
[f"

McMaster
University··
MICHAEL G. DIEGROO.TE �
SCHOOL OF BUSINESS

I•

: � 51t lnnis, ·
, �;· •.. ·�·a·. t•-·---l

14._s·
.R41
noA39

RESEARCH AND
WORKING PAPER

SERIES

A FAST ALGORITHM TO MINIMIZE MAXIMUM
LATENESS FOR THE TWO-MACHINE FLOW-SHOP PROBLEM

WITH RELEASE TIMES

By

Jinliang Cheng, George Steiner, and Paul Stephenson

Michael G. DeGroote School of Business
McMaster University

Hamilton, Ontario

Working Paper # 439

June, 1999

. 'I,.;;�.it{·�j "S·J:�BV,UNIVERSITY
: i-!��·;:?-�:it'._::;;f'.�1 INNIS LIBRA.1i'Vf i
11[1\·Street West '"''�'?'C:i.tii�
�����l�i�2�����a LBS 4M4
:"c. ���\

l
:· :' ...• :.::. : ... I

·.· '-"' l ... · ·•·.'\

'.·.-::··'}
I •'

JUL 1 9 1999
NQN.CIRC.ULATING

.,

l.
'

. �ersity Libr.

�� � Q�.
!...

---�
� �
�

u

$'

A FAST ALGORITHM TO MINIMIZE MAXIMUM
LATENESS FOR THE TWO-MACHINE FLOW-SHOP PROBLEM

WITH RELEASE TIMES

By

Jinliang Cheng, George Steiner, and Paul Stephenson

Michael G. DeGroote School of Business
McMaster University

Hamilton, Ontario

Working Paper # 439

June, 1999

This working paper should not be quoted or reproduced without the
written consent of the authors.

A Fast Algorithm to Minimize Maximum Lateness
for the Two-Machine Flow-Shop Problem with

Release Times*
Jinliang Cheng, George Steinertand Paul Stephenson
Management Science and Information Systems Area

Michael G. DeGroote School of Business
McMaster University, Hamilton, Ontario, Canada

Abstract
We consider the two-machine flow-shop problem with release times where

the objective is to minimize the maximum lateness. We derive a new dominance

order and incorporate it into an efficient branch and bound algorithm which uses
an adaptive branching scheme together with new fuzzy dominance properties

for scheduling and searching. The algorithm performed very well. It solved

within a few seconds more than 973 of the test problems with up to 200 jobs

in a large-scale computational experiment. For the unsolved problems, the

average gap between the best solution found and the optimum was less than

0.53.
Keywords: Scheduling, permutation flow shop, lateness, release times,

dominance orders, algorithm.

"'This research was supported in part by the Natural Sciences and Engineering Research Council
of Canada, under Grant No. OGPOOOl 798.

tcorresponding author. e-mail: steiner@mcmaster.ca

1

1 Introduction

We consider the two-machine flow-shop problem with release times where the ob­
jective is to minimize the maximum lateness for permutation schedules, denoted by
F2 /rj,perm/ Lmax· (We use the standard notation to describe scheduling problems,
and refer the reader to [7] and [10] for any terminology not defined here.) This is a
well-known strongly NP-hard scheduling problem [8]. We use the delivery-time for­
mulation of the problem, which transforms it into a makespan minimization problem
in a four-machine flow shop, where the first and last machines are non-bottleneck
machines. We denote this problem by F2 /rj,perm/ L�ax· Much of the underlying
interest in the problem F2 /rj,perm/ L�ax stems from the fact that it arises natu­
rally in the solution of more complicated scheduling problems, such as the problem
Fm//Cmax [6]. The complexity result above suggests that in order to optimally solve
the problem F2 /rj,perm/ L:nax> it is necessary to resort to some efficient enumerative
technique, such as branch and bound.

Branch and bound algorithms are characterized by various components: the branch­
ing scheme employed, the different types of upper and lower bounds used, and other
features. Grabowski [2] and Grabowski et al. [3] presented branch and bound al­
gorithms for the problems F2 /riiperm/ L:nax and Fm /rj,perm/ L�ax' respectively.
These algorithms used a branching scheme that exploited certain dominance proper­
ties of a critical path. Tadei et al. [12) tried this type of branching scheme for the
problem F2 /ri/ Cmax, but found it to be less effective than their traditional n-ary
branching scheme, that fixes jobs only at the beginning of the schedule. Potts [11)
considered an adaptive branching scheme that fixes jobs at both ends of the schedule,
and found this branching scheme to be quite effective for the problem Fm//Cmax·
Dominance rules are another common feature of branch and bound algorithms, they
are typically used to eliminate nodes (before their bounds are calculated) in order to
reduce computation time and storage requirements. Cheng et al. [1] apply approxi­
mate dominance rules, in the context of fuzzy inference, for scheduling and searching
in flow-shop problems, such as F3//Cmax and Fm /perm/ Cmax· The authors were
able to find a nearly optimal initial schedule by repeatedly applying the fuzzy dom­
inance rule to schedule the jobs. This fuzzy schedule also proved very useful for
tie-breaking purposes, to decide which way to branch among several nodes with the
same lower bound.

In this paper, we consider a new branch and bound algorithm for solving the
problem F2 /rj,perm/ L�ax> with the following main features. We use an adaptive
n-ary branching rule, a variant of the one used by Potts. We derive a new dominance
order on the job set, using the new proof technique of subset-restricted interchange,
that employs a new interchange operator which we introduce. In addition, we make
use of fuzzy dominance properties for initial scheduling and tie-breaking. We also
incorporate a simple decomposition procedure that reduces the problem size by fixing

2

jobs at the beginning of the schedule. We use six very quickly computable lower
bounds at each node of the tree. The algorithm represents an effective tool for solving
large instances of the strongly NP-hard problem F 2 /rj,perm/ L:nax· In a large-scale
computational experiment, the algorithm has solved, in a matter of a few seconds,
4,384 of the 4,500 randomly generated test problems with up to 200 jobs. Even for the
unsolved problems, the best solution found by the algorithm was on average within
less than 0.53 of the optimal value.

The rest of the paper is organized as follows. In the next section, we introduce the
preliminary definitions and notation for sequencing problems and partial orders. In
section 3, we derive several new dominance results for the problem F 2 /ri,perm/ L:nax.
In section 4, we present the details of our branch and bound algorithm, a pseudocode
for it is found in the Appendix. In section 5, we discuss the results of a large-scale
computational experiment. In the last section, we make our concluding remarks.

2 Preliminary definitions and notation

2.1 Sequencing notation

We call a scheduling problem a sequencing problem and its objective a sequencing
function if any schedule can be completely specified by a single sequence in which the
jobs are performed on every machine. As customary, we will restrict our attention
to such permutation schedules, which allows us to treat the problem F 2 /ri/ Lmax
as a sequencing problem. Let J = {1, 2, . . . , n} be the set of jobs to be sequenced.
Jobs are characterized by a list of parameters, each job j possesses a release time
rj, a due date dj, and processing times aj and bi on machines 1 and 2, respectively.
A sequences on J is a function from { 1, 2, . . . ,n} to J represented by the n-tuple
(s (1) , s (2) , .. . , s (n)), where s (i) is the ith job in sequences. The completion time
of job s(i) on machines 1 and 2 will be denoted by c;(i) and c;(i)' respectively, and the
lateness of job s(i) is defined to be Ls(i) = c;(i) - ds(i)· We will consider the problem

in its equivalent delivery-time form, F 2 /rj,perm/ L:nax, where Qj = T - di is the
delivery time for job j and T is a constant with T � max{ di IJ E J}. If we define
L� =CJ+ qj, then L� =CJ+ T - di =Li+ T, and we see that the two objectives
L:nax and Lmax are equivalent. The delivery-time representation has the important
advantage that this problem is completely symmetrical and equivalent to its reverse
problem in which each job j has 'release time' Qj, and must be processed first on
machine 2 for bi time, followed by processing on machine 1 for aj and a 'delivery
time' of rj. For our problem, the dominance order will be a partial order defined by
the parameters of the jobs. Thus we introduce certain definitions for partially ordered
sets (posets).

