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Abstract

In this thesis, we consider different inferential methods for the multi-group
extreme value regression model and evaluate their relative merits.

First, we derive expressions of estimators of the parameters for the multi-group
extreme value regression model using the following methods: (i) best linear unbiased
estimation (BLUE), (ii) maximum likelihood estimation (MLE), (iii) approximate
maximum likelihood estimation (AMLE), and (iv) large-sample approximation to the
best linear unbiased estimation. These derivations are presented for complete samples,
progressively Type-II right-censored samples, and its special case — Type-lII right-
censored samples. Explicit expressions of the estimators’ bias (for AMLE), asymptotic
(or approximate) variances and covariances are derived as well, for all the methods
mentioned above. A proof of the asymptotic normality of the BLUE’s of the parameters
for the multi-group extreme value regression model is presented. We then compare all
these estimation methods for various choices of sample sizes and censoring schemes
through a Monte Carlo simulation study.

We also study the confidence interval estimation of these parameters through
pivotal quantities and simulate the probability coverages of confidence intervals based on
all the methods for various choices of sample sizes and censoring schemes. A comparison
of these probability coverages is made as well, and some conclusions are drawn.

We illustrate all these inferential methods through three real-life examples



discussed earlier by Lawless (1982).

Finally, in order to test the validity of the assumption of the extreme value
regression model, we extend Tiku and Singh’s (1981) method to the multi-group extreme
value regression model. We determine the level of significance as well as the power
under different alternatives for various choices of sample sizes and censoring schemes

through Monte Carlo simulations.
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CHAPTER 1

INTRODUCTION

In clinical studies or reliability analysis, one is often interested in obtaining inference on
the survival of a patient or the reliability of an equipment at a specified time £, . In these
situations, it is quite common that one or more factors may affect this life-time (which are

the covariates) and it is therefore, necessary to use a regression model in order to

incorporate these covariates in the statistical analysis.
1.1 The Model

In situations wherein we have enough information to fit an appropriate parametric model
for the survival time 7, a distribution that is found to be useful in many applications is the

Weibull distribution (Lawless, 1982; Johnson, Kotz and Balakrishnan, 1994) with density
O 1 s l\s
fta,0)=—(=)""exp[ -(=)"}, 120, (1.1.1)
a «a a
where § >0 and « > 0 are the shape and scale parameters, respectively.

Assuming that the vector of covariates X = (x,x,,...,x p)' affects only the scale

parameter &, we have a proportional hazards model for the survival time T (Kalbfleisch
and Prentice, 1980). Then, considering a logarithmic transformation on the survival time

T, we have an extreme value distribution for ¥ = log (7) with density function



Fp(x),0) = —expl
[e2)

y—ﬂ(x)_exp( y-u(x))]’ (1.1.2)
o c
where ~0 < y <o, u(x)=Iloga(x), and o =1/6.
From Eq. (1.1.2), we can write y in the location-scale model as
y=px)+oz, (1.1.3)
where the random variable z has a standard eitreme value distribution with density

function exp{z—e’}, —w<z<ow. A simple and useful form for u(x) (known as

power-rule model) in Eq. (1.1.3) is given by the choice

uXxXy=X, (1.1.4)
where X =(x,,x,,...,x,)" 1s a vector of p covariates and v=(v,v,,.,v,)'is a vector of

regression parameters.

In this study, we develop statistical inference for the special case of one covariate,

ie. u(x)=v,+v.x, and assume that independent random samples are taken at each

level of x;. For example, in life-testing experiments, each level of x; may correspond to
one type of treatment and several patients may be enrolled in each treatment; similarly, in
reliability studies, each level of x; may correspond to a stress (voltage, load, temperature,
etc.) level and several units may be tested under that specific stress level. We call this
“data with several observations at each level of x;” extreme value regression model as
Multi-group Extreme Value Regression model (MEVR).

For the purpose of simplicity and without loss of generality, we will use x to
denote the single covariate, and x;, x; , ..., xx to denote the different levels of x

throughout this thesis.



1.2 Background and Related Work

Life-time (or failure time) data can be analyzed in a variety of ways. The method of
analysis will depend on the assumptions that can reasonably be made. Broadly speaking,
there are three approaches to statistical analysis of life-time (or failure time) data —
parametric, non-parametric and semi-parametric. The parametric regression models (also
known as accelerated failure time models) for life-time (or failure time) data involve two
kinds of assumptions: the assumption about the underlying distributional form and the
assumption about the form of regression (model form, or form of link function). The
proportional hazards regression models (semi-parametric) require the proportionality
assumption as well as assumption on the form of regression. The non-parametric
(distribution-free) models assume less about the underlying distributions than do the
parametric methods.

Most of the methods and techniques associated with parametric regression models
assume that the distribution of life-time (or failure time) is an exponential distribution
(Cox, 1964; Feigl and Zelen, 1965; Zippin and Armitage, 1966; Glasser, 1967; Cox and
Snell, 1968; Sprott and Kalbfleisch, 1969; Prentice, 1973; and Breslow, 1974). The
hazard function (exponential failure rate) has been taken to be a linear, reciprocal linear
or an expongntial function of the covariate. These techniques, however, apply only to
situations where one is testing all equipments under the same fixed environmental
conditions. When the data are taken over a range of different environmental conditions,
the Weibull (Extreme Value) model may be used as it is more flexible and it can be

extended to include covariates in different ways.



There are two main approaches to the analysis of the Weibull (Extreme Value)
regression model. The first is a least-squares fit and normal theory analysis of variance
procedures as applied to the logarithm of the life-time (or failure time). The other
approach is based on large-sample maximum likelihood theory.

Nelson and Hahn (1972) suggest a method of simple (but not minimum variance)
linear unbiased estimation of the parameters of a linear regression model with censored
data on the dependent variables for the special case of one independent variable. This
simple method involves obtaining the best linear unbiased estimates of the location and
scale parameters of the distribution at each test condition using existing tables of these
estimates, and then using these estimates to fit to the data the regression relationship
between the independent variable and the location parameter. A weighted regression
analysis is required since the variances of the estimates of the location parameters at
different test conditions will vary in general due to different sample sizes and different
amounts of ceﬁsoring at each test condition. These authors also provide the best linear
unbiased estimation method in the special case when the sample size at each test
condition is the same and only the first order statistic is observed.

Prentice and Shillington (1975) present a simple modification to least-squares
method for uncensored Weibull data with the aim of producing a computationally simple

method for selecting important covariates. The main drawbacks of this method are that it

is rather inefficient and also does not apply to censored data.

To improve the efficiency of the least-squares method, Williams (1978) suggests

to correct the original survival times for shape and covariate values using estimates from



the regression analysis and then handle as if it were a mixed random sample of negative-
exponential variables. The method is for the multi-group extreme value regression model,
but cannot be used with censored data.

The method of maximum likelihood estimation can be used to get an efficient
solution. Pike (1966) analyzed the continuous-carcinogenesis experiments by fitting
appropriate Weibull distributions using maximum likelihood estimation method. Peto and
Lee (1973) give details of how regression-type arguments can be used in a multi-group
experiment to find simple relations between treatment applied to each group and the
value of the third (treatment dependent) Weibull coefficient for that group.

Elperin and Gertsbakh (1987) presented results of a Monte Carlo study on the
performance of maximum likelihood estimator of the scale parameter o in the multi-
group extreme value regression model with two explanatory variables. Based on large-
sample normal approximation via the observed information matrix and the Type-I
censoring to an average amount of 0-30%, the estimate of the scale parameter was found
to be significantly negatively biased in case of small sample sizes. This resulted in a poor
quality of confidence interval for o and low-level quantiles. It was also shown that a
moderate amount of censoring improved the quality of point as well as interval
estimation.

Bugaighis (1990) examined the properties of MLE’s through simulated biases and
mean square errors for the parameters of a multi-group extreme value regression model
under Type I censoring. He examined the effects of 1) number of levels of the regressor

variable x, 2) censorship time, and 3) sample size.



In the context of the confidence interval estimation and parameter testing
procedures for the Weibull (Extreme Value) regression model, McCool (1980) presented
the interval and median unbiased point estimators for the shape parameter, stress-life
exponent, and a specified percentile at any stress in terms of percentage points of the
sampling distributions of the pivotal functions involving the MLE in the multi-group
extreme value regression model associated with the power-rule model. A numerical
example was also given.

Bugaighis (1993) examined percentiles of three pivotal ratios, associated with the
power-rule model, for the parameters of an extreme value regression model based on

MLE’s. The simulation study revealed that the distributions of these pivotal ratios are
closely related to appropriate ¢ and y* distributions.

To examine statistical inference based on the approximate normality of the
MLE’s, Paula and Rojas (1997) derived the asymptotic normality of the MLE’s in the
multi-group extreme value regression model associated with the power-rule. They
presented the asymptotic null distribution of three asymptotically equivalent statistics for
two situations of general one-sided hypotheses, namely, for testing the hypotheses of
simple order or simple tree order, for location parameters and scale parameters in g
populations and for the intercepts in parallel regression lines.

Vander Wiel and Meeker (1990) compared the performance of confidence
intervals between the normal-theory of MLE’s and the likelihood ratio based on small-

sized censored Weibull regression data. The simulation showed that the likelihood-ratio



based confidence intervals have much more symmetric error rates, which are not as
extremely anti-conservative as normal-theory intervals are.

Achcar and Damasceno (1996) presented a modified form of re-parameterization
proposed by Guerrero and Johnson (1982) to improve the accuracy of the inferences
based on the asymptotic normality of MLE’s, especially in case of small or moderate
sample sizes.

With randomly censored data, Abdelhafez and Thomas (1991) suggested using
the bootstrap algorithm of Efron (1979) to construct confidence bands. The validity of the
confidence bands in the complete sample case was investigated by these authors.

In addition to the linear estimation methods and MLE’s, Nelson (1972) presented
graphical methods for analyzing accelerated life test data with the inverse power law
model based on multi-group extreme value regression model. The graphical methods are
satisfactory for many practical purposes and provide certain information that the analytic
methods do not. However, graphical methods do not provide an objective assessment of
the accuracy of the information obtained with them, whereas analytic methods do by
means of standard errors and confidence intervals.

As we can see from the review above on the multi-group extreme value regression
model based on Type-II censored samples, little has been done on the following:

1) The performance of BLUE and MLE,
2) The accuracy of the approximate normality of BLUE and MLE, based on which

asymptotic inference may be developed,



3) Tests for the validity of the model against departures from the original assumption

of Weibull distribution for the life-times.

1.3  Scope of the Thesis

In Chapter 2, the best linear unbiased estimation of the regression (or location)

parameters v,, v, and scale parameter o based on the MEVR model is discussed. In
Section 2.2, we first present the basic formulation of the BLUEs of v,, v, and o for the

complete sample case, and then derive explicit expressions for the exact variances and
covariances of these estimators. The extension of these methods to the case of Type-II

right-censored or progressively Type-II right-censored samples are presented as well.
Then in Section 2.3, we derive the asymptotic normality of the BLUEs of v, v, and o,
which enable us to obtain statistical inferences for these parameters, such as confidence
intervals, hypotheses testing procedures, etc. Finally, in Section 2.4, we conduct a
simulation study to evaluate the performance of the BLUEs of v,, v, and o for various
choices of sample sizes and censoring schemes. The discussions based on results are
presented as well.

In Chapter 3, the maximum likelihood estimation of the regression parameters

v,, v,, and scale parameter o based on the MEVR model is discussed. In Section 3.2,
we present the likelihood equations for the parameters v,, v, and o based on Type-II

censored samples as well as expressions for approximate variances and covariances of

these estimators. We then derive the asymptotic variances and covariances of these



estimators through the expected Fisher information matrix in Section 3.3. Finally, we

conduct a simulation study to evaluate the performance of the MLEs of v,, v, and o for

various choices of sample sizes and censoring schemes in Section 3.4. The discussions
based on results are presented as well.

In Chapter 4, an approximation to the maximum likelihood estimators, which are
in closed form, is developed. These estimators can be used as initial guess for the

Newton-Raphson procedure to obtain the MLEs discussed in Section 3.2. In Section 4.2,

we derive the AMLEs of v,, v, and o for Type-II censored samples as well as describe

the procedure to obtain their approximate variances and covariances based on the
observed Fisher information matrix. We then derive the asymptotic variances and
covariances of these estimators through the expected Fisher information matrix in Section

43. In Section 4.4, we derive explicit expressions for the approximate biases of the

AMLEs of v,, v, and o. Finally, we conduct a simulation study to evaluate the
performance of the AMLEs of v,, v, and o for various choices of sample sizes and

censoring schemes in Section 4.5. The discussions based on results are presented as well.

In Chapter 5, the construction of confidence intervals based on the estimators of

v,, v, and o (BLUE, MLE and AMLE) is discussed. In constructing the confidence

intervals of the regression (or location) and scale parameters, the pivotal quantities based
on equivariant estimators play an important role. Therefore, in Sections 5.2 and 5.3, the
definition of equivariant estimators, pivotal quantities and a related theorem are

presented. Since all the estimators we discussed before are equivariant estimators and



approximately normally distributed, we show in Section 5.4 that confidence intervals can
be easily constructed through these pivotal quantities. Moreover, we use probability
coverages in this section to examine the accuracy of these interval estimation procedures.
Finally, we conduct a simulation study to evaluate the performance of the probability
coverages of the pivotal quantities based on all these estimators for various choices of
sample sizes and censoring schemes in Section 5.5.

In Chapter 6, we first assess the effects of the following five factors on the

performance of BLUE, MLE and AMLE of v,, v, and o in Sections 6.2, 6.3 and 6.4,

respectively:
1. The number of levels of the regressor variable x,
2. The balanced (equal sized) group sample vs. unbalanced (unequal sized) group
sample,
3. The total sample size N,
4. The complete sample vs. Type-II right-censored sample,
5. The degree of censoring.
The assessments are based on estimators’ bias, mean square error, variances and
probability coverages. Wé then make comparisons between BLUE, MLE and AMLE
based on relative efficiency of the estimators and the accuracy of the normal
approximation in terms of probability coverages of intervals based on these estimators in
Section 6.5.
In Chapter 7, in order to check the adequacy of models upon which inferences are

based, the test of validity of multi-group extreme value regression model is presented. In
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Section 7.2, we introduce Tiku’s test, which provide a test for an extreme value model for
a single group sample. We then extend this test to the fnulti-group sample situation in
Section 7.3. To assess the validity of the assumption of the extreme value regression
model and to test for departures from the original assumption of Weibull distribution for
life-times, we describe the method of determining the level of significance and the power
in Section 7.4. In Section 7.5, we simulate the values of levels of significance under the'
standard extreme value model, and the values of power under five distributional
alternatives for various choices of sample sizes and censoring schemes. Finally, we
discuss the simulation results in Section 7.6.

In Chapter 8, we illustrate the BLUE, MLE and AMLE approaches using three
real-life examples for both complete as well as the Type-II right-censored samples. We
present a detailed illustration of these approaches for the complete sample case in
Example 8.2.1. Then we present the analysis and the results for Type-II right-censored
samples in Example 8.2.2, and for both complete and Type-II right-censored samples in
Example 8.2.3.

In Chapter 9, a large-sample approximation to BLUESs is proposed. As we know,

in order to obtain the BLUEs of v,, v, and o in the MEVR model, it is necessary to

have means, variances, and covariances of order statistics from the standard extreme
value distribution. For large sample sizes (say, n>30 or so), the variances and
covariances are not readily available for most distributions, including extreme value [see
Balakrishnan and Chan (1992a, b)]. Adding to this problem, one also needs to invert a

large variance-covariance matrix to derive the BLUE’s. Therefore, large-sample

11



approximation to BLUEs is proposed. In Section 9.2, we derive the first-order and
second-order approximations for the variance-covariance matrix of order statistics from
the standard extreme value distribution using David and Johnson’s (1954) approximation.
Then, in Section 9.3, we derive an explicit form for the inverse of the variance-
covariance matrix of order statistics from the standard extreme value distribution. In
order to assess the performance of this ﬁrst-§rder approximation and second-order
approximation methods as compared to the exact method, we conduct a simulation study
and discuss the results in Section 9.4. Finally, in Section 9.5, we illustrate the
approximation methods through three real-life examples considered earlier in Chapter 8.
In Chapter 10, we‘ generalize four types of estimation procedures —BLUE,
approximate BLUE, MLE, and AMLE — to progressively Type-II right-censored samples

for the MEVR model. In Section 10.2, we derive all four types of estimators for v, v,

and o for the MEVR model. We conduct a simulation study in Section 10.3 based on
progressively Type-II right-censored two- and four-grouped samples withn=10,m =35,
r,=r,=r,=0, r,=3and r; =2 to evaluate these four types of estimation procedures. A
discussion of the simulation results is presented as well. Finally, in Section 10.4, we
illustrate these methods of estimation by using a progressively Type-II right-censored

sample generated from Example 8.2.1 considered earlier in Chapter 8.
Finally, in Chapter 11, we outline the contributions in this thesis and give

suggestions for further research.

1.4  Some Basic Concepts

12



In this thesis, we are mainly concerned with statistical inference for the multi-group
extreme value regression model. In the following subsections, we first describe some

basic statistical concepts, which will be used throughout this thesis.

1.4.1 Censoring
Data are defined as singly censored if the values of observations on one of the tails of the
distribution are not known, and are doubly censored if the values of observations on both
tails are not observed. Life test data are frequently singly censored on the right; that is,
the failure times of unfailed units are known only to be beyond their current running
times. This would be the case, for example, in a life test if all units are placed on test at
the same time and all unfailed units have, as a result, accumulated the same running time
at the time of analysis. Instrumentation data may be doubly censored; that is,
observations may be beyond the scale of measurement at either tail of the distribution.

Censored data are defined to have Type-I censoring if censored observations
occur only at specified values of the time. Such censoring results, for example, in life
testing when all units are put on test at the same time and the data are collected and
analyzed at a specified point in time. For life data, this is called “time censoring”. In this
type of censoring, the censoring values are fixed and the number of censored
observations is random.

Censored data are defined to have Type-II censoring if the number of censored
observations is specified and their censored values are random. Such censoring results,

for example, in life testing when all units are put on test at the same time and the testing
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is terminated when a specified number of units have failed. For life data, this is called
“failure censoring”.

Data are defined to be progressively censored if the censored values and
uncensored values are intermixed. Assume the following general censoring scheme:

censoring times, T,,---,T,_, , are fixed such that at these times, R,,*--,R,,_, surviving units

are randomly removed (censored) from the test, respectively. The experiment terminates

at time T, with R being the number of surviving units at that time. This is called as

“progressive Type-I right-censoring”. Assume the following general censoring scheme: m
censoring times are fixed and n units are placed on test at time zero. Immediately
following the first failure, R, surviving units are removed from the test at random. Then,
immediately following the second observed failure, R, surviving units are randomly
removed from the test at random. This process continues until, at the time of the m-th

observed failure, the remaining R, =n—R, —R, —+--—R,_, —m units are all removed

from the experiment. This is called as progressive “Type-II right-censoring”.

1.4.2 Order Statistics

Suppose that X,,---, X, are n independent and identically distributed random variables.
The corresponding order statistics are the X;’s arranged in non-decreasing order. The
smallest of the X, ’s is denoted by X, , the second smallest is denoted by X,,, ..., and

finally the largest is denoted by X, , Thus X, < X,, <---<X,,,and X, is called the

“j-th order statistic”, i=1,2, ..., n.
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Order statistics and functions of order statistics play a very important role in
statistical theory and methodology and, as a result, order statistics and their moments
have received a great deal of attention during the past 75 years or so. Order statistics may,
in some situations like life-testing experiments that we described earlier, arise in a natural
way. In some other situations, sample observations may be deliberately ordered and
analysis may then based on order statistics due.to considerations of robustness. Many
robust estimation procedures based on censored samples have been developed by using
the theory of order statistics; see, for example, Andrews et al. (1972), David (1981), and
Tiku, Tan and Balakrishnan (1986).

In addition to statistical analysis based on censored data and robust inference,
there are a number of other areas where order statistics have found important
applications, such as outlier detection, reliability studies, quality control, ranking and
selection methodology, goodness-of-fit techniques, and characterization problems. The
eight-volume bibliography by Harter (1983 — 1993), the books by David (1981), Armold,
Balakrishnan and Nagaraja (1992) and Castillo (1988), and the two-volumes by

Balakrishnan and Rao (1998a, b) will illustrate many of these applications quite well.
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CHAPTER 2

BEST LINEAR UNBIASED ESTIMATION (BLUE)

2.1 Introduction

In this chapter, the best linear unbiased estimation of the regression (location) parameters

Vs> V,, and scale parameter o for the MEVR model is discussed. In Section 2.2, we

first present the basic formulation of the BLUEs of v,, v, and o for complete sample,

and then derive explicit expressions for the exact variances and covariances of these
estimators. We extend these methods to the case of Type-II right-censored and
progressively Type-1I right-censored samples as well in this section. Then in Section 2.3,

we prove the asymptotic normality of the BLUEs of v, v, and o, which will enable us

to develop statistical inferences for these parameters, such as confidence intervals,
hypotheses testing procedures, etc. Finally, we conduct a simulation study to examine the

performance of the BLUEs of v,, v, and o for various choices of sample sizes and

censoring schemes in Section 2.4.

2.2 Complete Sample

Suppose that observations y,, <y,, <..<y,, denote a complete sample taken on n,

individuals at the single regressor x, from the /-th group, for / = 1,..., k, from the extreme
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value population with a location parameter x(x) and a constant scale parameter o .

Then the model can be written in the form

yi:n, = Iu(x) + G-Zi:n, = VO + lel + o-Zi:n, » L=

1,...

,n, I=1.,k 0c>0,

where v, and v, are the regression (or location) parameters, and z,, ( 1<i<n, ) are the

order statistics from a sample of size n, from the standard extreme value distribution with

density function exp{z —e’}, —0 <z <.

Given E(z,, )=a,, (1<i<n) and covariance Cov (2., ,Z;.,,) = Bi s,

(1<i< j<n,),itis easy to note that

and

Denote

E(y,.m,) =V, + VX, +oQa

2
COV (yi:n, ’yj:n,) =0 ﬂi,j:n, >

Y =[.})I:nl ""’yn,:m ’yl:nz ""’ynz:n2 ""’yl:nk >

W=[1 X aly.,

’

0=[v, v, ),
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1<i<n,

1<i<j<n,.

