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THE APPLICATION OF MONOTONICITY CONSTRAINTS 

TO THE BACK PROPAGATION NEURAL NETWORK 

TRAINING ALGORITHM 

Abstract 

When statistical data are used in supervised training of a neural 

network employing the back propagation least mean square algorithm, 

the behavior of the classification boundary during training is often 

unpredictable. This research suggests the application of monotonicity 

constraints to the back propagation learning algorithm. When the 

training sample set is pre-processed by a linear classification 

function, this can improve neural network performance and efficiency 

in classification applications where the feature vector is related 

monotonically to the pattern vector. This technique can be applied to 

any classification problem which possesses monotonicity properties, 

such as managerial pattern recognition problems and others. 
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THE APPLICATION OF MONOTONICITY CONSTRAINTS 

TO THE BACK PROPAGATION NEURAL NETWORK 

TRAINING ALGORITHM 

1. Introduction 

A pattern recognition machine or classification decision function 

may ·be divided into two parts [l] : a feature extractor and a class 

selector. The feature extractor is a transformation Y=�(X) which 

transforms a pattern vector X (x1,x2 ... xm) describing an object into 

a feature vector Y (y1, y2 . . . yn). Based on Y, the class selector then 

selects a class c1ec , where C- {c
1

, c2 ... ck} is a set of goal classes 

to which X may belong. Techniques used for managerial pattern 

recognition or classification can be classified according to the 

amount of knowledge available to generate the structure of the 

classification model [2] . Starting from the "glass box" end and 

working towards the "black box" end of the spectrum, these techniques 

include frame-based or rule-based expert systems [3] , hierarchical 

classification [4] , Bayes rule [5] , discriminant analysis [6] , and 

neural networks [7] . However, classification techniques other than 

the neural network technique are not applicable to many pattern 

recognition problems which are "black box problems" due to a lack of 

knowledge about distribution and classificat.ion data structures and, 

most important, potentially complex classification region boundaries. 

In neural network classification, a layered network [7] is 

commonly used [8] . One of the most popular supervised learnin[ 

algorithms is the back-propagation least mean square error lear11 ing 
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algorithm (BPI.MS) (9] which integrates two fundamental learning 

algorithms: the least mean square error algorithm (10] and the back­

propagation algorithm [7] . 

A neural network model almost always guarantees good separation 

in training data sets (9] , but has mixed results for classification 

accuracy of test data sets (11] (12] . It is commonly accepted that the 

behavior of the neural network training process depends heavily upon 

the training set itself [13] . For a given training sample the 

classification boundary generated by a neural network is relatively 

unpredictable, especially in the case of small sample size. This 

behavior is particularly critical when we are classifying statistical 

data. In this case, general learning which is only based on training 

sample data is usually not satisfactory since the neural network 

generates relatively arbitrary classification boundaries in solving 

these problems. Methods must therefore be developed that regulate 

classification boundary generation behavior, based on generic 

characteristics of certain classes of pattern recognition problems. 

Neural network researchers are painfully aware of 

unpredictability in statistical data classification, and attempts have 

been made to improve available algorithms. One approach deals with 

the learning vector quantization model (14] , based on the nearest­

neighbor method. In this method the number of processing units in the 

input domain is predetermined. Each unit has a predetermined d­

element reference vector, and each unit is associated with one of the 

classes of the input samples. The learning process is used to update 

the unit. Another model dealing with sta�istical classification data 

is the probabilistic neural network (15, 16). The probabilistic 
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neural network is actually a parallel processing device for 

statistical functions. The hidden nodes (pattern units in the 

probabilistic neural network model) assume a form of kernel function 

with a pre-defined smoothing parameter. The learning process sets the 

weights vector directly and connects the neural network nodes 

properly. Both of the above models apply statistical concepts 

directly to neural networks. As discussed above, the major limitation 

of these two methods is that there are strong assumptions necessary 

about certain parameters, and the selection of those parameters 

influences the results for a particular problem. Therefore, the 

validation of these models is basically empirical, based upon 

benchmarking studies. 

