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Abstract 

Recently , Mehrez et al . (Mehrez and S tern [19 8 3 ,  1 9 8 5 ] , Melkman et al . 

[ 1 9 8 6 ] )  have s tudied a ve hicle fleet refueling problem that arises in 

military applications and is aimed to maximize the operational range o f  the 

fleet. More spec ifically ,  they inves tigated the prob lem of maximiz ing the 

range o f  the las t vehicle from a fleet o f  n ve hic les by employing a 

sequential refueling c hain s trategy . The s trategy of maximiz ing the range o f  

the las t  vehicle is  an important criterion to be cons idered under war 

c onditions . This problem has its own elegant solution which demons trates how 

a spec ific military Operations Research prob lem may reveal interesting 

results due to its unique s tr ucture . The approach recommended here to s olve 

the problem indicates that numerical computations rather· than an analytical 

approach may res ult in knowing les s  about the problem solution. The purpose 

o f  this paper is:  ( i )  To  construct an o rdering r ule for n = 2 , which 

contradicts the conjecture o f  Mehrez et al. that even for the case o f  n = 2 

a s imple ordering r ule does not exi s t .  (ii )  To s ugges t  a recursive procedure 

which requires only O ( n) calculations to s o lve the linear programming 

prob lem o f  maximiz ing the operational range for a given refueling chain. 

(iii)  To s ugge s t  a new approach, which is  based on the derivation o f  s upply 

and demand curves for each refueling operation , to s o lve scheduling 

problems . It is s hown how the analysis o f  these curves provides important 

information regarding the nature of the optimal so lution which was treated 

by Mehrez et al. for some special cases of fleet configurations . The 

analysis s upports the idea o f  solving the problem o f  determining the op timal 

refueling c hain by a enumerative search for n s uffic iently small . Finally , 
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for n = 2 and 3 ,  an analys is is s hown by which inferior refuel ing chains may 

be el iminated for the vehicle fleet re fue l ing problem. 
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1 .  Introduction 

This article addres ses a problem o f  vehicle refuel ing s trategies which 

was discus sed by Mehrez et al . [ 19 8 3 ] . These authors cons idered the problem 

o f  a s e l f  contained miss ion requiring round trip travel from a common 

origi R .  More specifically, they investigated the problem o f  maximiz ing the 

range o f  the las t vehicle from a fleet o f  n ve hicles by employing a 

sequential refueling chain s trategy. In s uch a s trategy the last vehicle to 

be refueled is the next vehic le to trans fer its fue l . Actually, Mehrez et 

al . dealt with four types o f  fleet configurations: ( 1 )  identical vehic les , 

( 2 )  vehicles with identical fuel consump tion rates b ut different fuel 

capac ities , ( 3 )  vehicles with the same fuel capac ity but different fuel 

consump tion rates , and ( 4 )  vehicles with both different fuel capac ities and 

different fuel consumption rates . 

Mehrez e t  al . provided the optimal s trategy for the firs t three type s  

o f  fleet c onfigurations under the s o  called pure refueling c hain. This 

s trategy is  based on the following conditions : All vehicles leave the 

origin s imultaneo us ly with tanks at full capac ity . After a vehicle 

transfers fuel it mus t immediately return to the origin , leaving remaining 

vehicles proceeding away from the origin. Each trans fer operation involves 

only one vehicle trans ferring fuel. It follows that there are n-1 ordered 

refueling operations , after which the las t vehicle to rece ive fuel reaches 

its maximal range and returns to the origin . 

Mehrez e t  al . were unable to analyze and solve the fourth type o f  fleet 

configuration with both different fuel capacities and different fuel 

cons ump tion rates . This configuration leads to a mixed non- linear integer 

programming formulation which is difficult to s o lve by routine methods . The 

main purp o s e  o f  this paper is to analyze this problem . In the ne xt section , 
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the prob lem i s  formulated and a counter examp le is provided to rej ect 

theorem 5 (p. 3 3 7 )  of Mehrez et al . that the op timal basic solution doe s  not 

have bas ic s lack variables . In section three , a s imple case o f  n - 2 is 

studied and an ordering rule is c onstructed for this case. This rule 

contradicts the conjecture o f  Mehrez et al. that even for the case of n = 2 

a s impl e  ordering rule does not exist. However , it i s  shown that this rule 

doe s  not ho ld for general case o f  n > 2 .  In section four , given a fixed 

refuel ing chain , the problem is reduced into a l inear programming form . It 

is  shown that,  in sp ite o f  the l inear programming s tr uc ture , the pro blem can 

be s o lved recur s ively by a procedure which req uires only O ( n) calculations . 

In section five , a pairwise interchange rule is  s ugge s ted to improve a given 

refueling c hain. This rule is shown to produce a local optimal solution for 

the general case . An optimal algorithm,  which is based o n  the linear 

programming solution for a fixed refueling chain and a enumerative s earch 

procedure , i s  also s uggested. Computer s imulation is  conducted to compare 

this algori thm with a heuristic for problems o f  small s iz e  (n - 6 ) .  In 

section s ix, it is shown for n = 2, 3 that it will never be optimal to 

locate a vehicle with larger capac ity and lower fue l  cons ump tion rate before 

a vehicle with smaller capacity ·  and higher fuel consumption rate . A 

conjecture that has not been rejected by computer s imulation has been 

formulated for the general case . Finally , in·section seven , future research 

is s uggested. 

2 .  The Problem Formulation 

For the reader's convenience , the problem of maximiz ing the range of 

the last vehicle , given a fleet size n with a p ure refueling chain, is 

reformulated by employing the notation us ed in Mehrez e t  al. [ 1 9 8 3 ] .  
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I t  is as sumed that each vehicle in the fleet is ass igned to a pos ition 

in a refueling chain . M = ( m ) is  the set o f  all refuel ing chains . A 

representative refue ling chain is given by m = ( m
1

, . . . , m
n ) where m is a 

permutation o f  integers 1, .. . ,n .  For a given m , the vehicles are indexed 

according to the fuel trans fer orde r in the chain. In this chain , vehic le 

is active only in the first refueling operation , trans ferring fuel to 

vehicle Vehicle m
2 

is active in two refue ling o perations : receiving 

fuel in· the first operation and trans ferring fuel in the second o peration . 

Vehicles m
3 , . . . ' m 

1 
are also active in exactly two o perations . 

n -
The las t 

vehicle in the chain , vehicle m
n , is active in receiving fuel from the m

n-l 

vehicle in the ( n�l)th o peration. Each vehicle � has a different fuel 

capacity C� , measured in units of fuel , such as liters or gallons . Each 

vehicle has also a different fuel consumption rate qm 
, the amount of 

k 

fuel per dis tance traveled . To formularize the problem the following 

additional terms are defined :  

d� the maximum dis tance that 

refueling . d = C /q . � � � 

the vehicle can travel without 

the dis tance from the point where the ( k-l)th refueling o peration 

ends to the s tart o f  the kth refueling operation ( k=l , 2 ,  . . . , n- 1) . 

