
. .n
� ·� McMaster
� .. hl
fg2'l
��l{ ,1

University, ·i�·
MICHAEL G. l'U!GROOTE � 11��

Ii SCHOOL OF BUSINESS

1�r �
I I �;;,� �it�� t��,
�'[,� I ,.,,
l I 1 1 q; I ...
�� �-t .. i\\3 t i

��\'.:� %�:::-;:,�

���. �rn-"i'

B lf' 'I

1(-._�f-�
, �,Innis .. Ii 111. ' ' I H�\.

····"�·· 74 5 ��:\{�, .-Fl47
·,) · nci.438 ,--1"\ _,-
::i·

RESEARCH AND
WORKING PAPER

SERIES

A FAST ALGORITHM TO MINIMIZE MAKESPAN
FOR THE TWO-MACHINE FLOW-SHOP PROBLEM

WITH RELEASE TIMES

By

Jinliang Cheng, George Steiner, and Paul Stephenson

Michael G. DeGroote School of Business
McMaster University

Hamilton, Ontario

Working Paper# 438

June, 1999

STEH�UNIVERSITY
1Jri$'tibet West

INNIS LIBRARY

ti�QQt�rio, Canada L8S 4M4
r1e(905) 525-9140 �- ,\: .:·_) - ,··: -!

; i

\ f

JUL J 9 1999
.NON�CIRCULA TING

A FAST ALGORITHM TO MINIMIZE MAKESPAN
FOR THE TWO-MACHINE FLOW-SHOP PROBLEM

WITH RELEASE TIMES

By

Jinliang Cheng, George Steiner, and Paul Stephenson

Michael G. DeGroote School of Business
McMaster University

Hamilton, Ontario

Working Paper# 438

June, 1999

This working paper should not be quoted or reproduced without the
written consent of the authors.

A Fast Algorithm to Minimize Makespan for the
Two-Machine Flow-Shop Problem with Release Times*

Jinliang Cheng, George Steinert and Paul Stephenson
Management Science and Information Systems Area

Michael G. DeGroote School of Business
McMaster University, Hamilton, Ontario, Canada

Abstract

We consider the two -machine flow-shop problem with release times where the objec­

tive is to minimize the makespan. We derive a new dominance order and incorporate it

into an efficient branch and bound algorithm which uses an adaptive branching scheme.

The algorithm performed very well. It solved within a few seconds 953 of the test prob­

lems with up to 500 jobs in a large scale computational experiment. For the unsolved

problems, the average gap between the best solution found and the optimum was less

than 0.53. Experiments also indicate that the speed of the algorithm is largely due to

the use of the dominance order which cut solution times roughly in half.

1 Introduction

Minimizing the makespan in a flow-shop environment is a classical scheduling problem. The

simplest case of this problem, the two-machine flow-shop problem F2//Cmax on n jobs, is

solved in O (nlog n) time by Johnson's rule [5]. (We use the standard notation to describe

scheduling problems, and refer the reader to [7] and [10] for any terminology not defined

here.) When arbitrary release times are added, the problem F2 /ri/ Cmax becomes strongly

NP-hard [8]. This result has led researchers to consider different approximation and branch

•This research was supported in part by the Natural Sciences and Engineering Research Council of
Canada, under Grant No. OGPOOOl 798.

tcorresponding author. e-mail: steiner©mcmaster.ca

1

and bound algorithms. Potts [12] developed several approximation algorithms and analyzed

their worst case performance. The best of these algorithms has a worst case performance

ratio of 5/3 with time complexity O (n3 log n) . Later, polynomial approximation schemes

were developed for the problem by Hall [4] and Kovalyov and Werner [6]. Grabowski [2]

presented a branch and bound algorithm for the problem F2 /ri/ Lmax, which can also be

used for the problem F2 /ri/ Cmax· Grabowski's algorithm used a new type of branching

scheme that exploited certain dominance properties of a critical path. Tadei et al. (13]

tested several branch and bound algorithms for the problem F2 /ri/ Cmax· They tested the

effectiveness of various lower bounds and branching schemes. They have classified instances

as "easy" or "hard" according to the distribution of the release times. From the easy class

they have solved problems with up to 200 jobs. While from the hard category they were able

to solve instances with up to 80 jobs within 300 seconds. They have also found Grabowski's

dichotomic branching scheme less effective for the problem F2 /ri/ Cmax than their n-ary

branching scheme.

In this paper, we consider a new branch and bound algorithm for the problem F2 /ri/ Cmax,

with the following main features. We use an adaptive n-ary branching rule, that fixes jobs at

both ends of the schedule, similar to the one used by Potts [11] for the problem Fm//Cmax·

We present a new dominance order on the job set, which is derived by using a new proof

technique we call "subset-restricted interchange". Although the proof of validity for the

dominance order is quite elaborate, its application requires only a very fast and simple pro­

cedure at the root of the branch and bound tree. We also incorporate a simple decomposition

procedure which proved to be especially effective for problems with large job release times.

We use four very quickly computable lower bounds at each node of the tree. The algorithm

represents an effective and very fast tool for solving large instances of the strongly NP-hard

problem F2 /ri/ Cmax· In a large scale computational experiment, the algorithm has solved

in a few seconds 1,714 of the 1,800 randomly generated test problems with up to 500 jobs.

We have also gained the insight that the relatively few problems which were left unsolved had

their parameter which determines the range of release times concentrated in a very narrow

interval. Even for the unsolved problems, the best solution found by the algorithm was on

average within less than 0.53 of the minimum schedule length.

2

The paper is organized as follows. In the next section, we introduce the preliminary

definitions and notation for sequencing problems and partial orders. In section 3, we derive

several new dominance results for the problem F2 /ri/ Cmax· In section 4, we present the

details of our branch and bound algorithm, a pseudocode for it is found in the Appendix.

In section 5 , we discuss the results of a large scale computational experiment. In the last

section, we make our concluding remarks.

2 Preliminary definitions and notation

2.1 Sequencing notation

We call a scheduling problem a sequencing problem and its objective a sequencing function

if any schedule can be completely specified by the sequence in which the jobs are performed.

It is well known that the problem F2 /ri/ Cmax always has an optimal permutation schedule,

i.e., it is a sequencing problem [1]. Let J = {1, 2, . . . , n} be the set of jobs to be sequenced.

Jobs are characterized by a list of parameters, each job j possesses a release time ri and

processing times ai and bi on machines 1 and 2, respectively. A sequences on J is a function

from {1, 2, ... , n} to J represented by the n-tuple (s (1) , s (2) , ... , s (n)), where s (i) is the

ith job in sequences. The completion time of job s(i) on machines 1 and 2 will be denoted

by c;(i) and c;(i)' respectively. For the sequencing problem that we study, the dominance

order will be a partial order defined by the parameters of the jobs. Thus we introduce certain

definitions for partially ordered sets (posets).

