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, 

ABSTRACT This paper provides a simple and robust method for detecting cheating. Unlike some 

methods, non-cheating behaviour and not cheating behaviour is modelled because this requires the 

fewest assumptions. The main concern is the prevention of false accusations. The model is suitable 

for screening large classes and the results are simple to interpret. Simulation and the Bonferroni 

inequaltty are used to prevent false accusation due to 'data dredging'. The model has received 

considerable application in practice and has been verified through the acfjacent seating method. 

1 Introduction 

Multiple choice examinations are a fact of academic life, as is the suspicion that some 

students cheat in various ways, particularly by copying from each other. The latter method of 

cheating is susceptible to detection by statistical means and many such methods have been 

discovered and re-discovered in the literature. Attitudes towards statistical detection of cheating vary 

from labelling this one of "the success stories of educational measurement" (Frary and Tideman 

(1997) ) to strong reservations (Dwyer and Hecht (1996) ) .  The existence of these methods of 

detecting copying appears to be very little known among most instructors using multiple choice tests 

and examinations. The majority of instructors also take few precautions, such as using multiple 

versions of examinations, against copying. 
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Even when statistical detection methods are known, they are often pointedly ignored. The 

issue of prosecuting cheating creates fear of unpleasant and time-consuming confrontations and legal 

entanglements, arouses ideological po�itions, and raises unwelcome publicity for educational 

institutions. There is also the problem that many who become involved in such cases tend to view 

statistical methods with suspicion. They fear that these methods will lead to accusations of the 

innocent 'just by chance'. Further doubt is caused because the common claim of accused students 

that their multiple choice exam answers are similar because they studied together, seems plausible. 

In fact, these are concerns which must be addressed when statistical detection is used. However, the 

reluctance to deal with individual cases often also leads to the rejection of a much more important 

role of such detection methods, namely the estimation of the extent of the copying problem. This is 

unfortunate because this is one form of academic dishonesty which can readily be controlled. 

Although there were earlier papers, the literature on the statistical detection of copying on 

· Ii>  multiple choice tests began ii;t earnest in the 1970's. Papers with a broad review of the literature 

include Hanson, Harris and Brennan (1987), Frary (1993) and Post (1996). 

The method described here does not attempt to model any particular cheating behaviour. 

Other works in the literature, for example Link and Day (1992), Frary et al. (1977), and Kvam 

(1996) model cheating behavior by making assumptions in the alternative hypothesis; for example, 

who cheated from whom, and how. It is certainly possible to design a more powerful test this way. 

Our test simply looks at the number of matching answers and ignores other suspicious patterns such 

as groupings or sequences in answer matches. One reason for this is to make as few assumptions as 

possible, especially about copying behavior, which seems to take many forms. Another reason is to 

keep the method understandable and easily applicable. The emphasis is on preventing false 
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accusations (controlling Type I error) and not on increasing the number of detections. This number 

has been substantial enough. 

Most of the methods in the literature adopt basically similar models. Probabilities of correct 

and incorrect responses on multiple choice questions are 
'
estimated from actual class responses. An 

important concern is how to approximate the probability that a student will answer correctly on a 

given question. It seems reasonable to assume that this depends on the student's overall score on the 

examination, as well as on the difficulty of the particular question. Some early (Saupe (1960) ) ,  and 

even some fairly recent papers, however, did not incorporate the student's ability into the model. 

One approach to incorporating this consideration is to divide the class into strata so that it can be 

i- assumed that the students in each stratum are of approximately equal ability (Harpp and Hogan 

(1993) , (1996) ) .  An alternative approach is found in the seminal paper by Frary et al. (1977) which 

modelled the probability of a correct answer using the student's overall score as well as the· ratio of 

: � . � 
correct responses on the question. Our paper suggests a modification of the Frary et al. approach. 

,, 
. 
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Our model has a more intuitively appealing form, and exhibits more consistency with respect to 

certain other constraints. 

There are two basic ways of using a statistical detection program. One is to provide evidence 

if there is some prior reason to suspect particular students, for example an invigilator's report on 

suspicious behaviour during an examination. This is a standard hypothesis test. The other use is 

scanning, that is comparing the responses of all pairs of students in an attempt to detect copying for 

which there was no previous evidence, Some authors have missed the point that for the latter case 

the evidence must be mµch stronger; not realizing this may lead to false accusations (Chaffin 

(1979) ) .  One common approach to dealing with this difficulty is the Bonferroni inequality. In 
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addition to incorporating this inequality, we use simulation to demonstrate that the detection cutoffs 

suggested have a considerable safety margin with respect to Type I error (false accusation). 

