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Abstract 

A fuzzy decision making model is proposed to support decision 

making under uncertainty. This model incorporates three theories 

and methodologies: class ical decision making theory under conflict, 

as suggested by Luce and Raiffa (1957), the fuzzy set theory of 

Zadeh (1965, 1984), and a modified version of the back propagation 

neural network algorithm originated by Rumelhart et al. (1986). An 

algorithm which implements the model is also described. 

Key words: Fuzzy sets, games and decisions, neural networks. 
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A FUZZY DECISION MAKING MODEL 

Introduction 

Research in artificial intelligence has shown that the use of 

Bayes probability functions for describing subjective judgments is 

unjustified and may lead to erroneous results (Wierzchon 1982 ; 

Shortliffe 1976 ; Szolovits & Pauker 1978). In recent years, fuzzy 

set theory (Zadeh 1965) has regarded as a useful and systematic 

theory that can be more applicable when dealing with uncertainty 

and vagueness in human-originated information. 

Research into fuzzy decision making is still at an early 

phase, and faces two major challenges. First, fuzzy decision 

making models need the supporting frameworks of general theories 

(Dubois and Prade 1980) . Since fuzzy set descriptions make sense 

in human information processes, fuzzy decision making should be 

more closely associated with general human decision behavior and 

linguistic preferences. Secondly , on a practical level, the 

question of fuzzy membership function elicitation which has a lack 

of simple and convincing techniques has raised many criticisms 

(Dubois & Prade 1989; French 1984). Sophisticated mathematical 

formulations are useful for theoretical discussion, but the 

associated assumptions are often too restrictive for practical 

applications. Recently, there has been a rapid advance in the 

theory and application of neural networks and fuzzy reasoning 
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(Koska 1992). Interpolation plays a central role in both neural 

networks and fuzzy reasoning (Zadeh 1992). In fuzzy systems, the 

input-output pai�s have the structure of IF-THEN rules that relate 

fuzzy variables whose values are inexact. On the other hand, 

neural networks are able to create an approximation framework that 

can be used to generalize the IF-THEN rules through learning from 

examples, due to the adaptive nature of the neural network learning 

process. 

In the light of this, this paper incorporates three theories 

and methodologies into the fuzzy decision making paradigm. 

(1) The classical decision making theory, suggested by Luce and 

Raiffa (1957), provides a theoretical framework for dealing with 

conflict compromise in decision making under uncertainty. 

(2) The fuzzy set theory, created by Zadeh (1965, 1984), presents 

uncertainty in a more natural form in dealing with human subjective 

judgements. 

(3) A modified version of back propagation neural networks 

(Rumelhart et al. 1986) serves as a powerful tool in implementing 

fuzzy membership functions and fuzzy decision models. 

Fuzzy Decision Making Model s 

The Simple Fuzzy Decision Making Model 

Zadeh1s (1965) original basis for fuzzy sets was to consider 

a membership function µy(X) which associates an observation X (a 
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vector variable, X=(x1 . • •  �)) with a real number y in the interval 

[O, 1] (the likelihood of the observation belonging to Y) (See 

Figure 1) . In 1;he fuzzy decision making context, X is a decision 

input or an object, and y is a decision output or res ponse. 

** Insert Figure 1 about here ** 

A crucial issue in the practical applications of fuzzy sets is 

to find a fuzzy membership function µy(X). Because fuzzy 

membership functions describe subjective judgements for particular 

problems, the only way of finding a fuzzy membership function is to 

obtain sample judgements from decision makers. A general form in 

representing human knowledge is the IF-THEN production rule: 

IF X is Ai THEN y is ci i=l . . .  n 

where n is the number of observations. Since fuzzy membership 

functions are monotonic (Zadeh 1984), a monotonic interpolation 

curve (in the wide sense of a curve, surface or hypersurface) which 

passes through all the data points representing the IF-THEN 

relation in syllogis m (1) can be used for approximate reasoning in 

decision making. As will be shown in this article, n�ural networks 

with a certain learning algorithm can ·be employed for modeling 

these fuzzy membership functions. 

