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George Steinertand Paul Stephenson 
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McMaster University, Hamilton, Ontario, Canada 

Abstract 

The traditional method of pairwise job interchange compares the cost of 

sequences that differ only in the interchange of two jobs. It assumes that 

either there are no intermediate jobs (adjacent pairwise interchange) or that 

the interchange can be performed no matter what the intermediate jobs are 
( nonadjacent pairwise interchange). We introduce a generalization that permits 

the pairwise interchange of jobs provided that the intermediate jobs belong to 

a restricted subset of jobs (subset-restricted pairwise interchange). 
In general, even if an adjacent interchange relation is a partial order it need 

not be a precedence order. We introduce a unified theory of dominance relations 

based on subset-restricted interchange. This yields a precedence order for the 

class of unconstrained, regular, single machine scheduling problems 1 fr/ fmax. 
Thus it applies to l/r/L�ax, l/r,d/Cmax, l/r/WLmax, l/r/WCmax and 

other problems. We also show that these problems remain strongly NP-hard 

for interval-ordered tasks. 

1 Introduction 

Interchange arguments, that compare the cost of sequences that differ only in the 
interchange of two jobs, are quite common in the scheduling literature. Some classic 
results that established the technique are the rules of Johnson [9], Smith [18), and 

*This research was supported in part by the Natural Sciences and Engineering Research Council 
of Canada, under Grant No. OGPOOOl 798. 
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Jackson [8] . If jobs i and j can be interchanged so that i is before j in an optimal 
sequence, then we will say that i is preferred to j. If these preference relations are 
transitive, then we have a preference order on the jobs. The above mentioned rules 
are examples of problems where the preference order for the adjacent interchange of 
jobs (the adjacent interchange order) is a complete order (i.e. a sequence). Johnson's 
rule establishes such a sequence for the two-machine maximum completion time flow 
shop problem, while the rules of Smith and Jackson state the optimality of the 
weighted shortest processing time and earliest due date sequences for 1 / /L, wiCi 
and 1 // Lmax , respectively. (We use the standard notation to describe scheduling 
problems and we refer the reader to [12] or [16) for any terminology not defined here.) 
Another classic interchange result due to Emmons [2] provides a precedence order (a 
partial ordering of the jobs that must be obeyed by at least one optimal sequence) 
for the total tardiness problem 1 / /L, � . In this case, there is a preference order for 
the interchange of jobs that permits the interchange of any (not necessarily adjacent) 
pair of jobs in a sequence if they do not appear in preference order. By performing 
these interchanges in a particular manner, we can restrict our search space to contain 
only sequences that obey the preference order. 

In this paper, we introduce a new technique, a generalization of pairwise inter­
change that takes into consideration the composition of the intermediate sequence. 
This yields a preference order which permits the interchange of a pair of jobs provided 
that the intermediate jobs belong to a restricted subset. The traditional methods of 
pairwise job interchange can be viewed as special cases of this subset-restricted inter­
change, where the subsets are either uniformly the empty set (adjacent interchange) 
or the entire job set (nonadjacent interchange). In general, an adjacent interchange 
order is not a complete order and therefore it is not a precedence order, as we shall 
see for the 1 /r / Lmax problem, using an example due to Lageweg et al. [10] . We 
prove, however, that using subset-restricted interchange for the class of regular, sin­
gle machine scheduling problems 1 /r/ fmax, we can derive a precedence order that 
is a suborder of the adjacent interchange order . In these problems, each job i has 
an associated nondecreasing, real valued cost function Ji ( t), the cost of completing 
i at time t, and the objective is to minimize the maximum cost fmax· The prece­
dence orders we derive have the property that they are defined independently of the 
processing times. This makes them especially useful in applications with stochastic 
or ill-defined processing times. We use only certain extreme values of the other job 
parameters that display a 'staircase-like' structure. In addition, the precedence orders 
derived belong to a special class of partial orders, the interval orders [5]. This also 
leads to the complexity implication that the above problems are strongly NP-hard 
for interval-ordered tasks. Our results can be viewed as a unified treatment of job 
interchange, that generalizes well-known rules for deriving dominance relations and 
extends the pyramid precedence orders of Erschler et al. ( [3] and [4]) for 1 /r / Lmax 
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to general 1 /r/ fmax problems. We generalize the pairwise interchange and insertion 
operations of Monma [14] , and introduce 'pyramid-like' structures of higher dimen­
sion than two, extending the 2-dimensional staircases of [3] and [4] .  In our unified 
theory, 1 /r / Lmax represents the most special case in which the adjacent interchange 
order is a linear order. 

The paper is organized as follows. In the next section, we introduce the prelimi­
nary definitions and notation for sequencing problems, partial orders, and interchange 
operators. In section 3, we define the adjacent interchange order � and the inter­
change regions for 1 /r / fmax. In section 4, we derive a precedence order -< for the 
linearly ordered case of 1 /r / fmax, which includes the 1 /r / Lmax, 1 j r, d.,j Cmax, and 
1 /r /WCmax problems. We extend this to the 1 /r /W Lmax and 1 /r / fmax problems 
in sections 5 and 6. 