2 The model 

2.1 Definitions 

Let: 

n = number of students in the class, 

q = number of questions on the exam, 

mjki = the probability of a match between students j and k on question i, 

Mjk = the number of matches (same answers) observed between students j and k, 

Pji = probability of student j being correct on question i, 

.. 'I> ri = proportion of the class that answered correctly on question i, 

Cj = proportion of questions answered correctly by student j, 

Vi = the number of wrong choices on question i, 

Wti = the probability that, given the answer is wrong, wrong choice t is chosen on question i . 

V; 

Note that L Wti= 1, and Wti is assumed, for simplicity, to be the same for all students. It is possible to 
t�I 

have Wti depend on student performance. For example, a diff€:5rent'Wti could be estimated for each 

quartile of Cj. 
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2.2 Calculating mpr;; 

As illustrated in Fig. 1, the probability of a match between students j and k on question i, 

namely mjki, is equal to the probability that they both have the correct answer plus the probability 

' 

that they both have the wrong answer and their wrong answers match: 

V; 
2 mjki = Pji Pki + (1- PjJ (1- Pki) LW1i 

t=l 

Qwstieni�---< 

W3; 
1 - Pia 

W4; 
1 - Pk; 

J = 1, ... ,n-1; k = j+ 1, ... ,n; i = 1, .. q .  

match 

match 

match 

W3; match 

W4; match 

Fig. 1. The probability of a match between students j and k on question i 
' 
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2. 3 Estimating pji 

As discussed in the introduction, it is reasonable to assume that: 

1) Students who have a higher score ?verall are more likely to answer a question correctly than 

those who have a lower score overall. 

2) The probability that a student has an answer right depends on the difficulty of the question; this 

difficulty is reflected in the proportion of the class that answers the question incorrectly. 

These principles can be used to estimate pij as a function of ri and Cj. Our approach is similar to 

that used by Frary et al. (1977), except that their piecewise function is replaced by a smooth one 

suggested by lp distance iso-contours from location theory (see Love, Morris, and Wesolowsky 

(1988), page 258). The Frary et al.model, in diagram form, is given in Fig. 2. It has anomalies at ri = 

0 and ri =1. 

1 
/ ,· 

1-(1-c;)/(1-C) 

0 

.� J I _, I 
I I I I 
I I I 
I I 
I -
1c;f c 
I 
I I I 
I I 
I 
I I 
I I 

1 

Fig. 2: The Frary et al. model of pji 

In our approach, p ii is a function of ri and Cj in the following way: 

.. 
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where: 

q 
LPji 
i=!__=c. ' q j 

This is illustrated in Fig. 3. 

1 

0 

j = l, .. ,n; i = 1, ... q, 

j = 1, ... ,n. 

---------------------

/ / / 

/ / / 
/ / 

/ / / 

/ / / / / / / / / / 
/"'aj = 1 

Fig. 3: Expression 2) 

q 
LPji 

/ 
/ / / 

1 

The parameter aj is found by solving i=!__ = c. by bisection search. The constant aj is 
q j 

2) 

3) 

thus found for each student so that the average of the estimated probabilities of correct responses on 

each question is equal to the proportion of all questions answered correctly by that student. This 

condition is also met by the Frary et al. model. 

' ( 
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Lemma: if Cj = r then p ii= ri . 

Proof 

n n 

LPii 
_ 

Lri 
.i=!__ =c.= r = i=l 

n 1 n 

This is true if p� .. = ri 0 JI 

-
Therefore, the curve in Fig. 2 is a straight line for Cj = r . Note r = c . 

-
If Cj > r , the curve is concave because the student has higher probabilities than average on 

-
each question. If Cj < r then the curve is convex and the student's probabilities are below average. 

However, in addition to 3) there is another condition that would be desirable. This condition requires 

that the estimates for the probabilities of correct responses by students ( p .. ) be consistent with the JI . 

proportion of correct responses on each question by the class: 

n 

LPii j=l --�ri n i = 1, . . ,q. 