In the context of fuzzy decision making, the problem of inference 

in approximate reasoning can generally be stated as the following 

syllogism. 
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IF X is Ai 

X is A' 

THEN y is ci 

Y is C' 

i=l . . .  n 

(1) 

where A' is the constraint on independent variable X, and c' is the 

deduced constraint on dependent variable y. This means that, for 

practical purposes, each of the n production rules associates X, 

specified by a non-fuzzy vector A, with y, specified by a non-fuzzy 

number c. c is usually called the certainty factor (CF) value in 

production rule systems. In this model, the fuzzy membership is 

crisp. The generalization of the set of rules and the decision 

making syllogism are illustrat ed in Figure 2(a). 

** Insert Figure 2 about here ** 

It is also possible to consider a fuzzy conclusion c� given a fuzzy 

constraint A- . Intuitively, one may define a fuzzy number A- = [A-, 

A, A+] as shown in Figure 2(b), and model the decision making based 

on inf orrnation about A- and A+ as well as the associated 

possibility distributions (Tanaka et al. 1989; Liang & Wang 1992). 

However, the possibility distribution of A- is often very difficult 

to justify. Using an assumption based on model developers' 

opinions such as " a  fuzzy number A- has a triangular distribution" 

may or may not pertinent to a particular situation. 
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The Ultrafuzzy Decision Making Model 

Frequently, the membership function takes on fuzzy values 

itself. This type of fuzzy set is called ultrafuzzy (Zadeh 1984). 

Ultrafuzzy sets are causally connected to the real world due mainly 

to imprecise knowledge obtained from domain experts (Turksen 1989) . 

There has been a g reat deal of work concerning the techniques of 

approximate reasoning relating to ultrafuzzy sets (see, for 

instance, Hirota 1977, Zadeh 1979, Bandler and Kohout 1984, Turksen 

1989, Martin-Clouaire 1989). Most of these techniques address the 

issue of deducing conclusions under uncertainty. Considering that 

the n rules representing the judgments of the decision maker 

constitute an ultrafuzzy set, the relationship between X and y can 

be expressed in the form: 

IF x is Ai THEN y is [c-, c+]i i=l . . .  n 

where [c-, c+] specifies the ultrafuzzy interval, as shown in 

Figure 3. 

** Insert Figure 3 about here ** 

Without loss of generality, we do not differentiate between 

situations where the rules are elicited from different experts, or 

from a single decision maker, due to the fuzzy nature of decision 

making. Any decision maker - a single human being or an 

organization - which can be thought of as having a unitary interest 

motivating its decisions, can be treated as an individual when the 
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utility of a decision is being considered (Luce & Raiffa 1957, 

pl 3) 

In practice, the knowledge available for deriving a ultrafuzzy 

interval is usually very limited. We often do not have enough 

information to justify an assumed distribution of y. Estimating 

the fuzziness of c- and c+ is even more controversial. More 

importantly, from our point of view, the " actual" fuzzy decision 

which is made is subjective, based on the particular decision 

environment. The modeling of fuzzy decision making should based on 

considerations of how to incorporate information provided by both 

historical data and the current decision situation. From t his 

point of view, decision making models based on distribution 

functions often have drawbacks due to their after-the-fact nature 

(Archer & Wang 1991) In our approach we try to model decision 

making based on a fundamental consideration that decision making 

behavior is rational instead of random. 

We now investigate ultrafuzzy functions in more detail. In 

Figure 3, the lower fuzzy function provides information that the 

membership y value for a given X should not be below the specified 

value according to available evidences. The upper fuzzy function 

provides information that the membership y value for a given X 

should not be above the specif ied value according to available 

evidence. These two functions can be treated as a pair of belief 

and plausibility functions respectively (Shafer 1976; Zadeh 1978). 

Note the following relationships represented by the two fuzzy 
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functions (Shafer 1976 ; Zadeh 1978) : 

Ply(X) + Pl_y (X) � 1 ( 2 . 1) 

Bely (X) + Bel_y (X) s 1 (2. 2) 

Ply (X) + Bel_y (X) = 1 (2. 3) 

Bely (X) + Pl_y (X) = 1 (2. 4) 

where Ply (X) , Pl_y (X) , Bely (X) and Bel_y (X) are the plausibility 

function that an observation belongs to Y, the plausibility 

function that an observation does not belong to Y, the belief 

function that an observation belongs to Y, and the belief function 

that an observation does not belong to Y, respectively. If the 

equality holds in equations (2. 1) and (2. 2), the two fuzzy 

functions merge into one crisp fuzzy function. 

We now define two fuzzy functions based on these plausibility 

and belief functions for ultrafuzzy. 

