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Abstract 

The Weighted Sum of Order p, the .ebp-norm, is a generalization of the well-known .eP-norm 

used in predicting distances in a transportation network. The properties of the directional 

bias function and the unit balls for the .ebp-norm are of theoretical and practical interest. We 

investigate these properties and compare them with the properties of the .ep-norm's directional 

bias function and the unit balls. We find that the .ebp-norm is better at capturing the nonlinearity 

in a transportation network than the weighted fp-norm. It is also shown that, in contrast to 

the weighted fp-norm, where the optimal parameter p value is confined to the interval (1, 2), 

for the .ebp-norm the parameter p can have an optimal value greater than 2. 

Keywords: Distances, Directional Bias, Transportation. 



1 Introduction 

Distance predicting functions are involved in several different applications. In continuous 

location models, norms, as distance predicting functions, are usually employed in cost 

calculations to construct the objective function [13]. Such a model should represent the real 

situation as accurately as possible. Therefore the accuracy of the distance predicting function 

employed plays a crucial role in terms of the validity and the applicability of the model's output. 

Some other application areas which use distance predicting functions can be given as follows: 

distribution and transportation planning [5], [21] ; accuracy validation of actual transportation 

network distance data [6] ; response-time models for emergency vehicles [10] ; construction of 

Voronoi Diagrams of a region [9] ; location-allocation problems [13], and geographic information 

systems [17]. Moreover, the software packages Roadnet [15] and TruckStops2 [18] utilize 

distance predicting functions as a substitute to forming large files of distance data. 

Love and Morris [11], [12] present several distance predicting functions which are mostly 

norms weighted by an inflation factor to account for the hills, bends and the other forms 

of "noise" in the transportation network. A significant conclusion of their study is that an 

empirical distance function should be tailored to a given region whenever a premium is placed 

on accuracy. This result is based on statistical analyses showing that the weighted .ep-norm 

outperforms both the weighted Euclidean and the weighted rectangular norms. 

In addition, it is shown by Love and Walker [14] that the weighted .eP -norm is generally 

more accurate than a block norm [20]. The authors also observe that increasing the number of 

parameters of a block norm does not ensure that it becomes more accurate than the weighted 

.ep-norm. 
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Love and Morris [11] introduce the concept of axis rotation in their study on the road 

network in Milwaukee, Wisconsin. Brimberg, Love and Walker [4] investigate this concept 

in detail and conclude that a reference axis rotation chosen to align with the underlying 

pattern of the transportation network improves the accuracy of distance predictions. Huriot 

and Perreur [8] also discuss axis rotation and apply it in a study of the nine largest Swiss cities. 

The functional form of the £bp-norm is given by the weighted sums of order p defined 

in Hardy et al. (7] (section 2.10). Uster and Love [19] show that the weighted sum of order p, 

fbp ( x), is a norm and convex in x. The use of the fbp-norm as a distance predicting function is 

first suggested by Brimberg and Love [3]. In the context of predicting travel distances we are 

mostly concerned with the characteristics of distance models in 2-dimensional Euclidean space. 

Therefore we define the fbp-norm as follows. 

where x = (xi, x2)T E R2• The parameters bi, b2 and p are generally assumed to be greater 

than zero. fbp(x) estimates the distance between any two points y, z E R2 such that x = y- z. 

The parameters bi and b2 can be interpreted as non-symmetric weights along the axis directions 

in a distance or location model. 

Brimberg and Love [3] state that, since it is a generalized form of the weighted fp-norm, 

the fbp-norm should provide greater accuracy for estimating distances on a transportation 

network. However, because of the extra parameter, we would expect an additional 

computational cost of fitting the fbp-norm to a transportation network. 

