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Evaluate the Accuracy of Distance Predicting Functions 
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Abstract: Distance predicting functions may be used in a variety of applications for estimating travel 
distances between points. To evaluate the accuracy of distance predicting functions, goodness-of-fit 
criteria are employed. ADf (Absolute Deviations), SDf (Squared Deviations) and NADf (Normalized 
Absolute Deviations) are the three criteria that are mostly employed for modelling distances. In the 
literature some assumptions have been made about the properties of each criterion. In this paper we 
present statistical analyses performed to compare the three criteria from different perspectives. For 

this purpose the Qk,p,El norm was employed as the distance predicting function. First we analyse 
statistical properties of the prediction errors, and then we statistically compare the three criteria by 
using absolute normalized error distributions in seventeen geographical regions. 

When objects in space, such as different cities in a geographic region, activity centres in a 

plant, or computer terminals of a LAN, can be represented by points, a distance predicting function 

may be used to transform point coordinate differences of two points into an estimate of the distance 

between the points. Thus, distance predicting functions have a number of uses. Some of these uses 

are discussed below. 

For validating the accuracy of actual road network distance data, distance predicting functions 

can be used as suggested by Ginsburgh and Hansen [8] .  To determine the optimal mix of trunking 

and tramping of a truck transportation network for the movement of finished goods and raw materials 

among national distribution centres, regional depots, and producers, a distance predicting function 

was utilized by Westwood [25] to obtain estimates of the travel distances between possible links in 

the network. In some distribution problems for which only the demands and the general location of 

customers are known (see Eilon et al. [7]), a distance predicting function may be employed to 

calculate a predicted travel distance between the depot and the general area. 
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Distance predicting functions can also be used in models that determine the response time of 

emergency vehicles to calls such as the model proposed by Kolesar et al. [10] for calculating the 

response time of fire engines to fires. 

Klein [9]'suggests that distance predicting functions which reflect the nature of a geographic 

region1s road network should be used for constructing Voronoi diagrams of the region. A Voronoi 

diagra.'Il subdivides a region into a number of subregions with each subregion being formed around 

a point belonging to a set of points. For example, the set of points may be the region1s police stations, 

fire halls, or hospitals. Once the location of a query point is determined, the appropriate point of the 

set is notified to respond to the call by looking at the V oronoi diagram. 

Distance predicting functions appear within the context of larger models such as facilities 

location problems (see e.g. Love, Morris and Wesolowsky [13]). Distance predicting functions in 

these models obviate the need for determining actual distances between the new facilities and the 

existing facilities. In addition, by using distance predicting functions which have empirical parameters 

that reflect the nature of a region1s road network, more accurate cost structures should be obtained 

than if an assumed distance function is used by an analyst. 

Presently, a distance predicting function is being utilized by MicroAnalytics in TruckStops2 

[21]. When an analyst provides data regarding the customer demands, customer locations, and truck 

types for a transportation network, TruckStops2 assigns customers to different trucks and 

determines the routes for the trucks. 

Distance predicting functions may be used for calculating distances in a Geographic 

Information System (GIS). As Star and Estes [19] state, distance measurements are of value in many 

geographic circumstances. Some of these circumstances are planning an irrigation channel between 

a pond and a field, locating a site for a fire tower in a forest, and calculating the distances among 
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different geographic regions. To calculate distance measurements, a distance predicting function may 

be incorporated into a GIS. 

In order to evaluate the accuracy of a distance predicting function, a criterion is required. The 

criterion not only provides a numerical value so that different distance predicting functions can be 

compared but also provides the means for determining any empirical parameters of a distance 

predicting function. Researchers are presently using three goodness-of-fit criteria: 

1. Sum of Absolute Deviations ( ADf ), 

2. Sum of Squared Deviations ( SDf ), 

3. Sum ofNormalized Absolute Deviations ( NADf ), 

(see, e.g. Berens [1]; Berens and Korling [2]; Brimberg, Dowling and Love [4]; Brimberg, Love and 

Walker [6]; Love and Morris [11, 12]; Love, Walker and Tiku [17]; and Ward and Wendell [22, 23]). 

In addition, ADf and SDf have been used by Love and Morris [11, 12] to develop tests for 

statistically comparing the accuracy of different distance predicting functions. 

There are several motivations for conducting the study presented in this paper. Love, Walker 

and Tiku [17] describe a procedure to find the confidence intervals for a fitted distance. The 

procedure utilizes the statistical properties of the errors produced when a distance predicting function 

is fitted to a particular geographic region. Since different criteria could lead to different statistical 

properties of the fitting errors, we do statistical analyses of these errors for the three fitting criteria. 

Secondly, in the literature the three criteria were assumed to have different properties in terms 

of predicting distances. For example, it has been assumed that if the ADf criterion is used, the Qk,p,e 

norm will predict long distances more accurately than short distances. The SDf criterion has been 

characterized as having prediction errors with better statistical properties but still being similar to the 

ADf criterion in terms of its accuracy in predicting long distances (see Love and Morris [11, 12]). 
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The NADf criterion, on the other hand, has been assumed to predict short distances as accurately as 

long distances (Love and Walker [14]; Brimberg, Love and Walker [6]; Love, Walker and Tiku [17]; 

and Brimberg, Dowling and Love [4]). 

In this paper, we present statistical properties of the fitting errors and a comparison of the 

above mentioned criteria. Statistical analyses are applied to seventeen different geographic regions 

using the Qk,p,6 norm as the distance predicting function. In section two, the three criteria and the 

distance predicting function are described. In section three, the statistical test procedures and results 

are presented. Finally, in section four, conclusions based on our analyses of these results are 

discussed. 

THE DISTANCE PREDICTING FUNCTION AND THE GOODNESS-OF-FIT CRITERIA 

The weighted QP norm (Qk,p,e) was employed as the distance predicting function. For the Qk,p,6 

norm, the travel distance between the points x1 = (x11' x12) and x2 = (x21' x22) is given by 

where 

[ ' ' ' ' ] 11 Qk,p,e 
= 

k I Xu - X21 IP + I X12 - Xz2 IP P 

x x x [ ' ' l �: �: = ( �: �:) ( :�:: �:�:), 
k ER+, p E [1, 2], and 8 E [0, 90] . 

This norm was selected because insights into the peculiarities of road networks are provided 

by the empirical parameters k, p and 8 of the norm when the empirical parameters are determined for 

a sample of road distances from a geographic region. The parameter p measures the rectangular bias 

of the road network. The angle Bis a rotation parameter which ensures that the coordinate axes are 
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rotated counterclockwise from the analyst's defined coordinate axes until the road network is in phase 

with the rotated coordinate axes (see Brimberg, Love and Walker [6]). The parameter k is an 

inflation factor which accounts for the hills, valleys and other types of noise in the road networks. 