2 Preliminary definitions and notation 

2 .1 Sequencing notation 

We call a scheduling problem a sequencing problem if any schedule can be completely 
specified by the sequence in which jobs are performed. This is the case for non­
preemptively scheduling a single machine with a regular performance measure. Let 
J = {1, 2, . . . , n} be the set of jobs to be sequenced on a single machine. Jobs are char­
acterized by a list of parameters (e.g. for the 1 /r / Lmax problem each job j possesses 
a release time Tj > 0, a processing time Pi 2:: 0, and a due date di > 0, the lateness 
for job j is Li = Ci - di, where Ci is its completion time). A sequence s on J is 
a function from {1, 2, . . .  , n} to J represented by the n-tuple (s (1) , s (2) , . . .  , s (n)), 
where s ( i) is the ith job in 15equence s (e.g. for the maximum lateness problem 
Lmax (s) = mrx ( Cs(i) - ds(i))). For the sequencing problems that we study, the adja­

cent interchange order will be a partial order defined by the parameters of the jobs. 
Thus we introduce certain definitions for partially ordered sets (posets) . 

2.2 Partial orders 

By a partially ordered set we mean a pair P = (X, �P) consisting of a set X together 
with a binary relation �P on X X X which is reflexive, antisymmetric, and transitive. 
For u, v E X , u �P v is interpreted as u is less than or equal to v in P. Similarly, 
u <p v means that u �P v and u =f. v. The usual symbols � and < will be reserved 
for relations between real numbers. A partial order P = (X, �P) is a linear order (or 
complete order) if for every pair (u, v) E X x X either u -::5_p v or v <p u. Given a 
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pair of partial orders P = (X, �P) and Q = (X, <Q) on the same set X, we call Q 
an extension of P ( P a suborder of Q ) if u �P v implies u �Q v for all u, v E X. 
A partial order Q = (X, �Q) is a linear extension of a partial order P = (X, �p), 
if Q is a linear order that extends P. Given two partial orders P1 = (X, ::=;pi) and 
P2 = (X, <p2), we can define the partial order P1 n P2 = (X, �P1np2), the intersection 
of P1 and P2, where u �P1np2 v if and only if u �p1 .v and u �Fi v for all u, v EX. 
The dimension of a partial order P = (X, �p), denoted by dim(P), is the smallest 
l such that there exists a set { Q1, Q2, ... , Q1} of linear extensions of P such that 
P = n�=lQi. A subset I � X is an ideal of P if for every v E I and u E X such 
that u <p v we have u E I. Similarly, F � X is a filter of P if for every u E F 
and v E X such that u �P v we have v E F .  For every v E X the principal ideal 
I ( v) is defined by I ( v) = { u E X ju < p v} and the principal filter F ( v) is defined 
byF(v) ={uEXjv�pu}. 

2 .3 Interchange operators 

We follow Monma (14] in defining our interchange operators. Let s1 be a sequence 
with job m preceeding job k. In general, s1 is of the form s 1  = (AmBkC), where A, 
B and C are subsequences of J. We define three types of interchanges of jobs k and 
m that leave k preceeding m in the resulting sequence s2• 

1. Pairwise Interchange(PI) 

s2 = (AkBmC) 

2. Backward Insertion( BI) 

s2 = (ABkmC) 

3. Forward Insertion(FI) 

s2 = (AkmBC) 

If we let B be the set of jobs in sequence B (we do not distinguish between these), 
then each of these interchanges reduces to adjacent pairwise interchange in the case 
when B = 0. This leads to the definition of the adjacent interchange order. 

Definition 1 A partial order -E is an adjacent interchange order for a sequencing 
function f if it satisfies the Adjacent Pairwise Interchange Condition: For all jobs k, 
m and sequences A, C 
k-Em implies f (AkmC) � J (AmkC). 
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Note that all of the above interchanges involve interchanging k ,  m or both k and m 
around sequence B. Intuitively, whether or not an interchange leads to a reduction 
in cost (for a given sequencing function f and adjacent interchange order �),should 
depend on the composition of B. This involves placing restrictions on certain of the 
parameters of the jobs in B.· In the case when interchangability does not depend on 
the composition of B, then � is a precedence order for the sequencing problem, i.e. 
there exists an optimal sequence that is a linear extension of�. Such an example is 
the precedence order � defined by 

for the total tardiness problem on a single machine 1 / /E� [2]. Note that here � is 
the intersection of the ::;P and ::;d orders. In general, an adjacent interchange order 

� is not necessarily a precedence order, as it can be demonstrated by the instance of 
the maximum lateness problem 1 /r / Lmax, shown in its equivalent delivery time form 
in Example 1 [10]. The delivery time version is defined by triples (ri, Pi,%) where 
q j = T - dj is the delivery time for job j E J and T is a constant chosen so that 
T 2::: max{di l j E J}. If we define L� = Ci+qh then L� = Ci +T-di = Li +T and 
L� = Lmax + T. As we shall see in the next section, the adjacent interchange order 

� for 1 /r/ Lmax. is defined by k�m-{::}- Tk ::::; Tm and qk 2::: qm. For the 5 job example 
specified below we have 4�2, however, the unique optimal sequence is (1, 2, 3, 4 ,  5) 
with L:nax = ll. Thus� is not a precedence order, since the unique optimal sequence 
is not a linear extension of �. 

Example 1 A 5 job problem to illustrate that � is not necessarily a precedence order. 