Similar to the weighted fp-norm, the fbp-norm attempts to identify two inherent 

characteristics of a transportation network: rectangularity which is mostly associated with the 
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parameter p, and nonlinearity which is associated with the parameters b1 and b2. For example, 

a grid system or "Manhattan metric" type of road network has rectangularity properties and is 

captured by the parameter p (p � 1). On the other hand, a river or a mountain range or other 

irregularities will produce nonlinearity effects and will be explained by the parameters b1 and 

In this paper we investigate some useful properties of the directional bias function of the 

fbp-norm. The way that the .ebp-norm captures the rectangularity and the nonlinearity inherent 

in a transportation network is particularly important in the process of distance modelling and 

later in interpreting the parameters b1, b2 and p. Using these properties we compare the .ebp
·
-norm 

and the well-known weighted fp-norm in terms of their ability to explain the underlying pattern 

in a transportation network and the procedures used to identify the best parameter values of 

each norm. Traditionally, the directional bias of norms is illustrated and compared by means 

of the unit balls associated with them.(see Fig.10.1 in [13]). For this reason we examine the 

unit ball of the £bp-norm as well as its directional bias function. 

For the fp-norm, Brimberg and Love [2] conclude that any fq(x), q > 2, can be 

accurately approximated by a corresponding norm a-fp(x'), 1 < p < 2, where a- is a scaling 

factor and x' gives the coordinates of x after a 45° rotation of the reference axis. Therefore, 

for all practical purposes, the estimation of actual distances by an fp-norm with p > 2 need 

never be considered, since the same degree of accuracy can be obtained with a value of p in 

the interval (1, 2). In this study we find that for the £bp-norm, which is a generalization of the 

fp-norm, this fact does not generally hold. Whether an fbq-norm, q > 2, can be accurately 

approximated by another fbp-norm, where 1 < p < 2, depends on the level of rectangularity 

and nonlinearity inherent in a transportation network. 
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In the next section we define the directional bias function for the .ebp-norm and present 

its properties. The last section is devoted to the implications of the results on distance modelling 

procedures. 

2 Properties 

Brimberg and Love [2] define directional bias for any norm k on R2 as 

r(O) = ���)' x # 0, (} = arctan (�:). 
Let u and v be two points in R2 such that r(Ou) > r(Ov) and the same Euclidean distance is 

to be covered in both directions, i.e., f2(u) = f2(v). Then obviously k(u) > k(v) and we say 

that the difficulty of travel in the Ou direction is greater than the difficulty of travel in the Ov 

direction. Employing the .ebp-norm as a distance predicting function we define the directional 

bias function as 

(bilx1IP + b2lx2IP)1 1P 
f2(x) 

(bdcosOIP + b2jsinOIP)1 /P 

where (} is the angle specifying the vector x E R2. We adopt the notation r ( 0) to replace 

r bi ,b2 ,p(O) in the rest of the paper. 

Property 1 The directional bias is the same for two (} values 90° apart where the b1 and b2 

values have been exchanged, p being the same. 

Proof 
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(bi I - sinOIP + b.ilcosOJP)i/p 

(b2lcosOIP +bi lsinOIP)i/p 

so if we switch the bi and b2 values, we obtain the same directional bias when 0 is changed by 

7r /2 with p being the same. D 

Property 2 r (  0) is periodic with period 7r. 

Proof 

and the result follows. D 

Property 3 For any real w 

(bilcos (O + 7r)IP + b2lsin (O + 7r)JP}i/p 

(bil - cosOIP + b.ilsinOlp)i/p 

- (bdcosOIP + b.ilsinOlp)i/p 

r (  0) 

i.e. r (O) is the mirror image of itself about the line 0 = 7r/2. 

Proof It follows from observing the equalities 

lsin (� - w) I= lsin (� + w) I and jcos (� - w) I= jcos (� + w) I· 

Thus we need to consider 0 only in the interval [ 0, 7r / 2]. D 
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In order to explore the shape of the r(O) function we use the first- and the second-order 

derivatives. We next derive these derivatives. Note that sin( 0), cos( 0) � 0 for 0 E [O, 7r /2]. 

dr(O) 
dO 

Observe that dr(O)/dO = 0 for 0 = 0 and 0 = 7r/2, and also for 0 = 7r/4 if b1 = b2. 