'
° "yn,,:n,, ]le ’

’
cr ’ank:nk ]le ’

(2.2.1)
(22.2)
(2.2.3)

(2.2.4)
(2.2.5)

(2.2.6)



)Bl.):n, ﬁl,Z:n, tt ﬁl,n,:n,

zn, _ IBI,:2:n, 'BZ-:?"'I ﬂz‘:"’:"’ , (227)
ﬁ[,n,:n, ﬂz,n,:n, T ﬂ"[v"l:"l n,xn,
and

£, 0 0

S, .. 0
P I B 2.2.8)

0 0 n

kK INxN

k .
where N = Z n, . We may then write

=t
E(Y)=W8o
and
Var (Y) = o °L.
Thus, the generalized variance is given by
S= -WOYT (Y -WO)=YT'Y -20WE'Y +OWZT'WE.
By minimizing this expression of the generalized variance with respect to 6 and solving
the following equation

—g’%: DWETY +2WET'WE =0,

we derive the BLUE of @ to be
@' =(WwWrE'wYy'wey, (2.2.9)

and its mean and variance-covariance matrix as
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E@)Y=WTZT'WY'WL'E({Y)=0, (2.2.10)

and
Cov (@ )=0c*WZ'W)". (2.2.11)
a A @
Using the special symbol [ B A| to denote the (nxn) matrix given by the
y C ¥ '

expression a(BY —CA)— S(AY —CD)+y(AA—-BD), where a, f and y are
n x1 vectors, A, B and C are scales and ®, A and ¥ are 1xn vectors, we may

write explicit expressions of the BLUEs v, *, v, * and o * (of v,, v, and o) as

kE on
Vo =XA,Y=Y3a, Vi » (2.2.12)
I=1 =1
- k o
v =XA,Y=Y>"b,Vin » (2.2.13)
I=1 i=l
and
- k ‘i
o = XBY = Cip Vi (2.2.14)
I=1 i=1
where
A 22 A % A, =% (2.2.15
VD - 5 ? V] - 5 ? 0’ - 6 > M N )

'z Xzt a7l
S=detl'’?X XE'X aT7'X], (2.2.16)
'Y X' a'a
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pIRtD IS B
5, =[=Z7'X aZTTX XT, (2.2.17)
v 'a aT'a aZ’

LD TS 1 Vel B 1 Y
5 =lz'x 1Z7'x x%° (2.2.18)

Vi

and
'l xz1r ot
s =lz7'x xT'x Xz (2.2.19)
>'a XZ'a a%?
Furthermore, explicit expressions of the exact variances and covariances of the

estimators v,, v; and o are derived from (2.2.11) as

X2 X)NaT o) - (X2 'a)’ 2

Var(v, ) = 2.
ar(vo ) 5 s (2 2 20)
Var(") = (1’2“1)(05'2";1) -('z'a)’ o2, 2.2.21)
Var(o™) = T DX Z_';" ) -(27X) . (22.22)
-1 -1 ry -l -1
Cov(vo-r’v]t): (XZ a)(a’z 1);(12 X)(aE a) 0_2’ (2223)
ro -1 -1 e -1 -1
Cov(vot,o") _ ORD.¢10.¢> a)g(l TTa)NXETX) o, (2.2.24)
and
Cov(v,*,O'*) _ (XZ'"D)(eZ D)-1Z )aZ " X) o (2.2.25)

)
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In the case of Type-II right-censored or progressively Type-II right-censored
samples, all the above formulas for the BLUEs are the same, except the means, variances
and covariances of the standard extreme value order statistics should be replaced by the
corresponding values for the Type-II right-censored or progressively Type-Il right-

censored order statistics.
2.3  Asymptotic Normality of the BLUEs of v,, v, and &

Before proceeding to the proof of the asymptotic normality of the BLUEs of v,, v, and

o, we need to introduce some basic concepts.
2.3.1 L-statistic and Its Asymptotic Properties

Suppose a;, ’s form a (double) sequence of constants. The statistic

n
2.

Ln = Zai,nXi:n
o1

!

is called a L-statistic. When used as an estimator, it is often referred to as an L-estimator.

The exact distribution of L_ is difficult to obtain in general except when a,, =0 for all

but a few i.

When X, <X, <---<JX,, denotes the order statistics of a sample from cdf F
and a;,is of the form J[L)/n, where J(u), 0<u <1, is the associated weight

n+l

function, L, can be expressed as
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L":.lz.l( : )X,.m. (2.3.1.1)
n

= \n+1
The asymptotic normality of L, can be established by imposing conditions on the

weight function (see Stigler, 1974, Mason, 1981, David, 1981, Section 9.6, and Amold,

Balakrishnan and Nagaraja, 1992, Section 8.6).

Define

u(J,F)= j xJ[F(x)HF(x) (23.1.2)
and

o’(P=2f[  JE@VERFE-FO))dxdy. (23.13)

Then, we have the following theorem (Mason, 1981).

Theorem 2.3.1 Let the weight function J(u) be bounded and be continuous

1} 1

at every discontinuity point of F~' (u). Then £u5 (1 - u)2dF (1) < implies:

Jn(L, - u(J, F))—> N(0,02 (J, F)),

where L,, u(J,F) and o®(J,F) are given by (2.3.1.2) — (2.3.1.3), respectively.

2.3.2 Asymptotic Normality of the BLUE of v,

Since the derivation procedures for the asymptotic normality of BLUEs of v, v,

and o are all similar, we will present here only the derivation of the asymptotic normality

for the BLUE of v, (of v,).
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Under the MEVR model, we can express the L-statistic for BLUE v, (of v,) as

k n
* '
17 LN=V0=XAVY= ai;n,yi:n H
(] (] '
{=] i=1

where Y, X, and A, are as defined in (2.2.1), (2.2.2) and (2.2.15), respectively, and

There are three conditions that need to be satisfied which are:

1. The weight function J(«) is bounded.

2. The weight function J(u) is continuous at every discontinuity point of F'(u).
! 1

3. [u(-w?dF™ ) <co.

The proof of the first condition is presented in Appendix. Since there is no

discontinuity point in F ' () in the case of extreme value distribution, Condition 2 1s

automatically satisfied. Now, we prove Condition 3 as follows.

1 1
Condition 3: _Euz (1-w)2dF ' ()<,

Proof: For the standard extreme value distribution with density function exp{z-e’},

—w <z <w,wehave F™'(u)=log(-log(l — u) and hence

L du.
(1 -u)log(l = u)

£u%(1 - u)%dF“‘(u) - -—ﬁu%(l - u)%

Expanding the functions —log(l — u) in a power-series as

2 3 4 2 3
u U U u u
—log(l—t)=t+—+—F — = u(l 4 — =+ —) > u,
gl =) 2 "3 4 Mt 5+7)
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it can be seen that

1 H
du<£uza—uy b au=sltb-n
u) (1-wu 22

1
(1-u)log(l-

W |-

—gu%a—u)

1 1
Therefore, the condition £u 2(1-u)?dF '(u)<m<x is satisfied and the

asymptotic normality of , Ly is established.
It should be mentioned that we have already obtained the mean and variance of the
BLUE v, of v, from expressions in (2.2.9) and (2.2.11), and hence it is not necessary to
derive them again using the formulas in (2.3.1.2) and (2.3.1.2) in Theorem 2.3.1.

Proceeding in a manner similar to the one as we did for BLUE v, of v,, it is easy

to show the asymptotic normality of BLUEs v, and ¢ of v, and o
2.4 Simulations and Results

In the simulation study, we took v, =0,v,=1 ando=1 and x = [-0.5, 0.5] or

[-0.5, -0.16, 0.16, 0.5] for two- or four-grouped samples, respectively. We use n to denote
the vector of the multi-group sizes for the cases of complete sample and s to denote the
vector of the multi-group censoring schemes for the cases of Type-II right-censored
samples. In order to study the BLUEs in the MEVR model, we performed the
simulations based on 10,000 Monte Carlo runs for each of the following cases:

1. Complete samples

two groups: n = [6 6(1)10], [7 7(1)10], [8 8(1)10], [9 9(1)10], [10 10], [15 15(5)20]

and [20 20] .
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four groups: 1 = [6x2 6(1)10x2], [7x2 7(1)10x2], [8x2 8(1)10x2], [9x2 9(1)10x2],
[10 1010 10], [15x2 15(5)20x2] and [20 202020 ] .

2. Type-1I right-censored samples

two groups: s = [4 4(1)0], [3 3(1)0], [2 2(1)0] and [1 1(1)0] from n = [10 10] and
[5 5(1)0] from n = [20 20].

four groups: s = [4x2 4(1)0x2], [3x2 3(1)0x2], [2x2 2(1)0x2] and [1x2 1(1)0x2]
fromn = [10 10 10 10] and [5x2 5(1)0x2] from n = [20 20 20 20].

We first generated order statistics from the standard extreme value sample z,, ,
i=1,..,m,I=1,., k and then using the model y,, =v, +Vv,x, + oz, , transformed
the sample into y,, ,i=1,.., n, ! =1,.., k Using the formula in (2.2.9), we obtained
the values of BLUEs v, v; and o . Based on 10,000 runs, we determined the values of
(1) MSEWw,) o, (2) MSEW, ) o®, (3) MSE(c')/c?, (4) Var(vy )/ o, (5)
Var(v,)/c?, (6) Var(c")/o?, (7) Cov(v, ,v,)/c?, (8) Cow(v,,0")/o? and (9)

Cov(v,' ,0)/c*. To make comparison with the simulated results, the exact values of (4)

— (9) were computed as well by formula in (2.2.11). These results are presented in Tables
24.1-24.12.

From these tables, we observe the following points. The variances of all the
estimators tend to decrease with increasing number of levels of x when the groups (or the
number of observations in the Type-II censored samples) are of the same size. The
variances of all the estimators tend to decrease with a increase in N. In addition, with the

same N, the variances of BLUEs for v, andv, tend to be smaller in value in the case of
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more balanced groups than among the less balanced groups. Moreover, for the same N,
the variance of BLUE of o tends to be the same in the complete samples and increase
with the more balanced groups in the Type-II censored samples. The variances of all the
estimators tend to increase with increasing amounts of censoring. This is true for both

two- and four-levels of x.
Since the BLUEs for v,, v, and o are all unbiased, the simulated mean square

errors are almost identical to the simulated variances. The close agreement between the
simulated variances and the exact variances of BLUEs of v,, v, and o should be noted

as well.
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CHAPTER 3

MAXIMUM LIKELITHOOD ESTIMATION (MLE)

3.1 Introduction

In this chapter, the maximum likelihood estimation of the regression (location)
parameters v,, v, and scale parameter o of the MEVR model is discussed. In Section
3.2, we present the likelihood equations for the parameters v,, v, and o based on Type-

II right-censored samples as well as the procedure to obtain approximate variances and
covariances of the MLEs from the observed Fisher information matrix. We also derive
the asymptotic variances and covariances of these estimators from the expected Fisher

- information matrix in Section 3.3. Finally, we conduct a simulation study to evaluate the

performance of the MLEs of v,, v, and o for various choices of sample sizes and

censoring schemes in Section 3.4.
3.2 Type-II Right-censored Sample

Suppose that observations are taken on n, individuals at a single regressor x,, for [ =

1,..., k, and we allow the sample to be Type-II right-censored, meaning that only the first

n, —s, ordered values y, <y,, <..<y, .. out of the total of n observations are

observed. The corresponding likelihood function for the model in extreme value form is
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kent | Yim, Vo "% Yiin, =Yoo =i Ynsyimy “Vo ~V1% I
H——; H——exp ————————€Xp| — | | (1 €XP| —€XP|
=1 S1° {i=a1 O c o o

Dropping the proportionality constant[]#,!/s,!, we can take the log-likelihood function

to be

k k_ n=s Vin, — Vo — VX Vin, -V, —-V.X
log L(v,v,,0) = —logo-zAl + Z Z{ ' o it exp[ o ~Vi%y ]}
I=1

1=t i=1 o g

- Yin, Vo = V1%
- 5| expl = :
I=1 o

where 4, =n, ~s,. Let z,, =(y,, —V, —V,x;)/ o ; then, the partial derivatives of log L

are given by

ologL 1 ~
Br__ = {_ s, exp(z, .. )+ D (1—exp(z,, ))}, (3.2.1)
avo g 14 i=1
k m=s
OlogL _ 1 X,[_ S, €XP(Z, o)+ D, (L= exp(z,,, ))] , (322)
ov, lodrmn fa

and

Whetl]

k
a logL = —l— Z {AI S sy exp(zn,—slznl )+ Z[Zi:m (- CXp(Z,-mI ))]} : (3.2.3)

oo oo =l
The MLEs v,, v, and &, (of v,, v, and o) can be obtained by simultaneously

solving the equations dlogL/dv, =0, dlogL/dv, =0 and dlogL/do =0. Since these

three equations cannot be solved analytically, numerical methods must be employed.

Newton-Raphson or some other iterative procedure can be applied with no trouble.
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The approximate variance-covariance matrix can be obtained by inverting the

observed Fisher information matrix J, evaluated at the MLEs of v,, v, and o . The

observed Fisher information matrix Jp is of the form

d’logl 0*logL 9’loglL

av,’ ov,0v, O0v, 00
d%logl d*logL 0’loglL

ovdv, v, ov,0o
d’logL d*logL &’loglL

dvdo Ovdo 8o’

7 (%.9,.6)
where
d*logl 1 & ey
=—) {-s,exp(z, ., )— ). exp(z;, ) >
v GZ{ (OXP(2,, ) = D XD ,)}
2 k -5
a IO%L =—1_22 xlz -5 exp(zn -5 )— Zexp(zi:n) »
avl o’ < =3y = i
O'logl 1 & {A 5
60_2 _?E l_sl( +Zn,-:,:n,)zn,—s,:nl exp(zn,~s,:n,)
ny-s;
+ Z[zi:n, (2 - (2 + Zi:n, )exp(zi;n, ))] }’
=1
d*logl 1 & "
=— Y x| -5, exp(z, ... )= ) exp(z, ,
avoavl 0_2 ;{ I{ ! p( n,—s,.n,) ‘Zﬂ: p( iy ):I}
o’logl 1 ¢
= -s,(1+z,_,.,)exp(z, _,.
avoao_ 0_2 lg][ l( n,—srn,) p( n,—s,,n,)
+ > (= (t+ 2z, Yexp(z, D],
i=1
and

’logl 1 &
=—— Y {x,[-s,(1+2z, _ . )exp(z, ;.
aVIaO' 0'2 ;{ 1[ l( "I‘S/-"I) p( Il,—SIJl,)

# Sz, ) e 20, DT
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(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

(3.2.9)

(3.2.10)



3.3 Asymptotic Variances and Covariances

The asymptotic variances and covariances can also be obtained by inverting the expected

Fisher information matrix /. The expected Fisher information matrix / is of the form

)

)

I =-
where
o lo 1
B2y - —
aVO O 4

d*logL, 1
oo’ ol

=5

+ 3 [2E(z,, )~ 2Elz,, exp(z,, )]+ Elz}, exp(z, )i},

I

)=—; Z {— s1Elexp( 2,y )] = S.EL2, _ 0 €XP( 2, oy, )]

i=1

1 k

ov,00 oA

+ S 11 Elexp(z,, )1 Elz,,, exp(z,,)]]

i=1

8% logL 1 &
vg )Z‘TZ{XIZ‘:

1 k
E -
6v06v1) o ;{x,{

-8

oS

- SIE[exp(Zn,—s,:n, )] - z E[exp(zi:n, )]

i=1

=5

5, E[exp(z,, -, )= 2, Elexp(z;,,)]

i=1
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d*logL 9% log L 8% logL
EC08L) g% g2
o ov,0v, - ov, 00
0% logL 8% loglL 8’ log L
ECS 8Ly p28%y g2
Vv, 0V, av, ov, 0o
8t loglL 8% loglL 0logL
el 8l gl 82y g8
ov,00 ov,0o oo

)= Z{— S ETeXP(z, 01— 2 ELeXP(z, )]},

I

)

I

-

k
) = 7 Z {Al - 2SIE[Zn,—s,:n, exp(zn,~s,:n, )] - sl E[Zj,—s,:n, exp(zn,—s,:n, )]

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)

(3.3.5)

(3.3.6)



o’ logL 1 &
E( =— ) ix[—sElexp(z s, E{z, .. exp(z,_,.,
aVla O' Ig 1 i [ p( n,—s,nl)] 1 [ ny-s;:my p( , ,,)]

+ ni[l — E[exp(z,, )] — E(z;,, €Xp(z;,, ))]]}, (3.3.7)

and E(z,)=a,,is the mean of the i-th order statistic in a sample of size n from the

standard extreme value distribution.

To evaluate the expected information matrix in (3.3.1), we need the exact value of
E[z* exp(z,,)], for k = 0, 1, 2. Along the lines of the evaluation of the asymptotic

variances and covariances of order statistics in the extreme value distribution [see

Lieblein (1953); Balakrishnan and Chan (19922)], we derive the expression of
E[z} exp(z,,)] as follows:

Consider the density function of z,, (1<i<n) givenby

f,-;,,(Z)“T—lW——)—{ @} U=F(@2)}" f(2), —w<z<wo. (3.3.8)

Then, we have

Elzt, exp(z,)|= [ 2* exp(2)fin(2)dz,  1<i<n. (3.3.9)
Moreover, we can €xXpress

E[ Z:—iﬂm exp(zn—i+l:n )] -

= 1)'(n—z)'§( )[ i]fzke’e"('”)edz, 1<i<n

(3.3.10)

By considering the integral
g, (c)= fz"e“““s dz
and setting v =¢", we get

g.(0)= f(log V) ve @ dy

which, for non-negative integers k, may be written as
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ak -cv
g.(c)= '5;,: fV'e avl,.,

0"
= T+De DY (3.3.11)

here, ['() denotes the gamma function. The functions g,(c), &(c) and g,(c) needed for

the computation of E[zf exp(z,,)], for k=0, 1, 2, may be derived from (3.3.11) to be

2,(0)==T(2) =,
[ C
£,(c) =~ II'(2) + T(2) loge] == (17 +loge),
C

and
g,(c)= ——12 [C(2)(log c)’ +2I"(Q)loge +T"(2)]
c

2

= —%[(logc)" +2(1-y)loge+y* =2y + %],
c
where y = 0.5772 is Euler’s constant.
By using the above expressions of g,(c), g,(c) and g,(c), we can compute
E[zf exp(z,,)], for k = 0, 1, 2, from (3.3.10), and obtain the asymptotic variances and

covariances of MLEs v,, v,and &, (of v,, v, and o) from (3.3.1).

Of course, the results for the complete sample situation may simply be deduced

from the above formulas by setting s, =0 for/=1,..., k.

3.4 Simulations and Results

In the simulation study, wetook v, =0, v, =1 and o =1 and x = [-0.5, 0.5] or
[-0.5, -0.16, 0.16, 0.5] for two- or four-grouped samples, respectively. We use n to denote
the vector of the multi-group sizes for the cases of complete sample and s to denote the

vector of the multi-group censoring schemes for the cases of Type-II right-censored
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sample. In order to study the MLEs in the MEVR model, we performed the simulations

based on 10,000 Monte Carlo runs for each of the following cases:

1. Complete samples

two groups: 7 = [6 6(1)10], [7 7(1)10], [8 8(1)10], [9 9(1)10], [10 10], [15 15(5)20]
and [20 20] .

four groups: n =[6x2 6(1)10x2], [7x2 7(1)10x2], [8x2 8(1)10x2], [9%2 9(1)10x2],
[10 10 10 10], [15x2 15(5)20%2] and [2020 2020 ] .

2. Type-II right-censored samples

two groups: s = [4 4(1)0], [3 3(1)0], [2 2(1)0] and {1 1(1)0] from n = [10 10} and
[5 5(1)0] from n = {20 20].

four groups: s = [4x2 4(1)0x2], [3x2 3(1)0x2], [2x2 2(1)0x2] and [1x2 1(1)0x2]
from » = [10 10 10 10] and [5x2 5(1)0x 2] from n = [20 20 20 20].

We generated order statistics from the standard extreme value sample z,, ,

i =1,.. n, | =1,.,k and then using the model y, =v,+vx, +o0z;, ,

transformed the sample into y,, ,i=1,...,n, 1 =1,..., k. Upon simultaneously solving

the equations dlogL/dv, =0, dlogL/dv,=0and dlogL/dc =0, we obtained the

values of MLEs V,, v,and &,. Based on 10,000 samples, we determined the values of

(1) Bias(¥,)/ o, (2) Bias(v,)/ o ,(3) Bias(6)/ o, (4) MSE(¥,)/c?,(5) MSE(V,)/o?,

(6) MSE(8)/c?, (7) Var(,)/o®, (8) Var(¥)lc*, (9) Var(6)/c®, (10)

Cov(¥,,9,)/ 0%, (11) Cov(V,,8)/c’, and (12) Cow(V,,6)/c” . The asymptotic values
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of (7) — (12) were also computed by inverting the expected information matrix [ in
(3.3.1). These results are presented in Tables 3.4.1 - 3.4.12.

From these tables, we observe the following points. The variances of all the
estimators tend to decrease with increasing number of levels of x when the groups (or the
number of observations in the Type-II censored samples) are of the same size. The
variances of all the estimators tend to decrease with a major increase in N. In addition,
with the same N, the variances of MLEs of v, and v, tend to be smaller in value in the
more balanced groups than among the less balanced groups. Moreover, with the same N,
the variance of MLE of & tends to be the same in the complete samples and does not
exhibit any clear patterns in the Type-II censored samples. The variances of all the
estimators tend to increase with increasing amounts of censoring. This is true for both
two- and four-levels of x.

The simulated mean square errors are very close to the simulated variances, but
not identical, which means that the biases of the estimators are negligible. Moreover, the
agreements tend to increase with increase in the total sample size N. This simply means
that the MLEs of v,, v, and o all become almost unbiased as the total sample size N

become large.
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CHAPTER 4

APPROXIMATE MAXIMUM LIKELTHOOD ESTIMATION
(AMLE)

4.1 Introduction

In this chapter, an closed form approximation to the maximum likelihood estimators,
which are in closed form, is developed. These estimators can be used as initial guess for

the Newton-Raphson procedure to obtain the MLEs discussed in Section 3.2. In Section

4.2, we derive the AMLEs of v,, v, and o based on Type-II right-censored samples as

well as the procedure to obtain their approximate variances and covariances based on the
observed Fisher information matrix. We then derive the asymptotic variances and
covariances of these estimators through the expected Fisher information matrix in Section
43. In Section 4.4, we derive explicit expressions for the approximate biases of the

AMLEs of v,, v, and o. Finally, we conduct a simulation study to evaluate the
performance of the AMLEs of v,, v, and o for various choices of sample sizes and

censoring schemes in Section 4.5.

4.2 Type-1I Right-censored Sample

Suppose that observations are taken on n, individuals at a single regressor x,, for [ =

1,.... k, and that we allow the sample to be Type-II right-censored, meaning that only the
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first n, — s, ordered values y,, <y, <..<y, .. outofthe total of n,observations are

observed. The corresponding likelihood function for the model in extreme value form is

k n !{n,—sl 1 [yi:n, Vo V% (yi:n, —Vo —V1X% J:l}{ l: (yn,_:,:n, —Vo — V1Y J:'} ’
H——' H——exp - —eXp| €Xp| —€Xp|
i Sstiaco o o o

as

k k -3 in -V, -V X in —V. —V.X
logL(v,v,,0)=—loga ) 4, + ) {y,., L I—exp(y , Ve~V lj}

I=1 I=1 =}

k (yi:n _VO _lel)
—Zs, exp| — ,
I=1 (o}

where 4, =n, —s,. Denoting z,, =(y,, —V,—V,x;)/0, the likelihood equations in

(3.2.1) — (3.2.3) do not admit explicit solutions, as we noted earlier in Chapter 3.