A criterion is used to measure the accuracy of a distance predicting function and also to 

determine its optimal parameters. We next describe the general optimal methodology for fitting the 

distance predicting function to a given geographic region. A random sample of points within the 

geographic region is chosen. Based on an arbitrary coordinate system, cartesian coordinates for each 

point are assigned and the actual distances between each pair of points are measured or read from 

distance charts. Then the parameters of the distance predicting function are computed to minimize 

the value of the selected criterion. The three goodness-of-fit criteria that will be analysed in this 

paper are the minimizations of the following sums: 

where 

n-1 n 
ADf = L L i=l j=l+l 

n-1 n 
SDf = L L i=l j=i+l 

n-1 n 
NADf = L L i=l j=i+ 1 

I df (xi,x) - A(xi,x) I, 

( dr (xi,x) - A(xi,xj))
2 

A(xi,xj) 

I df (xi,x) - A(xi,xj) I  

A(xi,xj) 

n = the number of points in a data set, 

A(Xj,�) is the actual distance between Xj and �' 

and <4 (Xj,�) is the predicted distance between points Xj and � using distance 

predicting function f 
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The first criterion, ADf , is the minimization of the sum of absolute d�viations. Since the 

terms in ADf are not the weighted ones but only the absolute errors for each pair, it has been 

described as a criterion which should estimate long distances more accurately than short distances. 

The second criterion, SDf, is the minimization of the sum of squared deviations where each squared 

error term is weighted by 1/ A("Xj,�). Squared deviations and the division by actual distance provide 

the criterion with certain desirable statistical properties (see Love and Morris [11, 12]). However, 

the assumption has still been made that the difference in the accuracy of predictions involving long 

and short distances in a region will favour the long distances (Berens [1], Berens and Korling [2], 

Love and Morris [11, 12] and Ward and Wendel [22, 23]). The last criterion, NADf , is relatively 

new in the literature. It has been utilized by Love and Walker [14]; Brimberg, Love, Walker [6]; 

Love, Walker and Tik:u [17]; and Brimberg, Dowling and Love [ 4]. With the NADf criterion, a sum 

of normalized absolute deviations is minimized and the basic premise is that equal accuracy in 

predicting long and short distances in a region will result. Normalization is realized by dividing the 

absolute deviation by the actual distance between each pair. In this way both long and short distances 

are treated on the same relative basis. Besides their above-mentioned structures, the three criteria 

also differ from each other by the computational procedures performed to determine the optimal 

parameter values of the distance predicting function. The computational procedures for fitting the 

ADf and the SDf criteria are given by Brimberg and Love [5]. For the NADf criterion the 

computational procedure is identical to that of ADf (Love and Walker [14]). In general, the best (} 

and p values are determined by using an incremental search procedure and a four-stage incremental 

search procedure, respectively. In order to find the best k value some properties of the criteria are 

used. It is known that ADf is a convex function of k, and SDf is a strictly convex function of k 

(Brimberg and Love [5]). NADf was shown to be a convex function of k by Love and Walker [14]. 
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Therefore, when using the ADf and NADf criteria it is necessary to employ an algorithm to find the 

optimal k for a given ( 0, p) pair. The optimal k for the SDf criteria is calculated with a simple closed 

formula derived by Brimberg and Love [5]. The property of having a closed-form formula to find 

the best value of parameter k makes the application of the SDf criterion computationally more 

efficient than using either the ADf or the NADf criterion. 

In order to model the parameters of the Qk,p,8 norm Love and Walker [15] collected sample 

data from seventeen geographic regions. For each geographic region, 15 points were randomly 

chosen. These 15 points provided 105 actual distances to be modelled by the distance predicting 

function Qk,p,8 using each criterion. The actual distance data and point coordinates from the seventeen 

geographic regions are presented in Love and Walker [ 15]. The empirical parameter values for the 

Qk,p,8 norm and the corresponding minimum criterion values for seventeen geographic regions 

computed by Love and Walker [16] for the ADf and SDf criteria, and by Love and Walker [14] for 

the NADf criterion are given here in Tables land 2. Table I includes the parameter values and the 

criteria values corresponding to the minimum practical criteria values. Therefore it also includes 

parameter p values greater than 2. Table 2, on the other hand, reports the same information 

corresponding to the p values in the (0,2] interval. As stated by Brimberg and Love [ 4], two sets of 

parameter values are theoretically the same for a region. For example, for the NADf criterion in 

Australia in Table 1, p is 2.3281 and in Table 2 it is 1.7545, and the corresponding criterion values 

are 6.23 and 6.26 respectively. Although the two sets of parameters are theoretically same, in our 

analysis we have chosen the parameter values in Table I with very slightly smaller criterion values. 

It should be kept in mind that while searching for the parameter values of the Qk,p,8 norm in a region 

other than the ones included in this study, it is enough to search for a p value in the (0,2] interval. 
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I Region p � Criterion I a ID' k p II Criterion I B NAD� p 

Australia 13106.91 3 1 . 1 1 76 1 .6848 l l58.04 42 1 . 1827 2. 1 897 6.23 45 1 . 1605 2.3281 

BC Province 6362.35 26 1.3912 2.6182 1027.59 23 1 .3894 2.7290 1 1 .04 16 1 . 3502 2.3744 

Canada 8029.42 86 1 . 1772 1 .4705 557.06 36 1 .3384 3. 1066 5 .21 38 1 .3621 3 .4717 

France 1592.26 · 68 1 .0468 1 .7734 . 92.32 70 1 .0609 1 . 8430 3 .61  71 1 .0396 1 .7417  

Great Britain 23 1 1 .36 38 1 . 1 185 1 .8124 219.42 40 1 . 1095 1 .7895 5 .98 0 1 . 1032 1 .8826 

NY State 1 637.44 86 1 . 1035 1 .6946 159.80 86 1 .0794 1 .5823 6.00 87 1 .0308 1 .4950 

Pennsylvania 1206.24 54 1 . 1 544 2.5539 106.71 50 1 . 1573 2.5760 6.38 54 l . 1392 2.4360 

United States 6516.24 0 1 .0817 1 .7290 342.68 0 1 .0792 1 .6641 3 .29 0 1 .0825 1 .7427 

Brussels 46.46 46 1 .0488 1 .7660 3 .55 47 1 .0549 1 .8180 4.68 45 1 .0495 1 .7802 

London City 6 1 .06 63 1 . 1328 2.3358 16 .53 27 l . 1354 2.0821 8.74 61  1 . 1359 2.3 l l 7  

London North 27.88 61 l . 1474 2.4789 1 .73 57 1 .1528 2.5676 4.62 56 l . 1582 2.6086 

Los Angeles l l0.66 43 l . 1760 2.7970 15 .13  48 l . 1 909 2.7704 7.85 42 1 . 1757 2.6790 

NY City 122.75 51  1 . 1741  2.6915  13.49 50 l . 1751 2.3716 6 .86 49 l . 1510 2.3996 

Paris 48.58 36 1 . 1204 2.2501 6.45 39 1 . 1066 2.2835 8 .41  l l  1 .0635 1 .6649 

Sydney 1 3 . l l  7 1 . 1 048 1 .4061 1 .35 8 l . 1266 1 .471 9  6.50 6 1 .0991 1 .3940 

Tokyo 28.89 15 1 . 1328 2.2059 2.29 13 1 . 1 389 2.2262 4.30 20 l . 1244 2.1492 

Toronto 65.98 87 l .Ol l 8  1 . 1333 5.07 42 1 . 3 140 5 .176 4.45 87 1 .0121 1 . 1261 

Table 1. Optimal parameter values of Qk,p,e for the criteria for p::: 1 

STATISTICAL TESTS AND THE PRESENTATION OF RESULTS 

The purpose of this section is two-fold. First, the statistical properties of the errors in 

predicting distances are examined for each criterion, and for each region. Second, the statistical 

comparisons of the three criteria are conducted by adopting the absolute normalized error as the 

random variable. 

