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Abstract 

Distance functions are employed to estimate actual distances in a transportation network. 

The fbp-norm, which is a weighted sum of order p, is a generalization of the weighted 

lp-norm, a well-known distance predicting function. We derive some mathematical properties 

of the new norm and of a goodness-of-fit criterion. These properties are used to develop 

computational procedures to determine the best-fitting parameter values of the fbp-norm for 

a transportation network. We apply the new norm to seventeen geographic regions and find 

significant improvements in the accuracy of distance estimations over the weighted lp-norm. 
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1 Introduction 

Distance predicting functions (d.p.f.) are utilized in several applications. In some distribution 

problems for which only the demand and the general location of the customers are known 

a d. p.f. may be employed to calculate a predicted travel distance between the depot and the 

general area (see [5] and [24]). For validating the accuracy of actual road network distance data 

d.p.f.'s can be used as suggested by Ginsburgh and Hansen [6]. Kolesar, Walker and Hausner [9] 

incorporated a d.p.f. into a response-time model for emergency vehicles such as fire engines. 

Klein (8] suggests that a d.p.f. which reflects the nature of a geographic region's road network 

should be used for constructing Voronoi diagrams of the region. D.p.f.'s appear within the 

context of larger models such as facilities location and location-allocation problems(see [13]). 

D.p.f.'s may be used for calculating distances in a Geographic Information System (GIS). AB 

Star and Estes [19] state, distance measurements are of value in many geographic circumstances. 

D.p.f.'s are being utilized in software packages Roadnet [17] and TruckStops2 [20] since they 

are much more efficient and comprehensive to use in practice than attempting to assemble large 

files of distance data. 

Love and Morris ( [10], [11], [12)) applied several distance norms, including the weighted 

£p-norm (kip-norm) to Germany and several regions of the United States. Let x = (x1, x2f, 

and y = (y1, y2)T be any two points in the plane. The kip-norm is given by 

kip(x, y) = k (lx1 - Y1IP + lx2 - Y2IP)11P, k > 0, p > 0. 

Love and Morris found that the kip-norm was relatively easy to fit to a geographical 

region and it has excellent predictive properties. Ward and Wendell [22], [23) have introduced 
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the concept of utilizing block norms as distance predictors. A study by Love and Walker [16] 

shows that although marginally better results can be obtained by using a block norm with 

eight parameters than by using the k£p-norm, the computational cost of fitting the block norms 

can be prohibitive. Conversely, the original studies by Love and Morris [10), [11] show that 

the kip-norm usually gives much superior results compared to other simpler norms such as 

the weighted Euclidean or weighted rectangular norms. Brimberg and Love [3] introduced a 

generalized kip-norm in the form of a weighted sum of order p. This is in effect adding a single 

parameter to the k£p-norm since one of the two weights in the sum of order p function replaces 

the kin the k£p-norm. A weighted sum of order p is defined as follows (section 2.10 of [7]): 

where 

[ K l l/p 
T(y;b, p)= tt bi y/ , p;f=O, 

Y = (yi, . .. , yKf, Yi >  0, i = 1, ... ,K, 
h = (b1, ... , bKf, bi > 0, i = l, . . .  , K, 

The vector h and the scalar p can be considered as a set of parameter values. If all the 

weights are equal to one, then T becomes the ordinary sum of order p which is well-known in 

the literature. Note that the function T(y; b, p) has the form of a generalized f.
P 

distance given 

by [ K l 1/p 
.ebp(x) = tt bi xl , 

where x = (x1, . . .  , XK f E RK, p is generally assumed to be greater than zero, and .ebp estimates 

the distance between any two points y, z E RK such that x = y - z. The weights bi can be 

used to represent non-symmetric distance irregularities along the axis directions in a location 

model. 
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Brimberg and Love [3] derived the properties of the .ebp(x) function in terms of its 

parameter p. We employ the 2-dimensional form of the f.bp(x) function for predicting distances 

in the plane as follows: [ 2 l 1/p 
.ebp(x, y) = tt bi lxi - Yi IP 

It is well-known that the 'introduction of reference axis rotation brings more accuracy in 

predicting distances [4]. The reference axes are rotated so that they correspond to the 

underlying pattern of the road network. Therefore, we include axis rotation, (), in the above 

distance prediction model as follows: 

where 

and 

[ 2 l 1/p 
ibpo(x',y') = tt bi lx'i - Y1ilP 

x' = (x'1,x'2), y' = (y\,y'2), () E [0,7r/2] 

( x:i x> ) = 
( x1 x2 ) ( c?s () - sin () ) . 