This paper reports on research which tries to exploit fully the 

adaptive nature of neural networks, and utilizes a type of generic 

problem domain knowledge, (i.e. monotonicity), to improve neural 

network learning ability in generating cl�ssification boundaries. In 

the models developed in the present research there are no assumptions 

about the statistical properties of the sample data set. Instead, 

more general knowledge about classification is consolidated in the 

neural network through the learning process. The argument is that the 

information (or prior knowledge) required in the present neural 

network model plays a rational role but is less restrictive than that 

required for other classification techniques. 

In this research, a simple two layer, single output neural 

network with a sigmoid activation function and the BPLMS learning 

algorithm (see Figure 1), is investigated. This can be generalized to 

any two layer neural network with more than one output node, whi<'h is 
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a composite of neural networks of this type. Furthermore, arbitrary 

decision regions can be generated by neural networks with only one 

hidden layer [17] [18] . 

*** Insert F�gure 1 about here *** 

2. Classification Boundary and Monotonicity Constraint 

2.1. Classification Boundary 

The neural network shown in Figure 1 is a typical two class 

classifier. Usually, the values of the x. 's are normalized to [O, l] i 

for computational convenience. The output value y of every sample 

point is also in [O, l] . Hence, the X-y space is a functional cube. 

As an example, if X is two-dimensional, the functional cube can be 

depicted in three dimensions (see Figure 2). At step t the neural 

*** Insert Figure 2 about here *** 

network corresponds to the y-surface y-� (X). Suppose that the cut-off 

y score for separating the two classes is 0. 5. The boundary at step t 

is then the intersection line of the y-surface and the plane y=0. 5. 

For convenience, the following notation is used in this paper. 

h : the number of hidden nodes; 

U. weight vector of the inputs into the ith hidden node, 
i 

where w. (r=O . . .  m) is the weight at the connection from ir 
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the rth input node to the ith hidden node; 

v. weight at the connection from the ith hidden node to the l. 

(single) output node; 

With this notation, the function y=�(X) represented by the 

neural network with a sigmoid activation function can be expressed as: 

h 
y - ( 1 + exp [ -(v0 + � vi ( 1 + exp ( -U. X'/T))

-1
)/T]}-1

. 
i=l l. 

To simplify this discussion, temperature T will be set to 1, then 

h 
y = ( 1 + exp [ -(v0 + � vi ( 1 + exp ( -U.X'))

-l
)]}-1

. 
i-1 l. 

Problems of neural network unpredictability in classification 

originate from at least two sources: 

(1) Given a certain training data set, the classification results 

generated by the individual neural network may differ unpredictably in 

many ways. Classification using the standard neural network with the 

BPI.MS learning algorithm is based on the assumption that each 

input/output pair of the training sample data truly and accurately 

reflects the relationship between the pattern vector and the 

corresponding class. This condition is open to question in many 

practical applications. First, most real world sample data may 

contain measurement errors in their pattern vector values; namely, 

what we observe from a sample point is Y=�(X) rather than Y=�(X), 

where X is the measured X. 
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(2) According to artificial intelligence theory [19), the 

dimensionality of a pattern vector is never complete for an object in 

the real world. This argument is expecially true for managerial 

problems since a formal description of the pattern vector basically 

provides only partial information about a person, a company, or a 

business event. From this standpoint, what we can observe from a 

sample point is Y=�(X) rather than Y=�(X), where Y is the real outcome 

of an event, with some causal factors (unobserved or "latent" factors) 

not included in X, even if X is accurately measured. Under these 

circumstances it is no surprise that, in some cases, two training 

sample points with the same (accurately measured) X have totally 

opposite classifications. Obviously, these kinds of facts pose 

difficulties during the training process. Therefore, the practical 

application of neural networks to pattern recognition with statistical 

data should be more concerned with appropriate treatment of 

statistical fluctuations than with simply pursuing 100% correct 

classification of the training sample set. 

