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Abstract 

Self-organizing feature maps (SOFM) have received much attention recently. SOFMs are 

basically a variant of neural network models which use unsupervised learning to acquire and organize 

their internal structure. Many mathematical features of the model have been discovered. In addition, 

many applications have been developed. This article is reviews the basic SOFM model as proposed by 

Kohonen. Next, using the traveling salesmen problem (TSP) as a benchmark, a few variants of the 

SOFM proposed to solve the TSP are compared to a variety of other algorithms such as the 

Hopfield/Tank network and simulated annealing. Brief descriptions of all algorithms are included. Lastly, 

a number of applications of the SOFM are discussed, such as speech and semantic recognition. The 

objective of this paper is to offer the reader some insight into the SOFM as well as some guidance as to 

further research. 
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1) Introduction 

Artificial neural networks (ANN's) have received much attention
. 
recently. This is largely 

I 

due to the possibility of developing novel solution techniques for difficult problems with the hope 

of improving computational speed and performance. The term "neural networks" implies an 

association with biological phenomena, but for many ANN paradigms this association is quite 

superficial. The main feature of ANN's that mimic biological systems is the parallel processing of 

data. Common computers process data in a serial fashion. The significance of this difference 

can be easily demonstrated. The most advanced computers known today process an element of 

data in the nanosecond (10-9) range whereas the brain, when prompted by external stimuli, has 

a cycle time in the millisecond (10-3) range (Simpson, 1990). Although the brain processes 

information an estimated 6 orders of magnitude slower, it is superior at processing human 

information problems. This is due entirely to the large number of neurons in the brain processing 

. ' data in a parallel manner. 

As mentioned, numerous processing units (neurons) acting in a parallel fashion is the 

extent of the association between many ANN paradigms and biological phenomena. There is one 

system which has a stronger basis in biology and is useful in many non-biological applications. 

This is the self-organizing feature maps (SOFM's) first introduced by Teuvo Kohonen (1981). 

Biologically, this model has been widely accepted to explain th� way in which the brain analyzes 

and processes sensory signals. For instance, there exists a tonotopic map in the auditory cortex 

of the brain. This map of perceived acoustic frequencies is perfectly ordered, almost 

logrithmically, with respect to frequency (Kohonen, 1989). These mappings are not genetically 

predetermined; they self-organize over the earty stages of development of the nervous system. 
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As interesting as this model is as an explanation of some biological systems, it has been used as 

a computational tool in many areas such as medicine, engineering and business. Mathematical 

properties of this model are Still being discovereq and further discoveries should enhance its 
I 

usefulness as a tool. 

This paper has been written to highlight the properties and applications of the SOFM. 

The next section will discuss the basic model as proposed by Kohonen. The following section will 

discuss other algorithms proposed to solve the TSP. Following that will be a discussion of a 

number of variants of the SOFM model used to solve the Traveling Salesman Problem (TSP) 

and compare these systems to those previously discussed. The TSP was selected as a bench-

mark for a variety of reasons. First, the amount of work done to discover improved solution 

mechanisms for this problem made it fairty easy to research a wide variety of algorithms to 

compare to the SOFM model. More importantly though, although the problem is easy to state, it 

is computationally difficult, yet it is broadly applicable to many engineering and business 

problems. The last major section of this paper will discuss applications of the SOFM. In this 

section examples will be discussed of how maps of higher than one dimension are used to help 

solve problems in robotics, pattern recognition and data compression. As well, an example of 

how SOFM's can discover semantic relationships in sentences will be discussed. 

2) The Model 

A very complete yet concise definition of the objective of SOFM's is to compress 

information by forming reduced representations of the most relevant facts, without loss of 

knowledge of their interrelationships (Kohonen, 1989). The SOFM is an unsupervised learning 
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model that is represented by a two-layer feed-forward topology. Essentially, analog vectors are 

presented to the input layer. After learning is completed, the weights will be clustered into vector 

centers that sample the input space. The point density function of these vector centers tends to 
( 

approximate the probability function of the input vectors. Also, the weights will be organized such 

that nodes that are topologically adjacent will be sensitive to physically similar input (Lippmann, 

1987). Qualitatively, the algorithm is as follows: 

1) Initialize weights from N input vectors to M output vectors to small random values. 

Set the initial radius of the neighborhood to an arbitrary value. (The concept of the 

neighborhood will be discussed.) 

2) Present input vectors. 

3) Using a pre-set criteria, determine the node that best matches the input vector. This 

node is the so-called "winner''. This is the competitive step in the algorithm. 

4) Update (adapt) the weights of the winning node and those of the nodes within the 

winner's neighborhood. The radius of the neighborhood starts off wide and is 

systematically decreased as time (f) -+ oo \'Time" in these simulation examples 

refers to successive steps or iterations of a process. Therefore, t is an integer value 

and not a continuous variable) . 

5) Repeat steps 2 to 4. 

To further discuss the model, the following notatiqn wil,I be utilized: 

Let x = [�1,�2 , •.. ,�0 I �; E R v if 

represent input vectors of scalar signals. 

Let µ.iJ ER 

represent the weight from input node j to output node i. 
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represent the image vector of output node i. 

As mentioned above, values for all /Lij are initialized to small ra'ndom values. To 

determine the winning output node, denoted me, two methods are commonly used. The first 

involves the inner product xr m; where 

n 

xrm; = LfL/j�j· j=1 
xr me = max {xr m;} v i = 1,2, .. . ,n 

i 

The second method is simply the normalized distances between x and m; . The Euclidean norm 

is often used for simplicity. This second method may be more appropriate for certain applications 

such as natural signal patterns relating to metric vector spaces (Kohonen, 1990). Quite simply, 

the following criteria signifies the winning node, me: 

llx - mell = m_in llx - m;ll v i = 1,2, ... ,n. 
I 

Further possible modifications of the above two methods involve normalizing the weight vectors 

to constant length. 

