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Abstract 

A new method is devised to calculate the confidence intervals for estimated distances. Using 

this method, the confidence intervals for estimated actual distances are developed for the 

fp-norm and .ebp-norm. Our empirical study in the seventeen geographical regions indicates 

that better confidence intervals for the unknown actual distances are obtained with the 

.ebp-norm than the £p-norm. 
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1 Introduction 

Distance functions are utilized in several applications such as distribution and transportation 

planning (Eilon et al. ,  1971; Westwood, 1977), accµracy validatio� of actual transportation 

network distance data (Ginsburgh and Hansen, 1974), response-time models for emergency -

vehicles (Kolesar et al. ,  1975), construction of Voronoi Diagrams of a region (Klein, 1988), 

location-allocation problems (Love et al. ,  1988), and Geographic Information Systems (Star 

and Estes, 1990). The software packages Roadnet (Roadnet-Technologies, 1993) and 

TruckStops2 (MicroAnalytics, 1993) utilize distance predicting functions as a substitute 

to forming large files of distance data. Distance functions appear within the context of 

larger models such as facilities location and location-allocation problems (Love et al. ,  1988). 

·t Distance functions are also used in cluster analysis. Murray and Estivill-Castro (1998) 

examine the effects of the distance function choice on forming cluster regions. Additionally, 

norm-based distance functions can be employed for generating random problem instances 

in discrete location or transportation models since they satisfy the triangle inequality by 

', '!< nature. 

The Weighted Sum of Order p, denoted by .ebp(x), can be utilized to estimate distances 

in a transportation network. The .ebp(x) distance between any two points u = (u1,u2) and 

v = (v1,v2) in 2-dimensional Euclidean plane is given by 

(1) 

Love and Morris (1972) introduce the concept of axis rotation in their study on 

the road network in Milwaukee, Wisconsin. Brimberg, Love and Walker (1995) investigate 

this concept in detail and conclude that a reference axis rotation chosen to align with 
< 

the underlying pattern of the transportation network improves the accuracy of distance 

predictions. Huriot and Perreur (1973) also discuss axis rotation and apply•it in a study of 

the nine largest Swiss cities. Incorporating the axis rotation angle () into the .ebp-norm we 

have 

(2) 
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where 

u' = (u'i,u'2), v' = (v'i,v'2), () E [0,7r/2], and ( u1: u< ) = ( u1 u2 ) ( c�s () - sin() ) 
. V1 �2 . V1 V2 > sm () cos () ' 

(3) 

The funct!on fbp(x) is a norm and is thus a convex function in x (Uster and Love, 

1998). The fbp-norm is a generalization of the well-known weighted fp-norm. If for a fixed 

p, the equality b11IP = b21IP = k holds, then one obtains the weighted fp-norm where k 

represents the weight. Furthermore, if b1 = b2 = 1 , the rectangular and the Euclidean 

distances can be obtained from the fbp-norm by setting p = 1 and p = 2, respectively. 

With the fbp-norm one introduces unequal weights or non-symmetric distance 

irregularities along the axis directions. An empirical work on seventeen geographic regions 

·� showed that the fbp-norm is better than the weighted fp-norm in terms of the accuracy of 

distance estimations (Uster and Love, 1998). Particularly in geographical regions with a 

predominant direction of nonlinearity (e.g. a mountain range), the gain in the accuracy 

of distance estimations with the fbp-norm is more pronounced. Furthermore, although 

, ·. ,. the fbp-norm is a three parameter (b1, b2 and p) distance function as opposed to a two 

parameter weighted fp-norm (k and p), the convexity of the goodness-of-fit criterion function 

in parameters b1 and b2 provides a close performance in speed for distance fitting algorithms 

of these norms. 

Besides its higher accuracy in predicting distances in a geographical region, the 

weighted sum of order p also seems well-suited to some specific applications. Foulds and 

Hamacher (1990) presents an example in the field of robotics when the movement is restricted 

to two directions, generated by one motor for each direction. In such an environment and 

under the assumption that the motors are not allowed to work simultaneously and their 
, ; 

constant speeds are equal, the £1-norm can effectively be used to determine the minimal 

time necessary to move from one position in the plane to another. If the assumption of 

equal speeds of motors is relaxed, then the fbp-norm with p = 1, and b1, � proportional to 

the speeds in the corresponding directions, is a suitable function to determine the required 

minimal travel time. Similar examples are harbor cranes used to move containers around 
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and plotters used to plot engineering drawings. 

Love and Dowling (1985) examine the effect of "doubling back" by fitting the weighted 

fp-norm to a sample of layout patterns which are basically rectangular. They find that while 

the best value of p stays close to 1 (representing tlie rectangularity of the layout), �he extra 

travel distance caused by doubling back is captured by the parameter k .  With the weighted 

fp-norm it is assumed that the effect of doubling back is equal in both horizontal and vertical 

travel directions. This may not be the case in some types of layouts with dominant directions 

of travel, such as parallel bays along either horizontal or vertical axis. Suppose that the bays 

are horizontal and the distance between points u = ( ui, u2) and v = (Vi, v2), which are 

located in different bays, is to be measured. Then, because of the doubling back effect, we 

expect to travel more than lui - Vi I in the horizontal direction. In such a layout, bi will 

be greater than b2 in the .ebp distance. In other words, .ebp-norm will capture the directional 

nonlinearity and provide more accurate representation of the underlying pattern than the 

rectangular distances. 

The optimum parameter values of the distance function are determined so that a 

criterion value is minimized. The criterion also provides the means to measure the accuracy of 

a distance function. The criterion usually measures the aggregate amount of error generated 

by a particular distance function with known parameter values. Three criteria have been 

used to model the parameters of a distance function to a set of data representing a region 

of interest: Sum of Absolute Deviations (AD); Sum of Squared Deviations (SD); Sum of 

Normalized Absolute Deviations (N AD). Let d(B.i, ai) be the predicted distance between 

points Bi and ai. A(B.i, ai) is the actual distance between Bi and aj, and n is the number 

of points in the data set. Then the mathematical expressions for the goodness-of-fit criteria 

are as follows: 

AD 

SD 

n-i n 
L L ld(B.i,ai) - A(B.i ,ai)I i=i i=i+i 
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The AD and SD criteria were int�oduced by Love and Morris (1972), and the N AD criterion 

by Love and Walker (1991). Several applications c;f the criteria are found in Berens (1988); 

Berens and Korling (1985); Brimberg, Dowling and Love (1996); Brimberg, Love and 

Walker (1995); Love and Morris (1972; 1979); Love, Walker and Tiku (1995); and Ward 

and Wendell (1980; 1985). 

