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Abstract 
We consider the two-machine flow-shop problem with release times where 

the objective is to minimize the maximum lateness. We derive a new dominance 

order and incorporate it into an efficient branch and bound algorithm which uses 
an adaptive branching scheme together with new fuzzy dominance properties 

for scheduling and searching. The algorithm performed very well. It solved 

within a few seconds more than 973 of the test problems with up to 200 jobs 

in a large-scale computational experiment. For the unsolved problems, the 

average gap between the best solution found and the optimum was less than 

0.53. 
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1 Introduction 

We consider the two-machine flow-shop problem with release times where the ob­
jective is to minimize the maximum lateness for permutation schedules, denoted by 
F2 /rj,perm/ Lmax· (We use the standard notation to describe scheduling problems, 
and refer the reader to [7] and [10] for any terminology not defined here.) This is a 
well-known strongly NP-hard scheduling problem [8]. We use the delivery-time for­
mulation of the problem, which transforms it into a makespan minimization problem 
in a four-machine flow shop, where the first and last machines are non-bottleneck 
machines. We denote this problem by F2 /rj,perm/ L�ax· Much of the underlying 
interest in the problem F2 /rj,perm/ L�ax stems from the fact that it arises natu­
rally in the solution of more complicated scheduling problems, such as the problem 
Fm//Cmax [6]. The complexity result above suggests that in order to optimally solve 
the problem F2 /rj,perm/ L:nax> it is necessary to resort to some efficient enumerative 
technique, such as branch and bound. 

Branch and bound algorithms are characterized by various components: the branch­
ing scheme employed, the different types of upper and lower bounds used, and other 
features. Grabowski [2] and Grabowski et al. [3] presented branch and bound al­
gorithms for the problems F2 /riiperm/ L:nax and Fm /rj,perm/ L�ax' respectively. 
These algorithms used a branching scheme that exploited certain dominance proper­
ties of a critical path. Tadei et al. [ 12) tried this type of branching scheme for the 
problem F2 /ri/ Cmax, but found it to be less effective than their traditional n-ary 
branching scheme, that fixes jobs only at the beginning of the schedule. Potts [ 11) 
considered an adaptive branching scheme that fixes jobs at both ends of the schedule, 
and found this branching scheme to be quite effective for the problem Fm//Cmax· 
Dominance rules are another common feature of branch and bound algorithms, they 
are typically used to eliminate nodes (before their bounds are calculated) in order to 
reduce computation time and storage requirements. Cheng et al. [1] apply approxi­
mate dominance rules, in the context of fuzzy inference, for scheduling and searching 
in flow-shop problems, such as F3//Cmax and Fm /perm/ Cmax· The authors were 
able to find a nearly optimal initial schedule by repeatedly applying the fuzzy dom­
inance rule to schedule the jobs. This fuzzy schedule also proved very useful for 
tie-breaking purposes, to decide which way to branch among several nodes with the 
same lower bound. 

In this paper, we consider a new branch and bound algorithm for solving the 
problem F2 /rj,perm/ L�ax> with the following main features. We use an adaptive 
n-ary branching rule, a variant of the one used by Potts. We derive a new dominance 
order on the job set, using the new proof technique of subset-restricted interchange, 
that employs a new interchange operator which we introduce. In addition, we make 
use of fuzzy dominance properties for initial scheduling and tie-breaking. We also 
incorporate a simple decomposition procedure that reduces the problem size by fixing 
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jobs at the beginning of the schedule. We use six very quickly computable lower 
bounds at each node of the tree. The algorithm represents an effective tool for solving 
large instances of the strongly NP-hard problem F 2  /rj,perm/ L:nax· In a large-scale 
computational experiment, the algorithm has solved, in a matter of a few seconds, 
4,384 of the 4,500 randomly generated test problems with up to 200 jobs. Even for the 
unsolved problems, the best solution found by the algorithm was on average within 
less than 0.53 of the optimal value. 

The rest of the paper is organized as follows. In the next section, we introduce the 
preliminary definitions and notation for sequencing problems and partial orders. In 
section 3, we derive several new dominance results for the problem F 2  /ri,perm/ L:nax. 
In section 4, we present the details of our branch and bound algorithm, a pseudocode 
for it is found in the Appendix. In section 5, we discuss the results of a large-scale 
computational experiment. In the last section, we make our concluding remarks. 

2 Preliminary definitions and notation 

2.1 Sequencing notation 

We call a scheduling problem a sequencing problem and its objective a sequencing 
function if any schedule can be completely specified by a single sequence in which the 
jobs are performed on every machine. As customary, we will restrict our attention 
to such permutation schedules, which allows us to treat the problem F 2  /ri/ Lmax 
as a sequencing problem. Let J = {1, 2, . . .  , n} be the set of jobs to be sequenced. 
Jobs are characterized by a list of parameters, each job j possesses a release time 
rj, a due date dj, and processing times aj and bi on machines 1 and 2, respectively. 
A sequences on J is a function from { 1, 2, . . .  ,n} to J represented by the n-tuple 
(s (1) , s (2) , .. . , s (n)), where s (i) is the ith job in sequences. The completion time 
of job s(i) on machines 1 and 2 will be denoted by c;(i) and c;(i)' respectively, and the 
lateness of job s(i) is defined to be Ls(i) = c;(i) - ds(i)· We will consider the problem 

in its equivalent delivery-time form, F 2  /rj,perm/ L:nax, where Qj = T - di is the 
delivery time for job j and T is a constant with T � max{ di IJ E J}. If we define 
L� =CJ+ qj, then L� =CJ+ T - di =Li+ T, and we see that the two objectives 
L:nax and Lmax are equivalent. The delivery-time representation has the important 
advantage that this problem is completely symmetrical and equivalent to its reverse 
problem in which each job j has 'release time' Qj, and must be processed first on 
machine 2 for bi time, followed by processing on machine 1 for aj and a 'delivery 
time' of rj. For our problem, the dominance order will be a partial order defined by 
the parameters of the jobs. Thus we introduce certain definitions for partially ordered 
sets (posets). 
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2.2 Partial orders 

By a partially ordered set we mean a pair P = (X, .:SP) consisting of a set X together 
with a binary relation :SP on X x X which is reflexive, antisymmetric, and transitive. 
For u, v E X , u .:SP v is interpreted as u is less than or equal to v in P. Similarly, 
u <p v means that u .:SP v and u #- v. The usual symbols .::; and < will be reserved 
for relations between real numbers. An element v is minimal in P if there is no u with 
u <p v. Similarly, u is maximal if there is no v such that u <p v. A partial order 
P = ( X, .:SP) is a linear order (or complete order) if for every pair ( u, v) E X x X 
either u .:SP v or v .:SP u. Given a pair of partial orders P = (X, .:SP) and Q = (X, :SQ) 
on the same set X, we call Q an extension of P ( P a suborder of Q ) if u .:SP v 
implies u <Q v for all u, v E X. A partial order Q = (X, <Q) is a linear extension 
of a partial order P = (X, .:SP ), if Q is a linear order that extends P. Given two 
partial orders Pi = (X, .:Spi) and P2 = (X, :Sp2), we can define the partial order 
P1 n P2 = (X, :SP1np2), the intersection of P1 and P2, where u :SP1np2 v if and only if 
u .:Sp1 v and u .:SP2 v for all u, v E X. A partial order P on the job set of a sequencing 
problem is called a dominance order if there is an optimal sequence that is a linear 
extension of P.  

3 Dominance results 

In this section, we present dominance results for the problem F2 /ri, perm/ L�ax· 
First we derive a new dominance order -<, using subset-restricted interchange, a new 
technique that incorporates certain restrictions on the subset of intermediate jobs 
for a new interchange operator which we introduce. Secondly, we consider a fuzzy 
approximation of dominance that is used in both initial scheduling and searching. 