The zero th refueling o peration occurs at the o rigin point o f  all 

vehicle departure and is not cons idered part of the refueling 

chain . 
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the dis tance from the (n-l)th ( the las t), refueling operation to 

the farthes t  p oint reached by the last vehicle be fore it commences 

its re turn to the origin point . 

the amount of fuel trans ferred from the vehicle � to the vehicle 

m
k+l 

during the kth refue ling operation . 

Z (m) the dis tance traveled by the last vehicle in the chain m from the 

origin to its turnaround point , i . e .  the maximum dis tance reached 

by the las t vehicle in the fleet . Z (m) = R
1

+ R
2

+ .. . + R
n

. 

The problem Pl is to maximize Z (m). Further development of Pl leads to the 

following mixed non - linear integer programming problem: 

Maximize 

n 
Z (m) = l:: R

k 
k=l 

Sub ject to 

n 
� x.

k 
=- l 

k-1 ]. 

xik - o, l 

k n 
( � R . )( � X . k+lq.) - U

k
� 0, 

j=l J i=l ]. ]. 

k""' 1 ,  . . . , n  

i ""' l ,  . . .  , n  

i =- 1 ,  . . . , n ,  k = l ,  . . .  n 

k=-1 , . . .  , n  

k = l ,  . . .  , n-1 

k""' 1 ,  . . .  , n  

k = l ,  . . .  , n- 1  

( 1 ) 

( 2 )  

( 3 ) 

( 4 )  

(5) 

( 6 )  

(7) 

(8) 
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� 2: 0, k = l,. . .  , n  (9) 

The c onstraints ( 2 ) - ( 4 )  identify a permutation m for which the ith vehicle 

is assigned to the kth position. The constraint (5) states that the vehicle 

transferring fuel reserves an amount needed for the re turn trip to the 

origin . T he c onstrain (6) guarantees that the amount of fuel transferred in 

the kth refue ling operation will not exceed the amount of fuel the vehicle 

has burned up to the point of the kth operation. The c onstraint ( 7) 

guarantee·s that each vehicle receives fuel less than or equal to its 

capac i ty . The constraints (8)-(9) are trivially implied by the structure of 

the problem . 

The problem Pl consis·ts of 
2 

n 0-1 variables and 2n- l c ontinuous 

variables which incorporated into a set of non-linear .constraints. To solve 

such a problem we first note that for a given chain m ,  the sub-problem of 

maximizing the distance travele d  by the last vehicle can be reduced into a 

linear programming structure which will be derived in section four. Mehrez 

et al.  c onunent that Pl can be solved by enumerating all the basic solutions 

c orresponding to the n! linear programming problems with non basic slack 

variables for constraints (5)- (6) ( theorem (5) p. 3 37) . Thus , in an optimal 

solution of Pl,  all the fuel is consumed. While thi s  theorem holds for the 

three spe cial cases of identical fuel capac ities or identical fuel 

consumption rates or a fleet with only two vehicles ( n"" 2 ) , it does not 

hold for the general case as demonstrated by the following counter example 

with n = 4. The data of the c ounter example is provide d  in Table l. 

Table 1 here 
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Actually this example has twenty four chains or s olutions . In Table 2 

the objective function value is computed for each s olution and it is 

indicated if the s olution has non zero s lack variab le s .  

Table 2 here 

Table 2 demonstrates two interes ting p os s ib le cases . First , an optimal 

s olution may not s atisfy the equilibrium c ondition for which the fuel supply 

and the fue l  demand are equal at the p oint where fuel trans fer operation 

takes p lace . Second , an e quilibrium s olution may not b e  an optimal 

solution . More specifically, s olution number 24 and 1 2  illus trate the first 

and the second case respectively. Figure 1 and 2 describ e  the fuel supply 

demand relationship at the fuel transfer p oints for the two cases  

respectively. 

3. The case of n 2 

The case of n 

Figure 1 here 

Figure 2 here 

2 was partially s tudied by Mehrez et al . Thes e  authors 

c laimed that there is no s imple ordering rule for the prob lem Pl. Actually , 

the approach leading to this s tatement s tems from the basic ideas 

corresponding to the rule of d in identifying the op timal order . 
m

k 
The 
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following lemma shows that the ordering rule for the op timal chain mus t  

depend o n  b o th d and q o f  both vehicle s .  
m

k 
mk 

Lemma l 

For n = 2 the op timal chain is m = { m
1
, m

2
} if and only if 

Proo f .  

Without loss o f  general ity we compare { 1 , 2} and { 2, 1 }  as suming that 

thus it i s  s ufficient to s how that Z ( l , 2) � Z ( 2 , l ) . 

( 10 )  

( 1 1) 

To develop the op timal order,  Pl  is  reduced into two l inear programming 

problems P2 for m = { 1 , 2} and { 2, 1 } . For m =  { 1,2} , the problem P2 can be 

formulated as following : 

S . T .  

( 12) 

( 13) 

( 14 )  

( 15 )  

In a s imilar way P 2  can b e  formulated for m =  { 2 , 1} . Cons traint ( 12) implies 

( 16 )  



and ( 14 )  implies 

u 
R > 

1 
i - --

q2 

thus combining ( 16 )  and ( 17 )  res ults in 

or 

Comb ining ( 19 )  and ( 15 ) ,  we have upper bound of u
1 

as 

) 

Furthermore ( 13 )  imp l ies that 

Combining ( 2 0 )  and ( 2 1) provides that 

C
lq2 

--�-'--) 
q2 

+ 2ql 

d
l _____ ) 

2 + q2
/q 1 
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( 17 )  

( 18 )  

( 19 )  

( 20 )  

( 2 1) 

( 22 )  

Therefore s ince the left hand s ide of ( 22 )  i s  the ob jective function then 

the inequality can be replaced b y  e qual ity s ign .  

Z ( l ,  2 )  

Similarly , 

l 
d + 

l 
Min ( d

2 
, 

-2 - 2 2 
d

l 
--.,....----) 

2 + q2
/q 1 

( 2 3) 



Z ( 2 , 1)  
d

2 
--=---�) 

2 + q 1
/q 2 

To complete the proof, it is sufficient to show that if 

the n  Z ( l , 2 ) � Z ( 2 , l ) , or 

Since ( 2 5 )  implies that 

l+q2
/<q 1

+q2
) 

l+q 1
/<q 1

+q2
) 

therefore b y  ( 23) and ( 2 7 )  

1 
Z ( l , 2 ) = �

2
� ( d

2 + ) . 

