivalent 

to a iocal potential (RSe), whichfeproduce 'the deuteron 

form facto~ within. experimental.error., Similar const~ints, 

on the variation of the binding e~ergy of the triton have' 
49) been ~bserved recently by Haftel 

-', " 
HowevElr, we note that • 

\. . 
the value-of the threshold cross section (d" 1?0.2 pb) we 

~ ...,~-::~"""""", ~. ',' 

get using RSe in both p-p and ~ d channe~s and the more 

recent values of the parameters f2, ~l and ~2 (Samaranayake ' 

and woolcock~9» fall considerably short or the expertmental 

result (0 = 240 ± 20 pb) of Rose 91).' The experimental 

result of ROse itself is in considerable disagreement 'with 

, . 

, ., 

, . 
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earlier work by Crawford and Stevenson 92) who found 

cr = 138 ± 15 ~b. Mo~eover the contribution to the' cross 

section fron,terms of higher-order in pion-nucleon 
(" 

interaction remains to~e_estiw~t~d • We have seen that the 

contribution,of the second-order terms (sum of the integrals 

13 -16) dominates over the contribution of the first-order 
, 

. terms (~e sum of II and 12) ~. This suggests~at the higher-

order effects may be important. until the theoretical and 
> ' , 

experime~~l situation bec?mes clearer, we feel that, the 
, !" 

~ 

cross section for s-wav~ pion production near the' threshold . ' 

in p+p + '!T++d can, at best on:y support other more conclusive 
'\ ' '. 

sources, e .'g., rr-d elastic .scattering data (Michael and 

Wilkin' 93»,'in dete~ining the D-state probability of the 

deuteron and hence the relative strength of the t~sor to 
" 

the central component of the nucleon-nucleon interaction., 

, 
, ,I 

'I 
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CHAPTER VI 

CONCLUSIONS 
-, 

In this chapt~ we sulilmarize our main conclusions of 
,.-, \ 

this study. 
, 

) 
,-' 

We have generalised the Jost-Pais theorem for 

" nonlocal central and noncentral 'potentials. We-have shown, 

that, 'unlike the local case, the Jost function for the 

nonlocal potential if; given by the ratio cifth~ Fredholm 

determinants of the kernel of the Lippmann-Schwinger 

equation for the scattering solufion to that 'of the regular 

solution. 

Adapting the formalism of Fuda, we have developed a 
<,;... • .' 

method of constructing partly non local phase equivalent 
• . , r 

potentials., These potentials have a local a,ttractive' part 

superimposed with a repulsive r~k-one separable potential. 

Theattrfctive part has a compar~tively- larger range than 

the repulsive paTt. Although we constructed such potentials 
, 

only in, ,the S-state, the E!lethod can ~ 'used in any uncoupled 

chanI\el. Rank-two sep~rable phase equiva,lent potentials can 

also be gener~ed u'sing ~e same ~thod. 

The study of the partly nonl,ocal ~t~tials'along 

with r.ank-two "separable potentials' reveals the itIIPO,rtance of 

the role_ of the two-body bound state w~ve function in, nuclear 

115 
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ma~ter results.- The ~ep~rable potentials, for this study, 

have ,been constructed suc~ that their attractive part is 

independent~y phase equivalent to tije attrac~ive p~rt of the 

The special case, when the' partly nonlocal potentials. , 
,~ 

~ " ( 

repulsive 'form fa.ctor of the potentia'l is orthogonal to the ' 

two-body bound state wave function is referr~d to as the 
" " ' " , 

limiting potential, which is unique for a given attractive 

potential. For'such a situation we.have found a large drop 

in nucl~ar matter binding'enerqy for the separable case. 

No such drastic drop has'been observed in the corresponding '. . ". ' 

situation of the partly nonlocal,poten~als. This is 

attributed to the high momentum compOnents. of the bound state C.) 
, . 

~'ravc function of the attractive separable potential ,which is 
, 

very different from that generated by the ,local l;\argmann 

potential. , 'These potentials have been ~onstructed and 
. - __ ,;c' . 

studied for the S-state only, because'its contribution to , . , 

, " nuclear matter binding energy is the largest. 

Different phase equivale?t potentials have been 

generated 'by using shor~ range unitary transformations on 

the twQ-body Hami~ with a Reid soft-core,or separ~le 

potential., These~tentials have Ii tensor compOnent and 

generate differen~ deuteron wav9 functions. The deuteron 

wave functions generated by different phase equivalent 

potentials have been used in the .. study of the threshold cross 
~ . 