Statistical Properties of Errors 

For our work on road distances, the errors are the differences between actual distance and 

fitted distance pairs. The model that determines the relationship between the fitted distance and the 

actual distance is given by 



I Region 

Australia 

BC Province 

Canada 

France 

Great Britain 

NY State 

Pennsylvania 

United States 

Brussels 

London City 

London North 

Los Angeles 

NY City 

Paris 

Sydney 

Tokyo 

Toronto 

ADr 

Criterion e k 

13106.91 3 1.1176 

6369.31 71 1.2737 

8029.42 86 1.1772 

1592.26 68 1.0468 

2311.36 38 1.1185 

1637.44 86 1.1035 

1207.34 3 1.0671 

6516.24 0 1.0817 

46.46 46 1.0488 

61.45 18 1.0697 

28.49 15 1.0638 

111.89 89 1.0626 

124.29 5 1.0674 

48.71 75 1.0704 

13.11 7 1.1048 

28.91 59 1.0961 

65.98 87 1.0118 

p -

1.6848 

1.6322 

1.4705 

1.7734 

1.8124 

1.6946 

1.6274 

1.7290 

1.7660 

1.7524 

1.6505 

1.5699 

1.5822 

1.7859 

1.4061 

1.8591 

1.1333 

SDr 

Criterion e k 

1163.59 0 1.1460 

1038.72 68 1.2495 

565.61 83 1.1715 

92.32 70 1.0609 

219.42 40 1.1095 

159.80 86 1.0794 

107.06 4 1.0611 

342.68 0 1.0792 

3.55 47 1.0549 

16.53 72 1.1182 

1.78 11 1.0599 

15.50 2 1.0721 

13.58 6 1.1069 

6.52 86 1.0613 

1.35 8 1.1266 

2.30 58 1.0963 

5.10 88 1.0279 

p -

1.8585 

1.5609 

1.4849 

1.8430 

1.7895 

1.5823 

1.6244 

1.6641 

1.8180 

1.9241 

1.6456 

1.5734 

1.7340 

1.8189 

1.4719 

1.8252 

1.1863 

NADr 

Criterion e k 

6.26 1 1.0959 

11.06 69 1.2701 

5.23 85 1.1732 

3.61 71 1.0396 

5.98 0 1.1032 

6.00 87 1.0308 

6.48 7 1.0673 

3.29 0 1.0825 

4.68 45 1.0495 

8.75 8 1.0495 

4.70 14 1.0591 

7.90 87 1.0672 

6.90 4 1.0737 

8.41 11 1.0635 

6.50 6 1.0991 

4.30 64 1.0963 

4.45 87 1.0121 

Table 2. Optimal parameter values of Qk,p,e for the criteria for 1 ::=:;p::=:;2. 
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p -

1.7545 

1.7080 

1.4584 

1.7417 

1.8826 

1.4950 

1.6958 

1.7427 

1.7802 

1.7802 

1.6171 

1.5684 

1.6975 

1.6649 

1.3940 

1.8901 

1.1261 

where A(�,�) is the actual distance between points � and �' df (�,�) is the predicted distance, and 

e(��) is the error term for the x;, � pair. From the random sample of points for a geographic region, 

the point estimates of the empirical distance predicting function parameters are calculated. 

Substituting these point estimates into the empirical distance predicting function, an estimate of the 

actual distance, d f  (�,�), is obtained. The error term for any pair of points embodies errors that may 

arise in determining the fitted distance for that pair of points. For empirical distance functions which 

utilize point coordinate differences, these errors may arise from point coordinate measurements, 
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inaccurate instrument calibrations, and road network peculiarities that are not captured by the 

distance model. 

The error temi, e(Xj,�), is a continuous random variable since it is a purely random part of the 

actual distance, A(�,JS), that cannot be explained by the model. It is assumed that the errors for 

different pairs of points in a region are independent, i. e., the errors of d f (�,JS) about A( �,JS) are not 

related to the errors of �(Xic,Xj) about A(Xk,Xj) for the points i, j, k, 1 in a geographic region. In order 

to examine the statistical properties of the error term populations, the e(�,JS)'s which form a random 

sample of 105 observations for each region were used to calculate the sample statistics for the 

population parameters. The estimates of the population mean and variance are the sample mean (X) 

and the sample variance (s
2
), respectively. The estimates of the population's Pearson coefficients of 

skewness and kurtosis/Pi and p2, are the sample Pearson coefficients which are denoted by v
'
b1 and 

b2. For a large sample (n� 1 OO),v'b1 and b2 are unbiased estimators of v'p1  and p2 (Stuart and Ord 

[20]). The x, s2,v'b1 and (b2 - 3) values are presented in Table 3 for the seventeen regions. In this 

table kurtosis is given as (b2 - 3) because the SPSS [18] reports it in this way for convenient 

comparison purposes with the normal distribution. In order to determine whether the e(�,JS)'s are 

from a normal distribution, we first check the sample Pearson coefficients. The sample Pearson 

coefficients not only indicate how skewed and peaked the samples are, but also provide an indication 

of how skewed and peaked the populations from which the samples were drawn are. If v'b1 is less 

than zero, then the sample is skewed left, and if v'b1 is greater than zero, then the sample is skewed 

right. A v'b1 value of zero indicates that the sample is symmetric around its mean. A (b2-3) value 

which is less than zero (greater than zero) indicates that the sample is less peaked (more peaked) than 

a sample from a normal population which would have a (b2-3) value of zero. The sample Pearson 

coefficients for the different geographic regions confirm that the populations are non-normal. 
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However, the degree of non-normality varies from region to region. In most regions the distributions 

are skewed right and are more peaked than the normal distribution. 

Besides the sample Pearson coefficients, Normal Probability plots and histograms were 

examined. The related graphs are given in Figures 1 and 2 for the United States and Toronto 

respectively. On normal probability plots, a linear relation is expected between the observed 

cumulative probabilities and the expected cumulative probabilities for a sample distribution to be from 

a normally distributed population. The histograms are expected to have a symmetric bell-shaped 

appearance with no violations at the tails. The normal probability plots and histograms also confirm 

that there is enough evidence to assume non-normal distributions of errors for the seventeen 

geographic regions. 

In order to test the equality of the variances for the three criteria the Levene test (using a 5% 

significance level) was conducted for each region. Levene's test is a powerful test when the data 

come from continuous, but not necessarily normal distributions. The p-values for the two-tail 

significance test are listed for each geographic region in Table 4. Since the p-values for the 2-tailed 

Levene test are greater than 0.10, it is confirmed that the e(Xj,x_j) distributions of ADf, SDf and NADf 

have the same variance at the 5% significance level in all the regions. 



