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Discrete Lot Streaming in Two-Machine Flow Shops* 

Jiang Chen and George Steiner 
Management Science and Information Systems Area 

McMaster University 
Hamilton, Ontario, Canada 

Abstract 

Lot streaming is the process of splitting a job or lot to allow overlapping 
between successive operations in a multistage production system. This use of 
transfer lots usually results in a substantially shorter makespan for the cor
responding schedule. In this paper, we study the discrete version of the two
machine fl.owshop problem to minimize the makespan. We present new insights 
into the structure of optimal schedules, which lead to a strongly polynomial 
solution for the problem. 

1 Introduction 

Lot streaming is the process of using transfer batches to move the processed portion 

of a production lot to downstream machines so that the makespan of the schedule 

can be shortened and the work-in-process inventory levels can be lowered. The term 
was introduced by Reiter [19], but the idea has been considered many times under 

different names. The increased interest in its applications over the last few years is 

probably due to the fact that it is consistent with the Just-In-Time (JIT) philosophy 
of making small or single unit sublots and it also agrees with the basic idea of the 

commercially successful OPT scheduling package [8], [10]. 

Szendrovits [20] analyzes the lot streaming problem in a flow shop for a single 
job with equal sublot sizes. Goyal [11] finds the optimal sublot sizes in Szendrovits' 

model. Moily [15], Jacobs and Bragg [13], Kulonda [14] and Graves and Kostreva 

*This research was supported in part by the Natural Sciences and Engineering Research Council 
of Canada under Grant No.OGPOOOl 798. 
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[12] also demonstrate reductions in production time and cost by using transfer lots. 
Steiner and Truscott [21] find the optimal lot streaming schedules in an open shop 
with equal size transfer lots and no idling on the machines. 

Many papers on lot streaming consider the objective of minimizing the makespan 
in an m-machine flow shop where each item is processed on them machines in the 
order 1, . . .  , m. Trietsch, in [22] and [23], and Baker [1] independently develop a con
ceptual framework for the problem. They present a classification scheme and review 
the most important results in [24]. Most papers study the continuous version of the 
problem where it is assumed that the sublot sizes can be fractional. The sublots are 
consistent if their size does not change between machines, otherwise they are variable. 
Baker [1] shows that linear programming can be used to find the consistent sublot 
sizes which minimize the makespan. When items become available for processing at 
the next machine after the current machine finished processing the last item in their 
sublot (batch), we have batch availability. In this case, Potts and Baker [17] show that 
it is sufficient to consider consistent sublot sizes on the first two machines, and on 
the last two machines, for a single job. An efficient direct solution - which does not 
use linear programming - is presented for the two-machine case in [17] and in [22]. 
Glass et. al. [9] develop directly the continuous solution to minimize the makespan 
for a single job in a three-stage production process, by analyzing the structure of the 
optimal solution. These results are extended by Chen and Steiner, in [6] and [7], to 
the case with detached and attached job setup times. Cetinkaya and Gupta [4] solve 
the continuous lot streaming problem for a single job in a flow shop with the total 
flow time criterion. 

Another lot streaming model uses the assumption of item availability when indi
vidual items become available for processing at the next machine as soon as they are 
finished on the current machine (unit size transfer lots). As it is pointed out in [24], 
there is no difference between item and batch availability in the two-machine case. 
Vickson and Alfredsson [26] solve the makespan minimization problem in the two
machine flow shop. The same problem is solved with detached setups in [5] and with 
attached setups in [2]. Warrillow [27] studies the three-machine case with multiple 
jobs and setups. 

Much less is known about the discrete version of lot streaming problems where it 
is required that each sublot size must be integer. Simple examples [24] show that the 
solution of the discrete version of a problem could be substantially different from the 
best continuous solution. Of course one could use the linear programming formulation 
of Baker [1] for minimizing the makespan in a flow shop with consistent sublots, but 
this would require finding the best integer solution for the linear program, for which 
no efficient algorithm is available. 

