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Approxi1na�ion Methods for Discrete Lot Streaming 
in Flow Shops* 

Jiang Chen and George Steiner 
Management Science and Information Systems Area 

McMaster University 
Hamilton, Ontario, Canada 

Abstract 

Lot streaming is the process of splitting a job or lot to allow overlapping 

between successive operations in a multistage production system. This use 
of transfer lots usually results in a shorter .makespan for the corresponding 

schedule. In this paper, we present two quickly obtainable approximations of 

very good quality for the discrete lot streaming problem in flow shops. 

1 Introduction 

Lot streaming is the process of using transfer batches to move the processed portion 
of a production lot to downstream machines so that the makespan of the schedule 
can be shortened and the work-in-process inventory levels can be lowered. The term 
was introduced by Reiter[l5], but the idea has been considered many times under 
different names. The increased interest in its applications over the last few years is 
probably due to the fact that it is consistent with the Just-In-Time (JIT) philosophy 
of making small sublots. It also agrees with the b�sic .idea of the OPT scheduling 
package [7]. 

Szendrovits [16] analyzes the lot streaming problem in a flow shop ,for a single 
job with equal sublot sizes. Goyal [8] finds the optimal sublot sizes in Szendrovits' 
model. Moily [12], Jacobs and Bragg [10], Kulonda [11] and Graves and Kostreva 
[9] also demonstrate reductions in production time and cost by using transfer lots. 

*This research was supported in part by the Natural Sciences and Engineering Research Council 
of Canada under Grant No.OGPOOOl 798. 
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Steiner and Truscott [17] find the optimal lot streaming schedules in an open shop 
with equal size transfer lots and no idling on the machines. Cetinkaya and Gupta [3] 
analyze the lot streaming problem for a single job in a flow shop with the total flow 
time criterion. 

Most paper� on l�t streaming consider the objective of minimizing the makespan in 
an m-machine flow shop where each item is processed on the m machines in the order 
1, . . .  , m. Trietsch, in [18] and [19], and Baker [1] independently develop a conceptual 
framework for the problem. They present a classification scheme and review the most 
important results in [20] . Vickson [21] solves the lot streaming problem for multiple 
jobs in a two-machine flow shop with job setup times and sublot transfer times. 

In this paper, we consider the problem of minimizing the makespan by splitting 
a single job of U items into s discrete (integer valued) sublots in an m-machine flow 
shop. More formally, we have m machines, denoted by M1, M2, ... ,Mm, and each item 
of the job has positive processing times Pi,P2,···,Pm on M1,M2, ... ,Mm, respectively. If 
xi,j (i = 1, . . .  , m ,  j = 1, . . .  , s) is the size of the jth sublot on Mi, then our objective 
is to find the integer xi,j values which minimize the makespan. If the integrality 
requirement for the xi,j is relaxed, we have the continuous version of the problem. 

Under the assumption of item availability individual items become available for 
processing at the next machine as soon as they are finished on the current machine 
(unit size transfer lots). We use the assumption of batch availability, i.e., items 
become available for processing at the next machine after the current machine finished 
processing the last item in their sublot (batch). For m = 2 there is no difference 
between the two assumptions, and Vickson and Alfredsson [22] solve the continuous 
makespan minimization problem for this case. The same problem is solved with 
detached setups in [4] and with attached setups in [2] . Another, frequently used 
model further relaxes the batch availability assumption by considering only consistent 
sublots, i.e., Xi,j = Xi+I,j for i = 1, . . . , m - 1 ,  j = 1, . . . , s. In this case, we can write 
Xj instead of Xi,j· 

Most analytical results assume batch availability and apply to the continuous 
version of flow shop problems. Baker [1] shows that linear programming can be used 
to find the consistent sublot sizes which minimize the makespan. Potts .and Baker 
[14] show that for a single job, it is sufficient to c<:>nsi�er identical sublot sizes on 
the first two machines, and on the last two machines. The m = 2 case is solved in 
[14] and in [18] . Glass et. al. [6] develop the solution to minimize the makespari 
for a single job in a three stage production process. Their algorithms compute the 
minimum makespan in O (log s) time for both the flow shop and job shop problem. 

Although we need integer valued solutions for most practical applications, much 
less is known about the discrete version of these problems. Trietsch and Baker [20] give 
dynamic programming algorithms which solve the two- and three-machine problem in 
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0( s2U) time. Vickson (21] uses bisection search to find the optimal integer solution in 
O(s logU) time form= 2. Chen and Steiner [5] give a strongly polynomial solution, 
requiring O(s) time, for the same problem. As Baker [1] points m1t, the best consistent 
sublot solution for th� discrete version of them-machine flow shop problem can be 
found by integer linear programming, however, this is not a satisfactory solution 
method in general. 