Furthermore ,  from ( 2 5 )  we have 

s ince 

Thus by ( 2 8 ) , ( 29 )  and ( 23 )  

Z ( l , 2 ) = 1 
( d

2 
+ 

d
l ) � 1 

( d
l 

+ 
d

2 ) � Z ( 2 , l ) . 
2 --...,

2
,.- +

_
q

_
2

/
_
q
_

l
_ 

2 
_

2
_

+
_

q
_

1
_
/
�
q
-
2
-

11 

( 24 ) 

( 2 5 )  

( 2 7 ) 

( 2 8 )  

( 2 9 )  

� 0 

Q. E . D .  
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4 . Formulation o f  a fixed re fue ling chain 

For a given refueling chain m = { m
1

, m
2

, . . . , m
n

} ,  Pl is reduced into a 

l inear programming problem.  Similar to the spec ial case o f  n = 2,  the 

formulation o f  Pl is reduced into P2 as follows : 

S . T .  

Max Z ( m) 

k 
C + U

k-l
- U

k 
- 2 (  � R.) qm. � 0, � 

j=l J l< 

k 
( � R.) q - U

k
� 0,  

j=l J � +l 

c� - u
k - l � o, 

k = l, . . . , n  

k l , . . . , n- 1  

k = 1 ,  . .. , n  

k 0 o r  k =- n 

k 1 ,  . . .  , n-1  

k 1, . . .  , n  

( 30 )  

( 3 1) 

( 3 2 )  

( 3 3 )  

( 34) 

( 3 5 )  

Constraints ( 3 0 ) -( 35) are justified according to cons traints (S)-(9) o f  Pl. 

To shorten the paper we s kip the explanation. 

Mehrez et al . have computed a closed form for special cas e s  of ( 1) 

identical vehicles ( 2 )  vehicles with identical fuel c ons umption rates but 

different fuel capacities , ( 3 )  vehicles with the s ame fue l  capacity but· 

different fuel consumption rates. But they were unable to reduce the LP 

into a recurs ive computation o f  O(n) for the general case o f  vehicles with 

both different fuel capac i ties and different fue l  c onsump tion rates . In 

this section we will develop a recursive comp utation formula for P2. This 

general formula will be utiliz ed in section 5 to verify the Mehrez et al's 

formulas for the abo ve specific cases ( 1 ) -( 3 ) . The bas ic underlying idea of 
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the development of the recursive relationship between the kth and (k-l)th 

operation is based on 1) the maximization of the supply curve of the kth 

operation under the supply constraint (30) and demand constraints (31)- (32) 

for the (k-l)th operation. 2) maximizing fuel transferring by minimizing 

the absolute deviation between supply and demand of each operation. To 

implement the idea we develop the supply and demand curves for the 

successive operations recursively. To do so we identify the supply curves 

which are shown to be linearly piece-wised with two segments. The point of 

discontinuity of the supply curve will be shown to be the one at which the 

maximum fuel can be transferred in the previous operation. 

The recursive formulas are forward developed. More specifically, the 

supply-demand recursive formulas are developed for the first and second 

operations (Lemma 2). Due to a general argument this recursive formula will 

be held for the third and any successive operations (Lemma 3). The recursive 

procedure is shown to lead an optimal solution for P2 in Lemma 4. However, 

the recursive formulas which satisfy constraints (30)- (35) do not provide 

the values of the decision variables �· Uk, k = l, . . .  ,n-1. Theorem 1 

identifies the optimal solution in terms of these variables by employing a 

backward recursive procedure. The optimal solution is derived by setting an 

equality sign for (31). But the optimal solution is not necessarily unique. 

To verify the feasibility of the solution an induction argument is again 

repeated. 

For 
k 

notational purpose we denote Rk - � Rj, k 
j=l 

1, . .. n-1, the fuel 

transfer point for the kth operation, and Rk , k = 1, . . .  ,n-1, the point at 

which the maximum amount of fuel can be transferred in the kth operation. 

Lemma 2. 
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The amount of fuel transferred in the first and second operation is 

maximized at Rl and R2 respectively where 

G c 
R" = Min ( 

m2 ml ) 1 
qm 2q + qm 2 ml 2 

and 

G c c + 
R" = Min ( 

m
3 

m2 m2 
2 qm qm + qm 2q 

3 2 3 
m2 

Proof 

q R" m2 
1 

) ( 3 6 )  
+ qm 

3 

For the first fuel operation, the supply and demand function can be 

defined as 

G - 2q R' ml m1 1 

s1 (
Ri) -

0 

qm R' 
2 

1 

Dl (Rl) 

0 

Here s1 indicates how much fuel the vehicle m1 can transfer to vehicle m2 at 

Ri, and D1 indicates the empty space available for accepting fuel by vehicle 

The supply s1 and demand D1 are graphically shown in Figure 3 

(case 1). 

Figure 3 here 
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It is obvious that at any transfer point R11 � C / q , the amount of fuel 
m

2 
m

2 

that can be transferred is Min (S1(Ri), o1(Ri)). If the demand curve o1 

intersects with the supply curve s1, the maximum amount of fuel can be 

trans ferre d  a t  the equil ibrium p o int R" � C / ( 2 q + q ) .  If 1 m
1 

m
1 

m
2 

the D1 curve 

does not intersect with the s1 curve , s1(Ri) always greater than D1(Ri). The 

maximum amount of fuel then can be trans ferred at the po int where D1(Ri) is 

maximiz e d ,  i . e .  

s ituations we have 

Rj_ = min ( 

R" 1 

2q + qrn m
l 2 

( See Figure 3 ( case 2 ) ) .  Based on thes e  two 

) . 

From the above analys i s , we know that at any point Ri � Rl , vehicle 

m2 ' s  tank can always be filled up , and at any p o int Ri > Rl e ither it 

transfers less fuel than that at Ri - Rl , or it is  no t feas ible . 

The next step is to analyze the fuel supply and demand curves in the 

s e cond operation . The fuel supply in the second operation depends not only 

on the fuel capacity and the fuel consumption rate o f  vehi cle m1 and m
2

, but 

al so on the first fuel trans fe r operation. Howeve r ,  there is a maximum 

suppl y  curve o f  the combination of m1 and m
2 

, with which at any point o f  

the s e cond operation Rz the supply can be maximized by adjus ting the firs t 

operation corresponding to the second operation . Under this cons iderat ion, 

the maximum supply curve of the second operation will no longer depend on a 
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prespecified first operat ion but can be always real ized by the se lection of 

the first operation. 