Definition 1: A participation function is defined as follows: 

Pary(X) = (Ply(X) + Bely(X)) / 2 (3) 

A participation function measures the extent to which the set Y 

''participates" in X (Tsichritzis 1971). It represents the average 

of the y values for the two functions at a particular realization 

of X (Figure 4(a)). Given an X ,  the fuzzy decision making result 

should be in the region of Par(X), but should be fuzzy. 

Participation functions possess the property 

Pary (X) + Par_y (X) = 1 (4) 
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Definition 2: A moderation function is defined as follows: 

Mody(X) = Ply(X-�X) = Bely(X+�X) ( 5) 

where �X is an increment of X along the direction of x1 =X2= . . .  =�. 

A moderation function measures the extent to which the fuzzy set Y 

is 11 moderated11 by the plausibility and belief functions. It 

represents an average of the X values for the two functions at a 

particular realization of a fuzzy membership y value (Figure 4(b)). 

It can be verified readily that the moderation function possesses 

the property 

Mody (X) + Mod_y (X) = 1 ( 6) 

It can easily be proved that Pary(X) and Mody(X) intersect at 

least one in the range of X. They may also entirely overlap, where 

Pary (X) =Mody (X) . The intersection set of Pary (X) and Mody (X) is 

called the consensus set Cony(X) (Figure 4(c)). 

** Insert Figure 4 about here ** 

According to classical decision making theory (Luce & Raiffa 

1957), there are interactions between human perceptions of 

independent variables and the responses humans make in decision 

making. Decision making can be regarded as a kind of game to 

maximize utility and minimize risk. In the ultrafuzzy context, the 

plausibility and belief functions can be regarded as an analogy of 

the two decision functions used by two cooperative persons who are 

playing competitive games in decision making. The ultrafuzzy 
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interval is a measure of conflict in decision making. We will use 

the participation and .moderation functions to solve conflicts in 

the ultrafuzzy cpntext. 

Suppose a decision maker (DM) is given an object which has 

attribute values represented by X. If a decision based on X is to 

be made in a fuzzy environment, the DM does not perceive X as a 

non-fuzzy value. In this case, the DM should make a decision 

Pary (X) in order to minimize the biases (the Utility conflict) , 

caused by the inconsistency between the plausibility and belief 

functions (Figure S (a)). On the other hand, using the moderation 

function Mody (X), the DM may act to reduce the differences in the 

perceived X given a decision y (Figure 5 (a)) . The subjective 

inconsistency between the plausibility and belief functions, given 

a decision y, is called the Risk conflict. The final decision is 

a consequence of the compromise between the two Utility and Risk 

conflicts (see (Luce & Raiffa 1957)). A rational DM would make a 

decision which falls within the interval between Pary (X) and Mody (X) 

where both the plausibility and belief fuzzy aspects are 

11 satisfied11 (Figure 5 (a)) and utility difference and risk 

difference are minimized simultaneously. The int�rval between 

Pary (X) and Mody (X) is called the equilibrium fuzzy set Equy (X) . 

This decision region is a 11 no-winner-no-loser11 interval. We then ' 

conclude that, given an ultrafuzzy decision region and a non-fuzzy 

decision object x, the fuzzy decision making ·result 

[Pary (X) , Mody (X)] (Figure 5 (a)) ; that is 
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c- E Equy(X I X=A) 

** Insert Figure 5 about here ** 

(7) 

In cases where c- is an interval instead of a single value, the 

decision could be fuzzy. In other words, the DM can make any 

decision within the interval. If the DM is risk averse, the 

decision would be more close to Pary(X), and vice versa. Unlike 

statistical models, this rational fuzzy decision making model does 

not result in a random distribution of outcomes. 

We now consider cases where the X attributes are fuzzy. Fuzzy 

inputs for decision making may be due to one of two reasons. In 

some cases, a fuzzy decision input is explicitly defined by the 

environment , and the fuzzy interval is g iven to the DM. More 

often , a decision is a sequence of reasoning processes , where the 

decision output at a decision stage is in turn an input of the next 

decision stage. Assume X has a fuzzy interval [A-, A+]. In high 

dimensional cases, [A- , A+] is a hyper-cube if we assume that there 

is no interaction between the decision variables, and A- and A+ 

represent the lowest and highest vertexes. We model decision 

making by recognizing the ultrafuzzy interval as a whole. By 

maximizing utility and minimizing risk, the final decision should 

be in a fuzzy interval such that 

c- E Equy(X I X=A-) n Equy(X I X=A+) ( 8) 

as shown in Figure 5 (b) The decision shown in Figure 5 (b) is 
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called a strong solution since each of the "players" is satisfied 

with one decision aspect, either more utility or less risk. 