3.1 Subset-restricted interchange 

We follow Monma [9] in defining our interchange operators. Let s1 be a sequence with 
job m preceding job k. In general, 81 is of the form 81 = (XmYkZ) ,  where X, Y and 
Z are subsequences of J, and let U and V be disjoint subsequences partitioning Y. 
Three types of interchanges of jobs k and m that leave k preceding m in the resulting 
sequence 82, are the following: 

1. Backward Insertion(BI): 
2. Forward Insertion(FI) : 
3. Shuffie Interchange(SI ): 

82 = (XYkmZ) 
82 = (XkmYZ) 
82 = (XUkmVZ) . 

To define more precisely the new SI operator, consider again sequence 81 = (X mYkZ) 
and a partition of Y into Y = U UV, where, for example, U = (u1u2u3) and V = 
(v1v2v3v4), and Y is of the form Y = (u1u2v1v2u3v3v4). Then SI applied to sequence 
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si ,  for this particular choice of U and V, gives sequence s2 = (Xu1u2u3kmv1v2v3v4Z). 
We call it shuffle interchange because the interchange of jobs has the resulting net 
effect of 'shuffling' sequence Y into subsequences U and V, and placing jobs k and 
m between them. Notice that SI may change the relative order of some u's and v's 
after interchange, but it never changes the relative order of two u's or two v's. Thus 
SI depends on the choice of subsequences U and V. SI generalizes BI and FI : If we 
let V and U be the sets of jobs in sequences V and U (for the sake of brevity, we do 
not distinguish between sets and sequences) when V = 0 or U = 0, then SI reduces 
to BI or FI , respectively. Further, these interchanges all reduce to adjacent pairwise 
interchange in the case when Y = 0. In summary, the SI operator generalizes all 
these operators and at the same time allows a unified treatment for them. 

Recall that the problem F2//Cmax is solved by the Johnson order: first order 
the jobs with aj :'.S bi in nondecreasing a order followed by the jobs with aj > 
bi in nonincreasing b order [5]. To emphasize the partitioning of the jobs in the 
Johnson order we define la9 = {j lai :'.S bi } and Ja>b = {j lai >bi } .  This ordering 
of the jobs is an adjacent interchange order for the problem F2//Cmax, and since it 
also completely orders every pair of jobs, it is an optimal ordering (i.e., an optimal 
sequence) . An adjacent interchange order for the problem F2 /rj, perm/ L:n_ax is the 
intersection of the nondecreasing r order, the nonincreasing q order and the Johnson 
order, as defined formally below. Note that this order is no longer a complete order, 
rather it is only a partial order. 

Definition 1 Adjacent Interchange Order -E: k-Em if rk :'.S r m, qk � qm and 
(i) k, m E las,b and ak :'.Sam or, 
(ii) k E la9 and m E la>b or, 
(iii) k, m E Ja>b and bk � bm. 

In general, if an adjacent interchange order is only a partial order (and not a 
complete order) , it need not be a dominance order. This is the case for -E defined 
above, if we consider the instance of F2 /rj , perm/ L:n_ax in Example 1. Here we have 
3-E.1 (since r3 = r1 = 10, q3 = 10 � 0 = qi , and 3, 1 E Ja>b with b3 = 25 > 15 = bi) ,  
however, the unique optimal sequence is (1, 2 ,  3 ,  4) with L:n_ax = 125. Thus we see 
that -E is not a dominance order, since there is no optimal sequence that is a linear 
extension of -E. We will use subset-restricted interchange to find a suborder of -E that 
is a dominance order. 

Example 1 A 4 job problem to illustrate that -E is not necessarily a dominance order. 

j 1 2 3 4 
rj 10 20 10 30 
aj 20 20 30 25 
bj 15 30 25 20 
% 0 10 10 0 
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Recall, that the SI operator above interchanges k and m 'around' sequence Y, for 
some particular choice of U and V. Intuitively, whether or not such an interchange 
leads to a reduction in cost (for a given sequencing function f and adjacent interchange 
order -E), should depend on the composition of Y, as well as on the choice of U and 
V. We consider interchanges that are restricted by conditions on Y and define the 
subset-restricted interchange condition for SI . 

Definition 2 An adjacent interchange order -E together with the collection of subsets 
{Uk -Em U Vk -Em lk-Em } satisfies the Shuffie Interchange Condition for a sequencing }unction f if 
for all jobs k, m and sequences X, Y, Z there exist a partition U and V into disjoint 
subsequences of Y such that 
k-Em, U �Uk -Em' and V � Vk -Em imply that f (XUkmVZ) ::; f (XmYkZ) .  

Next we examine the structure of Uk -Em and Vk -Em for the different types of pairs 
k-Em for the problem F2 /rj, perm/ L�ax· 

Theorem 1 If k E Ja-Sb and ak ::; am, then k-Em together with the sets 
Uk -Em= {u lu E Ja'5,b, ru :S rm,au :Sam }  and Vk-Em = {v lqv :S qk } satisfy the Shuffie 
Interchange Condition. 

Proof. Given a sequence s we construct the directed graph G ( s) (the conjunctive 
graph) to evaluate L:nax(s). Each job s(j) is represented by four nodes with weights 
rs(j), as(j), bs(j) i  and qs(j)> respectively. L�ax(s) is the length of the longest 'node­
weighted' path from the start node to the finish node. These paths can be uniquely 
identified by the triples (s(i) ,  s(j) ,  s(k) ) ,  for 1 ::; i::; j ::; k::; n, representing the end 
points of the three horizontal segments on the path (see Figure 1). By definition, ( j k ) 

L�ax (s) = . m� rs(i) +Las(!) +  L bs(l) + qs(k) ' (s(i),s(j),s(k)) !- . !- . 19'Sj'5,k<Sn -t -J 

and we can evaluate L�ax ( s) as the maximum over all such paths in G ( s) . 
Let s1 = (XmYkZ) be a sequence for pair k-Em with k E Ja9 and ak ::; am. 

Let U � Uk -Em and V � Vk-Em be disjoint subsequences of Y, with Y = U UV. 
We apply shuffie interchange to s1 , with this U and V, and obtain sequence s2 = 
(XUkmVZ). (We use lower case letters x, u, v , and z to refer to arbitrary generic 
elements of subsequences X, U, V, or Z, respectively.) We can demonstrate that 
s2 is not worse than s1 , by exhibiting for every path in G(s2) a dominating path 
in G(s1) (see Figure 2) . For example, consider the path (u, k, v) in G(s2) , then the 
corresponding dominating path in G(s1) is (m, m, k) ,  and the following inequality 
states that path (u, k, v) in G(s2) is not longer than the path (m, m, k) is in G(s1) . 
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G(s) �(I) 0,_,--... 1.c�1--� )---� 

• 
• as(i) 

>---------... .. � 
�(J) ! as(J) 

o--.. * 

: as(k) 

Figure 1 :  Directed graph G(s) for problem F2 /rj, perm/ L:Uax· 

ru+ L ai + ak + bk +  bm+ L bi + qv :::; Tm + am +  bm+ L bi+ L bi + bk + qk ,  
iEU[u,·] iEV(.,vJ iEU iEV 

The inequality holds, since ru :::; rm, U � la"5:_b, ak :::; am, and qk 2: qv. (Note that we 
use U[u,.] to represent the subsequence of U starting with u and ending with the last 
job in U; and V[. ,v] to represent the subsequence of V from its beginning to job v. )  

To complete the proof, we present Table 4 in the Appendix, which gives the 
dominating paths in G(s1) for each path in G(s2). The last column contains the 
argument why each path is a dominating path, i .e. , .  why the corresponding ineguality 
holds. • 

Theorem 2 If k E la-:5.b and m E la>b, then k-<E:m together with the sets 
uk-<E:m = { u iu E la9, r tL :::; r m } and vk-<E:m = { v Iv E la>b , qv :::; qk } satisfies the Shuf­
fle Interchange Condition. 
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Figure 2: Directed graphs G(s2) and G(s1)  for SI . 