2.2 Partial orders

By a partially ordered set we mean a pair P = (X, �P) consisting of a set X together with a

binary relation �P on X x X which is reflexive, antisymmetric, and transitive. For u, v E X

, u �P v is interpreted as u is less than or equal to v in P. Similarly, u <p v means that

u �P v and u =/=- v. The usual symbols � and < will be reserved for relations between real

numbers. A job v is minimal if there is no job u with u <p v. Similarly, a job u is maximal

if there is no job v such that u <p v. A partial order P = (X, �P) is a linear order (or

complete order) if for every pair (u, v) E X x X either u �P v or v $_p u. Given a pair of

3

partial orders P = (X, ::;P) and Q = (X, ::;Q) on the same set X, we call Q an extension

of P (P a suborder of Q) if u ::;P v implies u ::;Q v for all u, v E X. A partial order

Q = (X, ::;Q) is a linear extension of a partial order P = (X, ::;p), if Q is a linear order that

extends P . Given two partial orders P1 = (X, ::;pi) and P2 = (X, ::;p2), we can define the

partial order P1 n P2 = (X, ::;P1np2), the intersection of Pi and P2, where u ::;P1np2 v if and

only if u ::;p1 v and u ::;p2 v for all u, v E X. A subset I � X is an ideal of P if for every

v E I and u E X such that u ::;P v we have u E I. Similarly, F � X is a filter of P if for

every u E F and v E X such that u ::;P v we have v E F. For every v E X the principal

ideal I (v) is defined by I (v) = { u E X lu ::;P v} and the principal filter F (v) is defined by

F (v) = { u E X Iv ::;P u}. A partial order P on the job set of a sequencing problem is called

a dominance order if there is an optimal sequence that is a linear extension of P .

3 Dominance results

In this section, we present a new dominance order -<for problem F2 /ri/ Cmax· We derive

-< using subset-restricted interchange, which is a new technique that incorporates certain

restrictions on the subset of intermediate jobs for the different interchange operators.

3.1 Subset-restricted interchange

We follow Monma [9] in defining our interchange operators. Let s1 be a sequence with job

m preceding job k. In general, s1 is of the form s1 = (XmYkZ) , where X, Y and Z are

subsequences of J. We present two types of interchanges of jobs k and m that leave k

preceding m in the resulting sequence s2.

1. Backward Insertion(BI)

s2 = (XYkmZ)

2. Forward Insertion(FI)

s2 = (XkmYZ)

4

If we let Y be the set of jobs in sequence Y (we do not distinguish between these), then

these interchanges reduce to the traditional adjacent pairwise interchange in the case when

Y = 0. This leads to the definition of the adjacent interchange order.

Definition 1 A partial order <:E is an Adjacent Interchange Order for a sequencing function

f if

for all jobs k, m and sequences X, Z

k<Em implies f (XkmZ) � f (XmkZ).

In the past, adjacent interchange orders have been used only locally, for interchanging neigh­

bouring jobs. In the following development, we show that adjacent interchange orders may

contain globally usable information too, which allows us to derive globally valid dominance

orders on the job set. Note that the interchanges B I and F I involve interchanging k or m

around sequence Y. Intuitively, whether or not an interchange leads to a reduction in cost

(for a given sequencing function f and adjacent interchange order <:E), should depend on

the composition of Y. We consider interchanges that are restricted by conditions on Y and

define subset-restricted interchange conditions resulting in cost reductions as follows.

Definition 2 An adjacent interchange order <E together with the collection of subsets RB1 =

{ Rf�m lk<Em } satisfies the Restricted Backward Insertion Condition for a sequencing function

f if

for all jobs k, m and sequences X, Y, Z

k<:Em and Y <; Rf�m imply f (XYkmZ) � f (XmYkZ) .

Definition 3 An adjacent interchange order <:E together with the collection of subsets RFI =

{ Rf�m lk<Em } satisfies the Restricted Forward Insertion Condition for a sequencing function

f if

for all jobs k, m and sequences X, Y, Z

k<E:m and Y <; Rf�m imply f (XkmYZ) � f (XmYkZ).

Recall that the problem F2//Cmax is solved by the Johnson order: first order the jobs

with aj � bj in nondecreasing a order followed by the jobs with aj > bj in nonincreasing

5

b order [5]. This ordering of the jobs is an adjacent interchange order for the problem

F2//Cmax , and since it also completely orders every pair of jobs, it is an optimal ordering

(i.e. an optimal sequence). An adjacent interchange order for the problem F2 /ri/ Cmax is

the intersection of the nondecreasing r order and the Johnson order. Note that this order is

no longer a complete order, rather it is only a partial order. To emphasize the partitioning of

the jobs in the Johnson order we define la'5.b = {j lai :S bi} and la>b = {j lai > bi}. Next,

we formally define the adjacent interchange order � for the problem F2 /ri/ Cmax·

Definition 4 Adjacent Interchange Order:
k�m if rk :S r m and (i}

(ii}
(iii}

k, m E la9 and ak :S am or,
k E la'5.b and m E la>b or,
k, m E la>b and bk � bm.

In general, if an adjacent interchange order is only a partial order (and not a complete

order), it need not be a dominance order. This is the case for � defined above, if we consider

the instance of F2 /ri/ Cmax in Example 1. Here we have 3�1 (r 3 = r 1 = 10, 3, 1 E la>b

and b3 = 25 > 15 = b1), however, the unique optimal sequence is (1 ,2,3,4) with Cmax = 125.

Thus we see that � is not a dominance order since there is no optimal sequence that is a

linear extension of �. We use subset-restricted interchange to find a suborder of � that is

a dominance order.

Example 1 A 4 job problem to illustrate that � is not necessarily a dominance order.

j 1
rj 10
ai 20
bj 15

2 3 4
20 10 30
20 30 25
30 25 20

Next we distinguish between different types of pairs in � that have different interchange

properties.

Theorem 1 If k E la9 and ak :S am, then k�m together with the set

Rf �m = J satisfies the Restricted Forward Insertion Condition.

6

Proof. Given a sequences we construct a directed graph G (s) to evaluate Cmax (s) . Each

job s (j) is represented by three nodes with weights Ts(j), as(j), and bs(j) respectively. G (s) has

the property that Cmax(s) is the length of the longest 'node-weighted' path from 0 to s (n) .

Each of these paths can be identified by the pair (s (i) , s (j)) , for some i , j E [l, n] , which are

the endpoints of the horizontal segments of the path (see Figure 1). Then by definition

Cmax (S) = �� (r s(i) + t as(l) + t bs(l)) ,
(s(i),s(J)) 1_. 1_.
l:Si:Sj:Sn -i -J

and we can evaluate Cmax (s) as the maximum over all such pairs (s (i) , s (j)) in G (s) .