3

2.2 Partial orders

By a partially ordered set we mean a pair P = (X, .:SP) consisting of a set X together
with a binary relation :SP on X x X which is reflexive, antisymmetric, and transitive.
For u, v E X , u .:SP v is interpreted as u is less than or equal to v in P. Similarly,
u <p v means that u .:SP v and u #- v. The usual symbols .::; and < will be reserved
for relations between real numbers. An element v is minimal in P if there is no u with
u <p v. Similarly, u is maximal if there is no v such that u <p v. A partial order
P = (X, .:SP) is a linear order (or complete order) if for every pair (u, v) E X x X
either u .:SP v or v .:SP u. Given a pair of partial orders P = (X, .:SP) and Q = (X, :SQ)
on the same set X, we call Q an extension of P (P a suborder of Q) if u .:SP v
implies u <Q v for all u, v E X. A partial order Q = (X, <Q) is a linear extension
of a partial order P = (X, .:SP), if Q is a linear order that extends P. Given two
partial orders Pi = (X, .:Spi) and P2 = (X, :Sp2), we can define the partial order
P1 n P2 = (X, :SP1np2), the intersection of P1 and P2, where u :SP1np2 v if and only if
u .:Sp1 v and u .:SP2 v for all u, v E X. A partial order P on the job set of a sequencing
problem is called a dominance order if there is an optimal sequence that is a linear
extension of P.

3 Dominance results

In this section, we present dominance results for the problem F2 /ri, perm/ L�ax·
First we derive a new dominance order -<, using subset-restricted interchange, a new
technique that incorporates certain restrictions on the subset of intermediate jobs
for a new interchange operator which we introduce. Secondly, we consider a fuzzy
approximation of dominance that is used in both initial scheduling and searching.

3.1 Subset-restricted interchange

We follow Monma [9] in defining our interchange operators. Let s1 be a sequence with
job m preceding job k. In general, 81 is of the form 81 = (XmYkZ) , where X, Y and
Z are subsequences of J, and let U and V be disjoint subsequences partitioning Y.
Three types of interchanges of jobs k and m that leave k preceding m in the resulting
sequence 82, are the following:

1. Backward Insertion(BI):
2. Forward Insertion(FI) :
3. Shuffie Interchange(SI):

82 = (XYkmZ)
82 = (XkmYZ)
82 = (XUkmVZ) .

To define more precisely the new SI operator, consider again sequence 81 = (X mYkZ)
and a partition of Y into Y = U UV, where, for example, U = (u1u2u3) and V =
(v1v2v3v4), and Y is of the form Y = (u1u2v1v2u3v3v4). Then SI applied to sequence

4

si , for this particular choice of U and V, gives sequence s2 = (Xu1u2u3kmv1v2v3v4Z).
We call it shuffle interchange because the interchange of jobs has the resulting net
effect of 'shuffling' sequence Y into subsequences U and V, and placing jobs k and
m between them. Notice that SI may change the relative order of some u's and v's
after interchange, but it never changes the relative order of two u's or two v's. Thus
SI depends on the choice of subsequences U and V. SI generalizes BI and FI : If we
let V and U be the sets of jobs in sequences V and U (for the sake of brevity, we do
not distinguish between sets and sequences) when V = 0 or U = 0, then SI reduces
to BI or FI , respectively. Further, these interchanges all reduce to adjacent pairwise
interchange in the case when Y = 0. In summary, the SI operator generalizes all
these operators and at the same time allows a unified treatment for them.

Recall that the problem F2//Cmax is solved by the Johnson order: first order
the jobs with aj :'.S bi in nondecreasing a order followed by the jobs with aj >
bi in nonincreasing b order [5]. To emphasize the partitioning of the jobs in the
Johnson order we define la9 = {j lai :'.S bi } and Ja>b = {j lai >bi } . This ordering
of the jobs is an adjacent interchange order for the problem F2//Cmax, and since it
also completely orders every pair of jobs, it is an optimal ordering (i.e., an optimal
sequence) . An adjacent interchange order for the problem F2 /rj, perm/ L:n_ax is the
intersection of the nondecreasing r order, the nonincreasing q order and the Johnson
order, as defined formally below. Note that this order is no longer a complete order,
rather it is only a partial order.

Definition 1 Adjacent Interchange Order -E: k-Em if rk :'.S r m, qk � qm and
(i) k, m E las,b and ak :'.Sam or,
(ii) k E la9 and m E la>b or,
(iii) k, m E Ja>b and bk � bm.

In general, if an adjacent interchange order is only a partial order (and not a
complete order) , it need not be a dominance order. This is the case for -E defined
above, if we consider the instance of F2 /rj , perm/ L:n_ax in Example 1. Here we have
3-E.1 (since r3 = r1 = 10, q3 = 10 � 0 = qi , and 3, 1 E Ja>b with b3 = 25 > 15 = bi) ,
however, the unique optimal sequence is (1, 2 , 3 , 4) with L:n_ax = 125. Thus we see
that -E is not a dominance order, since there is no optimal sequence that is a linear
extension of -E. We will use subset-restricted interchange to find a suborder of -E that
is a dominance order.

Example 1 A 4 job problem to illustrate that -E is not necessarily a dominance order.

j 1 2 3 4
rj 10 20 10 30
aj 20 20 30 25
bj 15 30 25 20
% 0 10 10 0

5

Recall, that the SI operator above interchanges k and m 'around' sequence Y, for
some particular choice of U and V. Intuitively, whether or not such an interchange
leads to a reduction in cost (for a given sequencing function f and adjacent interchange
order -E), should depend on the composition of Y, as well as on the choice of U and
V. We consider interchanges that are restricted by conditions on Y and define the
subset-restricted interchange condition for SI .

Definition 2 An adjacent interchange order -E together with the collection of subsets
{Uk -Em U Vk -Em lk-Em } satisfies the Shuffie Interchange Condition for a sequencing }unction f if
for all jobs k, m and sequences X, Y, Z there exist a partition U and V into disjoint
subsequences of Y such that
k-Em, U �Uk -Em' and V � Vk -Em imply that f (XUkmVZ) ::; f (XmYkZ) .

Next we examine the structure of Uk -Em and Vk -Em for the different types of pairs
k-Em for the problem F2 /rj, perm/ L�ax·

Theorem 1 If k E Ja-Sb and ak ::; am, then k-Em together with the sets
Uk -Em= {u lu E Ja'5,b, ru :S rm,au :Sam } and Vk-Em = {v lqv :S qk } satisfy the Shuffie
Interchange Condition.

Proof. Given a sequence s we construct the directed graph G (s) (the conjunctive
graph) to evaluate L:nax(s). Each job s(j) is represented by four nodes with weights
rs(j), as(j), bs(j) i and qs(j)> respectively. L�ax(s) is the length of the longest 'node­
weighted' path from the start node to the finish node. These paths can be uniquely
identified by the triples (s(i) , s(j) , s(k)) , for 1 ::; i::; j ::; k::; n, representing the end
points of the three horizontal segments on the path (see Figure 1). By definition, (j k)

L�ax (s) = . m� rs(i) +Las(!) + L bs(l) + qs(k) ' (s(i),s(j),s(k)) !- . !- . 19'Sj'5,k<Sn -t -J

and we can evaluate L�ax (s) as the maximum over all such paths in G (s) .
Let s1 = (XmYkZ) be a sequence for pair k-Em with k E Ja9 and ak ::; am.