However, by expanding the functions f(z Y/ {1-F(z

ny-spng np-sy:

., )} and
f'(z;,)! f(z.,,)in a Taylor series around the points F’ ( Pr-sym)=In(-Ing, .. ) and

F~ (Pin,)=In(-Ing,, ), respectively, we may approximate these functions by [see

David (1981) and Arnold and Balakrishnan (1989) for reasoning; see also Balakrishnan

and Varadan (1991)]
z .
—;f—gm)——z Xy sin +an—s'nzn-S'”
1_ F(Z"'_Sl:"’ ) e TR At U 173
and
,(Zi'n
f(zi:n,)
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where

Py =L g =1-D
n=s;n > An—spmy ny-spmy 2
[ R n[ + 1 [ 1
— J =1
pi:n, - n, +1 > qi:n, - —pi:n, 4
an,‘s,:n, = 1 + ln qn, -5y {1 —'ln(‘— ln qn, —5;my )} ’

Bry-sim =100 gy, >
a,, =1+Ing,, {1-In(- Ing,, )}
and
Bin, = —1ng, -
It is easy to see that §, . >0 and 3, >0 fori=1,2,..., n,—s,-1.
By making use of the above linear approximations, we obtain the approximate

log-likelihood equations as

dlogL dlogL _
ov, v,

1 k
——o-: IZ {_SI (1 - an,—x,:n, + ﬁn,—s,:n, Z)I,—S,:nl )

s 4.2.1)
+ Z(ai:n, - ﬂi:n, Zi:n, )} =0
i=]
* k
Ologl 0logl _ 1§ it =ty +BryosmZarosn)
ov, ov, lofymn “422)

-5,

* Z (ai3"1 - ﬁiin, Zim, )]} =0

and
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OlogL 6logL Z
=>4, -

60_ a n=s;: n, an, -5 + ﬁn, -5 zn,—s,:n, )

(4.2.3)
+ Zzi:n, (ai:n, _ﬂl n,Zt n )} 0
i=1

Upon solving equations (4.2.1) — (4.2.3), we derive the AMLEs Vo, v, and & (of

V,, Vv, and o) as

v, =ab +b, (4.2.4)
¥V =co+d, (4.2.5)
and
_ —B+JB*-44C
&= , (4.2.6)
24
where
a=A, /A, b=A, /A, c=AlA, d=A,/A, 4.2.7)
k -3 k -5y
Z Slﬂn,—s,:n, + Zﬂi:n, Z xl Slﬁn,-s,:n, + ZIBI:n,
A=det| T - - =, (4.2.8)
n-s indt
Z xl Slﬁn,—s, ny + ZIBI ny ]} lexl Slﬂn,—s,:n, + Zﬁi:n,)
I=1 =1 i=1
k i ny -5 k n;~s,;
Z Sl(l—an, -5y ) a: ny Z ‘xl S -5,y Zﬂi:n,
A, =det | Tt = = - 1 (4.2.9)

i xl[sl(l—an, —s,:n, "I'—SIal }} i‘:xl (Slﬂn, ~5 nZiB‘ n/)
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A, =det
1
!

A, =det
>
1=1

=det

k
B= {_Sl[yn, -5,

=

i
ny =Sy

k
2| %
I=

I=1

5

k )]

Z S ny-syiny + Zﬁi:n,
= i=1

k =S

Z X slﬁn,—s, m Zﬂl :ny

m=5

-8

slﬂn, s,n,yn,—s,n, Zﬂtn,yln,

=5
+ LA
n -5,

Z’B”'l

EM* M-

—-(b+dx)|[l -

ny-spn

o
) £

1

B

{

_ﬂ -5

+ Z[Yi;n, = (b+dx)lla,,, + B, (a+cx, IR

i=1

and

(1 an, -5, ) Zal ny

Sy

Ry =3y
_an, TR )_ Zai:n,

n =3

=3,
n yn,-s,,:n, + Zﬂim, yi:n,
i=1

1Fny~s;n yn,—:,,:n, + Zﬂi:n, yi:n,

| &
m-spiny yn,—s,:n, + Zﬂi:n, yi:n, :| Z[xl (Slﬁn,—s,:n, + Zﬂi:n, Jj|
i=1 I= i=1

}}

it}
i=1

(a+cx))]

1y

k -5
C= Z{— Slﬂn,—s, iy [yn,-s, - (b + dxl )] + Z lBi:n, [yi:n, - (b + dxl )]2} .

i=]

e

i}
[xl (slﬂn, =5y + Zﬁ: n,)

(4.2.10)

(4.2.11)

(4.2.12)

(4.2.13)

(4.2.14)

(4.2.15)

It should be mentioned here that upon solving Eq. (4.2.3) for o, we obtain a

quadratic equation in o which has two roots; however, one estimator is admissible since

A > 0’ ﬁn,-—s

1y

>0and g, >0(fori=1,2,..,

n, —s,-1) and hence C < 0.

When all the groups are of the same size, we have ¢ = 0 in the expression (4.2.5).

This indicates that the asymptotic covariance between v, and & 1s equal to zero.
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The approximate variances and covariances can be obtained by inverting the

observed Fisher information matrix I, evaluated at the AMLEs v, V|, and 6 (of v,, v,

and o). The observed Fisher information matrix I, is of the form

d*logLl &*logl’ d*loglL
ov,’ ov,0v, Ov, 00
2 * 2 * 2 *

[=- o°logl O logZL o°logL (4.2.16)
ov,0v, ov, ov0o
d’logl d*logl d*loglL

ov,0c  Ovdo L
where
2 n-s
Q(lg—é_ Z{ S n—spiny - Zﬂi:n,} ? (42'17)
aVo 1=t i=1
dlogl 1 ¢ =
LB o P B, . (4.2.18)
ov,’ T le{ I [ ra Zﬁ '}}
2
0 alogll Z{A =251, .0 )20 -5, +35,8, 502 -
7 i _S’ ! (4.2.19)
+ Z(zai:n,zizn, —3ﬂi:n,2,~2:nl )}’
i=1
logl 1 ¢ o
6v08v, O'Z ; i n, 5 ;ﬂm, ( )
0’logL _
- +2 . ,
avoao_ O_ ;{ Sl( n-spm ﬂn,—:,.n,zn,—s,.n,)
(4.2.21)
+ Z (al’:n, - zﬁi:n, Zi:n, )} 4
i=1
and
’logl 1 &
8v150 :(—J'Tg;{xl[—sl (1 B a"/“l’"! + zﬁ"l'slf"lz"l“sliﬂl) (4 5 22)

-5

+ Z(ai:n, - zﬁi:n, zi:n, )]}
i=]
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4.3 Asymptotic Variances and Covariances

The asymptotic variances and covariances can be obtained by inverting the expected

Fisher information matrix 7" . The expected Fisher information matrix I” is of the form

d*logL d*loglL’ E d%logL

v, dv,0v, dv,00 )
. 2 - 2 ‘7 2 L"
= 0" loglL 0 logzL E(a log ),
ov,0v, ov, ov,0oc
d*logL . 9*logL o*logL
08y gl %82y gl %Ex,
ov,00 ov,00 oo
where
Ologl 1 ¢ Y
=" =S -5y in, >
aVOZ 0_2 ;{ lﬁn, iy ;ﬂ ,}
O*logl 1 & s
2 -7 x -5 m in, >
61/,2 0'2 IZI{ ! Iﬂn,_,,., por ﬁ.,
o’logl, 1 ¢
E( . )= :IZ:: {4,-25,(1~-a, . E(z, ;.)+3s $1Bp-symE
+ [zai:n,E(Zi:n, ) - 3ﬂi:n, E(Z,.Zml )]} 4
i=
Dlogl 1 ¢ ey
= e x| —s .- 1,
avoavl 0_2 ;{ I|: IIBn,_".n, ; ﬁx.n, :I}
E(a2 log L )——195:{—5 M-a  +28. . E(z,_ )]
avoa 0_2 = 1 m=spmy ny=spny m=spn
+ Z[ai:n, - zﬁi:n,E(zi:n, )]}
i=1
and

o’ lo L
E( g O' Z{xl[ sl n,—s,n, zﬁn,—s,:n,E(Zn,—s,:n,)]

v,00

+ 3 [0, =28, E(2,)1]
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v[ sing

)

(4.3.1)

(4.3.2)

(4.3.3)

(4.3.4)

(4.3.5)

(4.3.6)

4.3.7)



where E(z,, ) =a,, and E(z})=p,,, +a’, (see Chapter 2, Section 2.2) are the first and

second moments of the i-th order statistic in a sample of size n from the standard extreme

value distribution.

4.4 Approximate Bias of the AMLEs ¥, ¥, and &

The approximate bias of the AMLEs V,, v; and & can be obtained as
Bias(V,) = E(V,)~Vv, =aE(6)+ E(b)~v, =ako +v, +l,oc -v, =(ak +]))o, 4.4.1)

Bias(V)) = E(V,) - v, = cE(6)+ E(d)-v, =cko +v, +0ol, -v, =(ck +],)0, (4.4.2)

and
- -E(B E(B*)-44E(C
Bias(6)=E(C)—o =~ ( )+\/ ;A) © _
(4.4.3)
1,0+ \/1820'2 ~44l c*
- —o=o(k-1),
24
where
i k =3 k n-s; ]
KZ‘;Y (1 an,—s, n, n,—s,:n, :Bn,-s,:n, ) - (ai:n, —ai:n, ﬁi:n, ):‘ Z Xy [Slﬂn,-x]:n, + Z ﬂi:n, ]
I=1 i=1 I=1 i=1
det ) "—s, . n-s,
KZ {x ‘:31 (1 an, —5piny an,—:,:n, /Bn,-s,:n, ) - Z (ai:n, _ai:n, )Bi:n, ):” Z[xlz{slﬂn,—:,:n, + Z ﬂi:n, }]
I=1 i=1 =1 i=1
l, = . ]
k o8 k ]
KZ X [S (1 an,—s, n, n,—s,:n, ﬂn,—s,:n, ) - Z (ai:n, _ai:n, ﬁi:n, )]} Z[Xl(slﬂn,—slml + Z ﬂi:n, J:l
=1 i=t 1=} i=t
k n—-s; k n -5
KZ I:sl (1 - an,-s, e + &y s,y ﬂn, -5 )_ Z (ai:n, &y, ﬂi:n, )} Z (sl ﬂn,-s,:n, + ﬂi:n, J
I=1 i=l I=1 i=l
I, =

A

1+ I, —4dl k
: \/ZEA—_C ’ A=ZA1, l, =E(B), 1132 :E(Bz) and [ = E(C).
I=1
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4.4.1 Derivation of /,

To compute /,, we need to express B in (4.2.14) as

ko
= {Zzwh:n, [yh:n, = (b +dx)],

I=1 h=]
if h<n, -s
ah:n, + ﬂh:n, (a + 27 ) f ! !
where w,, =
y i ,
am-slln, + ﬂn, ~3;h (a +Cx, ) —.1 and y’”’l - y"’—s""’ l'f‘ h > nl —SI

Replacing y,, by v, +v,x, + oz, in formulas (4.2.7), (4.2.8),(4.2.10) and

(4.2.12), we obtain

b=V0+ ( )i i Zin, ( )Z ﬁ:n,xl ‘”’Wo-

I=1 i=1 ]

i

and

k. on ko
d = Vl (?)ZZﬂi:n, lei:n, - (%)Z ﬁi:n, Zi:n, WO’ 4

I=1 i=1 I=1 i=1

ny

Where p =inzﬁ[:n, > 4 =i lBi:n,xl ’ rzinzlﬂi:n,xlz and 5 =pr—q2 .

I=1 i=1 I=t i=1 I=1 i=1

Furthermore, we get

yh'n,—b_dx
k n
(S (B S () S
=5,,0, | (4.4.1.1)
where

Sh:n, = ( )Zk: Z i n,zl m + ( )Z Z ﬁx ny xl imy - (_Egl_)i ﬁi:n, xlzi:n, + (_q.gl—)i ﬁi:n,zi:n, :

1= i=1 =1 i=l

Hence, we have

k. n
=0, 0, E(S,,)- (4.4.1.2)
=1
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Rewriting §,,, as

"y e 2
x.+x pXpeX; T 2qx; = pxps —r
Sh:n,. =Zy hing + ﬂt ny : 1) e Zi:n, + ﬂi:n,. 1 : zi:n,.
o

{=1* i=1 i=1

"Zhn +ZZ(U1n, tn,)+z inp I'l,’

tel* =1

we obtain

E(Shn,) ahn +ZZ(U"'1a‘"I)+Z ine ln, ’ (4413)

I#* i=1

X.+X)-px.x,—r - 2 _
where U,.ml - ﬁi:nl{q( 1 l) p [ :‘ and V._nl. - iml.(qult pxl‘- r) are the

o ’ )
constant coefficients, /* indicates the specific group where the observation z,, comes
!

from, and «,  is the mean of the i-th order statistic from a sample of size n from the

standard extreme value distribution

By using the formulas in (4.4.1.2) and (4.4.1.3), we can obtain the value of /.
4.4.2 Derivation of / 5
From the expression in (4.4.1.1), and denoting R, =®,., S, » W€ have

I, = JZE‘:(iiRM) }

1=] h=1

o)

I=1 h=1

kK on
The value of E‘i(z R;.) } can then be computed as

1=1 h= I=1 i=1 I=1 i=1

kom 2 K om P 2
E{@ B }:Var(ZZR,.,,,>{E(zzah_ng}
1

= Tl'xAiIAxl + E(Rh:n, ) iAxAE(Rh:n, )1

where

E(Rh:n,) = [E(lel )7“"E(Rnl:nl ) E(Rl:n2 )’”.’Ej(lznzzn2 ) """" E(Rl:n,‘ )""’E(Rnk:nk )} ?

1xA4
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lgl,lm, B—I,Z:n, e Bl,n,:n,
inl — : 182;2.'"1 i ,
R B—n, sy | nyxny
5, 0 0]
_ 10 E, 0
0 0 z,
k1 AxA

and

Bh,j:n, =C0v(Rh:n,,Rj:n,)’ h’ .] = 1’ seey nl-
From the fact that E(R,,, )=®,, E(S,,) and B, i = Oy @, COV(Sy, » S im) > WE
derive the Cov(S,,, ,S;,, ) as follows. Once again, to distinguish the group to which the A-

th and j-th observations belong from the rest of the groups, we denote that specific group
as /*. Then,
Cov(Sh:n,- ’Sj:n,. )

Ny e k n
Cor(zy, 2y )+ CoU 2y S Vi i )+ CON 2 5 Vin 20, )+ V(XD Usy 21, )
j=1 i=1

1=t =1

= B+ S Vin Brin )+ D (Vi By )+ UEU,
i=1

i=1
where B, ., 1s the covariance between A and j-th order statistics from a sample of size

n,. from the standard extreme value distribution, T is as defined in (2.2.8), and

0 :‘:UI:AI"‘.’Un,:nl (]l:nz ’”.’Unzrnz ..... Ultnk ’“"Unk:n,( } :
IxA
4.4.3 Derivation of /.

To compute /., we need to express C in (4.2.15) as

ny

C= ﬂh:n, [yh:n, - (b + dx[)]z »

k
I=1 h=1
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ﬁh:n, =ﬂh:n, and yh:n, =yh:n, !f h Snl -5

: 443.1
ﬂh:n, = ﬂn,—s,:n, and yh:n, = yn,—s,:n, l.f h> nl -5 ( )

where

From the expressions in (4.4.1.1) and (4.4.3.1), we have

ko
IC = GzZZﬂh:n,E(S::n, ) .

1=} h=1

To evaluate /., we need the value of E(S ::n, ) which can be computed as
E(S2, ) =Var(S,, )+ [ES, )] -

The value of [E (Shn, )]Z can be computed from (4.4.1.3), and

Var(S,,, ) = Var(z,,n)+Var(ZZUM’zM)+Var(Z Zi, )+2Cov(zhn,Z( s Zhiinn)

1#l* i=1

:thn +0' ZQ+22( inp ﬁh,i:n,.);

here I is as defined in (2.2. 8) Q is a vector that consists of all U, 's for i =1, ..., n, !
=1,...,k and the U,, 's will be replaced by V,, 's when [=1% .

All the above results for AMLE in the complete sample situation may simply be

deduced from the above formulas by setting s, =0 for/=1,..., k.

4.5 Simulations and Results

In the simulation study, we took v, =0,v,=1 ando =1 and x = [-0.5, 0.5] or

[-0.5, -0.16, 0.16, 0.5] for two- or four-grouped samples, respectively. We use n to denote
the vector of the multi-group sizes for the cases of complete sample and s to denote the

vector of the multi-group censoring schemes for the cases of Type-II right-censored
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sample. In order to study the AMLEs in the MEVR model, we performed the simulations

based on 10,000 Monte Carlo runs for each of the following cases:

1. Complete samples

two groups:  n = [6 6(1)10], [7 7(1)10], [8 8(1)10], [9 9(1)10], [10 10], [15 15(5)20]
and [20 20] .

four groups: n =[6x2 6(1)10x2], [7x2 7(1)10;<2], [8x2 8(1)10x2], [9%2 9(1)10x2],
[10 10 10 10], [15x2 15(5)20x2] and [20 202020} .

2. Type-1I right-censored samples

two groups: s = [4 4(1)0], [3 3(1)0}, [2 2(1)0] and [1 1(1)0] from » = [10 10] and
[5 5(1)0] from n = [20 20].

four groups: s = [4x2 4(1)0x2], [3x2 3(1)0x2], [2x2 2(1)0x2] and [1x2 1(1)0x2]
fromn = [1010 10 10] and [5x2 5(1)0x2] from n = [20 20 20 20].

We generated order statistics from the standard extreme value sample z,, ,
i=1,..., n, I = 1,..., k, and then using the model y, =v,6 +v,x, + oz,, transformed
the sample into y,, , i=1,...m [ =1,.., k. Upon using the formulas in (4.2.4) — (4.2.6),
we obtained the values of AMLEs V,, ¥, and & . Based on 10,000 runs, we determined
the values of (1) Bias(V,)/ o, (2) Bias(V|)/c, (3) Bias(&)/ o, (4) MSEW,)/a?, (5)
MSE(V,)/&Z, (6) MSE(&)/c?, (T) Var(v,)/a?, (8) Var(¥,)/c?, (9) Var(G)/c?, (10)
Cov(¥,,7)/ o, (11) Cov(¥,,6)/c?, and (12) Cov(V,,5)/c’. The approximate values of

(1) = (3) and (7) — (12) were also computed by the formulas in (4.4.1) — (4.4.3) and the

inverse of (4.3.1), respectively. These results are presented in Tables 4.5.1 —4.5.12.
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From these tables, we observe the following points. The approximate biases tend

to increase in AMLEs of v, and v, and decrease in o with increasing number of levels

of x when the groups are of the same size in the complete samples. The biases of all
estimators tend to decrease with increasing number of levels of x when the amounts of
censoring are of the same size in the Type-II censored samples. The biases of all
estimators tend to decrease with a major increase in N. In addition, with the same N, the
biases of all estimators tend to decrease in the more balanced groups than among the less
balanced groups and moreover for o, the biases tend to be the same in the complete

samples. The biases of AMLEs in v, and o tend to increase whereas decrease in v; with

increasing amounts of censoring in the Type-II censored samples. This is true in case of
both two- and four-levels of x.

The approximate variances of all the estimators tend to decrease with increasing
number of levels of x when the groups (or the number of observations in the Type-II
censored samples) are of the same size. The variances of all the estimators tend to
decrease with a major increase in N, except for o in the Type-II censored samples. In
addition, with the same N, expect for o, the variances tend to have smaller values in the
more balanced groups than in the less balanced groups; moreover for o, the variances
tend to be the same or decrease with the more balanced groups in the complete samples
and increase with the more balanced groups in the Type-II censored samples. The

variances of AMLEs in v, and v, tend to increase whereas decrease for o with

increasing amounts of censoring. This is true in case of both two- and four-levels of x.
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It should be mentioned here that such approximate (modified) maximum
likelihood estimators have been derived for a wide range of other distributions. Interested
readers may refer to Tiku, Tan and Balakrishnan (1986) and Balakrishnan and Cohen
(1991) for a detailed description of these estimators.

Since the estimators V,, ¥, and & are in closed form, they are used as initial
guess for the Newton-Raphson procedure to obtain the MLEs discussed in Section 3.2. It
is found that these approximations were very good as the convergence occurred within

ten iterations in all cases examined here.
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CHAPTERSS

INTERVAL ESTIMATION AND PROBABILITY
COVERAGE

5.1 Introduction

In this chapter, for the MEVR model, the construction of confidence intervals for the

parameters v,, v, and o using the BLUE, MLE and AMLE of these parameters are

discussed. In constructing the confidence intervals for the location and scale parameters,
the pivotal quantities based on equivariant estimators play an important role. Therefore,
in Sections 5.2 and 5.3, the definition of equivariant estimators, pivotal quantities and a
related theorem are presented. Since all the estimators we discussed before are
equivariant estimators and approximately normally distributed, we show in Section 5.4
that the confidence intervals can be easily constructed from these pivotal quantities which
are also approximately normally distributed. Moreover, we use the probability coverages
in this section to examine the accuracy of these interval estimation procedures (i.e. the
accuracy of the normal approximation in terms of probability coverages for all these
estimators). Finally, we conduct a simulation study to evaluate the performance of the
probability coverages of all these estimators for various choices of sample sizes and

censoring schemes in Section 5.5.
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5.2 Equivariant Estimators

In constructing confidence intervals or conducting tests of hypotheses for the location and

scale parameters, pivotal quantities based on equivariant estimators play an important

role.
Consider a Type-II right-censored sample
Vin SVon S e S Voo (5.2.1)
from a location-scale family with density f (v U,0)= % g(—}i—;ﬁ) , —0<y<o.

Suppose that =1y, ¥y...,) and &= g(y,m,..., V.., ) form a pair of estimators of
wand o which have the property that for any real constant ¢ (mwo<y<w)andd (d>0),

H(dy,, + Crordy,_pn + €)= (D1 reees Yign )+ € (5.2.2)

and
G(dy,, + Crrr @y, + )= dg(ylm e Voen ) - (5.2.3)

Then, fi and & are termed as equivariant estimators of xand o ( Zacks, 1971; Lawless,

1982).

The requirements (5.2.2) and (5.2.3) are natural ones for estimators of location
and scale parameters and most, if not all, of the common estimators satisfy them.

It has been proved that the BLUEs, MLEs and AMLEs we have discussed in

previous chapters are all equivariant estimators (Lawless, 1982; Chan, 1993).
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5.3 Pivotal Quantities

The following theorem is very useful in constructing confidence intervals for the location
and scale parameters.
Theorem 5.3.1 Let ﬁ and G be equivariant estimators, based on a Type-

II right-censored sample given in (5.2.1). Then

1. Z = (ﬁ B % and Z, = ON/O_ are pivotal (parameter free) quantities.

~
~

2. The quantities a; = (y in "% , i =1,...,n-s, form a set of ancillary statistics, only
G

n-s-2 of which are functionally independent.
For a proof of this theorem, see Lawless (1982).

Since the BLUE, MLE and AMLE are all equivariant, Z; and Z; based on them
are pivotal quantities by Theorem 5.3.1. Hence, if we know the distribution of Z; and Z,,

then the construction of confidence intervals for x4 and o is straightforward. For
example, if we know the values of a, and b, such that
Prla, <Z,<b,)=p,

then the confidence interval for u with confidence 100p% is simply

~
—~

[;1 - bzlg, ft - azlgl.
Unfortunately, the distribution of Z; and Z; are not mathematically tractable

expect in few cases (e.g., the pivotal quantities based on the MLE’s in the case of
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exponential distribution or from a complete sample from normal distribution). Therefore,

one may obtain the distribution of Z, and Z; by either simulations or approximations.