It turns out that 4) is closely met by p ii in actual class data. When the Frary et al. model is used 

these equations hold approximately true only for ri near r . Our model, therefore, has more 
' 

'structural consistency' . The example in Fig. 4 gives the difference between the left and right sides 

4) 

of 4) for our model and for the Frary et al. model for a class with 348 students and 50 questions. The 

class average was .67; note that both models meet 4) closely for n near this average. 
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However, for difficult (low ri) and easy (high ri) questions, the Frary et al. model gives 

implied values of ri that are too high and too low respectively. This means that the estimated 

probabilities of correct responses for such questions are respectively too high and too low on the 
. 

average. While some instructors attempt to make all que� tions of the same difficulty, others. mix easy 

and hard questions, and even give different weights to different questions when marking. Our model 

is better suited to cope with this. Also, the fact that real classes comply closely with 4) is an implicit 

confirmation that response probabilities are being modeled in a reasonable manner. 

0.10 

i.:<' 

§ � 0.05 -

§ 
·.g 
·� 0.00 -
-0 

-0.05 -

•• •• 
·-­

Our model 
• 

I I I I I I I I I 

02 o� OA 05 OB o� OB OB 1D 
fi 

Fig. 4: Comparing compliance with 4) 

3 The probability dist�ibution of the number of matches 

In order to determine if Mjk, the number of matches (identically answered questions) for two 

students j and k, is suspiciously high, we need to estimate the probability that that number o_f 
9 
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matches or more could occur. Basically, this is the significance in a one tailed test of the null 

hypothesis that there is no cheating. For each pair of students j and k the probability of a match on 

question i is estimated by: 

V; 

m.jki =pji Pki +q-pjJ(l-pki) :Lw/ J = 1, . . .  , n-1; k = j+ 1, . . .  , n; i = 1, . .  q 5) 
l=l 

For each pair of students j and k we have q Bernoulli trials with different probabilities. This has 

been called the repeated independent trials model (page 31 of Sveshnikov (1968 )). Let the variable 

M ik be the number of matches between students j and k. It has the following probability generating 

t function: 

where: 

6 )  

q 
G(u) = IT (mjkiu + (1-mjki)) 

i=l 

This probability distribution is sometimes known as the compound binomial. Equation 6 )  is 

not a practical method for computing the estimated probability distribution of M jk . This can be 

better done by a recursive method which is sometimes used in the literature. It is given in the 

appendix for completeness. However, this recursion, although· easy to describe, is computationally 

slow. It should be recall�d that we.wish to look at all possible pairs of students and this number is 

n(n-1 )/2. Slowness in computations for each pair is therefore inconvenient in large classes. It is 
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faster to compute these probabilities by the normal approximation, which is the usual approach. Our 

algorithm uses both methods without sacrificing accuracy. 

4 Normal approximation to the distribution of Mjk 

Since the generation of matches between two students can be viewed as q Bernoulli 

processes operating in parallel, the mean of the number of matches is simply the sum of the means of 

these processes, and the variance is the sum of the individual variances. 

Therefore, the estimated mean of the number of matches between students j and k is: 

q � 

µjk = L(Pji Pki +(1-pjJ(l-pk) L w�) J = 1, . . .  , n-1; k= j+l, . . .  ,n, 
i=l t=l 

and the estimated variance of the number of matches is: 

where: 

q 
- a-fk =I (hjki)<1- hjki) J = 1, . . .  , n-1; k = j+ 1, . . .  , n, 

i=l 

Vi 

hjki = Pji Pki + (1-fJji )(1-fJki) :L w�. 
t=l 

The approximate Z value (standardized normal variate) is: 

z = Mjk -1/2- P,jk jk A CTjk 
J = 1, . . .  , n-1; k = j+ 1, . . .  , n. 

7) 

8) 

9) 

11 

,, 



'� 
. 

• 

------------------------------11 

5 The significance of the number of matches 

Let y(Mjk) = P(M ik � M ik ) , which can be obtained from equation 6) by summing terms. 

This is the significance in testing the hypothesis that there is no copying, against the alternative that ' 

there is copying. Let �(Mjk) be an approximation for y(Mjk) that is obtained by substituting
· m iki for .. 

m iki in G( u). Let cp(Zjk) = P( Z � Z ik ) . cp(Zjk) is a less accurate approximation for the significance of 

the number of matches between students j and k, but is faster to compute than A.(Mjk). 