Let U � Uk -Em and V � Vk-Em be disjoint subsequences of Y, with Y = U UV.
We apply shuffie interchange to s1 , with this U and V, and obtain sequence s2 =
(XUkmVZ). (We use lower case letters x, u, v , and z to refer to arbitrary generic
elements of subsequences X, U, V, or Z, respectively.) We can demonstrate that
s2 is not worse than s1 , by exhibiting for every path in G(s2) a dominating path
in G(s1) (see Figure 2) . For example, consider the path (u, k, v) in G(s2) , then the
corresponding dominating path in G(s1) is (m, m, k) , and the following inequality
states that path (u, k, v) in G(s2) is not longer than the path (m, m, k) is in G(s1) .

6

G(s) �(I) 0,_,--... 1.c�1--�)---�

•
• as(i)

>---------... .. �
�(J) ! as(J)

o--.. *

: as(k)

Figure 1 : Directed graph G(s) for problem F2 /rj, perm/ L:Uax·

ru+ L ai + ak + bk + bm+ L bi + qv :::; Tm + am + bm+ L bi+ L bi + bk + qk ,
iEU[u,·] iEV(.,vJ iEU iEV

The inequality holds, since ru :::; rm, U � la"5:_b, ak :::; am, and qk 2: qv. (Note that we
use U[u,.] to represent the subsequence of U starting with u and ending with the last
job in U; and V[. ,v] to represent the subsequence of V from its beginning to job v.)

To complete the proof, we present Table 4 in the Appendix, which gives the
dominating paths in G(s1) for each path in G(s2). The last column contains the
argument why each path is a dominating path, i .e. , . why the corresponding ineguality
holds. •

Theorem 2 If k E la-:5.b and m E la>b, then k-<E:m together with the sets
uk-<E:m = { u iu E la9, r tL :::; r m } and vk-<E:m = { v Iv E la>b , qv :::; qk } satisfies the Shuf­
fle Interchange Condition.

7

. (

I
- - , ----x

r , 1
,

X I ,a l b I (Jq
·o--:��x

r
: - - -u- -

�
u ' la lbu: _J_

I ,,_n--"-�"

,!!_,, '-Ta-,- -lb_ : q�
�y-Q- k k \\
f'-- '_m t a �o--..__ ;
I\ --0--��

�-- -vl- 7i
rv : la �:
0--:--� V'

I f I
I

�---x--�
L-�ax bx: qx

I I
I I
I I ;�?i�fJm __ q�m �

r � l a �� q :IV I T ---"-- V V

I

I y :
�?a"-�

l ________ I

�+-tb· ?�
� ---z--

- � r, : ja, r: ?' �?- ,
I f I

Figure 2: Directed graphs G(s2) and G(s1) for SI .

Proof. Similarly, Table 5 in the Appendix contains the appropriate dominating
paths. •

Theorem 3 If m E la>b and bk 2: bm, then k-Em together with the sets
Uk-Em = {ulru '.S rm } and Vk-Em = {v lv E la>b,qv:::; qk,bv:::; bk }satisfies the Shuffie
Interchange Condition.

Proof. Symmetric to Theorem 1, i.e., Theorem 3 is equivalent to Theorem 1
applied to the reverse problem •

Theorems 1 to 3 represent new dominance conditions applicable to sequences of
jobs. Their application, however, would require elaborate data structures and complex
procedures for checking that the intermediate sequences Y meet the conditions of the
theorems. In the following section, we show that there is a much better way to exploit
these dominance results, by deriving from them a new dominance order between pairs
of jobs, irrespective of where they are in a sequence.

8

3.2 New dominance order for F2/rj,perm/ L�ax
We use subset-restricted interchange to derive a new dominance order on the jobs,
denoted -<, for the problem F2 /ri, perm/ L�ax· We define the following sets of jobs
for every pair k-E:m. (Note that a pair k-E:m may satisfy more than one of the following
three conditions, so more than one may be applicable to a pair.)
1. If ak <bk and ak:::; am, then let U�-E:m = {u lu E la�b, Tu:::; Tm, au:::; am, Qu > Qk}

V1-E:m = { V lqv :::; Qk }.
2. If ak <bk and am> bm, then let ui-E:m = {u lu E la�b, Tu:::; Tm}

v,;-E:m = { v Iv E la>b, Qv :::; Qk }.
3. If am> bm and bk 2:: bm, then let U2 -<Em = {u lru:::; rm}

v;-E:m = {v Iv E la>bi Qv:::; Qk,bv:::; bk, Tv >Tm}·
These are just the sets Uk-<Em and Vk -<Em from the previous three theorems with
additional conditions in cases 1 and 3, to ensure that uk-E:m n v;-<Em = 0 and maintain
that Vi f ui for Ui E uk-E:m and Vi E v;-<Em' In case 1, Qu > Qk has been added and
rv > Tm has been added in case 3. For a given pair k-E:m, k-E:m is included in the
dominance order -< exactly when any of the applicable sets uk-E:m u v;-<Em is the entire
job set. Thus, the dominance order -< is defined as the suborder of -<E consisting of
pairs k..:Em, that can be interchanged around any intermediate sequence using the SI
operator for the appropriate choice of U and V .

Definition 3 If k-<Em and Uk-E:m U v;-<Em = J for some i applicable to k and m, then
k-< m.

To illustrate the definition of-<, consider again Example 1. The adjacent inter­
change order -<E consists of the pairs 2-<E4, 3-<E4, and (as we saw previously) 3-<El.
For pair 2-<E4 both cases 1 and 2 apply, and checking the conditions for these we see
that both u;-<E4 U "Y;1

-<E4 and Ui-<E4 U V22-<E4 are equal to J, thus we have that 2 -< 4. For
pairs 3-<E4 and 3-<El only case 3 applies. We also have Ui-<E4u1'33-<E4 = J, thus 3-< 4.
However, Ui-<Ei U1'33-<E1 '/=- J because job 2rj:.1'33-<E1 since2 E la�b, and 2 rj:. Ut-E:i since
r2 > r1, thus 3 -/< 1. Therefore, we have that the dominance order -< is the suborder
of -<E consisting of the pairs 2 -< 4 and 3 -< 4, and we see that the unique optimal
sequence (1, 2, 3, 4) is indeed a linear extension of -<, as we would expect.

We define the following suborders of -< for the different types of pairs in -<E

-<1 =-< n(Ia9 x la9)
-<2 =-< n(la9 x la>b)
-<3 =-< n(Ja>b x la>b),

where A x B represents all pairs with first element from A and second element from
B. Note that for the pairs in -<1 and -<3, cases 1 and 3 must hold, respectively.

g

Whereas, for the pairs in -<2 at least one of cases 1-3 must hold. These suborders will
be used first to demonstrate that -< is indeed a partial order, and then to prove that
-< is a dominance order for problem F2 /ri, perm/ L�ax·

Lemma 1 Suborder -< is a partial order.