In this paper, we consider the problem of minimizing the makespan by splitting 
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a single job into s integer sized sublots in a two-machine flow shop. The job has 
U items in it, and each item has positive processing times PI and P2 on machine 1 
and 2, respectively. It is lmown, [17] and [24], that it is sufficient to consider only 
consistent sublot sizes even for this discrete version of the problem. Trietsch and 
Baker [24] gave a dynamic programming algorithm, which solves the two- and three
machine problem in 0( s2U) time. Cetinkaya [3] extends this to include job setup 
and removal times. Vickson [25] and Cetinkaya [3] independently show that the lot 
streaming problem for multiple jobs in a two-machine flow shop decomposes into an 
easily idenfiable sequence of single job problems, even with job setup times and sublot 
transfer times. Vickson also presents a new linear programming formulation for the 
single job problem, and proves that, using bisection search, one can find an integer 
valued solution to the model in O (slogU) time. We present a strongly polynomial 
algorithm which finds an optimal solution in O (s) time if PI =f p2, and in constant 
time when PI = p2 • What is perhaps more important, we provide new insights into 
the structure of the optimal solutions for the discrete version of the problem. Among 
these, we show that the shortest makespan realizable with integer valued sublots is 
always very close to the continuous optimum for the problem. In other words, the 
integrality requirement does not significantly reduce the savings achievable in the 
makespan by lot streaming. 

The paper is organized as follows. Section 2 gives a network representation for the 
problem. Section 3 contains the detailed analysis of the structure of the optimal solu
tions. The next section proves worst-case bounds for the approximations by "equal" 
sublots and the adjusted continuous solution. Section 5 presents the polynomial time 
solution for the problem. A summary and conclusions are presented in Section 6. 

2 Network representation 

In the two-machine case there is only one set of sublots (transfers from machine 1 
to machine 2 ), so we can assume without loss of generality that the sublots are 
consistent. Let Xj represent the jth sublot size and let Ci ,j denote the completion 
time of sublot j on machine i (i = 1, 2, j = 1, 2, .. . , s). The following constraints 
must be satisfied by any feasible solution. 

1) Machine capacity constraints : 

Ci ,j > Ci ,j-I +Pi Xj 
2) Production constraints : 

C2 · > CI · + P2 x · ,J - ,J J 
3) Initialization constraint : 

( i = 1, 2, j = 2, ... s ) ;  

( j = 1,2, . . .  , s  ) ;  
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CI,I > PIXI 
4) Xj � 0 is integer. ( j = l ,2, ... , s) . 

Following the approach in [16], such a solution can be represented by a network 
N(x) which contains a vertex for each sublot on every machine (see Fig. 1). Machine 
i is denoted by Mi for i = 1, 2. The directed arc from vertex (1, j) to vertex (2, j) 
represents the production constraint that sublot j can be processed on M2 only after it 
is completed on MI. The directed arc from vertex ( i, j) to vertex ( i, j + 1) (1 ::; j < s) 
represents the machine capacity constraint that sublot (j + 1) can start on Mi only 
when the jth sublot is completed on it. The vertex (i, j) has weight PiXj (1 < i ::; 
2, 1 < j ::; s), where Xj is an integer. 

Using the network representation, the objective becomes to determine the sublot 
sizes which minimize the length of the longest path in the network, where the length 
of any path is the sum of the weights of the vertices on it. Any path from vertex 
(1, 1) to (2, s) is called maximal and any longest path is referred to as a critical path. 
A subpath of a (critical) path is called a (critical) segment. We call sublot j critical 
in N(x) if there is a critical segment containing the arc from (1, j) to (2, j). We use 
M(x) to denote the length of a critical path, and Mi(x) =PI Ef=I X1 + P2 'Lf=i X1 to 
denote the length of the path (1, 1)- .. .  - (1, i) - (2, i) - ... - (2, s) (i = 1, 2, . . .  , s) for 
sublot sizes x. 

X1 Xie x. 
M1 !JJ-lli 
M1 �-c:::J - �c::::J--� 

Figure 1: The network for a solution 

Lemma 1 M(x) � min{pI,P2} + U max{pi,P2}· 

Proof. First we assume PI ::; p2, and let i be the first sublot with positive sublot 
size. By looking at the length of the path (1, 1) - .. .  - (1, i)- (2, i)- .. .  - (2, s), we 
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see that 
s 

M����+�E� =��+�u>�+�u 
l=i 

If PI > p2, we can similarly show that P2 +PI U is a lower bound by looking at the 
path (1, 1) - ... - (1,j) - (2, j) - ... - (2, s), where j is the last positive sublot. D 

Lemma 2 If U < s, the optimal sub lot sizes are xi = 1 for 1 � i � U and Xj = 0 for 
u < j � s. 

Proof. If PI� P2, then it is clear that the path (1, 1) - (2, 1) - ... - (2, s) is critical 
in N ( x) , with length 

s 

M(x) = P1X1 + P2 L:xz =PI+ p2U, 
l=I 

which is a lower bound by Lemma 1. Therefore, x is optimal. 

If PI > p2, then it is clear that the path (1, 1) - ... - (1, U) - (2, U) - ... - (2, s) 
is critical in N(x), with length 

u 
M(x) =p2xu+PILx1 =P2+PIU,. 

l=I 

which is a lower bound by Lemma 1. Therefore, x is optimal indeed. D 
In view of Lemma 2, we assume U > s for the remainder of the paper. 

