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Comparison of the Properties and the Performance of the Criteria Used to

Evaluate the Accuracy of Distance Predicting Functions
ROBERT F. LOVE and HALIT USTER
Department of Management Science/Systems

McMaster University, Hamilton, Ontario, L8S 4M4

Abstract: Distance predicting functions may be used in a variety of applications for estimating travel
distances between points. To evaluate the accuracy of distance predicting functions, goodness-of-fit
criteria are employed. AD; (Absolute Deviations), SD; (Squared Deviations) and NAD; (Normalized
Absolute Deviations) are the three criteria that are mostly employed for modelling distances. In the
literature some assumptions have been made about the properties of each criterion. In this paper we
present statistical analyses performed to compare the three criteria from different perspectives. For
this purpose the {§, , o norm was employed as the distance predicting function. First we analyse

statistical properties of the prediction errors, and then we statistically compare the three criteria by
using absolute normalized error distributions in seventeen geographical regions.

When objects in space, such as different cities in a geographic region, activity centres in a
plant, or computer terminals of a LAN, can be represented by points, a distance predicting function
may be used to transform point coordinate differences of two points into an estimate of the distance
between the points. Thus, distance predicting functions have a number of uses. Some of these uses
are discussed below.

For validating the accuracy of actual road network distance data, distance predicting functions
can be used as suggested by Ginsburgh and Hansen [8]. To determine the optimal mix of trunking
and tramping of a truck transportation network for the movement of finished goods and raw materials
among national distribution centres, regional depots, and producers, a distance predicting function
was utilized by Westwood [25] to obtain estimates of the travel distances between possible links in
the network. In some distribution problems for which only the demands and the general location of
customers are known (see Eilon et al. [7]), a distance predicting function may be employed to

calculate a predicted travel distance between the depot and the general area.
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Distance predicting functions can also be used in models that determine the response time of
emergency vehicles to calls such as the model proposed by Kolesar et al. [10] for calculating the
response time of fire engines to fires.

Klein [9] suggests that distance predicting functions which reflect the nature of a geographic
region's road network should be used for constructing Voronoi diagrams of the region. A Voronoi
diagram subdivides a region into a number of subregions with each subregion being formed around
a point belonging to a set of points. For example, the set of points may be the region's police stations,
fire halls, or hospitals. Once the location of a query point is determined, the appropriate point of the
set is notified to respond to the call by looking at the Voronoi diagram.

Distance predicting functions appear within the context of larger models such as facilities
location problems (see e.g. Love, Morris and Wesolowsky [13]). Distance predicting functions in
these models obviate the need for determining actual distances between the new facilities and the
existing facilities. In addition, by using distance predicting functions which have empirical parameters
that reflect the nature of a region's road network, more accurate cost structures should be obtained
than if an assumed distance function is used by an analyst.

Presently, a distance predicting function is being utilized by MicroAnalytics in TruckStops2
[21]. When an analyst provides data regarding the customer demands, customer locations, and truck
types for a transportation network, TruckStops2 assigns customers to different trucks and
determines the routes for the trucks.

Distance predicting functions may be used for calculating distances in a Geographic
Information System (GIS). As Star and Estes [19] state, distance measurements are of value in many
geographic circumstances. Some of these circumstances are planning an irrigation channel between

a pond and a field, locating a site for a fire tower in a forest, and calculating the distances among



3

different geographic regions. To calculate distance measurements, a distance predicting function may
be incorporated into a GIS.

In order to evaluate the accuracy of a distance predicting function, a criterion is required. The
criterion not only provides a numerical value so that different distance predicting functions can be
compared but also provides the means for determining any empirical parameters of a distance
predicting function. Researchers are presently using three goodness-of-fit criteria:

1. Sum of Absolute Deviations ( ADy),

2. Sum of Squared Deviations ( SDy),

3. Sum of Normalized Absolute Deviations ( NADy ),

(see, e.g. Berens [1]; Berens and Korling [2]; Brimberg, Dowling and Love [4]; Brimberg, Love and
Walker [6], Love and Morris [11, 12], Love, Walker and Tiku [17]; and Ward and Wendell [22, 23]).
In addition, AD; and SD; have been used by Love and Morris [11, 12] to develop tests for
statistically comparing the accuracy of different distance predicting functions.

There are several motivations for conducting the study presented in this paper. Love, Walker
and Tiku [17] describe a procedure to find the confidence intervals for a fitted distance. The
procedure utilizes the statistical properties of the errors produced when a distance predicting function
is fitted to a particular geographic region. Since different criteria could lead to different statistical
properties of the fitting errors, we do statistical analyses of these errors for the three fitting criteria.

Secondly, in the literature the three criteria were assumed to have different properties in terms
of predicting distances. For example, it has been assumed that if the AD criterion is used, the {, , g

norm will predict long distances more accurately than short distances. The SD; criterion has been
characterized as having prediction errors with better statistical properties but still being similar to the

AD; criterion in terms of its accuracy in predicting long distances (see Love and Morris [11, 12]).
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The NAD; criterion, on the other hand, has been assumed to predict short distances as accurately as
long distances (Love and Walker [14]; Brimberg, Love and Walker [6]; Love, Walker and Tiku [17];
and Brimberg, Dowling and Love [4]).

In this paper, we present statistical properties of the fitting errors and a corﬂparison of the

above mentioned criteria. Statistical analyses are applied to seventeen different geographic regions
using the {, | o norm as the distance predicting function. In section two, the three criteria and the

distance predicting function are described. In section three, the statistical test procedures and results

are presented. Finally, in section four, conclusions based on our analyses of these results are

discussed.
THE DISTANCE PREDICTING FUNCTION AND THE GOODNESS-OF-FIT CRITERIA
The weighted ¢, norm (4 , o) was employed as the distance predicting function. For the Qk,p,e

norm, the travel distance between the points x; = (X,;, X;,) and x, = (X,;, X,,) is given by

' ' ' o]
bpo = k [lxu - X [P+ %y - Xzzlp]

X X X X
where 11 12 11 12

cosO -sinO
sin®@ cosB )’

keR' pe[l,2],and O €[0,90] .

X1 X3

X1 %22

This norm was selected because insights into the peculiarities of road networks are provided
by the empirical parameters &, p and 6 of the norm when the empirical parameters are determined for
a sample of road distances from a geographic region. The parameter p measures the rectangular bias

of the road network. The angle s a rotation parameter which ensures that the coordinate axes are
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rotated counterclockwise from the analyst’s defined coordinate axes until the road network is in phase
with the rotated coordinate axes (see Brimberg, Love and Walker [6]). The parameter £ is an
inflation factor which accounts for the hills, valleys and other types of noise in the road networks.
A criterion is used to measure the accuracy of a distance predicting function and also to
determine its optimal parameters. We next describe the general optimal methodology for fitting the
distance predicting function to a given geographic region. A random sample of points within the
geographic region is chosen. Based on an arbitrary coordinate system, cartesian coordinates for each
point are assigned and the actual distances between each pair of points are measured or read from
distance charts. Then the parameters of the distance predicting function are computed to minimize
the value of the selected criterion. The three goodness-of-fit criteria that will be analysed in this

paper are the minimizations of the following sums:

n-1 n

AD; = > lde (%) - ARx) |,

i=1 j=1+1

SD. = = Zn: (d; (xi,xj) - A(Xi,xj))2
£ i=1 j=i+l A(Xi,xj)

nl U Idf (Xi)x') - A(Xi:x')l
NAD; = E Z - ?