Y 1 Y 2 Yi Y2 sm () cos () 

In order to determine the parameter values of the distance predicting function for a 

region, we need a goodness-of-fit criterion. The optimum parameter values of the distance 

predicting function are determined so that the criterion value is minimized. Four criteria have 

been used to fit the parameters to a set of data representing a region of interest. Let d1(ai, a;) 

be the predicted distance between points ai and a; by using predicting function f. A(ai, a;) is 

the actual distance between ai and a;, and n is the number of points in the data set. The four 

goodness-of-fit criteria are as follows: 
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n-1 n 
AD1 = L L ld1(ai, a;) -A(ai, a;) I 

sn, 

SN1 

i=l j=i+l 
n-1 n 

L L (d1(ai, a;) -A(ai, a;))2 

i=l J=i+l A(ai, a;) 
n-1 n 

_ 
� .� (d1(ai, a;) � A(ai, a;) ) 2 
1=1 J=i+i A(a" a;) 
n-1 n 

NAD1 = L L ld1(aiia;)-A(ai, a;)I 
A(ai, a;) i=l j=i+l 

The AD1 and SD1 criteria were introduced by Love and Morris (10], the SN1 criterion 

by Brimberg (1) and the NAD1 criterion by Love and Walker [14). The SD1 criterion will be 

employed in this study to model distances. Two reasons can be given for this choice. First, 

we know that sn, is strictly convex in parameter k when used with the klp-norm which is a 

special case of .ebp(x), when b1 i/p = �i/p = k (2]. Secondly, SD1 possesses attractive statistical 

properties as discussed by Love and Morris [10). 

In this paper we will first show that .ebp(x) is a norm. Then we will address the following 

issues which are related to the use of the .ebp-norm as a distance predicting function: review 

of the properties of the .ebp-norm as a function of its parameter p [3]; the behaviour of the 

.ebp-norm as a function of its parameters b1, � and p; the behaviour of the criterion sn, as a 

function of b1, � and p; computational procedures to find the best parameter values of b1, b2 

and p. Finally we compare the .ebp-norm and the weighted lp-norm regarding their accuracy in 

predicting distances in seventeen geographic regions. 

2 Properties of the fllp-norm 

The following property confirms the use of the .ebp(x) as a distance estimator. 
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Property 1 The lbp(x) Junction is a norm and a convex Junction. 

Proof We examine the necessary properties for a function to be a norm [18]. 

(i) It is clear that .ebp(x) > 0 Vx # 0 (positivity), and .ebp(x) = 0 if and only if x = 0. 

(ii) The homogeneity and the symmetry property are as follows. For any scalar c 

lbp(cx) = (b1lcx1IP + b2lcx2IP)1/P 

- (iclPb1lx1IP + iclPb2lx2l11)11P 

- icllbp(x). 

(iii) The triangular inequality; for any x = (x1, x2) and y = (y1, y2) we show that 

fbp(x + y) :5 fbp(x) + fbp(Y) 

fbp(x + y) = (b1lx1 + Y1i11 + �lx2 + Y2ip)l/p 

- (ib�/PX1 + b�/PY1ip + lb�/PX2 + b�/pY2iP)l/p 

< (jb�111x1IP + lb�1Px2i11/1P + (ib�/PY1IP + lb�111Y2IP)11P (Minkowski Inequality) 

- fbp(x) + fbp(y). 

Thus, fbp(x) is a norm and is a convex function of the variables x1 and x2• The convexity 

property is useful in the context of using fbp(x) in continuous location models. D 

We now state a corollary given in Brimberg and Love [3]. This finding is important 

when the use of the lbp-norm for predicting distances is considered. 
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Corollary 1 The .ebp-norm is a decreasing function of p > 0 for given weights b1, b2 and all 

positive lxi - Yil, if and only if b1, � ;::: 1. Furthermore, the .ebp-norm is strictly convex in p 

under these conditions. 