Love and Uster (1996) have conducted a detailed study on the statistical comparison of 

these criteria by using the weighted fp-norm with axis rotation. The comparisons were carried 

out using the estimation error distributions for seventeen geographical regions. The authors 

considered two estimation error related random variables, e(�,ai) and le(�,ai)l/A(�,aj), 

where e(�, ai) = A(�, ai) - kfp(�, aj), to statistically compare the criteria in several aspects 

such as the homoscedasticity and the expected value of e(�,aj), the homoscedasticity of 

le(�,ai)l/A(�,aj), and the accuracy in predicting long and short distances. The only 

statistically significant difference found is that, for the SD criterion, the e(�, ai) have an 

expected value of zero without any exceptions in all the regions. Therefore, in this study we 

will consider the distance estimation errors generated by the SD criterion. Uster and Love 

(1998) used the SD criterion to model the fbp distances in seventeen geographical regions 

and found that fbp-norm generates lower SD values and thus better distance estimations. 

The parameter values of the fbp distances are reported in Table 1 .  

A confidence interval is calculated by using the estimated distance and it provides 

the analyst a range in which the actual distance lies in with a predetermined level of 

expectation. Furthermore, the range provides insight about the accuracy of the estimation 

and the performance of the distance function employed� 

· Another application of confidence intervals for road distance is found rn the 

verification of road distance data. Ginsburgh and Hansen (1974) describe an ad hoe range 

into which the estimated distance must fall to be assumed acceptable. However, the authors 

do not provide any analytical justification for the range. 
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No. Region () b1 b2 p SD 
1 Australia 86 1.1945 1 .2987 1 .7996 11 17.89 
2 BC Province 66 1 .3415 1 .4859 1 .5635 1015.41 
3 Canada 45 1 .9325 1 .3500 2.2317  497.01 
4 France 76 1 .1529, 1 .0819 1 .8576 78.87 

. 

5 Great··Britain 0 1 . 1 1 16 1 .3925 2.0352 172.34 
{) NY State 86 1 . 1303 1.1285 1 .5841 159.80 
7 Pennsylvania 44 1 .2250 1.4812 2.3892 95. 11 
8 United States 0 1 . 1358 1 . 1748 1 .6956 336.54 
9 Brussels 47 1 .0696 1 . 1 177 1 .7969 3.47 

10 London Central 26 1 .2366 1 .6162 2 .2708 15.01 
1 1  London North 14 1 .0930 1 .2953 1 .7901 1 .36 
12 Los Angeles 0 1 . 1011 1 .3799 1 .7750 13.18 
13 NY City 6 1 . 1673 1 .2439 1 .7539 13.29 
14 Paris 40 1.3634 1 .1440 2.2734 5.84 
15  Sydney 8 1 .3675 1 . 1521 1 .5571 1 . 10 
16 Tokyo 57 1 . 1988 1 . 1670 1 .8260 2.28 
17 Toronto 87 1 .0581 1 .0275 1 .2009 5.06 

Table 1: Best Parameter Values of the .ebp-norm 

In the literature there are two papers which discuss the statistical properties of errors 

and confidence intervals for estimated distances. Love, Walker and Tiku (1995) use the 

weighted .ep-norm (k.ep) as the distance predicting function and the sum of Normalized 

Deviations (NAD) as the goodness-of-fit criterion. The authors investigate two types of 

prediction errors: e(B.i, ai) and e(B.i, ai)/A(Bi, aj), where e(Bi, ai) = A(Bi, ai) - k.ep(Bi, ai), 

in seventeen geographical regions (nine large geographical regions and eight urban centers). 

The sample point coordinates and the actual distance data for these seventeen geographical 

regions are given by Love and Walker (1993) . By inspecting the sample Pearson coefficients 

..;b;_ (skewness) and � (kurtosis) they conclude that both types of error distributions are non

normal. On the other hand, while the scatter of points for tlie e(B.i,ai) versus A(Bi,ai) plots 

for the regions was contained in a diverging funnel that was symmetric about zero, the scatter 
• 

of points for the e(Bi, ai)/A(B.i, ai) versus A(B.i, ai) plots was contained within a narrow band 

which was symmetric about zero. This observation suggested that the e(B.i, aj) distributions 

were heteroscedastic but the e(B.i, ai)/A(B.i, ai) distributions were homoscedastic. Using 
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these empirical results it was assumed that µe = 0 and <r; = <r2 A(8i, aj)2 where µe 
is the mean of e(8i, aj) distribution, and <r; and <r2 are the variances of e(8i, aj) and 

e(8i, ai)/A(8i, aj) distributions, respectively. Based on these results, authors devise the 

following confidence interval for an unknown distance A(8i, aj): c1 < A(8i, ai) < c2, where 

c1 = (z1s + 1) klp(8i, aj), c2 = (z2s + 1) kfp(8i, aj)· The values of z1 and z2 are found by 

using the sample Pearson coefficients of e(8i, aj) distribution from the tables provided by 

Johnson, Nixon and Amos (1963) , and s2 is the sample unbiased estimator of <r2. 

In another study, Brimberg, Dowling and Love (1994)use the weighted one-two 

norm as the distance predicting function. The weighted one-two norm is given by the 

expression h(u,v;/30,/31) = /30£2(u',v') + /31f2(u',v'), where u, v E lR2, /30, /31 2.:: 0 

and u', v' are as defined in (3) . Authors apply the weighted one-two norm model by 

using the regression R-square value as the goodness-of-fit criterion in regions Toronto 

and Ontario. They also consider two types of errors: e(8i, aj) and e(8i, ai)/£2(8.i, aj), 

where e(8i, aj) = A(8i, aj) - h(8i, aj; /30, /31). Both error distributions are assumed to 

have a mean zero. To test the normality and homoscedasticity of these distributions 

authors use the normal probability plots and non-parametric Smirnov test, respectively. 