i=1 =i+l A(xpxj)

where n = the number of points in a data set,
A(x;,x;) is the actual distance between x; and x;,

and d; (x;,X;) is the predicted distance between points x; and x; using distance

predicting function f.
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The first criterion, ADy , is the minimization of the sum of absolute deviations. Since the
terms in AD; are not the weighted ones but only the absolute errors for each pair, it has been
described as a criterion which should estimate long distances more accurately than short distances.
The second criterion, SDy, is the minimization of the sum of squared deviations where each squared
error term is weighted by 1/A(x;,x;). Squared deviations and the division by actual distance provide
the criterion with certain desirable statistical properties (see Love and Morris [11, 12]). However,
the assumption has still been made that the difference in the accuracy of predictions involving long
and short distances in a region will favour the long distances (Berens [1], Berens and Korling [2],
Love and Morris [11, 12] and Ward and Wendel [22, 23]). The last criterion, NADx, is relatively
new in the literature. It has been utilized by Love and Walker [14]; Brimberg, Love, Walker [6];
Love, Walker and Tiku [17]; and Brimberg, Dowling and Love [4]. With the N ADycriterion, a sum
of normalized absolute deviations is minimized and the basic premise is that equal accuracy in
predicting long and short distances in a region will result. Normalization is realized by dividing the
absolute deviation by the actual distance between each pair. In this way both long and short distances
are treated on the same relative basis. Besides their above-mentioned structures, the three criteria
also differ from each other by the computational procedures performed to determine the optimal
parameter values of the distance predicting function. The computational procedures for fitting the
AD; and the SDy criteria are given by Brimberg and Love [S5]. For the NADy criterion the
computational procedure is identical to that of AD;(Love and Walker [14]). In general, the best &
and p values are determined by using an incremental search procedure and a four-stage incremental
search procedure, respectively. In order to find the best £ value some properties of the criteria are
used. It is known that AD; is a convex function of £, and SDjy is a strictly convex function of k

(Brimberg and Love [5]). NAD, was shown to be a convex function of £ by Love and Walker [14].
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Therefore, when using the AD; and NAD; criteria it is necessary to employ an algorithm to find the
optimal & for a given (6, p) pair. The optimal & for the SDy criteria is calculated with a simple closed
formula derived by Brimberg and Love [5]. The property of having a closed-form formula to find
the best value of parameter £ makes the application of the SDj criterion computationally more
efficient than using either the AD; or the NAD; criterion.

In order to model the parameters of the {, , g norm Love and Walker [15] collected sample

data from seventeen geographic regions. For each geographic region, 15 points were randomly

chosen. These 15 points provided 105 actual distances to be modelled by the distance predicting
function Qk,p,e using each criterion. The actual distance data and point coordinates from the seventeen
geographic regions are presented in Love and Walker [15]. The empirical parameter values for the
0y pp norm and the corresponding minimum criterion values for seventeen geographic regions
computed by Love and Walker [16] for the AD;and SDx criteria, and by Love and Walker [14] for
the NAD;x criterion are given here in Tables 1and 2. Table 1 includes the parameter values and the
criteria values corresponding to the minimum practical criteria values. Therefore it also includes
parameter p values greater than 2. Table 2, on the other hand, reports the same information
corresponding to the p values in the (0,2] interval. As stated by Brimberg and Love [4], two sets of
parameter values are theoretically the same for a region. For example, for the NAD; criterion in
Australiain Table 1, p is 2.3281 and in Table 2 it is 1.7545, and the corresponding criterion values
are 6.23 and 6.26 respectively. Although the two sets of parameters are theoretically same, in our
analysis we have chosen the parameter values in Table 1 with very slightly smaller criterion values.

It should be kept in mind that while searching for the parameter values of the {, , g norm in a region

other than the ones included in this study, it is enough to search for a p value in the (0,2] interval.
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AD; SD; NAD,

Region Criterion | © k P Criterion | 6 k P Criterion | 0 k P

Australia 13106.91 3] 1.1176 | 1.6848] 1158.04 | 42| 1.1827 | 2.1897 6.23 | 45] 1.1605 | 2.3281
BCProvince | 6362.35| 26| 1.3912 | 2.6182 |} 1027.59 |23 ] 1.3894 | 2.7290 11.04 | 16 | 1.3502 | 2.3744
Canada 8029.42 86 [ 1.1772 '1.4705| 557.06 | 36 | 1.3384 | 3.1066 521 |38 1.3621 | 3.4717
France 1592.26 | 68 | 1.0468 | 1.7734. 9232 | 70| 1.0609 | 1.8430 3.61 | 71| 1.0396 | 1.7417
Great Britain | 2311.36| 38| 1.1185 | 1.8124 | 219.42 | 40} 1.1095 | 1.7895 598 | 0] 1.1032 | 1.8826
NY State 163744 86| 1.1035 [ 1.6946| 159.80 | 86| 1.0794 | 1.5823 6.00 | 87} 1.0308 | 1.4950
Pennsylvania | 1206.24| 54| 1.1544 | 2.5539| 106.71 | 50 | 1.1573 | 2.5760 6.38 | 54| 1.1392 | 2.4360
United States | 651624 0] 1.0817 | 1.7290)] 342.68 | 0 [ 1.0792 | 1.6641 329 | 0] 1.0825 | 1.7427
Brussels 46.46 | 46| 1.0488 | 1.7660 3.55 | 47| 1.0549 | 1.8180 4.68 | 45| 1.0495 | 1.7802
London City 61.06 | 63} 1.1328 | 2.3358 16.53 127 1.1354 | 2.0821 8.74 1611 1.1359 | 2.3117
London North 27.88 | 61| 1.1474 | 2.4789 1.73 | 57| 1.1528 | 2.5676 4.62 | 56| 1.1582 | 2.6086
Los Angeles 110.66 | 431 1.1760 | 2.7970 15.13 | 48| 1.1909 | 2.7704 7.85 142} 1.1757 | 2.6790
NY City 12275 | 511 1.1741 | 2.6915 13.49 | 50 | 1.1751 | 2.3716 6.86 | 49| 1.1510 | 2.3996
Paris 48.58 | 36| 1.1204 | 2.2501 6.45 | 39| 1.1066 | 2.2835 8.41 {11 1.0635 | 1.6649
Sydney 13.11 7| 1.1048 | 1.4061 1.35 | 8] 1.1266 | 1.4719 6.50 | 6} 1.0991 | 1.3940
Tokyo 28.89 | 15| 1.1328 | 2.2059 2.29 | 13| 1.1389 | 2.2262 430 |20} 1.1244 | 2.1492
Toronto 65.98 | 87| 1.0118 | 1.1333 5.07 | 42| 1.3140 | 5.176 445 | 871 1.0121 | 1.1261

Table 1. Optimal parameter values of §, , o for the criteriafor p>1

STATISTICAL TESTS AND THE PRESENTATION OF RESULTS

The purpose of this section is two-fold. First, the statistical properties of the errors in

predicting distances are examined for each criterion, and for each region. Second, the statistical

comparisons of the three criteria are conducted by adopting the absolute normalized error as the

random variable.