J 1 2 3 4 5 
Tj 0 2 3 0 7 
Pi 2 1 2 2 2 

% 5 2 6 3 2 

We consider interchanges that are restricted by conditions on B and define the subset­
restricted interchange conditions as follows. 

Definition 2 An adjacent interchange order � together with the collection of subsets 
RPI = { Rf�m lk�m } satisfies the Restricted Pairwise Interchange Condition for a 
sequencing function f if 
for all jobs k ,  m and sequences A, B, C 
k�m and B c Rf�m imply j (AkBm C) ::::; f (AmBkC) . 
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Definition 3 An adjacent interchange order � together with the collection of sub­
sets RBI = { Rf�m lk�m } satisfies the Restricted Backward Insertion Condition for a 
sequencing function f if 
for all jobs k, m and sequences A, B, C 
k�m and B � Rf�m imply f (ABkmC) ::; f (AmBkC) . 

Definition 4 An adjacent interchange order � together with the collection of sub­
sets REI = { Rf�m lk�m } satisfies the Restricted Forward Insertion Condition for a 
sequencing function f if 
for all jobs k, m and sequences A, B, C 
k�m and B � Rf�m imply f (AkmBC)::; f (AmBkC) . 

In the following sections, we show how to use subset-restricted interchange and the 
above three conditions to derive a precedence order -< on the jobs. This precedence 
order -< is always a suborder of the adjacent interchange order �. 

3 Interchange regions 

In this section, we derive the interchange regions ( subsets) for the general problem 
1 /r / fmax. In this problem, each job j has an associated nondecreasing, real valued 
cost function fj, where fj (t) is the cost of completing job j at time t, and the objective 
is to minimize fmax = m?-X Ji ( Ci) over all sequences. We order the jobs according to 

l�3�n 
?..1, where fi ?..t fj # fi (t) ?.. fj (t) for all t ?.. 0. Note that, in the general case, ?::..t 
does not order every pair i and j, it may be only a partial order. Two special, linearly 
ordered cases of> f occur for the lateness objective, where fj (t) = t + %i and the 
weighted completion time objective, where fj (t) = wit. Hall [7] considered the > / 

order and noticed that the linear ordering property makes it possible to extend Potts' 
[17] approximation algorithm for the 1 /r / Lmax problem to the 1 /r / fmax problem 
when ?..t is a linear order. 

The adjacent interchange order and the restricted subsets for 1 /r / fmax are defined 
below. We note that these definitions use no processing time information. This means 
that all of the subsequent results are true irrespective of job processing times. 

Definition 5 Adjacent interchange order: k�m # rk ::; Tm and fk > f fm · 

Note that this order is not complete, but it satisfies the Adjacent Pairwise Interchange 
Condition. 
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Definition 6 Given k<Em, define the following subsets of jobs: 
(i) Rf�m = {j lrj ::; Tm,fk �f fj} 
(ii) Rf�m = {j lrj::; Tm} 
(iii) Rf�m = {j lfk �!Ji}. 

Theorem 1 <E together with the collection of subsets RPI= { Rf�m lk<Em } satisfies 
the Restricted Pairwise Interchange Condition for 1 /r / fmax . 

Proof. Given a sequence s, recall that fmax (s) = m� fs(j) (Cs(j)) , where Cs(j) 1::;,::;n 
is the completion time of job s(j). We construct a directed graph G (s) to evaluate 
f max ( s) (see Figure 1). From the source node 0 of G ( s) there is a directed edge of 
length Ts(j) to each job node s(j) (j = 1, 2 ,  ... , n), and between each pair of jobs s(j) 
and s(j + 1) there is a directed edge of length Ps(j)' G ( 8) has the property that the 
start time of job 8(j) in sequence 8 is the length of the longest path from 0 to 8(j), 
and to obtain Cs(j) we add Ps(j) to the length of this path. We represent paths from 
0 to 8(j) by pairs (8(i), 8(j)), 1 ::; i ::; j ::; n, where 8(i) is the endpoint of the first 
arc, (0, 8(i)), of the path. Then by definition 

fmax (8) =m� [fs(j) ( �ax. (Ts(i) + tPs(l)))] = �� [fs(j) (Ts(i) + t Ps(l))] 1::;3::;n (s(i),s(1)) 1_. (s(i),s(3)) 1_. 1::;isi -i 1::;isisn -i 

and we can evaluate fmax (8) as the maximum over all such pairs (8(i), 8(j)) in G (8). 
Let 81 = (AmBkC) be a sequence with the property that k<Em and B � Rf�m· 

We apply pairwise interchange to 81 and obtain sequence s2 = (AkBmC). We demon­
strate that 82 is not worse than s1 by showing that for every pair of jobs in s2 there 
exists a dominating pair in 81 "with a not smaller f value. For example, consider pair 
(k, m) in 82, then it has the dominating pair (m, k) in 81 (see Figure 2): That is, 

fm (rk +Pk+ LPb +Pm) ::; fk (rm +Pm+ LPb +Pk) , 
�B �B 

which holds since k<Em implies rk ::; Tm and fk (t) � fm (t) for all t, from which it 
follows that fm (rk +Pk+ LbEBPb +Pm) ::; fk (rk +Pm+ LbEBPb +Pk) , and finally 
fk is nondecreasing. 