It is found that e(8i, aj) distributions are non-normal and heteroscedastic in both regions. 

Additionally, e( 8i, aj) / £2 ( 8i, aj) distributions are heteroscedastic in both regions and from a 

normal population in Toronto, but from a non-normal population in Ontario.Next, authors 

analyze the outliers in e(8i,ai)/£2(8.i,aj) distributions and find eight unusual observations 

for Ontario and five unusual observations for Toronto. After excluding the outliers in 

Ontario and fitting the distance function again, e(B.i, aj) distribution stays non-normal 

and heteroscedastic but e(B.i, ai)/£2(8.i, aj) distribution becomes normal and homoscedastic. 

For Toronto, excluding only two outliers provides norn;tality and homoscedas�icity for 

the e(B.i,ai)/£2(8.i,ai) distribution. Based on these results, the confidence intervals are 

devised by using e(B.i,ai)/£2(8.i,aj) variable where outliers are excluded. 
'
The confidence 

interval is c1 < A(B.i, aj) < C2, where c1 = h(B.i, aj, fJo, fJ1) - z s l2(8i, aj), c2 = 
h(B.i, aj, /30, /31) + z s £2(8.i, aj)· The value of =t=z is found from normal probability tables 
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by using e(8i,aj)/£2(8i,aj) distribution. 

The rest of this paper is organized as follows: in Section 2, we investigate the 

statistical properties of the estimation errors generated by the fbp-norm and the SD criterion 

in the seventeen geographical regions using the'.tlata given by Love and Walke� (1993). 

Then, utilizing these properties we develop an error related random variable which is both 

homoscedastic and normally distributed at the 5% significance level. Since excluding outliers 

from a region's sample would weaken the sample's representation of the whole region we also 

aim to obtain this new random variable without excluding the outliers. In Section 3 ,  we 

develop confidence intervals for unknown actual distances by using the new random variable. 

In Section 4 we give some example confidence interval calculations, and compare the the 

confidence interval calculation method developed in Section 3 with the method provided 

by Love, Walker and Tiku (1995). In Section 5, we provide a comparison of the distance 

predicting accuracy of the weighted fp-norm and lbp-norm based on their confidence intervals. 

2 Statistical Properties of Estimation Errors 

We define the relationship between the fitted distance and the actual distance as 

(4) 

where A(xi, Xj) is the actual distance between any two points Xi and Xj, ebp(xi, Xj) is 

the predicted distance, and c(xi, Xj) is the related prediction error term. From a random 

sample of points taken from a geographical region, the empirical distance predicting function 

parameters are calculated. A computational procedure for finding the parameters of the lbp

norm is given by Uster and Love (1998). Substituting these parameters and the point 

coordinates into the empirical distance predicting function, an estimate of the actual 

distance, ebp(Xi, xj), is obtained. The error c(xi, xj) for any pair of points ,may arise from 

point coordinate measurements errors, inaccurate instrument calibrations, and road network 

peculiarities that are not captured by the distance model . Since it is a purely random part 

of the actual distance A(xi, Xj), c(xi, xj) is a continuous random variable. We assume that 
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the errors for different pairs of points in a region are independent, i .e., the error of .ebp(xi, xi) 

about A(xi, xi) is not related to the error of .ebp(xk, xz) about A(xk, x1) for any four points 

xi, Xj, xk, x1 in a geographical region. 
' 

In order to empirically, examine the statistic!al properties of'the c-(xi, xj) distributions 

for seventeen regions we use the same sample set that we used in fitting the parameters of the 

.ebp-norm. To calculate the predicted distances we use the parameter values given Table 1. 

For our statistical tests we use the statistical analysis package SPss® (1997). 

To test the normality of the c-(xi, xi) distributions we apply the Kolmogorov-Smirnov 

test with the Lilliefors correction. The details of this test are given by Lilliefors (1967) 

and Dallal and Wilkinson (1986). The Lilliefors test is a modification of the Kolmogorov

Smirnov test that examines for normality when means and variances are not known, but 

must be estimated from the data, and it is based on the largest absolute difference between 

the observed and the expected cumulative distributions. The p-values of the normality tests 

for the seventeen regions are reported in Table 2 (Note that the parameter p of a distance 

norm and the p-value of a statistical test are different. We use italics "p" to refer to a 

distance norm's parameter, and "p-value" for a statistical test's significance level) . The 

\ No. I Region I p-value II No. I Urban Center I p-value I 
1 Australia 0.000 9 Brussels 0.077 
2 BC Province 0.012 10 London City 0.000 
3 Canada 0 .064 11 London North 0 .200 
4 France 0.051 12 Los Angeles 0.200 
5 Great Britain 0.000 13 NY City 0.000 
6 NY State 0.000 14 Paris 0.009 
7 Pennsylvania 0.108 15 Sydney 0.200 
8 United States 0.038 16 Tokyo 0 .036 

17 Toronto 0.025 

Table 2: Normality Tests for c(xi, xi) 

p-values indicate that for most of the cases (10 regions) the c(xi, Xj) distributions are not 

normally distributed at the 5% significance level. Although the p-values for seven regions 

are greater than 5%, four of them are not quite convincing. There is significant evidence 

that c:(xi, xj) is normally distributed only in regions 11, 12 and 15. 
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Besides the Kolmogorov-Smirnov test , normal probability plots and histograms are 

examined. The related graphs are given in Appendices A and B. On normal probability 

plots, a linear relation is expected between the observed cumulative probabilities and the 
. 

expected cumulative probabmties for a sample distribution to be from a normally di�tributed 

population. The histograms are expected to have a symmetric bell-shaped appearance with 

no violations at the tails. The normal probability plots and histograms also confirm that in 

general c (xi, xj) is not normally distributed. 