Proof. Since -< is a suborder of �' it only remains to show that -< is transitive,
i.e., we want to show that for any jobs k, l , and m if k -< l and l -< m, then
k -< m. First we consider the case where all of the jobs k, l , and m are in las_b·
In this case, we have that k -<1 l and l -<1 m, and we want to demonstrate that
k -<1 m. By Definition 3 k -<1 m if Ul�m U Vk1�m = J. Since k-El-Em and k, l ,
and m are in la<b, we have that rk ::; r1 ::; Tm and ak ::; a1 ::; am. These imply
that Ul-Em ;2 U{�l' and since Vk1-Em = Vk1-El' we have that Ul�m U Vk1�m contains
Ul-E1 U Vk1-Er However, k -<1 l implies that U1�1 U Vk1�1 = J, which by the above
observation and Definition 3 implies that k -<1 m. Next we examine the case where
k, l E la9 and m E la>b, in which k -<1 l and l -<2 m. We consider separately
the different cases of Definition 3 that may apply for pair l -<2 m. If case 1 applies
for l -<2 m, then (ak ::;) a1 ::; am and the previous argument carries over exactly
as above. For case 2, we assume that u;2-E:m U Yz�m = J. Since k-El-Em, we have
that rk ::; T1 ::; Tm and qk 2:'.: q1 2:'.: qm. These imply, however, that u;-Em = U!

2�mand
Vk

2-Em ;2 Yz�m' so we also have that u;-Em UVk
2�m = J. Thus, by Definition 3 we have

that k -<2 m. Finally, if case 3 applies to l -<2 m, then b1 2:'.: bm and U1
3-Em U Yz�m = J.

We notice that (Ul-Em U Yz�m) n las_b equals U?�m n las_b, which equals ui�m· Since
Yz�mnla9 = 0 and U1

3�mUYz�m = J, this implies that u;�m contains all of the jobs
in la:sb· We also have that U1�1UVk1�1 = J since k -<1 l. Similarly, (Ui-E1UVk1-E1)nla>b
equals Vk1-E1 n la>b, which equals V,?-Em· Since U1�1 n la>b = 0 and U1-E1 U Vk1-E1 = J,
this implies that V,?�m contains all of the jobs in la>b· Combining these two results
we have that u;-Em u v,;-Em contains all of the jobs in J' from which it follows by
Definition 3 that k -<2 m. The remaining cases, where k, l , and m are in la>b k -<3 l
and l -<3 m, or k E las_b and l, m E la>b with k -<2 l and l -<3 m, follow by symmetry.
Thus we see that -< is a transitive order indeed. •

Theorem 4 Partial order-< is a dominance order for problem F2 /ri, perm/ L�ax·

Proof. Let s be an optimal sequence. We find an optimal linear extension of -<
by repeatedly applying the SI operator to sequences without increasing the length
of the longest path. We demonstrate the comparabilities in the order -<3, -<1 and -<2,
respectively.

Assume that s is not a linear extension of -<3. Let m E la>b be the last job in
s with some job j E la>b with j -<3 m, such that j is after m in s. Let k be the

10

first such job j in s, then s is of the form s = (XmYkZ) . Since k -< m, k and m
can be interchanged around any intermediate sequence using SI, in particular around
subsequence Y. Since k -<s m, Uk«Em U Vk-Em = U2-<Em U v,:-Em = J. Applying SI to
s with U = U2-<Em n Y and V = Vk

3-<Em n Y, we obtain sequence (XUkmVZ). This .
sequence now orders k and m properly, and it does not introduce any new violations
of -<3 : To see this, consider any jobs u E U and v E V. Since u E U2-<Em and
v E Vk

3-<Em' v f: u, so v -/. u, which implies that v -/.s u. Also, m -/.3 u follows by the
choice of m, and v -/,3 k follows since r v > r m � rk. By repeatedly applying the above
procedure until there is no such job m, we obtain an optimal sequence s' which is a
linear extension of -<3 .

For -< 1, we proceed in exactly the same way. Assume that sequence s' is not a
linear extension of -<1. Let m E Ja<b be the last job ins' with some job j E Ja<b with
j -<1 m, such that j is after m ins-: Let k be the first such job j ins', then s' i; of the
forms' = (XmYkZ). Applying SI to s' with U = U�-Em n Y and V = Vk1-<Em n Y,
we obtain sequence (XUkmVZ) . This sequence now orders k and m properly, and it
does not introduce any new violations of -<1 or -<3: For -<i, once again consider any
jobs u E U and v E V. Since, v f: u, then v -/.1 u. Also m -/.1 u since qu > qk � qm
from the definition of U�«Em' and v -/.1 k follows by the choice of k . To see that this
doesn't introduce any new violations of -<3 either, note that all jobs in Y n Ja>b must
be in V, and for these jobs their relative order is unchanged. Repeatedly applying
SI we obtain an optimal sequences" that is a linear extension of -<1 and -<3.

Finally, assume that sequences" is not a linear extension of -<2 . Let m E Ja>b be
the last job in s with some job j E Ja<b with j -<2 m, such that j is after m in s. Let
k be the first such job j in s", then s'T is of the form s" = (X mY kZ). Since k -<2 m,
we know for some i that J = Uk-Em U V�«Em' applying SI for this choice of i with
U = Uk«E:m n Y and V = V�«Em n Y, we obtain sequence (XUkmVZ). This sequence
now orders k and m properly, and it does not introduce any new violations of -<: As
above, for any jobs u E U and v E V we have that v f: u which implies that v -/. u.

In addition, we have m -/,3 u (=> m-/. u) and v --/-1 k (=> v -/. k) as above. Thus, we
see that this interchange does not introduce any new violations of -<. Continuing to
apply SI until there is no such job m, we obtain an optimal sequences* that is also
a linear extension of -<. •

Remark 1 Since SI is a generalization of the BI and FI operators, the theorem
and its proof also apply to these when Uk-Em = J or v;«Em = J for some applicable
i, i. e., in such special situations the dominance order -< could be derived using only
one of these operators.

11

3.3 Fuzzy approximation of dominance

Dominance rules on sequences are usually used to specify whether a node can be
eliminated before its lower bound is calculated in a branch and bound algorithm.
However, they also can be used heuristically in finding a good initial solution, or
directing the search in case of ties [l].

Theorem 5 Consider a partial sequence a for the problem F2/ri/ L�ax· If there are
unsequenced jobs i and j such that

C1 (aij) :::; C1 (aji), 1:::; l:::; 2
L�ax (aij) :::; L�ax (aji),

(1)
(2)

then the partial sequence aij dominates aji, i.e., any completion of aij has an L�ax
which is not larger than the L�ax for the same completion of aji.

Proof. Consider an arbitrary completion sequence w for the remaining unse­

quenced jobs. If Eq. (1) holds, then on both machines every job in w will be able to
start no later in the sequence (aijw) than in the sequence (ajiw). This implies that
no job in w can have a larger L1 value in the sequence (aijw) than in the sequence
(ajiw). Combining this with Eq. (2) completes the proof. •

If there exists a job i for which Eq. (1) and Eq. (2) hold for all unsequenced jobs
j, then sequence a has an optimal completion with job i sequenced next. Such a
job i very rarely exists, however. This suggests that if they only approximately hold,
i.e., they hold for job i with almost all unsequenced jobs j, then job i may precede
another job j in an optimal completion of sequence a with high probability. We
measure the closeness of this approximation by a fuzzy membership function. We use
this fuzzy inference to find a good initial sequence, and to break ties between nodes
with the same lower bound when branching. These techniques proved very useful for
the problem Fm//Cmax [1]. Let

D1 (aij) = C1 (aij) - C1 (aji), 1 :::; l :::; 2

D 3 (aij) = L�ax (aij) - L�ax (aji).