!Region 

Australia 

BC Province 

Canada 

France 

Great Britain 

NY State 

Pennsylvania 

United States 

x s2 

1 9.229 27908.360 

1 1 .091 26810.490 

76.609 30706.590 

6. 136 6920.109 

9.781 6869.654 

1 8.070 7263.024 

4.397 10377.210 

5.260 9960.01 1 

7.382 10320.270 

2.890 415 .358 

0.673 409.954 

4.022 422.440 

0.242 949.459 

2.104 957.126 

10 .496 1 168.140 

0.040 539.481 

1 . 523 542.542 

9.030 693.586 

0.845 230.726 

1 .021 223.838 

2.516 241 .910 

17.026 7452. 193 

3.367 7120.392 

1 9.085 7556.449 

v'b, I (b2 - 3) H Urban Center I x 

1 . 1 54 1 .023 0.029 

1 .032 0.936 Brussels 0.033 

1 . 107 0.652 0.040 

0.842 1 .649 0.326 

0.770 1 .581 London City 0.158 

1 .008 1 .896 0.290 

0.468 1 . 174 0.005 

0.455 0.695 London North 0.017 

0.474 1 . 1 84 0.001 

1 .074 2 . 1 10  0.373 

1 .035 2 .104 Los Angeles 0. 144 

1 . 162 2.525 0.288 

1 .099 1 .914 0.442 

1 .329 1 .837 NY City 0.128 

1 .075 2.030 0.543 

1 .658 3 .669 -0.034 

1.606 3.353 Paris 0.062 

1.477 1 .905 -0.087 

0.366 0.010 0.022 

0.3 1 8  -0.107 Sydney 0.013 

0.481 0.074 0.026 

1 .089 1 .678 0.051 

0.992 1.606 Tokyo 0.022 

1.098 1 .670 0.073 

-0.052 

Toronto 0.049 

-0. 108 

12 

s2 v'b1 I (b2 - 3) II Criteria I 
0.377 -0.21 9  1 . 9 1 1 ADr 
0.375 -0. 1 92 1 .704 SDr 
0.376 -0. 1 8 1  1 .840 NADr 
1 .097 2.245 8.365 ADr 
1 . 125 2 . 150 7.674 SDr 
1.103 2.245 8.363 NADr 
0. 1 12 -0.329 -0.094 ADr 
0. 1 12 -0.379 0.004 SDr 
0. 1 16 -0.41 9  0. 128 NADr 
1 .833 0.248 0.536 ADr 
1 . 9 1 1  0.068 0.219  SDr 
1 .883 0.294 0.461 NADr 
2.559 1 .294 2.649 ADr 
2.584 1 .085 2.086 SDr 
2.528 1 .239 2.294 NADr 
0.373 -0.794 1 .237 ADr 
0.361 -0.767 1 .346 SDr 
0.432 -0.902 1 .245 NADr 
0.029 0.701 2. 128 ADr 
0.029 0.504 1 .879 SDr 
0.030 0.762 2.256 NADr 
0. 148 1 .3 1 6  3 .653 ADr 
0. 148 1 .267 3 .598 SDr 
0.150 1 .409 3.759 NADr 
0.775 -0.791 2.704 ADr 
0.756 -0.729 2.388 SDr 
0.787 -0.813 2.614 NADr 

Table 3. Sample statistics of e("Xj,JS) for seventeen regions 

Region I p-valuel�ban Center Ip-value I 
Australia 0.668 Brussels 0.999 

BC Province 0.973 London City 0.995 

Canada 0.993 London North 0.996 

France 0.997 Los Angeles 0.925 

Great Britain 0.524 NY City 0.994 

NY State 0.284 Paris 0.840 

Pennsylvania 0.983 Sydney 0.999 

United States 0.998 Tokyo 0.995 

Toronto 0.993 

Table 4. Two-tail values for the Levene test (equality of variances) of the three criteria 
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To examine the homoscedasticity (see Wesolowsky [24]) for each criterion, the sample sets 

of 105 pairs are divided into three groups after they are ordered in their increasing order of actual 

distances for each geographic region. The :first and the third groups, the 3 5 short actual distance 

pairs and the 35 long actual distance pairs respectively, are extracted to use in testing the 

homoscedasticity of the e(:x;.,�)'s for each criterion. In order to clarify what is meant by long and 

short actual distances, Table 5 was constructed. The means of the long actual distance and short 

actual distance distributions, and also the ratio of the former to the latter are listed in Table 5. The 

ratios are not too much different for all regions except Canada which has a relatively large ratio of 

mean long actual distances to mean short actual distances of 5 .  60 5 .  

Region I Long D. I Short D. I Ratio II Urban Center I Long D. I Short D. I Ratio 
Australia 3567.42 1072.83 3.325 Brussels 16.22 5.83 2.782 

BC Province 1 017.98 299.65 3.397 London City 12.50 4.39 2.847 

Canada 4289.72 765.33 5.605 London North 1 1 .08 3.58 3 .095 

France 727.06 258.17 2.816 Los Angeles 25.85 9.45 2.714 

Great Britain 701 .80 193.54 3.626 NY City 27.93 10.29 2.714 

NY State 428.72 1 17.36 3 .653 Paris 9.69 3.39 2.858 

Pennsylvania 373.41 102.37 3.647 Sydney 3 .32 1 .25 2.656 

United States 3596.99 1078.15  3.336 Tokyo 1 1 .22 4.28 2.621 

Toronto 26. 1 1  9.01 2.898 

Table 5. The means of A(:x;.,�) for long distance and short distance distributions 

Levene tests for equality of variances of the prediction error distributions for the long and 

short distances for the three criterion in each region are conducted. The standard deviation (a) of 

the e(:x;.,�) distributions for the long and short 35 pairs, and the 2-tail p-values of the Levene test are 

presented for each criterion in Table 6. 

The p-values, based on a 5% significance level, suggest that the e(:x;.,�)'s for each criterion 

are heteroscedastic except possibly in the five regions of Canada, London City, Los Angeles, Tokyo 

and Toronto out of the seventeen geographic regions. The standard deviations are always higher for 
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the long distance pairs. To illustrate this, the scatter plots of e(�,�)' s for the United States and 

Toronto are presented in Figures 3 and 4 respectively. These scatter plots also confirm that the 

e(�,�)'s increase as the actual distance between the pairs increases. 

Finally, we were interested in the expected values of the e(�,�)'s for each criterion. Since 

we already have enough evidence for the non-normality and the heteroscedasticity of the e(�,�) 

distributions, a nonparametric test, the Wilcoxon Signed Rank test with 5% significance level, was 

performed to see if the E[e(�,�)]'s for each criterion is equal to zero. The results of the test are 

given in Table 7. The p-values, which are greater than 0.05, present enough evidence to conclude 

that the e(�,�)'s for the three criteria have an expected value of zero. The possible exceptions are 

3 regions for the ADf criterion (London City, Los Angeles and New York City), 5 regions for the 

NADfcriterion (Australia, Great Britain, New York State, London City, New York City) and none 

for the SDf criterion. 