To examine the homoscedasticity (Wesolowsky, 1976) of c(xiixj) , the sample sets of 

105 pairs are divided into three groups (short, medium and long) after they are ordered in 

their increasing order of predicted distances. In order to clarify what is meant by these three 

groups, Table 3 is constructed. In Table 3 the means of short, medium and long predicted 

\ No. \ Region 
1 Australia 
2 BC Province 
3 Canada 
4 France 
5 Great Britain 
6 NY State 
7 Pennsylvania 
8 United States 
9 Brussels 
10  London City 
1 1  London North 
12 Los Angeles 
13 NY State 
14 Paris 
15 Sydney 
16 Tokyo 
17 Toronto 

\ Short(S) I Medium(M) I Long(L) \ M/S \ L/S \ 
1115.74 
298 .36 
761 .23 
258 .16 
191 .12 
122.83 
105.01 

1080.69 
5.79 
4. 15 
3.55 
9.24 

10.17 
3.26 
1 .22 
4.23 
8 .82 

2116.67 3500.00 
610.78 993.80 

2215.23 4262.76 
494.65 724.61 
389.75 698.02 
252.10 413.81 
205.29 367.82 

2135.41 3581.48 
10.68 16.37 
7.75 12.61 
6 .58 11 .10 

16.82 25.99 
18.14 27.74 
6.41 9.76 
2.19 3.36 
7.22 11 .22 

15.57 25.90 
. ' 

1 .90 3 .14 
2.05 3.33 
2.91 5.60 
1 .92 2.81 
2.04 3.65 
2.05 3.37 
1 .95 3 .50 
1 .98 3.31 
1 .85 2.83 
1 .87 3.04 
1 .85 3 .12 
1 .82 2.81 
1.78 2.73 
1 .97 3.00 
1 .80 2.75 
1 .71 2.65 
1 .76 2.93 

Table 3: The Means of. the Predicted Distance Groups 

distance distributi�ns, and also the ratio of medium to short and long to short predicted 

distance means are listed. The ratios are similar for all regions except Canada. 

To test the homoscedasticity of i::(xi, xj) we apply Levene test to three groups of 
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distributions. A p-value less than 5% indicates that there is at least one pair of groups with 

a significantly different variance. The Levene test is a powerful test when the data come 

from continuous, but not necessarily normal, distributions (Kotz and Johnson, 1989). The 

p-values for the tests are reported in Table 4. 1"he p-values, based on a 5% si&nificance 

level, suggest that .s(xi, Xj) are heteroscedastic in ten of the regions. The homoscedasticity 

is observed only in the .s(xi, xi) of seven urban centers. In addition to the Levene test we 

I No. I Region I p-value II No. I Urban Center I p-value I 
1 Australia 0.000 9 Brussels 0.030 
2 BC Province 0.006 10 London City 0.097 
3 Canada 0.000 11 London North 0.021 
4 France 0 .004 12 Los Angeles 0.746 
5 Great Britain 0.006 13 NY City 0.514 
6 NY State 0.000 14 Paris 0.059 
7 Pennsylvania 0.008 15 Sydney 0. 123 
8 United States 0.008 16 Tokyo 0.464 

17 Toronto 0.059 

Table 4: The Levene Tests for c(xi, xi) 

also inspect the scatter plots of errors for our samples. These scatter plots of .s(xi, xi) versus 

.ebp(xi, xi) are given in Appendix C. We observe that, as expected, as the predicted distance 

gets larger the amount of prediction error becomes larger. In other words, the scatter plots 

of .s(xi, xi) versus .ebp(xi, Xj) form a diverging funnel. 

To test whether the mean of .s(xi, Xj), µ15, is zero we employ the Student t-test. 

Although this test assumes that the data are normally distributed, it is fairly robust to 

departures from normality. The p-values for the test are given in Table 5. The p-values 

suggest that .s(xi, Xj) has zero mean at the 5% significance level in all seventeen regions. 

This fact is also observed in the scatter plots where points are evenly scattered ab9ut zero. 

In general, we can say that .s(xi, xi) is non-normal, heteroscedastic, and its mean 
• 

is equal to zero at the 5 % significance level. In order to develop a confidence interval for 

an unknown actual distance we need a random variable which is homoscedastic. Therefore 

we need to use a transformation of c ( xi, Xj). For that purpose, we define the following 
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" I No. I Region I p-value II No. I Urban Center I p-value I 
1 Australia 0.498 9 Brussels 0.585 
2 BC Province 0.237 10 London City 0 .146 
3 Canada 0.626 11 London North 0.642 
4 France 0.695 12' Los Angeles 0.262. 
5 Great Britain 0.544 13 NY City 0.418 
6 NY State 0.501 14 Paris 0.315 
7 Pennsylvania 0.512 15 Sydney 0.485 
8 United States 0.706 16 Tokyo 0.564 

17 Toronto 0.570 

Table 5: The Student t-test for µ6 = 0 

transformed random variable: 

(5) 

where parameter t is to be determined for a given transportation network so that the 

corresponding E:t(xi, x;) is homoscedastic and normally distributed. 

Before proceeding with our analysis for finding the best t value for a transportation 

. ·· ,. network, we will first assume that t = 1 and investigate if the normalized error c:1(xi,x;) is 

homoscedastic. This special form of E:t(xi, x;) is very similar to the random variable used 

�1 by Love, Walker and Tiku (1995). In order to test homoscedasticity we apply the Levene 

test in the same way that we used it for c:(xi, x;). In Table 6 we report the p-values. The 

scatter plots of c:1(xi, x;) with respect to increasing values of the fbp distance are given in 

Appendix D. The p-values show that, except in Australia, BC Province, Great Britain, 

New York State and Paris, the c:1 (xi, x;) is heteroscedastic at the 5% significance level. 

Furthermore, for BC Province and Paris the p-values are very close to 5%. Inspecting the 

' 
" 

scatter plots in Appendix D we see that the scatter of points form a converging funnel, i.e., 
. ' 

< 

in general the percentage error is smaller for relatively long distances and larger for relatively 

short distances. 

We now turn our attention to the determination of the best t for a given network. 

For that purpose we generate samples of ct(Xi, x;) for t = 1, . . .  , 3 with 0 .1 increments. 