The following table gives a dominating pair in 81 for each pair in 82. ( We use 
lower case letters a,b or c to refer to arbitrary generic elements of the subsequences 
A,B or C, respectively) . The last three columns contain the arguments why they are 
dominating pairs. 
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s(2) 
psf..2) 

s(i) 

0 

s(j) 

s(n-1) 
G(s) 

Figure 1: Directed graph G(s) for sequences. 

S2 S1 
(AkBmC) (AmBkC) proo f 

(a, k) (a, k) fk nondecreasing 
(a, b) (a, k) fk ?.1 fb fk nondecreasing 
(a, m) (a, k) . fk ?.1 fm f k nondecreasing 
(a, c) (a, c) 
(k, b) (m, k) rk :=;Tm fk ?.1 fb fk nondecreasing 
(k, m) (m, k) rk :=;Tm fk ?.1 fm fk nondecreasing 
(k,c) (m, c) rk :=; Tm fc nondecreasing 
(b, m) (m, k) Tb :::; Tm fk >1 fm f k nondecreasing 
(b, c) (m, c) Tb:::; Tm f c nondecreasing 
(m, c) (m, c) f c nondecreasing • 

Theorem 2 � together with the collection of subsets RBI = { Rr�m lk�m } satisfies 
the Restricted Backward Insertion Condition for 1 /r / fmax . 
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A A 

ra 

0 0 

G(s2) G(s1) 

Figure 2: Directed graphs G(s2) and G(s1). 

Proof. The proof is totally analogous to that for pairwise interchange. The 
following table gives the corresponding dominating pairs. 

S2 S1 
(ABkmC) (AmBkC) ]JTOOj 

(a, b) (a,b) . f b nondecreasing 
(a,k) (a,k) fk nondecreasing 
(a,m) (a,k) fk ?..1 fm fk nondecreasing 
(a, c) (a,c) 
(b, k) (b, k) 
(b,m) (m,k) Tb:::; Tm fk ?..1 fm fk nondecTeasing 
(b, c) (m,c) Tb :::; Tm f c nondecreasing 
(k,m) (m,k) Tk :::; Tm fk ?..1 fm fk nondecreasing 
(k, c) (m,c) Tk :::; Tm f c nondecreasing 
(m,c) (m,c) f c nondecreasing • 

Theorem 3 -E together with the collection of subsets RFI = { R-J:�m ik-Em} satisfies 
the Restricted Forward Insertion Condition for 1 /T / f max • 
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Proof. The proof is totally analogous to that for pairwise interchange. The 
following table gives the corresponding dominating pairs. 

82 81 
(AkmBC) (AmBkC) proof 

(a,k) (a,k) fk nondecreasing 
(a,m) (a,k) fk ?_1 fm fk nondecreasing 
(a,b) (a,k) fk ?_1 fb fk nondecreasing 
(a, c) (a,c) 
(k,m) (m,k) rk :::; rm fk ?_1 fm fk nondecreasing 
(k, b) (m,k) Tk <Tm fk ?_1 fb f k nondecreasing 
(k, c) (m,c) rk :::; Tm Jc nondecreasing 
(m,b) (m,b) 
(m,c) (m,c) f c nondecreasing 
(b,c) (b,c) Jc nondecreasing • 

Remark 1 We observe that for any k<E:m, we have Rf �m = Rf�m n Rf �m. Thus 
if B � Rf�m' then this implies not only J(AkBmC) < J(AmBkC), but also 
f(ABkmC) � f(AmBkC) and f(AkmBC):::; J(AmBkC). 

The preceding theorems could directly be used in branch-and-bound algorithms for 
restricting the search space on sequences. This, however, would require branching on 
sequences and storing for all pairs k-Em the subsets of Definition 6 and the testing of 
membership in these, which would be time consuming and inefficient. In the following 
sections, we show that there is a much more effective way to restrict the search space, 
by proving that there is a precedence order on the jobs. 

We also note that by simply modifying release times and processing times, prob­
lems in which the jobs have setup times can be handled as well. Two forms of job 
setups can be considered: either a setup Bi is attached to job i and it cannot be 
performed before Ti, or it is detached and it can be performed prior to ri, while the 
machine is idle and waiting to process job i . Detached setups can be dealt with by 
using modified processing times p� = Pi+ Bi, while attached setups can be handled 
using modified release times T� = max {O, Ti - si} and processing times p� = Pi+ Bi. 
Thus, our theory of precedence constraints applies to the case with setups too. 

4 The linearly ordered case 

In this section we use subset-restricted interchange to derive a precedence order -<, 
for the case when ?_1 is a linear order. This means that for each pair of jobs i and 
j either Ji (t) ?_ fj (t) for all t, or fj (t) ?_ fi (t) for all t. That is, we can completely 
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arrange the jobs in nonincreasing f order according to '?:.t· 

For the linearly ordered case, we are able to represent the adjacent interchange 
order in the plane using the r and f orders as the x and y axes respectively. Here 
jobs are represented by points with preferences toward the origin, i.e. k-E:m if k is 
closer to the origin than m in both the rand f orders. The principal ideals and filters 
are represented by quadrants through these points. That is, let job i be represented 
by the point ( ri, fi). If we divide the plane into quadrants using the lines r = ri and 
f = fi, then the SW and NE quadrants correspond to I (i) and F (i), the principal 
ideal and filter for job i ( see Figure 3). 

f 

r 

Figure 3: Ideals and filters for -E. 