Proof. Similarly, Table 5 in the Appendix contains the appropriate dominating 
paths. • 

Theorem 3 If m E la>b and bk 2: bm, then k-Em together with the sets 
Uk-Em = {ulru '.S rm }  and Vk-Em = {v lv E la>b,qv:::; qk,bv:::; bk }satisfies the Shuffie 
Interchange Condition. 

Proof. Symmetric to Theorem 1, i.e., Theorem 3 is equivalent to Theorem 1 
applied to the reverse problem • 

Theorems 1 to 3 represent new dominance conditions applicable to sequences of 
jobs. Their application, however, would require elaborate data structures and complex 
procedures for checking that the intermediate sequences Y meet the conditions of the 
theorems. In the following section, we show that there is a much better way to exploit 
these dominance results, by deriving from them a new dominance order between pairs 
of jobs, irrespective of where they are in a sequence. 
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3.2 New dominance order for F2/rj,perm/ L�ax 
We use subset-restricted interchange to derive a new dominance order on the jobs, 
denoted -<, for the problem F2 /ri, perm/ L�ax· We define the following sets of jobs 
for every pair k-E:m. (Note that a pair k-E:m may satisfy more than one of the following 
three conditions, so more than one may be applicable to a pair.) 
1. If ak <bk and ak:::; am, then let U�-E:m = {u lu E la�b, Tu:::; Tm, au:::; am, Qu > Qk} 

V1-E:m = { V lqv :::; Qk }. 
2. If ak <bk and am> bm, then let ui-E:m = {u lu E la�b, Tu:::; Tm} 

v,;-E:m = { v Iv E la>b, Qv :::; Qk }. 
3. If am> bm and bk 2:: bm, then let U2 -<Em = {u lru:::; rm} 

v;-E:m = {v Iv E la>bi Qv:::; Qk,bv:::; bk, Tv >Tm}· 
These are just the sets Uk-<Em and Vk -<Em from the previous three theorems with 
additional conditions in cases 1 and 3, to ensure that uk-E:m n v;-<Em = 0 and maintain 
that Vi f ui for Ui E uk-E:m and Vi E v;-<Em' In case 1, Qu > Qk has been added and 
rv > Tm has been added in case 3. For a given pair k-E:m, k-E:m is included in the 
dominance order -< exactly when any of the applicable sets uk-E:m u v;-<Em is the entire 
job set. Thus, the dominance order -< is defined as the suborder of -<E consisting of 
pairs k..:Em, that can be interchanged around any intermediate sequence using the SI 
operator for the appropriate choice of U and V .  

Definition 3 If k-<Em and Uk-E:m U v;-<Em = J for some i applicable to k and m, then 
k-< m. 

To illustrate the definition of-<, consider again Example 1. The adjacent inter­
change order -<E consists of the pairs 2-<E4, 3-<E4, and (as we saw previously) 3-<El. 
For pair 2-<E4 both cases 1 and 2 apply, and checking the conditions for these we see 
that both u;-<E4 U "Y;1

-<E4 and Ui-<E4 U V22-<E4 are equal to J,  thus we have that 2 -< 4. For 
pairs 3-<E4 and 3-<El only case 3 applies. We also have Ui-<E4u1'33-<E4 = J, thus 3-< 4. 
However, Ui-<Ei U1'33-<E1 '/=- J because job 2rj:.1'33-<E1 since2 E la�b, and 2 rj:. Ut-E:i since 
r2 > r1, thus 3 -/< 1. Therefore, we have that the dominance order -< is the suborder 
of -<E consisting of the pairs 2 -< 4 and 3 -< 4, and we see that the unique optimal 
sequence ( 1, 2, 3, 4) is indeed a linear extension of -<, as we would expect. 

We define the following suborders of -< for the different types of pairs in -<E 

-<1 =-< n(Ia9 x la9) 
-<2 =-< n( la9 x la>b) 
-<3 =-< n(Ja>b x la>b), 

where A x B represents all pairs with first element from A and second element from 
B. Note that for the pairs in -<1 and -<3, cases 1 and 3 must hold, respectively. 
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Whereas, for the pairs in -<2 at least one of cases 1-3 must hold. These suborders will 
be used first to demonstrate that -< is indeed a partial order, and then to prove that 
-< is a dominance order for problem F2 /ri, perm/ L�ax· 

Lemma 1 Suborder -< is a partial order. 

Proof. Since -< is a suborder of �' it only remains to show that -< is transitive, 
i.e., we want to show that for any jobs k, l ,  and m if k -< l and l -< m, then 
k -< m. First we consider the case where all of the jobs k, l , and m are in las_b· 
In this case, we have that k -<1 l and l -<1 m, and we want to demonstrate that 
k -<1 m. By Definition 3 k -<1 m if Ul�m U Vk1�m = J. Since k-El-Em and k, l ,  
and m are in la<b, we have that rk ::; r1 ::; Tm and ak ::; a1 ::; am. These imply 
that Ul-Em ;2 U{�l' and since Vk1-Em = Vk1-El' we have that Ul�m U Vk1�m contains 
Ul-E1 U Vk1-Er However, k -<1 l implies that U1�1 U Vk1�1 = J, which by the above 
observation and Definition 3 implies that k -<1 m. Next we examine the case where 
k, l E la9 and m E la>b, in which k -<1 l and l -<2 m. We consider separately 
the different cases of Definition 3 that may apply for pair l -<2 m. If case 1 applies 
for l -<2 m, then (ak ::;) a1 ::; am and the previous argument carries over exactly 
as above. For case 2, we assume that u;2-E:m U Yz�m = J. Since k-El-Em, we have 
that rk ::; T1 ::; Tm and qk 2:'.: q1 2:'.: qm. These imply, however, that u;-Em = U!

2�mand 
Vk

2-Em ;2 Yz�m' so we also have that u;-Em UVk
2�m = J. Thus, by Definition 3 we have 

that k -<2 m. Finally, if case 3 applies to l -<2 m, then b1 2:'.: bm and U1
3-Em U Yz�m = J. 

We notice that (Ul-Em U Yz�m) n las_b equals U?�m n las_b, which equals ui�m· Since 
Yz�mnla9 = 0 and U1

3�mUYz�m = J, this implies that u;�m contains all of the jobs 
in la:sb· We also have that U1�1UVk1�1 = J since k -<1 l. Similarly, (Ui-E1UVk1-E1)nla>b 
equals Vk1-E1 n la>b, which equals V,?-Em· Since U1�1 n la>b = 0 and U1-E1 U Vk1-E1 = J, 
this implies that V,?�m contains all of the jobs in la>b· Combining these two results 
we have that u;-Em u v,;-Em contains all of the jobs in J' from which it follows by 
Definition 3 that k -<2 m. The remaining cases, where k, l ,  and m are in la>b k -<3 l 
and l -<3 m, or k E las_b and l, m E la>b with k -<2 l and l -<3 m, follow by symmetry. 
Thus we see that -< is a transitive order indeed. • 

Theorem 4 Partial order-< is a dominance order for problem F2 /ri, perm/ L�ax· 

Proof. Let s be an optimal sequence. We find an optimal linear extension of -< 
by repeatedly applying the SI operator to sequences without increasing the length 
of the longest path. We demonstrate the comparabilities in the order -<3, -<1 and -<2, 
respectively. 