In Table 7 we list the ranges oft in which the ct(xi, x;) are homoscedastic and normally 
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I No. I Region I p-value II No. I Urban Center I p-value I 
1 Australia 0.5218 9 Brussels 0.0287 
2 BC Province 0.0723 10 London City 0.0006 
3 Canada 0.0000 11  London North 0.0004 
4 France 0.0099 1�. Los Angeles . 0.0006 
5 Great Britain 0. 1659 13 NY City 0.0001 
6 NY State 0.4847' 14 Paris 0.0574 
7 Pennsylvania 0.0153 15 Sydney 0.0155 
8 United States 0.0026 16 Tokyo 0.0042 

17 Toronto 0.0200 

Table 6: The Levene Tests for e1(xi, xi) 

distributed. A "./" represents statistically significant test results at the 5% significance 

I No. I Region I t Range I t I Homoscedasticity I Normality I 
1 Australia 1 .0-2.3 1 .0  ./ x 
2 BC Province 1.4-2.6 2 .0 ./ ./ 
3 Canada 1 .7-3.0 2.0 ./ ./ 
4 France 1 .5-2.1  2.0 ./ ./ 
5 Great Britain 1 .0�3.0 1 .0 ./ x 
6 NY State 1 .0 1 .0 ./ ./ 
7 Pennsylvania 1 .2-3.0 2.0 ./ ./ 
8 United States 1 .4-3.0 2.0 ./ ./ 
9 Brussels 1 .5-3.0 2.0 ./ ./ 
10 London City 1 .4-3.0  2.0 ./ x 
1 1  London North 1 .4-3.0 2.0 ./ ./ 
12 Los Angeles 1 .8-3.0 2.0 ./ ./ 
13 NY City 1 .7-3.0 2.0 ./ x 
14 Paris 1 .3-2.8 2.0 ./ ./ 
15 Sydney 1 .2-3.0 2.0 ./ ./ 
16 Tokyo 1 .6-3.0 2.0 ./ x 
17 Toronto 1 .2-3.0 2.0 ./ x 

Table 7: Homoscedasticity and Normality for Ranges oft 

level whereas an "X" represents otherwise. We note that in the United States and .London 

City homoscedastioity could not be obtained for t E [1, 3]. Therefore we exclude the actual 

distances which correspond to the outliers in the samples of c:1(xi, xi) for these regions and 

model the .ebp-norm with the new reduced sample sets. The new samples provided well

behaved distributions for both regions. The number of outliers in the United States case 
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was five and in the London City case it was nine. 

In Table 7 we observe that homoscedasticity is obtained for t = 2 in all regions, 

except in the NY City case. However, if t = 1, then both homoscedasticity and normality are . 
obtained for NY City. Based on our samples we devise the following·rule of thumb th?-t can be 

used in obtaining.a transformed rQ,ndom variable for confidence interval calculatfon purposes: 

ct(Xi, xi) with t = 1 is tested for homoscedasticity and normality. Table 7 indicates that both 

conditions are not very likely to occur in a particular region. If not, then ct(xi, xi) with t = 2 

is tested for homoscedasticity and normality. Based on our samples it is very likely that a 

well-behaved distribution will be obtained. In the case that neither t = 1 nor t = 2 provides a 

homoscedastic and normal distribution then other values oft should be considered. However, 

if all fails, then the outliers should be excluded and the same checks should be performed 

with t = 1 and t = 2. The t values determined by using this rule of thumb for seventeen 

geographical regions are also reported in Table 7. We note that, for purposes of confidence 

interval calculations, homoscedasticity is more important than normality. In order to obtain 

a reliable confidence interval the distribution must have a constant variance. Otherwise, one 

can easily obtain a confidence interval with a lower or higher level of expectation than the 

predetermined value, say 95%. Therefore, if only a homoscedastic but non-normal ct(xi, xi) 

is obtained before excluding the outliers, this distribution can be efficiently used to calculate 

the confidence interval as shown in the next section. In other words, in order not to weaken 

the sample's representation of the whole region, excluding outliers should be seen as a last 

resort in the course of obtaining a well-behaved error distribution. 

3 Development of Confidence Intervals 

In this section we develop the confidence interval for an estimated distance. For that purpose 

we use the transformed random variable ct(xi, Xj) where t 2::: 1. 
' 

Let µ6t and a;t represent the mean and the variance of ct(xi, Xj), herein denoted et· 

Also let (en, et2) be the 100(1 -a)% confidence interval for ct(Xi, xi) where 0 <a< 1 .  We 
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have 

Pr( en < et < et2) = 1 - a, 0 < a < 1 .  (6) 

In our development we will assu:µie that the confidence interval is symmetric, i.e., Pr(ct < 
' 

en) = Pr(ct > et2) = a/2. The standardized val�es of en and et� are given by zn and Zt2 

where 
en - µet Zn= ---

O'et 
and 

Rearranging (7) and substituting into (6) we have 

or equivalently 

(7) 

(8) 

(9) 

We assume that µet= 0 and St is the sample unbiased estimator of aw Then (9) becomes 

Pr(zn St < et < Zt2 St) = 1 - a 

(10) 

By rearranging (10) we find the confidence interval for an unknown actual distance between 

any two points Xi and Xj as 

where 

cti - .ebp(xi, Xj) [1 + Zn st (fbv(xi, Xj))(l/t)-l] , 

ct2 .ebp(Xi, Xj) [l+zt2St (fbp(xi,Xj))(l/t)-l]. 

(11) 

(12) 

If ct(xi, xj) is normally distributed, then the standardized values zn and Zt2 are found in 

the standard normal distribution table. Since we assume symmetry, the values of Zti and 

zt2 are of equal magnitude but opposite sign. For example, if a 95% confidence interval 

is considered, then the standardized values are Zt = =fl.96. However, if the distribution 
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is not known, then the standardized values zn and Zt2 are found in the tables provided by 

Johnson, Nixon and Amos (1963). These tables utilize the Pearson coefficients (skewness and 

kurtosis) of the distribution and list the standardized values for several values of a/2. For 
' 

large samples (n � 100) the sample Pearson coefficients can be used as unbiased �stimates 

of the population Pearson coefficients (Stuar.t and Ord, 1987). 

4 Some Examples 

In this section, we demonstrate the use of (12) by constructing the confidence intervals 

for six unknown actual distances. We use the regions and the point locations used in 

constructing example confidence intervals with the weighted .ep-norm by Love, Walker and 

Tiku (1995). The regions, point locations (in centimeters), standard deviation of sample 

E:t(Xii Xj) distributions, and the standardized values zn and zt2 are given in Table 8. 