3 Structure of optimal solutions 

We must distinguish three cases, depending on whether PI < P2, PI = P2 or PI > P2 · 

Case 1 PI < p2 
If sublot k is critical, then the path (1, 1) - (1, 2) - ... - (1, k) - (2, k) - ... - (2, s) is 
a critical path, and 

k s 

M(x) = Mk ( x) = PI I: Xi + P2 I: Xi. i =l i =k 
When the optimal makespan is equal to the lower bound of Lemma 1, then the first 
sublot is critical and has only one item in it. We will refer to this situation by saying 
that the extreme solution is optimal. Potts and Baker [17] have proved that every 
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sublot must have a positive size in the optimal solution for the continuous version of 
the two-machine problem. In the following theorem, we show that the same property 
holds for the discrete version of the problem, if the extreme solution is not optimal. 

Theorem 3 If p1 < p2 and the first sublot is not critical or it is critical but x1 > 1, 
then all sub lot sizes are positive, i. e. , xi > 0 (1 � i � s) in every optimal solution. 

Proof. Suppose there is an optimal solution in which some sublot sizes are zero. 
W.l.o.g. it can be written as x = (xi, . . .  , Xr, 0, ... , 0), where Xi > 0 for 1 < i � r. We 
construct alternative sublot sizes x' = ( x�, . . .  ,x�) with a shorter critical path, which 
y ields a contradiction with x being optimal. 

Let x� = 1, x� = Xi-l for 2� i � k and x�+l = Xk - 1, where k is the last critical 
sublot in the network N(x) ,  and x� = Xj-l for k+ 1 < j < s. 

First we show that Xk > 1 if k ;:::: 2 (if k = 1, then Xk > 1 by assumption). Suppose 
it was not, i.e., Xk = 1. Segment (1, k - 1) - (1, k) - (2, k) should be at least as long 
as the segment (1, k - 1) - (2, k - 1) - (2, k), as k is a critical sublot. Therefore, 
P2Xk-l � P1Xk = P1, which obviously violates the assumption p1 < P2· 

Now we look at the length of maximal paths in N(x'). For the path containing 
segment (1, 1) - (2, 1 ), we have 

8 I I � I  
M1(x ) = P1X1 + P2 L..txz = P1 + p2U. 

l=l 

If lot 1 is not critical in N(x), then 

k 8 

Mi(x') = P1 + p2U � P1X1 + P2U = M1(x) < P1 I:xz + P2 I:xz = M ( x) .  (1 ) 
!=1 l=k 

If lot 1 is critical, then x1 > 1 by assumption, so we have 

M1(x') =Pi+ P2U < P1X1 + P2U = M(x) . 

For the path containing segment (1, i ) - (2, i), where l< i < k + 1, we have 

i 8 I � I  � I  Mi(x ) = P1 L..txl + P2 L..txl 
l=l l=i 
i-1 s 

P1 I: Xz + P2 L Xz + P1 - P2 
l=l l=i-1 

< M(x), 

6 
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where the last inequality is strict because PI < P2· 
For the path containing segment (1, k + 1) -(2, k + 1), we have 

k+I s I � I  � I  Mk+I(x ) = PI L.J X1 + P2 L.J X1 
l=I l=k+I 
k s 

- PILX1 +P2LX1 -p2 
l=I l=k 

< M(x). 

For the path containing segment (1, i) -(2, i), where k + 1 < i:::; s, we have 

i s I � I  � I  Mi(x ) = PI L.Jx1 + P2 L.JXz 
l=I l=i 
i-I s 

- PILX1+P2 L Xz 
l=I l=i-I 

< M(x), 

where the last inequality is strict because of the definition of k. 

(4) 

(5) 

Combining (1), (3), (4) and (5), we get M(x') < M(x), yielding a contradiction 
with the optimality of x. D 

Potts and Baker [17] have shown that each maximal path has the same length 
and is critical in the optimal network for the continuous problem. The following 
theorem shows that this is almost true for an integer optimal solution too, unless we 
are dealing with the extreme case. 

Theorem 4 Let x be an optimal solution. If PI < p2 and the first sublot is not 
critical in N(x) or it is critical but XI > 1, then there is an optimal solution x' for 
which every maximal path has a length which is within p2 of the longest path, i.e. , 
M (x') < Mi(x') + P2 for 1 :::; i :::; s. 