d2r(O) 
d02 ( (0))1_2p 4 (-4b b (sin2())P 

b b ( . 0)4 (sinW)P ) r 
(sin20)2 1 2 2P 

+ 1 2P sin 
2P 

b 2 ( 0)2P ( sin20)2 
2b k ( sin20)P ( sin20)2 

- 1 cos 
4 + w2P 2P 4 

b b ( . 0)4 (sin20)2 
b 2( . 0)2P (sinW)2 

- 1 2 sin 2P - 2 sin 
4 

b b ( 0)4 ( sin20)P 
b 1-._ ( 0)4 ( sin20)P + 1 2P COS 

2P 
- 1112 cos 2P 

(r(0))1-2P ( (s�=�)P b1b2(p - 2) - b12(cos0)2P - b22(sin0)2P 

+ 
si� 

bib2(P - 1)((sin0)4 + (cos0)4) ( ( . 20)) p-2 

) 
After some further rearrangements, we find that 

Property 4 r( 0) is differentiable and continuous for 0 E [O, 7r /2]. 

Proof We check the equality of the right- and the left-hand limits of dr(O' + E)/ dO as 

E --+ 0, 0' E [O, 7r /2] 

dr(O) sin2(()' + E)(b2sinP-2(0' + E) - b1cosP-2(0' + E)) 
dO 2(b1cosP(0' + E) + b2sinP(0' + E))(p-l) /p 
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Hence 

and 

lim 
dr(O) I _ sinW'(b-isinP-20' - b1cosP-20' ) 

e-tO+ dO li=li' +e 2( r ( 0') )P-1 

lim 
dr( 0) I _ sinW' (b2sinP-20' - b1 cosP-20' ) 

e-tO- dO li=li' +e 2 ( r ( 0' ) )P-1 

The equality of these limits shows that r( 0) is differentiable for 0 E [O, 7r /2]. The continuity of 

r(O) follows from the Theorems 4 . 7  and 4.9 in [16]. D 

Next we give some properties of the r(O) function by using the above derivatives. These 

properties are related to the shape of r(O) for 0 E [O, 7r /2]. The properties depend on the relative 

values of the parameters b1, b2 and p. There are four possible cases relating these parameters: 

1. 1:::; p < 2, (Property 5) 

2. 1:::; p < 2, (Property 6) 

3. p > 2, (Property 7)  

4. p > 2, (Property 8) 

For all four cases, the stationary point of r(O), (}*, is defined for(} E [0,7r/2] as follows: 

(b ) p�2 
O* = arctan 

b
: , p?:. 1, p #- 2. 

Notice that O* is a decreasing function of p when bi > b2 and an increasing function of p when 

Property 5 If 1 :::; p < 2, and bi < b2, then 

a. r(O) increases for 0 E (0,0*), and decreases for (} E (0*,7r/2), where O* E [7r/4,7r/2]. 
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b. r(O) has two inflection points, 01, (}� where 01 E [O, (}*] and 02 E [O*, ?T/ 2] . 

Proof 

a. First notice that 

dr(O) I = 

dr(O) I = O. d (}  8=0 d (}  8=f 

For (} < (}* we have (} < ardan(bi /b2)1 f(p-2) which implies that b2 (sin())P-2 -

b1 (cosO)P-2 > 0. Thus we obtain dr(O)jd (} > 0, (} E (0, (}*) . Similarly dr(O)jd (} < O, for 

(} E (O*,?T/ 2). furthermore, since(}* is the stationary point we have dr(O*) /d(} = 0. 

Finally we observe that for b1 < b2 and 1 :::; p < 2, tan (}* = (b2 /b1)11(2-p) > 1 which 

implies that (}* E [7r / 4, ?T /2]. 

b. First we consider the inflection point 01. Since 1 s; p < 2 we see that 

. d2 r(O) 
hm d (} 2 = +oo. 