For four of the regions the E:t (xi, xi) are normally distributed (Table 7). Therefore, to 

I Region I t I 
Australia 1 (15.50,18.65) 
Canada 2 (106.65,24.50) 
United States 2 (4.50,28.20) 
Brussels 2 (19.30,25.55) 
London North 2 (10.30,2.60) 
Toronto 2 (54.45,41 .85) 

X· J 
( 43.00,33,90) 
(19. 10,13.10) 
( 41.00,16.20) 
(38.30 ,7.35) 
(38.05,24.60) 
( 49.05,17.30) 

Zti 
0.0786 -1 .8258 
2.1869 -1 .9600 
1 .8343 -1 .9600 
0. 1862 -1 .9600 
0 .1145 -1 .9600 
0.2182 -2.1149 

Table 8: Data for Example Confidence Interval Calculations 

Zt2 
2.1689 
1 .9600 
1 .9600 
1 .9600 
1 .9600 
1 .8739 

construct 95% confidence intervals the values of zn and Zt2 are taken as -1 .96 and 1 .96, 

respectively. However, for Australia and Toronto, E:t (xi, Xj) is not normally distributed. 

Thus, to determine the standardized values we have to use the tables provided by Johnson, 

Nixon and Amos (1963). For Australia the sample Pearson coefficients are vD;_ = 0.4800 

and b2 = 4.7524, and for Toronto they are VD; = -0.4086 and b2 = 5.6495. Using 
• 

, 

the interpolation technique as described by Johnson, Nixon and Amos we calculate the 

standardized values given in Table 8. In Table 9 we report the .ebp distances (in kilometers) 

and the corresponding 95% confidence intervals., 
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J Region 

Australia 3028.47 ( 2593.86,3544. 75) 
Canada 3130.36 (2890 .54,3370 .17) 
United States 3174.07 (2971 .56,3376.57) 
Brussels 8.80· (7.72,9.88)' 
London North 6 .64 (6.06 ,7.22) 
Toronto 10.92 (9.40,12.27) 

Table 9: Example Confidence Intervals 

To compare the confidence interval calculation method developed in the previous 

section with the Love-Walker-Tiku method, we first calculate the confidence intervals (c1, c2) 

for the lbp distances by using the method and the parameters given by Love, Walker and 

Tiku (1995). Then we compare the range of these confidence intervals with the range of 

� confidence interval calculated by our method. These comparisons are presented in Table 10 .  

We observe that , except in Australia and Brussels, the confidence intervals obtained by the 

J Region 

Australia 3028.47 (2565.39,3499.99) 934.60 950.89 
Canada 3130.36 (2597.32,3484.85) 887.52 479 .63 
United States 3174.07 (2942.72,3474.45) 531 .73 405.01 
Brussels 8.80 (7.85,9.95) 2.10 2 .16 
London North 6 .64 (5.92 ,7.38) 1 .46 1 .16 
Toronto 10.92 (9.25,12. 17) 2.92 2.88 

Table 10: Comparison of Example Confidence Intervals 

method developed here are smaller than the ones obtained by the Love-Walker-Tiku method. 

Therefore we next would like to explore this difference. 

Let £, be a predicted distance, I and 'It, be the width of the confidence intervals 

calculated by the Love-Walker-Tiku method and our method, respectively. Then the 

expressions for I and 'It, are 

I 

'It, - £, (1 + Zt2St£,(l/t)-l) - £ (1 + Zt1St£(l/t)-l) 

16 
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It can easily be verified that I and 'Lt; are increasing functions of £, and, for t > 1 

I< 'Lt; for L <£c 

I= 'Lt; for J;, = £,c 
• (15) 

I> 'Lt; for £> £,c 

where 

£,c = 
St Zt2 - Zti 
( ( )rt-1) 

s(z2 -z1) 
(16) 

fort= 1 

I< 'Lt; for 'R, > 1 

I= 'Lt for 'R, = 1 (17) 

'L>'Lt for 'R, < 1 

where 

'R= Bt (zt2 -zn) 
s(z2 -z1) · (18) 

.., (15) implies that, fort> 1 ,  I and 'Lt are equal for a critical£, value given by (16). This fact 

is observed in the I and 'Lt graphs which are presented in Figure 1 for five example regions 

(except Australia for which t = 1). For values of£, greater than £,c the range of the confidence 

interval obtained by the Love-Walker-Tiku method is larger than the one calculated by our 

method and for values of L less than Le the converse holds. Also note that, the difference 

between the intervals becomes larger, favouring 'Lt, as the predicted distance increases. For 

example in Toronto, for the predicted distance of 10.92 kms. the difference between the 

two intervals is 0.04 (2.92 vs. 2.88 in Table 10). If the predicted distance was 30 kms., the 

difference would be 3.31 (8.01 vs. 4.70). On the other hand, (17) implies that, for t = 1 ,  I . ' 

and 'Lt are equal if 'R, is equal to L If R is less than 1 ,  then the confidence interval calculated 

by the Love-Walker-Tiku method is larger than the one calculated by our lnethod for any 

distance L. The converse holds for values of 'R, greater than 1 .  

The values oft, ebp distances, Le and 'R, that we use for comparisons are given in 

Table 1 1 .  Observe that for regions with t = 2 the predicted distances are longer than their 
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Figure 1: Example Confidence Interval Comparisons 
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J Region 

Australia 1 3028.47 1.017 
Canada 2 3130.36 913.54 
United States 2 3174.07 1842.33 
Brussels 2 '.8.80 9.44, 
London North 2 6.64 4.16 
Toronto 2 10.92 10.61 

Table 11: Example £,c and n Values 

corresponding critical values £,c, except in Brussels in which case the predicted distance is 

shorter than £,c· Therefore, as it is already given in Table 10, we obtain smaller confidence 

intervals for four of the regions, and a larger interval for Brussels. For Australia, where t = 1, 

then value is slightly greater than 1, i.e., I and It values are very close, I being smaller. 