�(l)

G(s)

Figure 1: Directed graph G (s).

Let s1 = (XmYkZ) be a sequence for pair k-E.m with k E la<b and ak �am. We apply

forward insertion to s1 and obtain sequence s2 = (XkmYZ). We demonstrate that s2 is not

worse than s1 by showing that for every pair of jobs in s2 there exists a dominating pair and

7

S2 S1
(X kmYZ) (XmYkZ) proof

(x, k) (x,m) ak:::;; am
(x,m) (x, m) k E la'.5:.b
(x,y) (x,y) k E la<b
(x, z) (x, z)
(k, k) (m,m) Tk:::;; Tm ak:::;; am
(k,m) (m,m) Tk:::;; Tm k E la'.5:.b
(k,y) (m,y) rk:::;; Tm k E la<b
(k, z) (m,z) Tk:::;; Tm

(m, m) (m,m)
(m,y) (m,y)
(m,z) (m,z)
(y,z) (y, z)

Table 1: Dominating pairs for Theorem 1.

corresponding path in s1 with a not smaller Cmax value. Moreover, we show that the choice

of the dominating pairs is independent of the intermediate sequence Y, thus we can take the

interchange region to be the entire job set i.e., Rf�m = J. For example consider pair (k, k)

in s2, then the corresponding dominating pair in s1 is (m, m). That is,

rk+ ak+ bk+ bm+ Lby+ Lbz:::;rm + am+ bm+ Lby + bk+ Lbz,
yEY zEZ yEY zEZ

Table 1 gives a dominating pair in s1 for each pair in s2. (We use lower case letters x,y
or z to refer to arbitrary generic elements of the subsequences X ,Y or Z, respectively). The

last three columns contain the arguments why they are dominating pairs. •
Note that Rf�m = J in Theorem 1 means that in fact there are no restrictions on the

intermediate set Y, i.e., k can be inserted forward before m around any subsequence Y � J.

The next two theorems show cases when the intermediate set Y must satisfy certain real

restrictions for the interchange operators to be applicable.

Theorem 2 If m E la>b and bk 2: bm, then k-E.m together with the set

R��m = {j h :::;; r m} satisfies the Restricted Backward Insertion Condition.

8

S2 S1
(XYkmZ) (XmYkZ) proof

(x,y) (x, y) m E la>b
(x, k) (x, k) m E la>b
(x, m) (x, k) bk� bm
(x, z) (x,z)
(yi, Yj) (m, Yj) Ty; :S Tm m E la>b
(y, k) (m,k) ry :S Tm m E la>b
(y,m) (m,k) Ty :S Tm bk� bm
(y,z) (m,z) Ty :S Tm
(k, k) (m, k) Tk :S Tm m E la>b
(k, m) (m, k) rk :S Tm bk� bm
(k,z) (m,z) Tk :S Tm
(m,z) (m,z)

Table 2: Dominating pairs for Theorem 2.

Proof. Similarly, Table 2 gives a dominating pair in s1 for each pair in s2. •

Theorem 3 k E la<b and m E la>b then k-tEm together with the set

Rfkm = la>b satisfies the Restricted Forward Insertion Condition.

Proof. Table 3 gives the dominating pair in s1 for each pair in s2. •

3.2 New dominance order

Tadei et al. [13] have established a dominance order for problem F2 /rj/ Cmax, which can be

interpreted as a corollary of Theorem 1.

Corollary 1 {13} If rk :S Tm, k E la9 and ak :S am then job k precedes m in an optimal

solution.

Corollary 1 is indeed a consequence of Theorem 1 , since its conditions imply k-tEm, and

so k and m satisfy all the conditions of Theorem 1. Therefore, FI can be applied to any

sequence of the form (XmYkZ) to insert k before m around any intermediate sequence Y.

Since k--Em, it is clear that the dominance order of Corollary 1 is a suborder of the adjacent

interchange order -tE. Note that this suborder does not contain any pairs with both k and

9

S2 S1

(XkmYZ) (XmYkZ) proof
(x, k) (x, k) m E la>b Y � la>b
(x,m) (x,m) k E la9
(x, y) (x, y) k E la9
(x, z) (x, z)
(k,k) (m,k) Tk :::=; Tm m E la>b Y � la>b
(k,m) (m,m) Tk :::=;Tm k E la�b
(k,y) (m,y) Tk :::=;Tm k E la9
(k, z) (m,z) Tk :::=;Tm

(m,m) (m,m)
(m,y) (m,y)
(m,z) (m,z)
(y,z) (y, z)

Table 3: Dominating pairs for Theorem 3.

m E la>b· Our dominance order will enrich this suborder by extending it to pairs with

k, m E la>b too.

Before we derive our dominance order, we introduce a planar representation of the adja­

cent interchange order <E. We represent <E in the plane with the x and y axes replaced by

the T and Johnson orders. A Job j is represented by the point (Tj, ai) if j E Ja9 or (Tj, bi) if

j E la>b· Then k<Em in this representation exactly if k is not to the right or above m. This

is demonstrated for the 4-job problem of Example 1 in Figure 2. The planar representation

here implies 2<E4, 3--E 1 and 3-.E4.

The principal ideals and filters in --E are obtained by dividing the plane into quadrants us­

ing the line T = Tj and the line a = aj if j E 1a5,b orb= bi for j E la>b· Then the SW and NE

quadrants correspond to I(j) and F(j), the principal ideal and filter in --E for job j (see Fig­

ure 3). We add new comparabilities for the jobs in la>b using subset-restricted interchange.

These new comparabilities are defined using certain 'extreme jobs' in the planar represen­

tation of <E. These are the corner-point boundary jobs M = {Mi Ii = 1 , 2, ... , H + 1 }, i.e.,

the jobs with empty SE quadrants that form a descending staircase, and the set of jobs on

their inscribed diagonal, the diagonal jobs D.. = {Di, D2, . .. , DH }. Note that the diagonal

jobs are not necessarily real jobs because of the way they are constructed, rather they may

10

b
a

- - - -.- - � - - - - - - - - -·

10

• 1 , D : ' I ,
20 - - - - - - - - -0- - - - e 4 = M1

• 3 '
30

··················-�·-·········�·································-�

30

20 - - - - -·- - - -e 2 = M 2

10

10 20 30 40 r

Figure 2: Planar representation for Example 1.

be 'artificial jobs' and are used only for ordering purposes. We augment the partial order

P = (J, �) by these diagonal jobs and call it P D.. = (JD.., �D..), where JD.. = JU/}.. and �t. is

the planar order with these diagonal jobs included. Jobs k�m (k,m E J) are separated by

!::l. (are !::l.-separated) if there exists a Di (i = 1, 2, . . . , H) such that k is in its principal ideal

and m is in its principal filter, i.e., k E !(Di) and m E F(Di) in PD... !::l. induces a partition

of P into separable and nonseparable pairs. Notice that the separable pairs can be of the

three types in Definition 4, and are not restricted to pairs k�m with k E la<b· The new

pairs we add are precisely the separable pairs in P . We now formally define our dominance

order-<.