8-to+ 

furthermore, considering Property 4 and part (a) above it follows that 

Hence we can state that :3 (} = 01 3 d2r( 0) / d 02 
= 0, where (} E [O, (}*] , 1 s; p < 2 and b1 < b2• 

Next we consider the second inflection point 02• It is readily known that 

d2 r�) I < 
0. d (} 8=8* 

furthermore, it can easily be verified that 

. d2 r(O) 
hm d (} 2 

= +oo. 
8-t'IT/2 

Thus we conclude that :3 ()  = 02 3 d2r(O)/d02 = 0, where(} E [O*,?T / 2] , 1 s; p < 2 and 
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Property 6 If 1 ::::; p < 2, and bi > b2 , then 

a. r( 0) increases for () E (0, ()*), and decreases for () E (O*, 7r / 2) ,  where ()* E [O, 7r / 4). 

b. r( 0) has two inflection points, Oi, ()� where Oi E (0, ()*] and ()� E [O*, 7r /2) . 

Proof 

a. Similar to Property 5.a we have dr(O)/d() > 0, where() E (0, 0*), dr(O)/d() < 0, for 

() E (0*, 7r/2), and dr(O*)/dO = 0. However, in this case since bi > b2 , we have tan()* = 

(�/bi)i/(2-p) < 1 which implies that ()* E (0, 7r /4). 

b. We can use the same approach that was used in Property 5 to examine the inflection 

points because we still have the case where 1 ::::; p < 2 . On the other hand, we can make use 

of Properties 1 and 3. In this case it is not necessary to use the derivatives, but instead we 

utilize the relations between functions r(O) with 1 ::::; p < 2, bi < b2, and r(O) with 1 ::::; p < 2, 

Property 7 If p > 2, and bi < b2 , then 

a. r( 0) decreases for () E (0, ()*) , and increases for () E ( ()*, 7r / 2), where ()* E (0, 7r / 4]. 

b. r(O) has two inflection points, Oi, ()�where Oi E [0, 0*) and 02 E [0*, 7r/2) . 

Proof 

a. We again make use of the first derivative of r(O). Notice that 

dr(O) I = dr(O) I = O. 
d () 0=0 d () 0= f 

For () < ()* we have () < arctan(bi/b2)if(p-2) which implies that b2 (sinO)P-2 -

bi (cosO)P-2 > 0. Thus we obtain dr(O)/d() > 0, () E (0, 0*). Similarly for() E (0*, 7r/2), 

d r( 0) / d () < 0. Also note that since ()* is the stationary point we have d r( O*) / d () = 0. 
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Finally we observe that for b1 < b2 and p > 2, tan()* = (bif b2)
1/(p-2) > 1 implying that 

()* E [0,7r/4). 

b. First consider the inflection point ffi. It can easily be verified that 

d2 r( 0) I = -b l/p < 0 
d ()2 1 . 

6=0 

Furthermore, it follows from Property 4 and the first part of this property that 

Thus we conclude that 3() = ()-1 3 d2r(O)jd()2 = 0, where() E [ 0, 0*), p > 2 and b1 < �. 

Next we consider the second inflection point 02 which is in the interval [()*, 7r/2). It is 

already known that 

Moreover, it can be shown that 

d2 r(()) I d ()2 6=6* 
> 0. 

d2 r(O) I = -b l/p 
d ()2 2 ' 

6=7r/2 

and therefore the second derivative of r( 0) at () = 7r /2 is negative. Thus we conclude that 

3() = ()� 3 d2r(())jd()2 = 0, where() E [0*,7r/2), p > 2 and b1 < �. D 

Property 8 If p > 2, and b1 > �' then 

a. r(()) decreases for () E (0, ()*) , and increases for () E (O* , 7r/2), where ()* E [7r/4, 7r/2). 

b. r(()) has two inflection points, 01, 02 where B1 E [O, ()* ] and B2 E [O* , 7r/2]. 