·� This is because for Australia t is equal to 1 and thus et( xii Xj) is indeed quite similar to 

the transformed random variable used in the Love-Walker-Tiku method. Furthermore, For 

Australia the weighted .ebp-norm performs similar to the weighted .eP-norm because of the low 

directional nonlinearity and high rectangularity in the transportation network as discussed 

· • "% by Uster and Love (1998) . 
In Table 12 the ranges of predicted distances that represent short, medium and long 

�' distance groups for example regions are listed. Notice that, except for Australia, £,c values 

J Region Short J Medium J Long 

Australia 438-1532 1539-2689 2699-4609 
Canada 204-1265 1266-3225 3288-5844 
United States 165-1661 1674-2717 2720-4841 
Brussels 2.7- 8.4 8.6 -13.2 13.7-22.9 
London North 1.5 - 5.0 5.1 - 8.1 8.1 -16.7 
Toronto 3.9-11 .6 11.8-20.2 20 .2-43.8 

Table 12: Ranges of the Predicted Distance Groups 

are close to the cut.-off point between short and medium distance groups. This observation 

suggests that the confidence intervals calculated by the Love-Walker-Tiku method are 

generally different than what they should be at the 953 level. They are smaller for relatively 

short distances and larger for relatively long distances. This is indeed an expected result 
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because, when the f,P distances are modelled for these five regions the scatter of points 

in the e(8i,ai)/A(8i,aj) versus A(8i,aj) plots form a converging funnel (Love and Uster, 

1996). In other words, the random variable used in developing confidence intervals is not 

homoscedastic, but has a higher standard deviation for relatively short distances and a lower 

standard deviation for relatively long distances. The percentage error generated in predicting 

long distances is generally lower than the percentage error generated in predicting short 

distances. We have observed the same phenomenon in predicting distances with the f,bp

norm, i.e. ,  E:t(xi,xj) with t = 1 is generally heteroscedastic. However, the confidence interval 

calculation method developed in this paper accounts for this phenomenon and provides 

confidence intervals at the intended level of expectation. 

5 Comparison of Distance Functions 

In this section we compare the 95% confidence intervals for the weighted f,P and the f,bp 

distances modelled using SD as the goodness-of-fit criterion. This, in turn, provides a 

comparison of accuracy in distance prediction with the weighted fp-norm and the f,bp-norm. 

We use the transformed random variable ct(xi, Xj) for that purpose, and adopt the notation 

t' and et' (xi, Xj) for the weighted fp-norm related distributions. To generate the sample 

et' (xi, Xj) distributions for each region we use the best parameter values of the weighted 

fp-norm, k ,  p and (), where p E (1 , 2). These empirical parameter values for seventeen 

geographical regions are computed by Love and Walker (1994) for the SD criterion and are 

presented here in Table 13. 

We first find the best t' values which provide homoscedasticity of et' (xi, xj)· As 
in the f,bp-norm case we test the homoscedasticity and the normality of sample ct'(xi,xj) 

distributions for values oft' ranging from 1 .0 to 3.0 with increments 0 .1.  The summary of 

these test results, including the t' values that are chosen by the rule of t�umb devised in 

Section 2, is given in Table 14. Note that, for t' E (1 , 3), homoscedasticity and normality 

could not be obtained for the et' (xi, Xj) distributions of the United States and London City. 

This was also the case for the sample ct(xi, xj) distributions of the same regions. Therefore, 
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I No. I Region () k p 
1 Australia 0 1 . 1460 1.8585 

·• 2 BC Province 68 1.2495 1.5609 
3 Canada 83 1.1715 1 .4849 
4 France 70, 1.0609 1 .8439 
5 ' Great Britain 40 1.1095 1 .7895 
6 NY Stat.e 86 1.0794 1 .5823 
7 Pennsylvania 4 1.0611 1.6244 
8 United States 0 1.0792 1.6641 
9 Brussels 47 1.0549 1.8180 

10 London City 72 1.1182 1.9241 
1 1  London North 1 1  1.0599 1.6456 
12  Los Angeles 2 1.0721 1.5734 
13 NY City 6 1.1069 1.7340 
14 Paris 86 1.0613 1.8189 
15 Sydney 8 1.1266 1 .4719 
16 Tokyo 58 1.0963 1 .8252 
17 Toronto 88 1.0279 1 .1863 

Table 13: Best Parameter Values for the Weighted fp-norm 

for comparison purposes, we will not consider these two regions. For the rest of the regions, 

· · " " inspecting t and t' columns in Tables 7 and 14 we see that the chosen values oft and 

t' are identical, except in regions Canada, Great Britain and Paris. In order to obtain a 

. 
• 

unified comparison scheme we would like to have equal t and t' values, if possible. Thus, 

without violating the homoscedasticity requirement of the distributions, we can take t = 2.1 

for Canada, t = 2 for Great Britain, and t' = 2 for Paris. The final t and t' values, sample 

standard deviations, and standardized values for the C:t(xi, xi) and et' (xi, xi) distributions are 

reported in Table 15. The columns s�, zh and z�2 represent the sample standard deviation and 

standardized values related to the sample C:t' (xi, Xj) distributions. For the error distributions 

in which normality can not be obtained we calculate the, st�dardized values by interpolation 
< 

. ; :· 
using the sample Pearson coefficients of et(xi,xi) and et'(xi,xj), and the biometrika tables 

of Johnson, Nixon and Amos (1963). We note that the skewness of the sample et(xi, xi) and 

et' (xi, xi) distributions for Tokyo were 2.3707 and 2.4243, respectively. These values are out 

of the range of skewness values in the biometrika tables where the range is (0.0, 2.0). Thus, 

" '.11< 
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I No. I Region l t' Range l t' l Homoscedasticity I Normality I 
1 Australia 1.0-1.9 1.0 ./ x 
2 BC Province 1 .2-3.0 2.0 ./ ./ 
3 Canada 2.1-3.0 2.1 ./ ./ 
4 France 1.4-2. 1  2.0 ./ x 

' 

5 Great Britain 1 . 1-3.0 2.0 ./ x 
6 NY State 1 .0 1 .0  ./ ./ 

" 

7 Pennsylvania 1.1-3.0 2.0 ./ ./ 
8 United States 1 .0-3.0 - x x 
9 Brussels 1 .3-3.0 2.0 ./ ./ 
10  London City 1 .0-3.0 - x x 
11 London North 1.3-3.0 2.0 ./ ./ 
12  Los Angeles 1 .7-3.0 2.0 ./ ./ 
13 NY City 1.6-3.0 2.0 ./ x 
14 Paris 1 .0-3.0 1 .0 ./ ./ 
15 Sydney 1.7-3.0  2.0 ./ ./ 
16 Tokyo 1 .6-3.0 2.0 ./ x 
17 Toronto 1 .2-3.0 2.0 ./ x 

Table 14: Homoscedasticity and Normality for Ranges oft' 

the values oft and t' are taken as 3.3 so that the standardized values can be calculated and 

both distributions are still homoscedastic. 