+ ' 
. section for the reaction p+p: ... 'If +d. It has been shown that 

the cross section is sensitive to the form of the entire 

""'" 
'I" 

, 

, I 
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deuteron wave function as well as the Q-state-probability af 
. ,! 

the deuteron,. Thus it -would not be reasonable to expect 

that this 'reaction would enable us to fix the D-s~ate 

probability, which is only an integrated effect over ~e 

square of the D-state deuteron wave function. It has been 

shown that the variation in the cross section is reduced when 

the phase equivalent potentials are constrained to reproduce -

good deuteron form factors. 
• 

The results of nuclear matter and the threshold cross 
- A -

section for ptp ... 11+ +d strongly indicate' -that for a ~eailing-
ful comparison of the·off-shell effects in ~y-body 

problems, the phase equivalent potentials should be 

constrained to gcnetatc deuteron wave functions which can fit 

the available exper.imental data on the form factor • 

• 

, 

. < 
" 
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'''--------. APPENDIX A 

Generalizations of the Jost-Pais Theorem for Nonlocal Potentialsl 

YOGESHWAR Si!'<GH' AND C. S:WARKE' 

Physics INptlTl/MlZl. J.fc.\lastO" Uni["~nilY. Htimilion. Olflario 

Rcccivcd DCccmber 4. 1970 

\Vc &rive {!cncnl expressi?ns for the Jmt (unction of a nonlocal ccnlr.lI. potenfial in any an~ubr' 
rn'omcJ'\.um st~l('. a~d ~eneralizc I~ rl..~u:ts v,"hcn there is a tensor component in the nonlOClI potential. 
These ~ulls relate tbe -Jost funchon to the fredholm delcnninants and a~ &eneralizattor..$ of the 

. JOSI-Pa:s theorem for the correspond:ng local case. < 

<-
". ,.Nous dCduiso~~ des cxpmsions.~~r:tles pot.:r la fonction de losl d'unp('Itmticl ttnl~1 non \ocal d!Ins" 
n l~porte qtl~l clat de moment CI.ne-tlQue. el ~nCralison~ ct'S ti"sl.lltats au as ou une: com~r.tc ten· 
$Onelle cst prcseJllc dans lc: rolcntlci non local. C~ muhatf relicn: 13 rondian de Jost au~ d(tcrmin;m's 
de I:rcd.holm ct constituent d~ cCnCralis::llions. du t~Corime de Jost-P:tis pour Ie C3.S local OOfT'C'Spond..,oL 

. CaDadiaG..J.oarn&I 0( PIQosics. "'. Ic...--J (1911) 

. 

• 

equations is given in the second section. This 
The theorem thaI the s-sfate Josifunction ofa change in the relatioo of the Jost functionf,(k) 

central local potential is equal to thc;Fredholm to the Fredhol:n deterlllin~nt, ingoing from loed 
determinant of the integral equation of a scaller- to the nonloeal potential. gives rise to addition,,-I 
ing solution (Jost and Pais 1951) has been general- zeros> of fl.k) On the positive imaginary k axis­
iled By NeMon to higher p~rtial,wavcs (Newton These poles dO. not correspond to bound stat'!S. 

· 11l61). It i, ,I<(>,t.-now'l {N"'1(>~ 191'6) tht ,"e These redundant zeros of I,(k) could easily'b: 
· delenninant of the Jost matrix. for the local removed with theclr~ngeofasymptotic boundary. 

noncentral potential. is-"equal to the Fredholm condition for the Jllst solution of :1 nonlc~1 
determin:mt ofthe-sct of the integral equations of potential. This woul~ trivially modify the rc!,!,(,n 
the .scattering solulion. Recently, it h:tS been i;t orthe spectral functIon to the ncw Jost funcl!;",. 
shown (Warke and nhaduri 1971) thai the s-sute . 

· Jost function for a nonlocal Pot~ntial is equal to 
the ralio of the Fredholm determinants of the 
integral· equal ions 'of the scattering solution to 
that of the inte~ral equalion of the regular 
solution. 111 the fj.,;t section of ttois ·paper we 
generalize this result tl) tile nonzero angular 
momenla. The derivation of a similar relation 
between the delerminant of a Jo!;t malrix of a 
noncentral. nonlocal potential and the Fredholm 
determin:mts of the colTt$f.Onding iillcgral 

, . 

[I] 

Z. Jost Fll\letioa or IJigbft" An;:ulu Mcment: 
wilh • Ceotral Nonlocal POltllti21 

In this 5tttion we ~umea central. nonlocal 
interaction betweer; two scattering particle •. In· 
'order to clarify t~ noution. and Ihe approach 
of the deri"alion of the Jost function. we will treat. 
this seclion in more detail. nl. usual exp:ul>ion 
of the \\",m: function in p.,rtial waves giVe< the 
radial S<:~rodinger equation 

where Ihe nonlocal t"'o-body intcraction1l! in the diagol\llllsjchannel is rdaled to ~'as followS: 

(2] 

lIere ... h the slrength or the pOlenti~1 :lOd II is tile rtdlJ~J mass. Throughoul this JUpa we win supl'ress 
die k dependence of lhe fun:tioM in order t6 simpliiy the nOlAlion. The colTt$ponding Lippm,nn-. 

~, 
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Schwinger equation of the outgoing scattering,solution is 

(3) ('1*/) ='('1*/+0) +Y('IG/".,+) :;c . ,,+0) - ulP) . 

[41' 

The functions u,(z), r,(z), and 'w/(z) are defined in terms of spherical Bessel functions j,(z). cd 
Neuman functions II'(Z)" , . 

(5) u,(z) = zj,(z), o,(z) = m,(z), w/-(z) = ':"'[0,(:) + "".(z»), ",/(r) =o ...... ,-(z.) 

