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Abstract

Recently, Mehrez et al. (Mehrez and Stern [1983, 1985], Melkman et al.
(1986]) have studied a vehicle fleet refueling problem that arises in
military applications and is aimed to maximize the operational range of the
fleet. More specifically, they investigated the problem of maximizing the
range of the 1last vehicle from a fleet of n vehicles by employing a
sequential refueling chain strategy. The strategy of maximizing the range of
the 1last vehicle 1is an important criterion to be considered under war
conditions. This problem has its own elegant solution which demonstrates how
a specific military Operations Research problem may reveal interesting
results due to its unique structure. The approach recommended here to solve
" the problem indicates that numerical computations rather than an analytical
approach may result in knowing less about the problem solution. The purpose
of this paper 1is: (i) To construct an ordering rule for n = 2, which
contradicts the conjecture of Mehrez et al. that even for the case.of n=2
a simple ordering rule does not exist. (ii) To suggest a recursive procedure
which requires only O0(n) calculations to solve the linear programming
problem of maximizing the operational range for a given refueling chain.
(iii) To suggest a new approach, which is based on the derivation of supply
and demand curves for each refueling operation, to solve scheduling
problems. It 1is shown how the analysis of these curves provides important
information regarding the nature of the optimal solution which was treated
by Mehrez et al. for some special cases of fleet configurations. The
analysis supports the idea of solving the problem of determining the optimal

refueling chain by a enumerative search for n sufficiently small. Finally,



for n = 2 and 3, an analysis is shown by which inferior refueling chains may

be eliminated for the vehicle fleet refueling problem.



1. Introduction

This article addresses a problem of vehicle refueling strategies which
was discussed by Mehrez et al. (1983]. These authors considered the problem
of a self contained mission requiring round trip travel from a common
origin. More specifically, they investigated the problem of maximizing the
range of the 1last vehicle from a fleet of n vehicles by employing a
sequential refueling chain strategy. In such a strategy the last vehicle to
be refueled 1is the next vehicle to transfer its fuel. Actually, Mehrez et
al. dealt with four types of fleet configurations: (1) identical vehicles,
(2) wvehicles with 1identical fuel consumption rates but different fuel
capacities, (3) wvehicles with the same fuel capaéity but different fuel
consumption rates, and (4) vehicles with both different fuel capacities and
different fuel consumption rates.

Mehrez et al. provided the optimal strategy for the first three types
of fleet configurations under the so called pure refueling chain. This
strategy 1s based on the following conditions: All vehicles leave the
origin simultaneously with tanks at full capacity. After a vehicle
transfers fuel it must immediately return to the origin, leaving remaining
vehicles proceeding away from the origin. Each transfer operation involves
only one vehicle transferring fuel. It follows that there are n-1 ordered
refueling operations, after which the last vehicle to receive fuel reaches
its maximal range and returns to the origin.

Mehrez et al. were unable to analyze and solve the fourth type of fleet
configuration with both different fuel capacities and different fuel
consumption rates. This configuration leads to a mixed non-linear integer
programming formulation which is difficult to solve by routine methods. The

main purpose of this paper is to analyze this problem. In the next section,



the problem 1is formulated and a counter example is provided to reject
theorem 5 (p. 337) of Mehrez et al. that the optimal basic solution does not
have basic slack variables. In section three, a simple case of n = 2 is
studied and an ordering rule 1is constructed for this case. This rule
contradicts the conjecture of Mehrez et al. thatreven for the case of n =2
a simple ordering rule does not exist. Howevef, it is shown that this rule
does mnot hold for general case of n > 2. 1In section four, given a fixed
refueling chain, the problem is reduced into a linear programming form. It
is shown that, in spite of the linear programming structure, the problem can
be solved recursively by a procedure which requires only O(n) calculations.
In section five, a pairwise interchange rule is suggested to improve a given
refueling chain. This rule is shown to produce a local optimal solution for
the general case. An optimal algorithm, which 1is based on the linear
programming solution for a fixed refueling chain and a enumerative search
procedure, 1is also suggested. Computer simulation is conducted to compare
this algorithm with a heuristic for problems of small size (n = 6). In
section six, it 1is shown for n = 2, 3 that it will never be optimal to
locate a vehicle with larger capacity and lower fuel consumption rate before
a vehicle with smaller capacity: and higher fuel consumption rate. A
conjecture that has not been rejected by computer simulation has been
formulated for the general case. Finally, in section seven, future research

is suggested.

2. The Problem Formulation
For the reader's convenience, the problem of maximizing the range of
the 1last vehicle, given a fleet size n with a pure refueling chain, is

reformulated by employing the notation used in Mehrez et al. [1983].



It 1is assumed that each vehicle in the fleet is assigned to a position

in a refueling chain. M = {( m ) is the set of all refueling chains. A
representative refueling chain is given by m = (ml,...,mn) where m is a
permutation of integers 1,...,n. For a given m, the vehicles are indexed

according to the fuel transfer order in the chain. In this chain, vehicle

my is active only in the first refueling operation, transferring fuel to

vehicle m, . Vehicle m, is active in two refueling operations: receiving

fuel 1in the first operation and transferring fuel in the second operation.

Vehicles Mg,..., MW _, are also active in exactly two operations. The last

vehicle 1in the chain, vehicle m_, is active in receiving fuel from the m.o_1

vehicle in the (n-1l)th operation. Each vehicle m has a different fuel

capacity C_, measured in units of fuel, such as liters or gallons. Each

v

vehicle m, has also a different fuel consumption rate q, > the amount of

k
fuel per distance traveled. To formularize the problem the following
additional terms are defined:
dmk : the maximum distance that the vehicle m_ can travel without
refueling. d =C_ /q_ .
e M M
Rk : the distance from the point where the (k-1l)th refueling operation
ends to the start of the kth refueling operation (k=1,2,...,n-1).

The zero th refueling operation occurs at the origin point of all

vehicle departure and 1is not considered part of the refueling

chain.