Definition 5 Dominance order -<: For k�m, we define k -< m if

(i} k E la'S:.b and ak :'.S am or,
(ii} there exists a Di in PD.. such that k E !(Di) and m E F(Di).

11

b

a

- - -·- - - - - - - -, - --:' - �
-

�
- - -:i-

- .- - •
I I I

I I
I I I I I

: : : I I : : : n,. I - - --- - - ,- - - - - - - , - - - T - - - - � - - -;---. ---,- - , ---o- - •M1
I I I I 1D21 I - - - - - - - :- - - --- - -: - - - � - - - - � - - - � - - - � - - - :- -Q- - - e M 2

- - - - - - -:- - - - - - - � - - - : - - - - � - - - � - - - � - - -:- -9M
I I I I I

I I 3
' m ,
:• :

I I I : : I I

I I I Dl 1' I

- - - - - - - :- - - - - - - � - - - � - - - - � - - - � - - �6- - -e ML -1
: : : I Dl I :

- - - - - --:- - - - - - - � - - - � - - - - � - - -6- - -·ML
I I I

I I
............................... 1. ' , D , ,

- -- - - -
- :- - - - - - - � - - - � - - _L�Q- - -· ML+t ' ' '
: I k.. O

' ' '

- - - - - - -:- - - - - - - ' - - - ' - - - -• ML+2
'

: DH�l: :
- - - - - - -:- - - - - - -<?- - -eMH.t

D ' '
- - - - - -�- - - - - - eMH

'
- - - - - - .. MH+l

Figure 3: Representation of the diagonal jobs Di..

To illustrate the definition of -< consider the planar representation for Example 1 in

Figure 2. Applying condition (i) to pairs k..r:::m with k E la<b we see that 2-E4 is the only

such pair and since a2 = 20 $ 25 = a4 we have 2 -< 4. For condition (ii) here there are

2 corner-point boundary jobs M1 = 4 , M 2 = 2, and a single diagonal job D1 in la>b with

coordinates (20, 20). We see that D1 separates jobs 2 and 3 from job 4 , which gives us (again)

2 -< 4 together with the new pair 3 -< 4. Finally combining these types of pairs we get that,

jobs 2 and 3 precede job 4 in-<.

Theorem 4 Partial order-< is a dominance order for F2 /ri/ Cmax·

Proof. Let s be an optimal sequence, we can assume by Theorem 1, that s is a linear

extension of the suborder for condition (i) of the theorem. Thus we need to prove the

theorem only for pairs satisfying condition (ii).

12

The following observations immediately follow from the construction of 6.:

Di �.e:..
F (Di) c
I (Di) �

D2 �.e:..
F (D2) c
I (D2) �

Furthermore, we have the following crucial property: for ally E J \ F (Di) and m E F (Di)

we have ry � rni :::; Tm for any i. Consider a pair k and m satisfying condition (ii). If both

k, m E la9, then they also satisfy condition (i) , and k is already before m in s. Next we

deal with pairs with k and m satisfying condition (ii) and for which both k, m E la>b·

In the following, the notation SIJa>b is used to refer to Snla>b for any S � J. If every job

in I (Di)IJa>b is before every job in F (Di), then all jobs separated by Di in la>b are already

in-< order, and we consider I (D2)IJ and F (D2). Otherwise, let ki E I (Di)IJ be the a>b a>b
last job ins that is after some job from F (Di), and let mi be the last such job from F (Di)

before ki. That is s = (XimiY1k1Z1), where Z1nJ (D1)IJ = 0 and Y1 c J\F (D1). By the a>b
above property, we have ry1 :S rn1 :S Tm1 for all y1 E Yi, which implies that Y1 � R�1�mi.
Thus, by Theorem 2, we can insert m1 backward just after k1 to obtain the alternative

optimal sequence (X1Y1k1m1Z1). Note that this interchange cannot violate condition (i) ,

because m1 E la>b and condition (i) could never require it to precede any job. Following in

this way, inserting the last job in F (D1) backward after k1 until there are no such jobs, we

obtain sequence s1 which is an optimal sequence with the property that. I (Di) IJa>b is before

F (D1). Continuing with a similar argument, we obtain si for i = 2, 3, . . . , L, where DL is

the last diagonal job in la>b, and SL is an optimal sequence satisfying condition (i) with the

additional property that I (Di)IJa>b is before F (Di) for i = 1 , 2, . . . , L. This takes care of

the pairs with k, m E la>b·

Now we prove-< is a dominance order for the remaining pairs with k E las.b and m E la>b·

Let mL be the first job in sL from F(DL). If there are no jobs from las.b after mL, then

SL also satisfies the property that I (Di) is before F (Di) for i = 1 , 2, . . . , L. Otherwise, let

kL E las.b be the first such job after mL. By the definition of DL we have kL�mL. Then

sL = (XLmLYLkLZL) and by the choice of kL we have that YL C la>b = Rf:�mL· Thus, by

Theorem 3 , we can insert kL forward just before mL to obtain the sequence (XLkLmLYLZL)·

Note that this interchange does not violate condition (i) , because YL C la>b and condition

13

(i) would never require that kL follow any job from YL. Repeating, until there is no such

job kL, we obtain the sequence s� satisfying condition (i) with the property that I (Di) is

before F (Di) for i = 1 , 2 , . . . , L. We want to demonstrate that I (Di) is before F (Di) for

i = L+ 1, . . . , H. Let kL+l be the last job in I(DL+I) that is after some job in F(DL+1)IJ , a>b

and let mL+I be the last such job before kL+I· Then s� = (XL+ImL+lYL+lkL+lzL+i) where

ZL+l n I(DL+i) = 0 and YL+l C J \ F(DL+i)· Note that YL+I may contain jobs from both

parts of the Johnson partition. Let Yi be the first job in las_b n YL+l after mL+I· Then we

have by our crucial property that ryi ::;; rvL+i ::;; rmL+i' and since Yi E las_b and mL+l E la>b

that Yi-EmL+I· Furthermore, all the jobs between mL+I and Yi are in la>b = RF� , and Yi""'mL+l
thus by Theorem 3 , we can insert Yi forward before mL+I· By repeatedly doing this, we end

up with a sequence where there are only jobs from la>b between mL+I and kL+l· Finally,

again using Theorem 3 , we can insert kL+I forward before mL+I to obtain a sequence with

kL+l before mL+I· AB for the previous case, these interchanges do not violate condition (i) .