Proof. For the maximal path containing (1, s)-(2, s), if M(x) 2: M8 (x) +p2, then 
we construct an alternative solution x' = (x �, ... , x:), such that x' is still optimal and 
M(x') - Ms (x') < P2· 

Let x� = Xj for j = 1, .. . , s -2, x:_I = Xs-I -1 and x: = X8 + 1. We note that 
x:_I 2:: 0 by Theorem 3. 

Consider the lengths of the maximal paths from (1, 1) to (2, s) in N(x'). 
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For the path containing (1,j) - (2,j), where j < s - 1, we have 
j 8 I ""' ' ""' ' Mj(x ) = PI L--xl + P2 L--Xz 

l=I l=j 
j s-2 

- PI LXz + P2 LX1 + P2(Xs-I -1) + P2(Xs + 1) 
l=I l=j 

- Mi(x). 

For the path containing (1, s - 1) - (2, s - 1), we have 
s-I s I ""' / ""' I Ms-I (x ) = PI L--Xz + P2 L-- X1 
l=I l=s-I 
s-I s 

- PI L Xz + P2 L Xz - PI 
l=I l=s-I 

< Ms-I(x). 

For the path containing (1, s) - (2, s), we have 
8 I � I  I Ms(x ) = PI L--X1 + P2Xs l=I 
8 

- PILx1+P2Xs+P2 
l=I 

< M(x), 
where the inequality follows from the assumption M8(x) + p2 :::; M(x). 

(6) 

(7) 

(8) 

By combining (6), (7) and (8), it follows that x' is still an optimal solution. 
By Theorem 3, we must have x: > 0 for i = 1, 2, .. . , s. Therefore, we can repeat the 
preceding procedure until the theorem holds for the path containing (1, s ) - (2, s), i.e., 
M(x') < Ms(x') + P2· 

We can similarly prove that the theorem holds for i = s - 1, ... , 2. So suppose x' is 
an optimal solution for which M(x') < Mi(x') + p2, 2 < i :::; s. By Theorem 3, x� > 0 
for 2 < i:::; s. 

Consider now the path (1, 1) - (2, 1) - ... - (2, s) . Suppose we had M(x') � 
MI(x') + p2. We can construct alternative sublot sizes x" = (x�, ... ,x:) yielding a 
shorter schedule, which contradicts the assumption that x' is optimal. 

Let x; = x� + 1, x; = x� for 2:::; i <sand x: = x� - 1. We have 
8 

MI(x") = PIX� +P2Lx; 
l=I 
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s I 
E I - PiXi +Pi + P2 X1 
l=i 

- Mi(x') +Pi 
< M(x') , 

where the inequality holds since Pi < P2 and we assumed M(x') > Mi(x') + P2· 
For the other paths containing (1, i) -(2, i), where 2< i < s, we have 

i s 
Mi(x") = P1 Ex;· + P2 Ex�' 

l=i l=i 
i s 

- Pi Ex; + P2 Ex; +Pi - P2 
l=i l=i 

Mi(x') +Pi - P2 
< M(x'). 

For the path containing (1, s) - (2, s), we have 
s 

Ms(x") = Pi Ex; + P2X: 
l=i 
s 

� I I 

- Pi L...Jxl + P2Xs - P2 
l=i 

- Ms(x') - P2 
< M(x'). 

(9) 

(10) 

(11) 

Combining (9), (10) and (11), we obtain a contradiction with the optimality of 
x', so x' must satisfy all the conditions of the theorem. D 

Theorem 4 states that there is an optimal solution in which all maximal paths 
have length close to the length of a critical path, i.e., the network is "balanced" in 
this sense. This very strong property will be exploited in our algorithm for finding 
an optimal solution. 

The formula for the optimal makespan in the continuous problem shows that 
the makespan strictly decreases if we increase the number of sublots. The following 
theorem shows that this is also true in the discrete case, unless the extreme solution 
is optimal. 

Theorem 5 If Pi < p2 and the first sublot is not critical in the optimal N(x) or 
it is critical but xi > 1, then the addition of one more sublot strictly decreases the 
makespan. 
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Proof. Let k be the last critical sublot in N(x). We construct alternative sublot 
sizes x' = (x �, ... , x�+l) with a shorter critical path. 

Let x� = 1, x�+I = xk - 1  and x�+l = Xi, i E{l, . . .  , s} - {k}. 

For the maximal path containing segment (1, 1) - (2, 1) in N(x'), we have 
s+I I I � I 

MI(x ) = P1X1 + P2 L,.. x1 =Pi+ P2U. 
1 =1 

If the first sublot is not critical in N(x), we have 
8 

M1(x1) � PIXI + P2 L X1 
l=I 

< M(x). 