In predicting distances we would expect to see the coefficients b1 and b2 greater than 

one. This result is potentia:Ily useful for the fitting procedures when the decreasing strictly 

convex property is considered. Moreover, since we are expecting both b1 and � to be greater 

than one, by utilizing the asymptotic behaviour of the .ebp-norm [3] we observe the following 

limiting cases: 

lim .ebp = £00, lim lbp = oo p-+oo p-+O+ 

We next examine the lbp-norm as a function of its parameters b1 and b2• In order to 

check its convexity properties we need to calculate the following Hessian 

where 

[ 82£ 82£ ] 
-

8b12 8b18� 
Hbi.b2 -

821, 82£ 
8�8b1 8�2 

8.e.bp 
-8b1 

�[ b1lx1 - Y1IP + �lx2 -Y2IPJ;.-i lx1 - Y1IP, p 

8lbp 
8"2 

82£bp 
8 b12 

-
�[ b1lx1 -Y1IP + �lx2 -Y2IPJ;-i lx2 -Y2IP, 
p 

- 1 � p 
[ b1lx1 - Y1IP + b2lx2 - Y2IPJ;.-2 lx1 - Y1l2P, p 

82.e.bp 
8�2 -

1-p I 2 2 
7[bi lx1 -Y1IP + b2 lx2 - Y2lpF- lx2 - Y2I P, 
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and 

a2£bp a2£bp 
8b18bi - 8b28b1 -

1-p 1 2 
�[bilx1 - Yi IP + b2lx2 - Y2lp)i'- lx1 - Yi IP lx2 - Y2IP, 

a2 tbp a2 tbp ( a2 tbp ) 2 
I Hbi,b2 I = 

8b1 2 8bi 2 - 8bi 8bi . 

ff p � 1 then 82 "-bpi 8bi 2 :5 0, 82 "-bpi 8b2 2 :5 0 and IHbi,b2 I = 0. 

Therefore, we conclude that for p � 1 the £bp-norm is concave in its parameters bi and 

bi. Furthermore, considering, 8£bpl8bi � 0 and 8£bpl8b.i � 0, we see that the £bp-norm is also 

an increasing function of parameters bi and bi. 

3 Properties of the SD1 Function 

In this section we derive some useful properties of the SD1 function. These properties will 

later be utilized in designing computational procedures to determine the best parameter values 

of the fbp-norm for a given transportation network. First we examine the convexity of sn, in 

terms of its parameters bi and b2. 

Property 2 The criterion SD1 is convex in the parameters bi and b2 provided that p E [1, 2). 

Proof Suppose there are n points in our sample set where each point is given by its 

coordinates (an, ai2) , i = 1 ... n, and the actual distance for each pair of points (ai, ai) is 

denoted by Aij. Then we have 

n-1 n l 2 
sn, = L L A·· ( Aij - (b1lan - aj1lp + b2lai2 - aj2IP)11P) . 

i=l j=i+i tJ 

Consider one of the terms in this sum, denote it by hij and also denote fbp(ai, ai) by f.bp. 
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We examine the convexity of hi; in the parameters b1 and b-i. The following terms are 

calculated for the Hessian 

Furthermore, 

a2hi · a2hij 
8b1i 8b18� 

Hb1,b2 = 
a2 hii EP hi · 

a�ob1 a�i 

8hi; _ _ 2 (Ai; - ibp) !au - a;ilP - 1 , 8b1 Ai; p ibp p-

8hi; _ _ 2 (Ai; - .ebp)lai2 - a;2IP 
- 1 , 8b2 Ai; p fbpP-

12p 82hij - 2 Ian - a;1 (.ebp + (p- I)(Aij - ibp)), and -- - '>n2nl 8b12 A . 

a2hij - 2 lai2 - a;212p 

81J-i 2 - Ai; p2 .ebp 2p-1 ( .ebp + (p - 1 )(Ai; - ibp)). 

82hi; = 2 !au - a;1!Plai2 - a;2IP(i + (p- I)(A·· _ .e )) 8b1 8b2 Aij p2 .ebp 2p-l bp IJ bp , 

which is also equal to /J2hi;/8b-i,8b1. It can be verified that 1Hb1,b21=0. 

The second derivatives of hi; w.r.t. b1 and b-i, have a common term given by 

Mi; = ( ibp + (p- I)(Ai; - ibp)). 

The sign of Mi; must be found in order to see if the diagonal entries in the Hessian are 

nonnegative. There are two cases to consider: 

(i) For the b1 , b2 values in which the .ebp-norm underpredicts the actual distance Ai;, i.e. 

Ai; 2: .ebp(i, j), Mi; is always nonnegative. 
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(ii) For the bi ' � values in which the ebp-norm overpredicts the actual distance Aij, i.e. 