5.4 Probability Coverages

In the MEVR model, we have the asymptotic normality of the estimators of v,, v, and
o based on the methods of BLUE, MLE and AMLE. Therefore, the asymptotic
distributions of the following pivotal quantities

-9 (5.4.1)

v, -v v, —v
-0 0 — 1 1 _
== P, == P ==
oV, GV GV

are standard normal, where Vi, V2 and Vi3 are the corresponding exact values of

SH

Var(V,)/ o, Var(V))/c* and Var(G5)/o®, respectively. Through Monte Carlo
0 1

simulations, the percentage points of these pivotal quantities can be determined. These
simulated percentage points will allow us to construct confidence intervals for the

parameters v,, v, and o . For example, if p ,, and p  , % denote the lower and upper
/2 2

percentage points determined through simulation for the pivotal quantity p,, then
v, —gpn,l-%"WH , v +§P,%«/Vn] will form a 100(1- @ )% confidence interval for v,
when o is unknown.

To examine the accuracy of these interval estimation procedures, we simulated
the probability coverages of these approximate confidence intervals (which we naturally

expect to be approximately 95%) through the values of

Pr(-1.96 < p, <1.96) for i=1,2,3.
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5.5 Simulation Results

In the simulation study, we took v, =0, v, =1 and o=1, and x = [-0.5, 0.5] or

[-0.5, -0.16, 0.16, 0.5] for two- or four-grouped samples, respectively. We use n to denote

the vector of the multi-group sizes for the cases of complete sample and s to denote the

vector of the multi-group censoring schemes for the cases of Type-II right-censored

sample. The process is based on 10,000 Monte Carlo runs. We simulated the probability

coverages of intervals based on BLUEs, MLEs and AMLEs for each of following cases.

1. Complete samples

two groups: n = [6 6(1)10], [7 7(1)10], [8 8(1)10], [9 9(1)10], [10 10], [15 15(5)20]}
and [20 20] .

four groups: n=[6x2 6(1)10x2], [7x2 7(1)10x2], [8x2 8(1)10x2], [9x2 9(1)10x2],
[1010 10 10], [15x2 15(5)20x 2]} and [2020 2020 ] .

2. Type-II right-censored samples

two groups: s = [4 4(1)0], [3 3(1)0], [2 2(1)0] and [1 1(1)0] from » = [10 10] and
[5 5(1)0] from n =20 20].

four groups: s = [4x2 4(1)0x2], [3x2 3(1)0x2], [2x2 2(1)0x2] and [1x2 1(1)0x2]
fromn = [10 10 10 10] and [5x2 5(1)0x 2] from n = [20 20 20 20].

These results are presented in Tables 5.5.1 - 5.5.4.
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CHAPTER 6

COMPARISON WITHIN AND BETWEEN BLUE, MLE
AND AMLE

6.1 Introduction

In this chapter, we first assess the effects of the following five factors on the performance
of BLUE, MLE and AMLE for v,, v, and o in Sections 6.2, 6.3 and 6.4, respectively:

1. The number of levels of the regressor variable x,
2. The balanced (equal sized) group sample vs. unbalanced (unequal sized) group
sample,

3. The total sample size N,

4. The complete sample vs. Type-II right-censored sample,

5. The degrees of censoring.
The assessments are based on estimators’ bias, mean square error, variances and
probability coverages.

We then make comparisons in Section 6.5 between BLUE, MLE and AMLE
based on the relative efficiency of the estimators and the accuracy of the normal
approximation in terms of probability coverages.

The numbers of levels of x are chosen as two and four (which correspond to the

two-grouped and four-grouped samples, respectively) in this study; the values of x are
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equally spaced between —0.5 and 0.5. Any equally spaced values of x can be produced
through appropriate linear transformations. In this study, we have x = [-0.5 0.5] for
two-grouped sample and x = [-0.5 -0.16 0.16 0.5] for four-grouped sample. In the
complete sample case, both equal sized and unequal sized group samples are used in the
study, and the group size differences between (or among the four-grouped sample) the
unbalanced groups are set from 1 to 5. The single group size n of the balanced groups 1s
chosen as 6, 7, 8, 9, 10, 15 and 20 for both two-grouped and four-grouped samples.
With the scheme of [n; n(1)10] for n < 10, (or [n; n(5)20] for n=15) in two-grouped
sample and the scheme [n; n; n(1)10; n(1)10] for n < 10, (or [n; n; n(5)20, n(5)20] for n
= 15) in four-grouped sample, the unbalanced groups are produced as showﬁ in Tables
6.2.1 and 6.2.2 in Section 6.2.

In the Type-II right-censored sample, we took either 10 or 20 as the complete
sample size for each group, and adopt all samples of various group sizes in the complete
sample case to form samples of various Type-II right-censored samples. In other words,
with the same number of groups and group sizes (does not matter balanced or
unbalanced), the complete sample has the complete sample in each group whereas the
Type-II censored sample has the censored sample either censored from n =10 or n = 20.
For example, [7 9] in the complete sample case, means a two-grouped complete samples
of size 7 and 9; and in the Type-II censored sample, means a two-grouped censored
samples of size 7 and 9 censored from the complete samples of size 10 and 10. Such a

choice of censoring spans the severe, moderate, and light censoring situations. It should
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be noted that in the Type-II censored samples, if n > 10, the censoring is from the
complete sample of size 20, otherwise is from size 10.

Without loss of generality, we set the true parameter values of v,, v, and o as 0,

1 and 1, respectively.

6.2 Assessment of BLUESs

In this section, we use the exact variances and the simulated probability coverages to
assess the performance of the BLUEs of v,, v, and o . We rearrange the exact variances

according to increasing order of the total sample size N in Tables 6.2.1 - 6.2.4 for both

two- and four-grouped samples as well as complete and Type-II right-censored samples.

Table 6.2.1 BLUEs: Exact variances for two-grouped complete sample

[n1 1) Var(vi)/o® | Var(v))le® | Var(c')/o?
[6 6] 0.0956 0.3674 0.0660
[6 7] 0.0885 0.3392 0.0597
[6 8] 0.0833 0.3185 0.0545
N=14 [7 7] 0.0815 0.3109 0.0545
[6 9] 0.0792 0.3027 0.0501
N=15 [7 8] 0.0762 0.2901 0.0502
[6 10] 0.0759 . 0.2902 0.0464
N=16 [79] 0.0722 0.2742 0.0464
[8 8] 0.0710 0.2693 0.0465
[710] 0.0689 0.2617 0.0432
N=17 [8 9] 0.0669 0.2534 0.0432
[810] | 0.0637 0.2400 0.0404
N=18 [99] 0.0629 0.2375 0.0404
[910] 0.0597 0.2250 0.0380
110 10] 0.0565 0.2124 0.0358
[1515] 0.0374 0.1389 0.0227
{15 20] 0.0326 0.1211 0.0191
20 20] 0.0280 0.1032 0.0166
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Table 6.2.2 BLUEs: Exact variances for four-grouped complete sample

[ny n2 ny na] Var(v,)/ o’ Var(v;)/o® | Var(c')/ o’
[6 66 6] 0.0478 0.3333 0.0330
[6677] 0.0442 0.3072 0.0299
[668 8] 0.0414 0.2874 0.0273
N=28 [7777] 0.0407 0.2820 0.0273
[6699] 0.0392 ~0.2718 0.0251
N=30 [7788] 0.0381 : 0.2629 0.0251
{661010] 0.0374 0.2590 0.0232
N=32 [7799] 0.0360 0.2478 0.0232
[8 88 8] 0.0355 0.2443 0.0232
[771010] 0.0342 0.2356 0.0216
N=34 [8899] 0.0334 0.2297 0.0216
(8810 10] 0.0318 0.2179 0.0202
N=36 [9999] 0.0315 0.2155 0.0202
[991010] 0.0298 0.2040 0.0190
[10101010] 0.0282 0.1927 0.0179
[15151515] 0.0187 0.1260 0.0113
[15 15 20 20] 0.0163 0.1093 0.0096
{20 20 20 20] 0.0140 0.0936 0.0083

Table 6.2.3 BLUEs: Exact variances for two-grouped Type-II censored sample

[s1 52 Var(vy)/o® | Var(v))/o*® | Var(c')/o®
4 4 0.1072 0.3637 0.0829
4 3 0.0925 0.3391 0.0735
4 2 0.0829 0.3258 0.0652
N=14 3 3 0.0808 0.3082 0.0661
4 1 0.0765 0.3190 0.0575
N=15 3 2 0.0732 0.2900 0.0593
4 0 0.0722 0.3162 0.0500
N=16 3.1 0.0683 0.2795 0.0529
2 2 0.0670 0.2676 0.0537
3 0 0.0651 0.2741 0.0464
N=17 2 1 0.0631 0.2536 0.0484
20 0.0607 0.2455 0.0430
N=18 1 1 0.0599 0.2366 0.0441
1 0 0.0580 0.2258 0.0395
*S 5 0.0348 0.1382 0.0275
*S 0 0.0306 0.1249 0.0207

Asterisk denotes censoring is from n =[20 20], otherwise is from [/0 10]
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Table 6.2.4 BLUESs: Exact variances for four-grouped Type-II censored sample

[s1 s2 83 S4] Var(vy)! o’ Var(v,)/ o’ Var(c')/ o’
4 4 4 4 0.0536 0.3299 0.0414
4 4 3 3 0.0461 0.3065 0.0367
4 4 2 2 0.0411 0.2920 0.0324
N=28 {3 3 3 3 0.0404 0.2796 0.0330
4 4 1 1 0.0377 0.2827 0.0284
N=30 | 3 3 2 2 0.0365 0.2624 0.0296
4 4 0 O 0.0355 0.2764 0.0245
N=32 {3 3 11 0.0340 0.2512 0.0263
2 2 22 0.0335 0.2428 0.0269
33 0 0 0.0324 0.2440 0.0230
N=34 |12 2 11 0.0315 0.2296 0.0242
2 2 0 0 0.0303 0.2210 0.0214
N=36 [1 1 1 1 0.0299 0.2146 0.0220
1 1 00 0.0290 0.2045 0.0197
*5 5 5 5 0.0174 0.1254 0.0137
*5 5 0 0 0.0152 0.1120 0.0103

Asterisk denotes censoring is from n ={20 20 20 20}, otherwise is from /10 10 10 10]

The variances of all the estimators tend to decrease with increasing number of
levels of x when the groups (or the number of observations in the Type-II censored

samples) are of the same size. The variances of all the estimators tend to decrease with a

increase in V. In addition, with the same N, the variances of BLUEs for v, andv, tend to

be smaller in value in the case of more balanced groups than among the less balanced
groups. Moreover, for the same N, the variance of BLUE of ¢ tends to be the same in
the complete samples and increase with the more balanced groups in the Type-II
censored samples. The variances of all the estimators tend to increase with increasing

amounts of censoring. This is true for both two- and four-levels of x.
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According to the results in Tables 5.5.1 - 5.5.4, the simulated probability
coverages of all the estimators tend to increase with increasing number of levels of x
when the groups (or the amounts of censoring in the Type-II censored samples) are of the
same size. The simulated probability coverages of all estimators tend to increase with a
major increase in N. Moreover, with the same N, the simulated probability coverages of
BLUE:s for v,, v, and o do not exhibit a clear rpattern between the more balanced and
the less balanced groups. The simulated probability coverages of all the estimators tend to
decrease with increasing amounts of censoring. This fact is more obvious in the case of
two-levels of x.

Since the BLUEs for v,, v, and o are all unbiased, the simulated mean square
errors are almost identical to the simulated variances. The close agreement between the

simulated variances and the exact variances of BLUEs of v, v, and o should be noted

as well.
6.3 Assessment of MLEs

Similar to the BLUEs, we use the asymptotic variances of the MLEs of v,, v, and o In

Tables 6.3.1 - 6.3.4 and the simulated probability coverages (in Tables 5.5.1 - 5.5.4) to

assess the performance of the MLEs of v, v, and o .
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Table 6.3.1 MLEs: Asymptotic variances for two-grouped complete sample
[y n3} Var(&o)/o'2 Var(ﬁ,)/az VCU'((')\’)/O'2

[6 6] 0.0924 0.3333 0.0507

[67] 0.0857 0.3095 0.0468

[6 8] 0.0807 0.2917 0.0434

N=14 (771 0.0792 0.2857 0.0434

6 9] 0.0767 0.2778 0.0405

N=15 [7 8] 0.0742 0.2679 0.0405

{6 10] 0.0735 ©0.2667 0.0380

N=16 {79] 0.0703 0.2540 0.0380

[8 8] 0.0693 0.2500 0.0380

[7 10} 0.0671 0.2429 0.0358

N=17 18 9] 0.0654 0.2361 0.0358

{8 10] 0.0623 0.2250 0.0338

N=18 [99] 0.0616 0.2222 0.0338

[9 10] 0.0585 0.2111 0.0320

{10 10] 0.0554 0.2000 0.0304

[1515] 0.0370 0.1333 0.0203

[1520] 0.0323 0.1167 0.0174

[20 20} 0.0277 0.1000 0.0152
Table 6.3.2 MLEs: Asymptotic variances for four-grouped complete sample

[ny ny ny n4l Var(v,)/ o’ Var(v,)/ o’ Var(6)/ o’

[6 66 6] 0.0462 0.3024 0.0253
[6677] 0.0428 0.2804 0.0234
[668 8] 0.0402 0.2634 0.0217
=28 (7777 0.0396 0.2592 0.0217
[6699] 0.0380 0.2498 0.0203
N=30 {778 8] 0.0371 0.2427 0.0203
[661010] 0.0363 0.2386 0.0190
N=32 [7799] 0.0350 0.2296 0.0190
[8888] 0.0346 0.2268 0.0190
{771010] 0.0333 0.2188 0.0179
N=34 [8899] 0.0327 0.2140 0.0179
[8 810 10] 0.0311 0.2036 0.0169
N=36 [9999] 0.0308 0.2016 0.0169
[991010] 0.0292 0.1914 0.0160
[10101010] 0.0277 0.1814 0.0152
[15151515] 0.0185 0.1209 0.0101
{15 1520 20] 0.0161 0.1054 0.0087
[20 20 20 20] 0.0139 0.0907 0.0076
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Table 6.3.3  MLEs: Asymptotic variances for two-grouped Type-II censored sample

[s1 s2] Var(v,)/ o | Var(v))/o’ Var(6)/ o*
4 4 0.0880 0.3333 0.0624
4 3 0.0793 0.3114 0.0568
4 2 0.0734 0.2982 0.0515
N=14 3 3 0.0695 0.2904 0.0464
4 1 0.0669 0.2865 0.0409
N=15 3 2 0.0719 -~ 0.2857 0.0521
4 0 0.0670 0.2693 0.0477
N=16 3 1 0.0638 0.2589 0.0432
2 2 0.0618 0.2530 0.0384
30 0.0628 0.2500 0.0439
N=17 2 1 0.0601 0.2372 0.0401
2 0 0.0585 0.2292 0.0359
N=18 1 1 0.0578 0.2222 0.0369
1 0 0.0565 0.2121 0.0333
*5 5 0.0333 0.1333 0.0246
*5S 0 0.0299 0.1203 0.0188

Asterisk denotes censoring is from n ={20 20], otherwise is from /10 10]

Table 6.3.4  MLEs: Asymptotic variances for four-grouped Type-II censored sample

[s1 52 $3 S4] Var(v,)/ o’ Var(v,)/ o* | Var(6)/ c*®
4 4 4 4 0.0440 0.3024 0.0312
4 4 3 3 0.0396 0.2818 0.0284
4 4 2 2 0.0365 0.2680 0.0257
N=28 3 3 3 3 0.0359 0.2592 0.0261
4 4 11 0.0344 0.2586 0.0230
N=30 3 3 22 0.0335 0.2438 0.0238
4 4 0 O 0.0331 0.2522 0.0201
N=32 33 11 0.0318 0.2331 0.0215
2 2 22 0.0314 0.2268 0.0219
3 3 0 0 0.0307 0.2259 0.0190
N=34 2 2 11 0.0300 0.2148 0.0200
2 2 0 0 0.0292 0.2065 0.0179
N=36 1 1 1 1 0.0289 0.2016 0.0185
1 1.0 0 0.0283 0.1921 0.0167
¥5 5 5 5 0.0167 0.1209 0.0123
*5 5 0 0 0.0149 0.1080 0.0093

Asterisk denotes censoring is from n ={20 20 20 20/, otherwise is from [/0 10 10 10]
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The variances of all the estimators tend to decrease with increasing number of
levels of x when the groups (or the number of observations in the Type-Il censored
samples) are of the same size. The variances of all the estimators tend to decrease with a

major increase in N. In addition, with the same N, the variances of MLEs of v, and v,

tend to be smaller in value in the more balanced groups than among the less balanced
groups. Moreover, with the same N, the variance of MLE of o tends to be the same in
the complete samples and does not exhibit any clear patterns in the Type-II censored
samples. The variances of all the estimators tend to increase with increasing amounts of
censoring. This is true for both two- and four-levels of x.

The simulated probability coverages of all the estimators tend to increase with
increasing number of levels of x when the groups (or the number of observations in the
Type-II censored sample) are of the same size. The simulated probability coverages of all

the estimators tend to increase with a major increase in N. Moreover, with the same N,

the simulated probability coverages of MLEs of v, and v, do not exhibit a clear pattern

between the more balanced and the less balanced groups. The simulated probability
coverages of all the estimators present a strong tendency to decrease while the amounts of
censoring increase in the two-levels of x. This fact is also seen in most of the cases with
four-levels of x.

The simulated mean square errors are very close to the simulated variances, but
not identical, which means that the biases of the estimators are negligible. Moreover, the

agreements tend to increase with increase in the total sample size N. This simply means
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that the MLEs of v,, v, and o all become almost unbiased as the total sample size N

become large.

6.4 Assessment of AMLESs

To assess the performance of the AMLEs of v,, v, and &, we rearrange the approximate

biases and variances in an increasing order of the total sample size N in Tables 6.4.1 -

6.4.4 for both two- and four-grouped samples as well as the complete and the Type-lI

censored samples.

Table 6.4.1  AMLEs: Approximate bias and variances for two-grouped complete sample
[n, ns) Bias(V,)/ o| Bias(v|)/ o Bias(c)/ o Var@,)/o* | Var(@) /o Var()/ o
{6 6] -0.1498 0.0000 -0.0672 0.0983 0.3924 0.0476
(67 -0.1400 0.0222 -0.0621 0.0906 0.3622 0.0432
{6 8} -0.1327 0.0393 -0.0579 0.0849 0.3400 0.0404
N=14 | [77] -0.1301 0.0000 -0.0578 0.0829 0.3316 0.0395
[6 9] -0.1269 0.0527 -0.0542 0.0806 0.3231 0.0379
N=15| (78] -0.1227 0.0170 -0.0541 0.0773 0.3093 0.0371
[6 10] -0.1223 0.0637 -0.0510 0.0772 0.3099 0.0357
N=16 | [79] -0.1168 0.0306 -0.0509 0.0730 0.2923 0.0350
[8 8] -0.1151 0.0000 -0.0508 0.0717 0.2868 0.0350
[7 10] -0.1121 0.0415 -0.0481 0.0697 0.2789 0.0332
N=17} [89] -0.1091 0.0135 -0.0480 0.0675 0.2697 0.0332
[8 10] -0.1044 0.0245 -0.0455 0.0641 0.2562 0.0315
18| [99] -0.1031 0.0000 -0.0455 0.0633 0.2525 0.0315
{9 10] -0.0983 0.0110 -0.0433 0.0599 0.2389 0.0300
[10 10] -0.0934 0.0000 -0.0413 0.0566 0.2254 0.0286
{15 15] -0.0643 0.0000 -0.0267 0.0372 0.1461 0.0196
[15 20] -0.0567 0.0175 -0.0233 0.0325 0.1270 0.0169
[20 20} -0.0488 0.0000 -0.0207 0.0278 0.1078 0.0149
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The approximate biases tend to increase in AMLEs of v, and v, and decrease in

o with increasing number of levels of x when the groups are of the same size in the
complete samples. The biases of all estimators tend to decrease with increasing number
of levels of x when the amounts of censoring are of the same size in the Type-II censored
samples. The biases of all estimators tend to decrease with a major increase in N. In
addition, with the same N, the biases of all estimators tend to decrease in the more
balanced groups than among the less balanced groups and moreover for o, the biases

tend to be the same in the complete samples. The biases of AMLEs in v, and o tend to

increase whereas decrease in v, with increasing amounts of censoring in the Type-II
censored samples. This is true in case of both two- and four-levels of x.

The approximate variances of all the estimators tend to decrease with increasing
number of levels of x when the groups (or the number of observations in the Type-II
censored samples) are of the same size. The variances of all the estimators tend to
decrease with a major increase in N, except for o in the Type-II censored samples. In
addition, with the same N, expect for o, the variances tend to have smaller values in the
more balanced groups than in the less balanced groups; moreover for o, the variances
tend to be the same or decrease with the more balanced groups in the complete samples
and increase with the more balanced groups in the Type-II censored samples. The

variances of AMLEs in v, and v, tend to increase whereas decrease for o with -

increasing amounts of censoring. This is true in case of both two- and four-levels of x.
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From Tables 5.5.1 - 5.5.4, we observe that the simulated probability coverages of

all the estimators tend to increase, except for v, in the complete samples, with increasing

number of levels of x when the groups (or the number of observations in the Type-II
censored samples) are of the same size. Due to the larger bias of AMLE of v, in the four-
grouped sample case, the values of simulated probability coverages are smaller as
compared to the two-grouped sample case in the complete sample cases when the groups
are of the same size. The simulated probability coverages of all the estimators tend to
decrease with a major increase in N. Moreover, with the same N, the simulated

probability coverages of AMLEs of v, and v, do not exhibit any clear pattern between

the more balanced and the less balanced groups. The simulated probability coverages of

all the estimators, except for AMLE of v, in case of four-levels of x, reveal a strong

tendency to decrease when the amounts of censoring increase.
6.5 Comparisons between BLUE, MLE and AMLE

In terms of the simplicity of the estimation procedure, BLUE requires minimal derivation
to obtain formulas of the estimators and are easy to program to obtain the estimates by
the use of computer software, such as, Matlab, Minitab, etc. However, BLUE are less
effictent as compared to MLE. Moreover, its use is restricted to situations when the
sample size n does not exceeds 30, since it is necessary to have the means, variances, and
covariances of order statistics from the standard extreme value distribution and which are

not available for n beyond 30.
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The AMLE are explicit estimators (unlike the MLE) and do not need the
construction of any special tables (unlike the BLUE). However, it involves somewhat
complicated derivation and calculation if the model involves multi-groups and includes
many unknown parameters. In addition, it is more biased and less efficient than the other
two procedures in most of the cases.

The MLE process high efficiency and are also approximately unbiased.
Nevertheless, the lack of closed-form solutions of MLEs requires the use of iterative
methods to obtain the estimates. Moreover, it faces convergence problem, as the
convergence is often quite slow.