Z(m)

the distance from the (n-l)th (the last), refueling operation to

the farthest point reached by the last vehicle before it commences

its return to the origin point.

the amount of fuel transferred from the vehicle m, to the vehicle
me1 during the kth refueling operation.

the distance traveled by the last vehicle in the chain m from the
origin to its turnaround point, i.e. the maximum distance reached

by the last vehicle in the fleet. Z(m) = R+ R2+...+ R,

The problem Pl is to maximize Z(m). Further development of Pl leads to the

following mixed non-linear integer progrémming problem:
Maximize
n
Z(m) = X Ry : (1)
k=1
Subject to
n
ifl Xik -1 k=1,...,n (2)
n
kfl Xik =1 i=1,...,n (3)
X =0,1 i=1,...,n, k=1,...n (4)
n k n
(iflxikci) +Up - Uy - 2(j§le)(i§lXikqi) =0, k=1,...,n (5
k n
('2 Rj)(-Z Xik+1qi) - Uk > 0, k=1,...,n-1 (6)
j=1 i=1
n
ii!lXikCl = U, 2 0, k=1,...,n (7)
Ug = 0, U= 0, U, = 0, k=1,...,n-1 | (8)



Rk = 0, k=1,...,n (9

The constraints (2)-(4) identify a permutation m for which the ith vehicle
is assigned to the kth position. The constraint (5) states that the vehicle
transferring fuel reserves an amount needed for the return trip to the
origin. The constrain (6) guarantees that the amount of fuel transferred in
the kth refueling operation will not exceed the amount of fuel the vehicle
has burned up to the point of the kth operation. The constraint (7)
guarantees that each vehicle receives fuel 1less than or equal to its
capacity. The constraints (8)-(9) are trivially implied by the structure of

the problem.

The problem Pl consists of n2 0-1 wvariables and 2n-1 continuous

variables which incorporated into a set of non-linear constraints. To solve
such a problem we first note that for a given chain m, the sub-problem of
maximizing the distance traveled by the last vehicle can be reduced into a
linear programming structure which will be derived in section four. Mehrez
et al. comment that Pl can be solved by enumerating all the basic solutions
corresponding to the n! linear programming problems with non basic slack
variables for constraints (5)-(6) (theorem (5) p. 337). Thus, in an optimal
solution of Pl, all the fuel is consumed. While this theorem holds for the
three special cases of 1identical fuel capacities or 1identical fuel
consumption rates or a fleet with only two vehicles (n = 2), it does not

hold for the general case as demonstrated by the following counter example

with n = 4. The data of the counter example is provided in Table 1.



Actually this example has twenty four chains or solutions. In Table 2
the objective function wvalue is computed for each solution and it is

indicated if the solution has non zero slack variables.

Table 2 demonstrates two interesting possible cases. First, an optimal
solution may not satisfy the equilibrium condition for which the fuel supply
and the fuel demand are equal at the point where fuel transfer operation
takes place. Second, an equilibrium solution may not be an optimal
solution. More specifically, solution number 24 and 12 illustrate the first
and the second case respectively. Figure 1 and 2 describe the fuel supply

demand relationship at the fuel transfer points for the two cases

respectively.

Figure 1 here

Figure 2 here

3. The case of n = 2

" The case of n = 2 was partially studied by Mehrez et al. These authors
claimed that there is no simple ordering rule for the problem Pl. Actually,
the approach leading to this statement stems from the basic 1ideas

corresponding to the rule of dm in identifying the optimal order. The
k



following 1lemma shows that the ordering rule for the optimal chain must

depend on both d_  and q_of both vehicles.
M My

Lemma 1

For n = 2 the optimal chain is m = (ml, m2) if and only if

d_ d_
2 > 1 _ (10)
l+q /(q +q_ ) 1+q_ /(q_ +q_ )
e L B mp M My

Proof.

Without loss of generality we compare (1,2) and (2,1) assuming that

dy 4

= ) (11)
l+q,/(qq+q,)  1+q,/(qq+q,)

thus it is sufficient to show that Z(1,2) = Z(2,1).

To develop the optimal order, Pl is reduced into two linear programming
problems P2 for m = (1;2} and (2,1). For m = (1,2), the problem P2 can be
formulated as following:

Max z(m) = R.+ R

1" ™2
S.T.
G- U;-2 Ryq; = 0 (12)
Cy+ U1~2(R1+R2)q2 =0 (13)
Ryqy- Up; 2 0 : (14)
Cy-U; 20 (15)
Ulz 0, R1 =0, R2 =0

In a similar way P2 can be formulated for m = (2,1). Constraint (12) implies

2Riq, S G- Uy (16)
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and (14) implies
R, 2 (17)

thus combining (16) and (17) results in

2Ulql

< 2R;q = G;- Uy (18)

or
19,
45 + qu

IA

(19)

Combining (19) and (15), we have upper bound of U1 as

€14,
U, < Min (G, , ) (20)
1 20— ~
Aot 297

Furthermore (13) implies that

1
R1 + R2_ < (C2+ Ul) (21)

2q2

Combining (20) and (21) provides that

R+Rslc+ 1’Mi,n(c, 1,2.)
279, 2 g, S P T
9 99 9 ¥ 9
d
= _i_ d, + _E_ Min (d, , ____i_____) (22)
2 2 2 + q2/ql

Therefore since the 1left hand side of (22) is the objective function then
the inequality can be replaced by equality sign.

d
d, + _f_ Min (d, , 1 ) (23)
2

2 + q2/ql

(1, 2) =

o|

Similarly,
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d
ze2, ) = a + b owmin qa 2 (24)
7 1 3 L e
41799
To complete the proof, it is sufficient to show that if
d d
2 > 1 (25)
1 + q,/(qy+q,) L + qq/(q;+q,)
then Z(1,2) = Z(2,1), or
d d
Lo+ I ominqa,, o=l oa + 1 ominqq, 2y, @26
2 2 2+q2/ql 2 2 2+q1/q2
Since (25) implies that
1+q,/(q,+q,) 2q,+qy d
dzzd 2 12 =dl 212 1 (27)
1+q,/(q1+qy) 294+q, 2 + q,/9y
therefore by (23) and (27)
d
2(1,2) = - (4, + Loy, (28)
2 2+q2/q1
Furthermore, from (25) we have
d ' d
dy + 1 > 4 + 2 (29)
2+q,/94 2+q,/4, '
since
d d d d
Gyt " y-qag+__ 2 ya-_ 2 t =0
2+q,/94 2+q,/4, +q,/(qy+q,)  1+q,/(q+qy)
Thus by (28), (29) and (23)
d d
2(1,2) = Ly vt = taa 2 y=z2,D).
2 2+q2/q1 2 2+ql/q2

Q.E.D.
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4. Formulation of a fixed refueling chain
For a given refueling chain m = {ml, m2,...,mn), Pl is reduced into a
linear programming problem. Similar to the special case of n = 2, the

formulation of Pl is reduced into P2 as follows:

n
Max Z(m) = I
k=le

S.T.
k
cmk+ U1~ Uy - 2(ji:1 Ry) qu >0, k=1,...,n (30)
k
(jfle) I,y U =0, k=1,...,n-1 (31)
cmk - U4 20, . k=1,...,n (32)
U, =0, k=0ork=n (33)
U, = 0, k=1,...,n-1 (34)
R, 20, k=1,...,n (35)

Constraints (30)-(35) are justified according to constraints (5)-(9) of Pl.
To shorten the paper we skip the explanation.