For the sec ond operation we have the following supply and demand 

function: 

c qm 
R' 

m
2 2 

2 

S
2 

( R2) "" c + q R" -
m

2 
m

2 
1 

0 

q R' 
m

3 
2 

D
2

( Rp 

0 

R' 
2 

2q R' 
m

2 
2 

R" l 

R' 
2 

R' 
2 

... - ... = :i" 

Figure 4 here 

< R" - 1 

< 

> 

:S 

R' s ( C  + q R" )/2q 2 m
2 

m
2 

1 m
2 

( C  + 
m

2 
q R" )/2q m

2 
1 m

2 

c
m 

/qm 
3 3 

Figure 4 represents the maximum supply curve s
2 

and the demand curve D
2 

for the sec ond operation .  It i s  observed that s
2 

i s  a l inear pie cewise 

function with two segments . To the left of the turning point Rl, s1 is 

greater than D
1 

and thus the tank of the sec ond vehicle m
2 

can always be 

filled up in the first operation . Therefore the maximum fuel that can b e  

supplied at any point R' 
2 

:S R
1
11 will be C - R

2
1q , with the tank of V 

m
2 

m
2 

m
2 

filled up to C b y  the first operation at R' 
� 1 R' minus R'q fuel reserved 

2 2 m
2 

for vehicle m
2 

to go back to the origin. At any point Rz > Rl ' the maximum 

fuel that can be supplied is C + q R" - 2q R' where C is the fuel the 
m

2 
m

2 
1 rn

2 
2 m

2 
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vehicle in 
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the origin , q R" is the maximum fue l received from 
m

2 
1 

the first operati on at the point Ri - Ri and 2qm
2

R2 is the 

amount of fue l used for vehicle m
2 

to.come to R2 and reserved to go back to 

the origi n .  The sup ply s
2 

will decrease when R2 increase s .  At the point 

R" 
l 

s
2 

becomes zero.  Actuall y , this point is the solution of the P2  for n - 2 ,  

with the first fue l transferred a t  Ri = Rl ( see Lemma 1). 

Trivially , o2 is a linear function which is de termined b y  the 

parameters 

determining 

of 

R" 
l '  

the third vehicle . Following the same princ iple of 

we calculate R2 , the point at which vehicle m
3 

can receive 

the maximum amount of fuel from vehicle m
2

. Actuall y ,  the calculation of R2 

depends o n  the following three cases ( see Figure 5 ) :  

The first case is where o2 does not intersect with s
2

, i . e .  o2 is 

always less· than s2 . Under this case R" -2 which i s  the l argest 

distance that vehicle m
3 

can travel .  

The second case is where D
2 

intersects s
2 

at R2 , which is on the left 

side of 

vehicle 

R" 
l' 

In this case R" 
2 

< Rl . To mee t  the demand of 

vehicle m
2 

should first fill up its tank by transferring fuel 



from vehicle m1 at the same point Ri = R2. Since 
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R, < R" V h. 1 1 1, e ic e m1 can 

supply more than that vehicle m2 can accept. The result is that vehicle m1 

ends its mission at Ri with surplus fue� wasted. 

The third case is where D2 intersects s2 to the right of Ri. In this 

case R" 2 

C + q R" m2 m2 l 

2q + q 
> R" l' To meet the demand of vehicle m3, the first 

m2 m3 

operation should take place at Ri = Ri in order to maximize the amount fuel 

transferred from vehicle m1. It results with all fuel transferred in both 

operations to the maximum and thus the slack variables of P2 for the first 

two operations are zero. 

Summarize above three cases we have 

R" 2 = Min ( ---

q + qm m2 3 

To prove the formula, we introduce three lines Dz, Sz and s2 as the 

linear extension of the demand curve o2 and two segments of the supply curve 

c 
Denote R 

m3 
a 

qm 3 

R is the ending a 

Sz' - C - q R' , and m2 m2 2 

c 
.
m2 � =  and R ' 

qm + qm 2 3 
c 

S" 2 

c 

2q 

m + qm R" 
2 1 2 

+ qm m2 3 

point of D2, � is the intersection point 

and Re is the intersection point of Dz and s2 (See Figure 5 ) .  

- 2q Rz'. m2 

Obviously, 

of D' 2 and S2_ ' 
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Figure 5 here 

We will prove that R2 = Min (Ra' �· Re)' i. e. ( 3 6 )  hold. 

the first case we have shown before. 

2) If � � Raand � < Re , n2 must intersect with s2 on the left side 

of Ri , i.e. � < Ri . Because �< Re means 

c c + q R" 

R b = 
m2 < 

m2 m2 
1 

+ 2q + qm qm qm 2 3 m2 3 

we have 

c (2q + qm ) < ( C  + qm m2 m2 3 
m2 2 

and thus 

q c m2 m2 

and 

�-

< q R" m2 1 

c m2 

qm +qm 2 3 

(q + qm ) m2 3 

< R" 
1 

R c 

R" ) l (qm + qm ) 
2 3 

So this is the above mentioned second case and R2 - � · 

3) If Re s Ra and Re s � , D2 must intersect with s2 on the right 

side of Rl , i.e. Re� Ri. Because Res� means 



c + q R" m2 m2 1 
R c 2 + qm qm 2 3 

we have 

(Cm + qm R1" ) (qm 2 2 2 

and so 

c 
:S 

qm 2 

m2 
� , 

+ qm 3 

:S C (2q + qm ) m2 m2 3 

Adding q R" on both sides of the above inequality we obtain m2 1 

thus 

(2q + qm )R1" m2 3 

R" :S 1 

C +q R" m2 m2 1 

2q + q mz m3 
R c 

So this is the above mentioned third case and R2 = R c 

Now, we have shown that Rz - Min (Ra,�, Re), i. e. (36) hold. 

For more general case we have the following lemma: 

Lemma 3. 

20 

Q . E. D. 

The amount of fuel transferred in the kth operation is maximized at Rk_ 

where 

Rk = Min ( 

c 
� +l 

q �+1 

C + q R" 
� � k-1 

2q + q �
. 

mk+l 

) , k = 1 .... , . . .  , n-1 
(37) 
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Proof . 

In order to prove (37), we show that the aggregated supply curve Sk and 

demand curve Dk can be represented by 

Sk (Ri:) = 

Dk(Rk) -

c - q R' � � k 

c + q Rk - 2q Rk � mk -1 mk 

0 

q R' �+lk 

0 

R, < R" k - k 

R!' < R.'� ( C  +q R!' )/2q (38) -1<-l -1< mk mk
--k - 1 mk 

R, < k - c /q �+l �+l 

From Lemma 2 we have shown that (37) and (38) hold for k = 2 . We can show 

that (38) holds for k = 3: 

c m3 
- q R' m3 3 R'  3 < R" - 2 

s3 CR3) ... c + q R" -m3 ffi3 2 2q R' m3 3 R" 2 < R3 � (C +q R2 )/2q m3 m3 m3 

0 R' 3 

q R' m4 
3 R' 3 

> 

� 

( C  +q R" m3 m3 2 

cm 
/qm 4 4 

)/2q m3 

D3 (R3) "" 

at 

0 

Since for any R3 < R2 , the tank of vehicle m3 can always be filled up 

R' 2 R' 3 because the supply s2 is greater than demand D2. Therefore 



vehicle can supply fuel equal to the 
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capacity C less the amount m3 

reserved for going back to the origin, i.e. For R' � R" 3 2 

vehicle should get the maximum fuel at Rz Rll 
2· The fuel available for 

transfer will be the total fuel received at the origin and the second 

operation 

2q R' m3 3 

less the fuel used for the round trip up to R3' , i.e. C + q R" 
m3 m3 2 

. The supply s3 becomes zero at the point R' = ( C  +q R" )/2qm , 3 m3 m3 2 3 

which is the maximum operational range reached by the vehicle m3, i. e. 

same argument in Lemma 2 we can show (37) holds for k = 3, i. e. 