In the following, we compare the BLUEs, MLEs and AMLEs in terms of relative
efficiency and the accuracy of the normal approximation in terms of probability

coverages in more detail.

6.5.1 Relative Efficiency

Relative efficiencies to MLEs of BLUEs and AMLEs can be calculated by the formulas
that have been presented earlier in (4.3.1) - (4.3.7), (2.2.20) - (2.2.25), and (3.3.1) -
(3.3.7), respectively. A summary of these efficiency ratios are displayed in Tables of

6.5.1.1-6.5.1.4.
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Table 6.5.1.1

Relative efficiency of BLUEs and AMLEs from two-grouped complete sample

BLUEs AMLEs
[nl nZ] V; VT o': ’170 Vl 6

{6 6] 0.9665 | 0.9072 | 0.7682 | 0.9400 | 0.8494 | 1.0651

[67] 0.9684 | 0.9124 | 0.7839 | 0.9459 | 0.8545 1.0833

[68] 0.9688 | 0.9159 | 0.7963 | 0.9505 | 0.8579 | 1.0743

N=14 [77] 0.9718 | 0.9189 | 0.7963 | 0.9554 | 0.8616 | 1.0987

[6 9] 0.9684 | 0.9177 | 0.8084 | 0.9516 | 0.8598 1.0686

N=15 [7 8] 0.9738 | 0.9235 | 0.8068 [ 0.9599 | 0.8661 1.0916

[610] | 09684 | 0.9190 | 0.8190 | 0.9521 | 0.8606 | 1.0644

N=16 [79] 0.9737 | 0.9263 | 0.8190 | 0.9630 | 0.8690 | 1.0857

[8 8] 0.9761 | 0.9283 | 0.8172 | 0.9665 | 0.8717 | 1.0857

[710] | 0.9739 | 0.9282 | 0.8287 | 0.9627 { 0.8709 | 1.0783

N=17 [89] 0.9776 | 0.9317 | 0.8287 | 0.9689 | 0.8754 | 1.0783

(8 10] | 0.9780 | 0.9340 | 0.8366 | 0.9719 | 0.8782 | 1.0730

N=18 [9 9] 0.9793 | 0.9356 | 0.8366 | 0.9731 | 0.8800 | 1.0730

[9 10] 0.9799 | 0.9382 | 0.8421 | 0.9766 | 0.8836 | 1.0667

[10 10] 0.9805 | 0.9416 | 0.8492 | 0.9788 | 0.8873 1.0629

[1515] 0.9893 | 0.9597 | 0.8943 | 0.9946 | 0.9124 | 1.0357

[1520] 0.9908 | 0.9637 | 0.9110 | 0.9938 | 0.9189 | 1.0296

120 20] 0.9893 | 0.9690 | 0.9157 | 0.9964 | 0.9276 | 1.0201

Table 6.5.1.2  Relative efficiency of BLUEs and AMLEs from four-grouped complete sample

BLUEs AMLEs
[y iz 3 4] Vo v: o. Vo Vi G

[6666] 0.9665 | 0.9073 | 0.7667 | 0.9390 0.8494 1.0630
[6677] 0.9683 | 0.9128 | 0.7826 | 0.9469 0.8549 1.0833
[6688] 0.9710 | 0.9165 | 0.7949 | 0.9526 0.8585 1.0743
N=28 (7777] 0.9730 | 0.9191 | 0.7949 | 0.9542 0.8617 1.0960
{6699] 0.9694 | 0.9191 | 0.8088 | 0.9524 0.8614 1.0741
N=30 (7788] 0.9738 | 0.9232 | 0.8088 | 0.9611 0.8662 1.0914
{6 6 10 10] 0.9706 | 0.9212 | 0.8190 | 0.9553 0.8636 1.0615
N=32 {7799] 0.9722 | 0.9266 | 0.8190 | 0.9615 0.8697 1.0857
[8888] 0.9746 | 0.9284 | 0.8190 | 0.9638 0.8716 1.0857
[771010] 0.9737 | 0.9287 { 0.8287 | 0.9624 0.8721 1.0783
N=34 [8899] 0.9790 | 0.9316 | 0.8287 | 0.9703 0.8756 1.0783
(8810 10] 0.9780 | 0.9344 | 0.8366 | 0.9719 0.8787 1.0764
N=36 [9999] 0.9778 | 0.9355 | 0.8366 | 0.9747 0.8803 1.0764
[991010] 0.9799 | 0.9382 | 0.8421 0.9766 0.8837 1.0667
[10101010] 0.9823 | 0.9414 | 0.8492 | 0.9788 0.8875 1.0629
[15151515] 0.9893 | 0.9595 | 0.8938 | 0.9946 0.9125 1.0306
{1515 20 20] 0.9877 | 0.9643 | 0.9063 0.9938 0.9197 1.0235
[20 20 20 20] 0.9929 | 0.9690 | 0.9157 1.0000 0.9274 1.0270
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Table 6.5.1.3

Relative efficiency of BLUEs and AMLEs from two-grouped Type-II censored sample

BLUEs AMLEs

[s: s2] v, 2 o. Vo v, o
4 4 0.8209 0.9164 0.7527 0.8066 0.9357 1.1642
4 3 0.8573 0.9183 0.7728 0.8295 0.9326 1.1568
42 0.8854 0.9153 0.7899 0.8515 0.9296 1.1470
N=14 | 3 3 0.8601 0.9422 0.7020 0.8731 0.9272 1.1345
4 1 0.8745 0.8981 0.7113 0.8896 0.9260 1.0965
N=15 32 0.9822 0.9852 0.8786 0.8539 0.9297 1.1527
4 0 0.9280 0.8517 0.9540 0.8781 0.9261 1.1466
N=16 | 3 1 0.9341 0.9263 0.8166 0.8999 0.9227 1.1309
2 2 0.9224 0.9454 0.7151 0.9169 0.9200 1.0971
30 0.9647 0.9121 0.9461 0.9010 0.9211 1.1373
N=17 | 2 1 0.9525 0.9353 0.8285 0.9232 0.9162 1.1264
2 0 0.9638 0.9336 0.8349 0.9405 0.9110 1.0945
N=18 1 1 0.9649 0.9391 0.8367 0.9444 0.9088 1.1148
10 0.9741 0.9393 0.8430 0.9625 0.9003 1.0847
*5 5 0.9569 0.9645 0.8945 0.9380 0.9590 1.0789
*5 0 0.9771 0.9632 0.9082 0.9676 0.9510 1.0444

Asterisk denotes censoring is from n ={20 20], otherwise is from [/0 10]

Table 6.5.1.4 Relative efficiency of BLUEs and AMLEs from four-grouped Type-II censored sample
BLUEs AMLEs
[Sl S22 83 S4] V' O": \70 ‘71 5

4 4 4 4 0.8209 0.9166 0.7536 0.8059 0.9359 1.1642

4 4 3 3 0.8590 0.9194 0.7738 0.8302 0.9328 1.1592

4 4 22 0.8881 0.9178 0.7932 0.8528 0.9289 1.1525

N=28 3 3 3 3 0.8886 0.9270 0.7909 0.9135 0.9277 1.2857
4 4 11 0.9125 0.9148 0.8099 0.9297 0.9448 1.2500

N=30 3 3 22 0.9178 0.9291 0.8041 0.7957 0.8745 1.0531
4 4 00 0.9324 | 09124 | 0.8204 | 0.8688 | 0.9578 | 0.9663

N=32 33 11 0.9353 0.9279 0.8175 0.9008 0.9217 1.1257
2 2 22 0.9373 0.9341 0.8141 0.9373 0.9201 1.2586
3300 0.9475 0.9258 0.8261 0.8822 0.9179 0.9845

N=34 2 2 11 0.9524 0.9355 0.8264 0.9231 0.9160 1.1236
2 2 00 0.9637 0.9344 0.8364 0.9419 0.9089 1.0915

N=36 1 1 1 1 0.9666 0.9394 0.8409 0.9444 0.9093 1.1145
1 1.0 0 0.9759 0.9394 0.8477 0.9626 0.8998 1.0915

*5 5 55 0.9598 0.9641 0.8978 0.9435 0.9588 1.0789

*S 500 0.9803 0.9643 0.9029 0.9675 0.9499 1.0333

Asterisk denotes censoring is from n =/20 20 20 20], otherwise is from [10 10 10 10]
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The relative efficiency of BLUEs and AMLEs of v,, v, and o do not appear to

be affected by changes in the number of levels of x. This is true for both complete and
Type-II censored samples.

The relative efficiencies of BLUEs and AMLE:s in all cases tend to increase (or be
more closer to 1 for the AMLE of o) with a major increase in N in both complete and
Type-1I censored samples. In addition, with the same A, the relative efficiency of BLUEs

of all parameters and AMLEs of v, and v, tend to have higher value in the more

balanced groups than the less balanced groups. On the other hand, the relative efficiency
of the AMLE of o with the same N tends to be the same or less closer to 1 in the more
balanced groups of the complete samples and do not exhibit any clear pattern in the

censored sample.

The relative efficiency of the AMLE of v, has higher values in Type-II censored
samples than the complete samples. Moreover, the relative efficiency of the BLUEs and
the AMLE:s of v, and v, tend to increase with decreasing amounts of censoring.

The relative efficiency of the AMLE of o does not exhibit any clear pattern to
changes in both complete and Type-II censored samples.

Overall, the BLUES and the AMLEs of v, and v, are almost as efficient as the
MLEs, especially for large sample size N. The AMLE of o has higher efficiency as

compared to the BLUE in both two- and four-grouped samples in the complete sample

case.
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6.5.2 Accuracy of the Normal Approximation

In Chapter 2, we derived the asymptotic normality of the BLUEs of v,, v, and o. With
the large-sample approximation, we also have the asymptotic normality of the MLEs and
the AMLEs of v, v, and o . Based on the simulated probability coverages presented in

Tables 5.5.1 - 5.5.4 of

Pr(-1.96< p, <1.96) i=1, 2, 3,

(which are expected to be approximately 95%) based on BLUEs, MLEs and AMLEs of

V,, v, and o, we assess the accuracy of the normal approximation as follows.

Overall, the simulated probability coverages of the BLUEs of v,, v, and o are

the closest to 95 % not only for the two- and four-grouped samples, but also in the
complete as well as Type-II censored samples.
For both MLEs and AMLEs, the values of the simulated probability coverages

increase tremendously (close to 95%) as the total sample size N increases.

The simulated probability coverages of the AMLE of v, appear to have higher
values (close to 95%) whereas of v, and o have lower values as compared to the

corresponding MLE.
Hence, in terms of the simulated probability coverages, BLUEs exhibit the best

results than the MLEs and the AMLEs.
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CHAPTER 7

TEST OF VALIDITY OF MULTI-GROUP EXTREME
VALUE REGRESSION MODEL

7.1 Introduction

It is important to check the adequacy of models upon which inferences are based. In this
chapter, a test of validity of the multi-group extreme value regression model is discussed.
In Section 7.2, we introduce Tiku’s procedure, which provides a test for an extreme value
model for a single-group sample. We then extend Tiku’s test to the multi-group sample
situation in Section 7.3. To assess the validity of multi-group extreme value regression
model and to test against departures from the original assumption of Weibull distribution
of life-times, we explain the determination of the level of significance and the power of
this test, respectively, in Section 7.4. In Section 7.5, we simulate the value of level of
significance under the standard extreme value model, and the values of the power under
five alternatives to the extreme value regression model for various choices of sample
sizes and censoring schemes. Finally, we discuss the simulation results in Section 7.6.
Without loss of generality, we consider Type-II censored samples here. Suppose

thaty,, <y,, <..<y,.,.,are the n,—s, smallest observations in a random sample of

size n, from the extreme value population with a location parameter v, + v,x,and a
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constant scale parameter o, for / = 1,...,k. Let z;, = (y,.ml -V, — VX, )/0' ; then the

<..5z , for I = 1, ...,k are the first n, —s, order statistics from a

n=s;n;

sample z,, <z,

iy
standard extreme value distribution with density exp{z —e’}, —o <z <. Assume that
v,, v, and G are estimators (from any of the three methods of estimation) of the
unknown parameters v,, v, and o, respectively, and let Z;,., = (y,.__,,, - \70 - §1x, )/ g .
Then the main problem here is to test the hypotheses

H,: Zm’ ’s are from standard extreme value distribution

VS.

H,: ?im, ’s are not from standard extreme value distribution.

7.2 Tiku’s Test for a Single Group Sample

To test Hy against H, in a single group sample, one of the tests available in the literature
is by Tiku and Singh (1981). They applied the results of Tiku (1980b) to propose a test
for an extreme value model that can accommodate Type-II censored data. This procedure
appears to have reasonably good power against certain types of alternatives. Let z(;
represent the i-th order statistic from a random sample of size n from the standard

extreme value distribution. Let x, <...<x,, be the r smallest observations in a random
sample of size n from the distribution under study, and define the normalized spacing

_ Kay T X
=D
E(Z(i+1) - Z(i))
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The statistic proposed by Tiku and Singh (1981) is

r-2

2) (r-i-1s,

(r—'z)isi

T =

Large or small values of T provide evidence against the extreme value model. Let the
numerator and the denominator of T be denoted by W, and W,. For large n, the mean and
variance of the null distribution of T are then approximated by

E(T)=1
and

Var() , Var(¥,) _ 2Cov(#,, )

=gy FEmY | EWEW,)

Tiku and Singh showed that for n 220, the approximation T ~ N{l, Var(I)}

provides a very good approximation to the null distribution of T.

7.3  Test for the Multi-group Sample

In order to test Hy against H; in the éase of MEVR model, we define the normalized

spacing as

and the statistic for the /-th group as
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n-s; =2

2 Z(n, -, —i—l)s,.m,
T, = f=1 =" =1,k

n-s; -1

(nl _sl ——2) Zsl':n,

i=1]
Just as in the case of single group, for large n, the mean and variance of the null

distribution of 7 are approximated by

E(T)~1, forI=1,..k (7.3.1)

and

Var(u’l:n, ) Var(WZ:n, ) 2'C'OV(PVI:n, * W2:n, )
+ - :
E(VVl:n, )2 E(WZ:n, )2 E(IlVl:n, )E(WZ:n, )

Var(T,) =~ for I=1,..,k.  (73.2)

The normality approximation yields 7; ~ N{1, Var(T))}, for [ =1, ...,k

Define the combined test statistic for the multi-group as

>0
T*=-’—§:~—/-1—Vﬁt(—@; (7.3.3)
2. Jar(t
then we have
E(T*)~1, (7.3.4)
Var(T*) = k—l——-——— , (7.3.5)

2 War(r))

and hence its null distribution is approximated by
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1
|
;/%/ar(T,)

Large or small values of 7* provide evidence against the null hypothesis Hj.

T*~ N| 1, (7.3.6)

7.4 Level of Significance and Power of the Test

To examine the efficiency of the proposed test procedure, we examine the level of

significance under the extreme value model and the power under some alternatives.
7.4.1 Level of Significance

Suppose the upper and the lower a2 percentage points of T are determined from
(7.3.6) in advance for a multi-group sample with specified group size n, and censoring
values s,, for [/ = 1,....k. For each Monte Carlo run, k groups of censored observations

Vin, S Vam S S Vaogun,» for I = 1,...,k are generated from the extreme value population.

After calculating the estimates 50, 5, and & (from one of the three procedures), T*

statistic is computed. This computed value of T* will fall either inside or outside the
critical values. If there are m Monte Carlo runs in total, the level of significance is

determined as the proportion of times that 7* falls outside the critical values.

7.4.2 Power

Under the alternative distribution, the normalized spacing becomes
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~
~

Zioin —aZs
Sim, =iy e = l..,n,~s,-1, =1k
E(zg,0) — 2)

The statistic for the single group is

2 Zinl_sl~i_1)asi:n, W
aTI= = ny -5l =“ o ’l=1 !!!! k,
(n,—s,-2) Zsi:n, 2:n,
i=1
and its mean and variance become
E(W,
E(aT,)z——-(—“——ﬂ’—)—;tl,l= 1,...k,
E(WZ:n,)
and
E(an:n i Var(aVVl:n ) Var(WZ:n ) 2C’Ov(aI,Vl:n ’W2:n )
Var( T)) = ’ — + - — : —|,1=1.k
E(WZ:n, ) E(a VVl:n, )~ E(WZ:n, )b E(aVVI:n, )E(WZ:A, )

The combined test statistic then becomes
k 7
T/
2" arr)

.t
. Yar(z,)

a k
=
The index “a” stands for “computed under alternative distribution”. Similar to what was
done earlier in determining the level of significance, we can now compute the proportion
of times that ,7 * falls outside the critical values to determine the power.
It should be mentioned here that the simulation results are invariant to the

estimation method employed. This fact is obvious by examining the normalized spacing
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7 —

i+l “iny

N

Sim , where the estimators of v, and ¥, get canceled out, while the scale

E(Z(i+l) - Z(i))
invariance is clearly evident from the ratio form. Therefore, the validity examination of

the MEVR model under various estimation methods turns out to be simply examining the

validity of the sample itself.

7.5 Simulations and Results

In the simulation study, we took v,=0,v,=1 and o =1, and x = [-0.5, 0.5] or

[-0.5, -0.16, 0.16, 0.5] for two- or four-grouped samples, respectively. We use n to denote

the vector of the multi-group sizes for the cases of complete sample and s to denote the

vector of the multi-group censoring schemes for the cases of Type-II right-censored

sample. Based on 10,000 Monte Carlo runs, we simulated the level of significance under

the standard extreme value model and the power under five altemnatives: Normal(0,1),

Lognormal(0,1), Gamma(2,1) Gamma(4,1) and Gamma(6,1), at 5% and 10% significance

levels in the following cases:

1. Complete sample

two groups: n = [6 6], [6 10], [8 8], [8 10], [10 10}, [15 15], {15 20] and {20 20].

four groups: n = [6 6 6 6], [6 6 10 10], [8 8 & 8], [8 8 10 10], [10 10 10 10],
[15 15 15 15], [15 15 20 20] and [20 20 20 20].

2. Type-Il censored sample

two groups: s = [4 4], [4 0], [2 2] and [2 0] from ~ = [10 10] and [5 5] and [5 0] from

n= [2020].
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four groups: s=[4444],[4400],[2 222]and [2200] fromn = [10 10 10 10] and
[5555]and (55 00] from » =[20 20 20 20].
These results are presented in Tables 7.5.1 —7.5.8.

The histograms and normal p-p plots for‘the simulated values of T* based on
10,000 runs are constructed for n = [6 6], [15, 15], [6 6 6 6] and [15 15 15 15] for the
compete samples; and for s = [4 4] from [10 10], [ 5] from {20 20], {4 4 4 4] from [10 10
10 10] and [5 5 5 5] from [20 20 20 20] for the Type-II censored samples. These results

are presented in Figures 7.5.1 - 7.5.8.

7.6 Discussion

With regard to the following aspects

1) The complete sample vs. the Type-II censored sample

2) The degree of censoring

3) The group size n (or total sample size N)

4) The two-grouped vs. the four-grouped sample (or the number of levels of x),

we assess the simulated value of the level of significance under the standard extreme

value model and the power under five alternatives: Normal(0,1), Lognormal(0,1),

Gamma(2,1) Gamma(4,1) and Gamma(6,1), at pre-fixed 5% and 10% significance levels.
It is expected that the simulated value of the level of significance under the

standard extreme value model are close to 5% (or 10 %), at the pre-fixed 5% (or 10%)

significance levels. The simulated value of the level of significance from the complete
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sample seems to be close to the pre-fixed 5% (or 10%) as compared to the Type-II
censored sample. The simulated value of the level of significance does not appear to be
affected by the total sample size N as well as the number of levels of x.

The simulated means and variances of the T* statistic defined in (7.3.3) are almost
identical to the expected values that are computed by the expressions in (7.3.4) and
(7.3.5). The results do not appear to be affected by any of the factors mentioned above.

The histograms and normal p-p plots show that the normal distribution provides a
very good approximation to the null distribution of T* statistic for the MEVR model
regardless of the sample size, the number of levels of x, and the type of the samples
(complete or censored).

With the same total sample size N, the value of power from the complete sample
is much higher than that from the Type-II censored sample. This is true under all five
alternative distributions. The value of power increases dramatically with a major increase
in the total sample size N and this is true for both complete and Type-II censored
samples. When the groups are of the same size, the four-grouped sample tends to have
higher values of power as compared to the two-grouped sample. This is also true for both
complete and Type-II censored samples. In the Type-II censored samples case, the value
of power appears to be smaller when the degree of censoring is higher. With the large
group size, say n > 10, the powers from all types of samples (doesn’t matter complete or
censored, two-grouped or four-grouped) are close to 100% under the alterative

distributions considered except for the Normal (0, 1).
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Table 7.5.1 Simulation results: Level of significance
from extreme value complete samples

Complete Significance level

Sample (n) 5% 10%
[6 6] 3.86% 8.49%
[6 10} 4.58% 9.61%
[8 8] 4.11% 8.90%
[810] 4.71% 9.43%
[1010] 4.42% 9.37%
[1515] 4.66% 9.37%
[1520] 5.29% 10.20%
[20 20] 4.63% 9.40%
[6666] 3.78% 8.23%
[661010] 4.02% 9.09%
[8888] 4.24% 8.94%
[881010] 4.68% 9.35%
[1010 10 10] 4.17% 8.80%
[15151515] 4.70% 9.42%
[15152020] 4.60% 9.37%
[20 20 20 20] 4.40% 8.97%

Table 7.5.2 Simulation results: Level of significance
from extreme value Type-II censored samples

Censoring Significance level
Scheme (s) 5% 10%
[4 4] 3.53% 7.96%
[4 0] 4.18% 8.62%
[2 2] 4.09% 8.75%
2 0] 4.38% 9.57%
*[5 5] 4.46% 8.82%
*[5 0] 4.51% 9.29%
[4444] 3.27% 7.26%
[4400] 4.21% 8.92%
[2222] 4.14% 8.43%
[2200] 4.17% 8.83%
*[5555] 4.62% 8.90%
*[5500] 4.44% 9.16%

Asterisk denotes censoring is from n = [20 20] or {20 20 20 20],
otherwise is from {10 10} or [10 10 10 10},




Table 7.5.3

Results for “T* - statistics”
from extreme value complete samples

Complete Approximated | Simulated | Approximated | Simulated
Sample (n) Mean Mean Variance Variance
[6 6] 1.0000 0.9890 0.0393 0.0353
[610] 1.0000 0.9914 0.0247 0.0232
[8 8] 1.0000 0.9919 0.0248 0.0231
[8 10] 1.0000 0.9920 0.0208 0.0194
[1010] 1.0000 0.9907 0.0180 0.0177
[1515] 1.0000 0.9953 0.0106 0.0104
[15 20] 1.0000 0.9951 0.0087 0.0083
[20 20] 1.0000 0.9970 0.0075 0.0072
[66606] 1.0000 0.9884 0.0197 0.0175
[661010] 1.0000 0.9925 0.0123 0.0115
[8888] 1.0000 0.9895 0.0124 0.0116
[881010] 1.0000 0.9925 0.0104 0.0097
(101010 10] 1.0000 0.9921 0.0090 0.0086
[15151515] 1.0000 0.9936 0.0053 0.0051
[15 1520 20] 1.0000 0.9943 0.0044 0.0043
[20 20 20 20] 1.0000 0.9965 0.0037 0.0035
Table 7.5.4  Results for “T* - statistics”
from extreme value Type-II censored samples
Censoring Approximated | Simulated | Approximated | Simulated
Scheme (s) Mean Mean Variance Variance
[4 4] 1.0000 0.9956 0.0456 0.0399
[4 0] 1.0000 0.9921 0.0258 0.0243
[22] - 1.0000 0.9965 0.0275 0.0248
[2 0] 1.0000 0.9942 0.0217 0.0204
*[5 5] 1.0000 0.9991 0.0121 0.0115
*[50] 1.0000 0.9970 0.0092 0.0090
[4444] 1.0000 0.9972 0.0228 0.0198
[4400] 1.0000 0.9936 0.0129 0.0121
[2222] 1.0000 0.9953 0.0137 0.0130
[2200] 1.0000 0.9944 0.0109 0.0101
*[5555] 1.0000 0.9970 0.0061 0.0056
*[5500] 1.0000 0.9957 0.0046 0.0044

Asterisk denotes censoring is from n = [20 20] or {20 20 20 20],
otherwise is from [10 10] or [10 10 10 10],
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Figure 7.5.2 Complete sample of n=[15 15]
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Figure 7.5.3 Complete sample of n=[6 6 6 6]
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Figure 7.5.4 Complete sample of n=[15 1515 15]
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Figure 7.5.5 Type-II censored sample of s = [4 4] from n =[10 10]
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Figure 7.5.6 Type-II censored sample of s = [5 5] from n =[20 20]
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Figure 7.5.7 Type-II censored sample of s =[4 4 4 4] from»n =[10 10 10 10]
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Figure 7.5.8 Type-II censored sample of s =[5 55 5] from n = [20 20 20 20]
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CHAPTER 8

ILLUSTRATIVE EXAMPLES

8.1 Introduction

In this chapter, we illustrate the BLUE, MLE and AMLE methods using three real-life
examples including both complete as well as Type-II right-censored samples. We present
a detailed illustration of these approaches for the complete sample case in Example 8.2.1.
Then we present the analysis and the results for Type-II right-censored sample in
Example 8.2.2, and for both complete and Type-II right-censored sample in Example

8.2.3.