An interesting extension of the second method above is the introduction of a weighted 

Euclidean distance in the competitive step (Kangas et al., 1990). The square of the distance is 

defined as: 

N 
d:[x(t),m;(t)} = � w�[�j(t) - /Lij(t)J2 

]� 

where w lj is the weight of the .fth component of the input vector x associated with cell i . These 

weights are estimated and adjusted throughout the learning stages. This method is useful when 

the variances of the components of x = x(t) are significantly different. In this situation, if the 

4 
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differences of the variances are not taken into consideration in the nonn calculation an oblique 

orientation of the map may occur in which convergence to a sub-optimal vector quantization may 

result. A geometric interpretation 'of the resultant weighting of w IJ is that the equidistant surface 

around cell i becomes elliptical. By setting d0,'[x(t),m1(t)] = const., an N-dimensional ellipsoid 

results whose volume is: 

where C is a constant. 

A further modification of the above process introduces a "conscience" into the system. 

The modification suggested is to stipulate 

N 1 n - = const., v i. 
j=1 Wij 

The idea of a conscience is to prevent a node from winning too much. This concept was used by 

Burke and Damany (1992) in their development of a "guilty net". These modifications are 

discussed here to demonstrate some of the ways in which this part of the algorithm can be 

modified. 

Figure 1 depicts how the system is configured. Each input pattern is presented to each of 

the vectors in the image vector layer (labeled "Kohonen layer'' in the diagram). Through 

mechanisms previously discussed, a winning neurode is d7te"'!1ined. Once the winning node 

(cell C )  has been chosen, the weight parameter of the winner and those of the nodes within a 

defined neighborhood around the winner, Ne , are updated. This is the process which causes the 

clustering of related output neurons. 
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KOHONEN 
LAYER 

INPUT LAYER 

WINNING NEURODE 

INPUT PATTERN 

Fig. 1. Kohonen network (from Caudill, 1993) 

Let Ne represent the defined neighbomood around the winning neurode. Figure 2 

reflects the concept of a neighbomood. Although a rectangular neighborhood is shown, other 

shapes can be utilized such as hexagons. It is important to start with a fairly wide radius for Ne . If 

the initial neighbomood is too small various kinds of mosaic-like portions of the map are seen, 

between which the ordering direction changes discontinuously'. The result is that the map will not 

be ordered globally (Kohonen, 1990). The initial radius of Ne can be more than half of the 

diameter of the network. 
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0 0 0 0 0 0 0 

Fig. 2. Example of a topological neighborhood 

where k,y,z > O 

This idea of a neighborhood allows updating of the m; as blocks, concentrated 

around the winner. This process is used to obtain spatial ordering of the reference (or image) 

vectors. Owing to the frequent overlap of these neighborhoods, the values of the m; tend to be 

smoothed. Also, they tend to become ordered, especially at the borders of the network 

(Kohonen, 1990). 

There are many variants of the updating or learning laws in the literature. One such law, 

used in conjunction with the Euclidean norm type of matching rule is: 

m1 (t + 1) = m1 (t) + a(t)[x(t) - m1 (t)] 

m;(t + 1) = m;(t) 

In this formulation, a = a(t), termed the adaptation parameter, can take on many forms. It could 
. 

be a simple scalar parameter that decreases monotonically over time (0 < a < 1). An 

alternative notation is to introduce a "kernel" function, hci: 

m1 (t + 1) = m1 (t) +he; (t)[x(t) - m1 (t)] 
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This notation is equivalent to the previous example if hc;(f) = a(t) within Ne, and hc;(f) = 0 

outside Ne. Alternatively, a more general form of he; may be used. Let re and r; represent the 

coordinates of cells C and i respectively. A common, form for he; is th� Gaussian 

. 
h. � � (t) exp(-

JJ'i -· rc JJ2 ) , 

Cl 0 
2<T�(f) 

with h0(t) and uE(t) as suitable decreasing functions of time (Kohonen, 1990). The parameter 

u E represents the width of the Gaussian function. In this example, it determines the length scale 

on which the input vectors cause corrections to the map (Ritter et al. 1992). Normally, uE(O) is 

rather large. Gradually u E (t) decreases over time which effectively increase the "selectivity" of 

the individual neurons over the learning phase. 

Another learning law worth noting is the following example in which the image vectors 

are normalized at each step: 

m-(t + 1) = m;(t) + cx'(t)x(t) 
v i E Ne (t) 1 IJm;(f) + a'(t)x(t)JI' 

where a' = a '(t) is a monotonically decreasing scalar function of time, but now 0 <a' < oo and 

Ne (t) is a similar neighborhood around the "winner" as in the previous example (Kangas et al., 

1990). As an example, a'= a0 It could be used where a0 is large in the range of 10 to 100. 

In order to demonstrate the above-mentioned processes, consider the following example 

taken from Kohonen (1990). The input vectors are two-dimensional for visual display purposes. 
' ' 

Also, the probability density function of the input vectors are arbitrarily selected to be uniform 

over the area delimited by the triangular (figure 3) or rectangular (figure 4) border. The density is 

zero outside the borders. A set of input vectors x(t) were independently and randomly selected 

from from this density function. This set was used to cause changes in the weight vectors m;. 
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In the example depicted in figure 3 the weight vectors appear in the same coordinate 

system in which the x(t) are represented. The processing unit array is two-dimensional which 

coincides with the dimension of the distribution. More
' 
interesting (and more common) is the 

I 

situation in which the dimensions of the distribution and that of the array differ. In figure 4 the 

distribution is two-dimensional but the array is one-dimensional. Quite simply, a one-dimensional 

output array is linear chain of cells. The weight vectors of these linear arrays tend to approximate 

to higher-dimensional distributions by Peano cutves (Kohonen, 1990). 

A couple of general points should be made about the SOFM paradigm. The model thus 

far discussed does not classify its output as do paradigms such as backpropagation. Rather, the 

• • 
• lH 

seee 

Fig. 3. Two-dimensional array of weight vectors during the ordering process. 
(From Kohonen (1990)). 