If the first sublot is critical, then XI > 1 by assumption, so we have 
8 

MI (x1) < PIXI + P2 L X1 
l=I 

- M(x). 

(12) 

(13) 

For the path containing segment (1, i) - (2, i) in N(x'), for l< i � k, we have 
i s+I I � I � I  Mi(x ) = PI L,.. x1 + P2 L,.. X1 

l=I l=i 
- Mi-I(x) +PI - P2 
< M(x). 

For the path containing segment (1, k + 1) - (2, k + 1) in N(x'), we have 
k+I s+I 

Mk+I(x1)� = PI L x; + P2 L x; 
l=I l=k+I 

- Mk(x) - p2 
< M(x). 

(14) 

(15) 

For the path containing segment (l, j) - (2, j) in N(x'), for k+ 1 < j � s + 1, 
we have 

j s+l I 
L

I 
L

I 
Mj(X ) = PI X1 + P2 X1 

l=l l=j 
- Mj-1(x) 
< M(x), 

10 
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where the last inequality is strict by the definition of k. 

From (12), (13), (14), (15) and (16), we see that x' yields a shorter critical path 
than x. D 

Case 2pI = P2 

Theorem 6 If PI = p2 , then there is an optimal solution x and sublot k such that 

i) k and every sublot before k is critical, i. e. , Mi(x) = M(x) for 1< i :S k; 

ii} every sublot after k is non-critical, i. e. , Mi(x) < M(x) for k < j :S s. 

Proof. Let x = (xI, ... ,x8) be the optimal solution in which the last critical sublot 
has the smallest index k among all optimal solutions. Suppose there was an i < k, 
such that sublot i is not critical. Then segment (1, i) - ... - (l, k)- (2, k) should be 

k k-I 
longer than segment (1, i)- (2, i)- ... - (2, k), so we have PI I: XL> p2 I: XL. This, 

in view of PI = P2, implies 
Xk > Xi. 

l=i+I l=i 

(17) 

We can construct alternative sublot sizes x' = (x�, .. ., x:) such that x' is also 
optimal and the index of the last critical sublot in N(x') is smaller than k, which 
yields a contradiction with the definition of x. Let x� = Xj for j E {l, . .. , s} - {i, k}, 

I I I 
( ) xi = Xi + 1 and xk = xk - 1. We note that xk 2:: 0 by 17 . 

For the path containing (1, j) - (2, j), where 1 :S j < i, we have 
j 8 

I "'"' I "'"' I Mi(x ) = PI L.....xl + P2 L.....xl l=l l=j 
< M(x). 

For the path containing (1, i) - (2, i), we have 
i 8 

I "'"' I "'"' I Mi(x ) = PI L.....xl + P2 L.....xl 
l=l l=i 
i 8 

- P1LX1 +P2LX1 +PI 
l=l l=i 
k-l 8 

< P1 L Xz + P2 L Xz + P1Xi + P1 
l=l l=k 

:S Mk(x) 
< M(x), 

11 
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... 

'� 

where the second inequality holds by (17). 

For the path containing (1,j) - (2,j), i < j < k, we have 

j 8 

MAx') - PILx;+P2Lx; 
l=I l=j 

MAx) +PI - p2 
< M(x). 

For the path containing (1, k) - (2, k) , we have 

k 8 

Mk(x1) - PILx; +P2Lx; 
l=I l=k 

Mk(x) - P2 
< M(x). 

For the path containing (1,j) - (2,j), k < j:::; s, we have 

j 8 

PILx; +P2Lx; 
l=I l=j 

Mi(x) 
< M(x'}. 

(20) 

(21) 

(22) 

It follows from (18), (19), (20), (21) and (22) that x' is still optimal, but the index 
of the last critical sublot is less than k in N(x'). This yields a contradiction with the 
definition of x. D 

The heavy lines in Fig.2 show the critical activities in the optimal network. 

Case 3 PI> P2 

It is well lmown [17] that this problem is equivalent to its inverse, in which p2 is the 
unit processing time on MI and PI is the unit processing time on M2. The inverse 
problem falls under Case 1. 

4 Approximations 

In certain operating environments, it may be desirable to use an equal sublot policy, 
because of its operational simplicity. In the following, we define a discrete version 

12 
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XI x2 Xk Xs 
M1 Tlll!T 

�---c=:J�c=J.-[EK] M1 

Figure 2: Optimal network structure when P1 = P2 

of the "equal sublot policy" - for all cases - and provide an upper bound for its 
worst-case performance. 