Mehrez et al. have computed a closed form for special cases of (1)
identical vehicles (2) vehicles with identical fuel consumption rates but
different fuel capacities, (3) vehicles with the same fuel capacity but -
different fuel consumption rates. But they were unable to reduce the LP
into a recursive computation of O(n) for the general case of vehicles with
both different fuel capacities and different fuel consumption rates. 1In
this section we will develop a recursive computation formula for P2. This
general formula will be utilized in section 5 to verify the Mehrez et al's

formulas for the above specific cases (1)-(3). The basic underlying idea of
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the development of the recursive relationship between the kth and (k-1)th
operation is based on : 1) the maximization of the supply curve of the kth
operation under' the supply constraint (30) and demand constraints (31)-(32)
for the (k-1)th operation. 2) maximizing fuel transferring by minimizing
the absolute deviation between supply and demand of each operation. To
implement the idea we develop the supply and demand curves for the
successive operations recursively. To do so we identify the supply curves
which are shown to bé linearly piece-wised with two segments. The point of
discontinuity of the supply curve will be shown to be the one at which the
maximum fuel can be transferred in the previous operation.

The recursive formulas are forward developed. More specifically, the
supply-demand recursive formulas are developed for the first and second
operations (Lemma 2). Due to a general argument this recursive formula will
be held for the third and any successive operations (Lemma 3). The recursive
procedure is shown to lead an optimal solution for P2 in Lemma 4. However,
the recursive formulas which satisfy constraints (30)-(35) do not provide

the values of the decision wvariables Rk’ Uk’ k=1,...,n-1. Theorem 1

identifies the optimal solution in terms of these variables by employing a
backward recursive procedure. The optimal solution is derived by setting an
equality sign for (31). But the optimal solution is not necessarily unique.

To verify the feasibility of the solution an induction argument is again

repeated.
k
For notational purpose we denote Ré = 3 Rj’ k=1, ... n-1, the fuel
j=1
transfer point for the kth operation, and Ri , k=1,...,n-1, the point at

which the maximum amount of fuel can be transferred in the kth operation.

Lemma 2.
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The amount of fuel transferred in the first and second operation is

maximized at Ri and RE respectively where

Cm ¢ m
RY =Min (2 Ly
1 q 29, + qp
M) 1 2
and
Cm3 crl12 cm2+ quR{
R! = Min ( , , ) (36)
2 q q + g 2q +q '
My my M3 My My
Proof

For the first fuel operation, the supply and demand function can be

defined as

" C_. - 2q_ R! R! € C_/ 2q

my my 1 1 my my
Sl(Ri) =
L 0 Ri > Cm / 2qm
1

rq R! Ri =C_/ q

m, 1 1 m, m,
0 RF >C /g
\ 1 m, m,

Here S1 indicates how much fuel the vehicle m, can transfer to vehicle m, at
Ri, and D1 indicates the empty space available for accepting fuel by vehicle

m, at Ri. The supply S1 and demand D1 are graphically shown in Figure 3

(case 1).

Figure 3 here
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It 1is obvious that at any transfer point Ri =< Cm / q the amount of fuel
2 2

that can be transferred 1is Min (Sl(Ri)’ Dl(Ri))' If the demand curve D1

intersects with the supply. curve Sl’ the maximum amount of fuel can be

transferred at the equilibrium point Ri =C /(2q_+ q_ ). If the D, curve
my m - Cm, 1

does not intersect with the S1 curve, Sl(Ri) always greater than Dl(Ri)‘ The
maximum amount of fuel then can be transferred at the point where Dl(Ri) is

maximized, 1i.e. Ri = Cm /qm (See Figure 3 (case 2)). Based on these two
2 2

situations we have

Ri = min ( , ).
q 2q_+q
B mm

From the above analysis, we know that at any point R; =< Ri , vehicle

1

m2’s tank can always be filled wup, and at any point Ri > Ri either it

transfers less fuel than that at Ri - Ri , or it is not feasible.

The next step 1is to analyze the fuel supply and demand curves in the
second operation. The fuel supply in the second operation depends not only

on the fuel capacity and the fuel consumption rate of vehicle my and m,, but

2)
also on the first fuel transfer operation. However, there is a maximum
supply curve of the combination of my and m, , with which at any point of .

the second operation Ré the supply can be maximized by adjusting the first

operation corresponding to the second operation. Under this consideration,

the maximum supply curve of the second operation will no longer depend on a
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prespecified first operation but can be always realized by the selection of

the first operation.

For the second operation we have the following supply and demand

function:
i Cm2 ) qm2 ) Ry =Ry
S,(RY) = cm2 + qmzR']'_ - 2qm2R'2 RY < Rj < (cm2+ qmzR']'_) /2qmz
. 0 Ré > (Cm2+ qmzRi'_)/Zqm2
- qm3Ré Ré = Cm3/qm3
Dy(Ry) =
0 Ry > sz/qm3

Figure 4 represents the maximum supply curve 82 and the demand curve D

2
for the second operation. It 1is observed that 82 is a linear piecewise
function with two segments. To the left of the turning point Ri, Sl is

greater than D1 and thus the tank of the second vehicle m, can always be

filled up in the first operation. Therefore the maximum fuel that can be

supplied at any point Ré < Ri will be sz - Réqmz, with the tank of Vm2
filled up to C_ by the first operation at R! = R) minus R/q_ fuel reserved
m, 1 2 2 m,

for wvehicle m, to go back to the origin. At any point Ré > Ri, the maximum

fuel that can be supplied is C_ + q_ R! - 2q_ R/ where C is the fuel the
m, m, 1 m, 2 m,
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vehicle m, have from the origin, 9, R{ is the maximum fuel received from
2

vehicle my in the first operation at the point Ri = Ri and 2qm Ré is the

2

amount of fuel used for vehicle m, to come to R/ and reserved to go back to

2

the origin. The supply 82 will decrease when Ré increases. At the point

C + q R?
-
R2 Z(ml, m

2)

82 becomes =zero. Actually, this point is the solution of the P2 for n = 2,

with the first fuel transferred at Ri = Ri (see Lemma 1).