However, there may be cases where the uncertainty or fuzziness in 

decision input is too great , and c- as represented in equation (8) 

is empty. In this case, there is no strong solution. 

Nevertheless, the DM may make a decision by adjusting the 

perception of the fuzzy input to minimize utility difference and 

risk difference simultaneously. The resulting decision when there 

is no strong solution is called a weak solution, and 

c- E [ inf(Equy(X I X=A+)), sup(Equy(X I X=A-)) ] (9) 

as shown in Figure S(c) (d). 

In the above discussion , the concept of plausibility and 

belief functions was used to construct conflict measures. In our 

opinion, a conflict is connected with fuzzy inferential evidence, 

and is appropriate to model human strategies in decision making. 

Whether in the individual decision making context or in the group 

decision making context (e. g. (Poole et al. 1991)), the nature of 

conflict measured by the plausibility and belief functions helps to 

explain the compromise phenomena observed in decision making. 

The Back-Propagation Neural Networks and Fuzzy Membership Functions 

A serious problem in application of the fuzzy theory is in 

implementing it without strict assumptions or sophisticated 

construction techniques, because fuzzy membership functions are all 
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based on subjective judgements in a particular problem domain. 

Fortunately, our fuzzy decision making model can be readily 

implemented by using neural network interpolation techniques. 

In the last few years , interest in neural networks has grown 

dramatically. Research into neural networks is still in its 

infancy, but it is expected that neural network models will be 

useful both as models of real brain functions and as computational 

devices. More complete overviews of artificial neural networks for 

the latter purpose may be found in Lippmann (1987) and Carpenter 

(1989). One of the most popular neural networks is the layered 

neural network, implemented with the back-propagation least mean 

square error (BPLMS) learning algorithm (Rumelhart et al. 1986). 

A back-propagation (BP) neural network with a single output node 

(see Figure 6) will perform a transformation from an input vector 

X to a scalar output y ;  that is 

y = 'l'(X) (10) 

** Insert Figure 6 about here ** 

Note that the presence of a single output node has the special 

meaning in our discussion context, that y is a single conclusion in 

a production rule. If there are t output nodes representing the t 

functions Gg (g=l , .. . t) in multiple conclusion cases, then each of 

these t functions Gg (g=l , . . . t) could be represented by a single 

output node neural network. This paper assumes the neural network 
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with a single output node for our purposes. 

A training data set is usually a set of samples from some 

functional mappi�g , which neural networks are able to learn through 

the BPLMS algorithm. Neural network training can be described as 

an interpolation problem. When the neural network has learned the 

training set, it implements a function that passes through the 

points defined by the training set. A full explanation of the 

BPLMS learning mechanism is given in Rumelhart (1986) . Cybenko 

(1989) proved that, using the BPLMS algorithm, layered neural 

networks with only one hidden layer and sigmoid function nodes can 

closely approximate any continuous function. That is, in principle 

there is no need for more than one hidden layer in order to 

generate an arbitrary function. 

As discussed earlier, each production rule to be generalized 

represents a pair (X, y) describing a certain relationship between 

the conditions and conclusion. If we present these data to the 

neural network, the neural network with the BPLMS learning 

algorithm will be able to learn these data and generate a "perfect 

fitting" function , given that the neural network has enough hidden 

nodes. However, our objective is to generali�e knowledge 

represented by the individual production rules, rather than to 

simply recite these rules. In fact, we are more interested in the 

effectiveness of the neural networks in interpolation. The 

standard BPLMS neural networks learning algorithm, however, have 

difficulties in generating an effective interpolation. That is, 
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given a set of training data for the standard BPLMS neural network, 

the final fitted result could be unpredictable (Kawabata 1991) . 

This is because the linkage of a limited number of training data 

points may be implemented by the neural network in unnatural ways. 

To provide regular curve fitting based on a limited number of 

training points, one may use additional information, or heuristics. 