8.2 Examples

Example 8.2.1: Nelson (1970) has presented data on the time to breakdown of a
type of electrical insulating fluid subject to a constant voitage stress. The data, shown in
Table 8.2.1.1, are breakdown times for seven groups of specimens, each group involving
a different voltage level. A model suggested by engineering considerations is that, for a
fixed voltage, time to breakdown has a Weibull distribution. Furthermore, distributions
corresponding to different voltage levels are thought to differ only with respect to their
scale parameters through power modela =cV'”, and the shape parameter & being the
same for different levels. The data are uncensored, and times to break down are given in

minutes and voltage levels are given in kV.
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Table 8.2.1.1 Insulating Fluid Failure Data

Voltage Level

(kV) n, Breakdown Times (min)

26 3 | 5.79, 1579.52, 2323.7

28 5 |68.85,426.07, 110.29, 108.29, 1067.6

30 11 | 17.05, 22.66, 21.02, 175.88, 139.07, 144.12, 20.46, 43.40,
194.90, 47.30, 7.74

32 15 | 0.40, 82.85, 9.88, 89.29, 215.10, 2.75, 0.79, 15.93, 3.91, 0.27,
0.69, 100.58, 27.80, 13.95, 53.24

34 19 | 0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91,
32.52, 3.16, 4.85, 2.78, 4.67, 1.31, 12.06, 36.71, 72.89

36 15 | 1.97, 0.59, 2.58, 1.69, 2.71, 25.50, 0.35, 0.99, 3.99, 3.67, 2.07,
0.96, 5.35, 2.90, 13.77

38 8 10.47,0.73, 1.40, 0.74,0.39, 1.13, 0.09, 2.38

Lawless (1982) presented two formal tests, viz. likelihood ratio test and Bartlett’s

test, to assess the hypothesis: H, :5, =---=4,. The significance levels under H, from

the likelihood ratio test and Bartlett’s test are 0.14 and 0.22, respectively. Therefore, there

is enough evidence to assume the equality of the shape parameters.

Using the test proposed in the last chapter, we examine the extreme value

distribution assumption for this multi-grouped sample. A p-value of 0.0728 does not give

enough evidence to reject the null hypothesis if we use the traditional 5% level of

significance.

Let x, =logl, and «, =exp(v,+v,x,), where v, =logc and v, =p. With

o =1/ and the log lifetime y,, =logt,, , this is of the form of the MEVR model with

and

U, =vytvix,,l=1..7
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where z has a standard extreme value distribution with density exp{z —e’}, -0 <z <.

Based on the observations y,, and x,, and the means, variances and covariances
of the order statistics z,, , i =1, ..., n, [ =1,...7, we determine the BLUEs v,, v, and
o from formula (2.2.9), and their variances and covariances from (2.2.11).

From Egs. (3.2.1) ~ (3.2.3), we apply the Newton-Raphson iterative procedure
and obtain the MLEs v,, v, and &. The asymptotic variances and covariances are
computed by inverting the expected information Matrix [ that is presented in (3.3.1).

For the AMLEs ¥,, ¥, and &, we use the explicit expressions in (4.2.4) -
(4.2.6) to compute the values of the estimates and obtain their asymptotic variances and

covariances by inverting the expected information Matrix 1 " that is presented in (4.3.1).

We determine the approximate bias for ), ¥, and & as well by expressions in (4.4.1) -

(4.4.3).
Finally, we apply the asymptotic normality of the BLUEs, MLEs and AMLEs and
use the pivotal quantities in (5.4.1) in order to compute the 95% confidence intervals for

vy, v, and o.

We have presented all these results in Tables 8.2.1.2 - 8.2.1.5.

Table 8.2.1.2 Estimates from the complete sample for Example 8.2.1

Estimation Estimates

procedure V, v, o
BLUE 65.8483 -18.0101 1.3413
MLE 64.8472 -17.7296 1.2877
AMLE 63.5906 -17.3992 1.3158
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Table 8.2.1.3 Asymptotic variances and covariances from the complete sample for Example 8.2.1

Asymptotic variances and covariances / o’

BLUE MLE AMLE
19.0421 | -5.4410 | 0.0088 | 17.2443 | -4.9285 | -0.0034 | 20.1903 | -5.7685 | 0.0120
-5.4410 1.5559 | -0.0034 | -4.9285 | 1.4098 | 0.0000 | -5.7685 | 1.6493 | -0.0036
0.0088 | -0.0034 | 0.0093 | -0.0034 | 0.0000 | 0.0080 | 0.0120 | -0.0036 | 0.0044

* Values for BLUE are exact.

Table 8.2.1.4 Approximate bias of AMLEs from the complete sample for Example 8.2.1

Approximate bias of AMLEs / o

Vo

Vi

g

0.3125

0.0012

-1.1877

Table 8.2.1.5 95% confidence interval from the complete sample for Example 8.2.1

Estimation 95% confidence interval
procedure LL(v,) UL(v,) | LL(v,) | UL(v,) | LL(o) | UL(o)
BLUE 50.4609 81.2357 -22.4085 | -13.6117 1.00124 | 1.68136
MLE 51.3903 78.3041 -21.5798 | -13.8620 0.99701 | 1.57839
AMLE 47.1551 77.6507 -21.4447 | -12.7287 1.09191 | 1.54209

LL denotes lower limit and UL denotes upper limit of the 95% confidence interval.

Example 8.2.2:

Stone (1978) has reported an experiment in which specimens of

solid epoxy electrical insulation were studied in an accelerated voltage life test. In all, 20

specimens were tested at each of three voltage levels: 52.5, 55.0 and 57.5 kilovolts.

Failure times, in minutes, for the insulation specimens are given in Table 8.2.2.1.

Asterisk denotes a censored observation.

Table 8.2.2.1 Failure Times for Epoxy Insulation Specimens at Three Voltage levels

Voltage Failure times (min)

&V)

52.5 4690, 740, 1010, 1190, 2450, 1390, 350, 6095, 3000, 1458, 6200*, 530,
1690, 745, 1225, 1480, 245, 600, 246, 1805

55.0 258, 114, 312, 772, 498, 162, 444, 1464, 132, 1740%, 1266, 300, 2440~,
520, 1240, 2600*, 222, 144, 745, 396

57.5 | 510, 1000*, 252, 408, 528, 690, 900*%, 714, 348, 546, 174, 696, 294, 234,
288, 444, 390, 168, 558, 288
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We assume this to be a Type-II right-censored sample and that the different

voltage levels differ only with respect to their scale parameters through the power law

modela =cV 7 (correspond to u(x)=v,+v,x in the MEVR model, where

u(x)=log(a), x=log(V), v,=logc and v,=p). Using Bartlett’s test, we first
examine the equality of the shape parameters among all three groups. The significance
level under Hj is 0.0082. We then test Hj between the first two groups, last two groups,
and the first and last groups. The significance levels turn out to be 0.0063, 0.0516 and
0.0397, respectively. It appears that only groups 2 and 3 show no significant evidence
against the equality of shape parameters if we use the usual 5% level of significance.

By using the test proposed in the last chapter, we examine MEVR model
hypothesis. The p-value equals 0.1032, which indicates that the extreme value model is
plausible to this two-grouped sample.

Based on these two-grouped Type-II right-censored sample with » = [3 2}, we

present the results of the analysis in Tables 8.2.2.2 - 8.2.2.5.

Table 8.2.2.2 Estimates from the Type-II right-censored sample for Example 8.2.2
Estimation Estimates
procedure v, v, o
BLUE 52.7001 -11.4702 0.6700
MLE 54.3099 -11.8694 0.6583
AMLE 50.5854 -10.9542 0.6726

Table 8.2.2.3 Asymptotic variances and covariances from the Type-I1 right-censored sample for Example 8.2.2

Asymptotic variances and covariances/ o’

BLUE* MLE AMLE
972.5061 | -241.3027 | 0.1690 941.3632 | -233.5779 | 0.1492 | 990.8492 | -245.8538 | 0.1283
-241.3027 | 59.8750 -0.0427 | -233,5779 | 57.9589 | -0.0380 | -245.8538 | 61.0042 | -0.0320
0.1690 -0.0427 0.0215 0.1492 -0.0380 0.0196 0.1283 -0.0320 0.0172

*Values for BLUE are exact.
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Table 8.2.2.4 Approximate bias of AMLEs from the Type-II right-censored sample for

Example 8.2.2
Approximate bias of AMLEs/o
v, v, o
-0.2079 0.0398 -0.0231

Table 8.2.2.5 95% confidence interval from the Type-II right-censored sample for
Example 8.2.2

Estimation 95% confidence interval
procedure | LL(v,) | UL(v,) | LL(v,) UL(v,) Li(o) | UL(o)
BLUE 25.2621 | 80.1381 -18.2783 -4.6621 | 0.54099 0.79901

MLE 28.2494 | 80.3704 -18.3358 -5.4030 | 0.53939 0.77721
AMLE | 22.4666 | 78.2884 -17.8399 -3.9889 ]0.53321 0.76579

LL denotes lower limit and UL denotes upper limit of the 95% confidence interval.

Example 8.2.3: In Table 8.2.3.1, McCool (1980) has given the failure times for
hardened steel specimens in a rolling constant fatigue test; 10 independent observations
were taken at each of 4 values of contact stress. Engineering background suggests that at
stress level s, failure time should have approximately a Weibull distribution with a scale
parameter o related to s by a power law relationship a=cs” (correspond to
u(x)=v, +v,x in the MEVR model, where u(x)=log(a), x =log(s), v, =logc and
v, = p), and with a shape parameter § that is independent of s.

Table 8.2.3.1 Failure Times for Steel Specimens at Four stress Levels

Stress ' Ordered Failure Times
(psi® +10°%)

0.87 1.67, 2.20, 2.51, 3.00, 2.90, 4.70, 7.53, 14.70, 27.8, 37.4

0.99 0.80, 1.00, 1.37, 2.25, 2.95, 3.70, 6.07, 6.65, 7.05, 7.37

1.09 0.012, 0.18, 0.2, 0.24, 0.26, 0.32, 0.32, 0.42, 0.44, 0.08
1.18 0.073, 0.098, 0.117, 0.135, 0.175, 0.262, 0.270, 0.350, 0.386, 0.456

In order to present the procedures for both complete sample and Type-II right-

censored sample, we have used the censoring scheme s = [2 1 4 3] to the complete sample
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in order to get a Type-II right-censored sample. The significance level of the test for the
equality of shape parameters for complete and Type-II right-censored samples, based on
Bartlett’s test, turn out to be 0.21 and 0.74, respectively.

The p-values of the test for the MEVR model for complete and Type-II right-
censored samples turn out to be 0.5782 and 0.3382, respectively. Therefore, the MEVR
model is suitable for complete sample as well as Type-II right-censored sample.

We have presented the results of these analyses for complete sample in Tables
8.2.3.2-8.2.35.

Table 8.2.3.2 Estimates from the complete sample for Example 8.2.3

Estimation Estimates
procedure Vo v, o
BLUE 0.7321 -13.7518 0.7862
MLE 0.7842 -13.8635 0.8634
AMLE 0.6108 -13.5491 0.8892

Table 8.2.3.3 Asymptotic variances and covariances from the complete sample for Example 8.2.3

Asymptotic variances and covariances/o

BLUE* MLE AMLE
0.0296 -0.0526 -0.0055 | 0.0290 | -0.0495 | -0.0064 | 0.0297 | -0.0558 | -0.0008
-0.0526 2.0548 0.0000 | -0.0495 | 1.9344 | 0.0000 | -0.0558 | 2.1797 | 0.0000
-0.0055 0.0000 0.0179 | -0.0064 | 0.0000 | 0.0152 | -0.0008 | 0.0000 | 0.0089
*Values for BLUE are exact.

Table 8.2.3.4 Approximate bias of AMLEs from the complete sample for Example 8.2.3

Approximate bias of AMLEs/o
Vo 12 o
-0.1027 0.0000 -0.0111
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Table 8.2.3.5

95% confidence interval from the complete sample for Example

Estimation 95% confidence interval
procedure LL(V,) UL(V,) LL(v,) UL(v,) Li(o) UL(o)
BLUE 0.5237 0.9405 -15.4884 | -12.0152 0.62411 0.94829
MLE 0.5354 1.0330 -15.8956 | -11.8314 0.68326 1.04354
AMLE 0.2410 0.7752 -15.8371 -11.2611 0.73190 1.02430

LL denotes lower limit and UL denotes upper limit of the 95% confidence interval.

We have presented the results of the analyses for Type-II right-censored sample in

Tables 8.2.3.6-8.2.3.9.

Table 8.2.3.6 Estimates from the Type-II right-censored sample for Example 8.2.3
Estimation Estimates
procedure Vo v, o
BLUE 0.7830 -12.3971 0.8583
MLE 0.8394 -12.5250 0.9309
AMLE 0.6916 -12.2568 0.9375

Table 8.2.3.7 Asymptotic variances and covariances from the Type-II right-censored sample for

Example 8.2.3
Asymptotic variances and covaria.nces/ o’
BLUE* MLE AMLE
0.0368 -0.0392 0.0029 0.0340 -0.0416 -0.0008 0.0380 -0.0417 | 0.0040
-0.0392 2.8245 0.0299 -0.0416 2.6187 0.0221 -0.0417 2.8219 0.0151
0.0029 0.0299 0.0285 -0.0008 0.0221 0.0231 0.0040 0.0151 0.0145

* Values for BLUE are exact.

Table 8.2.3.8  Approximate bias of AMLEs from the Type-II right-censored sample for Example 8.2.3
Approximate bias of AMLEs/o
Vo Vv, o
-0.1063 -0.0443 -0.0129
Table 8.2.3.9  95% confidence interval from the Type-II right-censored sample for Example 8.2.3

Estimation 95% confidence interval

procedure | [[(v,) | UL(v,) LL(v,) | UL(v)) | LL(o) UL(o)

BLUE 0.5060 1.0600 -14.8237 -9.9705 0.61454 1.10206

MLE 0.5262 1.1526 -15.2736 -9.7764 0.67275 1.18905

AMLE 0.2495 0.9211 -15.1949 -9.4073 0.71716 1.13204

LL denotes lower limit and UL denotes upper limit of the 95% confidence interval.
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CHAPTER9

LARGE-SAMPLE APPROXIMATION TO BLUEs

9.1 Introduction

To obtain the BLUEs of v,, v, and o in the MRVR model, we require means, variances,

and covariances of order statistics from the standard extreme value distribution. For large
sample sizes (say, n > 30 or so), the variances and covariances are not readily available
for most distributions, including extreme value [see Balakrishnan and Chan (1992a, b)].
One more difficulty involved with BLUEs is the necessity to invert a large variance-
covariance matrix. In this chapter, we therefore propose a large-sample approximation to
BLUEs. In Section 9.2, we derive the first-order and second-order approximations for the
variance-covariance matrix of order statistics from the standard extreme value
distribution using David and Johnson’s (1954) approximation. Then, in Section 9.3, we
derive an explicit form for the inverse of the variance-covariance matrix of order
statistics from the standard extreme value distribution. In order to assess the performance
of the first-order and second-order approximation methods as compared to the exact
method, we conduct a simulation study and discuss the results in Section 9.4. Finally, in
Section 9.5, we illustrate the first-order and second-order approximation methods through

the three real-life examples considered earlier in Chapter 8.
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9.2 David and Johnson’s Approximation

Express u = F(x) as the probability integral from a population with pdf f{x) and cdf
F(x).It transforms the order statistics X;., into uniform order statistics U;., fori =1, 2, ...,n.

Hence, by inverting the above transformation, we get for 1<i<n
Xi:n = F—l (Ui:n) = §(Ui:n) >

which, when expanded in a Taylor series around E(U,,) =i/ (n+1)=p,, gives
’ l L/
Xi:n =§i +§i(Ui:n —pi) +E§i(Ui:n -—pi)2 +-) (921)

here, & denotes &(p;), & denotes g—é(u) ly=p,» and similarly &7, &', ... denote
» :

successive derivatives of £(u) evaluated at u = p;. Then, by taking expectation on both

sides of (9.2.1) and by using the expressions of the central moments of uniform order

statistics (see Balakrishnan and Cohen, 1991, Section 3.4), we obtain

a, =E(X,)~E+ P:4:5; + P4, - (g, - p,)S, +piqi‘fi ’ (9.2.2)
' ' 2(n+2) (n+2) 3 8
Pid; .o P &

o =Var(X. )~ gy Fdi _Jog — p)EIEN+ pg| EEMH 2|3, 9.2.3
ﬂl,l.n ar( l.n) (n+2)£1 (n+2)2 (ql p1)§t§1 pqu 5l§l 2 ( )
and
ﬂi,j:n = Cov(Xi:n s Xj:n)

NP,"]]' Vo Piq;

9,815+ P j4,5i8T +Pid IS
{(qi‘m)é‘,’i’j+(qj~pj)§;§}+ LTS, 12’ J T ”J},(9-2-4)

T2 00 (n+2)2

where g, =1-p,, 1sisjsn.
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In this study, we compare the BLUEs based on i) the exact values, ii) only the
first term in (9.2.3) and (9.2.4) (termed as “first-order approximation™), and i1) first
two terms in (9.2.3) and (9.2.4) (termed as “second-order approximation”) for the
means and variances and covariances of extreme value order statistics. In the case of the
first-order approximation, an explicit expression for the inverse of the variance-

covariance matrix can also be derived.

9.3 ' from First-order Approximation

Denote a; = i &l db _( )

ek e

using the following Lemma, we can express the inverse of the variance-covariance matrix

&'; we then have B, ~a;b; and B, ;, =a,b;. By

iin

Y "' using first-order approximation in an explicit form.

Lemma  Let C=(c;) bea kxk nonsingular symmetric matrix with

C; =ab

b, i<j.Then C™'is a symmetric matrix, and for i</, its (i, )) th

element is given by

[ '(ambi -ab,, )-]a j=i+l i=1.., k-1,
Qb b ooy ke,
(a;b_—a, b )a,,.b —-ab,)
ol =
az[al (azbl - albz )]‘] > = ] =1,
by[b(a b, —a, b, )]—‘ , i=j=k,
| 0, j>i+l.
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The lemma follows by a direct manipulation of the fact that CC - =1, see, for example,
Graybill (1983).
In the case of the standard extreme value model, F(x)=1-exp{-e*},
— o0 < x < o 3 hence, we have
¢ =F'(p)=In(-In(l-p,),

1

T T
Then,
Yo p;
" Jn+2(1-p)n(-p,)
and

1

b, =- .
" Jn+2In(1-p,)

a, &= ln(— ln(l —-———l—)) ,
' n+l

ﬂi in ai:nbi:n = pi 2
‘ (n+2)(1-p)lin( - p;)]

It then follows that

and

_ Pi ;
(n+2)(1- p,)In(l- p)In(l-p,)’

<j.

:Bi,j:n ~ ai:nbj:n

Thus, according to the lemma, we obtain
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(—(n+1)(n+2)q,q,,Inq,Inq,,,, j=i+lLi=1..k-1,
2(n+1)(n+2)q} (Ing,)’, i=j=2,.,k-1,
=3 2(m+)(n+2)g; (Ing,)’, i=j=l
(n+1)(n+2)q,9,.(Inq,)’, i=j=k,
| 0, A j>i+l.

where S"/" is the (ij)th element of 3.™' based on the first-order approximation.

9.4 Simulation and Discussion

When we apply these first-order approximation and second-order approximation to get

the BLUES, the expression (2.2.10) turns out to be

E@))=(W' 2"\ W)Y ' w' LE(Y)
(W' T wY' W E'we =0 (9.4.1)

where “a” stands for the approximation used, and consequently the estimators are biased.
The Monte Carlo simulations also reveal this fact and it is shown that the bias is
especially higher in the estimator of o . Since the means of the extreme value order
statistics for lager sample sizes are easily obtained which is not the case for the variances
and covariances (Balakrishnan and Chan, 1992), we make use of the exact means in these
two approximation approaches. Using expression (2.2.11), we can compute the exact
variances and covariances of the estimators based on first-order and second-order

approximations.

150



In the simulation study, we took v, =0, v, =1 and o =1, and x = [-0.5, 0.5] or

[-0.5, -0.16, 0.16, 0.5] for two- or four-grouped samples, respectively. We use n to denote

the vector of the multi-group sizes for the cases of complete sample and s to denote the

vector of the multi-group censoring schemes for the cases of Type-II right-censored

sample. Based on Monte Carlo ‘process, for both exact and approximate methods, we

simulated the probability coverages, bias, MSE, variances and covariances of the BLUEs

for the following cases. We computed the exact and approximate variances and

covariances of these estimators as well.

1. Complete sample

two groups: n=[66], (8 8], [10 10], [15 15], [15 20] and [20 20] .

four groups: n=1[6666],[6 6 10 10], [8 8 10 10], [15 15 15 15], [15 15 20 20] and
[20202020] .