An important difficulty is missed in many articles in the literature. The number of matches 

that is suspicious depends on whether the pair is question was suspected prior to the running the 

program or whether the pair was identified entirely on the basis of a high Mjk or Zjk· Intuitively, if a 

student pair is suspected prior to the running of the program (say, for behaviour during the test), then 

a Zjk of 3 or more is strong evidence because this is an 'a priori' hypothesis test. However, it should 

be noted that it is almost certain that there will be some Zjk values over 3 in a class of, say, 400 even 

when there is no cheating whatsoever. This occurs because in a class of 400 there will be many 

(79,800 to be exact) pairs scrutinized. Essentially this means that pairs that have not been pre-

selected in some reasonable way must be judged by a higher standard of evidence. This can be 

accomplished as follows. 

There are N = n 2 - l pairs being examined. Suppose that we choose a critical value Zc, for 
2 

Zjk. P(at least one Zjk � Zc) � N cp(Zjk) = <I>(Zjk) by the well known Bonferroni inequality. 

Similarly, we can define A( Mjk ) "'." N A.(Mjk) . 

. ' 
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Suppose that we have the rule that students will be flagged if A(Mjk) :::;; n or, using the normal 

approximation, if <I>(Zjk):::;; n. Then Q will be the upper limit (approximately derived) on the 

probability that there will one or more
, 
pairs falsely accused in a class. 

Some comments should be made about N. This program was developed in response· to 
.. 

problems on centrally administered examinations. Instructors were not routinely given seating plans; 

these were available, after the exam was written, on request only. The program therefore 

conservatively makes no use of the seating plans. It is interesting to look into this further. 

Seating of classes was done in columns, with students from different classes on both sides of 

the column. For simplicity assume that all students are seated in a single continuous column. To be 

charged with copying, students flagged by the program must be found to be seated adjacently (one 

behind the other). If the program randomly selects a pair, then the probability that they will be found 

seated together is 2/n. The bound on the significance of this joint event is therefore (2/n)(n (n-

Suppose now that we obtain the seating arrangement for the column prior to running the 

program and only compare the (n-1) pairs that are seated adjacently. Note that the program still 

requires response information for the entire class to calculate its estimates. In this case, however, N 

= n-1, and the bound on the significance of the number of matches for each pair is (n-1) A.{Mjk), 

which is exactly the same as before. However, examining the (n2 - n)/2 - (n-1) = (n-l)(n-2)/2 pairs, 

who presumably could not have cheated, is a very powerful check on the validity of the model, as 

will be discussed subsequently. 

For more complex seating arrangements, the analysis can be difficult. Consider, however, a 

rectangular array withf rows and g columns. If adjacent seating means horizontal, vertical, or 

diagonal adjacency, then there are (4fg-3(j+g) +2) adjacent pairs. For example, a 20x20 array of 

13 
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400 students would have 1482 adjacent pairs out of 79,800 possible pairs. A square array will have 

more adjacent pairs than any rectangular array of the same size. 

6 Simulation experiments 

There are two important questions regarding the probability of 'false accusations' as 

estimated in the preceding section. The first question is what will be the effect of the fact that 

A.(Mjk), cp(Zjk), A(Mjk), and <I>(Zjk) use not actual probabilities but probabilities which are estimated 

from the class data? The second is that if the Bonferroni bound is conservative, what are the actual 

probabilities of false accusations that will occur for a pre-set level of O.? Both of these questions are 

very difficult to answer analytically but can be answered by simulation. 

The simulation procedure is very simple and is based on the question answering model in 

Figure 1. The estimated probabilities in Figure 1 result in a series of simple Bernoulli simulations to 

create a set of simulated responses for each student on each question. The simulated class is then 

subjected to the algorithm as if it were an actual class. Thus an actual class provides the 'true' 

probabilities and generates its own series of simulated classes. 

Simulations were generated using four real classes A, B, C and D. The subject matter was 

economics, statistics, information systems, and mathematics. Simulations were done using the 

normal approximation to calculate 0., instead of the more accurate compound binomial distribution. 

This was done simply to reduce computation time. The classes had up to 412 students and 50 

questions. To reduce computation time only part of the classes w�s used. Some methods in the 

literature would consider 20 students and 20 questions to be too small a data set. Tills small size was 

included to show that it does not lead to false accusations. 