2.2. Monotonicity Constraints 

This research was initially directed to the solution of 

managerial pattern recognition problems, which usually involve two 

classes. There is a large variety of managerial classification 

problems, e. g. prediction of corporate bankruptcy [20), credit 

extension decisions [21] [22] [23], and assessment of strategic 

planning [24]. A wide range of managerial decision problems involving 

pattern classification can be considered from the point of view of 
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utility or preference analysis (25] . For instance, determining the 

classification of observations into two classes is equivalent to 

deciding "which is preferred". One characteristic of a utility 

function is that the assumption of monotonicity is usually valid [14] . 

This can be defined as 

The above expresses a monotonically increasing function. For our 

purposes, monotonic decrease is conceptually the same as monotonic 

increase, but with the inequality on the left hand side reversed. In 

terms of a two class classification problem if, other things being 

equal, the larger (or the smaller) value a variable x. has, the larger 
J 

the classification score y becomes, then y is monotonic in x. 
J 

a managerial classification problem, prior knowledge about 

monotonicity is usually available. For example, in the 

Given 

creditworthiness classification case, income and assets are monotonic 

in the creditworthiness score; namely, other things being equal, the 

more the better. 

The monotonicity property is not limited to managerial problems. 

For example, in an oil spill identification problem [26] , during 

chemical testing of a spill sample, a spectrum is run on the sample, 

and the distance between its particular spectral line and that of the 

suspect sample is calculated as a pattern variable of the sample. 

Typically, this distance increases monotonically as the suspect and 

spill spectra become dissimilar. 

If a monotonicity constraint is imposed on neural network 

learning, then y will vary monotonically with the corresponding 
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pattern variable. This will in turn result in an improvement in the 

predictability of boundary generation; that is, the shape of the 

boundary will always be consistent with the monotonicity property. 

However, given a training sample of statistical data, completely 

separating the training set into two sets may require a very complex 

y-surface to generate the boundary. This may violate monotonicity and 

not necessarily meet the objective of having good prediction 

capabilities, since such a boundary would be strongly affected by 

statistical fluctuations. In order to reduce the impact of such 

statistical fluctuations, a filter is needed to pre-process the 

statistical data. A linear classification function is a good choice, 

based on two related considerations: First, a linear classification 

function generates a good approximation of a "true" classification in 

dealing with statistical data (27]. 

m 
classification function y-j�O bjxj 

Secondly, the linear 

is monotonic in x. for all j, J 
since 8y/8xj=constant for all j. In the case of a pattern recognition 

problem which is monotonic, a linear classification function is 

superior to other distribution estimation techniques which may violate 

monotonicity and result in decision making conflicts. 

2. 3. A Proposed Heuristic for Improving The BPLMS Neural Network 

Training Algorithm 

Assume that the BPLMS neural network training algorithm is 

subjected to a monotonicity constraint, and is trained with a sample 

that was pre-processed with classification scores obtained from a 

linear classification function. The classification generated boundary 
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would then be close to linear, after training were completed. 

However, our goal is not to simply map the linear classifier's result 

to a neural network result, but to improve on it. If we lack knowledge 

about the underlying distribution functions, the criterion which can 

be used to evaluate classification performance is a low 

misclassification rate for the training sample. 

In practice, if the linear boundary has a large misclassification 

rate, and a cluster of misclassified points is observed, a heuristic 

can be used to modify the training sample set. This includes 

identification and verification of clusters, and making trade-offs 

between the potential gain from corrected misclassifications and the 

potential risk of introducing new misclassifications due to the 

modifications. In this case, vector analysis (28) is helpful, 

especially in the case of high dimensionality pattern vectors. A 

suggested vector analysis approach of finding the clusters is as 

follows. 

(1) Pre-define a small number e (e. g. 0.05). If a misclassified 

point s has lrs - o.s1>e, where rs is the linear classification 

function value of s, then it is ignored in further training since it 

is considered to be an "outlier" in the sense that it is a random 

observation well beyond the likely region of the true boundary. 