We continue until there is no such kL+I and mL+l and then we obtain the sequence s�+l

that satisfies the property that I (Di) is before F (Di) for i = 1 , 2 , . . . , L + 1. We proceed

in exactly the same way for the remaining cases for L + 1 < j ::;; H, and we end up with a

sequence s � satisfying both conditions (i) and (ii). •

4 Branch and Bound

In this section, we outline the basic components of the branch and bound algorithm used to

solve the problem F2 /ri/ Cmax· A pseudocode for it is given in the Appendix.

4.1 Branching rule

We consider a variant of Potts' adaptive branching rule that fixes jobs at both ends of the

schedule [11]. More precisely, each node of the search tree is represented by a pair (a1, a2),

where a1 and a2 are the initial and final partial sequences, respectively. Let Si denote the

set of jobs in ai for i = 1 , 2 and let S be the set of unfixed jobs i.e., S = J\(81U82). We use

-< Is to refer to the restriction of-< to the set S. An immediate successor of (a1, a2) in the

tree is either of the form (a1i, a2) for a type 1 branching; or (a1, ia2) for a type 2 branching,

14

where i is a minimal or maximal job in -<Is, respectively. The types of the branchings are

all the same within a level of the tree. The type for a given level k is fixed on the very first

visit to level k according to the following rule: branch in the direction of the fewest number

of ties at the minimum lower bound. Let n1 and n2 be the number of ties at the minimum

lower bound for potential type 1 and type 2 branchings, at level k. If n1 < n2 the next

branching is of type 1, while if n2 < n1 then the branching is of type 2. If n1 = n2 then the

branching is the same type as at the previous level.

The search strategy is to branch to the newest active node with the smallest lower bound.

We consider two rules to break ties between nodes with the same lower bound. We assume

that the jobs are indexed in increasing Johnson order. The rule T2 breaks ties for type 1

or type 2 branchings by choosing the job with the smallest or largest index, respectively.

The other rule T1 breaks ties for type 1 branchings by choosing the job with the largest

principal filter in -<Is, the smallest index is used as a further tie-breaker. Similarly, for type

2 branchings the rule is to break ties by choosing the job with the largest principal ideal in

-<Is, with the largest index as a further tie-breaker.

4.2 Bounds

Upper bounds are calculated for the root node and for the first n nodes, afterward the upper

bound is evaluated only at leaf nodes. At the root, the upper bound is the result of the

improved ready Johnson heuristic due to Potts [12]. This heuristic has time complexity

0 (n 3 log n) and a worst case performance ratio of 5 / 3. For the first n nodes, the upper

bound is the length of the sequence obtained by concatenating the ready Johnson sequence

between o-1 and o-2, which requires O(nlogn) time. For leaf nodes, there are no unfixed jobs

and the upper bound is just the length of the sequence obtained by concatenating o-1 and

Since the branch and bound tree may require the computation of lower bounds for a huge

number of nodes, it is very important that we use lower bounds whose calculation requires

only O(n) time per bound. (We have also experimented with some potentially better lower

bounds, requiring O(nlogn) time, but they have noticeably slowed down the algorithm

without any substantial increase in the number of problems solved.) We consider four lower

15

bounds for each node (ai, o-2). We calculate lower bounds on the lengths of different paths

for the unfixed jobs 8, and we combine these in various ways with the actual lengths of

the fixed sequences o-1 and 0-2. For o-1 we look at the forward problem (with release times)

and we let C1(a1) and C2(a1) be the completion times on machines 1 and 2, respectively.

For a2 we consider the reverse problem and define the completion times c;(a2) and c;(a2)
analogously. We also define C�ax(o-2) to be the delivery completion time for o-2 with release

times treated like delivery times. For 8 we consider the forward problem, and assume that

these jobs cannot start on machines 1 and 2 before C1(a1) and C2(a1), respectively. Ignoring

release times for the jobs in 8, let £1(8) be the completion time on machine 2 of the Johnson

sequence on 8. Let £2(8) be the completion time on machine 1 of the jobs in 8 sequenced

in nondecreasing r order, that is the earliest time at which the jobs in 8 can be completed

on machine 1. Similarly, if we relax the capacity constraint on machine 1 and sequence the

jobs in nondecreasing r +a order, then this length £3(8) is a lower bound on when the jobs

in 8 can complete on machine 2. Our lower bounds are the following:
LB1 = L1(8) + c;(a2)
LB2 = L2(8) + c;(a2)
LB3 = £2(8)+ r&f bi+ c;(a2)
LB4 = £3(8) + c;(a2).

Finally, the best lower bound is the maximum of the above four lower bounds and C�ax(o-2).

4.3 Decomposition and dominance

We find a starting sequence d1 by applying the following simple decomposition procedure,

which was also used in [13]. Given a sequence s, if there exists a 2 :::; k :::; n such that

rrtj.n Ts(i} > c:(k-l} and rrtj.n [Ts(i} + as(i)] � c;(k-1}' then Sequence (s(l), . . . , s(k - 1)) is
k:S)$n k$i$n

an optimal initial sequence. We apply the decomposition procedure for the jobs sequenced

in nondecreasing r order, then o-1 = (s(l), . . . , s(k - 1)) for the largest k value found. After

we have fixed o-1, we determine the dominance order-< on the remaining jobs in 8 = J\81.

Note that the dominance order is calculated only once at the root node. This eliminates the

potentially large overhead of having to update dynamically changing dominance conditions.

16

5 Computational experiment

5.1 Test problems

For each problem with n jobs 3n integer data (ri, ai , bi) were generated. The processing

times ai and bi were both uniformly distributed between [1 , 100]. Release times ri were

uniformly distributed in the range (0 , n · 101 · R] for RE {0 .2 , 0.4 , 0.5 , 0.6 , 0.8 , 1.0} , following

the technique used by Hariri and Potts [3]. For each R and n combination, 50 problems

were generated. We used the random number generator of Taillard [14] to generate these

problems. This means that all our test problems are reproducible by running the problem

generation procedure from the same seeds. (The seeds used have been saved and are available

from the authors on request.)

5.2 Results

The branch and bound algorithm was coded in Sun Pascal 4.2 and run on a Sun Sparc5

workstation. Three separate versions of the algorithm were run, testing the effectiveness

of the dominance order and the different tie-breakers T1 and T2. Algorithm A1 has the

dominance order-< 'turned on' and uses tie-breaker T1. Algorithm A2 also has the dominance

order 'turned on', but it uses T2 to break ties. Finally, algorithm A3 has the dominance order

'turned off' with tie-breaker T2. Each version of the algorithm was run until either it obtained

the optimal solution or the number of nodes branched from in the tree reached one million

for the problem. In the latter case, the problem was declared unsolved.