14 
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Table 1: Simulation of the safety factor 

Class No. of No. of No. of n using Proportion Safety 
simulated students questions normal of classes factor 
classes approximation with false 

accusations 
A 10000 20 20 1.0 .1197 8.4 
A 10000 20 20 .05 .0034 14.7 
A 50000 20 20 .01 .00044 22.7 
A 10000 100 30 1.0 .1691 5.9 
A 10000 100 30 .05 .0063 7.9 
A 100000 100 30 .01 .00152 6.6 
B 10000 20 20 1.0 .0661 15.1 
B 10000 20 20 .05 .0012 41.7 
B 10000 100 30 1.0 .073 13.7 
B 10000 100 30 .05 .0017 29.4 
c 10000 20 20 1.0 .0603. 16.6 
c 10000 20 20 .05 .0008 62.5 
c 10000 100 30 1.0 .0285 35.1 
c 10000 100 30 .05 .0006 83.3 
D 10000 20 20 1.0 .0407 24.6 
D 10000 20 20 .05 .0009 55.6 
D 10000 100 30 1.0 .0759 13.2 
D 10000 100 30 .05 .0028 17.9 

As is seen in all of the simulations, the actual proportion of false positives was well below 

the permitted level n. This means there is a safety factor created 6y the conservative nature of the 

, .. 

Bonferroni inequality which more than compensates for the fact that the model probabilities were 

estimated from the data. This "safety factor" is given in Table 1 as 0. divided by the proportion of 

false accusations in the simulation. Each row of the table is a different set of simulated classes. Note 

I ( 
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that for any data set, the safety factor tends to increase as .Q decreases. Note also that classes B, C, 

and D have mainly similar results but class A has generally lower safety factors. Class A has a 

higher average standard deviation of Z' s in the simulations than the other classes. One reason may 
' � ,. . 

be that the average grade in that exam was just over 50o/o, while the other exams had average grades 

over 60%. 

One could use simulation on every class to obtain more accurate estimates of Type I error; 

the only reason for not doing this is that it is time consuming. 

7 Is the model appropriate? 

The most common plea of students accused of copying (by far) is that "our answers 

are similar because we studied together". This claim may seem to conveniently explain why the 

students were found to be in adjacent seating: friends want to be together. The model assumes 

independence in student responses and hence this apparently plausible claim has to be considered. 

However, it does not take much study of the diagram in Figure I to see that other assumptions could 

also be questioned, either in general, or in the particular structure of certain tests. 

Let us consider the "studied together" claim in particular. First, we must recognise that 

programs such as this one evaluate a very large number of pairs of students. Note that a class of I 00 

will have 4950 pairs (not all independent) and recall that a class of 400 will have 79,800 pairs. This 

particular program has scrutinized some 40 or more classes using a setting of .Q = I. One case was 

reported, at a significance close to the cutoff, �her� the students were found to have written the 

exam in different rooms. All of the rest of the student pairs flagged were found to be in adjacent 

seating. The proportion of classes with flagged non-adjacent students seems entirely consistent with 

what would be predicted for false accusations by the simulations of the preceding section. 

' ( 
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As discussed earlier, there are generally very limited opportunities for adjacent seating, and 

a large number of students work together. The "studied together" effect, or other model 

imperfections, should have produced large numbers of st�ongly similar pairs who were not in 

adjacent seating. It seems quite implausible that model violations are only restricted to adjacently 

seated pairs. It thus seems implausible that the 'working together' effect is strong enough to cause 

false accusations except perhaps in tests of very unusual design. 

This experience is augmented by the fact that it has often been noted in the literature that 

such programs are very consistent in what they consider to be strong similar ity; differences are 

� usually in marginal cases. Our computational experience with the Harpp and Hogan (1996) method 

bears this out. We can therefore add their experience (David Harpp, personal communication, March 

25, 1998), which includes hundreds of classes in many disciplines, to ours. This experience is that 

strong similarity is always accompanied by adjacent seating, and that when precautions such as 

multiple versions and randomized seating are taken, such strong similarities disappear. 

This indicates that the model is very robust with respect to violations of its assumptions. It 

also indicates that the "studied together" defence is plausible only on the surface. One should not, of 

course, use the program with no thought as to whether the examination or test was constructed in a 

manner compatible with the model. 

8 Operation of the algorithm 

The algorithm e�amines ail N possible pairings of students and selects those pairs that have a 

similarity above the given threshold: that is A(Mjk) s 0, or alternatively <P(Zjk) s 0. Because the 

normal approximation is faster to compute, it is used for the bulk of the sorting. It is only for pairs 

17 
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close to the <I>(Zjk) :::;; Q criterion that the switch is made to the A(Mjk) :::;; Q criterion. Generally, the 

normal approximation is accurate and on the conservative side. It is important to note that the 

accused pairs are always judged on the more accurate criterion. 