Statistical Comparison of the Three Criteria 

In order to compare the three criteria, we used a transformed random variable given as 

Je(�,x) J /A(�,:K_j). There are three reasons for using this transformation. First, the new random 

variable frees the error terms, the e(�,�)' s, from their directions so that the absolute errors are to be 

compared. Second, since each criteria produces errors in different units the division of each error 

term by its actual distance provides the comparison to be performed on the same basis for each 

criterion. Finally, the accuracy in predicting long and short distances in a given region can be 

compared on the same basis by this new random variable ( Je(�,�) J A(�,�)). 
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Geographical ADr SDr NADr 
Regions Os OL p-value Os OL p-value Os OL p-value 

Australia 72.950 1 98.770 0.000 71 .580 199.250 0.000 69.820 1 92.570 0.000 

British Columbia 47.950 105.740 0.001 47.660 104.730 0.001 46.260 109.510  0.000 

Canada 80.900 1 10.600 0 . 184 78. 160 109.850 0. 125 79.550 107.610 0.235 

France 1 1 .250 23.490 0.001 1 1 .280 23.820 0.001 1 1 .050 23.670 0.001 

Great Britain 16.550 34.510  0.010 16.460 34.410  0.010  17.280 39.290 0.000 

NY State 8.240 3 1.690 0.000 8.270 3 1 .3 10  0.000 9.070 33.660 0.000 

Pennsylvania 8.570 17.730 0.000 8.800 16.620 0.001 8.390 17.970 0.000 

United States 64.620 92. 1 90 0.030 66.250 87.720 0.033 64.390 93.430 0.031 

Brussels 0.407 0.684 0.022 0.408 0.682 0.022 0.406 0.680 0.021 

London City 0.839 0.982 0.294 0.843 0.979 0.306 0.838 0.987 0.280 

London North 0.248 0.357 0.020 0.238 0.378 0.009 0.236 0.388 0.007 

Los Angeles 1 .232 1 .409 0.363 1.221 1 .465 0.255 1 .222 1 .434 0.284 

NY City 0.981 2.005 0.006 0.953 2.007 0.005 0.932 1 .959 0.006 

Paris 0.579 0.714 0.040 0.565 0.709 0.038 0.5 5 1  0.840 0.005 

Sydney 0. 1 17 0.233 0.003 0.1 14 0.232 0.002 0. 1 16 0.235 0.002 

Tokyo 0.380 0.390 0.392 0.381  0.407 0.300 0.381 0.386 0.427 

Toronto 0.678 0.856 0. 163 0.648 0.840 0 .162 0.681 0.817 0 .168 

Table 6 .  Standard deviations of the e(�,�) distributions, and the 2-tail p-values of 
Levene Test for homoscedasticity 

Large Geo. p-value p-value p-value Urban Center p-value p-value p-value 

Region ADr SDr NADr ADr SDr NADr 
Australia 0.815 0.654 0.003 Brussels 0.598 0.548 0.490 

BC Province 0.944 0.480 0.134 London City 0.007 0�964 0.048 

Canada 0.862 0.801 0.565 London North 0.658 0.381 0.681 

France 0.555 0.621 0.246 Los Angeles 0.012 0.364 0.086 

Great Britain 0.269 0.740 0.042 NY City 0.039 0.983 0.007 

NY State 0.060 0.278 0.035 Paris 0.801 0.080 0.747 

Pennsylvania 0.996 0.854 0.291 Sydney 0.295 0.509 0.207 

United States 0.309 0.649 0.202 Tokyo 0.486 0.916 0.235 

Toronto 0.978 0.208 0.492 

Table 7. Wilcoxon signed rank test results for E[e(�,�)] = 0 

19 



20 

This section is presented in three sets of comparisons: (i) the comparison of the 

I e( xi>x) I I A(x;,x) distributions for 105 pairs of each geographic region, (ii) the comparison of the 

accuracy of the three criteria in predicting the 3 5 pairs of long distances and 3 5 pairs of short 

distances in a given region, and (iii) the comparison of the accuracy for each criteria in predicting the 

long distances versus short distances in a given region. 

(i) In order to compare the absolute normalized errors, I e(X;_,�) I! A(X;.,�), their distribution for 

each criterion was first checked for normality. For that purpose and also to present the descriptive 

statistics for each distribution, Table 8, which includes the means (X), variances (s2), skewness (b1) 

and kurtosis (in(b2-3) form), is constructed. Furthermore, the normal probability plots and histograms 

for each criterion and region were constructed. Two of the normal probability plots and histograms 

for the United States and Toronto are presented in Figures 5 and 6, respectively. 

In Table 8, we observe that skewness and kurtosis values for the distributions are different 

enough from zero that we cannot conclude the distributions of l e(X;_,�) l /A(X;.,�) are from normal 

distributions for each criteria in the regions. The normal probability plots and histograms in Figures 

5 and 6 also support the non-normality of the l e(X;_,�) l /A(X;.,�) distributions. Therefore a 

nonparametric test was applied to determine if the I e( X;.,�) I I A( X;.,�) distributions for each criterion 

were significantly different from each other in a given region. The Friedman Test, which is used for 

multiple matched samples, was employed as the main effect test to compare the three 

I e( X;., xj) I I A( X;_,xj) distributions at the 5% significance level. The p-values for seventeen geographic 

regions are listed in Table 9. Since the p-values in Table 9 are well above 0.05,no pair of criteria is 

significantly different at the 5% significance level. The mean absolute errors in percentages are 

reported for each criterion and region in Table 10. Based on the figures in Table 10, it can be said 

that the average percent absolute errors for a given region are very close to each other for the criteria 
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and in general they are small enough to conclude that the predicted distances are close 

approximations of actual distances. 

For example, in Brussels the percent absolute errors in predicting distances are 4.46%, 4.47% 

and 4.46% for the ADr, SDr, and NADr criteria, respectively. 

[Region x 82 I v'b, I (b2 - 3) II Urban Center I x s2 v'b, (b2 - 3) I Criteria I 
0.0634 0.0027 1 .5524 2.9709 0.0446 0.0017 1 .6735 3.7924 ADr 

Australia 0.0636 0.0025 1 .5999 3.3357 Brussels 0.0447 0.0017 1 .6599 3 .8810 SDr 
0.0593 0.0027 1 .2950 1 .892 0.0446 0.0017 1 .6728 3.7951 NADr 
0.1069 0.0071 0.7062 -0. 1670 0.0833 0.0212 4.0173 19 . 18 18  ADr 

BC Province 0. 1063 0.0069 0.7309 -0.0870 London City 0.0872 0.0195 4.2164 20.9644 SDr 
0. 1052 0.0067 0.7595 0.0682 0.0832 0.021 4 . 1062 19.9933 NADr 
0.0499 0.0028 1 .747 3.2356 0.0446 0.0013 1 .2163 I.5499 ADr 

Canada 0.0504 0.0025 1.5718 2.1 566 London North 0.0442 0.0012 1 .2857 1 .8672 SDr 
0.0497 0.0028 1 .8150 3.3933 0.0440 0.0012 1 .2825 1 .8599 NADr 
0.0335 0.0009 1 .7694 4.1584 0.0751 0.0138 6.7183 57.5431 ADr 

France 0.0341 0.0008 1 .7285 4.1728 Los Angeles 0.0757 0.01 3 1  7.0910 62.3922 SDr 
0.0334 0.0010  1 .9857 5. 1221 0.0748 0.0139 6.9068 59.9512 NADr 
0.0591  0 .0025 1 . 1 108 1.3866 0.0660 0.0039 1 .7232 2.6192 ADr 

Great Britain 0.0587 0.0024 1 .2424 1 .9158 NY City 0.0682 0.0031 1 .5462 2.3413 SDr 
0.0570 0.0027 1 .6056 3.275 1 0.0653 0.0039 1 .6307 2.4097 NADr 
0.0623 0.0023 0.8010 0. 1435 0.081 5  0.0068 3.0579 13 .457 ADr 

NY State 0.0612 0.0021 1 .0104 0.5856 Paris 0.0827 0.0063 2.9045 12. 1 986 SDr 
0.0626 0.0026 1.2077 1 .0528 0.0801 0.0069 2.4590 9.0103 NADr 
0.0617 0.0033 1 .6327 3.7136 0.0621 0.0033 1 .4 1 50 2.0364 ADr 