Aii < ebp (i, j), we proceed as follows; 

In order to see if Mii is nonnegative we need to check if the inequality 

tbp > (p- l)l�j - ebp 1 

holds. Rewriting this inequality we have 

-- > -.!l. -1 
1 1A·· I p- 1 ebp 

or equivalently by using Aij :5 ebp and rearranging , we obtain 

A·· 2-p A·· -.!l. > -- where -.!l. < 1 .  
ebp 1 - P ebp -

The graph corresponding to the right hand side of this inequality is given in Figure 1 .  The 

shaded region in this graph represents the area that the above inequality holds, i.e. Mii is 
nonnegative. 

It is apparent from the graph that we must consider the values for p E [1 , oo ). 

Furthermore, for p E [1 , 2] the above inequality always holds and therefore we have 

82hij > 0 and 
8b12 

a2hij > 0 -2- ' a� where 1 ::::; p :5 2. 

Hence, hii is convex in b1 and b2 for p E [1 , 2]. The convexity of SD1 follows from the fact that 

a sum of convex functions is also a convex function. D 

For p E (2, +oo) we can argue that in practice there is a good chance for the Mii to be 

nonnegative. First, although it is possible to have an optimal p value greater than 2 with the 

ebp-norm this occurs with a p value close to 2, i.e. in a highly Euclidean transportation network. 
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Figure 1: Condition on p 

5 6 p 

A minimum SD criterion value with a large optimum value of p is closely approximated by 

another SD criterion value associated with a parameter p value less than 2 with the coordinate 

axes rotated [21). Second, for optimal values of the parameters, p, b1 and b-i, we expect good 

predictions such that the ratio Aii / ibp is close to 1. Third, since the ibp-norm is a decreasing 

function of p (Corollary 1), asp increases, ibp will decrease and given that Aii/ibp � 1, where 

Aii is constant, the Ai;/ ibp ratio will become closer to 1. It will be more likely to fall into 

the shaded region. Therefore, for all practical purposes we can assume that SD1 is a convex 

function of its parameters b1 and b2 provided that p 2: 1. 

Next we examine the behaviour of SD1 in terms of its parameter p. 

Property 3 Consider any term hii in the sum SD1 as a function of p in the open interval 

(0, +oo). There are two cases: 

10 
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(i) If Ai; < max{lan - a;1I, lai2 - a;2I} = l00(ai, a;) then hi; is a decreasing strictly convex 

function of p with a minimum approached asymptotically as p -+ +oo. 

·(ii) If �j > l00(a;, a;) then hi; is a unimodal function of p with minimum at p*. Furthermore, 

hi; is strictly convex over the interval 0 < p < µ and strictly concave for µ :::; p where µ is the 

inflection point such that 

fPhij(bi,b2,µ) = 0, µ > p*. 
8p2 

Proof First we obtain the following derivatives with respect top. Let A and l bp be the actual 

and the predicted distance respectively for the pair of points (ai, a3). Then 

l' bp -

l" bp -

h1ij -

h" .. IJ -

lbpK(p) where K(p) = _ ln(lbp) 
+ E!=1 bklaik - a;klP ln(laik - a;kl) 

p p(lbp)P ' 

lbp[K2(p) + K'(p)], 

-�(A - lbp).e'bp, and 

2 
A [(l'bp)

2 - (A - lbp).e''bp]· 

Also note that from Corollary 1 we have l'bp < 0 and l" bp > 0 for p E (0, +oo). 

(i) If A :::; l00, we should have A - lbp < A - l00 :::; 0, so that hi; < 0 and hij > 0 for 

p E (0, +oo). Clearly then, hi; is a decreasing strictly convex function of p with the minimum 

(A - l00)2 /A approached asymptotically asp-+ +oo. 

(ii) We next consider the case where A > l00• In order to see the unimodality of hi; recall 

that A= lbp• and l�
P 

< 0 for p E (0, +oo). Thus for p < p* we have A - lbp < 0 which implies 

that h�; < 0, and for p > p* we have A - lbp > 0 implying that h�3 > 0. Therefore hi; is a 

unimodal function of p with minimum at p*. Also utilizing Corollary 1 we note that hi; has 

a positive vertical asymptote at p = 0 and a horizontal asymptote approached from below as 
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p � +oo. Hence hii must have an inflection point µ such that 82hij(b1, b2, µ)/8p2 = 0. We 

prove the rest of this case in two parts. 

We first consider the p < p* case where the actual distances are overpredicted. It is 

readily seen that for A < f,bp. we have h�j > 0. Therefore if p < p* then hij is a decreasing 

strictly convex positive function. 