' 
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Fig. 4. One-dimensional array of weight vectors during the ordering process. 
(From Kohonen (1990)). 

output nodes act more of a representative of a particular class of input cases than as any 

particular feature that belongs to that class (Hiotis, 1993).- Subsequently, the basic SOFM system 

as thus far discussed should not be used by itself for pattern recognition or any other type of 

decision processes. Rather, it is possible to fine tune the model to significantly increase the 

recognition accuracy of the system (Kangas et al., 1990). One such method of fine tuning is 

called Leaming Vector Quantization (LVQ). 

The LVQ model can be highlighted with a brief discussion of Type One Leaming Vector 

Quantization (LVQ1) (Kohonen, 1990). In order to classify the input into a finite number of 

classes it is essential to assign several "code book" vectors, mi, to each class. It is important to 
. 

note that the identity of these vectors within the class is not crucial, rather, only the decisions at 

the class borders are significant. By defining effective values for the code book vectors the aim 

is to directly define near-optimal decision-barriers between the classes. The first step is to 
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initialize the values of m1 using an algorithm such as the SOFM. The next step is to determine 

the labels of the code book vectors by presenting a number of vectors of known classification. 

The accuracy of this classification can be improved if the following law5 for updating m, are 

used: 

if x is classified correctly, 

if the classification of x is incorrect, 

me (t + 1) = me (t) for i ;C c 

where c represents the class being "tested". The gain function, a(t), is a monotonically 

decreasing function of time, similar to that used in SOFM. The key difference is that in the LVQ1 

algorithm, a(O) is set significantly lower than in the SOFM because the LVQ1 is a fine-tuning 

method. The central idea behind the above learning law is to pull code book vectors away from 

the decision surfaces to increase the accuracy of the demarcation of the borders (Kohonen, 

1990). Each m1 has an area of attraction. The sum of these within a particular class defines the 

area of that class. Therefore, using multiple reference vectors for each category allows the 

system to define asymmetric or oddly shaped class boundaries. This gives this type of system 

greater power in solving difficult problems (Caudill, 1993). 

As demonstrated by the previous discussion, the 90Fllft has a number of parameters 

and steps that can be modified to anive at a variety of different specific models. The derivation 

of some particular models will be discussed in the following sections regarding proposed 

mechanisms to solving the TSP. 
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3) The Traveling Salesman Problem 

i) An Overview 

Simply stated, the TSP consists of finding the shortest possible'tour through a set of n 

cities, visiting each and every city exactfy once. The TSP is a classical example of a 

combinatorial problem which is NP-complete. NP-complete problems are those in which no 

polynomial bound algorithms have been found. That is, the number of operations required to 

arrive at an optimal solution increases faster than any power of N where N is the size of the 

problem (i.e. the number of cities in the TSP). Since the tour is a complete loop of all cities, 

there are J_(N - 1)! possible tours. Even for a relatively small value of N = 30, the total number 
2 

of tours exceeds 4.4 x 1030. Even using a Cray-XMP supercomputer, the processing time to 

complete an "exhaustive search" would exceed the age of the universe (Ritter et al., 1992). 

Since many problem types, such as task scheduling in operations management, fall into this 

class of NP-complete problems, there is much need and interest in developing algorithms which 

give near-optimal solutions in polynomial time to these types of problems. 

ii) A Review of Proposed Solution Mechanisms 

The literature is rich with various algorithms put forth to solve the TSP. Lin and 

Kernighan (1973) proposed a procedure that is based on a general approach to heuristics. It has 

been shown to be very efficient and run times grow about as N2 . 

More recently, Kirkpatrick et al. (1983) used an optimization technique called simulated 

annealing to tackle the TSP. This work triggered a breakthrough to applications on NP-problems. 

This method involves a random generation of "moves" or rearrangements of elements (i.e. 

cities) in the system to arrive at a set of possible solutions. The mechanism of generating such 
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moves was borrowed from Lin and Kernighan (1973). If E is a cost or an energy function, 

classical gradient descent algorithms only accept moves in which !:£ < O . The problem is that 

there is no way to escape local minima. On the other hand, simulated annealing also accepts 
( 

moves in which !:£ � 0 with the Saltzman probability that the move is accepted being 

P(LlE) = exp(-!£ I kbT). The parameter Tis called the annealing temperature. A vital 

component of the algorithm is the annealing schedule of the value of T. If the schedule 

decreases Ttoo rapidly the system may become trapped in a local minima. Therefore, it 

important that T be decreased slowly so that E can converge to a state of minimum energy. 

Although this method has theoretically been shown to converge to globally optimal solutions 

(Aarts and Korst, 1989), it becomes only an approximate algorithm in practical implementations, 

for the convergence to globally optimal solutions only holds asymptotically (Looi, 1992). 

Kirkpatrick et al. (1983) used this method to anneal into optimal solutions with confidence levels 

greater then .95 for N up to 6,000 sites. 

The first connectionist approach to the TSP arose with the work of Hopfield and Tank 

(1985). Their network was a non-adaptive system seeking a minima of a particular energy 

function. The output layer requires N2 nodes, for it represents an N x N matrix of N cities vs. N 

positions in a given tour. This layer is entirely interconnected resulting in N4 interconnections. 

The weights between each pair of neurons are predetermined and fixed. As applied to the TSP, 

the energy function in the Hopfield and Tank model takes the following form: 

Let Vx,; = 1 if city x is visited in the ith position, x,i E [1,2, ... ,N] 

Vx,; = 0 otherwise. 

The energy function is defined as: 

A 
E = -��'"'v.v. 2 i.J /,.J .i../ XI XJ 

X I J ;Cl 
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where dxy is the Euclidean distance between cities x and y. The first term is zero if and only if 

each city is visited at most once. The second term is zero if and only if each position on the tour 

has no more than one city. The third term is zero if and only if there are N entries in the N2 

solution matrix. Therefore, the first three terms are zero if and only if a feasible tour is 

represented in the solution matrix. The last term of E refers to the tour distance for which, of 

course, a minimum is being sought. This energy function is analogous to a penalty (Lagrange) 

function (Burke and Damany, 1992). Using E as defined here along with the fixed weights of the 

interconnections, the network is allowed to dynamically alter its state until it converges to a 

minimum for E. 