SimilarlY,the integral equation of the regular solution is, 

(6) ('19,) ~ ('19,°) + y(,IG,V9,) 
wbere 

('19,"? - (2/ + I)!! k-(l+l)U,(kr) 

(7) ('la/I") - [u,(ki')v,(k,) - u.(kr}p.(k',)lIt for " < r 

- Q Otherwise 
And it obeys the boundary condition 

[8] lim ,-(1+1)('1+'> _ 1 
... 0 

Finally the JOSI solutions are gjven by' .' 

(9) . " ('IJi") - (rlJi.' + y<,IC,VJi") 
In (9), G/ is the transpose of G, defined in (7). and '\. 

(10) (rlJi.o) ~ c-lalll",,"(kr) " 

The boundary conditions for ('IJi") are 

[II] lini e· .... <rl/,"> - 1 ,... , 

In terms of these solutions the Jost functions an: defined as fonows 

[12] 

From [L) and [II) one c:an prove in 'general that the Wronslciall 

[13) w{<'IJi+)~ (,tin). •• - !t1{'IJi+). ('IJi-)J. •• - -211, 
Using (6), (9), and (13) onc~btains·, 

[14] ('19,) ':' (2/ +~rlk-"[C-~2/,-(I()(rIf'+>' - eWt2/,+{1xrtinJ . 
and 

[lSI Ji+(k) -Ji-~(k)-I + Tk'c- lal<w,+olY/+'>f(2I'+ 1)11 . 
" . 

From (6), [9}. and [ISJ il \:3n:{urtber be shown that 

(16) .! I, +(k) - k' c-Wt2U,-JYI+'>/(2l + 1)11 
cIT.. . 

.. .... :J' 

J."" " 

, 
.' 

I 

I 
l 
I 

" 
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• 
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FoIJow'.ng an approach similar to that used in Warke ~d Bhaduri (1971) we define a functi~n 
[17] '\ (rlF,Jr,) - (rl!f, +IT')'- (rl!f,lr') 
Where the interacting Green's. functiollS'uc tiVCll by , 

[IS] 9,+ - Gt + yG/P!J/ - G,+ + T'II,+YG,+ . ~ ~ 

9, - G, + J<i,P!J, - G, + T'II,YG, ' 
• - - 00 

ItCltll be derived from [4], [7]. ana [18] that 
" 

(
' dl 1(1 + 1) ) , 
-drY + ? - ~ (rIFdT') + y<~JYF,Ir') - 0 

(rlF,IT') I..:~ -c .... % (a function of I. k, aDd r) 

Tbe solution F, of (19) that satisfies the boundary c;ondltions (20) is . " . " 

[21] (rlF,IT') -

, . 

\., 

Using [21 land the property that <rU; -) is thec;omplex c:onjugatCof <rU; +). eq. (16) further reduces to 

[22] Ios/, +(k) -. - k}r FY di , 

In the derintion of [22J we also used the' fact thatji .. (k) .... I as'y .... 0.11 is now stmglllforw:ud to 
prow: from (17). [l8J. and (22) that ; e? • > 

(23J . ji~(l);' exp [Trlog(1 - yG,+'Y)lIexp [Trlag(1 -yG,Y>J 
" .' '. r 

·.Oct(1 - yG,+ Y)!Det (1 - yG,y) 
In !he case of a local ~potential the determinant in the denominator of (2l) bec:omcs 

(24) Oct (1- 7G,Y> - 1 .' 

Th~ !heji +(k) in (23) reduCes to the Fredbofm determinant of the integra! equation for the sClItericl • 
solution. In the case of a non local potential the denominator in (23) introduces redundantlmlS of 
"+(k) whi<:h do not c:dm:spond to bound states. This k.ccpcndentconstant factor c:Ul be rcmO\'Cd by 
'mOdifying the asymptotic: boundary condition as follo,",'S: . ',' 

[2S) .... 
It can also be shown tblll'the spcc:tr.il function corresponding to a nonloc:al ~tc.nti~1 bas the s:ame 
rebtibn 10 iuJost function as that in the ~ of:a local potential. Thus any multJphcatJ\'t factor • .» rn 
[2Stwould introduce a trivial modification in tliisntatioll. For a special C2SC ofa sepanblc p<ltentilli. 
~(23)red~to' -. 

[26] ,,+(t)-(l-TTrG,+y)!l1 ~TrG,~ .-:J 
, . 

. . . ., " ------_._._----'---- -------~- -'-'~--"'- - .. -.-~' 
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3. Dekmlilw>t of the Jest Matrix for a NonlocaJ. Non=:tral PottntW 

In this section we assum~ that besides the central and spin-orbit forces there is also a noncentral 
tensor force component present in the nonlocal interaction (rIUlr'). This interaction conserVes toW 
s;>in s and the tOlal angular momentumj. but not the relative angular momentum I. The partial wave. 
,malysis now yields a set of coupled integral equations analogous to eqs. [3]. [6). and [9]: 

[27] (,Iv/> - ('1+/> + 1('IG/ VV/>' " 

[28j ('19J> - ('19/> + 1(,IGJV9J> 

[29] . ('1//> = ('IJj.o> + 1(,IGJV.//> 
Because the angular momentum component I, c lis coupled by Vto the I: = 1+ 2 component, the 
solutions of [27) to [29) now will be two component vectors. There would be two such independent 
solutions of each equation depending on the incident wave component (y = 0 solutions) pn;sent in 
eitherthe I, Orf2 channel. It is convenienttocarry both these solutionstogetherin a matrix form where 
the two columns of this matrix are the two vector solutions of the integral equation. Thus all the 
symbols used in (27) to (29) are 2 x 2 matrices in tbe /space. In this section the Green's functions and 
the interaction will be considered' , matrices in the , as well as in the i space together. For the sake 

. ~f completeness we quote tbe de: .. lions of various quantities used in (27) to [29]: . 