Pennsylvania 0.0623 0.0033 1 .7010 3.7626 Sydney 0.0620 0.003 1 1 .3346 1 . 8 1 1 0  SDr 
0.0608 0.003 1 1 .561 3  3.5665 0.0617 0.0033 1.4393 2.1473 NADr 
0.0314 0.0009 1.8475 4.8344 0.0410 0.0021 3 .9404 23.7253 ADr 

United States 0.0326 0.0008 1 .8210  4 .1774 Tokyo 0.0414 0.0021 3.8788 23.1547 SDr 
0.03 14 0.0009 1 .8510  4.9158 0.0409 0.0022 3 .9262 23.5744 NADr 

0.0425 0.0020 2.2888 6.7672 ADr 

Toronto 0.0440 0.0017 1 .9516  5.0684 SDr 

0.0424 0.0021 2.2782 6.6037 NADr 
Table 8. Descriptive statistics of the je(Xj,�) j/A(Xj, �) for geographic regions 
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Region - p-value 11 Urban Center p-value -

Australia 0.3732 Brussels 0.9765 

British Colwnbia 0.3750 London City 0.6386 

Canada 0.231 5  London North 0.6839 

France 0.4806 Los Angeles 0.3724 

Great Britain 0.9355 New York City 0.7062 

New York State 0.4047 Paris 0. 1038 

Pennsylvania 0.7280 Sydney 0.7606 

United States 0.8889 Tokyo 0.8816 

Toronto 0.2450 

Table 9. The p-values for the Friedman Test of I e(X;,)(_j) JI A(X;,)(_j) distributions of the criteria 

Region - l ADr 
Australia 6.34 

British Colwnbia 10.69 

Canada 4.99 

France 3 .35 

Great Britain 5.91  

NY State 6.23 

Pennsylvania 6.17 

United States 3 . 14 

SDr I NADr II Urban Center I ADr I SDr I NADr I 
6.36 5.93 Brussels 4.46 4.47 4.46 

10.63 10.52 London City 8.33 8.72 8.33 

5.04 4.97 London North 4.46 4.42 4.40 

3 .41 3.34 Los Angeles 7.51 7.57 7.48 

5 .87 5 .70 NY City 6.60 6.82 6.53 

6 . 12 6.26 Paris 8.15  8.27 8.01 

6.23 6.08 Sydney 6.21 6.20 6.17 

3.26 3 . 14 Tokyo 4.10 4 .14 4.09 

Toronto 4.25 4.40 4.24 

24 

Table 10. Absolute percent errors in predicting distances for the criteria in geographic regions. 

We next test the distributions of the random variable I e( X;,)(_j) I I A( X;,)(_j) (corresponding to long 

and short actual distances) for normality. Non-normality of the I e(X;,)(_j) J!A(X;,)(_j) distribution formed 

by 105 pairs of 15 points in a given region does not guarantee that a subset of these 105 pairs which 

is nonrandomly formed by 3 5 pairs of points, also does not come from a non-normal distribution. 

There are six different distributions used in the comparisons to identify the differences between the 

three criteria for predicting long actual distances and short actual distances. The six distributions are 

sketched in Figure 7. 
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35 Long D. � 
Pairs;AD r 

3 5  Long D. • 
Pairs;SD r 

3 5 LongD. 
Pairs;NADr 

35 ShortD. 
Pairs;AD r 

. 3 5  Short D. 
Pairs;SD r 

. 35 Short D. 
Pairs;N AD  r 

Horizontal Comparisons (ii) 

I Vertical Comparisons (iii) 

Figure 7 : Six distributions for long and short distance pairs comparisons. 

If at least two of six distributions, one from each row, are not from a normal distribution, then 

a nonparametric test should be used for the main effect test of horizontal comparisons (i.e., for part 

(ii)). If at least three, each from a different criterion, of six distributions are not from a normal 

distribution, then vertical comparisons (i.e., for part (iii)) should be performed by using a 

nonparametric test. Therefore, the skewness, v'bI> and kurtosis, (b2-3), values of the 

I e(Xj,�) JI A(q,4) distributions for long distances using the AJk criterion, for short distances using the 

SDf criterion and for long distances using the NADf criterion are reported for each region in Table 

11. Ifwe guarantee that in the six distributions ofFigure 7 there is at least one distribution in each 

row and one distribution in each column coming from non-normal populations, then we need to use 

nonparametric tests for the following parts of the section. In addition, for each criterion the normal 

probability plots and histograms of the above mentioned distributions for the United States and 
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Toronto are represented in Figures 8 and 9, respectively. The skewness and kurtosis values in Table 

11 are sufficiently different from zero (the distributions are always skewed right, and are generally 

more peaked than the normal distribution) to provide evidence that the distributions come from non-

normal populations. This is also supported by the normal probability plots and histograms in Figures 

8 and 9. Therefore, nonparametric tests should be used for unbiased comparisons of the criteria 

involving the six distributions outlined in Figure 7. 

Geographical Long Distance- A D  r Short Distance- SD r Long Distance- NA D r 

Region Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis 

Australia 0.4881 -0.6541 1 .2536 1 .3505 0.4 1 3 1  -0.9182 

British Columbia 0. 1244 1 .0772 0.3501 -0. 1 5 1 6  1 .3306 1 .6137 

Canada 1 .3520 1 .6556 0.6961 -0.5406 1 .3277 1 .8534 

France 2.63 15 9.8096 2.0758 5.8926 2.7389 10. 1 983 

Great Britain 1 .4349 1 .3900 0.5296 -0.2207 1 . 1 993 0.9675 

New York State 0.8914 -0.2543 0.9814 1 .0950 0.751 9  -0.7202 

Pennsylvania 0.5275 -1 .0158 1 .2628 1 .0579 0.4775 -1.00 1 8  

United States 1 .6883 4.4469 1 .4650 2 .5399 1 .6432 4.1495 

Brussels 1 .5948 2.4744 1 .8813 5.0096 1 .6090 2.6409 

London City 3.3989 12.8349 3.8639 15 .9083 3.4378 13.7044 

London North 0.6037 -0.7204 0.9873 0.3 1 99 0.8531 0.291 1  

Los A ngeles 1 .4745 2.5833 4.8098 26.0766 1 .4541 2.7294 

New York City 2.2495 6.4738 0.9857 -0.2267 2 . 1354 5.8431 

Paris 0.8056 -0.0447 2.0891 4.8714 0.7644 -0.5594 

Sydney 1 .9071 4.9922 0.5940 -0.3163 2.01 89 5.6586 

Tokyo 1 .7651 5.3646 3.3773 1 5. 1482 1 .9370 6.3 196 

Toronto 1 .4835 2.2125 1 . 1 633 1 .5794 1 .2894 1 .4425 

Table 1 1 .  Skewness (/b1) and kurtosis (b2-3) values for the normality of three distributions. 

(ii) It has already been shown that we must employ a nonparametric test to compare the accuracy 

of the three criteria in predicting long and short distances. However, in order to obtain more 

comparisons between the criteria, tests can be applied to check the variances for equality. There are 

two sets of horizontal comparisons (long distances and short distances) and each set includes three 

distributions formed by 35 pairs of points in a region (see Figure 7). 
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A Levene equality-of-variance test at a significance level of 5% is performed for each set. The 2-tail 

p-values of the Levene test for the long and short distance distributions are given for each region in 

Table 12. Since the p-values in Table 12 are well above 0.10  (the one exception is the long distance 

distribution in Paris with a p-value of 0.06), they do not provide enough evidence at the 5% 

significance level to reject the hypothesis that the variances of long distances and short distances are 

significantly different. 