Table 4 contains the results of the computational experiment for the different R values.

For each group of 50 problems we report: the total C P U time required for the 50 problems

(denoted by total GPU); the average C P U time for the solved problems in the group (denoted

by avg CPU) ; the total number of nodes in all of the trees (denoted by total nodes); the

number of problems solved (denoted by solved); and for each of the unsolved problems we

calculate the gap between the best solution obtained and the smallest lower bound among

the left-over nodes in the tree, the maximum gap (denoted max gap) is the largest of these

over all the problems.

Our results indicate that the difficulty in solving a problem depends much more on the

17

value of R than on the number of jobs. The actual size of the problem for the branch and

bound algorithm is determined by how many jobs are fixed by the decomposition procedure.

In general, as R increases the percentage of the jobs fixed increases. Recall, in the model

n · 101 is the expected total processing time of the jobs, and the range of the release times is

[O , n · 101 · R]. For small R values (R < 0.4) , the decomposition procedure is ineffective and

fixes less than 2 percent of the jobs. However, since all the jobs are ready relatively early,

release times play less of a role and the problem is easily solved in just a few nodes. For

large R values (R > 0.6) , the opposite is true, the jobs do not become ready simultaneously,

there may be gaps in the schedule, and the decomposition procedure fixes over 90 percent

of the jobs on average. The difficult problems are those with R values concentrated close

to R = 0.5 , in the range R E [0.4 , 0.6] , with the most difficult being R = 0.5 itself. For

R = 0.4 the decomposition procedure fixes only 3 percent of the jobs, while for R = 0.6 it

fixes a much larger 70 percent of the jobs on average. In spite of this large difference in the

effectiveness of the decomposition procedure for R = 0.4 and 0.6 , we are still able to solve

at least 90 percent of these problems, even those with 500 jobs. Whereas, for R = 0.5 the

decomposition procedure fixes around 20 percent of the jobs, and the problems appear to be

more difficult with a clear decreasing trend in the number of problems solved as n increases.

Recall, a problem was 'unsolved' when the number of nodes branched from reached a

million. Thus the total number of nodes for a group of 50 problems, contains a million nodes

for each unsolved problem. As can be seen, the algorithm typically generated much fewer

nodes for the solved problems. In those groups where there were unsolved problems, the

solution obtained was nearly optimal as measured by the maximum gap. The largest such

gap was on the order of 1 to 2 percent, meaning that in the worst case we were within this

range of the optimal solution. The average gap was much smaller, less than 0.5 percent.

Comparing the different versions of the algorithm, we found that versions A1 and A2 (with

the dominance order) always solved as many problems as version A3 (without the dominance

order), and in some cases a few more. The main bene fit of using the dominance order is the

substantial reduction in the C P U time required to solve a group of problems. This reduction

in C P U time is approximately 50 percent over all the groups, for some individual groups,

however, it is substantially more. Consider for example the group of problems with R = 0.4

18

and n = 200: here Ai and A2 both took approximately 37 minutes to complete, while A3

took over 12.5 hours to do so. We also found that this speed-up factor tends to increase as n

increases. This explains why we did not run algorithm A3 for groups with n = 500 jobs, as

it would have required excessively long times. The use of the different tie-breaking rules in

Ai and A2 did not result in any clearly identi fiable differences in the relative performance.

6 Concluding remarks

This paper considered a new branch and bound algorithm for the problem F2 /ri/ Cmax· The

main features of the proposed algorithm are: an adaptive branching rule that fixes jobs at

both ends of the schedule, and a new dominance order that substantially reduces branching.

In general, computational results indicated that the algorithm performed well in solving a

large percentage of test problems, some with up to 500 jobs. We found that the difficult

problems were those where the range of release times was approximately 1/2 the expected

total processing time of the jobs (i.e., R = 0.5 in our model). Even when we failed to solve

a problem, we were always very close to the optimal solution. We also found that the use

of the dominance order resulted in a reduction in computation time of roughly 50 percent,

but in some cases the reduction was substantially more than this. In s ummary, we feel that

the proposed algorithm is relatively more effective than previous solution methods for the

problem F2 /ri/ Gmax, in that it found fewer hard problems and it was also able to solve

much larger problems than previous algorithms. The fact that most problems were solved

to optimum within a few seconds, means that the algorithm has the potential of being used

as a callable subroutine for F2 /ri/ Gmax-type subproblems generated during the solution

of more complex scheduling problems, for example problem Fm /ri/ Gmax· This and the

extendability of the dominance order to the problem F2 /ri/ Lmax will be investigated in

future research.

19

Table 4: Results of the computational experiment
n alg total CPU avg CPU total nodes solved max gap

(hrs:min:sec) (min:sec) (%)

R=0.2

Ai 0.28 0.0056 107 50
40 A2 0.24 0.0048 107 50

A3 0.24 0.0048 107 50

Ai 1.28 0.0256 1787 50
60 A2 1.25 0.0250 1787 50

A3 2.76 0.0552 1789 50

Ai 1.08 0.0216 89 50
80 A2 1.09 0.0218 89 50

A3 0.61 0.0122 89 50
Ai 1.86 0.0372 111 50

100 A2 1.83 0.0366 111 50
A3 1.02 0.0204 129 50

Ai 11.95 0.2390 218 50
200 A2 12.13 0.2426 218 50

A3 5.37 0.1074 218 50
Ai 5:54.83 7.0966 1384 50

500 A2 4:41.84 5.6368 1384 50
R= 0.4

Ai 1:28.11 0.0050 1 ,001 ,861 49 0.14
40 A2 1:04.16 0.0046 1 ,001 ,861 49 0.38

A3 3:21.83 0.0223 1 ,002 ,050 49 0.24
Ai 6:36.66 0.4769 2 ,087 ,118 48 0.74

60 A2 6:32.20 0.4757 2 ,087,118 48 0.74
A3 43:24.47 21.8289 2 ,857,484 48 0.74
Ai 24:25.99 0.7544 3 ,098 ,632 47 0.70

80 A2 23:09.80 0.7507 3 ,098 ,632 47 0.70
A3 1:51:02.56 6.1055 3 ,118,415 47 0.70
Ai 5:44.35 0.0888 1 ,005 ,725 49 0.35

100 A2 5:37.48 0.0910 1 ,005 ,725 49 0.29
A3 38:30.42 0.6191 1 ,007,805 49 0.29
Ai 37:17.79 0.7253 3 ,018 ,471 47 0.39

200 A2 37:01.58 1.0868 3 ,018 ,471 47 0.39
A3 12:31:32.71 17.2627 3 ,050,546 47 0.39
Ai 11:23:54.14 7.0742 5 ,005 ,152 45 0.30