\, ~ r( Y,,>JIU(r. ,,)1 Y'w)r' - ('IIIYIr":> _ 

where Y ",{t, a) denot.sthe usual normalized wave function with spins and orbi\al angular mOmentum 
I coul'l,d '0 ,?,al an!'Ular momentum j. Be<'au~e ofthe rot3tion:1I invariance of the interaction. Vwill 
nol depend on the projection of j on the: axis. Therefore its dependence is not indicated explicitly in 
[30]. On the left-hand side (LHS) of 130) the angular integrations and the spin summations arc 
carried out. The y - 0 functions in (27) to [29] arc 

[31)0. (riXJ~ _ «rill,·> O. ) 
. 0 (rfx,. > 

" .... here (rlx,o) can be ('1*,°), ('i9,O).or (,I./i • 0). which arc defined in thepreviousseetion. Similarly. 
the unperturbed Green's functions area!~ defined in terms of their earlier definitions. 

[32] (riG.,I~') _ «riG .. tr') 0.) 
o (rIG,.[r') 

Lastly the boundary c:onditi~ns on the various matrix solutions arc . 

[33] • lim (ri+J> - ".+1 
... 0 

[34] lim (rfl/> - I c*'" .... 
We will ass~me here th:lhhe'o1f-dizgonal elements of'" in the'matrix eqs. (27) to f29] arising ~n ~ 
matrix product are not divergentat, - O. This condition on the potential can be ~iclc<! b): mochf)'lOI 
the inhomOGeneous term in these equations (NC1'10n 1966). In 13~1 and I~~ L IS a diqOcal2 x 2 
matrix ,.ith clements I, and 12 and I is. unit matrix. The W~nskWl matnx IS ddiDcdu • _ ":-

[lS] W(j{r r)) - Krl:'(r) - ]Tr)g(r) \ 

Thebaralthetopdamatrix/dcno . itstnmsposc"iothe2 x 2{.sp11cc.. , 
From the matrix dilT~lequaof (rut> and (rlfJ-> it can ~bc PfO"Id tIW 

(36} wt(rW>. (rlJ -> . •• ",. W[(r~+>. (rlfJ->~ •• - -2Il 
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!be ri?i:t-hand side (RHS) of [36] ~ II 2 x 2 unit matrix. Proceeding in exactly the same way as we did 
In denvmg [14] to [161, one obtams the corresponding matrix equations from [28]. £29J, and' [36]. 

- 1 - " ' -
[37] (~+J) - Uk [(rlfJ:)fJ -(k) - (rlr)h +(k)]eldllk-l./(2L + 1)l! 

. The lost matri=h±(k) are givcn by 

[38] '0 h +(k) - [h ~(kW - 1 ;'" T LC>'(rlfJ+ ">(rlYJ) dr.c"- IdIlk'-/(2L 4- 1)1! 

" Dilferentiating [38] with respect to T and usillg [28] and ,[29], we get the following Rlation 

[39] ://(k) - fo" dr(rlfJ-)+(rlY+J)dre-ldIlk'-j(2L+ 1)1' 
/ 
[The matrix generalization of [17] is straightforward. The il'tcraCtinp, Green's matrices are 

\(40) !I/ - G/ +TG/~/ ='G/ +y'i1/YGJ~ 
\ 

" gJ - ?J + yGJY'§J - GJ + y'i1JYGJ • 
and the F matrix we take as 

(41) 

From this definition and (40) one obtains 

[42] 

(_ ~ + L(L/ 1) _ ~l) (rlFlr') + T(rlYFlr') ~ 0 

( 
-d2 L(L + 1) ) - ' 

- dr" + r" - - k' (rlFIr') + T<rtFVJr') - 0 

With our assumption of the behavior of <rl VJr') (or r, r' .... 0. itis not difficult to findQut the bound3lj 
conditions of F from [40] and [41). 