In this paper, we present two very good quality approximative solutions for the 
discrete lot streaming problem in flow shops. Both approximations are derived from 
the best continuous solution in 0( s) time, so they can be quickly obtained for practical 
applications. The paper is organized as follows. Section 2 introduces a network 
representation for the problem. Section 3 presents the approximations for the two
and three-machine problem. Section 4 contains the approximation results for the 

m > 3 case. Concluding remarks are presented in the last section. 

2 Network representation 

It is known [14] that there is always a consistent sublot optimal solution if m = 2, 3. 
If m > 3 ,  then consistent sublots are not necessarily optimal, but these are the only 
solutions obtainable in reasonable time even for the continuous version of the problem. 
Nevertheless, these are very useful, as they are easy to implement in practice and lead 
to substantial reductions in the makespan. 

Let Ci,j denote the completion time of sublot j on machine i (i = 1, 2, .. , m, J = 
1, 2, .. .  , s). The following constraints must be satisfied by any feasible solution. 

1) Machine capacity constraints : 

Ci,j 2: Ci,j-1 +Pi Xj ( i= l, 2, ... ,m, j = 2, ... s ); 

2) Production constraints : 

Ci,j 2: ci-1,j +Pi Xj ( i = 2, ... , m, j=l, 2, ... ,s ); 

3) Initialization constraint : 
i 

Ci,l 2: L PjXl j=l 
( i=l, 2, ... ,m}. 

4) Xj 2: 0 is integer (i = 1, ... , m, j = 1, 2, ... , s). 

Following the approach in [13], such a solution can be represented by a network 
N(x) which contains a vertex for each sublot on every machine (see Fig. 1). In the 
network, Xi (i = 1, 2, ... , s) is the ith sublot size. The directed arc from vertex (i,j) 
to vertex (i + l, j) (i < m) represents the production constraint that sublot j can be 
processed on machine ( i + 1) only if it is completed on machine i. The directed arc 
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from vertex (i , j) to vertex (i, j + 1) (1 � j < s) represents the machine capacity 
constraint that sublot (j + 1) can start on Mi only when the jth sublot is completed 
on it. The vertex (i , j) has WE?ight PiXj, 1�ism,1 � j � s. 

M1 

M2 

Mn 

Figure 1: Network representation for a solution 

Using the network representation, the objective becomes to determine the sublot 
sizes which minimize the length of the longest path in the network, where the length 
of any path is the sum of the weights of the vertices on it. Any longest path is referred 
to as a critical path. A subpath of a (critical) path is called a (critical) segment. Let 
M (x) be the length of a critical path in N(x). 

Let xc = (xL .. . , x�) be the optimal solution (with consistent sublots) for the 
continuous version of the problem, with makespan Mc. Let x* = (xi, . . . , x;) represent 
the optimal integer sublot sizes (with consistent sublots ). 

3 Two and three machines 

We can obtain an integer solution x' = (x�, . . .  , x�) from xc as follows: Define u = 

u - L::=I L xi J . Let x� = xi if xi is integer, and x� = r xil for the first u sublots which 
are not integer in N (xc), and x� = LxiJ for the res� of �he sublots, where f xl is the 
smallest integer greater than or equal to x and L x J is the largest integer smaller than 
or equal to x. 

3.1 Two-machine case 

It can be easily seen that the optimal solution can be obtained in constant time for 
the case PI = p2• Therefore, only the PI =J p2 case is of interest. The following result 
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was proved in [5]. 

Theorem 1 M (x*) :S M (x
'
) <Mc+ min{pi,p2} :S M (x*) + min{pI,P2}. 

3.2 Three-machine case 

We must distinguish two cases, depending on whether p� :S PIP3 or p� > PIP3· 

Case 1 p� :S PIP3 

X1 
Ml 

r1-1 
M1 �-- c=i-- c=i---

l l l 
M3 � - c=i-- c=i---

Xk Xs 

IT 
CJ------� 

1 1 

Figure 2: Network for the three:--machine problem when p� :S PIP3. 

For convenience, we assume that PI :S p3• We can similarly solve the reverse problem 
if PI > p3, i.e., p3,p2,PI can be treated as the unit processing time on MI, M2, M3, 
respectively. 

Theorem 2 If p� :S PIP3, then there exists a k such that segment ( 1, k)- (21 k) - ( 3, k) 
is critical in N(x) for any feasible solution x. 