Assume that s is not a linear extension of -<3. Let m E la>b be the last job in 
s with some job j E la>b with j -<3 m, such that j is after m in s. Let k be the 
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first such job j in s, then s is of the form s = (XmYkZ) .  Since k -< m, k and m 
can be interchanged around any intermediate sequence using SI, in particular around 
subsequence Y. Since k -<s m, Uk«Em U Vk-Em = U2-<Em U v,:-Em = J. Applying SI to 
s with U = U2-<Em n Y and V = Vk

3-<Em n Y, we obtain sequence (XUkmVZ). This . 
sequence now orders k and m properly, and it does not introduce any new violations 
of -<3 : To see this, consider any jobs u E U and v E V. Since u E U2-<Em and 
v E Vk

3-<Em' v f: u, so v -/. u, which implies that v -/.s u. Also, m -/.3 u follows by the 
choice of m, and v -/,3 k follows since r v > r m � rk. By repeatedly applying the above 
procedure until there is no such job m, we obtain an optimal sequence s' which is a 
linear extension of -<3 . 

For -< 1, we proceed in exactly the same way. Assume that sequence s' is not a 
linear extension of -<1. Let m E Ja<b be the last job ins' with some job j E Ja<b with 
j -<1 m, such that j is after m ins-: Let k be the first such job j ins', then s' i; of the 
forms' = (XmYkZ). Applying SI to s' with U = U�-Em n Y and V = Vk1-<Em n Y, 
we obtain sequence (XUkmVZ) . This sequence now orders k and m properly, and it 
does not introduce any new violations of -<1 or -<3: For -<i, once again consider any 
jobs u E U and v E V. Since, v f: u, then v -/.1 u. Also m -/.1 u since qu > qk � qm 
from the definition of U�«Em' and v -/.1 k follows by the choice of k . To see that this 
doesn't introduce any new violations of -<3 either, note that all jobs in Y n Ja>b must 
be in V, and for these jobs their relative order is unchanged. Repeatedly applying 
SI we obtain an optimal sequences" that is a linear extension of -<1 and -<3. 

Finally, assume that sequences" is not a linear extension of -<2 . Let m E Ja>b be 
the last job in s with some job j E Ja<b with j -<2 m, such that j is after m in s. Let 
k be the first such job j in s", then s'T is of the form s" = ( X mY kZ). Since k -<2 m, 
we know for some i that J = Uk-Em U V�«Em' applying SI for this choice of i with 
U = Uk«E:m n Y and V = V�«Em n Y, we obtain sequence (XUkmVZ). This sequence 
now orders k and m properly, and it does not introduce any new violations of -<: As 
above, for any jobs u E U and v E V we have that v f: u which implies that v -/. u. 

In addition, we have m -/,3 u (=> m-/. u) and v --/-1 k (=> v -/. k) as above. Thus, we 
see that this interchange does not introduce any new violations of -<. Continuing to 
apply SI until there is no such job m, we obtain an optimal sequences* that is also 
a linear extension of -<. • 

Remark 1 Since SI is a generalization of the BI and FI operators, the theorem 
and its proof also apply to these when Uk-Em = J or v;«Em = J for some applicable 
i, i. e., in such special situations the dominance order -< could be derived using only 
one of these operators. 
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3.3 Fuzzy approximation of dominance 

Dominance rules on sequences are usually used to specify whether a node can be 
eliminated before its lower bound is calculated in a branch and bound algorithm. 
However, they also can be used heuristically in finding a good initial solution, or 
directing the search in case of ties [l]. 

Theorem 5 Consider a partial sequence a for the problem F2/ri/ L�ax· If there are 
unsequenced jobs i and j such that 

C1 (aij) :::; C1 (aji), 1:::; l:::; 2 
L�ax (aij) :::; L�ax (aji), 

(1) 
(2) 

then the partial sequence aij dominates aji, i.e., any completion of aij has an L�ax 
which is not larger than the L�ax for the same completion of aji. 

Proof. Consider an arbitrary completion sequence w for the remaining unse­

quenced jobs. If Eq. (1) holds, then on both machines every job in w will be able to 
start no later in the sequence (aijw) than in the sequence (ajiw). This implies that 
no job in w can have a larger L1 value in the sequence (aijw) than in the sequence 
(ajiw). Combining this with Eq. (2) completes the proof. • 

If there exists a job i for which Eq. (1) and Eq. (2) hold for all unsequenced jobs 
j, then sequence a has an optimal completion with job i sequenced next. Such a 
job i very rarely exists, however. This suggests that if they only approximately hold, 
i.e., they hold for job i with almost all unsequenced jobs j, then job i may precede 
another job j in an optimal completion of sequence a with high probability. We 
measure the closeness of this approximation by a fuzzy membership function. We use 
this fuzzy inference to find a good initial sequence, and to break ties between nodes 
with the same lower bound when branching. These techniques proved very useful for 
the problem Fm//Cmax [1]. Let 

D1 (aij) = C1 (aij) - C1 (aji), 1 :::; l :::; 2 

D 3 (aij) = L�ax (aij) - L�ax (aji). 

The fuzzy membership function that represents the likelihood that job i precedes job 
j in an optimal completion of a is given by 

µu (i, j) = 0.5 _ 

D (aij) 
n T"\ I \' 

where D (aij) = L:f=1 a1D1 (aij), Dmax (a) = ID8JCi,j ID (aij)I and 0!1, a2, a 3  (0 :::; 
a 1, a2, a 3  :::; 1 and L:f=1 a1 = 1) are real numbers. (Note that this definition en­
sures that 0 ::=:; µu (i, j) :::; 1.) Let S be the set of jobs not scheduled in a. Then, 
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the likelihood of job i E S dominating the remaining jobs after partial sequence u is 
measured by 

and job i* satisfying 

µ:(i) = min µu(i , j) ,  v jES\{i} 

µ;(i*) = �8sxµ;(i) 
is identified as the job that immediately follows u. 

The rule determining i* in this way is referred to as the fuzzy rule and the schedule 
obtained by repeatedly applying the fuzzy rule is referred to as the fuzzy schedule (or 
fuzzy sequence). To obtain our fuzzy sequence we apply the fuzzy rule with a1 = 1/3 
for l = 1 ,  2 ,  3. This requires O(n2) time. 

4 Branch and bound 

In this section, we outline the basic components of our proposed branch and bound 
algorithm to solve the problem F2 /rj, perm/ L'uiax· A pseudocode for it is given in 
the Appendix. 

4.1 Branching rule 

In order to exploit the symmetry of the problem, we consider a variant of Potts' 
adaptive branching rule that fixes jobs at both ends of the schedule [1 1]. More 
precisely, each node of the search tree is represented by a pair ( u1 , u2) , where u1 and 
o-2 are the initial and final partial sequences, respectively. Let Si denote the set of 
jobs in ui for i = 1, 2 ,  then the set of unfixed jobs is S = J\(81 U 82). We use -<Is 
to refer to the restriction of -< to the set S. An immediate successor of (u1 , u2) in 
the tree is either of the form (u1i, u2) for a type 1 branching; or (u11 iu2) for a type 
2 branching, where i is a minimal or maximal job in -<18, respectively. The types of 
the branchings are all the same within a level of the tree. The type for a given level 
k is fixed on the very first visit to level k according to the following rule: branch in 
the direction of the fewest number of ties at the minimum lower bound. Let n1 and 
n2 be the number of ties at the minimum lower bound for potential type 1 and type 
2 branchings, at level k. If n1 < n2 the next branching is of type 1 ,  while if n2 < n1 
then the branching is of type 2. If n1 = n2 then the branching is the same type as at 
the previous level. 