Proof 

a. As in Property 7.a we have dr(O)jd() < 0, where () E (0, 0*), dr(O) /d() > 0, for 
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() E (()*, 7r/2), and dr(()*)/d() = 0. However, in this case where bi> b2 , we have t an()* = 

(bi/bz)i/(p-2) > 1 showing that()* E [7r/4,7r/2] . 

b. Similar to Property 6.b, we can use two approaches to examine the inflection points. We 

can employ the same approach that we have used for Property 7 since we still have the case 

where p > 2. Secondly, we can make use of Property 1 and Property 3. In this case instead 

of using the derivatives we utilize the relations between functions r(()) with p > 2, bi < b2 and 

r(()) with p > 2, bi > bz. D 

We have already mentioned that depending on the relative values of the parameters 

bi, b2, and p there are four possible shapes of the r(e) function. In Properties 5 to 8 we have 

identified these shapes. 

Observe that the boundary values of r(()) are 

and r( ()) evaluated at the stationary point ()* is given by 

r(()*) = [bi ( 1 + (bi/b2)2 /(p-2) ) -i/2p + b2 
( (bi/b2)i/(p-2) 

i 2
) P] i/p 

( 1 + (bi /b2)2 /(p-2)) I 

These expressions directly follow from substituting the values of(); ()*, 0, and 7r /2, in r( ()). 

We give the following property without an explicit proof. It follows from the definition 

of r(()) and Corollary 1 in Brimberg and Love [3] . 

Property 9 Let bi and b2 be given paramet er values and p > 1. Then r( ()) is a decreasing 

function of p for any fixed () E (0, 7r /2] .  

Note that, in contrast to the directional bias function of the fp-norm, this property is 

also valid at the boundaries, i.e., () = 0 and () = 7r /2. As a direct consequence of this result we 
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state the following property. 

Property 10 Consider two r (  (}) functions, r1 ( (}), r 2 ( (}) , with a set of giv en b1 and b2 values 

and the paramet er p, such that 1:::; p < 2 for r1 ((}) and p > 2 for r 2 ((}). Then we have 

Observe that the equality above holds only if b1 = 1 in which case r1 (0) = r 2 (0) = 1. 

We note the following limiting cases related to the stationary point ((}*, r ((}*)) which 

will be useful in the subsequent discussion. Particularly, we are interested in the behaviour of 

(}* and r ((}*) when p--+ 2 and also b1 --+ b, b2--+ b or (bi/f>i) --+ 1. We present the limiting cases 

in four groups along with the conditions examined in Properties 5 to 8. 

1. 1 :::; p < 2, b1 < b2 : (Property 5) 

lim (}* = �, lim (}* = arctan ( bb2 ) , 
p-t2- 2 p-tl 1 

2. 1 :::; p < 2, b1 > b2 : 

lim (}* = 0, 
p-t 2-

3. p > 2, b1 < b2 : 

(Property6) 

lim (}* = arctan ( 
b
bi ) , 

p-tl 1 

(Property 7 )  

1. (}* 7r 
Im - -

�-t l-
- 4' 

1. (}* 7r 
Im = -, 

bi -t l+ 
4 

02 

1. (}* l' (}* 7r 1. (}* 7r 

lim r ((}*) = bi11P . 
p-t2-

lim r ( (}*) = b/IP . 
p-t2 -

Im = 0, Im = -4, 
p-t 2+ p-t+oo 

Im = -4, 
�-t1-
b2 

lim r ((}*) = b1 I/p. 
p-t 2+ 

4. p > 2, b1 > b2 : 

1. (}* 7r 
Im - -

p-t2+ - 2 ' 

(Property 8) 

1. (}* 7r 
Im = -4, 

p-t+oo 
1. (}* 7r 
Im = -4, 

};-t l + 
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Finally, valid for all cases we observe that 

The plots of r(O) with different parameter values b1, b2 and pare given in Figure 1. It 

can easily be seen from the plots that the fbp-norm models directional bias in a quite different 

way than the fp-norm (see Figure 1 in [2]). 