To compare the two distance functions we will again utilize the range of the confidence 

�1 intervals. Let .C be any predicted distance as before, and 'It, 1: be the ranges of the confidence 

intervals calculated for an fbp and a weighted fp distance, respectively. Then using (12) 'It 
and 1: for the same predicted distance are given by 

Lt - £, (1 + Zt2St.C(l/t)-1) - £, (1 + ZtiSt.C(l/t)-1) 

� - .C (1 + z�s�.C(l/t')-1) - .C (1 + z�1s�.c(l/t' )-1). 

(19) 
(20) 

It readily follows that the intervals 'It and x: are incre�ingJunctions of .C and fort= t' we 

have 

'It < �  if T <  1 

'It=� if T=l (21) 
'It>I; if T>l 
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I No I Region I t' , t I s� Zt2 
1 Australia 1.0 0.0796 -1.7625 2.2002 0.0786 -1.8258 2.1689 
2 BC Province 2.0 3.2817 -1.9600 1.9600 3.2441 -1.9600 1.9600 
3 Canada 2.1 2.7559 -1.9600 1.9600 2.6074 -1.9600 1.9600 
4 France 2.0 ' 0.9215 -1.4853, 2.3741 0.8884 -1.9600 1.9600 
5 Great Britain 2.0 1.5024 -1.4092' 2.4208 1.3483 -1.2548 2.5245 
6 NY State 1.0 0.0756 -1.9600 1.9600 0.0756 -1.9600 1,.9600 
7 Pennsylvania 2.0 1.0135 -1.9600 1.9600 0.9569 -1.9600 1.9600 
9 Brussels 2.0 0.1883 -1.9600 1.9600 0.1862 -1.9600 1.9600 
11 London North 2.0 0.1315 -1.9600 1.9600 0.1146 -1.9600 1.9600 
12 Los Angeles 2.0 0.3676 -1.9600 1.9600 0.3356 -1.9600 1.9600 
13 NY City 2.0 0.3818 -1.2668 2.4895 0.3806 -1.1612 2.5634 
14 Paris 2.0 0.2433 -1.9600 1.9600 0.2319 -1.9600 1.9600 
15 Sydney 2.0 0.1182 -1.9600 1.9600 0.1050 -1.9600 1.9600 
16 Tokyo 3.3 0.2236 -1.2693 2.5147 0.2231 -1.2452 2.5274 
17 Toronto 2.0 0.2191 -2.1218 1.8648 0.2182 -2.1149 1.8739 

Table 15: Data for Confidence Interval Comparisons 

where 

T = Bt (Zt2 - zn) 
I ( I I ) " St Zt2 - ztl 

(22) 

The values of T for 15 regions used in the comparisons are calculated and reported in 

Table 16. Observe that, except in NY State, The T values are always less than 1, i.e., the 

confidence intervals calculated for the fbv distances are smaller indicating the superiority of 

the fbv-norm over the weighted fp-norm. The proximity of the T value to 1 determines the 

I No. I Region T II No. I Urban Center I T 
1 Australia 0.9954 9 Brussels 0.9888 
2 BC Province 0.9885 11 London North 0.8715 
3 Canada 0.9461 12 Los Angeles 0.9129 
4 France 0.9792 13 NY City 0.9884 
5 Great Britain 0.8856 14 Paris 0.9531 
6 NY State 1.0000 15 Sydney 0.8883 
7 Pennsylvania 0.9442 16 Tcrkyo' 0.9948 

17 Toronto 0.9964 
� 

Table 16: T Values 

level of gained prediction accuracy by using the fbp-norm versus the weighted fp-norm. The 

gain in prediction accuracy increases as the T value becomes smaller. Uster and Love (1998) 
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l No. l Region I SD for £bp I SD for kip I !:::.(SD)% I 
1 Australia 1117.89 1163.59 3.93 
2 BC Province 1015.41 1038.72 2.24 
3 Canada 496.88 565.61 12.15 
4 France 78.86 84.72 6.92 
5 Great Britain 172.34 219.42 21.46 
6 NY State 159.80 159.80 0.00 
7 Pennsylvania 95.11 107.06 11.16 
8 United States 336.53 342.68 1.79 
9 Brussels 3.47 3.55 2.25 
10 London Central 15.01 16.53 9.20 
11 London North 1.36 1 .78 23.60 
12 Los Angeles 13.17 15.50 15.03 
13 NY City 13.29 13.58 2.14 
14 Paris 5.84 6.52 10.43 
15 Sydney 1.10 1.35 18.52 
16 Tokyo 2.28 2.30 0.87 
17 Toronto 5.06 5.10 0.78 

Table 1 7: Comparison of .ebp-norm and klp-norm 

compared the performance of the .ebp-norm and the weighted lp-norm in predicting distances 

by using the percent decrease in the SD value of the weighted lp-norm. These results are 

summarized here in Table 17. Since the .ebp-norm models the directional nonlinearity in 

a transportation network explicitly, we observe that the gain increases as the directional 

nonlinearity increases. In Table 17 we see that a low gain in prediction accuracy (below 7%) 

is obtained for regions 1 ,  2 ,  4,  6, 9,  13,  16 and 17, a moderate gain (10 - 12%) is obtained 

for regions 3 ,  7 and 14, and a high gain (above 1 5%) is obtained for regions 5, 1 1 ,  12 and 

15 .  A close inspection of Table 16 reveals that the same groups of regions are formed based 

on the proximity of T values to unity. 
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