The search strategy is to branch to the newest active node with the smallest lower 
bound, breaking ties by the appropriate fuzzy rule. For type 1 branchings we use 
fuzzy sequence 1 to break ties, this is the sequence obtained by repeatedly applying 
the fuzzy rule to the forward problem. For type 2 branchings we use fuzzy sequence 
2 to break ties, this is the analogous sequence for the reverse problem. 
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4.2 Bounds 

Upper bounds are calculated only for the first n nodes, afterward the upper bound is 
evaluated only at leaf nodes. For the first n nodes we calculate four separate upper 
bounds. The first two upper bounds are obtained by sequencing the unfixed jobs in 
the fuzzy sequence for the forward and reverse problems, respectively. Each of these 
requires only O (n) time working from the previously established fuzzy sequences. The 
two remaining upper bounds are obtained by sequencing the unfixed jobs in ready 
q + b order (ordering the ready jobs in nondecreasing q + b order) for the forward 
problem, and ready r +a order for the reverse problem. Each of these upper bounds 
requires 0 ( n log n) time to compute. There are no unfixed jobs at leaf nodes, and the 
upper bound is just the length of the sequence obtained by concatenating u1 and u2. 

Since the branch and bound tree may require the computation of lower bounds for 
a potentially very large number of nodes, it is important that we use lower bounds 
which require only 0( n) time per bound. (We have also experimented with some 
potentially better lower bounds, requiring O (nlogn) time, but they have noticeably 
slowed down the algorithm without any substantial increase in the number of problems 
solved.) We consider six lower bounds for each node (ui, u2). We calculate lower 
bounds on the lengths of different paths for the unfixed jobs S, and we combine these 
in various ways with the actual lengths of the fixed sequences u1 and u2. For u1 
we look at the forward problem and we let C1(u1) and C2(u1) be the completion 
times on machines 1 and 2, respectively. For S we consider the forward problem, and 
assume that these jobs cannot start on machines 1 and 2 before C1(u1) and C2(u1), 
respectively. Ignoring release times for the jobs in S, let L1(S) be the completion 
time on machine 2 of the Johnson sequence on S. Let L2 ( S) be the completion time 
on machine 1 of the jobs in S sequenced in nondecreasing r order, that is, L2(S) is 
the earliest time at which the jobs in S can be completed on machine 1 .  Similarly, if 
we relax the capacity constraint on machine 1 and sequence the jobs in nondecreasing 
r +a order, then the length of this schedule on machine 2, L3(S), is a lower bound 
on when the jobs in S can complete on machine 2. For u2 we define the completion 
times C1(u2) and C2(u2) on machines 1 and 2, respectively, for the reverse problem. 
Once again, we assume that the jobs in S cannot start before these times. We let 
L4(S) be the completion time on machine 1 of the reverse Johnson sequence. As for 
the forward problem, the earliest that the jobs in S can complete on machine 2 in the 
reverse problem is to sequence them in nondecreasing q order, we denote the length 
of this schedule on machine 2 by L5(S). Relaxing the capacity constraint on machine 
2, and sequencing the jobs on machine 1 in nondecreasing q +border, the length of 
this schedule denoted by L6(S), is a lower bound on when the jobs in S finish on 
machine 1 in the reverse problem. We compute the following for the node (u1, u2): 

LB1 = L1(S) + C2(u2) 
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LB2 = L2(S) + C1(a2) 
LB3 = L3(S) + C2(a2) 
LB4 = C1(a1) + L4(S) 
LB5 = C2(a1) + L5(S) 
LB5 = C1(a1) + L5(S). 

Finally, the lower bound is the maximum of the above six lower bounds and the lengths 
of the fixed sequences a1 and a2 (in the forward and reverse problems), L�ax(a1) and 
L�ax ( a2), respectively. 

At the root node we evaluate two additional lower bounds, these are single machine 
preemptive bounds obtained by relaxing the capacity constraints on each of machines 
1 and 2 in the forward problem, respectively. It is well lmown that these are solved 
by the preemptive, ready-Jackson rule, which requires O (nlogn) time to compute. 

4.3 Decomposition and dominance 

We find a starting sequence a1 by applying the following simple decomposition pro­
cedure, which.is a generalization of the one used in [ 12] for the problem F2/ri/Cmax· 
Given a sequences, then partial sequence sk-l = (s(l), . . .  , s (k - 1)) is an optimal 
initial sequence if there exists a k E [2, n] such that rajn Ts(i) ;::: c;(k-l)' rajn 

k'.5_i'.5_n k'.5_i'.5_n 
[rs(i) +as(i)] ;::: c;(k-l)' and we have LB(J\(sk-l )) ;::: L�ax(sk-l ), where LB(J\(sk-l )) 
is computed as follows. We apply the decomposition procedure for the jobs sequenced 
in nondecreasing r order, and we use the two preemptive single machine bounds men­
tioned in the last paragraph of the previous section to determine LB ( J\ ( sk-l)). These 
conditions mean that the jobs in the partial sequence sk-l have no effect on the op­
timal schedule for the remaining jobs. Then the initial partial sequence a1 is chosen 
as sk-l for the largest k value for which all the conditions hold. 

After we have fixed ai, we determine the dominance order -< on the remaining 
jobs in S = J\81. In addition, it is possible to dynamically update the dominance 
order -< at each node (ai, a2), to see whether fixing jobs in a1 and a2 can add new 
comparabilities, thus further reducing the amount of branching. 

5 Computational experiment 

5.1 Test problems 

For each problem with n jobs 4n integer data (ri, ai, bi, qi) were generated. The 
processing times ai and bi were both uniformly distributed between [1, 100]. Release 
times ri and delivery times qi were uniformly distributed in the range [O, n · 101 · R] 
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and [O , n · 101 · Q], respectively, following the technique used by Hariri and Potts [4] . 
Different Rand Q values were tested for values Q � Rand RE {0.2, 0.4, 0.6, 0.8, 1.0}. 
For each individual R, Q, and n combination, 50 problems were generated. We used 
the random number generator of Taillard [13] to generate these problems. This means 
that all of our test problems are reproducible by running the problem generation 
procedure from the same seeds. (The seeds used have been saved and are available 
from the authors on request.) 

5.2 Results 

The branch and bound algorithm was coded in Sun Pascal 4.2 and run on a Sun 
Sparc5. Three separate versions of the algorithm were run. Algorithm Ai has the 
dominance order -< 'turned off' . Algorithm A2 has the dominance order 'turned 
on' , and it dynamically updates -< at each node. Finally, algorithm A3 also has the 
dominance order 'turned on' , but -< is only calculated once at the root node. Each 
version of the algorithm was run until either it obtained the optimal solution or the 
number of nodes branched from in the tree reached one million for the problem. In 
the latter case, the problem was declared unsolved. 

Tables 1, 2, and 3 contain the results of the computational experiment for the 
different R and Q values. For each group of problems we report: the fraction of 
problems solved (denoted by solved) ;  for each of the unsolved problems we calculate 
the gap between the best solution obtained and the smallest lower bound among the 
left-over nodes in the tree, and the maximum gap (denoted max gap) is the largest of 
these over all the problems in the group; the total number of nodes in all of the trees 
(denoted by total nodes) ;  the average CPU time for the solved problems in the group 
(denoted by avg CPU); and the total CPU time required for all of the problems in 
the group (denoted by total GPU) . 

Recall, a problem was 'unsolved' when the number of nodes branched from reached 
a million. Thus the total number of nodes for a group of 50 problems, contains a 
million nodes for each unsolved problem. As can be seen, the algorithms typically 
generated much fewer nodes for the solved problems. In those groups where there 
were unsolved problems, the solution obtained was always nearly optimal as measured 
by the maximum gap. The largest such gap was on the order of 3 percent, meaning 
that, in the worst case, we were within this range of the optimal solution. The average 
gap was much smaller, less than 0.5 percent. 