The fuzzy membership function that represents the likelihood that job i precedes job
j in an optimal completion of a is given by

µu (i, j) = 0.5 _

D (aij)
n T"\ I \'

where D (aij) = L:f=1 a1D1 (aij), Dmax (a) = ID8JCi,j ID (aij)I and 0!1, a2, a 3 (0 :::;
a 1, a2, a 3 :::; 1 and L:f=1 a1 = 1) are real numbers. (Note that this definition en­
sures that 0 ::=:; µu (i, j) :::; 1.) Let S be the set of jobs not scheduled in a. Then,

12

the likelihood of job i E S dominating the remaining jobs after partial sequence u is
measured by

and job i* satisfying

µ:(i) = min µu(i , j) , v jES\{i}

µ;(i*) = �8sxµ;(i)
is identified as the job that immediately follows u.

The rule determining i* in this way is referred to as the fuzzy rule and the schedule
obtained by repeatedly applying the fuzzy rule is referred to as the fuzzy schedule (or
fuzzy sequence). To obtain our fuzzy sequence we apply the fuzzy rule with a1 = 1/3
for l = 1 , 2 , 3. This requires O(n2) time.

4 Branch and bound

In this section, we outline the basic components of our proposed branch and bound
algorithm to solve the problem F2 /rj, perm/ L'uiax· A pseudocode for it is given in
the Appendix.

4.1 Branching rule

In order to exploit the symmetry of the problem, we consider a variant of Potts'
adaptive branching rule that fixes jobs at both ends of the schedule [1 1]. More
precisely, each node of the search tree is represented by a pair (u1 , u2) , where u1 and
o-2 are the initial and final partial sequences, respectively. Let Si denote the set of
jobs in ui for i = 1, 2 , then the set of unfixed jobs is S = J\(81 U 82). We use -<Is
to refer to the restriction of -< to the set S. An immediate successor of (u1 , u2) in
the tree is either of the form (u1i, u2) for a type 1 branching; or (u11 iu2) for a type
2 branching, where i is a minimal or maximal job in -<18, respectively. The types of
the branchings are all the same within a level of the tree. The type for a given level
k is fixed on the very first visit to level k according to the following rule: branch in
the direction of the fewest number of ties at the minimum lower bound. Let n1 and
n2 be the number of ties at the minimum lower bound for potential type 1 and type
2 branchings, at level k. If n1 < n2 the next branching is of type 1 , while if n2 < n1
then the branching is of type 2. If n1 = n2 then the branching is the same type as at
the previous level.

The search strategy is to branch to the newest active node with the smallest lower
bound, breaking ties by the appropriate fuzzy rule. For type 1 branchings we use
fuzzy sequence 1 to break ties, this is the sequence obtained by repeatedly applying
the fuzzy rule to the forward problem. For type 2 branchings we use fuzzy sequence
2 to break ties, this is the analogous sequence for the reverse problem.

13

4.2 Bounds

Upper bounds are calculated only for the first n nodes, afterward the upper bound is
evaluated only at leaf nodes. For the first n nodes we calculate four separate upper
bounds. The first two upper bounds are obtained by sequencing the unfixed jobs in
the fuzzy sequence for the forward and reverse problems, respectively. Each of these
requires only O (n) time working from the previously established fuzzy sequences. The
two remaining upper bounds are obtained by sequencing the unfixed jobs in ready
q + b order (ordering the ready jobs in nondecreasing q + b order) for the forward
problem, and ready r +a order for the reverse problem. Each of these upper bounds
requires 0 (n log n) time to compute. There are no unfixed jobs at leaf nodes, and the
upper bound is just the length of the sequence obtained by concatenating u1 and u2.

Since the branch and bound tree may require the computation of lower bounds for
a potentially very large number of nodes, it is important that we use lower bounds
which require only 0(n) time per bound. (We have also experimented with some
potentially better lower bounds, requiring O (nlogn) time, but they have noticeably
slowed down the algorithm without any substantial increase in the number of problems
solved.) We consider six lower bounds for each node (ui, u2). We calculate lower
bounds on the lengths of different paths for the unfixed jobs S, and we combine these
in various ways with the actual lengths of the fixed sequences u1 and u2. For u1
we look at the forward problem and we let C1(u1) and C2(u1) be the completion
times on machines 1 and 2, respectively. For S we consider the forward problem, and
assume that these jobs cannot start on machines 1 and 2 before C1(u1) and C2(u1),
respectively. Ignoring release times for the jobs in S, let L1(S) be the completion
time on machine 2 of the Johnson sequence on S. Let L2 (S) be the completion time
on machine 1 of the jobs in S sequenced in nondecreasing r order, that is, L2(S) is
the earliest time at which the jobs in S can be completed on machine 1 . Similarly, if
we relax the capacity constraint on machine 1 and sequence the jobs in nondecreasing
r +a order, then the length of this schedule on machine 2, L3(S), is a lower bound
on when the jobs in S can complete on machine 2. For u2 we define the completion
times C1(u2) and C2(u2) on machines 1 and 2, respectively, for the reverse problem.
Once again, we assume that the jobs in S cannot start before these times. We let
L4(S) be the completion time on machine 1 of the reverse Johnson sequence. As for
the forward problem, the earliest that the jobs in S can complete on machine 2 in the
reverse problem is to sequence them in nondecreasing q order, we denote the length
of this schedule on machine 2 by L5(S). Relaxing the capacity constraint on machine
2, and sequencing the jobs on machine 1 in nondecreasing q +border, the length of
this schedule denoted by L6(S), is a lower bound on when the jobs in S finish on
machine 1 in the reverse problem. We compute the following for the node (u1, u2):

LB1 = L1(S) + C2(u2)

14

LB2 = L2(S) + C1(a2)
LB3 = L3(S) + C2(a2)
LB4 = C1(a1) + L4(S)
LB5 = C2(a1) + L5(S)
LB5 = C1(a1) + L5(S).

Finally, the lower bound is the maximum of the above six lower bounds and the lengths
of the fixed sequences a1 and a2 (in the forward and reverse problems), L�ax(a1) and
L�ax (a2), respectively.

At the root node we evaluate two additional lower bounds, these are single machine
preemptive bounds obtained by relaxing the capacity constraints on each of machines
1 and 2 in the forward problem, respectively. It is well lmown that these are solved
by the preemptive, ready-Jackson rule, which requires O (nlogn) time to compute.

4.3 Decomposition and dominance

We find a starting sequence a1 by applying the following simple decomposition pro­
cedure, which.is a generalization of the one used in [12] for the problem F2/ri/Cmax·
Given a sequences, then partial sequence sk-l = (s(l), . . . , s (k - 1)) is an optimal
initial sequence if there exists a k E [2, n] such that rajn Ts(i) ;::: c;(k-l)' rajn

k'.5_i'.5_n k'.5_i'.5_n
[rs(i) +as(i)] ;::: c;(k-l)' and we have LB(J\(sk-l)) ;::: L�ax(sk-l), where LB(J\(sk-l))
is computed as follows. We apply the decomposition procedure for the jobs sequenced
in nondecreasing r order, and we use the two preemptive single machine bounds men­
tioned in the last paragraph of the previous section to determine LB (J\ (sk-l)). These
conditions mean that the jobs in the partial sequence sk-l have no effect on the op­
timal schedule for the remaining jobs. Then the initial partial sequence a1 is chosen
as sk-l for the largest k value for which all the conditions hold.

After we have fixed ai, we determine the dominance order -< on the remaining
jobs in S = J\81. In addition, it is possible to dynamically update the dominance
order -< at each node (ai, a2), to see whether fixing jobs in a1 and a2 can add new
comparabilities, thus further reducing the amount of branching.