Since 

R" 3 

all q� 

q + qm m3 4 

are given and R" k only depends on Rk-l' 
argument can be easily applied to show that (37) and (38) hold for 

k = 4 , . . . , n-1. 

the above 

Q . E . D .  
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Lemma 3 provides a computation procedure for Rk by which the aggregated 

supply curve of the (n-l)th operation is derived. To show that deriving 

this curve by lemma 3 will lead into the optimization of P2 , the following 

lemma is in order. 

Lemma 4 

P2 will be maximized if R" 1 follows (37) and this will imply that n -

Max Z(m) 

where d 

Proof. 

m n 

l ( d + R" ) �2- mn n-1 ' (39 ) 

Following the argument employed in proving Lemma 2 and Lemma 3, it can 

be shown that s n-1 is maximized under the recursive computation of (37 ) .  

Obviously Z(m) will be maximized if the last vehicle receives the maximum 

amount of fuel in the (n-l)th operation. This will occur at R" 1 and the n-

amount of fuel received will be q R" . In addition to the full capacity of m n-1 n 

the fuel C received from the origin, the total amount of fuel that can be m n 

consumed by the last vehicle is C + q R" . The maximum travel distance m m n-1 

of the vehicle therefore is 

C + q R" m m n-1 
Max Z(m) � �-

n
���

n
�� 2qm n 

n n 

1 ( d + R.11 ) �2- mn n-1 ' 

which satisfies the constraint of going back to the origin. 

Q. E . D .  
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It is easily observed through (39) that to calculate the Max Z (m), 

Lemma 4 does not use a recursive formula based on Rk , the kth transfer 

point. Rather, it uses a forward recursive formula based on Rk, the point 

at which the maximum fuel can be transferred in the kth operation. It should 

be mentioned that R' k is not necessarily equal to Rk for k < n - 1 in an 

optimal solution. In Theorem 1 we derive the solution of Rk_ corresponding 

to the Max Z(m). We employ a backward recursive formula which is shown to 

generate a feasible solution for P2 by satisfying its constraints. More 

specifically an induction argument is utilized to compute Rk and Uk as a 

function of Rll 
k' Sufficient conditions are derived to guarantee 

optimality. The optimal solution however, is not necessarily unique. 

Theorem 1 

In order to guarantee that vehicle m reaches its maximum distance n 

the 

Max Z(m) = 1 ( d + R" 1) , the fuel transfer operation should be arranged -
2- mn n-

as follows: 

1) The kth operation takes place at Rk where 

R' "" R" n-1 n-1 

k = n-2, . . .  , 1  

2) The amount of fuel transferred in kth operation is Uk where 

u - q R.' k mk+l-K. 

Proof. 

k n-1, . .  . , 1  

(40) 

(41) 

(42) 
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To reach the maximum distance, vehicle m should receive the maximum n 

amount of fuel from vehicle mn-l in the (n-l)th operation. Based on Lemma 

3, the maximum amount of fuel will be transferred at the point R' = 
n-1 

R" n-1 and the amount of fuel transferred is u . n-1 

the (n-l)th operation, it requires from (30) that 

c + un_2 - q R' 1 - 2q R' 1 � o, mn-1 mn n- mn-1 n-

or equivalently, 

+ 2q )R' l - C mn-1 n- mn-1 

q R' 1. To guarantee m n-n 

(43) 

where Un-Z is the fuel received from the (n-2)th operation. Denote 

+ 2q )R' l - C mn-1 .n- mn-1 
(44) 

the minimum required fuel eransferred in the (n-2)th operation. We will show 

that 

w n-2 :S Min (R" R' ) qm n-2' n-1 n-1 
(45) 

Notice that (40) a:nd (37) imply that 

c + qm R" mn-1 1 n-2 
R' :S R" :S n-
n-1 n-1 2q + m n-1 

qm n 

(46) 

c 
R' :S R" :S 

mn-1 
n-1 n-1 + qm qm n-1 n 

(47) 

c m 
R' :S R" :S n 
n-1 n-1 (48) 

qm n 

From (44), (46) we have 



c m n -1 w :S (qm + 2q ) n-2 mn-1 n qm n 

From (47) and (44) we have 

and 

C � (q + q ) R' m m m n -1 n-1 n n-1 

+ q R' m 1 n -2 n-
+ 2q m n-1 

- c mn-1 
q R" m n -2 n-1 

w n-2 :S (q + 2q ) R' - (q + ) R' < q R' 1. mn mn-l n-1 mn. 
qmn-l n-1- rnn-l n-

Thus, W 2 :S Min (R" R' ) q n- n-2' n-1 m n-1 

We can arrange the (n -2)th operation at the point R' = Min (R" n-2 n-2' 

26 

R' ) n-1 to transfer u
n_2 = qm R�_2 of fuel. 

n-1 
Under this arrangement U 2 � n-

Wn_2 Thus, (30) is satisfied . It is easy to verify that (31)-(34) all 

hold. 

In general, for any k � 1, to guarantee the kth operation at ·Ilk= 

Rk+l) to transfer fuel Uk = q Rk , 
. �+l 

the constraint (30) requires 

that in the (k+l)th operation, vehicle � receives Uk-l , where 

Since 

c c 
Rk :S Rk = Min ( 

�+l � 
q qll\: 

+ q�+l 11\:+1 

by the same argument we have Wk-l :S Min (Rk-l 

c m + qm R" 
k k k-1 

2q + q rnk � +l 

' Rk)q . rn k 

) ' 



The (k-l)th fuel transfer then can take place at Rk-l = Min <Rk -l ' Rk) 

and Uk-l - q�Rk-l of fuel is transferred. Under this arrangement, (30)- (34) 

are all satisfied by the same argument provided above. 

Finally, 

2, . . .  , n-1, 

satisfied. 

Corollary 1. 

since R' 1 R' 2 

we have Rk � 0, k = 1, . . .  , n, i.e. the constraint (35) is 

Q .E . D. 
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The solution given by backward recursive formulas (40)- (42) is feasible 

for P2. 

Proof. 

The proof is given by following the steps of Theorem 1 to verify that 

(30)-(35) are all satisfied with the solution provided by (40)-(42). 

Q. E . D .  

Finally, it is clear from the recursive formula of calculating Rk and 

Rk that P2 can be solved by O(n) operations. The forward recursive 

Calculatl.·on of R!' by Lenuna 3 1· i· ar f ti· f _1c s a ine unc on o n. The backward 

recursive calculation of Rk and Uk by Theorem 1 is also a linear function of 

n. 