As the results indicate, all three versions of the new branch and bound algorithm 
proved very effective in solving the test problems. In total, each of the three solved 
4,384 of the 4500 randomly generated test problems with up to 200 jobs. There 
were differences in the time-performance of the three versions, however. In general, 
algorithms A2 and A3 (with the dominance order) required less time than version 
Ai (without the dominance order) . Algorithms A2 and A3 needed roughly 5 percent 
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and 15 percent less total CPU time, respectively, than Ai for the 4500 test problems. 
For the 4384 solved problems, the savings in total CPU time amounted to 15 percent 
and 20 percent, respectively, when compared to Ai. Thus, both A2 and Ag made 
the search through the tree faster, but the substantially larger overhead of A2 (i.e., of 
updating -< at every node of the tree) offset a large part of the speed-up. In summary, 
algorithm Ag was the most effective method, it was extremely fast on all of the solved 
problems, never requiring more than a few seconds. 

The very extensive computational experiment has led to further insights. Our 
results suggest that the difficulty in solving a particular problem depends much more 
on the values of R and Q, than it does on the number of jobs. Given this observation, 
the difficult problems are those with intermediate R values, with the most difficult 
being the problems with R = 0.4. This means that the most difficult problems occur 
when the maximum range for the release times (n · 101 · R) is close to the total 
expected processing time on the first machine (n · 50 .5) . We have also found that 
for a given R, the problems with small Q are most difficult. Recall, that the actual 
size of the problem for the branch and bound algorithm is determined by how many 
jobs are fixed by the decomposition procedure. We noticed some trends regarding 
the effectiveness of the decomposition procedure. First, and most importantly, we 
noticed that as R increases the percentage of jobs fixed tends to increase. We also 
noticed that for a given R value, the percentage of jobs fixed decreases for increasing Q 
values, where recall that Q :::; R. For small R values with R :::; 0.4, the decomposition 
procedure is ineffective and fixes at most 1 and 6 percent of the jobs for R = 0.2 
and 0.4, respectively. Moreover, for these values the decomposition procedure tends 
to become less effective as the number of jobs increases. For larger R values with 
R � 0.6, the decomposition procedure is quite effective, and it performs even better 
as the number of jobs increases. For R = 0 .6 ,  the decomposition procedure fixes 
around 40 percent of the jobs for the problems with n = 20, this increases to around 
80 percent for n = 200. For R = 1 .0, the percentage of jobs fixed increases to around 
75 percent and 90 percent for problems with n = 20 and n = 200, respectively. 

6 Concluding remarks 

We have considered a new branch and bound algorithm for the problem 
F2 /ri, perm/ L:r,.ax. The main features of the proposed algorithm are: an adaptive 
branching rule that fixes jobs at both ends of the schedule, a new dominance order 
to reduce branching together with new fuzzy dominance properties that are used for 
scheduling and tie-breaking, and a simple decomposition procedure that reduces the 
problem size by fixing jobs at the beginning of the schedule. In general, computa­
tional results indicated that the algorithm performed very well. It has solved more 
than 973 of the test problems with up to 200 jobs within a few seconds. Even when 
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we failed to solve a problem, we were always very close to the optimal solution. We 
found that the use of the dominance order resulted in a reduction in computation 
time of 15 to 20 percent. We also found that the use of fuzzy dominance properties 
aided the search by breaking ties and by often finding a nearly optimal initial solu­
tion. In summary, we feel that the proposed algorithm is more effective than previous 
solution methods for the problem F2 /rj, perm/ L�axi in that it found fewer hard 
problems and it was also able to solve much larger problems. The fact that most 
problems were solved to optimum within a few seconds, means that the algorithm 
has the potential of being used as a callable subroutine for F2 /rj, perm/ L�ax-type 
subproblems generated during the solution of more complex scheduling problems. 
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Table 1: Results for (0.2, 0.2) and (0.4, 0.2). 

n alg solved max gap total nodes avg CPU total CPU 
(%) (sec) (hrs:min:sec) 

R = 0.2, Q = 0.2 

Ai 50/50 - 24,666 0.0840 4.20 
20 A2 50/50 - 24,593 0.0958 4.79 

A3 50/50 - 24,666 0.0828 4.14 
Ai 50/50 - 3,894 0.1146 5.73 

40 A2 50/50 - 3,893 0.1190 5.95 
A3 50/50 - 3,894 0.1098 5.49 
Ai 48/50 1.1401 2,001,789 0.2225 30:57.50 

60 A2 48/50 1.1401 2,001,791 0.2056 33:17.86 
A3 48/50 1.1401 2,001 ,791 0.1954 29:33.53 
Ai 49/50 0.4968 1 ,009,292 1.0969 20: 16.54 

80 A2 49/50 0.4968 1 ,009,278 1.1967 22:48.84 
A3 49/50 0.4968 1 ,009,288 1.0549 19:53.81 
Ai 48/50 0.6178 2,029,119 4.6633 2:40:15.34 

100 A2 48/50 0.6178 2-,048,242 6.9856 2:16:42.26 
A3 48/50 0.6178 2,048,242 5.9825 2:01 :24.72 
Ai 49/50 0.0655 1 ,063,650 38.7327 8:02:25.27 

200 A2 49/50 0.0655 1 ,063,647 24.1063 7:06:01.35 
A3 49/50 0.0655 1 ,063,647 22.0294 6: 1 1 : 14.99 

R = 0.4, Q = 0.2 

Ai 48/50 1.6575 2 ,947,498 2.9265 7:32.65 
20 A2 48/50 1.6575 2,900,048 3.1988 8 :11.50 

A3 48/50 1.6575 2,903,012 2.7614 7: 14.97 
Ai 38/50 1.4881 13,365,909 7.3640 49:02.53 

40 A2 38/50 1.4881 13,364,572 7.0429 44:46.62 
A3 38/50 1.4881 13,365,936 6.7934 42:02.63 
Ai 37/50 1.0747 13,323,626 1.5924 49:22.47 

60 A2 37/50 1.0747 13,323;151 1.7548 43:38.78 
A3 37/50 1.0747 13,323,293 1.5751 44:37.38 
Ai 41/50 0.8299 9,758,575 3.8098 30:58.02 

80 A2 41/50 0.8299 9,769,357 4.1583 33:56.53 
A3 41/50 0.8299 9,782,955 3.8634 31:27.20 
Ai 42/50 0.4259 8,232,036 2.9133 2:03:40.23 

100 A2 42/50 0.4259 8,203,264 2.3276 2:20:44.43 
A3 42/50 0.4259 8,203,030 2.4000 2:00:28.92 
Ai 39/50 0.2801 12,391,165 15.8108 1:07:04.76 

200 A2 39/50 0.2801 12,391 ,035 16.7367 1: 12:45.20 
A3 39/50 0.2801 12,391,171 15.5379 1 :07:01.03 
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Table 2: Results for (0.4, 0.4) and R = 0 .6. 

n alg solved max gap total nodes avg CPU total CPU 
(%) (sec) (hrs:min:sec) 

R = 0.4, Q = 0.4 

Ai 45/50 3.2119 5,505,470 1 .9667 13:31 .30 
20 A2 45/50 3.2119 5,474,584 1 .6951 14:21.46 

A3 45/50 3.2119 5,468,818 1 .5591 12:53. 13 
Ai 43/50 1 .3497 7,000,924 0.0623 30:22.67 

40 A2 43/50 1 .3497 7,000,874 0.0642 30:20.04 
A3 43/50 1 .3497 7,000,879 0.0607 27:27.53 
Ai 46/50 0.2151 4,001 ,078 0 . 1924 18:50.55 

60 A2 46/50 0.2151 4,001 ,105 0 .1935 18:55.89 
A3 46/50 0.2151 4,001 ,111  0 . 1820 17:25. 1 1  
Ai 47/50 0.6494 3,000,978 0.3975 15:54.83 

80 A2 47/50 0.6494 3,001,023 0.3966 9:51.74 
A3 47/50 0.6494 3,001 ,013 0.3753 1 1 :24.47 
Ai 48/50 0.4598 2,001 ,628 0.8077 8:10.88 

100 A2 48/50 0.4598 2,001 ,549 0.7938 6:40.89 
A3 48/50 0.4598 2,001 ,582 0.7523 8: 14.86 
Ai 49/50 0.1693 1 ,002,837 6.4861 22:23.65 