2. Type-II censored sample

two groups: s =[44],[2 2] from n=[10 10] and [5 5] and [5 0] from »n = [20 20].

four groups: s=[4444},[4400]and[2200] fromn=[10101010]and [55 5 5],
and [5 5 0 0] from »n = [20 20 20 20].

These results are presented in Tables 9.4.1.1 — 9.4.1.20.

We compare the first-order and second-order approximation methods with the
exact method of BLUE based on simulated probability coverages, bias, MSE, variances
and covariances, and the exact variances and covariances computed from formula

(2.2.11).
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The results are quite surprising and interesting. Overall, the results from the first-
order and second-order approximation methods are almost identical as the results from
the exact method of BLUE. Of course, the second-order approximation method provides
a closer result to the exact method as compared to the first-order approximation method,
but this improvement is very slight. However, the improvement comes at the cost of
having to numerically invert a large variance-covariance matrix.

Therefore, we recommend the use of the first-order approximation to the BLUE
even for moderate sample sizes as the resulting estimates are very close to the exact
BLUEs and also the computation is quite easy as the numerical inversion of the variance-

covariance matrix is avoided completed.
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9.5

Illustrative Examples

With the three examples considered earlier in Chapter 8, we will illustrate here the

usefulness and efficiency of the approximate BLUEs developed in this chapter.

Example 8.2.1 revisited: In this case, by using the formulas in (2.2.9), (9.2.3)

and (9.2.4), we find the values of the approximate BLUEs of parameters v,, v, and o as

follows (the exact values of the BLUES taken from Table 8.2.1.2 are also presented here

for comparison purposes):
Table 9.5.1 BLUEs and the approximate BLUEs for Example 8.2.1
Estimates
Estimation procedure v, v, o
BLUE 65.8483 -18.0101 1.3413
First order approximation to BLUE 65.4331 -17.8905 1.3211
Second order approximation to BLUE 65.7310 -17.9766 1.3376

From the formulas in (2.2.11), (9.2.3) and (9.2.4), we f{ind the values of variances

and covariances as follows (the exact variances and covariances of the BLUEs taken

from Table 8.2.1.3 are also presented here for comparison purposes):

Table 9.5.2  Approximate variances and covariances of BLUEs and the approximate
BLUEs for Example 8.2.1
Approximate variances and covariances / o’
First order approximation to | Second order approximation
BLUE* BLUE to BLUE

19.0421 | -5.4410 | 0.0088 | 15.2989 | -4.3763 | 0.0106 | 18.367 | -5.2497 | 0.0104
-5.4410 | 1.5559 | -0.0034 | -4.3763 | 1.2529| -0.0036 | -5.2497 | 1.5017 | -0.0038
0.0088 | -0.0034 | 0.0093 | 0.0106 | -0.0036 0.007 | 0.0104 | -0.0038 | 0.0088

*Values for BLUE are exact.
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We presented the 95% confidence interval for the parameters based on these

approximate BLUEs as well here (the 95% confidence interval of the BLUEs taken from

Table 8.2.1.5 are also presented here for comparison purposes):

Table 9.5.3  95% confidence intervals based on BLUEs and the approximate BLUEs
for Example 8.2.1
Estimation 95% confidence interval
procedure LL(v,) | UL(v,) | LL(») Ul(v,) | LI(o) | UL(o)
BLUE 50.4609 | 81.2357 | -22.4085 | -13.6117 | 1.00124 | 1.68136
First order
approximationto | 54.3661 | 75.3283 | -20.7264 | -14.7328 | 1.0620 1.5135
BLUE
Second order
approximationto | 50.7021 | 80.7599 | -22.2739 | -13.6793 | 1.00863 1.66657
BLUE

Example 8.2.2 revisited: Similar to the last example, we will illustrate here the

usefulness and efficiency of the approximate BLUESs in the following tables for Example

8.2.2:
Table 9.5.4  BLUEs and the approximate BLUEs for Example 8.2.2
Estimates
Estimation procedure Vv, o
BLUE 52.7001 -11.4702 0.6700
First order approximation to BLUE 51.7989 -11.2454 0.6376
Second order approximation to BLUE 52.5241 -11.4262 0.6631
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Table 9.5.5  Approximate variances and covariances of BLUEs and the approximate
BLUE:s for Example 8.2.2
Asymptotic variances and covariances / o’
First order approximation to | Second order approximation
BLUE* BLUE to BLUE

972.5061 | -241.3027 | 0.1690 899.641 -223.223 0.1400 | 967.9942 | -240.183 | 0.1642
-241.3027 | 59.8750 | -0.0427 | -223.223 55.3887 -0.0353 | -240.183 59.5972 -0.0414
0.1690 -0.0427 | 0.0215 0.1400 -0.0353 0.0175 0.1642 -0.0414 0.0209

* Values for BLUE are exact.

Table 9.5.6 95% confidence intervals based on BLUEs and the approximate BLUEs
for Example 8.2.2
Estimation 95% confidence interval
procedure LL(v,) | UL(v,) { LL(v) UL(v,) | LL(c) | UL(o)
BLUE 25.2621 | 80.1381 | -18.2783 -4.6621 | 0.54099 | 0.79901
First order
approximationto | 27.8995 | 75.6983 | -17.1755 -5.3153 | 0.5322 | 0.7430
BLUE
Second order
approximation to | 25.7108 | 79.3374 | -18.0793 -4.7731 0.5385 0.7877
BLUE

Example 8.2.3 revisited: Once again, we illustrate the usefulness and efficiency

of the approximate BLUEs for the complete sample from Example 8.2.3 in the following

tables:

Table 9.5.7 BLUEs and the approximate BLUEs for Example 8.2.3 in complete sample

Estimates
Estimation procedure Vo 2 c
BLUE 0.7321 -13.7518 0.7862
First order approximation to BLUE 0.7355 -13.7151 0.7743
Second order approximation to BLUE 0.7328 -13.7325 0.7828
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Table 9.5.8

BLUE:s for Example 8.2.3 in complete sample

Approximate variances and covariances of BLUEs and the approximate

Asymptotic variances and covariances / o’

First order approximation to Second order approximation

BLUE* BLUE to BLUE
0.0296 | -0.0526 | -0.0055 | 0.0252 -0.0457 -0.0036 | 0.0290 -0.0520 -0.0050
-0.0526 | 2.0548 | 0.0000 | -0.0457 1.7862 0.0000 | -0.0520 2.0317 .00000
-0.0055 | 0.0000 | 0.0179 | -0.0036 0.0000 0.0130 | -0.0050 0.0000 0.0170

* Values for BLUE are exact.

Table 9.5.9  95% confidence intervals based on BLUEs and the approximate BLUEs
for Example 8.2.3 in complete sample
Estimation 95% confidence interval
procedure LL(v,) | UL(v,) | LI(v)) | UL(v,) | LL(s) | UL(c)
BLUE 0.5237 0.9405 | -15.4884 | -12.0152 | 0.62411 | 0.94829
First order
approximation to 0.5490 0.9220 | -15.2856 | -12.1446 | 0.6403 | 0.9083
BLUE
Second order
approximation to 0.5283 0.9373 -15.4444 | -12.0206 | 0.6262 | 0.9394
BLUE

The results corresponding to the Type-II censored sample situation in Example

8.2.3 are as follows:

Table 9.5.10 BLUEs and the approximate BLUEs for Example 8.2.3 in Type-II
censored sample

Estimates
Estimation procedure v, o
BLUE 0.7830 -12.3971 0.8583
First order approximation to BLUE 0.7785 -12.4058 0.8284
Second order approximation to BLUE 0.7818 -12.4007 0.8496
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Table 9.5.11

BLUEs for Example 8.2.3 in Type-II censored sample

Approximate variances and covariances of BLUEs and the approximate

Asymptotic variances and covariances / o’

First order approximation to

Second order approximation

BLUE* BLUE to BLUE
0.0368 | -0.0392 | 0.0029 | 0.0316 | -0.0347 | 0.0028 | 0.0361 | -0.0388 | 0.0029
-0.0392 | 2.8245 | 0.0299 | -0.0347 | 2.4083 | 0.0209 | -0.0388 | 2.7694 | 0.0278
0.0029 | 0.0299 | 0.0285 | 0.0028 0.0209 | 0.0198 | 0.0029 | 0.0278 | 0.0265

* Values for BLUE are exact.

Table 9.5.12 95% confidence intervals based on BLUEs and the approximate BLUEs
for Example 8.2.3 in Type-II censored sample

Estimation 95% confidence interval

procedure LL(v,) | UL(vy) | LL(v,) UL(v,) | LL(o) | UL(o)
BLUE 0.5060 1.0600 -14.8237 -9.9705 |0.61454 | 1.10206
First order

approximation to 0.5394 1.0176 -14.4931 -10.3185 | 0.6391 1.0177
BLUE

Second order

approximation to 0.5130 1.0506 -14.7551 -10.0463 | 0.6193 1.0799
BLUE :

169




CHAPTER 10

GENERALIZATION TO PROGRESSIVELY TYPE-II
RIGHT-CENSORED SAMPLES

10.1 Introduction

Progressive censoring is used in certain life and fatigue test situation. The unfailed items
removed from test may be examined for deterioration or used for some other
experimentation. In other applications, it may be desirable to have rapid completion of
the tests for many items and yet have some extreme life spans represented in the data;
see, for example, Balakrishnan and Aggarwala (2000). We consider the progressively
Type-II right-censored samples in this chapter.

It is assumed that items are randomly sampled from a population whose failure

times 7 have a two-parameter Weibull distribution with cdf
Fy () =1-exp{-()’}, (20
a

where & >0 and a > 0. The natural logarithm of failure time, Y = log (7), is then known

to have an extreme-value distribution with cdf

F, () =1-expiexpZ =23y | o<y <o,
g

where the location parameter u(x) =loga(x) and scale parametero =1/6 .
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Let Vi < Vamm << Vmomn tepresent the logarithms of the m, ordered

observed failure times ¢ <..%t,.., fromasample of n, units in /-th group

<
Lmymy — t2:m,:n, mymyn,

(/ = 1,..., k), which are all place on a life test at the same time and under the same

condition with the single covariate x,. For Type-II progressive right censoring, a pre-

specified number of units #

i-myn, (ri:m,:n,

>0) are removed from test (censored) at the

failure times ¢,

iimpmy

m
i=1,2, ..., m, with m+Y r . =n forl=1,., k For the

i=1
MEVR model, the progressively Type-II right-censored data can be expressed as

yi:m::n, = IU(JC) + O-Zi:mzzn, = Vo + ViXx, + O-Zi:mlzn,’ = 1"“’ m., I= 1""' k’ o> O’
where v, and v, are the regression (location) parameters, and Z;,,., ( 1<7<m,) form the
progressively Type-II right-censored sample of size m, from a sample of size n, from the

standard extreme value distribution with density exp{z —e*}, —o <z <. The density

functionof y,,, ., -, for I =1,.., k, is then given by

ym,:m,:n, 2

f(yl:m,:n,7 T ym,:m,:n, ;VO’ Vl’ U)

m — —
! yi:m,:n, VO Vl‘xl

= (H gi:m, iy )o-—m’ exp {Z[
i=1 i=1

~V, =V, X,

iimyny

Y
p(ri:m, ny + 1) exp(

3
(10.1.1)

]
where g, .. =Z(;}im’ml +1), i=1, ---, m,, is the number of units remaining on test
J=i

immediately preceding the i-th failure.
In this chapter, we generalize four types of estimation procedures, the BLUE, the

approximate BLUE, the MLE and the AMLE, to the progressively Type-II right-censored

171



for the MEVR model. In Section 10.2, we derive all four types of estimators for v,, v,

and o for the MEVR model under progressively Type-II right-censored samples. We

conduct a simulation study in Section 10.3 based on progressively Type-II right-censored
two- and four-grouped samples with n =10, m =5, n=r,=r,=0, ,=3and r;=2 to
evaluate all four types of estimation procedures. A discussion of the simulation results is
presented as well. Finally, in Section 10.4, we illustrate the methods of approximate

BLUE, the MLE and the AMLE through a progressively Type-II right-censored sample

generated from a real-life Example 8.2.1 considered earlier in Chapter 8.

10.2 Estimation Procedures for Progressively Type-II Right-censored
Sample for the MEVR Model

10.2.1BLUE

Given E(z,,, )=«

imyin,

(1<i<m) and covariance CoV (Z., 52 jmyn, ) = Bi jomm,

(1<i < j<my,),itis easy to note that

E(yi:m,:n,)=Vo+le1+o-a 1S1Sm1,

imypng 2

and
CoV (Y imm > Y jomm ) = O B jomymy s LSTS Sy,
Denote
Y = [Wimim oo Yommem > Vimging 3+ ++> Yomgimgong 5+ Vimgmg 3+ -+ Y omgimgimg I (10.2.1.1)
X =[x X, Xy X X X T (10.2.1.2)
& = [Qimn > Conimin s Limny 3+ > Eonimny 3+ Lrmginy 3+ > Lomymmg T (10.2.1.3)
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1=[1...17,,, (10.2.1.4)

W=l X &, (10.2.1.5)

0 =[v, v, ol3, (10.2.1.6)
ﬂl,l:m,:n, ﬂl,2:m,:n, IB],m,:m,:n,

E‘ml:nl - ﬁ].z::m,:n, ﬂ2,2::m,:n, '. l82,m,::m,:n, (1021.7)

ﬂl,m,:m,:n, ﬂZ,m,:m,:n, ﬁm,,m,:m,:n,

and
b 0 0
o =, .. 0
s=| . G : : (10.2.1.8)
0 0

k
where N = Zm, . We may then write

i1
E(Y)=W0
and
Var (Y) = 0 *%.
Thus the generalized variance is given by
S =Y -FWO)S'"(Y -WO)=YE'Y - 2B-E7'YO + O W=D,
By minimizing the expression of the generalized variance with respect to 8 and solving
the following equation

—g%— = 2BFET'Y + 2BFETIHO = 0,

we have the BLUE of @ as
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0" = (W=""9)'wE'Y, (10.2.1.9)

and its mean and variance-covariance matrix as

E@' =S¥ 'HEET'E(Y) =6, (10.2.1.10)
and
Cov (0") = *(WE'H)"! .v (10.2.1.11)
¢« A @
Once again, using the special symbol | B Al presented earlier in section 2.2,
y C ¥

we derive the explicit expressions of BLUEs v, *, v, * and o * (of v,, v, and o) under

the progressively Type-II right-censored sample as

k m
VO :X’ﬁvoyzzzahm,tn,y":m,:n, 4 (102'1'12)
[
* k m’
vl :X%V‘Y=Zzbi:m,:n,yi:m,:n, > (102113)
[
and
* k m’
o =X'ﬁay=zzei:m,:n,yi:m,:n, . (102'114)
[
where
o o 3
A, =2, A, =2, A, =22, 10.2.1.15
IEERE S B ( )

I's™1 XE'1 e&F7'1
s=detlI'’S'X XEZ'X e=7'x|, (10.2.1.16)
1'>"'¢ X5 ' &% 'a
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=1 o®"1 1E
5, =E"X aF'X XE,
2la a®'a aF"

=11 g ors?
sy 11 xE?
»a 1'2'a o=

&,
I

i

and

51 X't ors!
s =lg"x xs'x xg7.
sl XE'a oF!

(10.2.1.17)

(10.2.1.18)

(10.2.1.19)

Furthermore, explicit expressions of the exact variances and covariances of the

estimators v, *, v, * and o * are derived as

(X' X )&% &) - (X5 'e)’ .

Var(voi) = r

b4

(=) e 'e) - (1S 'a) 5

Var(v,) = 3

b

IEDXEXN)-AE'X)
5

3

Var(c') =

Conv, ,v, ) = 3

*

(XE'e)@E" ) - (1S ) (e ') 5

C(EXNO)XE ) - (1E e)(XEX) o

Cov(vo‘,o~ )=

&

and

175

>

(10.2.1.20)

(10.2.1.21)

(10.2.1.22)

(10.2.1.23)

(10.2.1.24)



o (XED)EED - A= )(eE ' X) 5

Cowv,",0") 5 (10.2.1.25)

10.2.2 Approximate BLUE

To obtain the BLUEs of v,, v, and o under the progressively Type-II right-censored

sample for the MRVR model, we require means, variances, and covariances of the
corresponding progressively censored order statistics from the standard extreme value
distribution. These values are not readily available except for 2 <n <9 (Mann, 1970) and
the special case of n =10, m=5,r1=r3;=r4=0,r,=3 and s = 2 (Thomas and Wilson,
1972). Recently, an efficient algorithm for computing the moments of order statistics
from progressively censored samples has been proposed by Balakrishnan, Childs and
Chandrasekar, (2001). But, there are no published values yet for these moments. In the
following, we consider the first-order approximation to the moments of progressively
Type-1II right-censored ordered statistics (see Balakrishnan and Aggarwala, 2000) and use
them to derive the approximate BLUE.

Suppose the progressively Type-II right-censored order statistics of size m, with

censoring scheme as r,,---,7,,, have come from a sample of size n from the Uniform(0,1)

distribution. For convenience in notation, let us denote them by

Ul gl L g @) Then we readily have their joint density function to be
flu,uyu,)=c] [Q-u)", O<u, <---<u, <1, (10.2.2.1)
j=1

where c is the normalizing constant. It has been established that the random variables [see

Balakrishnan and Sandhu (1995))]
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e
1-U (R )

= m—i+lmn . 3
PTG i=lL,m-1,and V,=1-U
’ m

—im:n

Lntn

are all mutually independent, and further that

W = Vii*f’,ﬁ’m-ﬁ"*n’.,;q , i= 1’ 2’_ m

are all independently and identically distributed as Uniform(0,1).

From (10.2.2.2), we can readily write

wmn

d m
omm) =1 — HVJ’ i=12,---,m,

j=m—i+l

(10.2.2.2)

(10.2.2.3)

(10.2.2.4)

where V;’s are independently distributed as Bata(j + Zrk,l). Using this result, we

k=m~j+1

obtain the following explicit expressions for means, variances and covariances of

progressively Type-II right-censored order statistics from the Uniform(0,1) distribution:

E(U.(n,.--,rm))znizl_bi, l':L 2,...,m’

imn

VarUS ™ Yy=kpb,  i=1, 2,-,m,

man

and

COV(U'(’-"M""'),U(.r"“"rm)):k;bj, 1<i< ] <m

mmn Jmn

where, for i=1, 2,---,m,

L= L {m—k+2+rk+rk+1+“'+’m}
¥
m—k+3+r+r,,+-+r,

k=1

i
{m——k+l+rk+rk+,+---+rm}
m—k+24r+r,+-+r,

k=)

and
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b = nl_k+1+rk+rk+l+”'+rm . (10229)
1 m—-k+2+7‘k +r,, ++r,

We shall now use these expressions to get first-order approximations to the
means, variances and covariances of progressively Type-II right-censored order statistics

from an arbitrary continuous distribution F(). From the inverse probability integral

transformation, we readily have the relationship

Yl ZF LUy (10.2.2.10)

where F~'() is the inverse cumulative distribution function of the lifetime distribution
from which the progressively censored sample has come from. Expanding the function on

the right hand side of (10.2.2.10) in a Taylor series around E(U{"**)=TI,and then

mmn

taking expectation and retaining only the first term, we obtain the approximation

E'()/(rl rM))zF—l(rIi% l=1, 29"'9’" (102211)

m:n

where I1, is as given in (10.2.2.5). Proceeding similarly, we obtain the approximations

im.n

Var(Y"‘ )y a Lv‘“’(n )}kb i=12,-,m (10.2.2.12)

and

1

Cov(Y, o) yoorn)y o F-

fm:n >t fimin

M)F" M )Dkb, i<j, (1022.13)
where k, and b are as given in (10.2.2.8) and (10.2.2.9), respectively, and

|\l)

d
(u )=ZI—~F '(u). This type of a Taylor series approximation has been utilized by

Balakrishnan and Rao (1997) for developing best linear unbiased prediction under

progressively Type-II censored samples.
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In the case of the standard extreme value model with F(x)=1-exp{—exp(x)},

—00 < x <0, we obtain the approximation

EXL "y = In[-In(1-11)}, i=1,2,,m (10.2.2.14)

iim:n

where I1.is as given in (10.2.2.5). Proceeding similarly, we obtain the approximations

2
: |
Var(Y o m)) ~ kb, i=1,2,---,m 1022.1

and

COV(Y-.(r'_’m'r"'),Y.(,r',’m'r"')) ~ 1 1 kb |
e smn (1-T)In(1-I1,) 1-T1,)In(1 -1 ) *~’

i<j.(10.2.2.16)

It should be noted that when we apply the first-order approximation obtained from
(10.2.2.14)- (10.2.2.16) to obtain the BLUESs, the expression (10.2.1.9) turns out to be
E@)=(W = ) B ETEQY)
=( W EZ ) W0

[Pl ]

where “a” stands for the approximation approach, and consequently the estimator is

biased.

10.2.3MLE

The corresponding likelihood function for the density function expressed in (10.1.1) is

I o Vi o =V — VX, o =V, =V, X
L - {(H gizm,ml )o_—ml eXpI:Z[y"m""' - 0 e} _ (ntm,:nl + 1) exp(yLml.'l/ - 0 17 )]jl}
I=1 i=1

i=1
7y

where g, . =Z(’?:m,:n, +1), i=1, ---, m,, is the number of units remaining on test
=i
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immediately preceding the i-th failure.

Dropping the proportionality constant H 8im, ., » WE can take the log-likelihood

i=1

function as

-V, — WX =V, — VX

InL= Z{—mzln0+2[y'"" = = (Fimyon, +T)exp(Limm — 20 1Ty
o ,
The log-likelihood equations for v,, v, and o become
dlnL 1 £ & Yimn -V~
= 1- +1ex = =0, 10.2.3.1
o 22 (1 iy DDA (102.3.1)
k =V = VX

alnL=——1—ZZ{x,[1 Fiomyom +1)exp(y""'""’ o _Th=0, (10.2.3.2)
oV, O = in

and

k m =V, -V . —=V.— VX
alnL :——E—ZZ{\I-}-J}”’”-”I GO [1 (”nn +1)exp(yl4ml-"l O-O 1 I)]}’—_O,

oo ooa
(10.2.3.3)
respectively.

The MLEs ¥,, ¥, and &, (of v,, v, and o) for progressively Type-II right-
censored samples can be obtained by simultaneously solving the equations (10.2.3.1) -
(10.2.3.3). Since these three equations cannot be solved analytically, numerical method
must be employed. Newton-Raphson or some other iterative procedure can be applied
once again.