500 A2 10:07:29.49 5.4205 5,005,152 45 0.30

20

Table 4: (continued)
n alg total CPU avg CPU total nodes solved max gap

(hrs:min:sec) (min:sec) (%)

R=0.5

A1 3:30.76 0.0853 2 ,027 ,081 48 0.62
40 A2 5:59.66 0.0926 2 ,029 ,231 48 0.62

A3 10:08.70 0.4476 2 ,051 ,022 48 0.62

A1 18:15.17 0.7275 5 ,189 ,188 45 1.37
60 A2 20:24.29 0.7349 5 ,189 ,000 45 1.55

A3 38:43.69 13.2302 5 ,733 ,770 45 1.37

A1 1:14:10.25 1.5020 8 ,211 ,107 42 0.79
80 A2 1:18:09.24 1.4863 8 ,210,998 42 0.79

A3 2:36:10.73 8.3622 8 ,438 ,701 42 0.79

A1 1:59:06.36 5.3600 9 ,540,374 41 1.26
100 A2 1:52:27.48 5.3471 9 ,540,357 41 1.26

A3 4:19:29.52 8.3293 10,143 ,663 40 1.26

Ai 3:33:16.72 1.3308 13 ,019 ,825 37 0.97
200 A2 6:15:50.78 1.2841 13 ,020 ,073 37 0.97

A3 26:17:52.63 4:46.57 13 ,639 ,751 37 0.97

Ai 17:42:05.92 7.0524 14 ,019 ,667 36 0.24
500 A2 15:52:55.39 5.9951 14 ,019,667 36 0.24

R= 0.6
Ai 2:59.01 0.0608 1 ,017 ,391 49 2.71

40 A2 2:51.86 0.0594 1 ,017 ,379 49 2.31
A3 7:38.57 0.5191 1 ,283 ,222 49 2.71

Ai 13:23.16 0.0030 2 ,001 ,035 48 0.26
60 A2 13:19.02 0.0022 2 ,000,982 48 0.26

A3 23:51.37 0.1535 2 ,001 ,383 48 0.24
Ai 16:06.71 1.6158 3 ,548 ,901 47 1.30

80 A2 19:42.08 1.5206 4 ,496 ,662 46 1.13
A3 42:25.34 5.6657 5 ,154 ,014 45 1.47

Ai 24:59.50 0.1235 4 ,029 ,291 46 0.50
100 A2 24:48.82 0.1193 4 ,029 ,291 46 0.50

A3 58:36.76 0.4002 5 ,071 ,945 45 0.50
Ai 11:26.63 0.3044 2 ,082 ,825 48 0.49

200 A2 13:44.03 0.0985 3 ,028,215 47 0.49
A3 21:10.28 0.8350 2 ,139 ,389 48 0.49

Ai 3:16:36.69 4.1353 5 ,066 ,898 45 0.19
500 A2 3:14:37.67 7.1349 5 ,066 ,898 45 0.19

21

Table 4: (continued)
n alg total CPU avg CPU total nodes solved max gap

(hrs:min:sec) (min:sec) (%)

R=0.8

Ai 0.12 0.0024 216 50
40 A2 0.10 0.0020 216 50

A3 0.13 0.0026 216 50

Ai 0.13 0.0026 284 50
60 A2 0.15 0.0030 284 50

A3 0.17 0.0034 342 50

Ai 0.19 0.0038 218 50
80 A2 0.20 0.0040 218 50

Ag 0.22 0.0044 232 50

Ai 0.25 0.0050 502 50
100 A2 0.29 0.0058 502 50

A3 0.33 0.0060 746 50

Ai 4:09.77 0.0086 1 ,000 ,613 49 0.22
200 A2 3:58.20 0.0119 1 ,000,607 49 0.22

A3 6:49.31 0.0138 1 ,001,398 49 0.22

Ai 6.34 0.1268 11,683 50
500 A2 4.46 0.0892 6 ,916 50

R= LO

Ai 0.07 0.0014 91 50
40 A2 0.10 0.0020 91 50

A3 0.07 0.0014 91 50
Ai 0.12 0.0024 102 50

60 A2 0.11 0.0022 102 50
A3 0.12 0.0024 102 50
Ai 0.17 0.0034 169 50

80 A2 0.17 0.0034 169 50
Ag 0.20 0.0040 189 50
Ai 0.19 0.0038 88 50

100 A2 0.21 0.0042 87 50
A3 0.22 0.0044 101 50

Ai 0.55 0.0110 82 50
200 A2 0.55 0.0110 82 50

A3 0.56 0.0112 89 50

Ai 2.35 0.0470 81 50
500 A2 2.32 0.0464 81 50

22

References

[1] Conway, R.W., W.L. Maxwell and L.W. Miller (1967). Theory of Scheduling , Addison

Wesley, Reading, Massachusetts.

[2] Grabowski, J. (1980). On two-machine scheduling with release and due dates to mini­

mize maximum lateness. Opsearch 17 , 133-154.

[3] Hariri, A.M., and C.N. Potts (1983). An algorithm for single machine sequencing with

release dates to minimize total weighted completion time. Discrete Appl. Math. 5 , 99-

109.

[4] Hall, L.A. (1994). A polynomial approximation scheme for a constrained flow shop

scheduling problem. Math. Opns. Res. 19 , 68-85.

[5] Johnson, S.M. (1954). Optimal two- and three-stage production schedules with setup

times included. Naval Res. Logist. Quart. 1, 61-68.

[6] Kovalyov, M.Y., and F. Werner (1997). A polynomial approximation scheme for problem

F2 /rj/ Cmax· Oper. Res. Lett. 20 , 75-79.

[7] Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (1989). Sequencing

and scheduling: Algorithms and complexity. Report BS-R8909, CWI Amsterdam.

[8] Lenstra, J.K., A.H.G. Rinnooy Kan and P. Brucker (1977). Complexity of machine

scheduling problems. Annals of Disc. Math. 1 , 343-362.

[9] Monma, C.L. (1978). Properties and efficient algorithms for certain classes of sequencing

problems, Ph. D. Thesis, Cornell University, Ithaca, New York.

[10] Pinedo, M. (1995) SCHEDULING: Theory, Algorithms and Systems, Prentice Hall,

Englewood Cliffs, N .J.

23

[11] Potts, C.N. (1980). An adaptive branching rule for the permutation flow-shop problem.

European J. Oper. Res. 5 , 19-25.

[12] Potts, C.N. (1985). Analysis of heuristics for two-machine flow-shop sequencing subject

to release dates. Math. Opns. Res. 10, 576-584.