Secondly, we consider the case p > p* where the actual distances are underpredicted1 

i.e., A > f,bp•· Substituting f,� and f't,, into the equation for h�j and equating to zero we obtam 

h�; = � [(tbp)2 K2(p) - (A- fbp)fbp(K2(p) + K'(p))] = 0, 

and by rearranging we have 

A 2K2(p) + K'(p) 
fbp = K2(p) + K'(p) . 

The inflection point µ must solve this equation. Since f't,, > 0 we have 

so that 

2K2(p) + K'(p) > K2(p) + K'(p) > 0 

2K2(p) + K'(p) > 1, Vp > 0. 
K2(p) + K'(p) 

Hence A > fbµ. Finally since A = f,bp. and f bp is a decreasing function of p we must have µ > p*. 

The general shapes of hi; for varying p are given in Figure 2 for both cases. D 

Property 3 shows that hi; is neither a convex nor concave function of p. Since the 

criterion sn, is the sum of terms hij we conclude that sn, is neither convex nor concave in p. 

Therefore, in order to determine the best parameter value of p we have to conduct a numerical 

search over a safe range. The lower bound for such a search range is clearly 1. The upper bound, 

p, is chosen by considering the level of rectangularity and nonlinearity in the transportation 
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network. A study on the directional bias modelled by the .ebp-norm [21) reveals that if there 

exists only one optimal p value greater than 2 this happens in transportation networks which 

are nearly Euclidean, i.e. p is close to 2, or there exists a high directional nonlinearity, i.e. 

the b1 and b2 values are distinct. If the network has a high level of rectangularity and less 

pronounced directional nonlinearity then there exists two minimum S D criterion values. One 

occurs at a p value less than 2 and the other has p value greater than 2 which occurs after 

rotating the coordinate axes. Therefore, an appropriate upper bound, p , for the search range 

of p can be chosen by making a preliminary inspection of the underlying pattern in the network 

so that the minimum SD criterion value is obtained [21). 

4 Computational Procedures 

In order to calculate the SD criterion's values and to determine the empirical parameters 

of the .ebp-norm, a Search-Descent Al gorithm was developed. The best () and p values were 

determined by using an incremental search procedure and a four-stage incremental search 

procedure, respectively. 

To calculate the best () value, a two-degree incremental search was conducted on the 

interval [O, go0]. We chose this interval because the directional bias function r( 0) of the .ebp-norm 

indicates that the SD1 function is periodic with a period go0 [21]. Therefore a best-fit rotation 

angle must be encountered in the interval [O, go0]. For each value of (), parameters b1, b2 and p 

were determined. Once the best () value, ()b, was found for the interval, solutions were calculated 

for ()b - 1 and ()b + 1. The best () value was then chosen from the solutions for { ()b - 1, eb, ()b + 1}. 

For each value of (), an initial p value was calculated by conducting a 0.1 increment 
. .  
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search on the interval [1, p] where p > 2. Once a p value was found, it was fine-tuned to four 

decimal places of accuracy. This was accomplished by carrying out three further incremental 

searches. Each search used an interval centered around the best solution from the previous 

incremental search with a width equal to twice the increment of the previous search. The 

increment for the search was one-tenth the size of the increment from the previous incremental 

search. For example, if the best p value for the first search was 1.6, then the interval width 

for the second search was [l.50, 1.70) with the increment being 0.01. If the best p value was 

1.56 this time, then the interval width for the third search was [l.550, 1.570) with the increment 

being 0.001. 

The best b1 and b2 values were calculated by developing a descent algorithm given at 

the end of this section. It is readily seen that if p E [1, 2) then the SD1 criterion is convex in its 

parameters b1 and b2• Furthermore, for p > 2, if the nonnegativity of Mii is satisfied for each 

pair of points in the sample, then the SD1 criterion is again convex in b1 and b2• On the other 

hand, although SD1 is convex, it is difficult to solve for optimum b1, b2 values by using the first 

order equations. Therefore we employ the descent algorithm which minimizes SD1(b1, b.i) for 

given (} and p values. 

where 

Note that the normalized gradient vector d = (di, d2) is given by 

(\lSD(b1), \lSD(!J.i)) d = II (VSD(b1), \lSD(b.i)) II 

n-1 n 8hij 
v SD(b1) = L L 8b1 i=l j=i+l 

and 
n-1 n 8hij 

\!SD(b.i) = L L 8b2 i=l j=i+l 
By considering the insignificance of the time required to evaluate the SDI we have 

implemented a Golden Section Method to calculate the step size.\. Clearly SD1 is a unimodal 
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function of (b1, �) for p E [1, 2]. For p E (2,p] the convexity of SD1(b1, b2) relies on the 

nonnegativity of Mii· Therefore when p > 2 the Search-Descent Algorithm also checks if the 

nonnegativity of Mij is satisfied at each iteration point (p, bi (k), b1 (k)) for each pair of points 

(ai, aj) contributing an error term in the sn,. 