Proof. Assume that no such sublot exists, then there must be i, j ( ( < j) such 
that ( 1, i) - (2, i) - ... - (2, j) - ( 3, j) is critical but (2, i) - ( 3, i) - . . .  � ( 3, j) and 
( 1, i) - ... - ( 1, j) - (2, j) are not critical. Therefore, ( 1, i) - (2, i)- ... - (2, j) should 
have a longer length than ( 1, i) - ... - ( 1, j) - (2, j), i.e., 

j j-I 
P1 E Xz < P2 E Xz, 

l=i+I l=i 
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and (2, i) - ... - (2, j) - ( 3, j) should have a longer length than (2, i) - ( 3, i) - ... - ( 3, j), 
i.e., 

j j-I 
· P2 L X1 > p3 L X1. l=i+I l=i 

(2) 

Multiplying (1) and (2) yields a contradiction with the assumption of p� :'.S PIP3.D 
The critical path of Theorem 2 is shown with heavy lines in Figure 2. 

Theorem 3 If p� :'.S PIP3, then M(x*) :'.S M(x') < Mc+ PI+ P2 :'.S M(x*) +PI + P2· 

Proof. Let 8i=x� -xf for i = 1, 2, ... , s. 
Let us denote the length of the path containing segment (1, i) - (2, i) - ( 3, i) in 

N(x') by Mi(x'). Then 

i I I S I 
- PI I:: X1 + P2Xi + P3 I:: X1 l=I l=i 

i-I s 

- Mi(xc) +PI L 81 +(PI+ P2)8i + P3 L 81 l=I l=i 
i-I i-I 

- Mi(xc) +PI L 81 +(PI+ P2)8i - P3 L 81 l=I l=I 
< Mc +P1 +P2, ( 3) 

where the third equality holds because l::f=I 8i = 0, and the inequality is true since 
l8il < 1 and PI :'.S p3. 

Based on Theorem 2, M(x') =m�x Mi(x'), so from ( 3) we obtain that M(x*) :'.S 
i 

M(x') < Mc+ PI+ P2· D 

Case 2 p� > p1p3 

Theorem 2 is not necessarily true in this case. Let g :'.S h be such that the path 
(1, 1)- ... - (l, g) - (2, g) - ... - (2, h) - ( 3, h) - ... - ( 3, s) is critical. The network 
structure is shown in Figure 3. 

The first approximation x' reassigns all the fractional parts in the s sublots of the 
continuous solution to the first u noninteger sublots. In the following, we define a 
second integer approximation, denoted by x" = (x�, ... , x:), which redistributes the 
fractional parts in a more balanced fashion over the entire range of the sublots: 

1. Define �i = xf - LxfJ for i = 1, ... , s. Let x; = xf if xf is integer for 1 � i :'.S s. 

2. If xj is the first noninteger sublot and k � j is the first index such that 

L�=j�l :'.S 1 < I::�,;]�i,then letx; = jxjl =xj+(l-�j),x; = LxfJ for l = j+l, ... ,k. 
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Figure 3: The network structure when p� > PIP3. 

Reduce xk+I by the fractional amount (1- �j) - :L�=HI �1 (what we have reassigned 
from it to xj) , and repeat the process from 2. for the next fractional j (j � k + 1) in 
xc. 

For example, if we had xc = (12.3, 15.4, 18.7, 27.8, 36.3, 49.5) , then j = 1, 1-�j = 

0.7 and k = 2 in the first iteration. We obtain x� = 13, x; = 15 and reduce x� to 18.4, 

since 0.3 unit were moved from it to x�. The next j is 3, 1 - �j = 0.6 and k = 3. We 
get x; = 19 and reduce x� to 27.2. Finally, the next j is 4, 1 - �j = 0.8 and k = 6, 
resulting in x" = (13, 15, 19, 28, 36, 49) . 

The following lemma states more precisely the balanced nature of the integer 
feasible solution x". 

Lemma 4 If o; = x� - xi for i = 1, .. ., s, then 

i) !o�'I < 1 for i = l,. . ., s; 

ii) 0 :::; :L1=I o;' < 1 for i = 1, .. ., s. 

Proof. Both properties follow immediately from the definition of x" .D 

Theorem 5 lvl (x*) :::; M (x") <Mc+ PI+ P2:::; M(x*) +PI+ P2· 

Proof. Let path (1, 1)- ... - (1, g)- (2, g)- ... - (2 , h) - (3 , h) - ... --( 3, s) be a 
critical path in N (x") with makespan 

M (x") 
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. g ,, g-1 ,, s ,, 8 ,, < Mc +PI L 81 -P2( L 81 + L 81) + P3 L 81 
t- l==l l=l l=h+ 1 l=h 

g , ,, h ,, h-1 " < Mc +PI L 81 + P2 L 81 -P3 L 81 
l=I l=I l=I 
g ,, h " 

< Mc +PI L 81 + P2 L 81 
l=I l=I 

< Mc+PI +P2· 
s 

In the inequalities, we have used the fact that 2::: 8;' = 0 and Lemma 4. D 
l=I 

4 Them-machine case 

(4) 

We study the two integer approximations individually. Let 8� = x� -xi for i = 1, ... , s, 
and let n(u) be the last index for which we rounded up, i.e. for which x� = rx�l > xi. 
Lemma 6 At least one of following two properties should hold for the feasible solution x' in the m- machine case: 

1) n(u) :S s/2 or 

2) 2:::���) 8; :::; s/2. 