- d 
(rlFlr')l...o - 0, dr <rIFlr')I ••• ·~o - - (L 4- 1)/(2L + 1) 

, (43) -
(rtFlr')I..~c> - c"" % (a matrix function of I, k, and r) 

The solution of the coupled differential i:qs. [42) which satisfy the matrix boundary conditions (43) is 

[441 , (rlFI;; -.- <rltJ)(~~;~ rJ -I (kXr'V/),,, " ,," 

, , Multiplying [39) on ~th sidCs \vith~trix ~ -(kn- 1 .:ad taking the trace o,u the 1 s~, onc 
oblllins . ,) .. " -

[45] 
d " • ' 
ar log [Dct//{k)] - - Tr~" 

. ' . 
, Th~lr.Ice in [4S) is no~ over the r II$. well as OVcr the Is~. in deriving [4S) we'used the invari3nee 
of IItracc with respect JO the qtlic permutationS of Il matrix prod~ along with [44) Wl,th tl-.e property 
!hilt' ", -

[46) " 

From [40) and [4S) it can now be shown !hilt 

(47] , Dc:th +(kf;' Det {I - yG/ Y)/Det (I - TGJY) 

, ' "'._- -,-- .... --~~-... ---'- ~-----, ... ---,-~--~----
~ 



The determinant on the LHS is over the 2 x 21 
space while that on the RHS is over both the r 
and I space. Equation (47) proves the desired 
result that the determinant of. a lost matrix is 
equ~1 to the ratio of the Fredholm determinants 
of the coupled integral equations of (rl* J +) and 
(riM respectively •. 
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.APPENDIX·B 

In order to calculate <klvAlk'> given by 111-2;15, 

we have to evaluate n (k) by 111-2.18 as well as the matrix 
.. 

elements of the BaI;gmann potential <klvllk'> numerically. 

The calculation Of. n (k) involves the evalc.ation of C:>p'(k) 

and 9:3 (k) which are de.fined in ,the coordinate space by. 

III-i.ll and' III-2.14. For example, 

J
oo -ar(1_e-2br).. 

dr e s~n 
(Hee-2br) . o 

kr 

B-1 

with I(k) = 1m 

transform~tion 

we obtain 

r
CC> e-ar e ikr =-__ ~~_ dr, where a = 2b. 
o h+ee-ar) 

, 

.' 

M~ing the 

B-2 

!.- ilt 
1 1 

I(k) .. 1m (ae 13 
!.+ 
a 

ik - Je a 
-1 +. 

dy(l~y)-l a a). 
Y, 

0 • 
• 

Note that 6 > 1; hence the above integral can ):le decomposeCi 

into two parts: from 0 ~ y S 1 and frym 1 .~ Y ~ B. The 

1'24 

\. 
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,integrand in the two parts can be ~panded in power series. 
, 

-1 of y and y and integrated term by term. The final result, 

although complicated, can-be evaluated v~~ fast in .the 

computer: 

I(k) = ~ -Sl-+ B(l-a/a) 
a B 

+ 2a 2a (a2+k2)S cos(k -5 
a 3 

.+ 
. a 2 3 

/' 

x ka 
k2>l"a2 

2k 5 
a 2 

~ Ja2+k2)53 
a -' 

where Sl' 52 and 53 are defined as follows: 

CD (_)n -n 
51 = 1: 

B 
2 k2 

n=O (n+1) 2 
a . 2(n+l)a + +--

cr.2 (1.2 a 

CD (_~n (n+l) 2 
S2 = l: 2 a2 2 4k2a 2 

n=O [(n+l)2:+ 'L - a 2] + 
cr.4 ~2 . :a 

.' " . 
"" ( .. _)n 

and- S3 =, 1: 
k2 ;i2 2 4k2a 2 

n=O fCd+1) 2 tr + - ---1 + 
a 4 cr.2 . a2 

aa 

log B) 
a 

1 

• 

B-3 

~ 

Combining B-3.and B-1 we obtain-¢B(k) accurately even for 
§ 

verY large values of,k. 
, 

A similar method is used in 

f 

evaluating integrals coming in ¢p(kl' and <klv1lk";..andthis: 

turns out to be much. fas'ter than using Simpson I s rule 

. ~ -
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. ..,/' 

directly. We do not giv~ the detail~d.e~ssionsfor these, 
, 

which are obtained in a straightforward manner. \ , 

, , 

, 



, 

REFERENCES 
'. 

1. NIGAM, B. P., Rev~ Mod. Phys. ~ (1963) 117 

2. 

3. 

4. 
" 

5. 

6. 

7. 

8. 

9. 

It contains many references of original papers in 
. 

phase shift. analysis. 

SEAMON, R. E., FRIEDMAN, K. A.~ BREIT, -"'., HARACZ', R. D., 

HOLT, J; M. an4 P~SH, A., Phys. Rev~ ~ !i968)/ 

1579 

GAMMEL, J. L. and THALER, R. M. , Phys. Rev •. 107 (1957) , 
291, 1337 

\ 
HAMADA, T. and JOHNSTON, 1. D., Nucl. Phys. 34 (1962) 

'\ 

382 () . ./ 
<1968) REID, R. V .• , Jr. , Ann. Phys. (N. Y .) 2.Q. 411 

. 
BRESSE'L, C. N. , KERJ.1l\N, A. K. and ROUBEN, B. , Nuc1. 

Phys. A124 (1968) 624 -
BRYAN, R. A. and SCOTT, B. L., Phys. Rev. 135B (1964) -

434 

'SCOTTI, A. and WON~, D. Y. , Phys. Rev. 138B (1965) 145 
---,-

LOMON, E. L. and FESHBACH, R. , Rev. Mod. Phys. 12. 