Numerous shortcomings of the Hopfield and Tank approach have been cited. First, the 

computational efforts of the model are huge. This optimization problem is not solved in the 

problem space of cardinality N!, but rather in the representation space of cardinality 2N2 
(Looi, 

1992). Also, some researchers were unable to replicate Hopfield and Tank's results (Wilson and 

Pawley, 1988). Furthermore, the result obtained by Hopfield an(i Tank (1985) for only a 30 city 

problem was 19% longer than the solution found by the Lin and Kernighan method (Xu and Tsai, 
' 

1991). 

Another connectionist approach to the TSP found in the literature involves Markovian 

neural networks (Kovacic, 1991). This system consists of n neurons. As Markov chains consist 
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sets of states and the associated probabilities of transition to successor states, let 

S = {s I s = (x1,x2, ... ,xn)} be a finite set of states. Each state is described with n parameters 

and every neuron in the Mark.avian neural network represents one element (x;) of state vec:;tor 
( 

s E S. Also, let f: S-+ m be an evaluation function over the states. The objective is to find the 

best s with respect to f, that is, find such s such that v s; ES: f(s) � f(s;) .  Let s; be the 

current state of the network. Kovacic (1991) defined the likelihood ratio of transition from the 

current state s; to s j as 

where s; -+ s i denotes the transition from s; to s i. The parameter T > 0 is called the 

temperature and is decreased in every iteration in a manner similar to that used in simulated 

annealing. In his article, Kovacic presents a proof of the equivalence of Mark.avian neural 

networks and Markov chains. 

As applied to the TSP, Kovacic reported that the complexity of the Mark.avian neural 

network simulation grew proportionally to N2 . This architecture outperfonned other methods 

tested including simulated annealing. The main reason is that the Mark.avian system takes into 

account all one-step transitions while computing transition probabilities, whereas other methods 

such as simulated annealing consider only one transition at a time. 

The last approach to the TSP to be discussed in this section involves genetic algorithms. 

Genetic algorithms (and more broadly genetic programming) involve searching large portions of 

. 
a solution space for solutions (offspring) which are more ''flt" than their "parent" solution states. In 

fact, this system is highly parallel in that the search through a solution space is done 

simultaneously by an entire population of "individuals". This is akin to natural phenomena in that 

nature generally adapts populations of individuals and not just individuals themselves (Banzhaf, 
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1990). Generally, recognized mechanisms such as genetic recombination, mutation, inversions 

and crossovers are programmed into specific search algorithms. For instance, Fogel (1988) used 

an approach in which offspring were generated through random mutatio'n of each parent by 
/ 

choosing a city in a parent's tour list and replacing it in a different, randomly chosen position. 

Also, this particular approach incorporated the probabilistic aspect of survival witnessed in 

nature. That is, individuals possessing some kind of advantage are not guaranteed survival, 

rather they only have an increased probability of survival. This search mechanism was shown to 

be very successful. Using a formula for calculating the expected optimal length derived from 

Bonomi and Lutton (1984) and a normal approximation to the error distribution of tour lengths, 

the mean best tour length of ten trials of a 100 city TSP was superior to 99.99999999999% of the 

possible tours. The impressive factor is that only 8.58 x 1 o -151 of the total number of tours 

were evaluated. Figure 5 shows the graph of the best mean tour length vs. number of evaluated 

offspring for this problem. In a 100 city TSP there are approximately 4.666 x10155different tours. 

The graph in figure 5 shows the asymptotic approach to the best mean tour length with relatively 

few offspring evaluated thus reflecting the search efficiency of genetic algorithms. Banzhaf 

(1990) also reported success using evolutionary optimization for the TSP. These findings 

suggest that genetic algorithms may be efficient searching tools which, when combined with 

neural network classifiers such as LVQ1 and backpropagation may prove to be very helpful 

(Fogel et al., 1990; Brill et al., 1992). 
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Fig. 5. Evolutionaiy optimization. Average of ten trials of a 100 city TSP. Taken 
from Fogel (1988). 

In this section four different solution methods for the TSP were discussed. This was 

obviously not an exhaustive listing of methods proposed in the literature. The discussion here 

. ' 

was put forth to give a brief overview of each approach, thereby offering some understanding of 

the respective models. The sample of algorithms chosen for this report were careftllly selected 

with a couple of objectives in mind. First, the sample reflects a wide variety of algorithms. For 

example, the Hopfield network was chosen because of its historic significance, being the first 

neural network application to NP-complete problems such as the TSP. Also, gerietic algorithms 
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were selected because they are powerful searching tools that are very different from neural 

network algorithms. Second, this �ample includes algorithms commonly used as benchmarks 

against which newty-prqposed systems are tested. For instance, simulated annealing is 

frequently used as a benchmark against other TSP algorithms due to its ability to discover 

relatively low tour lengths. The Markov neural network was selected because it was reported that 

it out-performed simulated annealing. This fact indicates that the Markov neural network may be 

a better benchmark than simulated annealing. Thus, this sample of algorithms satisfied the 

objective of covering a wide variety of algorithms while also discussing methods frequently 

referenced as benchmarks. 

iii) Solutions Using Self-Organizing Feature Maps 

The first self-organizing model to be discussed is the elastic net approach proposed by 

Durbin and Willshaw (1987). The algorithm starts with k points lying on an imaginary "elastic 

band" where k > N (N is the number of cities). The points in this band "move" until eventually all 

cities in the solution space are "caught" by a node. This movement is influenced by two types of 

forces. The first moves a node closer to cities to which it is nearest and the second pulls it 

towards the neighbors on the path, thereby acting to minimize tour length. With this approach, 

each city becomes associated with a particular section of the path. The tightness of the radius in 
. , 

which this association is strengthened is dependent on a parameter K. Throughout the simulation 

this parameter is lowered in a manner loosely equivalent to the "temperature" in simulated 

annealing. Denoting the coordinates of city i by the vector xi and those of a typical pointj on the 

elastic net as y i , then the rule for change Ay i at each iteration is defined as: 
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llyi = a Lwii(xi - Yi)+ {3K(Yj+1 -2yi +yi-4) (1) 
I 

where a and f3 are constants defi�ing the relative for�s of two forces d�scribed above and wii 

I 
denotes the influence of city i on the elastic path point j. The latter parameter is normalized so 

that the total influence of each city is equal: 

c/l(lx; -yil•K) �cfi(jx; -yk j,K) 
(2) 

c/l( d, K) is the Gaussian function exp( --d2 / 2K2).  The energy function is defined as: 

E =aK Dn �)<Ix, -yil> +{3 �Yj+1 -.Yl 
I J J 

(3) 

which has the property that 

oE fly. =-K-1 oyj 
(4) 

This means that for any change in yi as in equation (1), a reduction in the value of E results. 