One possible solution is to use a form of local linear fitting, 

called interpolation training or k-neighbour interpolation training 

(Kawabata 1991) . Instead of using local information to regulate 

the curve fitting, in which the smoothness of the curve depends on 

the training point sample density (Kawabata 1991), our approach 

uses a global smoothing training strategy suggested by (Wang 1990) 

and applied in (Archer & Wang 1991, 1993) . In this training 

method, the BPLMS neural network is limited by monotonicity 

constraints during the training process so that it will generate a 

monotonic function. Monotonicity is an important characteristic of 

fuzzy membership functions (Zadeh 1984) (see Figure 1) which are 

commonly used in production rule-based expert systems and 

represented in CF values (Buchanan and Shortliffe 1985) . This is 

a basic principle we have used in applying neural network 

techniques to generate fuzzy membership functions (Wang 1994) . 

According to Wang (1994), a crisp fuzzy function can be 

generated using a single monotonic neural network. In the case of 

crisp fuzzy functions, there is no conflict involved in decision 

making, as discussed earlier. However, in cases where human 
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knowledge does not conform to a crisp fuzzy membership function, a 

pair of fuzzy functions Ply(X) and Bely(X) are to be found to form 

an ultrafuzzy set for a specific problem. Accordingly, two 

elemental neural networks, NNp1 and NNaei are needed. It is worth 

noting that, from the point of view of pure fuzzy set theory, 

Ply(X) and Bely(X) themselves are fuzzy and do not really exist, or 

could be arbitrarily defined. Our purpose in using Ply (X) and 

Bely (X) is simply to define a region for providing uncertainty 

information to decision makers. In the current context, the 

development of the functions Ply(X) and Bely(X) depends on available 

human knowledge. In cases where the available data are collected 

through a carefully designed knowledge acquisition procedure and 

carry little noise, one may use the actual frontiers of a data set 

(cf. (Keeney & Raiffa 1976)) to define Ply(X) and Bely(X). However, 

when the data carry much noise, only one outlier could distort the 

entire region, resulting in inadequate uncertainty information. In 

order to find Ply(X) and Bely(X) for which the ultrafuzzy region 

effectively and efficiently covers the data points, we developed an 

algorithm (Wang & Archer 1994) to find a pair of fuzzy functions 

which are less influenced by outliers, but without making any 

statistical assumptions. The basic idea of the method is as 

follows. Suppose that we train the neural networks with an initial 

data set. If the ultrafuzzy region is too loose due to a outlier 

which carries much noise for decision making, then we reduce the 

region between the pair Ply(X) and Bely(X) by excluding an extreme 
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point from the training data set. A compromise can be found by 

employing an iterative procedure. If reducing the region does not 

improve the compactness of the ultrafuzzy region, then the 

iterative procedure stops (Wang & Archer 1994) . This paper places 

the emphasis on the fuzzy decision process, and simplifies the 

issue of finding Ply(X) and Bely(X) by assuming that the available 

knowledge for fuzzy decision making is true, and that the data 

representing the expert knowledge carries little noise. Thus, each 

of the data points representing an expert's opinion has equal 

power. After finding Ply(X} and Bely(X) by training the two neural 

networks NNp1 and NNBel, Pary (X) is readily determined since the 

value of Pary (X) is simply the average of the output of neural 

networks NNp1 and NNBel. Thus, there is no need to construct a 

neural network for function Pary(X). However, we must employ a 

neural network to build the funct ion Mody(X). Based on the values 

of the sample data points on the generated functions Ply(X) and 

Bely (X) , we can find a data set for generating the function Mody (X) , 

according to Definition 2 and equation (5) . Using these data, we 

can then train the neural network NNMod under the monotonicity 

constraints and obtain function Mody (X) . After generating the 

three fuzzy functions, the decision maker will be able to make a 

decision, by using the neural networks in response to a given 

decision input according to the fuzzy decision making model 

discussed earlier in this paper. 
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A Fuzzy Decision Making Al gorithm 

Suppose there is an available data set which represents 

decision preferences of decision maker(s) in a fuzzy environment, 

based on historical data, surveys, or subjective estimations. 

According to the foregoing discussion, the DM may wish to use an 

algorithm that helps to make a decision which will maximize utility 

and minimize risk. We summarize such an algorithm as follows. The 

algorithm consists of two major parts. Part (1) generates the 

fuzzy participation and moderation functions for the ultrafuzzy 

analysis, based on available human knowledge which is used to train 

the neural networks. Part (2) produces decision support 

information according to the fuzzy decision making models which 

were generated from the prior data, in response to a non-fuzzy or 

fuzzy decision input. 