Input: 

Output: 
Initialize 
Iteration 

Compute 
while 

Sample Data (an, ai2), i = 1, . . . , n; 
Aij, i = 1, . . .  , n - 1, j = 1, ... , n. 

Parameters () and p 
Termination Criteria c.>., ed. 
Optimum b1, b2 and SD criterion value. 
Set b1 (I), b2 (I). Assign a large number to S D(o). 
k=l 

SD(1)(b1 (1)' �(1)) 
(SD(k-l) - SD(k))/ SD(k) > cd do begin 

Compute Normalized Gradients (d1C1), d2(1)) 
Find ,\ (k) such that 

MINw•»oSD,\ = SD(b1(k) - ,\(k)d1(k), b2(k) - ,\Ck)d2Ck)) 
by using -Golden Section Method with c.>. 

Compute new parameters 
bi (k+i) = b1 (k) - ,\(k)d1 (k) 
b2(k+I) = �(k) - ,\(k)d2(k) 

Evaluate S D(k+I) (b1 (k+l), � (k+I)) 
k=k+l 

end. 

Pseudocode for Descent Algorithm 

5 Application Results and Conclusions 

In order to model the parameter values of the fbp-norm we used the sample data from seventeen 

geographic regions presented by Love and Walker [15]. The sample data for each geographic 

region includes 15 points [locations] based on random selection of point coordinates on the 
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map and 105 actual distances corresponding to these points. We applied the Search-Descent 

Algorithm by using the termination criteria€>.. = ed = 0.001. The search range for parameter 

p was taken as [1, 6]. The reason for choosing a large search interval for p is to find both sets 

of parameters, if two sets exist, with minimum SD criterion values. 

We present the best parameter and SD criterion values for the .ebp-norm applied to 

seventeen regions in Table 1. The percent difference between the criterion values of two .ebp-norm 

best fits, SD1 and SD2, are also reported in Table 1. Furthermore the SD vs. () plots for the 

regions can be found in the Appendix. 

The plots of the bifb<;, and the p values for the best parameter values are given in 

Figures 3 and 4, respectively. The corresponding bifb2 values for the regions can be found 

in Table 2. b,,,:r , which indicates the existence of dominant directional nonlinearity in a 

transportation network, is also reported for the regions in Table 2. t::..r is defined as Jr1 - r21 

where r = max{b1, b2}/min{b1, b<;,} and ri, r2 are for SD1 and SD2, respectively. t::..r is also 

utilized to explain the difference between SD1 and SD2 [21]. 

For comparison purposes we list the minimum SD criterion values for both the .ebp-norm 

(from Table 1) and the weighted lp-norm where p E [1, 2] in Table 3. Observe that except in 

NewYork State where SD has the same value for both norms, the .ebp-norm always gives a 

lower SD criterion value implying that better predictions are obtained. However, the gain in 

accuracy varies among the regions. The variation is attributed to the underlying pattern of the 

transportation network. Conclusions can be summarized as follows: 

1. In Table 1 we observe that for regions 1, 2, 6, 8, 9, 13, 16, and 17 the difference between the 

two minimum SD values for the .ebp-norm, SD1 and SD2, is quite low. A close inspection 
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MIN I MIN II IT 
No. Region 0 b1 b2 p SD1 0 b1 b2 p SD2 A% 

1 Australia 42 1.4434 1.4443 2.1894 1158.05 86 1.1945 1.2987 1.7996 1117.89 3.59 
2 BC Province 22 2.5828 2.4312 2.7555 1023.19 66 1.3415 1.4859 1.5635 1015.41 0.77 ' 
3 Canada 45 1.9325 1.3500 2.2317 497.01 - - - - - -
4 France 76 1.1529 1.0819 1.8576 78.87 - - - - - -
5 Great Britain 0 1.1116 1.3925 2.0352 172.34 - - - - - -
6 NY State 40 1.5710 1.5630 2.6097 164.10 86 1.1303 1.1285 1.5841 159.80 2.69 
7 Pennsylvania 10 1.0751 1.1629 1.6589 104.17 44 1.2250 1.4812 2.3892 95.11 9.53 
8 United States 0 1.1358 1.1748 1.6956 336.54 42 1.4202 1.4729 2.4485 348.08 3.43 
9 Brussels 3 1.2224 1.2020 2.1787 3.60 47 1.0696 1.1177 1.7969 3.47 3.77 