Rounded Equal Sublot Policy: 

If U is divisible by s, then xi = U / s for 1::; i :::; s. . - . . . { Xi = ru Is 1 for 1 < i < u - s Lu I s J 
If U is not d1v1s1ble bys, then LU/ J £ U

- -
LU/ J . < Xj = s or - s s < J _ s, 

where LY J and r y 1 denote the largest integer not greater than y and the smallest 
integer not smaller than y, respectively. 

Theorem 7 If p1 < p2 and M(x*) and Meq(x) denote the optimal makespan and the 
makespan under the Rounded Equal Sublot Policy, respectively, then 

Meq(x) -M(x*) P1 l 1 
-:0....:........--� < -- < -

l}f(x*) p2s s· 

Proof. It is clear that (1, 1) - (2, 1) - ... - (2, s) is a critical path under the 
Rounded Equal Sublot Policy and 

8 

Meq(x) = P1X1 + P2 LXi 

For the worst-case ratio, we have 

i=l 
- Pl ru Is 1 + p2U. 

Meq(x) - M(x*) 
< P1 fU /s 1 + P2U _ l 

M(x•) - P1 + P2U 

13 



< PI +PI u Is+ P2U 
- 1 

PI+ P2U 
< PIU/s +p2U 

p2U 
PI l 
P2 s 

< l/s, 

- 1 

where we have used the lower bound of Lemma 1 in the first inequality and PI < p2 
in the last one. D 

Theorem 8 For the case PI < p2, if xc = (x �, ... ,x � )  is the optimal solution for the 
continuous version of the problem, with makespan Mc, then M(x*) <Mc+ PI· 

Proof. Given x c, we construct an integer solution x' = (x �, ... , x�) such that 
M(x') < Mc+ PI : Let x� = x i if x i is integer, and x� = f x il for the first u sublots 
which are not integer in N(xc ), and x� = Lx 1J for the rest of the sublots, where 
u = U - I::=I Lx 1J. Let n(u ) be the last index for which x� = f xil, i.e. the last index 
where we rounded up to get x �. Then 

n(u) s n(u) s 

I:x:+ L x: =I:Lx�J+u+ L Lx �J=U, l=I l=n(u)+I l=I l=n(u)+l (23) 

so x' is an (integer valued) solution indeed. Let 8i=x � - x i and note that l8il < 
1 for i = 1, 2, ... , s, and I::=I 8i = 0, by (23). Consider the length of the maximal 
paths, Mi(x') for i = 1, 2, ... , s, in N(x ')  : 

i 8 I � I  � I  Mi(x ) = PI L...,.Xz + P2 L...,.xl l=I l=i 
i-I s 

- Mi(x c ) +PI L81 + PIDi + P2 LDz l=I l=i 
i-I i-I 

- Mi(xc )+PIL81+PI8i-P22:81 

< Mc +PI, 
l=I l=I 

where the last equality holds because I:f=I 8i = 0. D 
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5 Problem solution 

Case 1 PI< P2 
Our approach is based on trying to find the best solution satisfying the conditions of 
Theorem 4. There is one case, however, when this solution may not be optimal. First 
we deal with this, in the next theorem. 

Theorem 9 We can determine in O(s) time whether there exist lot sizes x = (xI, ... , x8) 
satisfying the following additional conditions: 

i} the first sublot is critical, 

ii} XI = 1. 

If such a solution exists, then it is optimal and we can find it in 0( s) time. 

Proof. Assume that the first sublot is critical and XI = 1, then segment (1, 1) -
... - (1, i) - (2, i) should be no longer than segment (1, 1) - (2, 1) - ... - (2, i) for 
l< i < s, i.e., 

i-1 i-I 
P2 'L:x12::PI 2:x1 + PIXi for 1 < i � s. 

l=I 1=2 
(26) 

Let Xi (1 < i � s) be the largest nonnegative integer value satisfying (26), subject 
i 

to the additional constraints I: Xj � U. These unique values can be determined 
j=I 

recursively for i = 2, ... , s, requiring O(s) time in total. 
8 

If 'E x1 = U, then x is an optimal solution, since M (x) - MI(x) = p1 + P2U 
l=I 

realizes the lower bound of Lemma 1 for the optimal makespan. 
8 

If I: x1 < U, then we show that no solution exists which would satisfy conditions 
l=I 

i) and ii) of the theorem. Assume there were (optimal) sublot sizes x* = (xi, ... , x;), 
for which the first sublot is critical in N(x*) and xi = 1. Then segment (1, 1) - ... -
(1, i) - (2, i) should be no longer than segment (1,' 1) _.._ (2, 1) - ... - (2, i) for l< i � s, 
i.e., x* must also satisfy (26). This implies, however, that x; � xi for 2 � i � s. Thus 

8 8 

'E xj � 'E x1 < U, which yields a contradiction with the feasibility of'.x*. D 
l=I l=I 

The following result shows that when the extreme solution is optimal, it is also 
"nearly" balanced. 
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Corollary 10 If the extreme solution x described in Theorem 9 is optimal and r is 
the index of the last nonzero sublot in x, then 

M(x) = PI+ p2U < Mi(x) +PI for 1::; i < r. 