Statistical Properties of Errors

For our work on road distances, the errors are the differences between actual distance and

fitted distance pairs. The model that determines the relationship between the fitted distance and the

actual distance is given by

Axx) = ddx,x)

+ e(xi,xj)




AD; SD¢ NAD;

Region Criterion | 6 k p Criterion | © k P Criterion | 6 k P

Australia 13106.91| 3] 1.1176 | 1.6848 |l 1163.59 | 0 [ 1.1460 { 1.8585 6.26 | 1] 1.0959 § 1.7545
BC Province | 6369.31| 71| 1.2737 | 1.6322 | 1038.72 | 68 | 1.2495 | 1.5609 11.06 | 69| 1.2701 | 1.7080
Canada 8029.42| 86| 1.1772 | 1.4705} 565.61 |83 [ 1.1715 | 1.4849 523 | 85| 1.1732 | 1.4584
France 1592.26 | 68 1.0468 | 1.7734 92.32 | 70| 1.0609 | 1.8430 3.61 |71 ] 1.0396 | 1.7417
Great Britain | 2311.36( 38 1.1185 | 1.8124 I 219.42 | 40| 1.1095 | 1.7895 5.98 | 0 1.1032 | 1.8826
NY State 1637.44 86 1.1035 | 1.6946]f 159.80 | 86| 1.0794 | 1.5823 6.00 [ 87| 1.0308 | 1.4950

Pennsylvania | 1207.34| 3} 1.0671 | 1.6274| 107.06 | 4| 1.0611 | 1.6244 6.48 | 7] 1.0673 | 1.6958
United States | 651624 0] 1.0817 { 1.7290{ 342.68 { 0 1.0792 | 1.6641 3.29 | 0] 1.0825 [ 1.7427

Brussels 46.46 | 46 ] 1.0488 | 1.7660 3.55 [ 47 1.0549 | 1.8180 4.68 | 45| 1.0495 | 1.7802
London City 61.45 | 18| 1.0697 | 1.7524 16.53 | 72| 1.1182 | 1.9241 875 | 8] 1.0495 | 1.7802
London North 28.49 | 151 1.0638 | 1.6505 1.78 | 11| 1.0599 | 1.6456 4.70 | 14| 1.0591 | 1.6171

Los Angeles 111.89 | 89| 1.0626 | 1.5699 1550 | 2| 1.0721 | 1.5734 7.90 | 87| 1.0672 | 1.5684

NY City 124.29 5| 1.0674 | 1.5822 13.58 | 6] 1.1069 | 1.7340 6.90 | 4| 1.0737 | 1.6975
Paris 48.71 | 75| 1.0704 | 1.7859 6.52 | 86| 1.0613 | 1.8189 841 | 11| 1.0635 | 1.6649
Sydney 13.11 71 1.1048 | 1.4061 1.35 | 8] 1.1266 | 1.4719 6.50 | 6] 1.0991 | 1.3940
Tokyo 2891 | 59} 1.0961 | 1.8591 2.30 | 58| 1.0963 | 1.8252 4.30 | 64 1.0963 | 1.8901
Toronto 65.98 | 87| 1.0118 j 1.1333 5.10 | 88 1.0279 | 1.1863 445 | 87} 1.0121 | 1.1261

Table 2. Optimal parameter values of {, , o for the criteria for 1<p<2.

where A(x;x) is the actual distance between points x, and x;, d¢ (x,%;) is the predicted distance, and
e(x,X) is the error term for the x, % pair. From the random sample of points for a geographic region,
the point estimates of the empirical distance predicting function parameters are calculated.
Substituting these point estimates into the empirical distance predicting function, an estimate of the
actual distance, d¢(x;,%;), is obtained. The error term for any pair of points embodies errors that may
arise in determining the fitted distance for that pair of points. For empirical distance functions which

utilize point coordinate differences, these errors may arise from point coordinate measurements,
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inaccurate instrument calibrations, and road network peculiarities that are not captured by the
distance model.

The error term, e(x;,X;), is a continuous random variable since it is a purely random part of the
actual distance, A(x;x;), that cannot be explained by the model. It is assumed that the errors for
different pairs of points in a region are independent, i.e., the errors of d ¢ (x;x;) about A(x;x;) are not
related to the errors of d;(x,,%) about A(x,,%) for the points i, j, k, | in a geographic region. In order
to examine the statistical properties of the error term populations, the e(x;,x;)’s which form a random
sample of 105 observations for each region were used to calculate the sample statistics for the
population parameters. The estimates of the population mean and variance are the sample mean (x)
and the sample variance (s%), respectively. The estimates of the population’s Pearson coefficients of
skewness and kurtosis,v/3; and B,, are the sample Pearson coefficients which are denoted by vb, and
b,. For a large sample (n>100),vb, and b, are unbiased estimators of v, and [, (Stuart and Ord
[20]). The x, s%Vvb, and (b, - 3) values are presented in Table 3 for the seventeen regions. In this
table kurtosis is given as (b, - 3) because the SPSS [18] reports it in this way for convenient
comparison purposes with the normal distribution. In order to determine whether the e(x;,x;)’s are
from a normal distribution, we first check the sample Pearson coefficients. The sample Pearson
coefficients not only indicate how skewed and peaked the samples are, but also provide an indication
of how skewed and peaked the populations from which the samples were drawn are. If vb, is less
than zero, then the sample is skewed left, and if Vb, is greater than zero, then the sample is skewed
right. A vb, value of zero indicates that the sample is symmetric around its mean. A (b,-3) value
which is less than zero (greater than zero) indicates that the sample is less peaked (more peaked) than
a sample from a normal population which would have a (b,-3) value of zero. The sample Pearson

coefficients for the different geographic regions confirm that the populations are non-normal.
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However, the degree of non-normality varies from region to region. In most regions the distributions

are skewed right and are more peaked than the normal distribution.

Besides the sample Pearson coefficients, Normal Probability plots and histograms were
examined. The related graphs are given in Figures 1 and 2 for the United States and Toronto
respectively. On normal probability plots, a linear relation is expected between the observed
cumulative probabilities and the expected cumulative probabilities for a sample distribution to be from
a normally distributed population. The histograms are expected to have a symmetric bell-shaped
appearance with no violations at the tails. The normal probability plots and histograms also confirm

that there is enough evidence to assume non-normal distributions of errors for the seventeen

geographic regions.