(1967) ~11 

"10. KIANG, D., P~TON,M. A. and YIP, P. C., Phys'. Rev. 
-, 

ill (1968) 907 

ll. SUGWARA, H. and VON RIPPEL, P., PhyS. ReV. ill (i'969) 

1'164 I 

121 



o 

128 

12. INGBER, L., Phys. Rev. 174 (1968) 1250 

13. UEDA, '1'. and GREEN, A. E. S., Phys. Rev. ill (lS68) 135&- i , 
, , -

14. TABAKIN, F. and DAVIS, K. T. R., Phys. _Rev. 150 (1966) 

15. 

16. ' 

17. 

18. 

79 

TABAKIN, 

TABAKfl, 
/ 

'MONGA."'I, 

MONGA."'I, 

F. , Ann. Phys ... (N. Y • ) 30 (1964) 51 

F .• , Phys. Rev. 174 (1968) 1208 

T. R. , Phys. Rev. 175 (1968) 1260 

T. R. , Phys. 'Rev. 178 (;).969) 1597 

19. SERDUKE, F. J. D., Ph.D. Thesis (University of Cali­

fornia, Davis, U.S.A.) 1970 

20. CLEMENT, D. M., SERDUKE, F. J •. D. and AFNAN, I.· R., 

Nucl. Phys. 

21~.c' F~;DELD~Y' H., 

22. CLEMEN~ D. M. 

(1968) 27 

~ (1969) 407 

Phys. Lett.30B (1969) 603 -
i 

and BARANGER, 'E. U., NUcl. ,Phys. gQ!, 

23. McKEE, ,J. S. C., Reports on progress in Physics 33 ,..... 
(1970) 691; MITRA, A. N., Nucl. Phys. E (1962) 

AMADO, R._ D., Ann. Rev., Nucl. ScL II (1969),61 

529 

24. 

25. 

26. 

I 

The ab~ove tWo articles contain other relevant 
, . 

references both pertaining to theory and experinlentlL~ 

fOr the study of three-;bQdy problem' 

GELFAND, I. M. and LEVITAN, 'S. M., Izvestia Akad. Nauk •. o 

S.S.S.R. Sera Math. II (1951) 309 

MARCHEN1tO,V.~, Dokl. Akad. NaUlt. S.S.S.R. II (1950) 
" \-.{. ". 

47 (See also V. de Alfaro and '1'. Reqge, ·potential 

Scattering-, 'North Holland Publ.'Co., AmstUdaza ,1965) 
. .. . 



129 

OMENS, R., 
r' 

27~ 

28. BOLS'rERLl: , (U.S.A.) 2. 

(1965) 141 

29 •. TABAltIN, F., Phys. Rev~ill (1969) 1443 

30". MAR'l'IN, A., Nuovo. Cimento. !! (1961) 1257 
• 

31. CHONG, K. F •. , SIJiGB, Y., SPRUNG, D.W. L. and 
-.' 

> -SRIVASTAVA, M. K •• Phys •. Le1:t. ~ (19'2~) 132 

32. FTRDRIDEY, H~. NucL. Phys. Al56 (1970) 242 
"0 -

33.' mtSTEIN, H .. :r5Phys. Rey. 117 (1960) 1590 . -.. 

P.hys. Rev.. ill (1967) 1247 

35. MASON, D. L •• ~, M •. L. and van derWOUDE. A., 
-., ~ . 

. Phys. Re~ •. 17~ )1~69) 940 

36. m:LLIS~ A., .COMPARAj, V. ,FRASCARIA, R., MAR'l'Y, N •. 

'J MP'RIzr, M: and WILLIS, N., Phys .. Rev. Lett. II 

37. -

38. 

. (1972) 1063 • 

BROiiN, v. R •• Bull. AiD. Phys.- Soc. 1£ (1967) 471 

DRESCHSEL, .D •• ~. L.C. and WARNER, R. E., 
o • ~ 

39. 

- 40. 

_ Phys. Rev. !!!!. <\969) l'?20 
\ 

BRONN. V. R" Pbys. Rev •. C 6.(1972) 1110 
'.' 7 

MOSZKOWSKI, S. A., Phys. ReV. 129 (1963)' 1_901 
, '-, 

193 

42. DIWtIN, P., Pbys: ReV. 137 (1965) B75. 

43. FIEDELDEY. H., Ruel: Phys. ~ (1969) 353 -. 



, 

" 

4:4 • SRIVASTAVA, M. K.,· SINGH, Y. and BHADURI, R. K., Phys. 

" ' 
I Lett. ~ (1970) 333 

, 

45 • COESTER, F. " COHEN, S., DAY, B. and:, VINCENT, C.. M.,. 

o Phys.· R.ev-. e 1 (1970) 769 

46. HAFTE;r..; M. I. and TABAKIN, 'F. , Nuel. Phys. A158 (1970) 1 

47. HAFTEL, M. I~' 'and 'l'ABAKIN, F. , Phys. Rev. C 3 (1971) 921 

48. .: HlU"TEL, M. I., LAMBERT, R. and SAUE~P. U., Nuel. Phys. 
O!,-, ' 

A19~ (1972) 225 , . 