Trivially, D2 is a 1linear function which 1is determined by the

parameters of the third wvehicle. Following the same principle of
determining R}, we calculate R%, the point at which vehicle my can recelve
the maximum amount of fuel from vehicle m, . Actually, the calculation of RE

depends on the following three cases (see Figure 5):

The first case 1is where D2 does not intersect with 82, i.e. D2 is
C
_ o
always less than 52' Under this case RE - which is the largest
‘ q
T3

distance that vehicle my can travel.

The second case is where D2 intersects S2 at R!", which is on the left

21

m
side of Ri. In this case Ra = 2 < Ri. To meet the demand of

) Mq

vehicle m vehicle

39 m, should first fill up its tank by transferring fuel



from wvehicle m, at the same point Ri = RE. Since

supply more than that vehicle m, can accept.

18

RI

1<Rll

1 Vehicle m; can

The result is that vehicle my

ends its mission at Ri with surplus fuel wasted.

The

C_ + q_ RY
m, m, 1

case RE = > R

operation should take place at Ri = Ri
transferred from vehicle m, .
to

operations

two operations are zero.

Summarize above three cases we have

third case is where D2 intersects 82 to the right of RY.

In this

1 To meet the demand of vehicle mg, the first

in order to maximize the amount fuel

It results with all fuel transferred in both

the maximum and thus the slack variables of P2 for the first

Cm3 sz sz +qm2Ri
Ry = Min ( , , )
q q +q 2q + g
m, m, “mg m, m,
To prove the formula, we introduce three lines Dé, Sé and SE as the

linear extension of the demand curve D2

32 where

and two segments of the supply curve

D, =q R,, S4L =2C -q Ry ,and - S =C_ + q R - 2q_ RJ.
2 m. 2 m, m, 2 2 m, m, 1 m, 2
Cm3 sz C 2+ qm2 Rl
Denote Ra - . Rb = ) , and Rc = . Obviously,
9 9, * 9, 2q, +qp
3 2 3 2 3
Ra is the ending point of D2, Rb is the intersection point of Dé and Sé ,

and Rc is the intersection point of D/

2

and S& (See Figure 5).



19

We will prove that Rg = Min (Ra, Rb’ Rc), i.e. (36) hold.

1 If Ra < Rband Ra< Rc , D2 will not intersect with 82 so R2 ==_Ra as
the first case we have shown before.

2) If Rb < Raand Rb < Rc , D2 must intersect with 82 on the left side
of Ri , 1.e. Rb < Ri . Because Rb< Rc means

C Cm + qm2R1

RY ) (q_ + q_ )
2 1 my ~ mg
and thus

Q. C_ <q_R'(q +q_ )
m2 m2 m2 1 m2 my

and

So this is the above mentioned second case and R5 - Rb'

3) If Rc < Ra and Rc < Rb , D2 must intersect with 32 on the right

1 n 3 ’
side of Rl , 1.e. Rc > Rl' Because Rc < Rb means
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Cm2 + qm2 Ri Cm2
R = =< = Rb ,
c
2 dn + 9y ap + 9y
2 3 2 3
we have
(C +q_ RYDX(q +q )=C_ (2q q_ )
2 m 1 m2 m3 m2 m2 m3
and so

m.*

(@ +q )R' =G
m, “my” 71 2

Adding q, Ri on both sides of the above inequality we obtain
2 .

(2q + q )R{ < sz + qmzR" :

thus

So this is the above mentioned third case and RE = Rc .

Now, we have shown that R§ = Min (Ra’ Rb’ RC), i.e. (36) hold.

For more general case we have the following lemma:

Lemma 3.
The amount of fuel transferred in the kth operation is maximized at Rﬂ
where

Rp-1
R? = Min ( Tt , "k , L Y, k=1,..., n-1 (37)

q q +q 29+ q
Met+1 T Trel M Ml
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Proof.

In order to prove (37), we show that the aggregated supply curve Sk and

demand curve Dk can be represented by

- C -gq R R/ < R
mk k k
S, (R{) = ¢ C_ + "o 2q R/ " < R/s (C+q_ R .)/2q_ (38)
k Rk mk quRk-l mkRk Rk=l Rk m mkRk-l m
-0 ' > (C_ +q_ R" .)/2q
Rk mk mkRk-l mk
q. R/ Rl = C /4
Me+1K k Merl” Mepl
0 ' >C /4
i M+l Mr+1

From Lemma 2 we have shown that (37) and (38) hold for k = 2. We can show
that (38) holds for k = 3:

[ Cn, * Iy Ry < By
Sq(R§) = ¢ cm3 + quRE - 2qm3Ré Ry < Rj < (Cm3+qm3R§ )/2qm3
.0 R4 } (cm3+qm3R5 )/2qm3
qm4R§ Ré = Cma/qm4
Dy(R3) =
0 Ry >C /q,

4 T4

Since for any Ré < RE , the tank of vehicle my can always be filled up

at Ré - Ré because the supply 32 is greater than demand D Therefore

2-
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vehicle m, can supply fuel equal to the -capacity Cm less the amount

reserved for going back to the origin, i.e. C - q R4 . For R, = R}
my my 3 3

vehicle mq should get the maximum fuel at R, = R}

5 5 The fuel available for

transfer will be the total fuel received at the origin and the second

operation less the fuel used for the round trip up to Ré v lie. C + q RS
: 3 3

- 2qm3Ré . The supply S3 becomes zero at the point Ré = (Cm3+qm3R5 )/2qm3,

which® is the maximum operational range reached by the vehicle m,, i.e.