Proof. Each Xi (1 ::; i < r) is chosen to be largest possible while satisfying (26) . 
Therefore, 

�I �I 
PI L X1 + PIXi +PI � P2 L x1 for 1 < i < r. (27) 

1=2 l=I 
s 

Adding p2 I:: x1 to both sides of (27) proves the corollary. D 
l=i 

Theorem 11 If PI < P2 and no optimal solution satisfying the conditions of Theo
rem 9 exists, then the optimal sub lot sizes can be obtained in 0 ( s) time. 

Proof. Let M0 denote a trial value for the length of a critical path in the optimal 
network. If M0 is the optimal value for the makespan, then there is also an optimal 
solution x0 = (x�, ... , x�) which satisfies Theorem 4. 

From Theorem 4, we know that 

M8 (x0) > Mo - P2· (28) 
s 

From the network, we get Ms (x0) = PI I:: x? + P2X� = PIU + P2X�. Therefore, Mo> i=I 
PI U + p2x� > Mo - P2, implying 

Mo -PI U 0 Mo - PI U 
---- � X8 > - 1. 

P2 P2 
(29) 

Note that there is a unique integer value for x� which satisfies (29). By Theorem 4, 

i s 
Mo� Mi(x0) = PI l:x? + P2 l:x? > Mo - P2 for 1 < i < s, (30) 

which is equivalent to 

l=I l=i 

s s 
Mo - PI (U - I:: x?) s Mo - PI (U - I:: x?) l=i+I >_ "'""'Xoz > l=i+I 1 i: . . 1 1 (31) -------- L..J - 1or i= s - , ... , . 

P2 l=i P2 

The recursive solution of the inequalities (31) requires the calculation of the unique 
integer values x�_I,x�_2, .... ,x� - in this order - which satisfy (31). 
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Therefore, we can obtain x? for i = s - 1, ... , 1 in 0( s) time. 
8 

If.Ex?> U, then we show that M(x*) $ M0• Assume there were optimal sublot 
i=l ' . ; . 

sizes x* = (xi, ... , x;,) with M(x*) > Mo. We can assume without the loss of generality 
that x* is the balanced solution described in Theorem 4. Thus, similarly to (31), we 
have 

8 8 

M(x*) - P1(U - .E xi) s M(x*) - P1 (U - .E xi) 
____ ___ 

l=_ i+_I 
__ 2:: L x; > _______ 

l_=_i+_I 
__ - 1 for 1 ::; i ::; s. 

� � � 
(32) 

If M(x*) > Mo, then each of the upper and lower bounds is at least as large in (32) 
8 8 

al) the corresponding bound in (31). Thus, we have .E xi > .Ex?> U, which is in a 
i=l i=l 

contradiction with the feasibility of x*. So we must have M(x*) <Mo indeed in this 
case. 

8 

If .Ex? < U, then we show that M(x*) > Mo for the balanced optimal solution 
i=l 

x* described in Theorem 4. Suppose it was not, i.e., M(x*) < M0. From Theorem 4, 
we know that 

(33) 

Comparing (29) with (33), we obtain 

(34) 

8 8 

Since x* has to satisfy (32) again, we must have .E xj ::; .E x� for 1 < i::; s - 1.  j=i+I j=i+l 
8 8 

Therefore, .E xi ::; .Ex? < U, which yields the contradiction with the feasibility of 

x*. 
8 

i=l i=l 

If.Ex? = U, then we show that M(x*) ::; M0• Since x0 satisfies all the inequalities 
i=l 

in (31), (30) also holds. Together with (29), these imply that Mi(x0) ::; Mo for 
ls; i ::;  s. M(x0) =�� Mi(x0), however, so we also have M(x*) ::; M(x0) < M0• 

In summary, the unique integer solution to (29') an'.d (31) can be obtained in O(s) 
time. By Theorem 9, Mc::; M(x) <Mc+ PI · Therefore, the range of Mo should be 
[Mc, Mc+ p1). From (29), there are at most two different integer x� values which 
could satisfy (29), if we use any M0 value from this range. Therefor�, the optimal 
solution can be obtained in O(s) time, by repeating the calculations from (29) and 
(31) at most twice. 0 · 
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Case 2 PI= P2 

Theorem 12 If PI = P2, then P2U +PI ru Is l is a lower bound for the optimal 
makeS'pan. 