Since Eis bounded below, local minima for Ewill eventually be reached (Durbin and Willshaw, 

1987). 

Applied to a 30 city TSP, the elastic net method was superior to Hopfield and Tank's 

method (the latter generated tours which were on average 19% longer than those generated by 

the former). The results obtained for a 50 city simulation were only 1.5 ±0.7 % longer than the 

results obtained from simulated annealing in approximately the same computing time. As this 

algorithm is fundamentally geometric, it can be extended to more general TSP prqblems in 

Euclidean space, but not to cases where artiitrary matrices of distances are given. 

Another variant of the SOFM model used to solve the TSP was proposed by Angeniol et 

al. (1988). This approach uses elastic net concepts but is implemented as a SOFM. Using the 
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notation in the work by Angeniol et al. (1988), the cities are numbered 1 to M, the nodes of the 

output map are numbered 1 to N, each city i is denoted by its two coordinates: (x�, x�) and each 

node j is identified by the two coordinates (c{ ,c4) .  Also, each node is related to its two 

' ' 

immediate neighbors in the ring. Each complete iteration of the system takes M steps, picking 

every city in the application once in a fixed order. This order is picked randomly prior to running 

the simulation and different solutions result from different initial orders. 

The simulation begins with only one node located in the plane at the point (0, 0). There is a node 

creation (deletion) mechanism in the system which increases (decreases) the number of nodes in 

the network. When a city is "surveyed" by the network, a competition based on Euclidean 

distance is conducted to see which node of the net is closest to the city. The winning node and its 

neighbors are moved towards the city by a distance determined by a function 

1 n2 f(G,n) =-exp( - ) 
.J2. G2 

where n is the distance along the ring between nodes ic (the winning node) and arbitrary other 

nodesj; and G is a gain parameter. Each node is moved from its current coordinates (c{ , c4) to a 

new position by the equation: 

c[ - c£ +f(G,n) ·(xL -c[). 

By virtue of the Gaussian definition for the function f, as G - oo, all nodes move towards city i 

with the same strength (� ). whereas as G- 0 ,  only the �inn�ng node,jc, moves towards city i. 

Between each iteration the gain parameter is adjusted by: 

G- (1-a) ·G. 

Therefore, a is the only parameter requiring tuning. 
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According to Angeniol et al. (1988), node creation and deletion are necessary for 

success. Node creation occurs when one node has won the competition for two different cities in 

one iteration. The new node Is g�en the same coordinates as the winn�r. Both the present 
f 

winning node and the newly created one are inhibited in the next competition. This enables the 

non-overlapping neighbors of these nodes to pull them apart. Node deletion occurs if a node has 

not won a competition for 3 complete suiveys. 

The results obtained when applied to the TSP were quite promising. Although the 

reported results of tour lengths were slightly higher than those calculated using other algorithms 

such as the elastic net method, the computational time was impressive. Lower values for a gave 

slightly better tour lengths, but the simulations took longer (due to the fact the gain parameter is 

decreased in smaller intervals between iterations). For instance, simulations were run on a 1,000 

city TSP. It took 12 hours to reach a reasonable solution (length= 18,036) using a =0.01, 

whereas when a =0.2 was used, tour lengths ranging from 18,200 to 18,800 were found in only 

20 minutes. (The authors did not mention what computer was used for their simulations). 

There are some concerns with the work of Angeniol et al. (1988). For instance, they 

mentioned that the fixed order of cities used in the simulation gave different results for different 

initial orders. They did not elaborate on the extent of these differences. As promising as their 

results appear, obviously more work is necessary to elucidate the underlying mechanisms of 

their system. 

The key result from their work is the demonstration of the scaling of the problem size 

with large numbers of cities. As shown in figure 6, for the 10,000 city problem, the net has to 

cycle for only 4 times the number of cities. It seems that the net is fully exploiting the greater 
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smoothness in the solution space for larger problem sets. Also, the number of cycles required for 

problem sizes between 1,000 and 10,000 cities is roughly constant at 40,000. Since the time 

taken to execute a single iteration increases lineany· i;.,ith problem size, 
·
this represents a linear 

I 

increase in computing time with respect to problem size on a serial machine. Figure 7 reflects 

the typical solutions for a 1,000 and a 10,000 city TSP. 
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Fig. 6. Number of cycles necessary for convergence to 10% of the simulated annealing 

solution vs. problem size (Favata and Walker, 1991). 

Favata and Walker (1991) also applied a variant of the SOFM to the TSP. Their model is 

exactly like that described in an ear1ier section this report (see middle of page 8) in· which image 

vectors are normalized at each step. For each city, the input vector has three components: the 

first two being the coordinates of the city, the third being a normalization component computed 

so that all input vectors have the same Euclidean length and no two input vectors are collinear. 

The gain reduction (a) schedule was the same as that recommended by Kohonen (1989): in the 

first 10% of the iteration cycles the gain is reduced linearly to 10% of its starting value and over 
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the remaining 90% of the iterations it was linearly reduced to zero. The results of Favata and 

Walker's work show low sensitivity to initial values of the gain parameter. The criteria for 

convergence in their work is that ,the average path length over a sample of 50 solutions must be 

within 10% of the solution found using simulated annealing. 