The unit ball of the fbp-norm is given in Figure 2. For clarity, we show two sets of unit 

ball plots corresponding to Properties 5 to 8. One immediate observation is that, in contrast 

to the unit ball of the fp-norm (see [12]), the x1- and xraxis intercepts are not equal to 1, but 

are given by b1 -l/p and b2 -l/p, respectively. Consider the case where b1 =/= � and p = 2. Then 

the unit ball actually becomes an ellipse with the equation 

For values of p decreasing from two to one this elliptic shape of the unit ball shrinks and 

ultimately becomes a diamond-shaped ball for p = 1. Conversely for values of p increasing 

from two to infinity the unit ball expands and converges to a unit square. That is, it becomes 

symmetric with respect to orthogonal coordinate axes. In a sense we can say that a relatively 

high degree of rectangularity offsets the directional nonlinearity captured by the parameters b1 

and b2. Note also that since b1 , b2 > 1, all unit balls for p > 1 will be enclosed in this unit 

square. 

3 Implications for Distance Prediction 

The directional bias function, r(O), provides some practical insights which are useful in 

modelling distances. Distance modelling in a region basically involves determining the best 
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Figure 1: r(O) plots 
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parameter values of the distance predicting function, e.g. b1, b2 and p in the .ebp-norm, so 

that a prediction-errors-related goodness-of-fit criterion value is minimized. Computational 

procedures to determine the best parameter values are given for the weighted lp-norm by 

Brimberg and Love [1] and for the .ebp-norm by Uster and Love [19]. In both procedures, for 

the parameter p it is necessary to conduct a search over a safe range of values that includes the 

optimal value of p for the transportation network. Brimberg and Love [2] analyze the directional 

bias function of the lp-norm, rp(O), in detail and conclude that for all practical purposes the 

estimation of actual distances by an lp-norm with p > 2 need never be considered, since the 

same degree of accuracy can be obtained with a value of pin the interval [1, 2] after rotating 

the axes by 45°. 

We define the direction of greatest (least) difficulty Og (Oz) as the value of(} which 

maximizes (minimizes) the r(O) function. Let x and y be two points in R2 separated by a 

straight line segment £ of fixed length /!.2 ( x - y). Then .ebp ( x - y) is maximized if £ is parallel 

to Og and minimized if£ is parallel to 01• It is shown by Brimberg and Love [2] that for the 

/!.p-norm, which is a special form of the l!.bp-norm with b1 = � = 1, (} g = 1f / 4, 01 = 0, 7r /2 

for 1 ::; p < 2 and (} g = 0, 7r /2, 01 = 7r / 4 for p > 2. For the .ebp-norm, inspecting the graph 

of r(O) (Figure 1) and the unit ball (Figure 2), we see that when 1 ::; p < 2, 01 = 0 for 

b1 < b2 and 01 = 7r /2 for b1 > �' whereas the direction of greatest difficulty Og is such that 

Og E (arctan(�/b1), 7r /2) for b1 < b2 and Og E (0, arctan(�/b1)) for b1 > b2. For p > 2 the 

situation is somewhat similar but in the opposite sense. In particular, the direction of least 

difficulty (}1 is such that Bz E (0, 7r / 4) for b1 < b2 and Oz E ( 7r / 4, 7r /2) for b1 > b2 , while the 

direction of greatest difficulty is at Og = 7r/2 for b1 < b2 and Og = 0 for b1 > b2• As a result of 

this non-fixed Og for 1 ::; p < 2 and 01 for p > 2, a phase change in the directions of greatest 
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and least difficulty does not occur in the strict sense that it occurs for the fp-norm at () = 7f / 4. 

In other words, we are not in general guaranteed that ()9 for 1 :::; p < 2 and {}z for p > 2 coincide 

as in the fp-norm where they are both equal to 7r / 4. 

Suppose that we have a transportation network where an .ebp-norm with 1 :::; p < 2 can 

be closely approximated by an .ebq-norm where q > 2 and the coordinate axes are rotated. Then 

while modelling distances in this network we have two minimum criterion values for () E [O, 7f /2], 

one with 1 :::; p < 2 and the other with p > 2. We will call these minimum criterion values 

'bottoms' in the Criterion vs. () graphs. These bottoms correspond to S D 1 and SD 2 in Table 1 

and Figure 4 for the example given at the end of this section. In that example we use the 

'Sum of Squared Deviations' (S D) as the criterion [11]. If the weighted fp-norm is used, then 

the above mentioned close approximation is always possible and therefore the bottoms always 

occur 45° apart with the same minimum criterion values. This is a direct consequence of the 

exact phase change of 45° observed in the rp(()) graph (see Figure 1 in [2]). However for the 

.ebp-norm, this approximation does not necessarily exist for a given transportation network. 