In order to test the equality of the variances for the three criteria the Levene test (using a 5%
significance level) was conducted for each region. Levene’s test is a powerful test when the data
come from continuous, but not necessarily normal distributions. The p-values for the two-tail
significance test are listed for each geographic region in Table 4. Since the p-values for the 2-tailed
Levene test are greater than 0.10, it is confirmed that the e(x;,x;) distributions of ADg, SD; and NAD;

have the same variance at the 5% significance level in all the regions.
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lRegion I X s? vb, | (b,-3)|f Urban Center X S? vb, | (b,-3)|| Criteria

19.229 | 27908360 | 1.154| 1.023 0029} 0377] -0219| 1.911| AD;

Australia 11.091 | 26810.490 | 1.032 | 0.936| Brussels 0.033| 0375| -0.192| 1.704| SD;
76.609 | 30706.590 | 1.107| 0.652 0.040| 0376| -0.181| 1.840| NAD;

6.136 | 6920.109 [ 0.842 1.649 0326| 1.097| 2245| 8365| AD;

BCProvince | 9.781| 6869.654 | 0.770| 1.581f LondonCity | 0.158] 1.125| 2.150| 7.674|l SD;
18.070 | 7263.024 | 1.008| 1.896 0290 1.103| 2245| 8.363|| NAD,

4.397 | 10377.210| 0468 | 1.174 0.005 | 0.112] -0.329 | -0.094 AD;

Canada 5260| 9960.011| 0.455| 0.695 LondonNorth | 0.017| 0.112| -0379| 0.004f SD,
7.382 | 10320270 | 0.474| 1.184 0.001| 0.116| -0.419| 0.128]| NAD;

2890 415.358| 1.074| 2.110 0373| 1.833| 0248| 0.536 AD;

France 0673 409.954| 1.035| 2.104|| Los Angeles | 0.144| 1.911| 0.068{ 0.219] SD;
4022| 422440 1.162| 2.525 0288 1.883| 0.294| 0.461|f NAD;

0242 949.459| 1.099] 1.914 0442 2.559| 1.294| 2.649|f AD,

GreatBritain | 2.104| 957.1267 1.329| 1.837|| NY City 0.128  2.584| 1.085| 2.086/ SD;
10496| 11681401 1.075| 2.030 0543 2528| 1.239] 2.294| NAD;

0.040 | 539.481| 1.658| 3.669 -0.034| 0373| -0.794| 1.237|| AD;

NY State 1.523| 542542 | 1.606| 3.353|| Paris 0.062| 0.361| -0.767| 1.346|| SD;
9.030| 693.586| 1477 1.905 -0.087 | 0.432| -0.902| 1.245}| NAD;

0.845| 230726 | 0366| 0.010 0.022 0029 0.701| 2.128|| AD;

Pennsylvania | 1.021| 223838} 0.318| -0.107|| Sydney 0.013 0029} 0504| 1.879}} SD,
2.516| 241910 0.481} 0.074 0.026| 0030 0762| 2256/ NAD;

17.026 | 7452.193| 1.089| 1.678 0.051( 0.148] 1316} 3.653| AD;

United States | 3.367| 7120.392 | 0992| 1.606| Tokyo 0022 0.148{ 1267| 3.598| SD;
19.085| 7556.449| 1.098| 1.670 0.073 | 0.150] 1.409| 3.759|| NAD;

-0.052| 0775] -0.791| 2.704)j AD;

Toronto 0.049 | 0.756| -0.729| 2.388|| SD;

-0.108| 0.787| -0.813| 2.614|| NAD,

Table 3. Sample statistics of e(x;x;) for seventeen regions

Region p-value|l Urban Center | p-value
Australia 0.668| Brussels 0.999
BC Province 0.973]] London City 0.995
Canada 0.993|| London North 0.996
France 0.997}f Los Angeles 0.925
Great Britain 0.524§§ NY City 0.994
NY State 0.284|| Paris 0.840
Pennsylvania 0.983]| Sydney 0.999
United States 0.998|| Tokyo 0.995

Toronto 0.993

Table 4. Two-tail values for the Levene test (equality of variances) of the three criteria
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To examine the homoscedasticity (see Wesolowsky [24]) for each criterion, the sample sets
of 105 pairs are divided into three groups after they are ordered in their increasing order of actual
distances for each geographic region. The first and the third groups, the 35 short actual distance
pairs and the 35 long actual distance pairs respectively, are extracted to use in testing the
homoscedasticity of the e(x;,x;)’s for each criterion. In order to clarify what is meant by long and
short actual distances, Table 5 was constructed. The means of the long actual distance and short
actual distance distributions, and also the ratio of the former to the latter are listed in Table 5. The
ratios are not too much different for all regions except Canada which has a relatively large ratio of

mean long actual distances to mean short actual distances of 5.605.

Region LongD. | ShortD. | Ratio "' Urban Center | Long D. | ShortD. | Ratio
Australia 3567.42 | 1072.83 3.325T Brussels 16.22 5.83 2.782
BC Province 1017.981 299.65 3.397|f London City 12.50 439 2.847
Canada 4289.72 | 765.33 5.605}| London North 11.08 3.58 3.095
France 72706 25817 2.816{f Los Angeles 25.85 9.45 2.714
Great Britain 701.80 ] 193.54 3.626]| NY City 27.93 10.29 2.714
NY State 428721 117.36 3.653|f Paris 9.69 3.39 2.858
Pennsylvania 37341 102.37 3.647|| Sydney 332 125 2.656
United States | 3596.99 | 1078.15 3.336|| Tokyo 11.22 428 2.621

Toronto 26.11 9.01 2.898

Table 5. The means of A(x;,x;) for long distance and short distance distributions
Levene tests for equality of variances of the prediction error distributions for the long and
short distances for the three criterion in each region are conducted. The standard deviation (o) of
the e(x;x) distributions for the long and short 35 pairs, and the 2-tail p-values of the Levene test are
presented for each criterion in Table 6.
The p-values, based on a 5% significance level, suggest that the e(x;,x;)’s for each criterion
are heteroscedastic except possibly in the five regions of Canada, London City, Los Angeles, Tokyo

and Toronto out of the seventeen geographic regions. The standard deviations are always higher for
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the long distance pairs. To illustrate this, the scatter plots of e(x;,x;)’s for the United States and
Toronto are presented in Figures 3 and 4 respectively. These scatter plots also confirm that the
e(x;,%;)’s increase as the actual distance between the pairs increases.

Finally, we were interested in the expected values of the e(x;,x;)’s for each criterion. Since
we already have enough evidence for the non-normality and the heteroscedasticity of the e(x;x;)
distributions, a nonparametric test, the Wilcoxon Signed Rank test with 5% significance level, was
performed to see if the E[e(x;,x;)]’s for each criterion is equal to zero. The results of the test are
given in Table 7. The p-values, which are greater than 0.05, present enough evidence to conclude
that the e(x;,x;)’s for the three criteria have an expected value of zero. The possible exceptions are
3 regions for the ADy criterion (London City, Los Angeles and New York City), 5 regions for the
NAD criterion (Australia, Great Britain, New York State, London City, New York City) and none
for the SDx criterion.