3 b

Z(ml,mz,m3). Because 83 and D3 have the same shape as S2 and D2, using the

same argument in Lemma 2 we can show (37) holds for k = 3, i.e.

c C, C, + dq R}
" . 4 3 3 3
R3 = Mln ( ) ’ )'
q q_ +q 2q_ + q
m3 ma_

Since all ka, q are given and Ri only depends on Ri=l’ the above

M

argument can be easily applied to show that (37) and (38) hold for

k=24,..., n-1.
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Lemma 3 provides a computation procedure for Ri by which the aggregated

supply curve of the (n-1)th operation is derived. To show that deriving
this curve by lemma 3 will lead into the optimization of P2 , the following
lemma is in order.

Lemma 4

P2 will be maximized if Rﬁ-l follows (37) and this will imply that
Max Z(m) = 1 (d_ +R" ) (39)
R

where dm = Cm / q, -
n n

Proof.

Following the argument employed in proving Lemma 2 and Lemma 3, it can

be shown that Sn—l is maximized under the recursive computation of (37).

Obviously Z(m) will be maximized if the last vehicle receives the maximum

amount of fuel 1in the (n-1)th operation. This will occur at R;-l and the

amount of fuel received will be q, Ry_4- In addition to the full capacity of
n

the fuel Ch received from the origin, the total amount of fuel that can be
h 4

consumed by the last vehicle is Cm +q R;_l. The maximum travel distance

of the wvehicle therefore is

C + q R
m m n-1 1 _
Max Z(m) = = (d, +R..
2q 2 n
m
n

D

which satisfies the constraint of going back to the origin.

Q.E.D.
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It 1is easily observed through (39) that to calculate the Max Z(m),

Lemma 4 does mnot wuse a recursive formula based on Ré , the kth transfer

point. Rather, it uses a forward recursive formula based on Ri, the point

at which the maximum fuel can be transferred in the kth operation. It should

be mentioned that Ri is not necessarily equal to Ry for k < n-1 in an

optimal solution. In Theorem 1 we derive the solution of Ri corresponding

to the Max Z(m). We employ a backward recursive formula which is shown to
generate a feasible solution for P2 by satisfying its constraints. More

specifically an induction argument 1is utilized to compute Ri and Uk as a
function of Rﬂ. Sufficient conditions are derived to guarantee the

optimality. The optimal solution however, is not necessarily unique.

Theorem 1

In order to guarantee that vehicle m reaches its maximum distance

Max Z(m) = 1 ( dm + R; 1) , the fuel transfer operation should be arranged
2 n N

as follows:

1) The kth operation takes place at Ré where
9 p— n
Rp-17 Ba-1 (40)
Rﬁ = Min (Rﬂ , Ri+1), k=n-2,...,1 (41)
2) The amount of fuel transferred in kth operation is Uk where

Ry k = n-1,...,1 ~ (42)
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To reach the maximum distance, vehicle m should receive the maximum

amount of fuel from vehicle m.o1 in the (n-1)th operation. Based on Lemma

3, the maximum amount of fuel will be transferred at the point Rﬁ_ =

R"
n
n

the (n-1)th operation, it requires from (30) that

Cm + Un-2 T 9y R n-1 ~ 2qm Rﬁ-l z 0,
n-1 n n-1

or equivalently,

+ 2q JR! -C
mn-l n-1 Mh-1

where Un-2 is the fuel received from the (n-2)th operation. Denote

W

oo = (a, +2q . ORI 4 - C_

m n-1

mn n-1 - n-1

1

and the amount of fuel transferred is U = q_ R’ . To guarantee
-1 n-1 m_ n-1

(43)

(44)

the minimum required fuel eransferred in the (n-2)th operation. We will show

that

W < Min (R Rn-l) 9,

n-2 n-2 n-l.

Notice that (40) and (37) imply that

C + q R"

m -2
R' . <R" . < Mh-1 n-1 1
n-1 - "n-1~ 5 !
q + q
m m
n-1 n
Cm
R’ < R" < n-1
n-1~ "n-1~ !
a, + q
n-1 n
C
™
Rn-l =< erl-l =<
Iy
n

From (44), (46) we have

(45)

(46)

(47)

(48)



moq mo_q n-2
W_ S(q +2q ) - C = q R"
n-2 ™ -1 q + 2q -1 Mh-1 n-2
m m
n n-1
From (47) and (44) we have
Cm = (qm + n ) Rﬁ-l
n-1 n n-1
and
W, =<(q_ + 2q JR' . - (q  +gq ) R 1= ¢ Ri.1°
n-2 m mo_q n-1 m mo_q n-1 m._1 n-1
Thus, Wn_2 < Min (R;_z, Rﬁ-l) qmn-l.

We can arrange the (n-2)th operation at the point Rﬁ-2 = Min (R;_z,

R! ,) to transfer U =q R! of fuel. Under this arrangement U

n-1 n-2 moq n-2 n
quz . Thus, (30) is satisfied . It is easy to verify that (31)-(34) all
hold.

In general, for any k = 1, to guarantee the kth operation at.Rt

Min(Rﬂ, R£+l) to transfer fuel UkA= qu+1Rﬁ ,

that in the (k+l)th operation, vehicle m, receives Uk-l , where

U =W .= (q + 2q_ J)R! - GC_ ,
k-1 k-1 M1 m k m
Since

c c C +q R"
M+l My me o omy k-l

Rp = Ry = Min ( , , ),
q q  +q 2q
Ter1 e Ml

. +q
Kk Me+1

by the same argument we have Wep = Min (Rﬂ-l ) Rl’c)qm .

the constraint (30) requires

26



The (k-1)th fuel transfer then can take place at Rﬁ-l = Min (Rﬂ-l’ Ré)

and Uk-l = quRﬁ-l of fuel is transferred. Under this arrangement, (30)-(34)

are all satisfied by the same argument provided above.
] 2 ' ' [ = 1 = [ ! =
Finally, since Rl =< R2 < ""S.Rn~l and R1 Rl’ Rk Rk Rk-l’ k

2,....n-1, we have R, > 0, k =1,.

Kk .., n, i.e. the constraint (35) is

satisfied.

Corollary 1.

The solution given by backward recursive formulas (40)-(42) is feasible

for P2.

Proof.

The proof is given by following the steps of Theorem 1 to verify that

(30)-(35) are all satisfied with the solution provided by (40)-(42).