(2) Define set (S . ) mis c r 
(r=l, 2) such that se (S . ) ffil.S C r 

if s is a 

misclassified point from class c and lr -0.Si<e . In the example of 
r s 

Figure 3, (Smis)c ={A, B, C}. 
1 
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axis 

(3) Let (w. ) be the angle between the vector direction of s and 
J s 

xj (j-1 . . .  m-1), and then 

cos (w. ) = (x.) I I IX 11 • J s J s s 
For each se (S . ) (r-1,2), there is an mis c 

image (w.) on each w. (j-1 . . .  m-1) axis. J s J 

r 

(4) Screen the w. axes from 0 to �12. Those misclassified 
J 

points which belong to the same class and are contiguous will comprise 

clusters (Sg. ) , where g is the cluster number. In the example of mis er 

Figure 3, where m=2, (A, B, C}, (F}, and (D, E} are three such 

clusters. 

The trade-off between the potential gain from the corrected 

misclassifications and the potential risk of introducing new 

misclassifications can be made by vector analysis, as follows. 

(1) Define set (Sg ) cor c r 
such that se (Sg ) if s is in class cor c r 

c , which is correctly classified by the linear classification r 

function, lrs - 0.S l<e , and (wj)s falls into the range 

min (w. ) , max (w. ) ] , where 
(Sg ) J (Sg ) J 

mis c mis c -r -r 

min (w. ) 
(sg ) J 

mis c 
-r 

and max (w.) 
(Sg ) J 

mis c -r 

are the 

extreme values of the w.'s of the misclassified points in the cluster 
J 

and where c is the class of points not included in c 
-r r 

In the example of Figure 3, (S�0r)c -(G}. 
2 
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(2) If the total number of points in (Smis)c is significantly 
-r 

greater than the total number of points in (Scor)c 
(r-1, 2), this 

r 

means that the modification of the misclassified points in (Smis)c 
r 

would introduce fewer new misclassifications if learning is completed 

on the modified training sample set. 

(3) 

training. 

Ignore se (S ) (r=l,2) ( {G) in the example) in further cor c r 

Train the neural network with the new training data set. 

If training is now completed, the misclassification rate will be no 

greater than before. 

Based on a properly modified training sample set, the neural 

network will readily generate a boundary with regulated shape. This 

kind of adaptive problem is difficult if not impossible to solve by 

other classification methods. 

*** Insert Figure 3 about here *** 

3. Monotonic Function Model 

Two issues related to the problems of standard neural network 

learning have been discussed thus far. First, the standard BPLMS 

learning algorithm makes a neural network's boundary behavior 

unpredictable. In order to ensure a classification result which is 

more consistent with true boundaries, it has been suggested that 

monotonicity should be imposed during the learning process. Second, 

if monotonicity is imposed during learning, the original training 

sample set may not be suitable, because the training is often in 
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conflict with monotonicity when classifying statistical data. Hence, 

pre-processing of the training sample based on a linear classification 

boundary is suggested. This section will summarize a learning model, 

called the Monotonic Function Model, for training neural networks 

using a modified BPI.MS algorithm in classifying statistical data under 

monotonicity conditions. 

3. 1. Monotonic Condition for Neural Networks 

If y=� (X) is monotonic in xj , then ay/axj�O. Using the 

notation in Figure 1, and a sigmoid activation function, this 

condition is generalized as follows. 

h 
y (l-y) . 2:1 1.= 

h 
y (l-y) . 2:1 1.-

Thus, 

a -1 [ v. ( 1 +exp ( - U. X' ) ) ] 1. 1. I a x. 
J 

w .. v. exp(-UiX') [l+exp (-UiX')] 1.J 1. 
-2 

h 
8y/8x

J
. �O <�> .2:1 w .. v. exp (-U.X') [l+exp (-U.X')J-2 � 0 1.= 1.J 1. 1. 1. 

provided y is monotonic in x. J 

for all j, 

The following algorithm meets these general necessary and 

sufficient conditions. A derivation of this algorithm is given in the 

Appendix. 