1,000 cit.tes 

10.000 cities 

Fig. 7. Typical solution for the 1,000 (upper) and 10,000 (lower) city TSP. 
Taken from Favata and Walker (1991). 
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Favata and Walker also noted that the time taken to achieve a reasonable solution for a 

10,000 city TSP with their method was 1 O times faster than that obtained using simulated 

annealing. This therefore represents a trade-off betwe�n two factors: time and quality of solution. 
( 

' ' 
Depending on the application, one of these two usually opposing factors is dominant. Thus, this 

demonstrates the need to consider qualitative issues in selecting appropriate neural network 

architectures. 

The final model to consider in this section is the so-called "guilty-net" proposed by Burke 

and Damany (1992). The output layer of this system has exactly N nodes, where N is the number 

of cities in the problem. Each of these nodes has exactly 2 neighbors, thereby resulting in a ring 

structure. The interesting aspect of this model is the introduction of a "conscious mechanism" in 

the competition step. For each node j a bias term is calculated: 

b. ( .) 
win(j) 

1as J =----'-�-
{1 + �win(k)} 

where win(i) represents the number of wins for node j. A modified competition is held with the 

winner defined as: 

llx -mcll =m!n{ llx -mj ll +K ·bias(j)} v j =1,2, ... ,N  
1 

where K is a constant (set at 1 O in the simulations in this work). Updating of weights is done in a 

similar fashion to the basic SOFM model discussed earlier in this paper. 

. ' 
The idea of a conscience mechanism was first introduced by DeSieno (1988) as a 

means to produce equiprobable weights in learning systems such as SOFM. The objective is to 

inhibit nodes that are winning ''too often". The bias term in the above equations starts off low and 

increases throughout the simulation. Therefore, all nodes have a higher likelihood of winning 

early in the process. As the process continues, the increasing conscious term for various nodes 

24 



tends to cause a separation of nodes; one node per city. As compared to the work of Angeniol et 

al. (1988), the conscience mechanism acts in place of node creation and deletion. 

The reported results c:if simulations run using the guilty net model shows that this model 
I 

gave poorer results than runs using simulated annealing or elastic net approaches, but 

computationally fewer steps were involved. 

This last model exemplifies the current trend in neural network research. Applications of 

neural networks are being advanced much faster than the theoretical frameworks upon which 

applications could be more deftly developed. For instance, in the guilty net model a parameter K 

was introduced and set to 10. Presumably there exists flexibility in the pre-set value for K, but a 

lack of a theoretic framework limits the widespread application of such a parameter to little more 

than empirical studies. As a further example, Burrascano (1991) used the LVQ1 variant of the 

SOFM in the learning phase of a probabilistic neural network (PNN). The PNN is a pattern 

classifier and the LVQ1 was used to simplify the network structure. Burrascano discusses the 

.. flexibility of choosing a number of nodes in one particular layer as a ''trade-off between 

acceptable network complexity and desired classification accuracy". This demonstrates further 

the gap between application development and theoretical understanding. Although this approach 

to neural network research appears limiting, it is highly justified for at least two reasons. First, it 

gives theorists a wide base of "observations" and interpretations to draw on. Second, the 

usefulness of neural networks have met with some doubt ifl th� recent past. Therefore, a library 

of demonstrated applications of these systems further justifies the expenditure of time and 
' 

resources in studying these systems. 

The four models of self-organizing maps discussed in the section were selected to reflect 

the variations in the SOFM model used to solve problems such as TSP. Favata and Walker's 
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method is very similar to the basic Kohonen model previously described and it is able to solve 

relatively large TSP problems (10,000 cities). The elastic net method was chosen because it was 

the first self-organizing approach :to the TSP. This m�thod is also quite �ffective and efficient in 

I 
finding a good solution. The method intrpduced by Angeniol et al. is a derivative of the elastic 

net method with mechanisms for node creation and deletion included. Lastly, the guilty net 

method imposed a conscious mechanism onto the SOFM model. It should be apparent from this 

discussion that many variations of the SOFM are possible. This variability makes the SOFM 

model widely useful in many applications, some of which will be discussed in the following 

section. 
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4) Applications of the Self-Organizing Feature Maps 

As previously mentioned, there are a numbet of applications of the SOFM in the 

literature. A few of these will be discussed including data compression, integration with expert 

systems, speech recognition and semantic recognition. 

The first application area to address is statistical data compression. Gersho and Shoham 

(1984) introduced the idea of using vector quantization to compress speech data. The general 

idea is to find a set of disjoint regions A.i.A:? .... . �M of �n such that 

These regions are to be selected so that a data vector x that is chosen with respect to some 

fixed probability density function is equally likely to be in each region. If x is a data vector to be 

transmitted and � is the region containing x , then the index k of the region is transmitted 

instead of x. In order to have reliable reconstruction of the compressed data, the original input 

vectors have to be classified into the proper region with a sufficiently high confidence level. A 

variation of the SOFM called counterpropagation has been cited as an appropriate classifier 

(Hecht-Nielsen, 1988). The counterpropagation model couples Kohonen's SOFM with the outstar 

model of Grossberg (1982) to arrive at an effective and efficient system. (See Hecht-Nielsen 

(1988) for details of the counterpropagation model). An advantage of the counterpropagation 

model over other proposed systems is that the � regions usua(ly tum out to be highly isotropic. 

Isotropic regions are better at classifying vectors. For instance, rectangles in high dimensions (n) 

are such that the distance from the center of the rectangle to the center of each of the 2(n-1) 

faces is quite small whereas the distance fonn the center to each of the 2n vertices is very large. 

These regions are highly anisotropic and it is difficult to properly classify vectors lying in the 
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comers of such regions. A further advantage of counterpropagation for data compression is that 

these netwof1(s can be used in a hierarchical manner to achieve even more compression 

although some performance may be lost. 
I 

Another interesting application of the SOFM model involved expert systems. One of the 

most difficult issues in the design of expert systems is the problem of attribute selection for 

knowledge representation. Tirri (1991) has designed a system which uses SOFM to determine 

those properties of data that reflect meaningful statistical relationships in the expert system input 

space. The basic SOFM model is applied with each input instance defined as a vector 

v =(v1, v2, ... , vd) of ad-dimensional input space S. The training set Tis a set of such vectors. 