Region Short D. Long D. Urban Center Short D. Long D. 

p-value p-value p-value p-value 

Australia 0.945 0.335 Brussels 0.999 0.999 

British Columbia 0.997 0.991 London City 1 .000 0 .912 

Canada 0.875 0.937 London North 0.975 0.9 1 1  

France 0.871 0.963 Los Angeles 0.995 0.960 

Great Britain 0.808 0.448 NY City 0.589 0.997 

NY State 0.412 0.250 Paris 0.976 0.060 

Pennsylvania 0.984 0.412 Sydney 0.947 0.991 

United States 1.000 0.369 Tokyo 0.998 0.923 

Toronto 0.815  0.992 

Table 12. 2-tail p-values for equality of variances of long and short distance distributions for the 
three criteria in each region 

We next tum our attention to the comparisons of the accuracy of the three criteria in 

predicting long distances and short distances in a given region. For that purpose, two Friedman tests 

for the matched triples of both horizontal sets (see Figure 7) are performed. A p-value less than 0.05 

is supposed to indicate the existence of a significantly different pair from the three criteria for the 

given region. The p-values of these main effect tests are provided in Table 13. 

The significance levels listed in Table 13 can be interpreted as follows. In general, the 

accuracy in predicting distances is not significantly different for the three criteria. However, for long 

actual distances, in five of the eight large geographic regions; Australia, British Columbia, Great 
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Britain, New York State, and the United States, and for the short actual distances, in three regions; 

Australia, New York State, Paris, there is at least a pair of criteria with significantly different distance 

prediction accuracy. 

Long D. Short D. Short D. Long D. 

Region p-value p-value Urban Center p-value p-value 
Australia 0.0002 0.0000 Brussels 0.9491 0 .9749 

British Columbia 0.0080 0 . 1242 London City 0. 1 870 0.3213  

Canada 0.9107 0 .4624 London North 0.2684 0 . 1342 

France 0.7553 0.6897 Los Angeles 0.4389 0.0083 

Great Britain 0.0073 0.2466 NY City 0.2355 0. 1048 

NY State 0.0 1 16 0.0187 Paris 0.6175 0.0316  

Pennsylvania 0. 1242 0.0527 Sydney 0.2388 0.8534 

United States 0.0300 0. 1066 Tokyo 0.4296 0.9767 

Toronto 0.6897 0.1691 

Table 13. The p-values of Friedman test comparing long and short distance distributions for the 
criteria. 

In order to identify which criterion is more accurate in predicting long or short distances in 

the above exceptional regions, multiple comparisons are performed by using nonparametric Wilcoxon 

matched pairs tests. However, instead of reporting the results of this test, average percent absolute 

errors (lOO*E[le(Xj,Xj) l/A(Xj,�)]) for predicting long and short distances for the criteria are presented 

in Table 14. 

By inspecting the average percent absolute errors of the first five exceptional regions listed 

above, it can be observed that the ADf and SDf criteria generate less average percent absolute error 

than the NADf criterion in predicting long distances. For example, in Australia the average percent 

absolute errors for the ADf and SDf criteria are 5.02% and 5.03%, respectively, whereas for the NADf 

criterion, it is 6.42%. However, the United States is exceptional in those five regions since the SDf 

criterion has less average percent absolute error, 2.02% than the ADf and NADf criteria which have 
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2.06% and 2.09%, respectively. By inspecting Table 14 for short actual distances, we see that the 

NADf criterion provides better prediction accuracy than the either of the ADf and SDf criteria for the 

three exceptional regions. For example, in Australia the NADf criterion generates a 6.23% absolute 

error in predicting short distances. However the ADf and SDf criteria provide 8.45% and 8.37% 

absolute errors for the same region, respectively. 

Geographical Short Distance Long Distance 

Region A Dr SDr NA Dr A Dr SDr NA Dr 

Australia 8.45 8.37 6.23 5.03 5.02 6.42 

British Columbia 13.85 13 .53 12.67 7.79 7.90 8.40 

Canada 8.92 8.80 8.76 1 .89 1 .97 1 .96 

France 3.93 4.03 3 .81  2.56 2.5 1 2.67 

Great Britain 6.73 6.61 5.99 3.60 3.76 5 .08 

New York State 7.29 6.91 6.03 5.14 5.44 6.82 

Pennsylvania 8.32 8.59 8.00 4 .13  4.10 4.44 

United States 4.01 4.22 3.97 2.06 2.02 2.09 

Brussels 5.30 5 .31  5.29 3.25 3.26 3 .24 

London City 1 1 . 1 8  1 1 .00 1 1 .03 4.60 5.34 4.70 

London North 6.22 5.98 5 .87 2.77 2.87 2.92 

Los A ngeles 1 1 .60 1 1 .39 1 1 .33 4 . 15  4.70 4 .34 

New York City 7.71 7.82 7. 17 5.75 5.41 5 .84 

Paris 1 1 .61 1 1 .73 10.68 6 . 18  6.27 6 .91  

Sydney 7.97 7.86 7.85 5.61 5.60 5 .66 

Tokyo 5.63 5.64 5.64 2.65 2.62 2.77 

Toronto 5 .59 5 .70 5 .52 2.51 2.39 2.57 

Table 14. Average percent absolute errors in predicting long and short distances of the criteria. 

(iii) The purpose of this part is to compare the accuracy of predicting long distances versus short 

distances in a region. Therefore, three sets of vertical comparisons, one for each criterion (see 

Figure.7), are performed. First, in order to determine whether the variance of the I e(X;,x) I !  A(X;,�) 

distribution is constant for a given criterion in a region, Levene tests are conducted for each criterion 

in seventeen regions. Hence if the p-value of the Levene test for a criterion is significant (i.e. ,  greater 
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than 0. 1 0  significance level for the two-tail test) then we can conclude that the variance of the 

I e(Xj,�) J I  AG,�) distribution for that criterion in that region is constant and vice versa. The 2-tail p-

values for the Levene tests are presented in Table 15. Based on this table, the variances of the 

I e(Xj,�) I I A(Xi,1) distributions for all the urban centers are not equal since the test values are less than 

0. 10  for all the criteria. Additionally, there are four exceptions for each criterion in the large 

geographic regions; for the ADf and SDf criteria, the variance of the I e( Xi.,"'S) I I A( Xj_,xj) distributions 

are homoescedastic in British Columbia, France, Great Britain, NY State, and for the NADf criterion, 

the I e(Xi.,�) I I A(Xi.,�) distribution is homoscedastic in Australia, British Columbia, France and Paris. 