Proof. Let k be the index of the last critical sublot as defined in Theorem 6. We 
show first that xk � xi for i E {1, ... , s} -{k }. 

From Theorem 6, we lmow that both segments (1, i) -(1, i + 1) -(2, i + 1) and 
(1, i) -(2, i) -(2, i + 1) are critical for 1:::; i < k. Therefore, they should have the 
same length, i.e., PIXi+I = P2Xi , implying 

Xi = Xi+I for 1 :::; i < k. (35) 

Suppose there was a sublot with Xj > Xk, where j > k. By comparing the length of 
(1, 1)-... -(1,j)-(2,j)- ... -(2, s) with (1, 1)-... -(1, k)-(2, k)-... -(2, s), we get 

s s 

M(x) = Mk(x) < Mj(x), a contradiction. Therefore, I.: xi :::; sxk. Since I.: Xi = U, i=I i=I 
we obtain 

xk � U/s. 

The length of critical path (1, 1) -... -(1, k) -(2,k) -... -(2, s) is 

k s 

M(x) = PILx1+P2Lx1 
l=I l=k 
k-I s 

P2LX1 +P2Lx1 +pixk 
l=I l=k 

- p2U +PIXk 
> p2U +PI fU/sl. 

Therefore, P2U +PI ru Is l is a lower bound indeed. D 

Theorem 13 For PI = P2, 
i) if U is divisible by s, then the optimal sub lot sizes are Xi = U / s for 

1< i :::; s; 
ii) if U is not divisible by s, then the optimal sub lot sizes are 

Xi = ru Is l for 1 :::; i :::; k 
Lui J f k . < , where k = U -s LU/ s J . Xj = s or < J _ s 
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Proof. If U is divisible bys, it is clear that all paths have the same length in the 
network when Xi = U/s for l:'.S i :'.S s , and 

s 

M(x) = P1X1 + P2 LX1 
l=l 

- p1U/s + p2U. 

Thus M(x) equals the lower bound of Theorem 12, so x is optimal. 

If U is not divisible bys and x is as defined in ii), then it is clear that the first k 
sublots are critical and the last s - k sublots are non-critical. Thus, 

s 

M(x) = P1X1 + P2 L x, 
l=l 

Pl ru Is l + P2U. 

Thus M ( x) equals the lower bound again, so x is optimal. D 

Corollary 14 If p1 = p2, then the optimal lot streaming schedule can be identified 
in constant time. 

Proof. If we do not require outputting the actual sublots, the corollary follows 
from the preceding theorem. D 

6 Summary and concluding remarks 

We have analyzed the structural properties of discrete lot streaming schedules which 
minimize the makespan for a single job in a two-machine flow shop. We have shown 
that, unless an easily recognizable extreme solution is optimal, there is always a 
balanced optimal schedule in which the length of every maximal path is within 
max{p1,p2}of the optimal makespan. We have also proved that the optimal inte
ger solution's makespan is within max{p1,p2} of the best makespan achievable with 
·fractional sublots allowed. This is important from the practical point of view, as the 
use of integer size transfer lots is clearly desirable in applications. So the savings 
achievable in the makespan through lot streaming are essentially the same when we 
allow only integer valued sublots. We have also shown that the optimal solution can 
be obtained in O (s) time, by exploiting its balanced nature. Since it was shown in 
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[25] and [3] that the problem with multiple jobs decomposes into a sequence of inde
pendently schedulable single jobs, all of these structural results are true for the case 
of multiple jobs too. 

Sometimes no-idling may be required, i.e., each machine should be kept working 
without any idle time once it starts. (This was called the contiguity of work assump
tion in [20) and in [21).) It is straightforward to transform the optimal schedules into 
a no-idling schedule in the two-machine case. In certain situations it is desirable to 
have no-wait schedules, i.e., to be able to start the processing of each sublot on each 
machine immediately after it is finished on the preceding machine. It is known [17] 
that the optimal schedule for the continuous problem is totally balanced, resulting 
in a schedule which satisfies the no-wait requirement. Since we have proved that 
M(x) < Mi(x) +max{p1,p2} for i = 1, 2, ... , s, this means that the time a transfer lot 
may have to wait between being finished on M1 and starting to be processed on M2 
is also minimal, i.e., less than max{pi,p2}. 

There are many related topics for future investigation. It seems to be natural to 
try to extend the results in this paper to the case including job setup times, and there 
is reason to believe that most of the structural insights would remain true in this case 
too. Another possible extension is to the case of more than two machines. Some of 
these problems will be studied in the future. 
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