Table 1 gives the output of a 'run' on a class 'of 348 students who were given 50 multiple 

choice questions. The first 20 questions were true-false, and the remainder 5 choice. The dots mean 

that answers were correct, the numbers indicate which incorrect answers were chosen. For example 

'2' would mean that choice 'b' was made and that this choice was incorrect. 

The default level of Q was set at 1. 0. Because the Bonferroni inequality is conservative this 

actually means that this level would result in a 'false accusation' very roughly once in 10 or 20 

classes. This is borne out by experience and simulation experiments. This threshold results in a very 

conservative estimate of the level of copying in the class but would not, of course, be normally used 

for charging students unless there is additional evidence. 

A few comments on the interpretation of the output in Table 2 are appropriate. BVP _p = 

A.(Mjk) = 6.97 10-12 for students number 53 and 195. The 'BVP' stands for Bernoulli with variable 

probabilities. Zb = 6.76 is not from the normal approximation: it was derived by solving P(Z:::::: Z b ) 

= 6.97 10-12 in a standardized normal distribution. This equivalent Z is provided to give a well-

known index for intuitive comparison. BBVP _p= 4.21E-07 = A(Mjk) and this means that the number 

of false accusations would be fewer than 4. 21 in 10 million classes on the average. As mentioned 

previously, the actual number would be much less. This degree of similarity is not at all unusual. The 
< 

output H-Hstat = 6.00 gives the Harpp-Hogan similarity statistic (Harpp and Hogan (1996)). It 

• 
should be noted that when the seating plan was checked after this computer run, all six pairs were 

found to be in adjacent seating. 
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Table 2: Example of output 

'course' in course.txt 
No. of students ? 

? xxx I I #stud. = 348 #ques= 50 
No. of questions ? 

Generate .nam file? 
Input y to include pre-specified suspect pairs? 
Start checking at question ? 
The symbol for a correct answer is (default is .) ? 
Maximum z value (default= 8) ? 
zincrement (.1->.5, �efault= .1) ? 
Bonferroni significance (default =l ) ? 
Z Bonferroni= 4.150725 

** pair: 14 80 ************ H-Hstat = 1.44 ************* 

Zb = 4.26 BVP_p= 1.03E-05 BBVP_p= 6.21E-Ol m= 41 I 50 (mu,s)=( 27.11 3.27) 
.22.1 ..... .. 21.2.1.2 .42 ...... 5 .3 .. 2 .... l .3 .. 45.l.l 
.22.1.21 .. ...... 21.2 ......... 5 .3 .. 2 .... l .2 .. 45.1.1 
** pair: 48 188 ************ H-Hstat = 2.13 ************* 

Zb = 5.31 BVP_p= 5.51E-08 BBVP_p= 3.32E-03 m= 42 I 50 (mu,s)=( 24.42 3.33) 
.2.2 ... 11. 1.21..211. .. 32 .. 2.3 . .  3.5.114.5 ..... 2.1.2 
.2 .2 ... 11. 1.21. .211. .. 322 .2.3 . .  3 ... 4 .. 35 ..... 2 ... 1 
** pair: 49 126 ************ H-Hstat = 1�86 ************* 

Zb = 4.75 BVP_p= 1.04E-06 BBVP_p= 6.25E-02 m= 43 I 50 (mu,s)=( 27.91 3.24) 
.2 .... 211 . ... 122 .... ...... 1 ... ... 3.12.15 .5 ... 2.1 . . 
. 2 ... 12 .1. .2.122 .... .... 1.2 ... .. 33 .12 .. 5 .5 ... 2 .1.. 
** pair: 53 195 ************ H-Hstat = 6.00 ************* 

Zb = 6.76 BVP_p= 6.97E-12 BBVP_p= 4.21E-07 m= 47 I 50 (mu,s)=( 25.96 3.30) 
.2 .... 211. 1.2 .... 1. . ... 21.2 ... ... 3412 .15 .354 .2.4 .. 
. 2 .... 211. 1.2 ....... .... 1.2 ... ... 3412.15 .3.4.2.4 .. 
** pair: 82 241 ************ H-Hstat = 1.88 ************* 