Statistical Comparison of the Three Criteria

In order to compare the three criteria, we used a transformed random variable given as
|e(x;,%) |/A(x,x;). There are three reasons for using this transformation. First, the new random
variable frees the error terms, the e(x;,x;)’s, from their directions so that the absolute errors are to be
compared. Second, since each criteria produces errors in different units the division of each error
term by its actual distance provides the comparison to be performed on the same basis for each
criterion. Finally, the accuracy in predicting long and short distances in a given region can be

compared on the same basis by this new random variable (|e(x;,x;)| A(x,x))).
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Geographical AD; SD; NAD;

Regions Og o, p-value Og o, p-value Og o, p-value
Australia 72.950 | 198.770 §  0.000 [ 71.580}199.250} 0.000| 69.820}192.570] 0.000
British Columbia 47.950 [ 105.740 | 0.001 [ 47.660{104.730| 0.001 | 46.260]109.510| 0.000
Canada 80.900 | 110.600 | 0.184| 78.160 |109.850 [ 0.125| 79.550 [107.610| 0.235
France 11.250 | 23.490| 0.001| 11.280 | 23.820 | 0.001| 11.050 [ 23.670| 0.001
Great Britain 16.550 [ 34.510| 0.010} 16.460 | 34.410| 0.010} 17.280 [ 39.290| 0.000
NY State 8240 31.690| 0.000| 8270| 31.310( 0.000f 9.070| 33.660{ 0.000
Pennsylvania 8.570| 17.730| 0.000| 8.800| 16.620| 0.001| 8.390( 17.970| 0.000
United States 64.620| 92.190| 0.030]| 66.250| 87.720| 0.033| 64.390 | 93.430| 0.031
Brussels 0.407| 0.684| 0.022| 0408 | 0.682| 0.022] 0406| 0.680| 0.021
London City 0.839( 0982 0294| 0843 0979| 0.306| 0.8381 0.987| 0.280
London North 0.248| 0.357| 0.020( 0.238| 0.378] 0.009| 0.236| 0.388} 0.007
Los Angeles 1.232{ 1.409| 0.363 1.221 1465| 0.255} 1222 1434} 0.284
NY City 0.981| 2.005] 0.006f 0.953| 2007 0.005| 0.932] 1.959| 0.006
Paris 05794 0.714| 0040| 0565} 0.709] 0.038] 0.551]| 0.840| 0.005
Sydney 0.117| 0.233} 0.003{ 0.114] 0.232( 0.002| 0.116| 0.235§f 0.002
Tokyo 0.380| 0.390| 0.392| 0.381] 0407| 0300f 0.381| 0.386| 0427
Toronto 0.678) 0.856] 0.163} 0.648| 0840| 0.162) 0.681 0.817} 0.168

Table 6. Standard deviations of the e(x;,x;) distributions, and the 2-tail p-values of
Levene Test for homoscedasticity

Large Geo. p-value | p-value | p-valuef| Urban Center | p-value | p-value | p-value
Region AD; SD; NAD; AD; SD; NAD;
Australia 0.815] 0.654| 0.003|| Brussels 0.598 | 0.548| 0.490
BC Province 0.944] 0.480| 0.134|] London City 0007 | 0964 0.048
Canada 0.862 | 0.801| 0.565| London North 0.658 | 0.381| 0.681
France 0.555] 0.621| 0.246|f Los Angeles 0.012| 0.364§ 0.086
Great Britain 0.269 | 0.740( 0.042}| NY City 0.039! 0.983| 0.007
NY State 0.060| 0.278 0.035{| Paris 0.801] 0.080| 0.747
Pennsylvania 0.996| 0.854| 0.291}} Sydney 0.295| 0.509} 0.207
United States 0.309| 0.649| 0.202f Tokyo 0.486| 0.916] 0.235
Toronto 0978 | 0.208] 0.492

Table 7. Wilcoxon signed rank test results for E[e(x;x))] = 0
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This section is presented in three sets of comparisons: (i) the comparison of the
| e(x;,%;) |/A(x;,x;) distributions for 105 pairs of each geographic region, (ii) the comparison of the
accuracy of the three criteria in predicting the 35 pairs of long distances and 35 pairs of short
distances in a given region, and (iii) the comparison of the accuracy for each criteria in predicting the
long distances versus short distances in a given region.

(i)  Inorder to compare the absolute normalized errors, |e(x;,x)|/A(x;X;), their distribution for
each criterion was first checked for normality. For that purpose and also to present the descriptive
statistics for each distribution, Table 8, which includes the means (%), variances (s°), skewness (b,)
and kurtosis (in(b,-3) form), is constructed. Furthermore, the normal probability plots and histograms
for each criterion and region were constructed. Two of the normal probability plots and histograms
for the United States and Toronto are presented in Figures 5 and 6, respectively.

In Table 8, we observe that skewness and kurtosis values for the distributions are different
enough from zero that we cannot conclude the distributions of |e(x;x;)|/A(x;X;) are from normal
distributions for each criteria in the regions. The normal probability plots and histograms in Figures
5 and 6 also support the non-normality of the |e(x;,X;)|/A(x;x;) distributions. Therefore a
nonparametric test was applied to determine if the |e(x;,x;)|/A(x;,x;) distributions for each criterion
were significantly different from each other in a given region. The Friedman Test, which is used for
multiple matched samples, was employed as the main effect test to compare the three
| e(x;,%)) |/A(x;,X;) distributions at the 5% significance level The p-values for seventeen geographic
regions are listed in Table 9. Since the p-values in Table 9 are well above 0.05,n0 pair of criteria is
significantly different at the 5% significance level. The mean absolute errors in percentages are
reported for each criterion and region in Table 10. Based on the figures in Table 10, it can be said

that the average percent absolute errors for a given region are very close to each other for the criteria
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and in general they are small enough to conclude that the predicted distances are close
approximations of actual distances.
For example, in Brussels the percent absolute errors in predicting distances are 4.46%, 4.47%

and 4.46% for the ADy, SD;, and NAD criteria, respectively.

| Region | x s: | vb, | (b,-3) || Uban Center | X s2 | b, | (b,-3) |Criteria
0.0634 |0.0027 |1.5524 |2.9709 0.0446 |0.0017 |1.6735 |3.7924 |AD,

Australia 0.0636 [0.0025 |1.5999 |3.3357 | Brussels  |0.0447 [0.0017 [1.6599 |3.8810 |sD,
0.0593 {0.0027 {12950 | 1.892 0.0446 [0.0017 |1.6728 |3.7951 |NAD,

0.1069 [0.0071 {0.7062 |-0.1670 0.0833 [0.0212 {4.0173 |19.1818 |AD,

BCProvince  |0.1063 |0.0069 |0.7309 |-0.0870 || LondonCity [0.0872 |0.0195 |4.2164 |20.9644 |SD;
0.1052 |0.0067 [0.7595 | 0.0682 00832 [0.021 [4.1062 |19.9933 |NAD,

0.0499 |0.0028 |1.747 |3.2356 0.0446 |0.0013 |1.2163 | 1.5499 |AD,

Canada 0.0504 |0.0025 |1.5718 |2.1566 || LondonNorth |0.0442 |0.0012 |1.2857 |1.8672 |sD,
0.0497 |0.0028 |1.8150 | 3.3933 0.0440 10.0012 12825 |18599 |NAD,

0.0335 |0.0009 |1.7694 |4.1584 00751 [0.0138 [6.7183 |57.5431 | AD,

France 0.0341 [0.0008 |1.7285 |4.1728 |[LosAngeles [0.0757 [0.0131 [7.0910 |62.3922 |sD,
0.0334 [0.0010 |1.9857 |5.1221 0.0748 [0.0139 |6.9068 |59.9512 |NAD,

0.0591 |0.0025 |1.1108 | 1.3866 0.0660 |0.0039 |1.7232 | 2.6192 |AD,

Great Britain  |0.0587 |0.0024 |1.2424 | 19158 [[Nvcity 00682 |0.0031 |1.5462 {23413 |sD,
0.0570 |0.0027 |1.6056 |3.2751 0.0653 0.0039 |1.6307 |2.4097 |NAD,