For all j provided y is monotonic in x. do: 
J 

(1) For i=l ... h, define set I so that icI if 

14 
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(2) Compute 

for those iEI, 

where 0.25 is the maximum of 

-2 
exp (-U.X') [l+exp (-U.X')] ; 

1- 1-

(3) Compute 

(4) 

End-do. 

for those i f I, 

-2 where A.= min { [exp (-�. ) (l+exp (-�. )) ] , 1- p 1-p p 1-p 

If 

w. IS 1-p 

and all 

Ql + Q2 ;;::, 

-2 
[exp (-�. ) (l+exp (-�. )) ] }, q iq q iq 
and w. 's are elements of u. ' iq 1-

w. <0 and all w. ;;::.O 
1-p iq 

0 ' then y is monotonic, 

else monotonicity is violated,; 

During training for a sample point, if the monotonic condition 

would be violated due to a large change of weights, the learning rate 

is decreased for that sample point. Because our 
_
model does not change 

the principle of error hill climbing, the adaptive nature of the 

algorithm does not have to be changed. Note that the initi�lized 

neural network with its weights of uniform (0, 1) random numbers has 

the monotonicity property. Experiments with this algorithm have shown 

that, when the proper training sample set (see sections 2.3. and 3.2.) 

is used, the monotonic condition is rarely violated. 
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3. 2. Training Sample Set 

In section 2. 2. a heuristic training scheme based on the pre­

process result of a linear classification function was suggested. 

Here, the procedure to find a proper training sample set is briefly 

summarized. 

(1) Pre-process the initial sample data set with a linear 

classification function. Normalize the classification score 

on [0, 1) such that a point on the linear boundary has score 

0. 5. Pre-define a small number€. 

(2) Based on the pre-process result and€, and using vector 

analysis (Section 2. 3), try to find a new training sample 

set such that correctly classifying it will result in a 

lower misclassification rate. 

(3) If the new training set is found, then goto step (5); 

otherwise, reduce e. 

(4) If €z0, then STOP; otherwise, goto step (2). 

(5) Train the neural network on the new training sampl� set, 

while maintaining monotonicity. If successful, then a new 

classification result is obtained, which has an ·overall 

misclassification rate which is no greater than the linear 

classifier on the initial sample set; 

otherwise reduce e. and goto step (2). 
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3. 3. Example Applications of the Monotonic Function Neural Network 

Model 

3. 3. 1. An Example of Simulated Data 

In this subsection an experiment with simulated data is described 

which applies neural network classification with monotonic conditions 

and a pre-processed training sample set. For this experiment, the 

pattern vector dimension was two, so results could be displayed on a 

plot. The size of the data set was 40 (20 in each class). An initial 

sample data set was generated by simulation. The true classification 

boundary was a cosine shape (see Figure 4). The linear discriminant 

analysis (LDA) technique was employed to pre-process the sample data. 

The LDA classification accuracy for the 40 sample points was 33/40 

(82. 5%). After transformation of the LDA result to the classification 

scores, e was determined by the training sample algorithm (Section 

3. 2. ) as 0. 04. Four misclassified points were within this tolerance. 

However, one of the previously correctly classified points was now 

incorrectly classified, resulting in a net gain of three properly 

classified points. Thus a new training sample set with 36 sample 

points was used to train the neural network, with 5 hidden nodes, 

under the monotonic condition. After 6400 learning sweeps, the final 

classification boundary was obtained, which is closer to the true 

boundary than the LDA result in most regions of the pattern space, 

resulting in an overall accuracy of 90% (Figure 4). This compares 

with standard BPI.MS neural network training on the original data set, 

where no convergence was observed after 65000 learning sweeps. 

*** Insert Figure 4 about here *** 
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3. 3. 2. An Example of Real Data 

In the last subsection , simulated data were used for testing the 

MF model. The advantage of simulated data is that the optimal 

boundary is known and can be used to evaluate the performance of the 

model, as shown. However, the above method is not applicable for real 

problems. A widely acknowledged testing method is cross-validation 

(17] , a form of the jackknife method (29] which is commonly used in 

statistics. In this method, a training data set is randomly selected 

from the available sample. After training the classifier, the 

remainder of the observations are used to test the classifier. 