5 Computational experiment

5.1 Test problems

For each problem with n jobs 4n integer data (ri, ai, bi, qi) were generated. The
processing times ai and bi were both uniformly distributed between [1, 100]. Release
times ri and delivery times qi were uniformly distributed in the range [O, n · 101 · R]

15

and [O , n · 101 · Q], respectively, following the technique used by Hariri and Potts [4] .
Different Rand Q values were tested for values Q � Rand RE {0.2, 0.4, 0.6, 0.8, 1.0}.
For each individual R, Q, and n combination, 50 problems were generated. We used
the random number generator of Taillard [13] to generate these problems. This means
that all of our test problems are reproducible by running the problem generation
procedure from the same seeds. (The seeds used have been saved and are available
from the authors on request.)

5.2 Results

The branch and bound algorithm was coded in Sun Pascal 4.2 and run on a Sun
Sparc5. Three separate versions of the algorithm were run. Algorithm Ai has the
dominance order -< 'turned off' . Algorithm A2 has the dominance order 'turned
on' , and it dynamically updates -< at each node. Finally, algorithm A3 also has the
dominance order 'turned on' , but -< is only calculated once at the root node. Each
version of the algorithm was run until either it obtained the optimal solution or the
number of nodes branched from in the tree reached one million for the problem. In
the latter case, the problem was declared unsolved.

Tables 1, 2, and 3 contain the results of the computational experiment for the
different R and Q values. For each group of problems we report: the fraction of
problems solved (denoted by solved) ; for each of the unsolved problems we calculate
the gap between the best solution obtained and the smallest lower bound among the
left-over nodes in the tree, and the maximum gap (denoted max gap) is the largest of
these over all the problems in the group; the total number of nodes in all of the trees
(denoted by total nodes) ; the average CPU time for the solved problems in the group
(denoted by avg CPU); and the total CPU time required for all of the problems in
the group (denoted by total GPU) .

Recall, a problem was 'unsolved' when the number of nodes branched from reached
a million. Thus the total number of nodes for a group of 50 problems, contains a
million nodes for each unsolved problem. As can be seen, the algorithms typically
generated much fewer nodes for the solved problems. In those groups where there
were unsolved problems, the solution obtained was always nearly optimal as measured
by the maximum gap. The largest such gap was on the order of 3 percent, meaning
that, in the worst case, we were within this range of the optimal solution. The average
gap was much smaller, less than 0.5 percent.

As the results indicate, all three versions of the new branch and bound algorithm
proved very effective in solving the test problems. In total, each of the three solved
4,384 of the 4500 randomly generated test problems with up to 200 jobs. There
were differences in the time-performance of the three versions, however. In general,
algorithms A2 and A3 (with the dominance order) required less time than version
Ai (without the dominance order) . Algorithms A2 and A3 needed roughly 5 percent

16

and 15 percent less total CPU time, respectively, than Ai for the 4500 test problems.
For the 4384 solved problems, the savings in total CPU time amounted to 15 percent
and 20 percent, respectively, when compared to Ai. Thus, both A2 and Ag made
the search through the tree faster, but the substantially larger overhead of A2 (i.e., of
updating -< at every node of the tree) offset a large part of the speed-up. In summary,
algorithm Ag was the most effective method, it was extremely fast on all of the solved
problems, never requiring more than a few seconds.

The very extensive computational experiment has led to further insights. Our
results suggest that the difficulty in solving a particular problem depends much more
on the values of R and Q, than it does on the number of jobs. Given this observation,
the difficult problems are those with intermediate R values, with the most difficult
being the problems with R = 0.4. This means that the most difficult problems occur
when the maximum range for the release times (n · 101 · R) is close to the total
expected processing time on the first machine (n · 50 .5) . We have also found that
for a given R, the problems with small Q are most difficult. Recall, that the actual
size of the problem for the branch and bound algorithm is determined by how many
jobs are fixed by the decomposition procedure. We noticed some trends regarding
the effectiveness of the decomposition procedure. First, and most importantly, we
noticed that as R increases the percentage of jobs fixed tends to increase. We also
noticed that for a given R value, the percentage of jobs fixed decreases for increasing Q
values, where recall that Q :::; R. For small R values with R :::; 0.4, the decomposition
procedure is ineffective and fixes at most 1 and 6 percent of the jobs for R = 0.2
and 0.4, respectively. Moreover, for these values the decomposition procedure tends
to become less effective as the number of jobs increases. For larger R values with
R � 0.6, the decomposition procedure is quite effective, and it performs even better
as the number of jobs increases. For R = 0 .6 , the decomposition procedure fixes
around 40 percent of the jobs for the problems with n = 20, this increases to around
80 percent for n = 200. For R = 1 .0, the percentage of jobs fixed increases to around
75 percent and 90 percent for problems with n = 20 and n = 200, respectively.

6 Concluding remarks

We have considered a new branch and bound algorithm for the problem
F2 /ri, perm/ L:r,.ax. The main features of the proposed algorithm are: an adaptive
branching rule that fixes jobs at both ends of the schedule, a new dominance order
to reduce branching together with new fuzzy dominance properties that are used for
scheduling and tie-breaking, and a simple decomposition procedure that reduces the
problem size by fixing jobs at the beginning of the schedule. In general, computa­
tional results indicated that the algorithm performed very well. It has solved more
than 973 of the test problems with up to 200 jobs within a few seconds. Even when

17

we failed to solve a problem, we were always very close to the optimal solution. We
found that the use of the dominance order resulted in a reduction in computation
time of 15 to 20 percent. We also found that the use of fuzzy dominance properties
aided the search by breaking ties and by often finding a nearly optimal initial solu­
tion. In summary, we feel that the proposed algorithm is more effective than previous
solution methods for the problem F2 /rj, perm/ L�axi in that it found fewer hard
problems and it was also able to solve much larger problems. The fact that most
problems were solved to optimum within a few seconds, means that the algorithm
has the potential of being used as a callable subroutine for F2 /rj, perm/ L�ax-type
subproblems generated during the solution of more complex scheduling problems.

18

Table 1: Results for (0.2, 0.2) and (0.4, 0.2).

n alg solved max gap total nodes avg CPU total CPU
(%) (sec) (hrs:min:sec)

R = 0.2, Q = 0.2

Ai 50/50 - 24,666 0.0840 4.20
20 A2 50/50 - 24,593 0.0958 4.79

A3 50/50 - 24,666 0.0828 4.14
Ai 50/50 - 3,894 0.1146 5.73

40 A2 50/50 - 3,893 0.1190 5.95
A3 50/50 - 3,894 0.1098 5.49
Ai 48/50 1.1401 2,001,789 0.2225 30:57.50

60 A2 48/50 1.1401 2,001,791 0.2056 33:17.86
A3 48/50 1.1401 2,001 ,791 0.1954 29:33.53
Ai 49/50 0.4968 1 ,009,292 1.0969 20: 16.54

80 A2 49/50 0.4968 1 ,009,278 1.1967 22:48.84
A3 49/50 0.4968 1 ,009,288 1.0549 19:53.81
Ai 48/50 0.6178 2,029,119 4.6633 2:40:15.34

100 A2 48/50 0.6178 2-,048,242 6.9856 2:16:42.26
A3 48/50 0.6178 2,048,242 5.9825 2:01 :24.72
Ai 49/50 0.0655 1 ,063,650 38.7327 8:02:25.27

200 A2 49/50 0.0655 1 ,063,647 24.1063 7:06:01.35
A3 49/50 0.0655 1 ,063,647 22.0294 6: 1 1 : 14.99

R = 0.4, Q = 0.2

Ai 48/50 1.6575 2 ,947,498 2.9265 7:32.65
20 A2 48/50 1.6575 2,900,048 3.1988 8 :11.50