200 A2 49/50 0. 1693 1 ,002,824 6.4520 22:36.68 
A3 49/50 0. 1693 1 ,002,841 6.0212 19:50.06 

R = 0.6, Q = 0.2, 0.4, 0.6 

Ai 147/150 1 .3150 3,120,585 0.0995 6:22.79 
20 A2 147/150 1 .3150 3,098,357 0.0852 6:37.17 

A3 147/150 1 .3150 3,099,007 0.0767 6:25.34 
Ai 137/150 1 .3754 13,100,696 0. 1467 36:56.68 

40 A2 137/150 1.3754 13,103 ,281 0.1450 36:03.00 
A3 137/150 1 .3754 13,103,391 0.1322 31 :22.49 
Ai 147/150 0.7059 3,055,775 0. 1070 13:34.11 

60 A2 147/150 0.7059 3,036,978 0.0748 12:32.31 
A3 147/150 0.7059 3,036982 0.0707 1 1 :38.68 
Ai 145/150 0.3267 5,003,273 0.0682 11 :43.19 

80 A2 145/150 0.3267 5,003,245 0.0657 24:34.21 
A3 145/150 0.3267 5,003,245 0.0635 14:08.36 
Ai 148/150 0.4820 2,006,622 0.0818 4:28. 17 

100 A2 148/150 0.4820 2,006,722 0.0845 4:40.68 
A3 148/150 0.4820 2,006,722 0.0810 3:23.59 
Ai 147/150 0. 1533 3,000,729 0.2136 17: 11 . 18 

200 A2 147/150 0. 1533 3,000,778 0.2206 18:39.67 
A3 147/150 0. 1533 3,000,732 0 .2064 15:32.97 
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Table 3: Results for R = 0.8 and R = 1.0. 

n alg solved max gap total nodes avg CPU total CPU 
(%) (sec) (hrs:min:sec) 

R = 0.8, Q = 0.2, 0.4, 0.6, 0 .8 

Ai 200/200 - 1164 0.0026 0.51 
20 A2 200/200 - 1149 0.0029 0.58 

A3 200/200 - 1149 0.0027 0.54 
Ai 200/200 - 914 0.0056 1.1 1  

40 A2 200/200 - 912 0.0056 1 .11 
A3 200/200 - 912 0.0053 1.06 
Ai 199/200 0.2625 1,001 ,163 0.0098 2:32.97 

60 A2 199/200 0.2625 1 ,001,167 0.0097 6:53.71 
A3 199/200 0.2625 1 ,001, 167 0.0095 2:33.83 
Ai 198/200 0. 1513 2,000,359 0.0013 6:10. 13 

80 A2 198/200 0. 1513 2,000,357 0.0012 3:35.69 
A3 198/200 0. 1513 2,000,357 0.0012 3:30.68 
Ai 200/200 - 257 0.0181 3.61 

100 A2 200/200 - 261 0.0183 3.65 
A3 200/200 - 261 0.0180 3.59 
Ai 200/200 - 259 0.0571 11.42 

200 A2 200/200 - 267 0.0569 11.37 
A3 200/200 - 267 0.0568 11.36 

R = 1.0, Q = 0.2, 0.4, 0.6, 0.8, 1.0 

Ai 250/250 - 376 0 .0020 0 .49 
20 A2 250/250 - 543 0.0022 0.54 

A3 250/250 - 543 0.0023 0.57 
Ai 250/250 - 332 0.0042 1.04 

40 A2 250/250 - 329 0.0043 1.08 
A3 250/250 - 329 0.0043 1.08 
Ai 250/250 - 354 0.0076 1.91 

60 A2 250/250 - 354 0.0080 1.99 
A3 250/250 - 354 0.0082 2.06 
Ai 249/250 0.2736 1,000,309 0.0119 2:36.63 

80 A2 249/250 0.2736 1 ,000,307 0.0121 3:14.71 
A3 249/250 0.2736 1 ,000,307 0.0121 3:13.30 
Ai 250/250 - 273 0.0177 4.43 

100 A2 250/250 - 273 0.0178 4.45 
A3 250/250 - 273 0.0178 4.45 
Ai 250/250 - 276 0.0619 15.47 

200 A2 250/250 - 276 0.0620 15.49 
A3 250/250 - 276 0.0620 15.50 
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Appendix 

Calculations for root node 

• apply decomposition procedure with nondecreasing r sequence to fix a1 ; 

• let S := J\Si , a2 := 0; nodes := O ;  

• construct the dominance order -<; 
• find fuzzy sequence land fuzzy sequence 2; 

• calculate initial UB and LB, and let BestUB := UB; 

• call recursive procedure Opt that facilitates branching; 

procedure Opt(a1 ,  S, a2 , BestU B) ; 
begin 

if nodes < 1000000 then 

begin 

nodes := nodes + l ;{increment the number of nodes branched from} 

if (nodes ::; n) or ( ISI = 1) then calculate UB and (possibly) update BestUB 

if (LB < BestUB) and ( !SI =I= l) then 

begin 

find lists of minimal and maximal jobs in -<Is 
if type = 1 then calculate lower bounds for minimal and sort in nonde­

creasing lower bound order breaking ties using fuzzy sequence 1 
else if type = 2 then calculate lower bounds for maximal and sort in 

nondecreasing lower bound order breaking ties using fuzzy sequence 2 
else (type not set) 
begin 

calculate and sort lower bounds for both minimal and maximal 
breaking ties accordingly 

find n1 and n2 to determine type for node 
if n1 < n2 then type := 1 
else if n1 > n2 then type := 2 
else type := previous_type; 
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end; 

if type = 1 then list := minimal 
else if type = 2 then list := maximal ; 
while ( list -1- 0) and (BestU B > lower bound from head of list) do 

begin 

remove head of list 
let job be the job that is fixed and let LB be its lower bound 
remove job from -< 
S := S\{job} ; 
if type = 1 then add job to a1 
else if type = 2 then add job to a2; 
Opt(a1 ,  S, a2 , BestU B) ;{  recursive call} 
if type = 1 then remove job from a1 
else if type = 2 then remove job from a2 ; 
S := S U  {jab}; 
restore job to -< 

end;{while} 

end;{if (LB < BestU B) and ( IS I  i- 1)} 

end ;{if nodes ::; 1000000} 

end; 
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Table 4: Dominating pairs for Theorem 1 .  

S2 81 
(XUkmVZ) (XmYkZ) proof 
(x1 ,  X2 , X3) (xi ,  X2 , X3) 
(xi ,  x2, u) (xi ,  x2, u) 
(xi , x2, k) (xi , X2, k) 
(x1 ,  x2 , m) (xi , X2 , k) qk 2: qm 
(x1 , x2, v) (x1 ,  X2 , k) qk 2: qv 
(x1 , x2, z) (xi ,  x2, z) 
(x, ui , u2) (x, ui ,  u2) 
(x, u, k) (x , u, k) 
(x , u, m) (x, m, k) u � la<b, au ::; am , qk 2: qm 
(x , u, v) (x, m, k) U � las,b, au ::; am , qk 2: qv 
(x, u, z) (x ,  m, z) U � la<b, au ::; am 
(x, k , k) (x, k, k) 
(x, k , m) (x , m, k) U � las,b , k E JaS,b i qk 2: qm 
(x , k , v) (x, m, k) u � las,b, ak ::; am, qk 2: qv 
(x, k , z) (x, m, z) U � la<b, ak ::; am, 

(x , m, m) (x, m, k) U � Ja<b, k E Ja<b, qk 2: qm 
(x, m, v) (x, m, k) U � las,b, k E las,b, qk 2: qv 
(x , m, z) (x, m, z) U � Ja<b i k E las,b 
(x, v1 , v2) (x, V1 , k) U � Ja<b , k E Ja<bi qk 2: qV'l 
(x , v , z) (x, v , z) U � las,b, k E las,b 