Part (1) 

Step 1. Verify the monotonic relationship between decision input 

X and fuzzy decision response y, based on common knowledge 

of the relationship. If it is not satisfied, then 

transform or decompose X such that the monotonic 

relationship is verified (cf. (Zadeh 1984)). 

Step 2. Collect a data set S representing decision making 

knowledge, based on subjective estimates, historical 

records of decision preferences, or surveys. Each 

observation is a data point s(X, y)es in the decision 
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space. 

Normalize X on [O, 1] and y on [Ymin' Ymax1 for 

calculation purposes in neural network training , where 

[Ymin' Ymax1 is a desired range within (0,1) ; e.g., [0. 2,0.8] 

(see (Wang and Archer 1994)) 

Step 3. Find sets Sp1 and S8e1 such that: sESPl if decision s is a 

superior-frontier point of S ,  and sES8e1 if s is an 

inferior-frontier point of S (cf. (Keeney & Raiffa 1976)). 

Train the neural networks NNp1 and NN8e1 with SPl and S8ei, 

respectively, under monotonicity constraints, and find 

the fuzzy functions Ply(X) and Bely(X). 

Pary (X) is then determined by averaging the NNPl and NN8e1 

outputs. 

Step 4. Find an artificial data set SMod by the following three 

sub-steps: 

Step 4. 1. For each observation sESPl or sESh1 find its 

Step 4.2. Find its symmetrical points s' according to 

Definition 2 and equations (5) such that 

Bely(X9,) = Ply(X9) 

Ply(X9,) = Bely(X9) if SESBel. 

Step 4.3. Find the middle point s11 of each segment 
' 

[s, s']. These points s11 constitute S000d. 

Step 5. Train neural network NN000d with SMod under the monotonic 

constraints. Mody(X) is then represented by the trained 
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Part (2) : 

Step 6. Present a new decision input to the neural networks. The 

decision conclusion is derived as follows. 

Case 1: When the decision input A is non-fuzzy, 

the fuzzy decision conclusion is an interval: 

c- = [min{Pary (A), Mody (A)}, max{Pary (A), Mody (A)}] . 

Case 2: When the decision input A- is fuzzy, with 

its interval [A-, A+], 

Case 2.1: When 

min{Pary(A+) ,Mody(A+)} s max{Pary(A-) ,Mody(A-)}, 

c- = [min { Pary (A+) , Mody (A+) } , max { Pary (A-) , Mody (A-) } ] 

is a strong decision making solution. 

Case 2.2: When 

min { Pary (A+) , Mody (A+) } > max { Pary (A-) , Mody (A-) } , 

c- = [max{Pary(A-) ,Mody(A-)}, min{Pary(A+) ,Mody(A+) }] 

is a weak decision making solution. 

Step 7. It may be desirable to transform the neural network output 

values to the initial scale [0,1] by de-normalizing the 

neural network output values according to (Wang and Archer 

1994). 
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Concl usion 

In this paper, a fuzzy decision making model is developed, and 

an algorithm in implementing the model using neural networks is 

suggested. According to fuzzy set theory, it is asserted that an 

ultrafuzzy set which is built based on historical data, subjective 

judgements, and expert knowledge can serve as a foundation in fuzzy 

decision making. Instead of using probability or possibility 

distributions, the model applies the classical decision making 

theory of maximum utility and minimum risk. There are two 

advantages in using classical decision making theory over 

distribution-based methods. First, on a practical level, 

probability or possibility distributions are often difficult to 

verify in a fuzzy decision making environment, while the classical 

decision model does not require such strict assumptions. Second, 

decision making models based on probability of possibility 

distributions may result in divergent decision behavior. The fuzzy 

decision model developed in this paper does not have this pitfall. 

We use fuzzy neural network models to implement our fuzzy 

decision making model. The algorithm suggested in this paper can 

be applied in supporting decision making in a fuzzy environment, 

where only limited decision data are available, and also to 

approximate reasoning in expert systems. 
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Figure Captions 

Figure 1. Fuzzy Membership Function 

Figure 2. A Decision Making Sy llogism in Crisp Fuzzy Function 

Figure 3 .  Ultrafuzzy Function 

Figure 4. Participation and Moderation Functions of Ultrafuzzy 

Figure 5 .  A Decision Making Syllogism in Ultrafuzzy Function 

Figure 6 .  One Hidden Layer, Single Output Neural Network 
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