Usually, the sample is equally divided into two subsets, and each of 

them serves as training data set and testing data set in turn in two 

trials. 

The data used in this experiment came from the Alpha TV 

Commercial data bank published by Green (30] . The author used a 

subset of the data bank to conduct a linear discriminant analysis of 

two classes described as follows: 

Class 1: 78 respondents who selected the Alpha 

brand of radial tires; 

Class 2: 174 respondents who did not select 

the Alpha brand; 

and the pattern variables: 

1. whether Alpha was the brand selected in the respondent's last 

purchase of replacement tires; 

2. pre-exposure interest in Alpha radial tires; 

3. post-exposure believability of the Alpha commercial; 

4. post-exposure interest in Alpha radial tires. 
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Using the 252 data points, linear discriminant analysis gives the 

result that (52+131)/252 or 72. 6 percent of the sample is correctly 

classified, although the difference in the locations of the two class 

centroids was highly significant (F-17.98, with 4 and 247 degrees of 

freedom (30, p.179] ). Hence, as pointed out by the author, the 

separation effected by the linear discriminant function is not good 

from a practical point of view. However, the MF model can improve on 

this result. 

The classification case being discussed is a typical managerial 

pattern recognition problem. The assumption about monotonic 

relationships between selection of Alpha radial tires and the four 

pattern variables, including last brand purchased, pre-exposure 

interest, post-exposure believability, and post-exposure interest is 

valid. The Monotonic Function model is therefore applicable, and an 

experiment was designed as follows. Every other point of each class 

was selected for one subset s1, and the remainder was selected for s2, 

such that each subset contained 39 points from class 1 and 87 points 

from class 2. In the first trial s1 was the training data set and s2 

was the test data set, and in the second trial the roles of the two 

subsets were switched. 

Because this was a high dimensionality problem, it is not 

possible to depict the results on a two dimension graph. 

Nevertheless, the clustering phenomenon was ·well observed in the 

vector analysis. In the two trials, e=0. 01 and e=0. 03 were applied 

respectively to obtain proper training data sets, beginning with the 

LDA result. Neural networks with 15 hidden nodes were employed, and 
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the learning rate was set at 0. 1. The results obtained in this 

experiment are compared with the LDA results in Table 1. The 

experiment shows that the classification result of the MF model 

improves on the LDA method, although the results of the MF model were 

based on a limited number of trial and error processes in the 

determination of e. 

*** Insert Table 1 about here *** 

4. Discussion 

4.1. Efficiency 

A well-known problem with the standard BPLMS algorithm is the 

significant computational time required to reach a convergent result 

[15] . One may expect that, on average, the more complex y-surface 

�esired, the more iteration time would be required for the neural 

network learning process [17] [31] . In the MF model developed in this 

research, one of the. underlying principles is to reduce the 

unnecessary, even harmful, complexity of the y-surface by reducing the 

impact of statistical fluctuations on the location of the 

classification boundary. As a consequence, the neural network 

generates the y-surface with its simple monotonic features easily, 

given the proper training data set. This can be explained by an 

example. Suppose we have two sample data points which have the same 

pattern vector X but with opposite outcomes of c1 and c2 respectively. 

From the statistical point of view, this phenomenon is the result of 

statistical fluctuations. Applying the standard BPLMS algorithm, 
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these results will never be classified. Let us change the example 

slightly so that the two sample points have marginally different 

pattern vector values, say, X and x± respectively. Then, the standard 

BPLMS algorithm will probably take a very long time to generate a 

boundary to separate the two points. However, the MF model deals with 

this problem with considerably more finesse. It first pre-processes 

the data fully, taking statistical considerations of both conflict 

points into account and obtaining a proper training data set. The 

point which is furthest from the pre-determined linear boundary would 

be ignored during further learning, but would still have its impact 

consolidated in the pre-process boundary result. The neural network 

then learns the proper training data set which is not subject to undue 

statistical fluctuation, and the generated y-surface will have a less 

complex (and monotonic) form. In the case where there is a great deal 

of overlap from sample data sets, this MF model approach is usually 

much more efficient than the standard BPLMS method, as shown in the 

example. 