5. A·pairwise interchange analysis 

After solving the P2 for any given refueling chain, the next step is to 

find what is the optimal refueling chain. One way to approach the 
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optimality is to improve the objective function by pairwise interchange the 

vehicles in a chain. 

Lemma 6 below provides a rule of pairwise interchange adjacent vehicles 

for improving the performance . The idea behind the rule is based on the 

recursive formula of Rk (m), where m is introduced to indicate the 

corresponding refueling chain m .  

Lemma 6 

following rule holds: 

If R" (m') > R!' (m") then Z (m' ) � Z (m"). k+l - -1<+1 

Proof. 

The proof can be derived by using the recursive relations of (37) and 

the formula of Z (m) given by (39). Since there exists a k for which 

R!' (m I ) -1<+1 R!' (m") --k+l then 

thus by (39) Z(m' ) � Z (m"): 

this relation holds for k+l, . .. , n-1 by (37) and 

Q. E . D .  

Starting from an initial chain, we can improve the objective function 

Z (m) by repeatedly applying the pairwise interchange rule to the chain. 

However this pairwise interchange rule does not guarantee a global optimal 

solution for Pl. In table 3 and 4 we provide an example which supports our 

conclusion. 

Table 3 here 
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Table 4 here 

In Table 4 a local optimal solution was generated by a procedure 

which employs the idea of Lemma 6. It can be shown that any further 

improvement of this solution is impossible with respect to the pairwise 

interchange rule. Some numerical experience that are not reported here 

demonstrated the fact that the initial solution may have an impact on the 

number of iterations required to solve the problem heuristically by the 

pairwise interchange rule or in an optimal way by employing an enumerative 

search procedure based on the principle of the optimality of dynamic 

programming. 

Computational experience demonstrated that satisfactory results are 

provided for sample problems by using the following heuristic approach: 

First, an initial chain is selected by arranging vehicles according to the 

ascending order of d , i.e select a chain m that satisfies d � d � , . . .  , � . ll1k; ml m2 

dm Then, the interchange rule is repeatedly applied to improve the result 
n 

as long as it is possible. Finally, enumerative search is used to find the 

optimal solution, which is used to measure the effectiveness of the initial 

rule and interchange rule. 

Table 5 here 
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A simulation run of 100 observations for n = 6 is reported in Table 5. 

The and the were sampled from statistically independent uniform 

distribution with d. l. uniformly distributed in (1 ,  100], q. uniformly l. 

distributed in (1 , 100] , and Ci =di qi. The results indicates that 29% of 

the initial solutions are optimal and 72% of the interchange solutions are 

optimal. When the performance is measured by the ratio of the Z(m) of the 

heuristic solution to the Z(m) of the optimal solution, the average ratio 

for the initial solution is 0.949 and the average ratio for the interchange 

solutions is 0. 978. 

In fact, the initial rule of orderi�g vehicles by dm does generate 
k 

the optimal solution for the three types of fleet configuration (1)-(3) 

which are studied by Mehrez et al. The optimal solution can be verified via 

an alternative algebraic proof by using Lemma 3, Lemma 4, and Lemma 6. The 

following theorem represents such an approach which is based on analyzing 

the supply and demand curves. 

Theorem 2. 

If the vehicles in a fleet have the same fuel consumption rate q: 

q, 

or have the same fuel capacity C :  

then the refueling chain m (m1 , m2 , . .. , mn} is optimal if 

' • • •  , ::S d m n 

and the maximum operational range is 

(49) 

(51) 



Max Z(m) 

Proof. 

1 n 
� -

2
-
k =l 3n-k 
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(52) 

Note first that the fleet configuration of identical vehicles is the 

special case of the above mentioned cases and thus it is not considered. 

Assume that the vehicles in the fleet have the same fuel consumption 

rate q .  The proof consists two steps. 

The first step is to prove that a chain m = (m1, m2, . .. , mn} which 

satisfies (51) is optimal. It can be done by showing that for any two 

refueling chains m' 

if d � d then Z(m') � Z(m"). To show 
�+l � 

that Z(m') � Z(m"), it is sufficient to verify by Lemma 6 that 

Rk +l (m') � Rk +l (m"). 

From (37) and (49), Rk is reduced into 

R1' = Min ( d , d /2, (d + R1' 1)/3 ) --k mk+l mk � -K. -

To observe (53) we write �+l(m') and � +l(m") as follows: 

R111(m') = Min ( d , d /2, (d + R!'(m') )/3 ) - K. + mk+2 mk+l �+1 
-K. 

R1' (m") --k+l 

Similarly, 

Min ( d , d /2 mk+2 mk 
(d + R!'(m") )/3 ) mk 

- K. 

Rk: ( m') = Min ( d , d /2 
� +l � , (d� + Rk-l (m') )/3 ) 

R" (m") k Min ( d , d /2, (d + Rk" 1
Cm") )/3 ) � �+1 �+l -

(53) 

(54) 

(55) 

(56) 

(57) 
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Substituting Rk_ (m') and Rk_ (m") in (54) and (55) with (56) and (57) 

respectively, we have 

and 

Since 

Rk+l (m') =Min ( dm. , dm. /2, 2d /3, (2d + d )/6 , 
1<+2 l<+l �+l �+l � 

R!' (m") = Min ( - -k+l 

(3d + d + R!' (m'))/9 ) mk+l mk 
-lc-1 

+ d )/6 ' mk+l 

(3d + d + R" (m"))/9 ) 
� �+l k-1 

(58) 

(59) 

R" (m') k-1 R" (m") k-1 and d � dm. �+l l< 
, it is easy to check that 

R" (m') k+l R" (m") k+l by comparing each term of R" (m') k+l with its 

correspondent. Thus, the pairwise interchange rule can be applied as 

required for any unordered pair of vehicles to generate an optimal refueling 

chain with a non-decreasing order of d ml 
:S . . •  s d m n 

The second step is to prove (52). First we show by an induction 

argument that for the optimal refueling chain, (37) is reduced into: 

From 

d /2 ml 

Since 

Rk+1= 

R" ==- 0, 0 

Lemma 

Rk - (d + Rk )/3 
mk -1 

2, R" ""' Min ( d ' 1 m2 

k = 1, . .. n-1 (60) 

d /3). Since d � d we have Ri = d /3 s 
ml m2 ml ml 

In general, for a given k, assume that R" = k (d +Ilk. 1)/3 s d /2. � - � 

d s d :S d , we have (d + Rk )/3 s d /2 s d so 
� �+l �+2 �+l �+l �+2 

Min ( d ' d /2, (d + Rk )/3 ) (d + Rk )/3 s d /2, and 
mk+2 mk+l mk+l mk+l rnk+l 

thus (60) holds for all k . 