10 London Central 26 1.2366 1.6162 2.2708 15.01 - - - - - -
11 London North 14 1.0930 1.2953 1.7901 1.36 52 1.3707 1.4841 2.5324 1.71 26.11 
12 Los Angeles 0 1.1011 1.3799 1.7750 13.18 54 1.7276 1.5204 2.7420 14.93 13.31 
13 NY City 6 1.1673 1.2439 1.7539 13.29 52 1.5099 1.4367 2.3776 13.38 0.70 
14 Paris 40 1.3634 1.1440 2.2734 5.84 - - - - - -
15 Sydney 8 1.3675 1.1521 1.5571 1.10 54 2.1130 2.1541 3.0007 1.36 23.36 
16 Tokyo 13 1.3465 1.3226 2.2249 2.28 57 1.1988 1.1670 1.8260 2.28 o.oo 
17 Toronto 42 4.1261 4.2427 5.2215 5.06 87 1.0581 1.0275 1.2009 5.06 0.12 

Table 1: Best Parameter Values 

� Region 

MIN I MIN II 
bi/b2 bi /� AT 

1 Australia 0.9994 0.9198 0.0866 
2 BC Province 1.0624 0.9028 0.0453 
3 Canada 1.4315 - -

4 France 1.0656 - -

5 Great Britain 0.7983 - -

6 NY State 1.0051 1.0016 0.0035 
7 Pennsylvania 0.9245 0.8270 0.1275 
8 United States 0.9668 0.9642 0.0028 
9 Brussels 1.0170 0.9570 0.0280 
10 London Central 0.7651 - -

11 London North 0.8438 0.9236 0.1024 
12 Los Angeles 0.7980 1.1363 0.1169 
13 NY City 0.9384 1.0510 0�0147 
14 Paris 1.1918 - -

15 Sydney 1.1870 0.9809 0.1675 
16 Tokyo 1.0181 1.0272 0.0092 
17 Toronto 0.9725 1.0298 0.0016 

Table 2: bi /b2 and �T Values 
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I No. I Region I SD for £bp I SD for £p I D..(SDt )% I 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Australia 1117.89 1163.59 3.93 
BC Province 1015.41 1038.72 2.24 
Canada 496.88 565.61 12.15 
France 78.86 92.32 14.58 
Great Britain 172.34 219.42 21.46 
NY State 159.80 159.80 0.00 
Pennsylvania 95.11 107.06 11.16 
United States 336.53 342.68 1.79 
Brussels 3.47 3.55 2.25 
London Central 15.01 16.53 9.20 
London North 1.36 1.78 23.60 
Los Angeles 13.17 15.50 15.03 
NY City 13.29 13.58 2.14 
Paris 5.84 6.52 10.43 
Sydney 1.10 1.35 18.52 
Tokyo 2.28 2.30 0.87 
Toronto 5.06 5.10 0.78 

Table 3: Comparison of lbp-norm and lp-norm 
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Figure 3: Best-fit bi/b2 Plots 
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of Figures 3 and 4 reveals that the above eight regions have relatively high rectangularity, 

i.e. p values are not close to 2, and have low directional nonlinearity, i.e. the bif b2 values 

are close to 1. Low !:l.T values show that the nonlinearity in these networks does not have 

a particular direction. We can say that under these conditions the .ebp-norm converges to 

the weighted fp-norm. Therefore, similar to the weighted fp-norm, we have two minimum 

SD values such that one minimum has an optimum p value where p E (1, 2) and the 

other has an optimum p value where p E (2, +oo). Moreover, if the bi/b2 ratio equals 1 

regardless of the axis rotation, we would see these two minimums exactly 45° apart. In 

the regions mentioned above, since the b1 and b2 values are not exactly equal, there is a 

minor deviation from 45°. In Table 3, we see that the gained accuracy over the weighted 

fp-norm is low for these regions. This can again be explained by the similarity of the two 
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norms under the mentioned rectangularity and nonlinearity conditions. 