This planar represention was used by Merce [13] to derive a precedence order 
for the problem of minimizing the makespan in the presence of release times and 
deadlines (1 / r, d /Cmax ). Fontan [6] noted that if we consider due dates instead of 
deadlines then the same order is a precedence order for the lateness model 1 /r / Lmax. 
They do not consider the adjacent interchange order explicitly ( [3] and [4]), rather 
they define their order using certain extreme points in the plane, called summits. 
These summits, represented by Si ( i = 1 to N ) , are the jobs that form a staircase 
boundary in the plane and satisfy the property that their SE quadrant minus the 
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boundary is empty. The summits are completely ordered S1-E:S2-E ... -ESN· For each 
summit Si, they define a pyramid P(Si), which is its NW quadrant without its 
boundary lines but including Si. Jobs are classified using pairs that represent their 
membership in pyramids. For j E J, they define u(j) = min {i Jj E P(Si)}, and 
v(j) = max { i Ii E P(Si)}. With these, they define the partial order -< by k -< m {::? 
v (k) < u (m), and show that -<is a precedence order. The planar representation for 
the 5 job problem of Example 1 is shown in Figure 4: Job 3 and 5 are the summits 
81 and S2, respectively. P(S1) = {1, 2, 3, 4} and P(S2) = {5}. We have v(i) = 1 for 
i = 1, 2, 3, 4 and u(5) = 2, which implies by definition of -< that jobs 1,2,3 and 4 
must precede job 5. Notice that the unique optimal sequence (1, 2, 3, 4, 5) is a linear 
extension of -< (as we would expect), but not a linear extension of -E (as we saw 
earlier). 

Example 2 is another instance of 1 /r/ L�ax' this time with N = 9 summits. For 
this instance, the optimal L� = 114 and the sequence (l,S1,k,S2,S3,S4,S5,3,S6,S7, 
m, 2,S8,S9, 4) is an optimal sequence, which is also a linear extension of-<. To further 
illustrate how -< is defined, consider jobs k and m in Figure 5: Here k -< m, since 
v (k) = 5 < 6 = u (m). (The points Di and Mi in brackets are used in our unified 
theory and will be explained later in this section.) 

Example 2 A 15 job instance of 1 /r / L� with N = 9 summits, to further illustrate 
-<. 

S1 S2 S3 S4 Ss S6 
15 26 34 40 48 57 
6 8 8 7 6 10 

53 46 40 36 36 27 

S1 Ss Sg 
65 65 73 
2 5 7 

19 13 9 

k m 
19 51 
5 3 

32 17 

1 2 3 4 
8 22 30 38 
5 8 8 10 

43 16 22 6 

This pyramid-based precedence order -< very heavily uses the planar representa­
tion. It can be reinterpreted in partial order terminology, however, which will allow 
us to extend these precedence constraints to other, more general cost functions and 
higher dimensions. The summits Si (i = 1, 2, . . .  , N) are maximal elements of a re­
lated partial order -Ee, which is defined by k-E:cm {:::} rk < rm and fk <t fm, the 
conjugate of -E. Two partial orders on the same set are conjugate if every pair of 
distinct elements is comparable in exactly one of these partial orders. This is clearly 
the case if we compare the principal ideals and filters for -E and -Ee, using the planar 
representation. For -E, these are the SW and NE quadrants, respectively, with the 
boundary lines included. For -Ee, these are the NW and SE quadrants minus the 
boundary lines (compare Figures 3 and 6) .  By a well known theorem of Dushnik 
and Miller [1] from partial order theory, -Ee exixts if and only if dim( -E) < 2. In this 
context, the pyramids are just the principal ideals of -Ee. The u(j) and v ( j) defined in 
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,!J., [ ___ u_:I __ � ___ !!_=_: ____ ):'" _____ _., 

v=2 

. . . . . . . . . . . . . ' ' ' ' ' . . 
;::::; --------- --•----9-------- ----------------it S (= S2 ) 

v=I 

-

4 
2 : Di 

------------------• 3(=S1) 

r 

Figure 4: Planar representation for 5 job problem. 

[4] implicitly use the fact that �c has an interval containment order representation, 
i.e. there exist intervals {IilJ E J} such that i�cj iff Ji C Ii for i,j E J. In their 
representation of l/r/Lma:x, these intervals are just Ii = [rj,dj]· On the other hand, 
by the same theorem of Dushnik and Miller [1] , a poset has an interval containment 
representation iff its dimension is 2. Thus, the u(j) and v(j) can be defined for any 
problem for which dim(�)::; 2, but it can be defined only for such problems. Of 
course, dim(�)::; 2 is equivalent to >1 being a linear order, so the u(j) and v(j) can 
be defined only in this case. -