0.0623 |0.0023 |0.8010 | 0.1435 0.0815 [0.0068 |3.0579 [13457 |AD,

NY State 0.0612 |0.0021 [1.0104 | 05856 | Paris 0.0827 |0.0063 |2.9045 |12.1986 |SD;
0.0626 |0.0026 |1.2077 | 1.0528 0.0801 |0.0069 |2.4500 |9.0103 |NAD;

0.0617 10.0033 |1.6327 |3.7136 00621 |0.0033 |1.4150 |2.0364 |AD;

Pennsylvania | 0.0623 [0.0033 |1.7010 |3.7626 || Sydney 00620 |0.0031 |1.3346 |1.8110 |sD;
0.0608 [0.0031 |1.5613 |3.5665 0.0617 [0.0033 |1.4393 |2.1473 |NAD,

0.0314 [0.0009 |1.8475 |4.8344 0.0410 |0.0021 {3.9404 |23.7253 |AD,

United States  |0.0326 |0.0008 |1.8210 | 4.1774 || Tokyo 0.0414 |0.0021 |3.8788 |23.1547 |SD;
0.0314 |0.0009 |1.8510 |4.9158 0.0409 |0.0022 |3.9262 {23.5744 |NAD,

0.0425 [0.0020 |2.2888 |6.7672 |AD,

Toronto 0.0440 |0.0017 |1.9516 |5.0684 |SD;

0.0424 |0.0021 |2.2782 |6.6037 |NAD,

Table 8. Descriptive statistics of the |e(x;,x;)|/A(x;, x;) for geographic regions
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Region p-value Urban Center l p-value
Australia 0.3732|| Brussels 0.9765
British Coluinbia 0.3750} London City 0.6386
Canada 0.2315{| London North 0.6839
France 0.4806|| Los Angeles 0.3724
Great Britain 0.9355|| New York City 0.7062
New York State 0.4047}} Paris 0.1038
Pennsylvania 0.7280]} Sydney 0.7606
United States 0.8889}| Tokyo 0.8816

Toronto 0.2450

Table 9. The p-values for the Friedman Test of |e(x;,x;)| /A(x;,x;) distributions of the criteria

Region AD; SD; | NADy || Urban Center | AD; | SD; |NAD;
Australia 6.34 6.36 5.93|| Brussels 446 4.47| 4.46
British Columbia | 10.69| 10.63| 10.52} London City 833 872} 833
Canada 4.99 5.04 4.97|| London North | 446 ] 442| 440
France 3.35 341 3.34{] Los Angeles 751 757) 748
Great Britain 5.91 5.87 5.70§| NY City 6601 6.82]| 6.53
NY State 6.23 6.12 6.26|} Paris 8.15] 827} 8.01
Pennsylvania 6.17 6.23 6.08]| Sydney 621 620 6.17
United States 3.14 3.26 3.14|| Tokyo 4.10| 4.141 4.09

Toronto 4251 440| 4.24

Table 10. Absolute percent errors in predicting distances for the criteria in geographic regions.

We next test the distributions of the random variable |e(x;,x;)|/A(x;,X;) (corresponding to long
and short actual distances) for normality. Non-normality of the |e(x;,x;)|/A(x,X;) distribution formed
by 105 pairs of 15 points in a given region does not guarantee that a subset of these 105 pairs which
is nonrandomly formed by 35 pairs of points, also does not come from a non-normal distribution.
There are six different distributions used in the comparisons to identify the differences between the

three criteria for predicting long actual distances and short actual distances. The six distributions are

sketched in Figure 7.
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35LongD. | . 0 e e e 35LongD. | _ __  — — I 35LongD.
Pairs;AD ¢ Pairs;SD ¢ Pairs; NAD ;
35ShortD. | o o o o e 35ShortD.} 1 35ShortD.
Pairs;AD ¢ Pairs;SD ¢ Pairs; NAD ¢

: Horizontal Comparisons (ii)

: Vertical Comparisons  (iii)

Figure 7 :Six distributions for long and short distance pairs comparisons.

If at least two of six distributions, one from each row, are not from a normal distribution, then
a nonparametric test should be used for the main effect test of horizontal comparisons (i.e., for part
(ii)). If at least three, each from a different criterion, of six distributions are not from a normal
distribution, then vertical comparisons (i.e., for part (iii)) should be performed by using a
nonparametric test.  Therefore, the skewness, Vb;,, and kurtosis, (b,-3), values of the
|le(x,%;)| /A(%,%) distributions for long distances using the AL} criterion, for short distances using the
SDx criterion and for long distances using the NAD; criterion are reported for each region in Table
11. If we guarantee that in the six distributions of Figure 7 there is at least one distribution in each
row and one distribution in each column coming from non-normal populations, then we need to use
nonparametric tests for the following parts of the section. In addition, for each criterion the normal

probability plots and histograms of the above mentioned distributions for the United States and
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Toronto are represented in Figures 8 and 9, respectively. The skewness and kurtosis values in Table

11 are sufficiently different from zero (the distributions are always skewed right, and are generally

more peaked than the normal distribution) to provide evidence that the distributions come from non-

normal populations. This is also supported by the normal probability plots and histograms in Figures

8 and 9. Therefore, nonparametric tests should be used for unbiased comparisons of the criteria

involving the six distributions outlined in Figure 7.

Geographical Long Distance- AD Short Distance- SD ¢ Long Distance- NAD

Region Skewness | Kurtosis Skewness | Kurtosis | Skewness Kurtosis
Australia 0.4881 -0.6541 1.2536 1.3505 0.4131 -0.9182
British Columbia 0.1244 1.0772 0.3501 -0.1516 1.3306 1.6137
Canada 1.3520 1.6556 0.6961 -0.5406 1.3277 1.8534
France 2.6315 9.8096 2.0758 5.8926 2.7389 10.1983
Great Britain 1.4349 1.3900 0.5296 -0.2207 1.1993 0.9675
New York State 0.8914 -0.2543 0.9814 1.0950 0.7519 -0.7202
Pennsylvania 0.5275 -1.0158 1.2628 1.0579 0.4775 -1.0018
United States 1.6883 4.4469 1.4650 2.5399 1.6432 4.1495
Brussels 1.5948 2.4744 1.8813 5.0096 1.6090 2.6409
London City 3.3989 12.8349 3.8639 15.9083 3.4378 13.7044
London North 0.6037 -0.7204 0.9873 0.3199 0.8531 0.2911
Los Angeles 1.4745 2.5833 4.8098 26.0766 1.4541 2.7294
New York City 2.2495 6.4738 0.9857 -0.2267 2.1354 5.8431
Paris 0.8056 -0.0447 2.0891 4.8714 0.7644 -0.5594
Sydney 1.9071 4.9922 0.5940 -0.3163 2.0189 5.6586
Tokyo 1.7651 5.3646 3.3773 15.1482 1.9370 6.3196
Toronto 1.4835 2.2125 1.1633 1.5794 1.2894 1.4425

Table 11. Skewness (vb,) and kurtosis (b,-3) values for the normality of three distributions.