A3 48/50 1.6575 2,903,012 2.7614 7: 14.97
Ai 38/50 1.4881 13,365,909 7.3640 49:02.53

40 A2 38/50 1.4881 13,364,572 7.0429 44:46.62
A3 38/50 1.4881 13,365,936 6.7934 42:02.63
Ai 37/50 1.0747 13,323,626 1.5924 49:22.47

60 A2 37/50 1.0747 13,323;151 1.7548 43:38.78
A3 37/50 1.0747 13,323,293 1.5751 44:37.38
Ai 41/50 0.8299 9,758,575 3.8098 30:58.02

80 A2 41/50 0.8299 9,769,357 4.1583 33:56.53
A3 41/50 0.8299 9,782,955 3.8634 31:27.20
Ai 42/50 0.4259 8,232,036 2.9133 2:03:40.23

100 A2 42/50 0.4259 8,203,264 2.3276 2:20:44.43
A3 42/50 0.4259 8,203,030 2.4000 2:00:28.92
Ai 39/50 0.2801 12,391,165 15.8108 1:07:04.76

200 A2 39/50 0.2801 12,391 ,035 16.7367 1: 12:45.20
A3 39/50 0.2801 12,391,171 15.5379 1 :07:01.03

19

Table 2: Results for (0.4, 0.4) and R = 0 .6.

n alg solved max gap total nodes avg CPU total CPU
(%) (sec) (hrs:min:sec)

R = 0.4, Q = 0.4

Ai 45/50 3.2119 5,505,470 1 .9667 13:31 .30
20 A2 45/50 3.2119 5,474,584 1 .6951 14:21.46

A3 45/50 3.2119 5,468,818 1 .5591 12:53. 13
Ai 43/50 1 .3497 7,000,924 0.0623 30:22.67

40 A2 43/50 1 .3497 7,000,874 0.0642 30:20.04
A3 43/50 1 .3497 7,000,879 0.0607 27:27.53
Ai 46/50 0.2151 4,001 ,078 0 . 1924 18:50.55

60 A2 46/50 0.2151 4,001 ,105 0 .1935 18:55.89
A3 46/50 0.2151 4,001 ,111 0 . 1820 17:25. 1 1
Ai 47/50 0.6494 3,000,978 0.3975 15:54.83

80 A2 47/50 0.6494 3,001,023 0.3966 9:51.74
A3 47/50 0.6494 3,001 ,013 0.3753 1 1 :24.47
Ai 48/50 0.4598 2,001 ,628 0.8077 8:10.88

100 A2 48/50 0.4598 2,001 ,549 0.7938 6:40.89
A3 48/50 0.4598 2,001 ,582 0.7523 8: 14.86
Ai 49/50 0.1693 1 ,002,837 6.4861 22:23.65

200 A2 49/50 0. 1693 1 ,002,824 6.4520 22:36.68
A3 49/50 0. 1693 1 ,002,841 6.0212 19:50.06

R = 0.6, Q = 0.2, 0.4, 0.6

Ai 147/150 1 .3150 3,120,585 0.0995 6:22.79
20 A2 147/150 1 .3150 3,098,357 0.0852 6:37.17

A3 147/150 1 .3150 3,099,007 0.0767 6:25.34
Ai 137/150 1 .3754 13,100,696 0. 1467 36:56.68

40 A2 137/150 1.3754 13,103 ,281 0.1450 36:03.00
A3 137/150 1 .3754 13,103,391 0.1322 31 :22.49
Ai 147/150 0.7059 3,055,775 0. 1070 13:34.11

60 A2 147/150 0.7059 3,036,978 0.0748 12:32.31
A3 147/150 0.7059 3,036982 0.0707 1 1 :38.68
Ai 145/150 0.3267 5,003,273 0.0682 11 :43.19

80 A2 145/150 0.3267 5,003,245 0.0657 24:34.21
A3 145/150 0.3267 5,003,245 0.0635 14:08.36
Ai 148/150 0.4820 2,006,622 0.0818 4:28. 17

100 A2 148/150 0.4820 2,006,722 0.0845 4:40.68
A3 148/150 0.4820 2,006,722 0.0810 3:23.59
Ai 147/150 0. 1533 3,000,729 0.2136 17: 11 . 18

200 A2 147/150 0. 1533 3,000,778 0.2206 18:39.67
A3 147/150 0. 1533 3,000,732 0 .2064 15:32.97

20

Table 3: Results for R = 0.8 and R = 1.0.

n alg solved max gap total nodes avg CPU total CPU
(%) (sec) (hrs:min:sec)

R = 0.8, Q = 0.2, 0.4, 0.6, 0 .8

Ai 200/200 - 1164 0.0026 0.51
20 A2 200/200 - 1149 0.0029 0.58

A3 200/200 - 1149 0.0027 0.54
Ai 200/200 - 914 0.0056 1.1 1

40 A2 200/200 - 912 0.0056 1 .11
A3 200/200 - 912 0.0053 1.06
Ai 199/200 0.2625 1,001 ,163 0.0098 2:32.97

60 A2 199/200 0.2625 1 ,001,167 0.0097 6:53.71
A3 199/200 0.2625 1 ,001, 167 0.0095 2:33.83
Ai 198/200 0. 1513 2,000,359 0.0013 6:10. 13

80 A2 198/200 0. 1513 2,000,357 0.0012 3:35.69
A3 198/200 0. 1513 2,000,357 0.0012 3:30.68
Ai 200/200 - 257 0.0181 3.61

100 A2 200/200 - 261 0.0183 3.65
A3 200/200 - 261 0.0180 3.59
Ai 200/200 - 259 0.0571 11.42

200 A2 200/200 - 267 0.0569 11.37
A3 200/200 - 267 0.0568 11.36

R = 1.0, Q = 0.2, 0.4, 0.6, 0.8, 1.0

Ai 250/250 - 376 0 .0020 0 .49
20 A2 250/250 - 543 0.0022 0.54

A3 250/250 - 543 0.0023 0.57
Ai 250/250 - 332 0.0042 1.04

40 A2 250/250 - 329 0.0043 1.08
A3 250/250 - 329 0.0043 1.08
Ai 250/250 - 354 0.0076 1.91

60 A2 250/250 - 354 0.0080 1.99
A3 250/250 - 354 0.0082 2.06
Ai 249/250 0.2736 1,000,309 0.0119 2:36.63

80 A2 249/250 0.2736 1 ,000,307 0.0121 3:14.71
A3 249/250 0.2736 1 ,000,307 0.0121 3:13.30
Ai 250/250 - 273 0.0177 4.43

100 A2 250/250 - 273 0.0178 4.45
A3 250/250 - 273 0.0178 4.45
Ai 250/250 - 276 0.0619 15.47

200 A2 250/250 - 276 0.0620 15.49
A3 250/250 - 276 0.0620 15.50

21

Appendix

Calculations for root node

• apply decomposition procedure with nondecreasing r sequence to fix a1 ;

• let S := J\Si , a2 := 0; nodes := O ;

• construct the dominance order -<;
• find fuzzy sequence land fuzzy sequence 2;

• calculate initial UB and LB, and let BestUB := UB;