We consider an alternate representation for -<, using the set of corner point bound­
ary jobs M = {Mi Ii = 1, 2, ... , H + 1}, and the set of points on their inscribed diag­
onal .6. = { D1, D2, • • •  , D H} (see Figure 5). The set M C S is the subset of boundary 
jobs with empty SE quadrants, and we call .6. the set of diagonal points. (The set 
.6. is defined more precisely by a recursive algorithm below.) Note that the points in 
.6. may represent fictitious jobs. We augment the partial order P = ( J, �) by these 
diagonal points and call it PD. = (JD., �D.), where JD. =JU .6. and �D. is the planar 
order with these diagonal points included. Jobs k�m (k,m E J )  are separated by 
.6. (are .6.-separated} if there exists a Di (i = 1, 2, ... , H) such that k E J(Di) and 
m E F(Di)· Notice that v(k) < u(m) when k and mare .6.-separated . .6. induces a 
partition of P into separable and nonseparable pairs that can be used to define -<: 
It can be easily verified for k�m (k,m E J) that k -< m if and only if k and m are 
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Figure 5: Planar representation for the 15 job problem. 
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separated by .6.. As an example of this representation, consider again Example 1 in 
Figure 4: We see that diagonal point D1 separates job 5 and jobs 1,2,3 and 4, and tP.is 
is the only separation present. Thus, by this .6.-separation representation of --<, jobs 
1,2,3 and 4 must precede job 5. In comparison to the pyramid representation, this 
new representation for --< has �he advantage that it does not require that � possess 
a conjugate �c, and thus is not restricted by the dimension of > 1. This will enable 
us to generalize the whole theory to the nonlinearly ordered, higher dimensional case 
in later sections. 

The diagonal .6. can be obtained from the set M of corner point boundary jobs 
using the following simple greedy procedure. Assume that there are K distinct r 
values denoted by Ti for i = 1, 2, . . .  , K, and T1 > T2 > · · · > TK. Define the function 
Ji = max{fj ITj =Ti} with values Ji(t) = max{Jj(t) ITj =Ti}, this is the maximum, 
according to <1,.of the jobs on level Ti. Note that by the linearity condition on ?:.1, 
we have that Ji = fj for some job j with Tj =Ti (e.g. for WCmax Ji =wit, where 
wi = max {wj ITj =Ti}; and for Lmax Ji = t -di, where di = min{dj ITj =Ti}). 

Algorithm a for linearly ordered ?.1 
Let (TMuJM1) = (T1, /1) ,l = 1 

14 



f 

r 

Figure 6: Ideals and filters for -Ee. 

For i = 2 to K 

If fM1 ?:.1 Ji then go to Next i 
Else 

(rM1+1,fM1+1) = (ri,max{Ji,fMJ) /*This defines M1+1 
(rD1,JD1) = (ri, fM1) /*This defines Di 
Increase l to l + 1 

Next i 

The procedure looks at the r-levels ri ( i = 1, 2, ... , K) and compares the largest f on 
this level (Ji) with the largest f obtained so far (f M1). If Ji represents a strict increase 
compared to f Mp the point (ri, Ji) becomes the new corner point (rM1 +I' fM1 +i ). Next, 
we prove that -<, defined by k -< m if and only if k and m are .6-separated, is a 
precedence order for all sequencing problems for which ?:.1 is a linear order. This 
unifies and generalizes the results in ( [3) and (4)). 

Theorem 4 -< is a precedence order for 1 fr / fmax, if ?:.1 is a linear order. 
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Proof. We use subset-restricted interchange in the proof. The following observa­
tions immediately follow from the construction of b.: 

Dl � D2 � 
F(D1) c F(D2) c 
I (D1) ::> I (D2) ::> 

Furthermore, for all b E J \ F (Di) and m E F (Di) we have rb � rni :S Tm for any i . 
This the crucial property used throughout our proof. Lets be any optimal sequence. 
If every job in I (D1) is before every job in F (D1) , then all jobs separated by D1 
are already in -< order, and consider I (D2) and F (D2). Otherwise, let k1 E I (D1) 
be the last job in 8 that is after some job from F (D1), and let m1 be the last such 
job from F (D1) before k1. That is s = (A1m1B1k1C1), where C1 n I (D1) = 0 
and B1 C J \ F (D1). By the above property, we have rb1 < Tn1 < Tm1 for all 
bl E B1, which implles that B1 � R�1...::m1• Thus, by subset-restricted interchange, 
we can insert m1 backward just after kl to obtain the alternative optimal sequence 
(A1B1k1m1C1). Following in this way, inserting the last job in F (D1) backward 
after k1 until there are no such jobs, we obtain sequence s1 which is an optimal 
sequence with the property that I (D1) is before F (D1). Continuing similarly, if 
I (D2) is before F (D2) in Si, then all jobs separated by D2 are already in -< order, 
and consider I (D3) and F (D3). Otherwise, let k2 E I  (D2) be the last job in s1 after 
some job from F (D2) \ F (D1) ( since I (D2) C I (D1) and I (D1) is before F (D1) 
in 81 ) , and let m2 be the last such job from F (D2) \ F (D1). Similarly, we have 
81 = (A2m2B2k2C2), where 02 n I (D2) = 0 and B2 � J\ F (D2). As above, we have 
that rb2 < Tn2 < r m2 for all b2 E B2, which implies that B2 � R�1-E:m . Thus we 
can insert m2 backward just after k2 to obtain the sequence (A2B2k2m2C2). When all 
such jobs in F (D2) \ F (D1) have been inserted after k2, we obtain sequence s2, an 
optimal sequence with the property that I (D2) is before F (D2) and I (D1) is before 
F (D1). Continuing similarly, ·we obtain si for i = 3, 4, . . .  , H. Then sH is an optimal 
sequence with the property that I (Di) is before F (Di) for i = 1, 2, . . . , H. Thus 8H 
is a linear extension of -<, and we have that -< is a precedence order indeed. • 

The original proof of Erschler et al. [4] , for 1 / r / Lmax , used pairwise interchange. 
This proof can also be modified to carry over to other cost functions f when '?:.t is a 
linear order. We chose to present a proof using backward insertion, however, because 
this extends to the ( nonlinearly ordered) general case. A proof using forward insertion 
can also be obtained by proceeding in the opposite direction. This is due to the duality 
of the operations and regions for the linearly ordered case. Interestingly, however, 
the proof based on forward insertion is not extendable to the general case either, as 
the duality of regions no longer holds. 