I Region I A Dr I SDr I NA Dr II Urban center I A Dr I SDr I NA Dr I 
Australia 0.084 0.03 1 0.383 Brussels 0.084 0.093 0.090 

BC Province 0.725 0.617 0.758 London City 0.066 0.039 0.066 

Canada 0.000 0.000 0.000 London North 0.001 0.003 0.007 

France 0.285 0.351 0.252 Los A ngeles 0.017 0.024 0.01 8  

Great Britain 0 .159 0.234 0.466 NY City 0.016 0.054 0.0 1 1  

NY State 0.741 0.925 0.014 Paris 0.006 0.004 0.022 

Pennsylvania 0.002 0.000 0.005 Sydney 0.043 0.082 0.048 

United States 0.013 0.001 0.01 8  Tokyo 0.025 0.01 9  0.030 

Toronto 0.000 0.001 0.000 

Table 15. The 2-tail p-values for the equality of variance of J e(Xi.,"'S) J!A(Xi.,"'S) for each criterion. 
In order to see the general pattern of differences in variances for the three criteria we inspect 

Table 16  where the variances of the Je(Xi.,"'S) J/A(Xi.,x) distributions resulting from long and short 

distance predictions are reported. In general, it can be said that the variance of the distribution of 

I e( Xi._,xj) I I A( Xj,Xj) for long distances is less than the variance for short distances for each criteria in 

each region. But this conclusion does not always hold at the 5% significance level as the Levene tests 

suggest in Table 15. In order to represent the converging funnels formed by the variances plotted 

against increasing actual distances in a region, the scatter plots of I e(Xi.,"'S) I I A(Xi.,"'S) for United States 

and Toronto are shown in Figures 10  and 1 1 , respectively. 
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Geographical Short Distances Long Distances 

Region ADr SDr NADr ADr SDr NADr 

Australia 0.0036 0.0035 0.0030 0.0015  0.0015  0.0019 

BC Province 0.0072 0.0073 0.0070 0.0058 0.0057 0.0064 

Canada 0.0043 0.0039 0.0047 0.0003 0.0002 0.0003 

France 0.001 1 0.0010 0.0012 0.0007 0.0006 0.0007 

Great Britain 0.0022 0.0021 0.0025 0.0014 0.0014 0.0021 

NY State 0.0025 0.0024 0.0021 0.0025 0.0023 0.0034 

Pennsylvania 0.0058 0.0060 0.0056 0.0012 0.0010 0.0014 

United States 0.0012 0.0013 0.0013  0.0004 0.0003 0.0004 

Brussels 0.0023 0.0023 0.0023 0.0009 0.0009 0.0009 

London City 0.0364 0.0354 0.0367 0.0060 0.0045 0.0058 

London North 0.0020 0.0019  0.0020 0.0005 0.0005 0.0006 

Los Angeles 0.0343 0.0335 0.0352 0.0013  0.0012 0.0012 

NY City 0.0053 0.0038 0.0053 0.0027 0.0023 0.0026 

Paris 0.0145 0.0134 0.0136 0.00 1 9  0.0018 0.0033 

Sydney 0.0042 0.0039 0.0042 0.0026 0.0025 0.0027 

Tokyo 0.0041 0.0040 0.0042 0.0006 0.0005 0.0006 

Toronto 0.0025 0.001 9  0.0026 0.0004 0.0004 0.0004 

Table 16. Variances of I e(x,,)C_j) I I A(x,,)C_j) distributions in predicting long and short distances of the 
criteria. 

The accuracy of each criteria in predicting the long versus short distances in a given region 

1s examined by using the nonparametric 2-tailed Mann-Whitney Test (see figure 7, vertical 

comparisons) with a 5% significance level. The 2-tailed p-values of the tests for three criteria are 

presented in Table 17. In this table, a p-value less than 0 . 10 indicates that there is a significant 

difference between the long distance and short distance i e(x,,)C_j) l /A(x,,)C_j) distributions of the 

geographical region. 

Therefore, for the ADf criterion only in New York city and Sydney and for the SDf criterion 

only in New York State and Sydney, do the long distance and short distance i e(x,,)C_j) l /A(x,,)C_j) 

distributions apparently come from the populations having the same distributions. For the NADr 
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criterion the same conclusion holds in the regions of Australia, Great Britain, New York State, New 

York City, Paris and Sydney. As also seen in Table 16, the average percent absolute errors in a given 

region are considerably different for long and short distances and indeed the accuracy in predicting 

long distances is higher than the accuracy in predicting short distances in a given region. 

Region ADr -

Australia 0.0 1 1 8  

B C  Province 0.0024 

Canada 0.0000 

France 0.0203 

Great Britain 0 .0042 

NY State 0.0446 

Pennsylvania 0.0124 

United States 0.0061 

SDr I NADr II Urban Center { ADr 

0.01 97 0.5 145 Brussels 0.0340 

0.0044 0.0285 London City 0.0012 

0.0000 0.0000 London North 0.0004 

0.0070 0.0821 Los Angeles 0.0039 

0.0057 0 .4920 NY City 0.5413 

0 . 1622 0.9205 Paris 0.0350 

0.0 1 1 8  0.0548 Sydney 0. 1638 

0.0038 0.0093 Tokyo 0.0061 

Toronto 0.0061 

SDr NADr 

0.0360 0.0307 

0.031 6  0.0026 

0.0008 0.0021 

0.0093 0.01 03 

0.0942 0.9859 

0.0177 0.2401 

0. 1501  0. 1 943 

0.0060 0.0132 

0.0002 0.0123 

Table 17. Two-tailed Mann-Whitney Test p-values for I e(X;_,�) I I A(X;.,�) distributions in 
predicting long and short distances of the criteria. 

SUMMARY OF THE RESULTS AND CONCLUSIONS 

The three goodness-of-fit criteria, ADf, SDf and NADf, were compared with different 

perspectives for seventeen geographical regions including nine large geographical regions and eight 

urban centers. Several generalized conclusions, based on these seventeen regions, can be drawn from 

a variety of statistical tests. 

Several conclusions regarding the properties of the e(X;_,�) distributions for the three criteria 

can be drawn. 

1 .  The e(X;.,�) populations are non-normal, generally highly peaked and skewed right, for each 

criterion. 

2. For the three criteria, the variances of the e(X;_,�) distributions are not significantly different. 
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3. For each criterion, the variance of the e(X;,�) distribution for long distances is significantly 

different, and indeed greater than the variance of the e(�,�) distribution for short distances. 

Hence, in general, the scatter plots for e(�,�) forms a diverging funnel as the actual distance 

increases for the sample pairs. 

4. The expected values of the e(�,�) distributions are zero for the geographical regions with a 

few exceptions for the ADf and NADf criteria. There were no exceptions for the SDf 

criterion. 

The following conclusions regarding the comparison of the three criteria in terms of their 

accuracy in predicting relatively long distances and short distances can be drawn. 

1. The J e(�,�) j /A(�,�) populations are non-normal for each criterion. The histograms are 

highly peaked with more occurrences close to zero and skewed right. 

2. There are generally no pairs of the criteria for which the J e(�,�) j /A(�,�) distributions are 

significantly different. 

3. In terms of the I e(X;,�) j /A(Xi,�)'s, the three criteria are not significantly different in predicting 

either long distances or short distances. However, each criterion has a higher accuracy in 

predicting relatively long distances than in predicting relatively short distances. 

4. The variance of the I e(�,�) j /A(�,�) distribution for long distances is significantly different 

than the variance of the I e( �,�) I I A(�,�) distribution for short distances. The former is 

smaller than the latter, and hence the scatter plots of the' I e(�,"X_j) I! A(�,"X_j) distributions form 

a converging funnel as the actual distance between the sample points increases. 

Finally, we can say that because of the computational efficiency provided by the closed form 

formula to determine the best value of parameter kwhen fitting the Qk,p,e norm, and since the e(�,)(_j)'s 

have an expected value of zero without any exceptions in all the regions, it would seem to be 

advantageous to use the SDf criterion in practice. 
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