Before proceeding to the discussion on this difference between the weighted fp-norm 

and the .ebp-norm, we define an indicator of directional nonlinearity, 7, at an axis rotation as 

follows: 

where b1 and� are the best parameter values for an axis rotation e. The corresponding 7 values 

for SD 1 and S D 2 are denoted by 71 and 72, respectively. We can employ D..r = 171 - 721 as an 

indicator for the existence of directional nonlinearity in the transportation network. While 

a high value of b,,.7 indicates the existence of directional nonlinearity, a low value presents 
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evidence for uniform nonlinearity. For example, consider a perfectly rectangular transportation 

network, aligned with the conventional coordinate axis , with an irregularity, say a mountain 

range, in the vertical direction as shown in Figure 3. It is clear that both nonlinearity and 

rectangularity are highly pronounced characteristics of the underlying pattern. When fitting 

distances in such a transportation network we expect to see a bottom in the SD vs. (} graph 

at (} = 0 with the parameter p value very close to 1. b1 will be relatively high compared 

to b2 showing the high level of nonlinearity or difficulty of travel in x1 direction. r1 will be 

high indicating the directional nonlinearity captured at this axis rotation. The second bottom 

occurs after 45° of axis rotation and corresponds to a p value much greater than 2. This large 

value of p still captures the rectangularity accurately in the network [2). Since the irregularity 

has the same effect on travel in both directions after the axis rotation, the b1 and lJ.i values 

will be very close. Relatively high values of both b1 and b-i will still indicate the high level 

of nonlinearity. However,the low value of r2, close to 1, will show an existence of uniform 

nonlinearity at this axis rotation . The resulting high value of tJ..r will indicate the existence of 
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a predominant direction of nonlinearity in this particular transportation network. When e = 0, 

the axes are in perfect alignment with both rectangularity and directional nonlinearity inherent 

in the network, and the level of rectangularity, nonlinearity and the existence of directional 

nonlinearity are modelled accurately. After the axis rotation we will have the worst alignment 

with the underlying rectangularity and directional nonlinearity. When 0 = 45°, the distance 

model still captures the level of rectangularity and nonlinearity. However, 72 does not indicate 

the existing directional nonlinearity in the transportation network. As a result, we can not 

expect to obtain the same SD1 and SD2 values for such a network; SD1 will be much lower 

than SD2• The road patterns in Sydney (Table 1), and Pennsylvania, London North and Los 

Angeles [19], are examples for this case. Conversely, if we have uniform nonlinearity over all 

the transportation network, then T will be insensitive to axis rotation so that l:::!,,.7 will be very 

close to zero as in the case of Toronto (Table 1). 

Returning to our discussion on the existence of two bottoms in the SD vs. 0 graph, we 

first consider only the boundaries 0 = 0, 7r /2. It follows from Figure 1 and Property 1 that if 

the criterion (SD) attains its minimum at an axes rotation(), then the same minimum criterion 

value must be obtained at (0+7r/2) where b1 and b2 values are exchanged, p being the same. We 

call this minimum value of the criterion occurring in the Crit erion vs. () graph the first bottom. 

Secondly we consider the cases in which another minimum criterion value, the second bottom, 

is attained in the interval (0, 7r /2). We argue that the existence of such a second bottom in 

the Crit erion vs. 0 graph depends on the existence of directional nonlinearity and the level of 

rectangularity in the transportation network. If the underlying pattern is highly Euclidean, i.e. 

p � 2, then all four limiting cases suggest that a possible second bottom is not likely to occur. 