It is well known that the main source of difficulty in all 1 /r/ fmax problems is the 
fact that at any time the machine becomes available, it may be better to wait for a 
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yet unreleased job rather than to schedule one of the jobs available. The partition 
of P by D. means that the only jobs for which it may be worth waiting are the ones 
which are not separated by D. from the currently available jobs. 

Although Theorem 4 requires the linearity of '2:.1, it covers a number of well-studied 
scheduling problems. In addition to the ones studied in ( [3] and [4]), we mention one 
as an example. 

Corollary 1 -< is a precedence order for 1 fr f W Cmax and, in this case, > / is the 
order which orders the jobs in nonincreasing w order. 

Theorem 4 also has interesting complexity implications. As we have discussed 
earlier, the set S = {81, 82, . .. , SN} is linearly ordered by -E, and we can reinterpret 
the pairs (u(j),v(j)) as intervals 1; = [u(j),v(j)] in S. As-< was originally defined by 
k -< m {:::} v (k) < u (m) ( [3] and [4]), this gives an equivalent interval representation 
for -<: k -< m {:::} the interval I� = [u (k) , v (k)] lies strictly to the left of 1:n = 

[u ( m) , v ( m)] in the complete order ( S, �). Partial orders ( P, �P) that possess such 
an interval representation on a linearly ordered set (where x �Py{:::} I� lies to the left 
of I�) are called interval orders [5] . This yields the following tightening of previously 
known complexity results ( [7], [12]): 

Corollary 2 1 fr,precf Lmax and 1 fr,precf WCmax remains NP-hard in the strong 
sense even with interval order precedence constraints. 

Corollary 2 is interesting, as interval orders have a very special restricted struc­
ture [5] , but this does not seem to help in reducing the complexity of the scheduling 
problems mentioned. This is in contrast with the result of [15] which shows that 
Pm f Pi = 1, precf Cmax is polynomially solvable for interval-ordered precedence con­
straints. 

Recall that when the adjacent interchange order -E itself is a linear order, it 
defines an optimal sequence. It can easily be seen, that -< is equivalent to -E in this 
case, and so it also defines an optimal sequence. This means that -< also solves some 
well known special cases solved by Jackson's rule [8] or Lawler's method [11]: For 
1 / r f L�ax, Ji ( t) = t + qi and the jobs are linearly ordered by Ji > / f j {:::} qi > qi. �o 
both -E and -< are linear orders and define an optimal sequence, for example, when 
the f order is the same as the r order (the agreeably ordered case of 1 fr f L�ax in 
which r i � rj {:::}qi '2:. qi); or one of the orders is trivial (i.e. the f order is linear and 
all the jobs have the same release time (lf f Lmax)i or all the jobs have the same cost 
function (1 fr, di = df Lmax)· Similar comments apP.ly to the corresponding special 
cases of l frfWCmax and lfrffmax· 
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5 Weighted maximum lateness 

We derive first the 6. boundary for the weighted maximum lateness problem 1 /r /W Lmax. 
The �f order is no longer linear for this problem and this will also motivate our def­
inition of 6. for the general case. 

For the weighted maximum lateness problem, fj (t) = Wj(t-di) for all i E J. Let 
gi (t) = fj (t)+L, where the constant Lis chosen so that L � max { Wjdj Ii E J} . That 
is, gj (t) = Wjt + qj, where qi= L-wjdj � 0. We see that fk >1 fm � (wk >Wm) 
and (qk > qm)· Thus, we can represent the adjacent interchange order <E and the 
interchange regions using this 2-dimensional representation of >!· This means that 
our general definitions from before reduce to the following for 1 / r /W Lmax . 

k<Em # (rk :::; rm) and (wk �Wm) and (qk � qm) 
= {i lrj:::; rm,Wj:::; wk,qj :::; qk} 

= {i lwj :::; Wk, � :::; qk} 
= {i lrj:::; rm} 

We derive the 6. boundary by modifying the greedy procedure presented earlier. 
Once again, we assume that there are K distinct r values r 1 > r2 > · · · > rK and 
let wi = max{wi lri = ri} and qi= max{qi lri = ri} for i = 1, 2, ... , K. We use the 
same notation as before for the boundary points Mi and the diagonal points Di. Note 
that in this case both the Mi and Di may belong to fictitious jobs. 

Algorithm a for 1 I r /W Lmax 

Let (rM1, qM1, wMi) = (r1, q1, w1 ), l = 1 

For i = 2 to K 
ff qM1 �qi and w�1 � wi then go to Next i /*i.e. (qM1, WM1 ) > f (qi, wi) 
Else 

Next i. 