Introducing (60) into (39) recursively results 



Z (m) -
l 

( d  + R" ) 
2 m

n 
n- 1 

1 ( d + 
2 m

n 

d + R" 
m

n-l n- 2 

3 
) 

1 
n 
2: 

2 k-1 
3

n-k 

3 3  

We note that ab ove step s can b e  app lied for the case of identical fuel 

capacity and different fuel consumption rates .  We omit the details of the 

proof. 

Q. E . D .  

6. El imination of inferior chains 

In this section a rule is studied to identify inferior chains which 

locate a technologically more advanced vehicle (with larger capac ity and 

l ower fuel consump tion rate) before a technol ogically less advanced vehicle 

(with smaller capacity and higher fue l consumption rate ) for the cases of n 

2 and n - 3 Although this result is quite intuitive, we were unable to 

show that it holds for the general case . For the spec ial cases we prefer to 

investi&ate the problem for the following reasons: 1) logical arguments 

which are quite useful in analyzing scheduling decisions are no t ap plicable 

to show the results.  Instead a tedious procedure which depends on analyzing 

the supply demand equations and induction arguments is required to pro ve 

the result. 2 )  Quite o ften , such as in the group dec i sion making process , 

c onsistency may not hol d  and thus a result which holds for two elements of a 

set may not hold for the general case. For our prob lem we wi l l  show that 

the orde r  rule mentioned previously is preserved under the case of n - 3. 
The suggested analysis include.s the following steps: 

1) The case of n = 2 is investigated and i t  is shown from lemma 1 that 

the order rule hold for this case . 
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2) The pairwise interchange rule is employed to show that this rule 

hold for any n � 2 with a technologically more advanced vehicle adj acent to 

a less advanced vehicle . 

3) The order rule ho ld for n - 3 when a technolo gically more advanced 

vehicle is not adjacent to a less advanced vehicle . 

Proposition 1 .  

Proof . 

For n - 2 , assume that G ·  
m

l 
� G and qm 

� qm m2 1 2 
then 

The result is impl ied directly by lemma 1 .  

Propo sition 2. 

Denote m' {m
l,·· ·�-1' �· 11\:+l' �+2' · · , m

n
)' m" = {ml'·· . mk - 1 ' 

�+l' � II\:+2,: . . , m
n

) and assume that G
mk 

� G and qm 
� q then 

mk+l k mk+l 

Z (m') � Z(m") . 

Proof.  

The proof is imp l ied directly by lemma 6 and verifing that Rk+l ( m') � 

R!' ( m") holds . 
-ic+l 

Propo sition 3. 
For n = 3, assume that c1 � c2 and q1 s q2, then 

Z ( 2 , 3, 1) � Z (1, 3, 2). 

Proo f. 

Combining Lemma 3 and Lemma 4 results in 

Z ( l , 3, 2 )  

1 
G

2 
Min ( __ + R'.P 

-2-
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1 
Min 

c
2 

+ Min 
c

2 
c

3 
C

3
+q3

Rl 
) ) ( _ ( _ 

-2-
q2 q2 q3

+q2 
2 q3

+q2 

1 
Min ( 

2C
2 

c
2 

C
3 

) ' 2 ( _ + --
q2 q2 q3

+q2 

c c
3 q3 

c
3 

c
l 

(_
2 + + Min (_ ) ) ) 

q2 
2q3

+q2 
2q3

+q2 q3 
2q1

+q3 

1 
2C

2 _c2 
c

3 
c 2C

3 
Min (_ , (_ + ) ' (_

2
_ + ) ' 

-2-
q2 q2 q3

+q2 q2 
2q3

+q2 

( 
c

2 + 
C

3 
+ 

q 3
C

l 
) ) . ( 6 1 )  

q2 
Zq3

+q2 
<2q3

+q2
) C2q1

+q3
) 

S imilarly, 

Z ( 2 , 3 ,  1) 

l 
2C

l 
cl C3 

c 2C
3 

Min ( _ (_ + ),(_: + ) ' 
-2-

ql ql q3
+ql ql 

2 q3
+q1 

) ) . ( 62 )  

We compare e ach i tem of (61) with its equivalent in ( 6 2 ) . Cle arly , b y  the 

c
l + 

C
3 � 

G
2 

+ 
C

3 

ql q3
+ql q2 q3

+q2 

c
l + 

2 C
3 � 

c
2 + 

2C
3 

and 

ql 
2q 3

+ql q2 
2q3

+q2 



2!:: ---

Thus it remains to show that 

Cl q3C2 + _______ 2!:: 
ql 

<2q3+q1><2q2+q3). 

S ince 
1 

q 1 

q3 
_______ 2!::0 
(2q3+q1)<2q2+q3) 

( 
Cl + 

q3C2 
ql (Zq3+q1)<2q2+q3) 

c-2:_ -
q3 

C2 q3Cl + _____ _ 
q2 

<2q3+q2
><2q1+q3) 

) c-2_ 
q3 = cl - c2 ql 

<2q3+q2)<2q1+q3) q2 
<2q3+q1)<2q2+q3) 

cc__:_ _:_) + ( 
q3 q3 

) ) � c2 
ql q2 

<2q3+q1) (Zq2+q3) <2q3+q2
><2q1+q3) 

it is sufficient to show that 

1 1 q3 (_ - _) + ( ____ · ---

� 

ql q2 
<2q3+q1><2q2+q3) 

(q2-ql) ( 

(q2-ql). 

<2q3+q1><2q2+q3) (2q3+q2
><2q1+q3) -

q1q2 (2q3+q1)C2q2+q3) (2q3+q2)<2q1+q3) 

2 2 lGq1qzq3-3qlq2q3 

q1q2
<2q3+q1><2q2+q3>C2q3+qz)C2q1+q3) 

2 3qlq2q3 

� 0 . 
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(63) 

) 

) 

Q. E . D .  
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C orollary 2 .  

For n-3 ,  a re fue ling chain in which a techno logically more advanced 

vehicle is l ocated be fore any relatively less advanced vehicle is not 

optimal. 

Proof. 

S ince there are six p ossible re fuel ing chains for n 
= 

3 then it is 

e asily checked by prop osi tion 2 and prop osition 3 that the C orollary holds . 

7. Disc ussion 

This paper accomplished the analysis of maximiz ing the operational 

range given a fixed re fue l ing chain . As it often happens in the mili tary 

schedul ing problem, the identification of an op timal ordering rule is 

tedious even in the case of n = 2. The identification of this rule can be 

uti lized, for example,  to solve a problem where 2n vehicles are organized 

into n teams, each team containing two vehicles and the objective is to 

maximiz e  the sum of the operational range of all teams . Given this problem, 

i t  can b e  e
'
asily shown that by O (n

2
) of calculations, the maximum 

ope rational range of all p ossible teams can be obtained .  Then, the problem 

can be c onverte d  into a linear assignment problem.  Actually, the recursive 

formulation of Rk suggests that more c omplicated rules may be constructed 

for n sufficiently small . Also, the formulation of a prob lem which follows 

acc ording to the l ines of the previous problem with each team of three 

vehicles may resul.t in solving a transp ortation prob lem . 