(i) It has already been shown that we must employ a nonparametric test to compare the accuracy

of the three criteria in predicting long and short distances. However, in order to obtain more

comparisons between the criteria, tests can be applied to check the variances for equality. There are

two sets of horizontal comparisons (long distances and short distances) and each set includes three

distributions formed by 35 pairs of points in a region (see Figure 7).
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A Levene equality-of-vanance test at a significance level of 5% is performed for each set. The 2-tail
p-values of the Levene test for the long and short distance distributions are given for each region in
Table 12. Since the p-values in Table 12 are well above 0.10 (the one exception is the long distance
distribution in Paris with a p-value of 0.06), they do not provide enough evidence at the 5%

significance level to reject the hypothesis that the variances of long distances and short distances are

significantly different.
Region ShortD. | LongD. || Urban Center | ShortD. | Long D.
p-value | p-value p-value | p-value
Australia 0.945 0.335]| Brussels 0.999 0.999
British Columbia 0.997 0.991}| London City 1.000 0.912
Canada 0.875 0.937|| London North 0.975 0911
France 0.871 0.963}| Los Angeles 0.995 0.960
Great Britain 0.808 0.448)| NY City 0.589 0.997
NY State 0.412 0.250|| Paris 0.976 0.060
Pennsylvania 0.984 0.412)| Sydney 0.947 0.991
United States 1.000 0.369}} Tokyo 0.998 0.923
Toronto 0.815 0.992

Table 12. 2-tail p-values for equality of variances of long and short distance distributions for the
three criteria in each region

We next turn our attention to the comparisons of the accuracy of the three criteria in
predicting long distances and short distances in a given region. For that purpose, two Friedman tests
for the matched triples of both horizontal sets (see Figure 7) are performed. A p-value less than 0.05
is supposed to indicate the existence of a significantly different pair from the three criteria for the
given region. The p-values of these main effect tests are provided in Table 13.

The significance levels listed in Table 13 can be interpreted as follows. In general, the
accuracy in predicting distances is not significantly different for the three criteria. However, for long

actual distances, in five of the eight large geographic regions; Australia, British Columbia, Great
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Britain, New York State, and the United States, and for the short actual distances, in three regions;

Australia, New York State, Paris, there is at least a pair of criteria with significantly different distance

prediction accuracy.

Long D. | ShortD. ShortD. | LongD.

Region p-value | p-value || Urban Center | p-value p-value
Australia 0.0002 | 0.0000 {| Brussels 0.9491 0.9749
British Columbia { 0.0080 | 0.1242 || London City 0.1870 0.3213
Canada 0.9107 } 0.4624 } London North | 0.2684 0.1342
France 0.7553 | 0.6897 || Los Angeles 0.4389 0.0083
Great Britain 0.0073 | 0.2466 || NY City 0.2355 0.1048
NY State 0.0116 | 0.0187 || Paris 0.6175 0.0316
Pennsylvania 0.1242 | 0.0527 || Sydney 0.2388 0.8534
United States 0.0300 | 0.1066 Jj Tokyo 0.4296 0.9767
Toronto 0.6897 0.1691

Table 13. The p-values of Friedman test comparing long and short distance distributions for the
criteria.

In order to identify which criterion is more accurate in predicting long or short distances in
the above exceptional regions, multiple comparisons are performed by using nonparametric Wilcoxon
matched pairs tests. However, instead of reporting the results of this test, average percent absolute
errors (100*E[le(x; %) |/A(%,%)]) for predicting long and short distances for the criteria are presented
in Table 14.

By inspecting the average percent absolute errors of the first five exceptional regions listed
above, it can be observed that the AD, and SDjx criteria generate less average percent absolute error
than the NADx criterion in predicting long distances. For example, in Australia the average percent
absolute errors for the AD,and SD; criteria are 5.02% and 5.03%, respectively, whereas for the NAD;
criterion, it is 6.42%. However, the United States is exceptional in those five regions since the SD;

criterion has less average percent absolute error, 2.02% than the AD; and NADx criteria which have
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2.06% and 2.09%, respectively. By inspecting Table 14 for short actual distances, we see that the
NAD; criterion provides better prediction accuracy than the either of the AD; and SD; criteria for the
three exceptional regions. For example, in Australia the NAD; criterion generates a 6.23% absolute
error in predicting short distances. However the AD; and SDx criteria provide 8.45% and 8.37%

absolute errors for the same region, respectively.

Geographical Short Distance Long Distance
Region AD; SD; NAD; ADy SD; NAD;
Australia 8.45 8.37 6.23 5.03 5.02 6.42
British Columbia 13.85 1353 12.67 7.79 7.90 8.40
Canada 8.92 8.80 8.76 1.89 1.97 1.96
France 3.93 4.03 3.81 2.56 2.51 2.67
Great Britain 6.73 6.61 5.99 3.60 3.76 5.08
New York State 7.29 6.91 6.03 5.14 5.44 6.82
Pennsylvania 832 8.59 8.00 4.13 4.10 444
United States 4.01 422 3.97 2.06 2.02 2.09
Brussels 5.30 5.31 5.29 3.25 3.26 3.24
London City 11.18 11.00 11.03 4.60 5.34 4.70
London North 6.22 5.98 5.87 2.77 2.87 292
Los Angeles 11.60 11.39 1133 4.15 4.70 4.34
New York City 7.7 7.82 7.17 5.75 5.41 5.84
Paris 11.61 11.73 10.68 6.18 6.27 6.91
Sydney 797 7.86 7.85 5.61 5.60 5.66
Tokyo 5.63 5.64 5.64 2.65 2.62 2.77
Toronto 5.59 5.70 5.52 2.51 2.39 2.57

Table 14. Average percent absolute errors in predicting long and short distances of the criteria.

(iii)  The purpose of this part is to compare the accuracy of predicting long distances versus short
distances in a region. Therefore, three sets of vertical comparisons, one for each criterion (see
Figure.7), are performed. First, in order to determine whether the variance of the |e(x;,x))|/A(x;,x)
distribution is constant for a given criterion in a region, Levene tests are conducted for each criterion

in seventeen regions. Hence if the p-value of the Levene test for a criterion is significant (i.e., greater
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than 0.10 significance level for the two-tail test) then we can conclude that the variance of the
|e(x;,%) |/AG,%;) distribution for that criterion in that region is constant and vice versa. The 2-tail p-
values for the Levene tests are presented in Table 15. Based on this table, the variances of the
| e(;,%;)|/A(%,% ) distributions for all the urban centers are not equal since the test values are less than
0.10 for all the criteria. Additionally, there are four exceptions for each criterion in the large
geographic regions; for the AD; and SD criteria, the variance of the |e(x;x;)|/A(x;X;) distributions
are homoescedastic in British Columbia, France, Great Britain, NY State, and for the NAD; criterion,

the |e(x,%;)|/A(x;,%;) distribution is homoscedastic in Australia, British Columbia, France and Paris.