Q.E.D.

Finally, it 1is clear from the recursive formula of calculating Rﬁ and
Ré that P2 can be solved by 0(n) operations. The forward recursive
calculation of Ri by Lemma 3 1is a linear function of n. The backward

recursive calculation of Ré and Uk by Theorem 1 is also a linear function of

n.

5. Apairwise interchange analysis
After solving the P2 for any given refueling chain, the next step is to

find what 1is the optimal refueling chain. One way to approach the
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optimality 1is to improve the objective function by pairwise interchange the
vehicles in a chain.

Lemma 6 below provides a rule of pairwise interchange adjacent vehicles
for improving the performance. The idea behind the rule is based on the

recursive formula of Rﬂ(m), where m 1is introduced to indicate the

corresponding refueling chain m.
Lemma 6

Given two refueling chains m' = {ml,.

m" = {ml""mk~1’mk+l’mk’mk+1’mk+2""mn} where 1 < k < n-1 is fixed, the
following rule holds:

If Rﬂ+l (m') = Rﬂ+l(m") then Z(m'’) = Z(m").

Proof.
The proof can be derived by using the recursive relations of (37) and

the formula of Z(m) given by (39). Since there exists a k for which
Rﬂ+1(m') = Rﬂ+l(mf) then this relation holds for k+1,...,n-1 by (37) and
thus by (39) Z(m') = Z(m").
Q.E.D.
Starting from an initial chain, we can improve the objective function
Z(m) by repeatedly applying the pairwise interchange rule to the chain,
However this pairwise interchange rule does not guarantee a global optimal

solution for Pl. 1In table 3 and 4 we provide an example which supports our

conclusion.

28
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In Table 4 a 1local optimal solution was generated by a procedure
which employs the idea of Lemma 6. It can be shown that any further
improvement of this solution 1is impossible with respect to the pairwise
interchange rule. Some numerical experience that are not reported here
demonstrated the fact that the initial solution may have an impact on the
number of 1iterations required to solve the problem heuristically by the
pairwise interchange rule or in an optimal way by employing an enumerative
search procedure based on the principle of the optimality of dynamic
programming.

Computational experience demonstrated that satisfactory results are
provided for sample problems by using the following heuristic approach:
First, an 1initial chain is selected by arranging vehicles according to the

ascending order of d_, i.e select a chain m that satisfies dm < dm <
1 2

=<

y o0 ey

m

d . Then, the interchange rule is repeatedly applied to improve the result
n ,

as long as it is possible. Finally, enumerative search is used to find the
optimal solution, which is used to measure the effectiveness of the initial

rule and interchange rule.

----------------
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A simulation run of 100 observations for n = 6 is reported in Table 5.

The d; and the q; were sampled from statistically independent uniform
distribution with di uniformly distributed in (1, 100], 9 uniformly
distributed in [1 ,100], and Ci = diqi' The results indicates that 29% of

the initial solutions are optimal and 72% of the interchange solutions are
optimal. When the performance is measured by the ratio of the Z(m) of the
heuristic solution to the Z(m) of the optimal solution, the average ratio
for the initial solution is 0.949 and the average ratio for the interchange

solutions is 0.978.

In fact, the 1initial rule of ordering vehicles by dm does generate

the optimal solution for the three types of fleet configuration (1)-(3)
which are studied by Mehrez et al. The optimal solution can be verified via
an alternative algebraic proof by using Lemma 3, Lemma 4, and Lemma 6. The

following theorem represents such an approach which is based on analyzing
the supply and demand curves.

Theorem 2.
If the vehicles in a fleet have the same fuel consumption rate q:
ql=q2=7"'1=qn=’q! (49)

or have the same fuel capacity C:

Ci=Cy= ,... =C =G, : (50)
then the refueling chain m = {ml, Moyeens mn) is optimal if
d sd=, < d (51)
1 2 n

and the maximum operational range is



(52)

Proof.
Note first that the fleet configuration of identical vehicles is the
special case of the above mentioned cases and thus it is not considered.

Assume that the vehicles in the fleet have the same fuel consumption

rate q. The proof consists two steps.

The first step 1is to prove that a chain m = (ml,mz,...,mn) which

satisfies (51) 1is optimal. It can be done by showing that for any two

refueling chains m’ = {ml""mk-l mk’mk+l’mk+2""mn} and m" =
{my,..,m_.,m ,m,_,m ,..,m_}, if d >d then Z(m’) = Z(m"). To show
1 k-1""k+1" k' k+2 n o1 m

that Z(m’') = Z(m"), it is sufficient to verify by Lemma 6 that
Riesr (') 2 REy (m"). 52

From (37) and (49), Rﬂ is reduced into

Ry = Min ( dmk+1’ dmk/2, (dmk+ Ry 1273

To observe (53) we write Rk+1(m’) and Rk+l(m") as follows:

R£+l(m’) = Min ( dmk+2, dmk+l/2, (dmk+l+ Rﬂ(m') Y/3 ) (54)

Rﬁ+1(m") = Min ( dmk+2’ dmk/2 , (dmk + Rﬂ(m") y/3 ) (55)
Similarly,

RE (') = Min (dy o dp /2, (W  +RE () )/3) (56

Ri (m") = Min ( dmk , dmk+l/2, (dmk+1+ Rﬂ_l(m") Y/3 ) (57).

31
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Substituting Rﬂ(m’) and Ri(m") in (54) and (55) with (56) and (57)

respectively, we have

Rpyp(m') = Min ( dmk+2’ dmk+l/2, dekii, (2dmk+1+ dmk)/6 ,
(3dm;<+l+ g * Ry ()/9) (58)
and
Rﬂ+l(m“) = Min ( dmk+2, dmk /2, 2dmk/3, (dek + dmkl{G ,
(3c1mk + d“‘k+1+ Ry_1(m"))/9 ) (59)
Since Rﬂ_l(m') = Rﬂ_l(m") and d i > dmk , it is easy to check that

Rﬁ+l(m') = Rﬂ+l(m") by comparing each term of Rﬁ+l(m') with 1its

correspondent. Thus, the pairwise interchange rule can be applied as
required for any unordered pair of vehicles to generate an optimal refueling

chain with a non-decreasing order of d_ <d_ =< ... =<4d_.
™ Ty

The second step 1is to prove (52). First we show by an induction

argument that for the optimal refueling chain, (37) 1s reduced into:

Ra = 0, R]'; = (dmk+ Ri‘(_l)/f] . k=1, ... n-1 (60)

IA

From Lemma 2, Ri = Min ( d dm /3). Since dm > dm we have Ri = dm/3
2 1 2 1 1
dm{Z . In general, for a given k, assume that Rp = (dmk+ Rﬁ-l)/3 =d_/2.