4.2. Validity of Monotonicity 

Sometimes, the relationship between the initially defined xj (j-

th component of X) and y may not be strictly monotonic. However, if 

the inflection point (s) is (are) known, it is possible to decompose 

x. into two or more dimensions in order to obtain a monotonic 
J 

relationship. This is illustrated in Figure 5. 

*** Insert Figure 5 about here *** 
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Note that, if the slope of the boundary at the inflection point is not 

very large, the classification result will not be very sensitive to 

the accuracy of the inflection point's location (Figure 5). The 

important point here is that information about an inflection point, 

even if imprecise, still makes it possible to efficiently apply linear 

functions to obtain an approximate classification result. As well, 

the monotonic constraints on neural network learning behavior tend to 

further improve classification results. 

4. 3. Robustness of the MF Model 

When developing a model dealing with statistical data, robustness 

is often used to evaluate the model from the statistical point of 

view. Robustness signifies insensitivity to small deviations from the 

assumed underlying situation, including randomness, independence, 

distribution functions, etc. (32] . Although it is difficult to prove 

the present models' robustness directly since statistical tools are 

-hard to apply, the robustness of the MF model can be compared to the 

LDA statistical model results. The MF model developed in the present 

research is designed to further reduce misclassification rates from 

the LDA classification technique. Given the fact that there exists a 

large amount of literature to explain the robustness of the LDA (e. g. 

(33] ), robustness arguments regarding the present basic model may be 

stated as follows: the robustness of the present model is at least as 

good as the LDA in terms of low misclassification rates on training 

data sets. The limited results obtained so far indicates that there 

is also an improvement relative to LDA in test data sets. 
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LDA is used as a pre-processing tool in the proposed algorithm 

primarily because of considerations involving robustness. Actually, 

there are a nlllilber of linear classifiers (e. g. the perceptron) which 

are able to pre-process statistical data, although some of them are 

less well grounded theoretically than the LDA technique. 

4. 4. Generalization of The Model 

The application of the Monotonic Function Model described above 

may be extended readily to k>2 problems. Suppose that we have no 

other knowledge except for the statistical data set consisting of 

discrete sample points. The linear function classifier [34] [5] would 

seem to be the only feasible method to develop a starting "prototype" 

in k>2 classification. There would be (k-1) or k (k-1)/2 linear 

classification functions for the k class problem, depending upon the 

separability criteria [34] [5] . Given this approximate classification 

result the neural network model with its highly adaptive nature could 

be used to improve on this result as in the k-2 case. The idea of 

extending the k=2 model to the k>2 case is then straightforward; that 

is, given a k>2 problem, use a linear classifier to obtain the 

approximate classification result, then employ neural network 

techniques to reduce misclassifications. Two types of neural network 

structures can be developed; those with (k-1) output nodes and those 

with k (k-1)/2 output nodes, respectively, according to the 

separability criteria. Each output node in the neural network then 

corresponds to one linear function classifier in the beginning 

prototype. 
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APPENDIX 

Monotonic Condition In The MF Model 

This Appendix is a derivation of the monotonic condition in the 

MF model. The numbers in brackets to the left correspond to the 

numbered sections of the algorithm in Section 3. 1. 

(1) Let 

h 
-2 � w

l.
.

J
. v

l.. exp (-U.X') [ (l+exp (-U. X'))] 
i-1 1. 1. 

� wiJ
. vi exp (-UiX') [ (l+exp (-UiX'))] -2 + 

ieI 

where I is a set such that, if ieI, w .. v.<0, that is, 
1.J 1. 

and if ifI for w .. v.�O, that is, 
1.J 

1. 