49. HAFTEL, M. I., Phys. Rev. (to be published) 

50. MITTLSTAEDT, P. and RISTIG, M., Z. Physik 193 (1966).349 
, ' 

51. RISTIG, M., Z. Physik ill (1967) '325 

52 •. BAKER, G. A., Jr., Phys. Rev.' 128 (1962) 14115 
" . ."-

53 •. RISTIG, M. and KISTLER, S., Z.Physik 215 (1968) 419 
- . - . 

\ 
54. MU.T.ER,.M. D., SHER, M. SOl SIGNELL, P., YODER, N. R. 

. , t 
and MAlUCER, D., Phys. Lett. ,30B (1969) 157 

155. KISTLER, S", Z. Physik 223 (1969) 447 
-~. <:} 

56. SRIVASTAVA. M. It., Ph'.D. Thesis (McMaster University, 

Hamilton, Canada) 1970' 
/ 

57. SPRtJNG~ ,D. W. L. 'and SRI~TAVA, M. K., Nuel .. Phys. 

A139" (1969') 60S .- • 
58. F1JDA,M. G., Phys. Rev. c!.. (1970).1910 

59. WARltE, C.' S. and BBADUlU, R. K., Nucl. Phys. ~ 

(1971) 289 

60 •. ~, v., Rev. Mod. Phys. II (1949) 488 
, 

• 



131 

61. B~Q\,VA, P. C.' and SPRUNG, D. W. L., Ann. Phys. ·.(N.Y.) 

42 (1967) 222 

62. THOMAS, A. W. and AFNAN, 1. R., Phys. Rev. Lett. 26 

• (1971),906 

63. PRAD~~, H. C. and SrNGH; Y., submitted for publication 

in thePhys. Rev. C) 

64. JOST, ,R. and PAIS, A., Phys. R~v.\~ (1951) 840 

65. NEWTON, R. G., J'. Math. Phys. ! (1960) 319; 

66. 

phys. Rev • .!!! (1959) 1611 

\ LIPPMANN, B; A. and SCHWrNGER, J.,Phys. Rev. 12. (1950) , 
" 

469 

67. GOLDBERGER, M. L. and WATSON, K. M., "Col1ir,lion Theory" ~ 

," (Wiley, New 'York, 1964) 
~ , 

68. WATSON, G. N., ~Bessel F~ctions· (Cambridge,' New York, 

1958) , 

69. KOWALSKI, K. L. and FELDMA.~, D., J. Math. Phys.' ~'(1961) 

499; ! (1963) 507 . 

70. 
, , 

NEWTON, R. G •• ·sc:attering Theory of waves and particles'· 

(McGraw Hill, New York, 1966) 

71. BERTERO, M., TALENTI" G. and VIANO. G. A., Nuc1. Phys. 

A1l3 (1968) 625; A1l5 (1968) 395 - ' -
72. CHADAN. K •• Nuovo. Cilnento. !.Q. (1958) 892; !! (19'6,7) 510 

• 
A., Nuovo.· Cilnento. -1 (1958>' 607 

, , 
R. G. and FULTON, T., Phys. Rev. ill (l~57) ,1103 

. 
75. FIE!>ELDEY; H. ,and McGURR. N. J., Nuel. Phys. ~ (1972) 

83" 



,~32, • 

76. ROUBE.-', B., Ph.D. Thesis (Massachuse1;.ts Institute of 

Technology, U.S.A.) 1969 

77. MYERS, W. D. and SWIATECKI, W. J., Nucl. Phys. 81 (1966) 

1 

78 • HOFST~TER, R., BUMILLER, F. and YEARIA..-'; M. K., Rev. 

Mod. Phys. ~ (1,958) 482 (Also see Nuclear and 

Nucleon Structure, Benjamin, New York, '1963) 

79., DAY, B., Rev. Mod. Phys. 39 (1967) 719 
~ 

80. BETHE,' H. A., Ann. Rev. Nucl. Sci. ~ (1971f 93 

ill. 

B2. 

SPRUNG, D. W. L., Advances in Nuclear Phys. 5 (1972) 
\ 

BETHE, H. A., Phys. Rev. ill (1956) 1353 

B3. WOODRUFF, A. E., PhYs. Rev. !!l (1960) 1113 

84 •. KOLTUN, D. S. and REITAN, A. , Phys. Rev. 141 (1966) 1413 

85. Z.· KLEIN _A~ , Phys. Rev.' 99 (1955) 998 
• 'J ,. ' 

! 

86 •. DRELL, S. D., .FRIEDMAN, !ol. H. and ZACHARIASEN, F., Phys. 
< 

Rev. 104 (1956-) 236 
, 

87. BERGER,' J. M., FOLDl, L. L. and OSBORN, R. R., Phys. Rev • 

.!!. (1952) lo.6l,.. 