Future research may be conducted to investigate the appl icability of 

the recursive procedure derived here for the following problems: 

1) An ob jective function which takes into account a linear we ighted 

sum of both the operational range and the size of the vehicles trave led per 
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unit of 

which the 

the time . S uch 

fleet trave ls 

an obj ective func tion may capture si tuations in 

under threat . The size of the vehicles is an · 

important factor by which threat is reduced . The interesting research 

question deals with the amo unt of 

problem for a given refueling chain . 

to taking into account the relative 

computations required to solve this 

This problem can be further extended 

importance of the vehicles , while 

considering the ir positions in the chain . 

2 )  Ano ther aspect of the prob lem i s  t o  develop supply- demand c urve s  

under condi tions o f  uncertainty o r  under alternative refueling strategie s .  

S uch type of extensions were considered b y  Mehrez e t  al . 

3 )  An alternat ive line of research may investigate the val ue o f  supply 

and demand c urves to study different scheduling prob lems . In such problems 

it may be assumed that the round trip constraint is relaxed .  But an 

alternative objective function may be formulated to analyz e strategies which 

capture t he idea of transferring reso urces from one machine to ano ther .  

These reso urces may b e  fuel , ammunition or any other input . Produc tion rate 

and capacity of machines may be equivalent to fuel consumption rate and fuel 

capacity in o ur prob lem . To maximiz e  the length of the production period 

might be e quivalent to maximiz ing the operational range in our problem . The 

b asic question under this settings is concerned with generating recursive 

procedures for the LP scheduling problem with the order of calculation which 

is less than the order of the simp lex or other LP algorithms . 

4) From the view of scheduling theory this paper demonstrates some 

ideas that might be appl icable for other scheduling prob lems . The basic 

ideas employ the analysis of refueling supply and demand c urves with the 

princ ipl e  o f  pairwise interchange to eliminate inferior so l utions from 

further c onsideration . Altho ugh the reductions are quite expected , we have 
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not been . ab le t o  provide the resul t by logical arguments for the general 

case . Rather ,  we had to utilize a tedious algebraic approach , even for n = 

3 .  Future research may extend the result and exp lore op timal refue l ing 

rules for n � 3 or improve heuristics to solve the prob lem . Clearly , 

methods such as AHP ( Saaty [ 19 8 0 ] ) that inc orporate pairwise analysis of n = 

2 within the framework of the general case are p ossible approaches to 

consider. 
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Table 1 

A Counter Examp le Data for n 4 

Vehicle i 1 2 3 4 

Fuel Capacity c .  1- 49 14 2 6 0 3  48 84 3 3 8 3 1  

Fue l Consum . Rate q i 27  19  34 1 8 9  

Maximum Distance d .  182  1- 1 3 7  148 179  



S o lution No . 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
1 6  
17  
1 8  
1 9  
20  
2 1  
2 2  
2 3 
24 

Table 2 

Solutions for n=4 

Vehicle Chain Obj ective func tion 
{ ml , m2 , m3 , m4 } value Z (m) 

{ 3 , l , 2 , 4 } 9 5 . 7 6 
{ l , 3 , 2 , 4 } 9 5 . 76 
{ l , 4 , 2 , 3 } 9 9 . 03 
{ 4 , 1 , 2 , 3 } 9 9 . 03 
{ l , 2 , 3 , 4 ) 100 . 50 
{ 2 , l , 3 , 4 } 100 . 50 
{ 3 , 2 , 1 , 4 } 100 . 8 8 
{ 2 , 3 , 1 , 4 ) 100 . 8 8 
{ 4 , 2 , l , 3 } 111 . 02 
{ 4 , l , 3 , 2 } 113 . 13 
{ 2 , 4 , 1 , 3 } 113 . 13 
{ l , 4 , 3 , 2 } 115 . 01 
{ 1 , 3 , 4 , 2 } 116 . 3 5  
{ 3 , l , 4 , 2 } 116 . 5 2  
{ 4 , 3 , l , 2 } 117 . 21 
{ l , 2 , 4 , 3 } 118 . 03  
{ 3 , 4 , l , 2 } 119 . 26 
{ 3 , 4 , 2 , l } 119 . 29 
{ 4 , 3 , 2 , l } 119 . 29 
{ 2 , 1 , 4 , 3 } 120 . 39 
{ 4 , 2 , 3 , 1 } 126 . 14 
{ 2 , 4 , 3 , l } 131 . 70 
( 3 , 2 , 4 , 1 ) 1 3 5 . 6 9  
{ 2 , 3 , 4 , l } 137 . 90 

Non- Zero s lack 
variables 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
No 
Yes 
Yes 
Yes 
Yes 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
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G .  1. 

q i 

d . /2 1. 

i 

c .  1. 
qi 
d . /2 1. 

Table 3 

The Data of An Examp le of Non- op timal i ty 
for n = 6 

1 2 3 4 

9 1 14 3 5 7 2  1 8 0 3 2  7 2 1 6  

49 1 9  9 2  41 

9 3  94 9 8  8 8  

the vehicle number 

fuel capac i ty of vehicle i 

fuel consump tion rate o f  vehicle i 

the travel range o f  s ingle vehicle i , 

5 6 

1 2 0 7 8  748 8  

9 9  5 2  

6 1  7 2  

which equals to C . /2q . 1. 1. 



Table 4 

Solutions for n = 6 

Vehicle Chain 
S o lution Type ( m

l ' m2 ' m3 ' m4 , m
s , m

6 } Z (m )  

Initial 
* 

s olution { 5 ' 6 4 1 2 3 } 113 . 59 

Local optimal solution 
** { 5  6 2 4 3 l }  14L 71 ' 

*** 
Grobal optimal s olution { 6  ' 4 5 3 1 2 }  153 . 76 

* 

** 

*** 

The ini tial solution is based on the increas ing order of d 
m

k 

The local 
interchange 

The g lobal 
chains . 

op timal so lution is obtained by all p o s s ible p airwise 
improvement from the initial s o lution . 

op timal solution is b ased on enumerating all 6 !  p o s s ib le 



S o lution 
Method 

Ordered by d .  . l. 

Table 5 

Illus tration o f  the Performance 
o f  D ifferent Solution Methods 

* 
Percentage 
to be op timal 

Pairwis e  interchange method 

2 9 %  

7 2 %  

100% Enumerate method 

** 
Per formance 
by average 

94 . 8 6 %  

9 7 . 7 9 %  

100 . 00 %  

* 
** 

Percentage o f  number o f  cases the method generates the op timal s o lution . 

Performance measured by the average ratio o f  the operational range o f  
the s o lution v s  the operational range o f  the optimal solution . 
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