2. In regions 4 and 5 the SD1 function attains its minimum only once. In Figure 4 we see that 

these regions, France and Great Britain, are highly Euclidean, i.e. p is close to 2. Since 

the £2-norm is invariant under axis rotation, in Euclidean transportation networks the 

variation in SD(9) attributed top is low. Therefore the variation in SD(9) is influenced 

more by the nonlinearity in the transportation network. The study of the directional bias 

function [21] shows that in such networks SD(9) has two bottoms goo apart. Therefore, 

for regions 4 and 5, only one minimum is encountered in the [O, go0] interval. Moreover, 

since the .ebp-norm models the nonlinearity in the transportation network explicitly, it 

produces more accurate estimations of actual distances. We obtain 14.58% and 21.46% 

improvements over the best SD values of the weighted lp-norm for France and Great 

Britain, respectively. 

3. In regions 3, 7, 10, 11, 12, 14, and 15, SD(9) either has only one minimum or two 

minimums with considerably different criterion values. 

i. For regions 3, 10, and 14, hi which there is only one minimum SD, the bifb2 values 

are far away from 1, implying the existence of dominant directional nonlinearity. 

Although these regions are relatively rectangular the nonlinearity is clearly a 

dominating characteristic of the regions. Therefore when the £bp-norm is fitted we 

observe only one minimum SD(9) value in the [O, go0] interval for these three regions. 

For Canada, London Central and Paris, using the .ebp-norm provides significant 

improvements in the SD criterion values ; 12.15%, g,20% and 10.43%, r£lspectively. 
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ii. For the rest of the regions, in which there are two minimum SD values, it is difficult to 

differentiate a dominating characteristic, i.e., nonlinearity or rectangularity. While 

the road networks are highly rectangular, relatively high values of .6.:r indicates 

the existence of directional nonlinearity in the transportation networks. In these 

regions one of the minimum S D criteria gives the optimum parameter values for 

the region. The corresponding axis rotation provides the best alignment of the 

coordinate axes with the underlying directional nonlinearity and rectangularity. The 

percent difference between the two minimum SD criterion values is quite high; 9.53% 

26.11%, 13.31 % and 23.36% for regions 7, 11, 12 and 15, respectively. However, 

the inherent nonlinearity in the regions is well captured by the .ebp-norm. Ail a 

consequence we see, once again, considerably better distance predictions. For these 

regions, Pennsylvania, London North, Los Angeles and Sydney, the improvements 

over the SD values given by the weighted lp-norm are 11.16%, 23.60%, 15.03% and 

18.52%, respectively. 

Ail noted earlier, for p > 2 the convexity of the SD criterion depends on the 

nonnegativity of the Mij (shaded region in Figure 1). In our Search-Descent Algorithm we 

check if this condition is satisfied at any iteration with p > 2. Note that since we have 15 

locations in a sample for a region, each iteration involves 105 violation checks. We present the 

results in Table 4. We report the percentage of total number of violations in total number of 

checks performed in the Search-Descent Algorithm and the maximum number of violations to 

the condition observed at any iteration. For example, for Canada there exists an iteration in 

which for 6 pairs of locations out of 105 the condition is violated. We observe that percentages 
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of violations are very low, below 1 % in all regions. For Brussels and NY City, although the 

maximum number of violations in an iteration is 1, the percentage is very close to zero, and for 

France, Great Britain, United States, London North and Tokyo, no violations are observed. We 

note that no violations are observed in the vicinity of the parameter values reported in Table 1. 

We also like to note that the maximum number of violations are observed for iterations with 

p;::: 5. This is an expected result considering the narrowing shaded region for higher values of 

p in Figure 1. Finally the results given in Table 4 provide additional evidence concerning the 

No. Region Violations Maximum 
Percentage Violations 

1 Australia 0.16 3 
2 BC Province 0.32 7 
3 Canada 0.27 6 
4 France 0.00 0 
5 Great Britain 0.00 0 
6 NY State 0.05 4 
7 Pennsylvania 0.23 5 
8 United States 0.00 0 
9 Brussels 0.00 1 
10 London Central 0.38 2 
11 London North 0.00 0 
12 Los Angeles 0.56 4 
13 NY City 0.00 1 
14 Paris 0.51 4 
15 Sydney 0.01 1 
16 Tokyo 0.00 0 
17 Toronto 0.17 8 

Table 4: Convexity Check Results 

validity of the assumption that for all practical purposes the SD1 is a convex function in its 

parameters b1 and lJ.i. for p > 1. 
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