After completion of the training process each cluster C; in the output node "grid" is labeled with a 

meaningful attribute name. The labeling is done by finding an example set of vectors from the 

training set T such that the nodes in C; are sensitive to these input instances. Better 

classification can result by using a more sophisticated back-end to the SOFM (e.g. LVQ 

methods). 

The above approach was applied to two different systems: automatic inspection of circuit 

packs and intelligent monitoring of medical equipment (Tirri, 1991). Focusing on the latter, a 

significant reduction in the number of rules in an expert system involving respiratory and 

anesthesia monitoring can be achieved. In the revised model, detector predicates are used to 

perform the pattern recognition function of determining which ".cluster" an input signal belongs to. 

With this approach, the rule base is free to describe only the necessary actions. The expected 
' 

decrease in the number of rules in the rule base of the resulting "delivered" expert system is 

huge (-98%). 
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A further application of the SOFM involving expert systems concerned knowledge 

acquisition (Coleman and Watenpool, 1992). These authors discussed the issues of knowledge 

acquisition using a fault-identification expert system. Although this disc1;1ssion involving expert 
. ' ' 

systems and SOFM is quite promising, much more work has to be done to facilitate the 

integration of expert systems and neural networks. 

Another application area of interest involves speech recognition. Owing to temporal and 

spectral variations in speech, unconstrained human voices are very difficult to recognize. Neural 

networks are not well suited to deal with temporal variations. One model proposed to deal with 

these variations is called the hidden Markov model (HMM) (Zhao and Rowden, 1992). It is known 

that a phoneme (smallest unit of distinguishable speech) has tremendous temporal and spectral 

variations. HMMs are very successful for modeling these variances. Each HMM in a speech 

recognizer can be thought of as a generative model of a speech source. A common system for 

speech recognition is to create an HMM for each word in a finite vocabulary. The problem in 

designing such a system is the limited speech data for training and testing. If discrete HMMs are 

used to construct the recognizer, certain parameters of the HMMs will become zero which will 

cause major errors in recognition. To overcome the problems with the parameters, Zhao and 

Rowden (1992) proposed using a SOFM to smooth the parameters of the HMMs. Simulations in 

which the SOFM was used were considered to be using "trained data", whereas simulations in 

which the SOFM was not utilized were said to be using "untrained data". Without gaing into 

details of the HMM model, recognition of trained speech data can be raised from 56.833%, using 

untrained data, to over 99%. To extend their analysis, Zhao and Rowden used a 30 SOFM and 

found even better results than with the 20 case. The major advantage with their approach is that 
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it required less computational time than other HMM parameter smoothing techniques discussed 

in their report such as Parzen smoothing. 

Further ideas and advanc?es in the area of speech recognition �hould be facilitated with 

I 
some of the recent work done on the SQFM. For instance, Bauer and Pawelzik (1992) discuss 

the concept of using the topographic product to measure the degree to which neighborhood 

relations are preserved from input to output space. They used their approach on a 19-

dimensional speech data set and found that a 3-dimensional output space is better suited to the 

data. This coincides with the improved performance noted by Zhao and Rowden (1992) when 

they used a 30 SOFM for HMM parameter smoothing. Also, Chappell and Taylor (1993) recently 

published their work on temporal SOFMs. This novel approach to lend SOFMs the understanding 

of temporality may improve the ability of the SOFM to handle temporal variation . This is 

significant, for the inability of neural networks in dealing with temporal variations has limited the 

application of neural nets in the area of speech recognition. 

The final application to be discussed in this report involves semantic recognition. The 

major difficulty in this research area arises from the fact that the words being analyzed are mere 

symbolic representations of the contextual interpretation being sought. For instance, how should 

the metric distances between symbolic items be measured? The key is that during the self-

organizing process, both the contextual and symbolic aspects of the items are presented to the 

network. Letting xc and x8 represent respectively the contextual and symbolic components of 

the input vector x , x is defined as: 

The core idea behind symbol maps is that the two components are weighted such that the norm 

of the contextual part predominates over that of the symbol part during the self-organizing 
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process (Kohonen, 1990). This predominance ensures that the symbols are mapped into a 

spatial order reflecting their semantic similarities. During recognition processes, some or all of 

the contextual part of the input signal may be missi�g, but the symboliq signals are active all of 

I 
the time. Thusi if during recognition of ir,iput information, the contextual portions of the signal are 

weaker or are missing, the same map units are selected solely on the basis of the symbolic part. 

Ritter and Kohonen (1989) demonstrated this idea using a simple language. The vocabulary 

consisted of verbs, nouns and adverbs. Each word class is further subdivided into categories 

such as names of people or animals. In order to study semantics in the purest fmm, semantic 

meaning of individual words can only be inferred from the context in which the words occur and 

not from any pattern used for the encoding of the words (Kohonen, 1990). Therefore, each word 

Bob/JhafMar's 1 
borea/dog/cc 2 
beer/WU. a 
ma.t/bNM 4 
nam/w.lb s 
WOll.U/sprb • 
mha/pbane9 ., 
bQa/..U. • 
� 9 
drinlm/eM4J 10/it 
mucb/lfttle 12 
,....,, ... ., 1a 
aftea/Mldom 14 
..U/poorb- 15 

(a) 

-.... ......... Mery a- aaeat  
1+12 1-9-2 2-5--14 .Jim •peaka well 
1-S-18 1-&-a S.9-1 Muy lik• .Jim 
1 ... 1-1• 1-9-4 �2 Jila ... oet.. 
i,..e..12 1-1o-a 2--9-8 Muy bup meat 
...... 1.a 1·11 .... 2-$..4 q drinb fad  
1..g.14 1-10-12 2-1G-3 hmm hat.meat 
1-e-1s 1-10..1a s..10..12 Jim eats Mldom 
l-T-14. 1·10-14 2-10..lS Bob � m.-
1...a.12 1 .. 11 .. 12 2-10-14 eai waJb --· 
1..a.2 1-11-18 2-11-4 Tun eats bread 
1.....a 1-11 .. 1• 2-11-12 c.i h-. Jim 
1...a.4 s,.g,.12 �11 .. g Bob .tla beer 
...... 1 2-5-13 s-11 ... 14 (etc.) 