Since d /2 = d , SO

<= d =< d , we have (d_ + R" )/3 =<d
M Ml Mk+2 mk+1Rk Me+l Me+2

Rﬂ+1= Min ( dm , dm /2, (dmkilRi; )/3 ) = (dmkilRﬁ )/3 = dm

/2, and
k+2 k+1 k+1

thus (60) holds for all k.

Introducing (60) into (39) recursively results
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dm + R;-2 n dm

Z(m)-f(dm+R;1_l)=E(dm+ -l )= ...= >z _K

2 n 2 n 3 2 k-1

We note that above steps can be applied for the case of identical fuel
capacity and different fuel consumption rates. We omit the details of the

proof.

Q.E.D.

6. Elimination of inferior chains

In this section a rule is studied to identify inferior chains which
locate a technologically more advanced vehicle (with larger capacity and
lower fuel consumption rate) before a technologically less advanced vehicle
(with smaller capacity and higher fuel consumption rate) for the cases of n
= 2 and n = 3 . Although this result is quite intuitive, we were unable to
show that it holds for the general case. For the special cases we prefer to
investigate the problem for the following reasons: 1) logical arguments
which are quite useful in analyzing scheduling decisions are not applicable
to show the results. Instead a tedious procedure which depends on analyzing
the supply demand equations and induction arguments is required to prove
the result. 2) Quite often, such as in the group decision making process,
consistency may not hold and thus a result which holds for two elements of a
set may not hold for the general case. For our problem we will show that
the order rule mentioned previously is preserved under the case of n = 3.
The suggested analysis includes the following steps:

1) The case of n = 2 is investigated and it is shown from lemma 1 that

the order rule hold for this case.



2) The pairwise interchange rule is employed to show that this rule

hold for any n = 2 with a technologically more advanced vehicle adjacent to

a less advanced vehicle.

3) The order rule hold for n = 3 when a technologically more advanced

vehicle is not adjacent to a less advanced vehicle.

Proposition 1.

For n = 2, assume that C: = C and q =< gq then
M i )

Z(mz, ml) > Z(ml, mz).
Proof.

The result is implied directly by lemma 1.

Proposition 2.

Denote  m’ = (M), ..M 90 Mo Bypgs Mieypo-oTgly B = {mg,.oomy ),

, ~,5..,M_) and assume that C < C and q = q then
Mer1” ™ Mer2 n m, me 1 m, M1

Z(m') = Z(m").

Proof.

The proof is implied directly by lemma 6 and verifing that Rﬁ+l(m') >
Rﬂ+l(m") holds.

Proposition 3.

For n = 3, assume that C1 > 02 and qq < 9, then
Z(2, 3, 1) =22 (1, 3, 2).
Proof.

Combining Lemma 3 and Lemma 4 results in

Z(1, 3, 2)
C
- 1 Min¢ 24 RY)
2 q

2

34



c c c C,+q,R"
= 1 oMin (% +min (2, 3, 3731y,
2 49 49 434,  245*q,
2C c c
- LIowin (%, 22,
2 a) A 93+
c c q c c
( 2 + 3 + 3 Min (__3 , L
4y  2q3+q, 2q4+q, 93  2q+d,4
2C C c c 2¢
- Lomin (% (Fe_2 0y, P 3,
2 9, 9, d3tq, 1,  24q3t+q,
c c qC
( 24 3 3°1 ).
4y  243+q,  (2q4+q,) (297+q4)
Similarly,
Z(2, 3,
2C c c c 2C
= LTowmt, ey e 3,
2 q; qy q3*+q; qy ZQ3+ql
c c qC
¢ 1, 3 372 ).
47 293%q;  (2945%q;) (29,+q4)

We compare

assumption C1 = C2 and q; < q, we have

2C1 2C

e 2

99 92

C C C C
.5 L9, 5
q Q3+q1 Q9 q3+q2
C1 203 C2 203

each item of (61) with its equivalent in (62).

)))

(61)

(62)

Clearly, by the



C C

3 9
2dy*dy  243%9,

Thus it remains to show that

c . q4C C q.C
1 + 372 > 2 + 371 | (63)
ql (ZQ3+ql)(2q2+Q3)‘ Q2 (2q3+q2)(2q1+Q3)
q
Since 1 - 3 = 0 and Cl = C2 .
q 1 (ZQ3+ql)(2q2+q3)
C q,C C q,C
L, » 32 ) - ( 24 1 )
9y (243+q;) (2q9,+q,) q,  (2q5+q9,) (2q4+q4)
q q
- Cl ( 1 3 y - C2 ( 1 3 )
q;  (2453+4,) (2q9;+q3) 49 (2q45+q7) (29,+454)
' q q
20, (1 - 1)+« > - > ))
99 9 (2q4+q,)(2q,+q5)  (2q4+q,) (29;+4q4)
it is sufficient to show that
1 1 q- q
-+ 3 : 3

2
(2q4+q7) (29,+44) (244%9,) (2q1+q3) - 39;9,94
= (gy-qp) (

q1 95 (243%4;) (29,+q4) (295+9,) (2q;+q5)

2 2
. (4-q0) 1GQIQ2Q3°3qquQ3 >0
= 2 . = *
1 195 (243+47) (29,%q4) (2q3+9,) (2q;+q5)

Q.E.D.
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Corollary 2.

For n=3, a refueling chain in which a technologically more advanced
vehicle is located before any relatively less advanced vehicle is not
optimal.

Proof.
Since there are six possible refueling chains for n = 3 then it is

easily checked by proposition 2 and proposition 3 that the Corollary holds.