(rMz+pqM1+pWM1+1) = (ri,max{qi,qMJ ,max{wi,WM1}) /*This de­
fines Mz+1 

(rDp qDp wDJ = (ri,qMp wMJ /*This defines Di 
Increase l to l + 1 

ff we represent <E in 3-dimensions with q,w, and r as the x,y, and z axes, respec­
tively, then (qi, wi) is the least upper bound according to :::;1 of the jobs on the plane 
r = ri. ( This is well defined by the finiteness of J.) Symbolically, (qi, wi) = 
max2 {(%, Wj) lrj = ri }, where we define max2 {(%, wj) Ii E I} = (If}.ax qj, If}.ax Wj)· 

JEI JE[ 
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Taking least upper bounds, we greedily construct the sets of -possibly fictitious­
jobs Li and M. These jobs are on the boundary of a step pyramid, which contains all 
of the original jobs inside or on its surface (see Figure 7 for an example with H = 6). 
The definition of -< is analogous to our new definition of it for the linearly ordered 
case: k -< m if k and m are Li-separated. In the next theorem we prove that -< is a 
precedence order for 1 / r /W Lmax . 

w q 

Figure 7: Staircase structure for weighted maximum lateness. 

Theorem 5 -< is a precedence order for 1 /r /W Lmax . 

Proof. The proof is analogous to that for the linearly ordered case, using back­
ward insertion and the present diagonal Li. Recall that that proof requires the crit­
ical property that rb :::; rvi for all b E J \ F(Di) and any i. This is true here be­
cause of the greedy way that we construct M: The procedure looks at the r-levels ri 
( i = 1, 2, . . . , K) and takes the maximum (in :::;1) of the least upper bound for ri and 
the maximum so far. Mi (i = 1, 2, . . . , H + 1) is the i th proper maximum obtained 
in this way, and Di (i = 1, 2, . . .  , H) is its projection onto the r-level of Mi+I· By 
recalling that � =:::;r n ?..t (Definition 5), we see that Di is a lower bound according 
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to <E for all jobs on higher r-levels, and the critical property holds indeed. The rest 
of the proof is the same as in the linearly ordered case. • 

In contrast with the case when ?.t was linearly ordered, the dual proof using 
Foreward Insertion does not follow because the dual condition fb ?.1 fv, {:::} (qb ::::; qvJ 
and (wb < wvJ for all b E J \ I(Di) no longer holds. 

6 The general case 

For the general case of 1 /r / fmax, recall that fk ?.t fm � fk(t) ?. fm(t) for all t. 
Similarly to the just discussed 2-dimensional case, we introduce the least upper bound 
in :::;1 for a finite set of jobs I � J as the nondecreasing function pmax fj defined 

jEI 

as the pointwise maximum of the functions fj, i.e. with values (pmax fj) (t) = �ax 
jEI JEI 

fit) for all t. Then the procedure to define the set of boundary jobs M and the 
diagonal � is exactly the same as that for the linearly ordered case, except that 
Ji= pmax{fj lri = ri} need not equal fj for any real job j with Tj = ri, rather Ji is 
the pointwise maximum for all t of the functions fj with ri = ri for i = 1, 2, . . . , K. 

Algorithm ..::l for 1 / r / f max 

Let (rM1, fM1) = (r1, f1), l = 1 
For i = 2 to K 

If fM1 >1 Ji go to Next i 
Else 

(rM1+1,fM1+J = (ri,pmax{f i,JMJ) /* This defines M1+1 and the 
function fMHi 

Next i 

(rv,,Jv,) = (ri,fM,) /*This defines D1 and the function fv1 
Increase l to l + 1 

We can represent the adjacent interchange order <E using a 3-dimensional struc­
ture. Here jobs are represented by curves in space resting on planes determined by 
their release times, where k�m ( � rk::::; Tm and fk?. fm ) if k is on a lower r-plane 
than m and fk is above fm, i.e. fk(t) ?. fm(t) for all t. Similarly, � and M define 
a staircase-like structure that contains all of the curves fj for j E J inside or on its 
surface (see Figure 8 for an example with l� I = 4). The definition of -< is analogous 
to the previous special cases, i.e. k -<  m � k and mare �-separated. 

Theorem 6 -< is a precedence order for 1 /r / fmax. 
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j{t) 

Figure 8: Staircase structure for the general case. 

Proof. The proof is the same as that for 1 /r /W Lmax . • 

Finally, we note that even though the -< precedence order of Theorem 6 applies 
to very general /max problems, its structure, from an order-theoretic point of view, 
is not different from the case when ?:.1 is linearly ordered: Let us further augment 
Pll. by adding new least and g·reatest elements 0 and 1, and call it Po,1 = (Jo,i, �o,1), 
where Jo,1 = Jll. U {O, 1} and �o.1 =�Li U ({O} x Jti) U (Jll. x {1}). Then -< admits 
an interval representation using intervals Ii = [x(j),y(j)] (j E J) on the set S = 
!:::.. U {O, 1} linearly ordered by �0•1 , where for j E J, x(j) = max{l E S  ll� j} and 
y(j) = min { l E S Ii� l}. This leads to the following corollary for 1 / r / f max . 

Corollary 3 1 /r,prec / f max remains NP-hard in the strong sense even with interval 
order precedence constraints. 
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