In this case the 01's approach the boundaries making the phase change of 7r /2 discussed above 
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more likely to occur. The best parameter p value can then occur either in the interval (1, 2) 

or (2, +oo). We can say that in such a case the directional nonlinearity clearly dominates the 

rectangularity in the network. On the other hand, if there exists a less pronounced directional 

nonlinearity, i.e. Ar� 0, or a high rectangularity, i.e. p-+ 1 or p-+ +oo, then ()9 for 1 � p < 2 

and 01 for p > 2 move towards 11" / 4 or equivalently the unit ball actually converges to a shape 

similar to the unit ball of the weighted fp-norm. Hence this case actually resembles the weighted 

fp-norm and a second bottom is likely to occur in the Criterion vs. () graph. This time the 

rectangularity dominates the directional nonlinearity in the network. The second bottom which 

occurs as a result of approximately a 45° phase change on the r(O) graph is about 45° apart 

from the first bottom. 

These observations lead us to the conclusion that while modelling distances by using 

the fbp-norm we may not always be assured that there exists a good fit with a parameter p 

value in the interval (1, 2). Therefore we can not limit our search for the optimal p value of the 

norm to this interval. However, we can still impose an upper bound on the search range of p. 

Suppose that the underlying pattern has a dominant rectangularity. Then we know that there 

exists two sets of best parameter values where one of them has a p value in the interval (1, 2). 

Therefore we have an upper bound of 2 for the search range of p in this case. Now suppose that 

there exists a predominant direction of nonlinearity in the transportation network. Because of 

the possibility of having an optimal parameter p value greater than 2 for such a case, we have 

to consider a larger search range, (1, p) where p > 2 , in distance modelling algorithms. This 

upper bound must be high enough to capture the rectangularity in the transportation network 

so that if the optimal p is above this limit there will be a corresponding optimal fit with a p 

value close to 1. Although the choice of this upper bound for the search range of p is left to the 
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SD1 (First Bottom) SD2 (Second Bottom) D..SD 
REGION (} (} 

p, bi, b2 p, b1, b2 
T1 T2 D..r 

172.34 
Great Britain oo - -

2.0352, 1.1116, 1.3925 
1.2527 
1.0984 1.3550 23.26% 

Sydney go 54° 
1.5571, 1.3675, 1.1521 3.0007, 2.1130, 2.1541 

1.1870 1.0195 0.1675 
5.0557 5.0619 0.123 

Toronto 42° 87° 
5.2215, 4.1261, 4.2427 1.2009, 1.0581, 1.0275 

1.0282 1.0298 0.0016 

Table 1: Example Parameter Values 

analyst's preliminary inspection of the transportation network analysed, our empirical work on 

seventeen geographic regions [19] reveals that use of a search range [1, 4] will always obtain the 

best parameter p value. 

As an example, we comment on the optimum parameter values for three of the above 

mentioned regions, Great Britain, Sydney and Toronto. We are mainly interested in the 

interpretation of the optimal parameter values which are given in Table 1. The SD vs. () graphs 

are given in Figure 4. Great Britain is a case where the optimal p is greater than 2. Since 

p is very close to 2 the road network is highly Euclidean. The value of r1 (1.2527) represents 

the high directional nonlinearity modelled at the axis rotation () = 0. There exists only one 

minimum criterion value occurring in the [O, 7r /2] interval. In Sydney's case we observe two 

bottoms, and there is a considerable gap between them, 23.36%. This is because the region 

is fairly rectangular (p = 1.5571) but at the same time there exists directional nonlinearity. 

However, neither is dominant. The directional nonlinearity in the transportation network is 

evident from the significant value of !::..r (0.1675). The first bottom better represents the existing 
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Figure 4: S D vs. () Plots 
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directional nonlinearity with its higher r1 value and thus provides a lower S D  criterion value 

than the second bottom. For Toronto, there exists a low level of directional nonlinearity with 

r1 = 1.0282 and �T = 0.0016, and the network is highly rectangular. The rectangularity in 

the road pattern clearly dominates the directional nonlinearity. Hence, we see the two bottoms 

45° apart and there is a negligible amount of gap (0.12%) between the criterion values at the 

bottoms. 
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