Region AD; SD; | NAD; || Urban center AD; SD; | NAD;
Australia 0.084| 0.031 | 0.383|f Brussels 0.084 | 0.093 | 0.090
BC Province 0.7251 0.617| 0.758|| London City 0.066 | 0.039 [ 0.066
Canada 0.000| 0.000( 0.000f London North 0.001 [ 0.003| 0.007
France 0.285| 0.351| 0.252] Los Angeles 0.017| 0.024| 0.018
Great Britain 0.159| 0.234| 0.466|| NY City 0.016 | 0.054| 0.011
NY State 0.741| 0.925| 0.014} Paris 0.006 | 0.004| 0.022
Pennsylvania 0.002 | 0.000| 0.005| Sydney 0.043 | 0.082{ 0.048
United States 0.013]| 0.001| 0.018ff Tokyo 0.025]| 0.019{ 0.030

' Toranto 0.000| 0.001| 0.000

Table 15. The 2-tail p-values for the equality of variance of |e(x;x;)|/A(x,X;) for each criterion.
In order to see the general pattern of differences in variances for the three criteria we inspect

Table 16 where the variances of the |e(x;x;)|/A(x,X;) distributions resulting from long and short
distance predictions are reported. In general, it can be said that the variance of the distribution of
| e(x;,%;) |/A(x;,x;) for long distances is less than the variance for short distances for each criteria in
each region. But this conclusion does not always hold at the 5% significance level as the Levene tests
suggest in Table 15. In order to represent the converging funnels formed by the variances plotted
against increasing actual distances in a region, the scatter plots of | e(x;,x;) |/A(x;,%;) for United States

and Toronto are shown in Figures 10 and 11, respectively.
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Geographical Short Distances Long Distances
Region AD; SD; NAD; ADy SD; NAD;
Australia 0.0036 | 0.0035} 0.0030f] 0.0015| 0.0015( 0.0019
BC Province 0.0072 | 0.0073| 0.0070ff 0.0058 | 0.0057| 0.0064
Canada 0.0043 | 0.0039{ 0.0047|| 0.0003| 0.0002| 0.0003
France 0.0011 | 0.0010| 0.0012§ 0.0007 | 0.0006 | 0.0007
Great Britain 0.0022 | 0.0021 | 0.0025[ 0.0014| 0.0014| 0.0021
NY State 0.0025 | 0.0024 | 0.0021}f 0.0025| 0.0023 | 0.0034

Pennsylvania 0.0058 | 0.0060{ 0.0056)f 0.0012| 0.0010| 0.0014
United States 0.0012 | _0.0013 | 0.0013i| 0.0004] 0.0003 [ _0.0004
Brussels 0.0023 | 0.0023| 0.0023ff 0.0009| 0.0009| 0.0009
London City 0.0364 | 0.0354| 0.0367|| 0.0060} 0.0045] 0.0058
London North | 0.0020 { 0.0019}| 0.0020f 0.0005| 0.0005| 0.0006
Los Angeles 0.0343 | 0.0335{ 0.0352§f 0.0013| 0.0012( 0.0012

NY City 0.0053 [ 0.0038 | 0.0053|| 0.0027 | 0.0023| 0.0026
Paris 0.0145| 0.0134| 0.0136}f 0.0019| 0.0018| 0.0033
Sydney 0.0042 | 0.0039}| 0.0042f 0.0026| 0.0025| 0.0027
Tokyo 0.0041| 0.0040| 0.0042}f 0.0006| 0.0005] 0.0006
Toronto 0.0025 | 0.0019] 0.0026)| 0.0004| 0.0004| 0.0004
Table 16. Variances of |e(x;X;)|/A(x;X;) distributions in predicting long and short distances of the
criteria.

The accuracy of each criteria in predicting the long versus short distances in a given region
is examined by using the nonparametric 2-tailed Mann-Whitney Test (see figure 7, vertical
comparisons) with a 5% significance level. The 2-tailed p-values of the tests for three criteria are
presented in Table 17. In this table, a p-value less than 0.10 indicates that there is a significant
difference between the long distance and short distance |e(x;,X;)|/A(x;;) distributions of the
geographical region.

Therefore, for the ADcriterion only in New York city and Sydney and for the SD; criterion
only in New York State and Sydney, do the long distance and short distance |e(x;X;)|/A(x;X;)

distributions apparently come from the populations having the same distributions. For the NAD,
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criterion the same conclusion holds in the regions of Australia, Great Britain, New York State, New
York City, Paris and Sydney. As also seen in Table 16, the average percent absolute errors in a given
region are considerably different for long and short distances and indeed the accuracy in predicting

long distances is higher than the accuracy in predicting short distances in a given region.

Region AD; SD; NAD; Urban Center AD; SD; NAD;
Australia 0.0118 0.0197 0.5145]| Brussels 0.0340 0.0360 0.0307
BCProvince 0.0024 0.0044 0.0285|| London City 0.0012 0.0316 0.0026
Canada 0.0000 0.0000 0.0000}} London North 0.0004 0.0008 0.0021
France 0.0203 0.0070 0.0821}1 Los Angeles 0.0039 0.0093 0.0103
Great Britain 0.0042 0.0057 0.4920]| NY City 0.5413 0.0942 0.9859
NY State 0.0446 0.1622 0.9205{ Paris 0.0350 0.0177 0.2401
Pennsylvania 0.0124 0.0118 0.0548]| Sydney 0.1638 0.1501 0.1943
United States 0.0061 0.0038 0.0093} Tokyo 0.0061 0.0060 0.0132

Toronto 0.0061 0.0002 0.0123

Table 17. Two-tailed Mann-Whitney Test p-values for |e(x;,x;)|/A(x,x;) distributions in
predicting long and short distances of the criteria.

SUMMARY OF THE RESULTS AND CONCLUSIONS

The three goodness-of-fit criteria, AD;, SD; and NAD;, were compared with different
perspectives for seventeen geographical regions including nine large geographical regions and eight
urban centers. Several generalized conclusions, based on these seventeen regions, can be drawn from
a variety of statistical tests.

Several conclusions regarding the properties of the e(x;,x;) distributions for the three criteria

can be drawn.

1. The e(x;,%;) populations are non-normal, generally highly peaked and skewed right, for each

criterion.

2. For the three criteria, the variances of the e(x;,x;) distributions are not significantly different.
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3. For each criterion, the variance of the e(x;,x;) distribution for long distances is significantly
different, and indeed greater than the variance of the e(x;,x;) distribution for short distances.
Hence, in general, the scatter plots for e(x;,x;) forms a diverging funnel as the actual distance
increases for the.sﬁmple pairs.

4. The expected values of the e(x;,x;) distributions are zero for the geographical regions with a
few exceptions for the AD; and NAD; criteria. There were no exceptions for the SDs
criterion.

The following conclusions regarding the comparison of the three criteria in terms of their
accuracy in predicting relatively long distances and short distances can be drawn.

1. The |e(x;X;)|/A(x,X;) populations are non-normal for each criterion. The histograms are
highly peaked with more occurrences close to zero and skewed right.

2. There are generally no pairs of the criteria for which the | e(x;x;)|/A(x;x;) distributions are
significantly different.

3. Interms of the |e(x, %) |/A(x,%)’s, the three criteria are not significantly different in predicting
either long distances or short distances. However, each criterion has a higher accuracy in
predicting relatively long distances than in predicting relatively short distances.

4. The variance of the |e(x;,x;)|/A(x;,X;) distribution for long distances is significantly different
than the variance of the |e(x;,x;)|/A(x,%;) distribution for short distance;. The former is
smaller than the latter, and hence the scatter plots of the: |e(x;x;) |/ A(x;%;) distributions form
a converging funnel as the actual distance between the sample points increases.

Finally, we can say that because of the computational efficiency provided by the closed form

formula to determine the best value of parameter k when fitting the {, , g norm, and since the e(x;x;)’s

have an expected value of zero without any exceptions in all the regions, it would seem to be

advantageous to use the SD; criterion in practice.
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