[13] Tadei, R., J.N.D. Gupta, F. Della Croce and M. Cortesi (1998) . Minimising makespan

in the two-machine flow-shop with release times. J. Oper. Res. Soc. 49 , 77-85.

[14] Taillard, E. (1993) Benchmarks for basic scheduling problems. European J. Oper. Res.

64 , 278-285.

Appendix: Branch and bound algorithm

Calculations for root node

• apply decomposition procedure with nondecreasing r sequence to fix u1;

• let S := J\81, u2 := 0; nodes:= O;

• construct the dominance order -<;

• calculate initial UB and LB, and let BestMakespan := UB;

• call recursive procedure Opt that facilitates branching;

procedure Opt(u1, S, u2, BestMakespan);

begin

if nodes � 1000000 then

begin

nodes:= nodes + !;{increment the number of nodes branched from}

if (nodes� n) or (ISI = 1) then calculate UB and (possibly) update BestMakespan

if (LB< BestMakespan) and (ISI # 1) then

24

begin

find lists of minimal and maximal jobs in -<Is

if type = 1 then calculate lower bounds for minimal and sort in nondecreasing

order

else if type = 2 then calculate lower bounds for maximal and sort in nonde­

creasing order

else (type not set)

begin

must calculate and sort lower bounds for both minimal and maximal to

find n1 and n2 to determine type for node

if n1 < n2 then type:= 1

else if n1 > n2 then type := 2

else type := previous_type;

end;

if type = 1 then list := minimal

else if type= 2 then list:= maximal;

while (list=/= 0) and (BestMakespan > lower bound from head of list) do

begin

remove head of list

let job be the job that is fixed and let LB be its lower bound

remove job from -<

S := S\{job};

if type= 1 then add job to a1

else if type= 2 then add job to a2;

Opt(a1, S, a2, B estM akespan); {recursive call}

if type= 1 then remove job from a1

else if type= 2 then remove job from a2;

25

S :=SU {job};

restore job to -<

end;{ while}

end;{if (LB< BestMakespan) and (ISI =/= 1)}

end;{if nodes ::; 1000000}

end;

26

Faculty of Business
McMaster University

WORKING PAPERS - RECENT RELEASES

410. Jiang Chen and George Steiner, "Approximation Methods for Discrete Lot Streamingin
Flow Shops" , June, 1995.

4 1 1 . Harish C . Jain and S . Muthuchidambaram, "Bill 40 Amendments to Ontario
Labour Relations Act: An Overview and Evaluation" , June, 1995 .

412. Jiang Chan and George Steiner, "Discrete Lot Streaming in Three-Machine Flow Shops" ,
July, 1995 .

413 . J . Brimberg, A. Mehrez and G . O. Wesolowsky, "Allocation o f Queueing Facilities Using
a Minimax Criterion " , January, 1996.

414. Isik Zeytinoglu and Jeanne Norris, "Global Diversity in Employment Relationships: A
Typology of Flexible Employment" , March, 1996.

415 . N . Archer, " Characterizing World Wide Web Search Strategies" , April, 1996.

416. J. Rose, "Immediacy and Saliency in Remedying Employer Opposition to Union
Organizing Campaigns" , July, 1996.

417. Roy J. Adams and Parbudyal Singh, "Worker Rights Under NAFTA: Experience With the
North American Agreement on Labor Cooperation" , September, 1996.

418 . George Steiner and Paul Stephenson, "Subset-Restricted Interchange for Dynamic Min­

Max Scheduling Problems" , September, 1996.

419. Robert F. Love and Halit Uster, "Comparison of the Properties and the Performance of
the Criteria Used to Evaluate the Accuracy of Distance Predicting Functions" , November,
1996.

420. Harish C. Jain and Simon Taggar, "The Status of Employment Equity in Canada" ,
December, 1996.

421 . Harish C . Jain and Parbudyal Singh, "Beyond The Rhetoric: An Assessment of the
Political Arguments and Legal Principles on Strike Replacement Laws in North America" ,
January, 1997.

422. Jason Schwandt, "Electronic Data Interchange: An Overview of Its Origins, Status, and
Future" , March, 1997.

423 . Christopher K. Bart with John C. Tabone, "Mission Statement Rationales and
Organizational Alignment in the Not-for-profit Healthcare Sector" , November, 1997.

424. Harish C. Jain, Michael Piczak, I�ik Urla Zeytinoglu, "Workplace Substance Testing - An
Exploratory Study " , November, 1997.

425 . S . Suarga, Yufei Yuan, Joseph B. Rose, and Norman Archer, "Web-based Collective
Bargaining Support System: A Valid Process Support Tool for Remote Negotiation " ,
January, 1998.

426. Pawan S . Budhwar and Harish C. Jain, "Evaluating Levels of Strategic Integration and
Development of Human Resource Management in Britain" , March, 1998.

427. Halit -Oster and Robert F. Love, "Application of Weighted Sums of Order p to Distance
Estimation" , April, 1998.

428. Halit -Oster and Robert F. Love, " On the Directional Bias of the fbp-norm " , April, 1998.

429. Milena Head, Norm Archer, and Yufei Yuan, "MEMOS : A World Wide Web Navigation
Aid" , October, 1998.

430. Harish C. Jain and Parbudyal Singh, "The Effects of the Use of Strike Replacement
Workers on Strike Duration in Canada" , February, 1999.

43 1 . Parbudyal Singh and Harish C . Jain, "Strike Replacements in the United States, Canada
and Mexico: A Review of the Law and Empirical Research" , February, 1999 .

432. John W. Medcof and Jeremy Boyko, "Reinforcing, Revising and Reconciling Attributions
in the Employment Interview" , March, 1999.

433 . Norm Archer, "World Wide Web Business Catalogs in Business-to-Business
Procurement" , March, 1999.

434. Diwakar Gupta and Saifallah Benjaafar, "Make-to-order, Make-to-stock, or Delay Product
Differentiation? - A Common Framework for Modeling and Analysis" , April, 1999.

435 . Harish C. Jain, Parbudyal Singh and Carol Agocs, "Recruitment, Selection and Promotion
of Visible Minorities and Aboriginals in Selected Canadian Police Services" , April, 1999.

436. Harish C. Jain and Angus Bowmaker-Falconer, "Employment Equity/ Affirmative Action
Codes of Practice and Best Practices in USA, Britain, Canada and Other Selected
Countries" , May, 1999.

437. Diwakar Gupta, Yavuz Giinalay, and Mandyam M. Srinivasan , "On the Relationship
Between Preventive Maintenance and Manufacturing System Performance" , June, 1999.

IY\V\·: s �ei.
�13
:t�.s
. I\ 41-
V\O. 4-3'b

	1233218
	1233218_2