Zb = 5.04 BVP_p= 2.58E-07 BBVP_p= 1.56E-02 m= 42 I 50 (mu,s)=( 25.54 3.31) 
.2 ... 1 .. 1. l.2 ... 2 ... .. 1.5.24 .. . 3.3.21544 .2 .. 31.54 . 
. 2 ........ 1.2 .. 2 .... .. 1 ... 1 ... . 3.3.21544 .2 .. 31.44. 
** pair: 173 205 ************ H-Hstat = 2.00 ************* 

Zb = 4.65 BVP_p= 1.67E-06 BBVP_p= 1.0lE-01 m= 44 I 50 (mu,s)=( 29.66 3.17) 
........ 1 . .  2 ... 2.1 .. . 41 ...... 5 .332 .. 5 ... ..... 1.2.1 
... 2 ... 111 .2 .. 2 ..... . 41 ...... 5 .332 .. 5 ... ..... 1.2.l 

347 mean= -0.0809 stdev= 0.8528 

The program has several features that are useful. It is possible, for example, to run this 

program in two modes: one which identifies the selected pairs and one which does not. It is possible, 
' 

therefore, to do anonymous studies. The program can also force the inclusion of pairs'that are not 

included by the choic'e of n. This is done, for example, when examination' invigilators report 

susp1c1ous behaviour by a pair. The program also permits the exclusion of que�tions from the 

beginning and the end. This permits identification of exam versions and exclusion of some 
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questions. The program also provides output and graphics for checking the internal assumptions of 

the model. 

9 Some comments on application 
.. 

There are two basic uses for the program: to support charges of academic dishonesty, and to 

investigate the security of examination writing ·conditions. Obviously, the first use is more 

controversial because it raises the fear that students may be unjustly accused, either by chance, or 

because the model assumptions are faulty. These are valid concerns but should be viewed 

objectively. 

The claim that students could be accused just by chance (even though the probability may be 

somewhat infinitesimal) is true. There is a tendency by some to divide evidence into the categories 

'real' and 'statistical'. The testimony of witnesses, for example, would be in the real category. One 

could counter by saying that all forms of evidence can lead to unfair accusations and hence this 

distinction is an illusion; there is ample evidence for this in our legal systems. Such arguments, 

however, enter into the murky domain of legal and philosophical issues, and are not within the scope 

of this paper. 

Our model assumptions are violated in real applications (classes) to varying degrees. This 

would be true of any model and is true of virtually every statistical technique. However, there is a 

ver y large body of indirect evidence that unless (possibly) these violations are extreme, they do not 

lead to false accusations. 

Nevertheless, th,ere is one rather compelling, if indirect, reason why such pFograms should 

not be used to support charges against students except in unusual circumstances. The reason is that 

this type of cheating is almost entirely preventable by measures such as randomized seating and 
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multiple versions of exams. When academic dishonesty charges are made, this is an admission that 

effective, if unfortunately sometimes expensive, security measures were not taken .. 

It is difficult to think of a noble reason not to use a program such as this to scan classes to 
I 

determine ifthere is a cheating problem. While one miglit not wish to make individual accusations 
I 

for various reasons, it is difficult to argue that the method (or others like it) does not provide a 

conservative estimate of the extent of cheating. Scanning can even be done anonymously by a third 

party without revealing the identities of the students 'flagged'. 

It is important to note that the degree of copying revealed by the program will be an 

underestimate. Although the method does use the information from correct answers and not just the 

� wrong answers (as some do), detection is more effective when there is a larger proportion of wrong 

answers. In the extreme, when a student copies another's 100% paper completely, this is not 

detectable by any purely statistical. means. 

The Bonferroni cutoffs used are very conservative, and although simulation could obtain 

more accurate values, this is very time consuming. Finally, this method does not hypothesize any 

particular patterns of cheating, as some methods do, and hence does not have an advantage in 

detecting them. 
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Appendix 

Consider n independent Bernoulli processes. The probability of success in experiment i is mi for i = 

1, .. . n. What is the probability ofx successes? 
' 

' 

Let f(q,j) be the probability ofj successes in the first q tri�ls. We wish to find f(n,x). 
.. 

f(q, j) = f(q-1, j-1) ffiq + f(q-1, j) (1- mq). 

The probability of j successes in the first
.
q trials is equal to the probability ofj-1 successes in the 

first q-1 trials and success in trial q, plus the probability of j successes in the first q-1 trials, and no 

success in trial q . 

To apply this recursion one notes that f(l, 1) = m1, f(l,O) = 1 - m1 and that f(q, -1) = 0 for all q. 
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