Proof. Assume neither of the two holds, then n(u) > s/2 and 'L��) 8; > s/2. 
8 I 

Since 2::: 81 = 0, we have 
l=I 

n(u) / 

'L 81 -
l=I 

-

< 

s 

8' 'L I 
l=n(u)+l 

t 1°'1 l=n(u)+l 
1 

s/2, 

where the second equality follows from the definition of n(u) , and the inequality holds 
by the assumption n( u) > s /2 and the fact that lbzl < 1. This yields a c0ntradiction 
with the original assumption. D 

Theorem 7 Form > 3, the makespan of the approximation x' is within :ZI!2 p1 + 
Pmaxs/2 of the optimal makespan, where Pmax = max{pi , ... ,pm}. More precisely, 

M(x*) :S M(x') < Mc+ L�2Pl + Pmaxs/2 :S M(x*) + L�2Pl + Pmaxs/2. 
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Proof. Let 1 :::; kI < k2 < ... < kt :::; s denote the sublot on which a critical path 
"turns" in N(x'), i.e., the path (1, 1) - ... - (1, kI) - ... - (mi, kI) - ... - (mi, k2) -
. .. - (m, k1) - ... - (m,s) is critical in N(x'). Then 

I 

M(x/)• 
,. kl / I � k2 / S / 

PI L Xt + xk1 2..., Pt + Pm1 L Xt + ... +Pm L Xt t=I Z=2 t=k1+I Z=k1+I 
k1 I I mi k2 I n(u) I < Mc +PI L Ot + Oki L Pz + Pm1 L Ot + ·· · + Pz L Oz t=I t=2 Z=k1 +I Z=ki+I 

m k1 , k2 1 n(u) , 

< Mc + L Pz + Pmax( L Oz + L Ot + ... + L Ot) Z=2 Z=I Z=k1 +I Z=ki +I 
m 

< Mc+ L Pz + Pmaxs/2, 
Z=2 

where the first inequality is true, as we omitted only nonpositive terms, and the last 
inequality holds by Lemma 6. D 

Theorem 8 The makespan of the approximation x" is within 'L�1I Pt of the optimal 
makespan. More precisely, 

( * ) ( ") m I ( * ) m I M x :::; M x < Mc + 2:1=1 Pz :S M x + 'Lz=I Pt· 

Proof. Suppose the path (1, 1) - ... -(l,]1) -(2,jI) -... - (2 , J2) -... - (m , Jm-I ) 
· · ·  - (m, s) is critical in N(x") for some 1:::; JI :::; j2:::; ... :::; Jm-l:::; s. We have 

M ( x") = Pi £: x; + P2 I: x; + ... +Pm t x; t=l Z=ii Z=im.-1 
i1 ,, i2 " s ,, 

Mc + P1 L Oz + P2 L Oz + ··· +Pm L Oz l=l Z=ii Z=im.-1 
ii " i1-l ,, s " 

- Mc + P1 'L Oz - P2( 'L Oz + 'L ot ) - .. . Z=l 1=1 Z=i2+1 
im.-2-l S im-1-l 

-Pm-1( 'L o;' + 'L o;) - Pm 'L o; Z=l Z=im.-1 +1 ' Z=l 
i1 ,, j1 -1 ,, j2 " im.�2-l ,, 

< Mc + Pl L 01 - P2 L Oz + P2 L 01 - · ·· - Pm-1 L Oz Z=l Z=l l=l Z=l ' 
im.-1 ,, im-1-l ,, 

+Pm-1 L 01 - pm L Oz l=l l=I 
i2 " im.-1 " 

< Mc + P1 + P2 L 01 + · · · + Pm-1 L Oz 1=1 1=1 
< Mc + Pl + . .. + Pm-1, 
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where we have repeatedly used 'Ef =l o;' = 0 and Lemma 4. D 

It is clear that the approximations x
' and x

" can be obtained in O (s) time from 

5 Concluding remarks 

We have presented two quickly obtainable solutions for the discrete lot streaming 
problem in an m-machine flow shop. Both represent very good quality approximations 
of the optimal solution with consistent sublots. Form= 2 or 3, the best continuous 
solutions are known to be balanced in the sense that the processing time of sublot 
j on Mi is as close to the processing time of sublot j - 1 on Mi+1 (j = 2, ... , s ) as 
possible [14] and [6]. Since our approximations change the size of any sublot in the 
best continuous solution by less than 1, the resulting integer solutions are also close 
to being balanced. This is a very desirable property in practice, as it implies very low 
idle times in the corresponding schedule. 
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