The approximate variance-covariance matrix can be obtained by inverting the

observed Fisher information matrix J, valuated at the MLEs of v,, v, and o.
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The observed Fisher information matrix /p is of the form

*InL 9’InL &’InL
dv,, vy, 0dv, oo
[ = d*InL 9’InL &*InL (102.3.4)
0 ov,dv, v’ ov,0o o
&’InL d’logl 9°InL
dvydo  owdo 9o’ ). . o
where
2 k om o =V, — VX
56“/"2[‘=*;1722{(r,m+1)exp(y im0, (10.2.3.5)
0 1=t =l
2 ko imom ~ Vo —ViX
o e D 5 (i, + DexpE ), (102.3.6)
1 1=1 i=1
o*InL 1 & Vi —Vo VX
1=} i=1
=V =V, =Yy = VX
x (24 Zimen 7 Y0 T Py oy Timen Z 0 T ATy (1023.7)
c
o°InL 1 & Vimm = Vo — Vi,
— .—__;72 {35, (T, + D XD U" 1y, (10.2.3.8)
0 1 I=1 i=1
azlnL l k& yi:m:n — Vo —ViX, yi:m n, “Vo VX
== 3D (i, D T exp(— ) 1),
0 I=1 i=l
(10.2.3.9)
and
azlnL 1 ko yi:m:n — Vo= ViX yi:m:u =V, — VX
=5 3D (i, D T exp(mt ) 1]}
1 I=1 i=1
(10.2.3.10)
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10.2.4AMLE

Yimem, ~ Vo V1% . . . . .
L , the corresponding likelihood function for the density

Denoting z,,, ., = =

function in (10.1.1) can be expressed as

k
L= H{(Hg, i JO eXP[Z[Z, g~ Timyony + D EXD(Zi )]]}

=1
where g, =D (Timm, *1  E=1 0 my, is the number of units remaining on test
immediately preceding the i-th failure.
. . . m’ - .
Dropping the proportionality constant 1_[ Zim - » W can take the log-likelihood

i=1

function as
k m;
InL= Z {~m,Inc + Z[zl.:m, = Fimyony + D EXD(Z, 1) -
= i=1

The log-likelihood equations for v,, v; and o become

1 k m
a B S S (= (i, + D EXP(2Z0 )} =0, (10.2.4.1)
0 I=1 =1
1 1 k m
°ns =—-22{x, 1= (%, +DeXP(2,, )13 =0, (10.2.4.2)
a O 1 =
and
61 L
. = -——ZZ{I + Zlm ny mm, +1)exp(z,';m,;,,[ )]} = 0 ’ (10243)
1=l i=l
respectively.
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The likelihood equations in (10.2.4.1) - (10.2.4.3) do not admit explicit solutions.
However, by expanding the function exp(z,,,) in a Taylor series around the point
F™'(Pimn)=In(-Ing,, ., ), we may approximate this function by

XP(Zim) = 1= Qi + Brng Zimn -
where
Pimn, =15, (10.2.4.4)
Qimen, = 1= Pimn, =i
i, = 1+ing,, " {1- ln(—lnq,m,n,)}
Bimin, = =101,
and b, is as defined in (10.2.2.9).

It is easy to see that f,

myyny

By making use of the above linear approximations, we obtain the approximate

log-likelihood equations as

dlnL oL

= =_—ZZ{1 (lm n, +1)(1 a:m n +ﬂi:m n Zi:m n )} =O’ (10245)
6V0 aVO o4& s IR 1y B B
olnL al
& nL =—_Zz{xl 1 (rm ny +1)(1 ;. my ey +ﬂi:m,:n,zi:m,:n )]}=O’ (1024'6)
avl aV O o1 =1t I
and

* k m
alnL ~1 alnL :"i Z{l+zi'm:n [1_("1mn +l)(1_ai'M'n +ﬂi'm o Cimn )]} 0 (102 4 7)
aa. ao, R/l -0 b Rl s 17

=) =1
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Upon solving equations (10.2.4.5) — (10.2.4.7), we derive the AMLEs v,, v| and

& (of v,, v, and o) based on progressively Type-II right-censored sample as

V,=aG+b, (10.2.4.8)
Vi=co+d, (10.2.4.9)
and
—— 2 —
5o _BrVB —44C (10.2.4.10)
. 24
where
a=A,/A, b=A,/A, c=A/A, d=A,/A, (10.2.4.11)
Kk m
S S N D] i D]
A=det k’*‘m‘f‘ =il , (10.2.4.12)
Zz[xl (n:m,:n, + 1)ﬂi:m, i ] Zz[xl : (ri:m, i + 1)ﬂ|m, "
1=} i=1 =1 i=1
k_m
ZZ[l ( 1m oy +1)(1 lm,n )] Zz[xl (r;':m,:n, +1)ﬁi:m,:n,]
A, =—det ’ = ’,j‘ ,‘;;‘ , (10.2.4.13)
Zz{xl 1 ( imyny +1)(1 Im,n,)} Zz[xlz( l.m,n, tm,n,
1=l -1 I=1 i=1

k k_my

ZZ[( ""r Ll +1)ﬁii'"ﬁ"ly":’"l”'/] Zz[xl( ”"l n +1)ﬁi1’"l?"1]

A, =det | F = = , (10.2.4.14)

L]
ZZ[XI (r”"l iy + l)ﬂ‘ Y ey ] Zz[xl 2 (’; . "l ”"H'r

1= =1 I=1 i=1

k

33 iy D] D1y +D01-01,)]

A, =—det | 7 = 1 , (10.2.4.15)

k m Kk m

> S I5 ey DB ] DD A=, + D=1

1=l i=] =1 i-1
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k om

k m
ZZ[(’;':M, " +1)/8i‘.m,:n, ] ZZ[('}:m,m, + l)ﬂitm,:n, Y imymy ]
A, =det | F1 i : (10.2.4.16)

k m k

Zz[xl (ri:m,:n, + l)ﬁi:m,:n, ] Zzl[xl (ri:m,:n, + 1)ﬁi:m,:n, y imyny

1=l =l =1 i=1
k
A=Y "m, (10.2.4.17)
I=1

Kk m

B=Y D [Vimm —O+dx)I{L = (1 + 1)[1 = @i = Brimm, @+ x)]} (10.2.4.18)

I=1 i=l

and

Ny

c-¥

1 i

- (ri:m,:n, + 1)ﬂi:m,:n, [yi:m,:n, - (b + dx/ )]2 : (102419)

k
I=

[1}
—

It should be mentioned here that upon solving Eq. (10.2.4.7) for o, we obtain a
quadratic equation in o which has two roots; however, one of them drops out since 4 >

0, B, > 0and S, >0, and hence C <0.

When all the groups are of the same size, we have ¢ = 0 in the expression
(10.2.4.15).
The approximate variances and covariances can be obtained by inverting the

observed Fisher information matrix I, evaluated at the AMLEs ¥,, ¥, and & (of v,, v,
and o). The observed Fisher information matrix I’ is of the form

L &L & InL
ov,,  0vdv, 8v,0c
A ’InL & lnzlf InL ’ (10.2.4.20)
ov,0v, 0y, ov,0o
o’InL’ 9’InL &’InL
ov,0oc dvdoc  Oo’

185



o’InL 1 ¢
7 ZZ. (1+’}:m,:n,)ﬁi:m,:n,’

2 kK om
a lﬂ"L = —%szlz(l+nm,n,)ﬂi:m,m, 4

d’InL 1 & 2
=7 1+2[tmn T l+7, xmn) imyn +3 i:m'nzi‘mw}’
60’2 0'21_212{ { 11( II] Ed] ﬂl'l oy
*InlL 1 & &
ov,0v, _—;2— Z'x’(l+ ”":"1 ”"l"l’
0 1 =1 i=1
62

1 k
_2—22 {(1 + ri:m,:n, )(1 - ai:m,:n, + 2ﬂi:m,:n, Zi:m, ny ) - 1} 4

6v060' o' 5

and

o1
ov, 60’

= —B_EZ{xl[(l +7 xm, ny )(1 - ai:m,:n, + 2/i'i:m,:n, Zi:m,:n, ) - 1]} '

10.3 Simulation and Discussion

In the simulation study, we use the special example of n = 10, m =

(10.2.4.21)

(10.2.4.22)

(10.2.4.23)

(10.2.4.24)

(10.2.4.25)

(10.2.4.26)

5, h=r=r=0,

r, =3and r; =2 presented by Thomas and Wilson (1972) as a each group to form the two-

and four-grouped samples. We took v, =0,v, =1 and o =1, and X = [-0.5, 0.5] or [-0.5, -

0.16, 0.16, 0.5] for two or four-grouped samples, respectively.

In the case of BLUE, both exact and the biased first-order approximate are presented.

We also performed a simulation for the unbiased first-order approximate method, in which

the approximate means in expression (10.2.1.9) are replaced by the exact values. The
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assessments are based on the estimators’ probability coverages, bias, mean square error,
variances and covariances.

Similar assessments are made for MLE and AMLE.

All the simulation results are based on 10,000 Monte Carlo runs. These results are

presented in Tables 10.3.1 - 10.3.9.

Since the estimators of v,, v, and o from the biased approximate method to BLUE

are considerably biased, the comparison of the probability coverages is made only between
the exact BLUE and the unbiased approximate method to BLUE. The results from the
approximate method to BLUE are in good agreement with the exact BLUE. The exact BLUE
has a value closer to the 95% for probability coverages as compared to the unbiased
approximate method.

The MLEs of v, and o are highly biased when the total sample size N is small. The

biases are decreased dramatically as the total sample size N increases.
Overall, as we expected, the BLUE’s turn out to be best in terms of probability
coverages by having values closer to 95%, and the MLE’s turn out to be the best in terms of

variances and mean square errors.

Compared with the initial guess of v, =0,v, =1 and o =1 (the true values of the

parameter set in the simulation), use of the AMLE estimators dramatically increased the
convergence success rate from about 54% to 99% for the Newton-Raphson procedure for
determining the MLEs. It is also found that the AMLEs were very good in improving the
speed of convergence as the convergence occurred within ten iterations in all the cases

examined here.
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10.4 Tllustrative Example

We illustrate three estimation methods of the approximate BLUE, the MLE and the
AMLE, to the progressively Type-1I right-censored sample for the MEVR model here
from real-life Example 8.2.1.

In order to generate the progressively Type-II right-censored sample from

Example 8.2.1, we have used the following censoring scheme.

Group (/) n, m, Censoring Scheme s,
1 3 [0, 0, 0]
2 4 0,0, 0, 1]
3 i1 6 [0,2,0,0,2,1]
2 s 7 [0,1,0,2,0,0,0]
5 19 9 [4,0,0,3,0,0,0,0,3]
6 15 8 [0,0,3,0,0,0,3, 1]
7 8 5 [0,0, 0, 0,3]

By using the formulas in (10.2.1.9), (10.2.2.14) - (10.2.2.16), (10.2.3.1) —

(10.2.3.3) and (10.2.4.8) — (10.2.4.10), we find the values of the approximate BLUEs,

MLEs and AMLEs of parameters v,, v, and o, respectively, as follows:

Table 10.4.1 Estimates for progressively Type-II right-censored sample from Example 8.2.1

Estimates
Estimation procedure V, vV, o
Approximate BLUE 61.2096 | -16.7002 1.5133
MLE 61.2474 | -16.7146 1.3215
AMLE 58.7554 -16.0558 1.3675
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From the formulas in (10.2.1.11), (10.2.2.14) - (10.2.2.16), (10.2.3.4) and

(10.2.4.20), we find the values of approximate variances and covariances of the

approximate BLUEs, MLEs and AMLEsof v,, v, and o, respectively, as follows:

Table 10.4.2 Approximate variances and covariances for progressively Type-II right-

censored sample from Example 8.2.1

Approximate variances and covariances/ o’

Approximate BLUE MLE MLE
21.1296 | -6.0669 | -0.0449 | 24.3203 | -6.9745 | -0.0665 | 27.9636 | -8.0126 | -0.0426
6.0669 | 1.7439| 0.0148 | -6.9745| 2.0021| 0.0196 | -8.0126 | 2.2982 | 0.0135
20.0449 | 0.0148| 0.0184 | -0.0665| 0.0196| 0.0138 | -0.0426 | 0.0135] 0.0132
As the AMLEs are biased and the expected values of these biases are not

available, we presented the 95% confidence interval only for the approximate BLUEs and

MLEs of v,, v, and o here as follows:

Table 10.4.3 95% confidence interval of the approximate BLUEs and MLEs for
progressively Type-II right-censored sample from Example 8.2.1

Estimation 95% confidence interval
procedure LL(v,) | UL(v,) | LL(v) UL(v,) | LL(o) | UL(0)
Approximate
BLUE 40.5781 81.8412 -22.6274 -10.7731 0.9047 2.1218
MLE 443671 78.1277 -21.5578 -11.8713 | 0.9191 1.7239
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CHAPTER 11

CONTRIBUTIONS AND SUGGESTIONS FOR FURTHER
RESEARCH

11.1 Contributions

In this thesis, we have presented different inferential methods for the parameters in a
multi-group extreme value regression model based on complete sample, progressively
Type-II right-censored sample and its special case — Type-II right-censored sample, and
have evaluated the relative merits of these methods. We have also developed a large-
sample approximation to BLUEs, which will be particularly useful when the means,
variances and covariances of order statistics from the standard extreme value distribution
are not readily available (in large samples, say, n =30 or so). To check the adequacy of
models upon which inferences are based on, a test of validity of the multi-group extreme
value regression model is discussed as well. A list of the contributions in this thesis are
given below:
1. We have used the best linear unbiased estimation method to derive expressions of
estimators of the regression parameters for the multi-group extreme value
regression model. The proof of the asymptotic normality of the BLUEs of these

parameters is presented as well. We have also conducted a simulation study to
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evaluate the performance of the BLUESs of these parameters for various choices of
sample sizes and censoring schemes.

To obtain the maximum likelihood estimation of the regression parameters, we
have derived the likelihood equations of the regression parameters for the multi-
group extreme value regression model. The approximate and the asymptotic
variances and covariances of these estimators are also derived through the
observed and expected Fisher information matrix, respectively. In addition, we
have conducted a simulation study to evaluate the performance of these MLEs for
various choices of sample sizes and censoring schemes.

Since the maximum likelihood estimators of the regression parameters are not in
closed form, we have developed approximate maximum likelihood estimators of
these regression parameters. The approximate and the asymptotic variances and
covariances of these estimators are derived through the observed as well as
expected Fisher information matrix, respectively. We have also derived explicit
expressions for the approximate biases of these estimators. A simulation study to
evaluate the performance of the AMLEs of these parameters for various choices
of sample sizes and censoring schemes has been conducted as well.

We have discussed confidence intervals based on estimators from the three
different estimation methods mentioned above. We have used probability
coverages to examine the accuracy of the interval estimation procedures. We have

also conducted a simulation study to evaluate the probability coverages of the
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pivotal quantities based on all these estimators for various choices of sample sizes

and censoring schemes.

We have assessed the performance of BLUE, MLE and AMLE for the regression

parameters with respect to the following factors:

e The number of levels of the regressor variable x,

e The balanced (equal sized) group sémple vs. unbalanced (unequal sized)
group sample,

e The total sample size ,

e The complete sample vs. Type-II right-censored sample,

e The degrees of censoring.

We have also made comparisons between BLUE, MLE and AMLE based on the

relative efficiency of the estimators and the accuracy of the normal approximation

in terms of probability coverages of intervals of these estimators.

We have extended Tiku’s test to the multi-group sample situation to check the

adequacy of models upon which inferences are based on. We have also described

an approximate method of determining the level of significance and the power of

this test procedure. Further, we have simulated the values of levels of significance

under the standard extreme value model, and the values of power under five

distributional alternatives for various choices of sample sizes and censoring

schemes.

We have developed a large-sample approximation to BLUEs for the cases when

the mean, variances and covariances of order statistics from the standard extreme
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value distribution are not readily available (say, n >30or so). For this propose,
we have considered the first-order and second-order approximations for the
variance-covariance matrix of order statistics from the standard extreme value
distribution using David and Johnson’s (1954) approximation. A simulation study
has been conducted as well in order to assess the performance of these two
approximation methods as compared to the exact method.

8. All the estimations methods mentioned above have been generalized to
progressively Type-II right-censored samples. To evaluate all different types of
estimation procedures, a simulation study has been conducted based on
progressively Type-II right-censored two- and four-grouped samples.

9. All these inferential procedures have been illustrated through the real-life

examples.
11.2 Suggestions for Further Research

In this thesis, we have studied different inferential methods for the multi-group extreme
value regression model, and evaluated their relative merits. The developments of the
thesis have brought out some more problems that are worth considering for future

research. Of special interest among these are the following problems:

1. In this thesis, we have developed statistical inference for the special case of one

covariate, i.e. u(x)=v,+v,x. It will naturally be of interest to develop statistical

inference for the case of two or more covariates in the multi-group extreme value

regression model.
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We have considered the linear function of covariate, i.e., u(x)=v,+v,x (power

rule model), as the form of regression (form of link function) throughout this
thesis. It will also be of great interest to obtain statistical inference based on the
following link functions:

o the reciprocal linear (Arrhenius model)

¢ an exponential function

e polynomial function.

In Chapter 7, we have proposed a goodness-of-fit test for the multi-group sample
situation to check the adequacy of the extreme value regression. This method does
not allow a comparison between the different estimation methods since the
estimators all get cancelled out in the expression of the test statistics. Therefore, it
will be of interest to develop so other goodness-of-fit tests, which will not only
test the validity of the multi-group extreme value regression model but also
provide a comparison between the different estimation methods used to estimate

the underlying parameters.
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APPENDIX

Proof of condition 1: The weight function J(u) of the estimator

k m
v, =X ALY = ZZai:", Vi, 1s bounded.

I=1 i=1

Proof: For the purpose of simplicity and without any loss of generality, we consider two-
grouped sample here (N =n, +n,).

We present the proof in three parts as follows:
Part (A):

Prove § >CN’ , where Cis a constant and N =n, +n,.
Part (B):

Prove | X6, |<cN 2(1|,.y Where c is a constant, “(1], " is a row vector of 1 of
sizeNand N =n, +n,.

Part (C):

k
Prove weight function J(u) in v, =X A Y= ZZaMI Yin, 1 bounded.

I1=1 i=1
Part (A)
'y X2 aT™l

From (2.2.16), we have § =detlI'S™' X XT'X aT7'X
> X%2'a a'a
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Adopt the “Dirac” symbols, ie., (x|= row vector, | x)= column

vector, (x| a) = Zx,. .=(a| x) and | x)a |=matrix, etc., and define M = r'. Then, we

can express

5= (a| M| a)t]| M |1x| M |x)—(ar| M |aX1| M | %)’
+QUM | a)(x| M |1)a | M| x)—(1 M| a)e | M [1Xx| M | %)
# (x| M)t M | x)a | M 1)~ (x| M |a)t| M |1Xa | M |x) (A1)

(x|= [xl,...,X,,xz,---’lelxN’

<a ‘E [alinl g "anlml ,a‘:nz P ‘7an2:n2 ]lxN’

M=

H

NxN

2
(a|Ma)={a,|M;|a)+{e,|M,]|a,),
M | x)=x (1M, I1>+x2(1|M2‘I1>,
UMD =AM, | D+A[M, |,
(x|M|ay=x LM, o) +x,0I M, |a,),
UM oy =M, |a)+{IM,|e,),
and
(x| M| x)y=x 1| M, [ D+x (LM, [1).
Since the inverse of the covariances matrix M, (or M,) is positive definite, we

can express M, as M, =C AC,, where C, is an orthogonal matrix, r indicates

200



transpose, A, is a diagonal matrix with A, iy = A, >0, fori=1, .., n and A,’s are the
eigen values of M,.

Define new vectors:

@l =@, {aclay=a)),

and
arcyi =1 aci=n)
Writing (M,) = (1| M, |1) and (M,)=(1| M, |1}, we can express
(MY =(1|T) = (lengthof 1)?,
(@|M | @)= (& | &)= (length of &)*
and

(| M |1y =(&| 1) = (length of T)(length of T)cos8(1,&) = (@ |@X1 | @) cosO(1,&).
Let A and A be the minimum and maximum of the eigen values of the matrix
M,, respectively, for [ = 1, 2, and the symbol (/) denotes the value is from /-th group. We
then have
A p, =20 Q1CTC Y <MY= CAC D<A AICC Iy =0 n, =1, 2.
1.e.
AD < (MY < A n,.
Similarly, we can get

n ma;

OEPI0) ) 29
Cin Aain S [ M) Sa,, ’1max"1’
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a® A0 p <M, |a,)y<al A0 n

mm min max’” "ma X

x, A n <{x, | M, |x)<x A n

mm max

x, A0 n, <M, | %) <x, A0 n,

mn max

and

0 G® 20y < (x| M, | a1> <x® q® 20 y

min ° “mmn max max

X i

Therefore, for all the terms with the positive sign in (A.1), we can always

minimize them by the values of x2, a® and A") | and vase versa, maximize all the

min ‘min ?

terms with the negative sign by the values of x¥ a® and /1(1’ For example, we

max max

have {(a|M |a)X1|M |1)x|M |x)>x} al A2 N> for the first term in (A.1) and

min ~* min “min

(a| M |a)Y1| M |x)* <x},a A, N° for the second term. And moreover, we obtain

max’® “max

(@) M @)U M DG M | x)—(a | M o)L M | x)? > (22 a2 A =@l Ao IN?,

min ““min max TUmax’” Tmin

(8))

min >

x2y, a =min(al),a2), A, =min(A, , A% ), and the

nen ’ nin > “ “min

where x_, = min(x
maximums of x, & and A are defined in the similar manner.

Hence, we can always find a value C such that
8 >CN’

where C is a function of the constants of x a A X

min ? min ? ‘min > “¥max max and /’!’max WhICh haS

considered all the terms in (A.2).
Furthermore, we can prove & >0. Express the first two terms, second two terms

and third two terms of & as

202



8= (1, = %,)" (| M, [ @ XM XM, ) + (@, | M, [ a XML XM )),
5, = (UM |@)xx, (M XA M o)+ (MY My )= xi (MU M |ag) = x5 (Mo XLM, (e,
and
8y= (x| M | (M XU My Lay) = (Mo XU, )+, (Mo XELM ey = (M XM )]s
respectively. We can write & as
5= - %, UMM, Xay | M, |ay) — (LM, |0 J+ LM ey | M |y =L M feg) )
Since
(MXa|M |y~ M | = (1| TX& | @)1 -cos?0(1,&))= (1| Tx@| @)sin? 0(1,a),
and « # constant implies 8 =0, i.e. sinH(T, ) >0, we obtain
(M¥a | M |a) =AM |a) ={(MXa|M |a)sin?6(1,&) > 0.

Therefore we have d >0.

Part (B):

) W' Vs B O
From (2.2.17), we have 8, ==X «T7'X XZ7'|. Similar to the expression
’ ' a%'a aZ”

of & given in (A.1), we have

X'6,, =(a|M |a)x|M|x)1M~(a|M]|a)x|M[IXx|M
+(A| M |a)a | M | xXx|M =M |a)x|M |x){a|M  (A2)
+(x | M| a) M | x)Xa | M = (x| M |a)Xa|M | x){A| M
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Follow the similar procedures as we did in Part (A) for S and denote the first two

terms of X', as X'd, (1, 2), we have

2 2 B2 g2 2 WAL < X0, (1, 2) < (K@ A~ X5 Ay NV (L

(xmin min 7 “min max “* max ““max max ~* max “"max min ~* min “min

where “(1],y” is a row vector of 1 of size N. Therefore, we can always find a ¢ such that
.
| X6, [<eN“ (1w
where c is a function of the constants of X_;., @, s> Amins ¥max> @max a0d Ay, Which has

considered all the terms in (A.2).

Part (C):

[
Yo

Since each element of

< CC—N’ and the J(u) function is defined as each element of

'
Yo

the row vector N

. Therefore we have |J(u)| < —2— , i.e., J(u) is bounded.
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