BB., MEHROTRA, R. and SEN GUPTA, K., Phy.s. Rev. D 1: (1966) 

1413 

89. S~AY~' V. K. and )iOOLCOCK, W. S. , Phys. Rev. Lett" 

15 (1965) 936 " ..J -, 
90. \ HULTHEN, L. and SUGAtiARA, M., Bandbuch derPhysik, pp. 32 

(Springer-Verlag, Berlin, 1957) 
~" ' " 

,91. ROSE, C. M., Jr., Phys. Rev. ~(1967) 1305 \.; 
~ 



__ " _____ ..-____ c __ , _~: 

·1 

92. CRAWFORD, F; S., Jr. and STEVENSON, M. L., Phys. Rev. 

22 (1955) 1305 . , 
~MICHAEL, C. and ~rLKIN, C., Nucl. Phys. Bll (1969) 99 

v 

I 

, 





135 I , 
--" It) 

0 ~ t- O!") 1 

<: "'--- (I) c:Ic:I ." ~ 

I. I; 
I 
I I, 

, I I, 
I 
I II' 
I 

" I 
, I I 
I I , 'It 
I I, ; 
I 
I , I 
I I I , , ' I 

I • I / 

I I I 

I I I 
I 

I • >". " I I I 
I I , I 

I . : • If) , I I 
I ~I 

~ I - '" , • .-
I I 'e ('J 

I ~ , I .• - =' 
" - I , ...... !J' 

'Ie \ I ' 
... 

,,' ;" 

.... ,d 0-

0 \" . ", -u S 
\~. 

.::c " ,'\ 
" " • " 

" " ,\. 
\' 
" , \\ 

~\ 

-• 
.-

.-

(,,!III ). 
Cj 

.t(a~ oh"~)ij 
d 



-

-> 

20 

10 

), 
\ 

o 

-10 I , 
\ .' ,- .' 

\ , 
\ . 

\ .. - ,. 
'" - '. 

I 

I 

I 

I 

I 

I . 
I 

, 

I 
I 

I 
I 

I • 
I 

I 
I 

,I 
/. 

I 
/ . 

, , 

, 
; 

; 

AO 

;90 

136 



-E .... 
I 

> 
~ 

:::E -
-.:.I: .. 
~ -> 

.' 

• 

, .. 
0' 

137 

/" 

30~--------------~----~-------' 

AI 

. . . 

10 -81 
/ 

I 
I 

I 
I 

I 
I 

0 
I ,/ 

~ --, v ~~ 

• I 
I 

\ I 
\ I 

\ I ~; 
\ I - 10 

I 
/ 

- 20L,--~~~~--~~~2~.--~---3,3 . 

.-. .... k . ( 1m-') 

Flgu.::e 3b 

; ~ 

.; 

.. ~ 

.~ 

.,~ 

~, 

u 
-j . . 
·1 t, 

.( 



-20~~Q~--tl--~--~2~.------J 3 

( fm-I) 
. '~ 
Fi~re 3c 

I 



~20 

-e -I 
~ 
::E -

-.:.c .. 
~ -,> 

IQ 

-10 

\ ~ 

'\ 
\ 
\ 
\ 
\ 

, '\ 
\ 
\ 
\ 
\ , .... I 

/ 

I , 
I 

I -, 
I 

I 
I 

1 
I 

'Figure 3d, 

• 

" , 
I 

I , 

" 

"83 ,,' 
/'" C 

/ 
/' 

/ 

) , 

\ 

! 

139 

", 



, 

1·5 

1-0 

'5 

00() 

... -,1 
--' 

, 
I 

, 

, 
/' , , , 

c , 

-' , 
, 

I' 

" 

-/ 
I'-

'Y ,--- -, ----
,,' 

,,/ 

, -- - . . . --- __ ,_ +8 ' ----. ---. 

+e 

Figure " 

140 

, 
\. 



·1 

·0 

.--. .. -.2 
x 

0<> 

I 

/ 

, , , , , 
I , 

" " I ,~ I 1'" 
" I (' 

" ' ' • , I I 
" I I ,I , ' ... .,' , 
~ , 
, I 
, I 

, " I , , 
'-' 

Hl 

'. 

( 

82 
,---

" -~' .. ____ eO ......... , 
,-' --- ... , , -- " .. ,.;. .... ~r!:----..:.-~, .~ , 

---:~--a-..- c - -- -------

~/ 

," 

2 I ( fm) r , 

Figure 5 



, 
142 • 

c .< , 
~ 0 ~ 0 rt) <6 i' 

~ en en 

• , 
• 

· .~ • • 
I 

.~ 
. ,~ 

• J 
" 

< , -"J 

Q 
, 

1 

.. 10 

• • • , 
• 

• • 
, 1 
• ., 

0 :1 
..r j 

.~ 

'" • 'A • • ';j • . " • • '. , , '\i 

'1 
1 

, '-
,.-

~ , e \D .. 
, b , 0 0 ~ • 

<>£ k 

~ ::I <., 

, !;O , ..-I , ~" . r.. 

I , , , , , , , 
, , . 

' . . 

1 
. '" , . • , · ' , 0 , N . . -., 

" --, , . 
, : 

lr , 

I 

- C! co: 

.-' '2 ~ "i 

;! - Xi 

> C) 
,. 

I 
, , .- , 
• , , 
• , 

0 '';'~ 

d 
g d ~ 

. \.w, (>I ~)9 • (':(1\)1\ 

, 
" I 

d 