(since exp(-UiX') 

(2) Monotonicity <�> 

-2 
(1 + exp (-UiX'))] > 0 ). 

h 
� w .. v. exp (-U.X') [ (l+exp (-U. X'))]

-2 � O ,  
i-1 l. J 1. 1. 1. 

and each term in the sum is independent. Thus, 
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min 

+ min L: w 
if I ij 

is a necessary and sufficient condition for monotonicity. 

Denote min and 

respectively. 

-2 exp (-U. X') [ (1 + exp (-U. X')] has a maximum of 0. 25 at i i 

U.X'=O (because at least one point X-Q, and this maximum occurs at i 

that point), hence 

(3) We now need to find Q2- min L: 
if I 

-2 
w .. v. exp (-U.X') [ (l+exp (-U.X'))] 

iJ i i i 

'V i) . 

m 
quantity 2: W

i x I 

0 r r r-
since 

R. is a function of the i 

m m _2 
R. =exp ( - 2: w. x ) [ ( 1 +exp ( - 2: w i x ) ) ] . 

i r-O ir r r=O r r 

m 
The behavior of Ri as a function of 2: w

i x 
0 r r 

is shown in Figure 6. 
r-

*** Insert Figure 6 about here *** 
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Since O=:>xr::5l, we have 

0::5 L: w. x ::5 L:w. i.r r i.r. r r 

L:w. ::5 z:: w. x ::50 
i.r i.r r r r 

The extreme points are P1 (x -1 when wir<O, and x -0 when w. �0) and r r i.r 

P2 (x -1 when wi.·r�O, and x -0 when w. <0). r r i.r 

Note that the two extreme points Pl and P2 of the function R. l. 

depend on the specific L:wir values, and either point could be the 
r 

minimum. 

Thus, 

min L: 
if I 

-2 w . .  v. exp ( -U. X' ) [ ( 1 +exp ( -U. X' ) ) ] 
l. J l. l. l. 

min w .. v. exp ( -U .X') [ (1 +exp ( -U. X' ) ) ] 
-2 

l. J l. l. l. 

(since each independent term �O) 

L: w .. v. {min exp (-U.X')[ (l+exp (-U.X')) (2
) 

l. J  l. l. 1. 

L: w .. v. A1. 
l. J l. 

where Ai is the minimum value of Pl and P2. 

that is, y is monotonic; else monotonicity is violated. 
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I Reduced 
LDA MFM I misclassi-

1 I I I fication 
1---------------------------1--------------1-------------1-----------
1 Train on the original data! (52+131)/252 I I 
I set (252 points) and test! = 72. 6 % I I 
I on the same data set I I I 
1---------------------------1--------------1-------------1-----------
1 I I (26+67)/126 I (26+77)/126 I (10/33)-
1 Trial 1. I Test on Sl I - 73. 8 % I - 81. 7 % I 30. 3 % 
I Train on I -- - - - - - - - - - - I - - - - - - - - - - - - - - I - - - - - - - - - - - - - I - --- - ------
I subset s1 I I (24+71)/126 I (20+76)/126 I (1/31)-
1 (126 points) I Test on S2 I - 75. 4 % I - 76. 2 % I 3. 2 % 
I l------------1--------------1-------------1-----------
I I overall I 74. 6 % I 79. 0 % I 
1---------------------------1--------------1-------------1-----------
1 I I (31+56)/126 I (25+67)/126 I (5/39)-1 Trial 2. I Test on Sl I - 69. 0 % I - 73. 0 I 12. 8 % 
I Train on I - - - - - - - - - - - - I - - - - - - - - - - - - - - I - - - - - - - - - - - - - I - ----------
I subset s2 I I (26+58)/126 I (24+71)/126 I (11/42)-
1 (126 points)! Test on S2 I - 66. 7 % I - 75. 4 % I 26. 2 % 
I l------------1--------------1-------------1-----------1 
I I Overall I 67. 9 % I 74. 2 % I I 1---------------------------1--------------1-------------1-----------1 
I overall I 71. 3 % I 76. 6 % I I 

Table 1. A Comparison of the Percentage Correctly Classified 

by the MF Model and the LDA Method on the 

Alpha TV Commercial Study Data (30] 
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