7. Discussion

This paper accomplished the analysis of maximizing the operational
range given a fixed refueling chain. As it often happens in the military
scheduling problem, the identification of an optimal ordering rule is
tedious even 1in the case of n = 2. The identification of this rule can be
utilized, for example, to solve a problem where 2n vehicles are organized
into n teams, each team containing two vehicles and the objective is to

maximize the sum of the operational range of all teams. Given this problem,

it can be easily shown that by O(n2) of calculations, the maximum
operational range of all possible teams can be obtained. Then, the problem
can be converted into a linear assignment problem. Actually, the recursive

formulation of Rﬂ suggests that more complicated rules may be constructed

for n sufficiently small. Also, the formulation of a problem which follows
according to the 1lines of the previous problem with each team of three
vehicles may result in solving a transportation problem.

Future research may be conducted to investigate the applicability of
the recursive procedure derived here for the following problems:

1) - An objective function which takes into account a linear weighted

sum of both the operational range and the size of the vehicles traveled per
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unit of the time. Such an objective function may capture situations in

which the fleet travels under threat. The size of the vehicles is an-
important factor by which threat 1is reduced. The interesting research

question deals with the amount of computations required to solve this

problem for a given refueling chain. This problem can be further extended

to taking into account the relative importance of the vehicles, while

considering their positions in the chain.

2) Another aspect of the problem is to develop supply-demand curves
under conditions of uncertainty or under alternative refueling strategies.
Such type of extensions were considered by Mehrez et al.

3) An alternative line of research may investigate the value of supply
and demand curves to study different scheduling problems. In such problems
it may be assumed that the round trip constraint is relaxed. But an
alternative objective function may be formulated to analyze strategies which
capture the 1idea of transferring resources from one machine to another.
These resources may be fuel, ammunition or any other input. Production rate
and capacity of machines may be .equivalent to fuel consumption rate and fuel
capacity in our problem. To maximize the length of the production period
might be equivalent to maximizing the operational range in our problem. The
basic question under this settings is concerned with generating recursive
procedures for the LP scheduling problem with the order of calculation which
is less than the order of the simplex or other LP algorithms.

4) From the view of scheduling theory this paper demonstrates some
ideas that might be applicable for other scheduling problems. The basic
ideas employ the analysis of refueling supply and demand curves with the
principle of pairwise interchange to eliminate inferior solutions from

further consideration. Although the reductions are quite expected, we have



not been. able to provide the result by logical arguments for the general

case.

Rather, we had to utilize a tedious algebraic approach, even for n =

3. Future research may extend the result and explore optimal refueling

rules for n = 3 or improve heuristics to solve the problem. Clearly,
methods such as AHP (Saaty [1980]) that incorporate pairwise analysis of n =
2 within the framework of the general case are possible approaches to

consider.
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Figure 1

Fuel Supply and Demand for
the Optimal Solution (No. 24)
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Figure 3

The Fuel Supply and Demand Curve
for the First Operation

Case 1: Dl intersects with S1

+ - , Distance
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R{: the point where maximum fuel is transferred..



Figure 4

The Supply and Demand Curve
for the Second Operation
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SZ: The fuel supply curve in the second operation
D,: The fuel demand curve in the second operation
Ri: The maximum fuel transfer point in the first operation
Ri: The maximum fuel transfer point in the second operation

Z(ml,mz): The maximum operation range reached by (ml,mz) where Sz= 0



Figure 5

The Maximum Fuel Transfer Point
for the Second Operation
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Case 2: D2 intersects with 52 on the left side of Ri
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Table 1

A Gounter Example Data for n = 4

Vehicle i 1 2 3 4
Fuel Capacity C; 4914 2603 4884 33831
Fuel Consum. Rate q 27 19 34 189

Maximum Distance d, 182 137 148 179




Table 2

Solutions for n=4

Solution No. Vehicle Chain Objective function Non-Zero slack
(ml,m2,m3,m4) value Z(m) variables
1 (3,1,2,4) 95.76 Yes
2 (1,3,2,4) 95.76 Yes
3 (1,4,2,3) 99.03 Yes
4 (4,1,2,3) 99.03 Yes
5 (1,2,3,4) 100.50 Yes
6 (2,1,3,4) 100.50 Yes
7 (3,2,1,4) 100.88 Yes
8 (2,3,1,4) 100.88 Yes
9 (4,2,1,3) 111.02 Yes
10 (4,1,3,2) 113.13 Yes
11 (2,4,1,3) 113.13 Yes
12 (1,4,3,2) 115.01 No
13 (1,3,4,2) 116.35 Yes
14 (3,1,4,2) 116.52 Yes
15 (4,3,1,2) 117.21 Yes
16 (1,2,4,3) 118.03 Yes
17 (3,4,1,2) 119.26 No
18 (3,4,2,1) 119.29 Yes
19 (4,3,2,1) 119.29 Yes
20 (2,1,4,3) 120.39 Yes
21 . (4,2,3,1) 126.14 Yes
22 (2,4,3,1) 131.70 Yes
23 (3,2,4,1) 135.69 Yes
24 (2,3,4,1) 137.90 Yes




Table 3

The Data of An Example of Non-optimality

for n = 6

i 1 2 3 4 5 6
C; 9114 3572 - 18032 7216 12078 7488
q. 49 19 92 41 99 52
i
di/2 93 94 98 88 61 72
i the vehicle number

Ci fuel capacity of vehicle i

q; fuel consumption rate of vehicle i

di/2 the travel range of single vehicle i, which equals to Ci/2qi



Table 4

Solutions for n = 6

Vehicle Chain

Solution Type {ml y My, My, M, , Mg, m6) Z(m)
*
Initial solution {s, 6, 4, 1, 2, 3) 113.59
o
Local optimal solution {s, 6, 2, 4, 3, 1 141.71
Jotox
Grobal optimal solution {6 , 4, 5, 3, 1, 2) 153.76
*

The initial solution is based on the increasing order of dm

k
The 1local optimal solution 1is obtained by all possible pairwise
interchange improvement from the initial solution.

Ex

The global optimal solution is based on enumerating all 6! possible
chains.



Table 5

Illustration of the Performance
of Different Solution Methods

*
Solution Percentage Performance**
Method to be optimal by average
Ordered by di 29% 94.86%
Pairwise interchange method 72% 97.79%
Enumerate method 100% 100.00%

Percentage of number of cases the method generates the optimal solution.

Performance measured by the average ratio of the operational range of
the solution vs the operational range of the optimal solution.
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