(x, z1 , z2) (x, z1 , z2) 
(ui ,  u2, u3) (ui ,  u2 , u3) 
(ui ,  U2, k) (u1 ,  U2, k) 
(u1 , u2 , m) (m, m, k) ru1 ::; rm, u � las,b, au2 ::; am, qk 2: qm 
(u1 , u2 ,  v) (m, m, k) ru1 ::; rm, U  � las,b, au2 ::; am, qk 2: qv 
(u1 , u2 ,  z) (m, m, z) r u1 ::; r ffi l  u � las,b, au2 ::; am 
(u, k , k) (m, k, k) ru ::; rm 
(u, k , m) (m, m, k) ru ::; rm, U  � las,b , ak ::; am, qk 2: qm 
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Table 4: (continued) 

S2 81 
(XUkmVZ) (XmYkZ) proof 

(u, k, v) (m, m, k) Tu '.S Tm , U � Ja�b , ak '.S am , qk 2: qv 
(u, k, z) (m, m, z) Tu '.S Tm , U � Ja<b , ak '.S am 

(u, m, m) (m, m, k) Tu :S Tm , U � Ja�b , k E Ja �b , qk 2: qm 
(u, m, v) (m, m, k) Tu :S Tm , U � Ja<b , k E Ja<b , qk 2: qv 
(u, m, z) (m, m, z) Tu :S Tm , U � Ja�b , k E Ja�b 
(u, Vi , v2) (m, Vi , k) Tu :S Tm , U � Ja<b , k E Ja<b , qk 2: qv2 
(u, v, z) (m, v, z) Tu :S Tm , U � Ja�b , k E Ja�b 

(u, zi , z2) (m, zi ,  z2) Tu :S Tm 
(k, k, k) (k, k, k) 
(k, k, m) (m, m, k) rk :S Tm , ak :S am , qk 2: qm 
(k, k, v) (m, m, k) Tk '.S Tm , ak '.S am , qk 2:'.: qv 
(k , k ,  z) (m, m, z) Tk :S Tm , ak '.S am 

(k, m, m) (m, m, k) Tk '.S Tm , k E Ja9, qk 2: qm 
(k, m, v) (m, m, k) Tk '.S Tm , k E Ja9, qk 2: qv 
(k, m, z) (m, m, z) rk '.S Tm , k E Ja<b 
(k, Vi , V2) (m, v1 , k) Tk '.S Tm , k E Ja9, qk 2: qv2 
(k, v ,  z) (m, v, z) Tk '.S Tm , k E Ja9 

(k, Zi , z2) (m, z1 , z2) rk :S Tm 
(m, m, m) (m, m, m) 
(m, m, v) (m, m, v) 
(m, m, z) (m, m, z) 
(m, v1 , v2) (m, v1 , v2) 
(m, v ,  z) (m, v ,  z) 

(m, zi , z2) (m, z1 , z2) 
(v1 , V2 , V3) (v1 , v2 , v3) 
(vi , v2 , z) ( V1 , V2 , z) 
( v ,  z1 , z2) (v, z1 , z2) 
(z1 ,  Z2 , Z3) (z1 , z2 ,  z3) 
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Table 5: Dominating pairs for Theorem 2 .  

Sz Si 
(XUkmVZ) (XmYkZ) proof 
(xi , Xz , X3) (xi , Xz , X3) 
(xi , x2 , u) (xi , x2, u) 
(xi , X2 , k) (xi , x2 , k) 
(xi , x2, m) (xi ,  Xz, k) qk 2 qm 
(xi , x2 , v) (x1 , Xz , k) qk 2 qv 
(xi , x2 , z) (x1 , x2 , z) 
(x, ui ,  u2) (x , ui , u2) 
(x, u, k) (x, u, k) 
(x, u, m) (x, u, k) m E la>b, qk 2 qm 
(x , u, v) (x, u, k) m E la>b, V � la>b, qk 2 qv 
(x, u, z) (x, u, z) m E la>b, V � la>b 
(x, k , k) (x, k, k) 
(x, k , m) (x , k , k) m E la>b, V � la>b, qk � qm 
(x, k , v) (x, k, k) m E la>b, V � la>b, qk 2 qv 
(x , k , z) (x, k, z) m E la>b, V � la>b 

(x, m, m) (x , m, k) U � la<b, k E la<b i qk 2 qm 
(x, m, v) (x, m, k) U � las_b, k E la9, qk 2 qv 
(x, m, z) (x, m, z) U � la s_b, k E la9 
(x, Vi , v2) (x , Vi , k) U � la<b, k E las_b i qk � qv2 
(x, v , z) (x, v, z) U � la<b, k E la<b 

(x, zi , z2) (x, zi , z2) 
(ui , u2 , u3) (ui , u2 , u3) 
(u1 , u2 , k) (ui , u2 , k) 
(ui , u2, m) (m, u2 , k) Tu1 ::; Tm , m E la>b1 qk 2 qm 
(ui , u2, v) (m, u2 , k) Tu1 ::; Tm, m E la>b1 v � la>bi qk 2 qv 
(ui , u2 , z) (m, u2, z) Tu1 ::; Tm, m E la>b 1  v � la>b 
(u, k, k) (u, k, k) 
(u, k , m) (m, k, k) Tu ::; Tm, m E la>b, qk 2 qm 
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S2 
(XUkmVZ) 

(u, k, v) 
(u, k, z) 

(u, m, m) 
(u, m, v) 
(u, m, z) 
(u, Vi , v2) 
(u, v, z) 

(u, z1 , z2) 
(k , k , k) 
(k, k, m) 
(k, k, v) 
(k, k, z) 

(k, m, m) 
(k, m, v) 
(k, m, z) 
(k, V1 , V2) 
(k, v , z) 

(k, Z1 , Z2) 
(m, m , m) 
(m, m, v) 
(m, m, z) 
(m, vi , v2) 
(m, v , z) 

(m, zi , z2) 
(Vi , V2 , V3 ) 
(Vi ,  V2 , z) 
( V , Z1 , z2) 
(z1 , Z2 , Z3) 

Table 5: (continued) 

S1 
(XmYkZ) 

(m, k ,  k) 
(m, k, z) 
(m, m, k) 
(m, m, k) 
(m, m, z) 
(m, V1 , k) 
(m, v , z) 

(m, z1 , z2) 
(k, k, k) 
(m, k, k) 
(m, k, k) 
(m, k, z) 
(m, m, k) 
(m, m, k) 
(m, m, z) 
(m, Vi , k) 
(m, v , z) 

(m, z1 , z2) 
(m, m, m) 
(m, m, v) 
(m, m, z) 
(m, v1 , v2) 
(m, v , z) 

(m, z1 ,  z2) 
(v1 , v2 , v3) 
(v1 , v2 , z) 
( V , Zi , Z2) 
(z1 , z2 , z3) 

proof 
ru � rm, m E la>bi V � la>b , qk � qv 
ru � rm,  m E la>bi V � la>b 
ru � rm, U � la<b, k E la<b, qk � qm 
ru � rm,  U � la<b, k E la�b, qk � qv 
ru � rm, U � la<b, k E la<b 
ru � rm, U � la<b, k E la<b, qk � qv2 
ru � rm,  U � la<bi k E la<b - -

ru � rm 

rk � rm, m E la>b, qk � qm 
rk � rm, m E la>b, V � la>b, qk � qv 
rk � rm,  m E la>b, V � la>b 
rk � r m, k E la<b, qk � qm 
rk � r m, k E la<b, qk � qv 
rk � r m, k E la<b 
rk � rm, k E la<b, qk � qv2 
rk � rm, k E la<b 
rk � rm 
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