(b) (c) 

Fig. 7. Outline of vocabulary used for semantic recognition experiment. (a) List 
of words (nouns, verbs, adverbs), (b) sentence patterns, and (c) some 
examples of generated three-word sentences. From Kohonen, 1990. 
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was represented by a random vector of unit length (seven-dimensional). Ritter and Kohonen 

decided to use randomly generated meaningful three word sentences as input. Figure 8 lists the 

vocabulary and sentence structure used for the exp�r.iment. 
I 

For each word, its seven-dimension "symbol field" xs is simply the code vector of the word itself. 

The context of a word was defined as the average over 10,000 sentences of all code vectors of 

predecessor/successor pairs surrounding that word. These 14-dimensional "average word 

context" vectors, normalized to unit length, represented the "context field" xc. After 2,000 

presentations of corresponding x =(X8 ,Xc)  combinations were presented to a 10 x1 5  output grid, 

an impressive map resulted (Kohonen, 1990). Nouns, verbs and adverbs were segregated 

• ,.,... • ineat .. .. dog hone 
beer bflllllll 

• • cat 
• .. Uc.tie 

.. • • Bob 
• muck .Jim. 

� . often • 

• .. .. Mary 
well .. WOl:"b • .. 

• • • ... 
poorly .. •peaks .. • phones 

b� wits 
-0. " 

runs 

driab .. w.ib laa.t• Uk• 

Fig. 8. Semantic map obtained on a network of 1 O x15 cells as described in the 
text. Nouns, verbs and adverbs are segregated into different domains. 
Further grouping within each domain is discernible. From Kohonen, 
1990. 
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into different domains. Furthermore, additional grouping with respect to semantic meaning within 

each domain is easily obseivabl�. Figure 8 reflects �he results. 

I 
One area that would benefit fror,n furth.er work in semantic pattern recognition involves 

the Query-by-Browsing (QBB) method of querying a database (Beale and Finlay, 1992). Rather 

than focus on the query itself which traditional query-by-example (QBE) methods do, QBB 

focuses on the list of required records, that is, the actual query goal. Essentially, the user starts 

with a listing of the entire database or a subset thereof, marking records of interest while 

rejecting those of no interest. The system then attempts. to guess what the user's criterion is. This 

"guessing" is further refined by additional communications between the computer and the user. 

One important aspect of this QBB mechanism is the proper interpretation of the semantics of the 

user's problem. Thus, advances in semantic recognition may be of importance in developing 

QBB systems. 

Although a few examples of SOFM applications were discussed, many more have been 

reported. For instance, Ritter et al. (1992) discuss extensively the application of this neural 

network paradigm to robotics. This wide range of applications of the SOFM demonstrates its 

versatility. More research is required to uncover further features and properties of the model 

which should aid in the development of more and different applications. 

5) Conclusion 

The SOFM paradigm for neural networks has received much attention recently for a 

number of reasons. First, the self-organizing, unsupeivised method of network training is very 

useful in some applications. Second, the basic model is fairly easy to understand with few 
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parameters to manipulate. Lastly, the model has found increasing acceptance as an explanation 

for many biological phenomena such as sensory perception and analysis. 

As seen in the preceding, discussion, the SOFM is a very efficient and effective model 

for solving the TSP. As1 compared to other non-SOFM algorithms, some variants gave good 

solutions for tour lengths even for problems of considerable size (10,000 cities). These results 

appear promising but there is a great deal of work yet to accomplish. Of primary importance is 

further research to discover the mathematical properties of the model. Some work has been 

done of the mathematical properties of neural computing in general (Amari, 1990; Amari, 1991). 

Other articles have dealt with the properties of self-organizing maps in particular(Erwin et al., 

1992(a); Erwin et al. 1992(b); Lo and Bavarian, 1991; Ritter and Schulten, 1986; Ritter and 

Schulten, 1988; Yang and Dillon, 1992). Much of the current efforts has been focusing on one-

dimensional cases of the SOFM (as used for the TSP). Since it is the higher-dimensional 

instances of the SOFM which is used in a vast majority of applications, it is necessary that 

properties of the higher-dimensional cases be investigated. 

Many applications of the SOFM model have been proposed. This paradigm lends itself 

well to applications requiring unsupervised clustering of data vector points. The clustering is 

usually based on some dominant characteristic of the input set. This characteristic does not have 

to be known (and often is not) prior to the network training. Since the base model does not 

actually classify the various resulting clusters, classification (if desired) must be done by either 

adding a classifying back-end to the trained map (LVQ1) or by direct alterations to the basic 

model (counterpropagation). For instance, the semantic map on figure 8 reflects a mapping of 

discernible domains and sub-domains of words. The axis 9f th� map are not important, only the 

representative input-output signal at each cluster. 

Further research into the properties and applications of the SOFM is both necessary and 

highly justified. Current research has revealed many properties of the model. In addition, a 

number of useful applications have been designed such as those in the areas of speech 

recognition and robotics. Also, a couple of recent articles have discussed hardware 
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implementations of the SOFM model (Macq et al. 1993; He and Cilingirglu, 1993). Thus, the 

areas for further research are many and varied. Advances in mathematical properties could be 

pursued. Existing applications could be improved or new applications developed. The 

development of applica)ions should be particularly important, for this is the real test of the · 

usefulness of the model. For instance, as discussed earlier, advances in semantic recognition 

could help in the development of relational query by browsing systems. Also, applications in the 

area of robotics will be useful such as smoothing the movement of robotic arms. Lastly, 

applications in the areas of medicine or biology could be very beneficial. A possible example is 

gene sequencing. Whether pursuing theoretical or application development, future research into 

self-organizing feature maps should be both challenging and rewarding. 
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