• call recursive procedure Opt that facilitates branching;

procedure Opt(a1 , S, a2 , BestU B) ;
begin

if nodes < 1000000 then

begin

nodes := nodes + l ;{increment the number of nodes branched from}

if (nodes ::; n) or (ISI = 1) then calculate UB and (possibly) update BestUB

if (LB < BestUB) and (!SI =I= l) then

begin

find lists of minimal and maximal jobs in -<Is
if type = 1 then calculate lower bounds for minimal and sort in nonde­

creasing lower bound order breaking ties using fuzzy sequence 1
else if type = 2 then calculate lower bounds for maximal and sort in

nondecreasing lower bound order breaking ties using fuzzy sequence 2
else (type not set)
begin

calculate and sort lower bounds for both minimal and maximal
breaking ties accordingly

find n1 and n2 to determine type for node
if n1 < n2 then type := 1
else if n1 > n2 then type := 2
else type := previous_type;

22

end;

if type = 1 then list := minimal
else if type = 2 then list := maximal ;
while (list -1- 0) and (BestU B > lower bound from head of list) do

begin

remove head of list
let job be the job that is fixed and let LB be its lower bound
remove job from -<
S := S\{job} ;
if type = 1 then add job to a1
else if type = 2 then add job to a2;
Opt(a1 , S, a2 , BestU B) ;{ recursive call}
if type = 1 then remove job from a1
else if type = 2 then remove job from a2 ;
S := S U {jab};
restore job to -<

end;{while}

end;{if (LB < BestU B) and (IS I i- 1)}

end ;{if nodes ::; 1000000}

end;

23

Table 4: Dominating pairs for Theorem 1 .

S2 81
(XUkmVZ) (XmYkZ) proof
(x1 , X2 , X3) (xi , X2 , X3)
(xi , x2, u) (xi , x2, u)
(xi , x2, k) (xi , X2, k)
(x1 , x2 , m) (xi , X2 , k) qk 2: qm
(x1 , x2, v) (x1 , X2 , k) qk 2: qv
(x1 , x2, z) (xi , x2, z)
(x, ui , u2) (x, ui , u2)
(x, u, k) (x , u, k)
(x , u, m) (x, m, k) u � la<b, au ::; am , qk 2: qm
(x , u, v) (x, m, k) U � las,b, au ::; am , qk 2: qv
(x, u, z) (x , m, z) U � la<b, au ::; am
(x, k , k) (x, k, k)
(x, k , m) (x , m, k) U � las,b , k E JaS,b i qk 2: qm
(x , k , v) (x, m, k) u � las,b, ak ::; am, qk 2: qv
(x, k , z) (x, m, z) U � la<b, ak ::; am,

(x , m, m) (x, m, k) U � Ja<b, k E Ja<b, qk 2: qm
(x, m, v) (x, m, k) U � las,b, k E las,b, qk 2: qv
(x , m, z) (x, m, z) U � Ja<b i k E las,b
(x, v1 , v2) (x, V1 , k) U � Ja<b , k E Ja<bi qk 2: qV'l
(x , v , z) (x, v , z) U � las,b, k E las,b

(x, z1 , z2) (x, z1 , z2)
(ui , u2, u3) (ui , u2 , u3)
(ui , U2, k) (u1 , U2, k)
(u1 , u2 , m) (m, m, k) ru1 ::; rm, u � las,b, au2 ::; am, qk 2: qm
(u1 , u2 , v) (m, m, k) ru1 ::; rm, U � las,b, au2 ::; am, qk 2: qv
(u1 , u2 , z) (m, m, z) r u1 ::; r ffi l u � las,b, au2 ::; am
(u, k , k) (m, k, k) ru ::; rm
(u, k , m) (m, m, k) ru ::; rm, U � las,b , ak ::; am, qk 2: qm

24

Table 4: (continued)

S2 81
(XUkmVZ) (XmYkZ) proof

(u, k, v) (m, m, k) Tu '.S Tm , U � Ja�b , ak '.S am , qk 2: qv
(u, k, z) (m, m, z) Tu '.S Tm , U � Ja<b , ak '.S am

(u, m, m) (m, m, k) Tu :S Tm , U � Ja�b , k E Ja �b , qk 2: qm
(u, m, v) (m, m, k) Tu :S Tm , U � Ja<b , k E Ja<b , qk 2: qv
(u, m, z) (m, m, z) Tu :S Tm , U � Ja�b , k E Ja�b
(u, Vi , v2) (m, Vi , k) Tu :S Tm , U � Ja<b , k E Ja<b , qk 2: qv2
(u, v, z) (m, v, z) Tu :S Tm , U � Ja�b , k E Ja�b

(u, zi , z2) (m, zi , z2) Tu :S Tm
(k, k, k) (k, k, k)
(k, k, m) (m, m, k) rk :S Tm , ak :S am , qk 2: qm
(k, k, v) (m, m, k) Tk '.S Tm , ak '.S am , qk 2:'.: qv
(k , k , z) (m, m, z) Tk :S Tm , ak '.S am

(k, m, m) (m, m, k) Tk '.S Tm , k E Ja9, qk 2: qm
(k, m, v) (m, m, k) Tk '.S Tm , k E Ja9, qk 2: qv
(k, m, z) (m, m, z) rk '.S Tm , k E Ja<b
(k, Vi , V2) (m, v1 , k) Tk '.S Tm , k E Ja9, qk 2: qv2
(k, v , z) (m, v, z) Tk '.S Tm , k E Ja9

(k, Zi , z2) (m, z1 , z2) rk :S Tm
(m, m, m) (m, m, m)
(m, m, v) (m, m, v)
(m, m, z) (m, m, z)
(m, v1 , v2) (m, v1 , v2)
(m, v , z) (m, v , z)

(m, zi , z2) (m, z1 , z2)
(v1 , V2 , V3) (v1 , v2 , v3)
(vi , v2 , z) (V1 , V2 , z)
(v , z1 , z2) (v, z1 , z2)
(z1 , Z2 , Z3) (z1 , z2 , z3)

25

Table 5: Dominating pairs for Theorem 2 .

Sz Si
(XUkmVZ) (XmYkZ) proof
(xi , Xz , X3) (xi , Xz , X3)
(xi , x2 , u) (xi , x2, u)
(xi , X2 , k) (xi , x2 , k)
(xi , x2, m) (xi , Xz, k) qk 2 qm
(xi , x2 , v) (x1 , Xz , k) qk 2 qv
(xi , x2 , z) (x1 , x2 , z)
(x, ui , u2) (x , ui , u2)
(x, u, k) (x, u, k)
(x, u, m) (x, u, k) m E la>b, qk 2 qm
(x , u, v) (x, u, k) m E la>b, V � la>b, qk 2 qv
(x, u, z) (x, u, z) m E la>b, V � la>b
(x, k , k) (x, k, k)
(x, k , m) (x , k , k) m E la>b, V � la>b, qk � qm
(x, k , v) (x, k, k) m E la>b, V � la>b, qk 2 qv
(x , k , z) (x, k, z) m E la>b, V � la>b

(x, m, m) (x , m, k) U � la<b, k E la<b i qk 2 qm
(x, m, v) (x, m, k) U � las_b, k E la9, qk 2 qv
(x, m, z) (x, m, z) U � la s_b, k E la9
(x, Vi , v2) (x , Vi , k) U � la<b, k E las_b i qk � qv2
(x, v , z) (x, v, z) U � la<b, k E la<b

(x, zi , z2) (x, zi , z2)
(ui , u2 , u3) (ui , u2 , u3)
(u1 , u2 , k) (ui , u2 , k)
(ui , u2, m) (m, u2 , k) Tu1 ::; Tm , m E la>b1 qk 2 qm
(ui , u2, v) (m, u2 , k) Tu1 ::; Tm, m E la>b1 v � la>bi qk 2 qv
(ui , u2 , z) (m, u2, z) Tu1 ::; Tm, m E la>b 1 v � la>b
(u, k, k) (u, k, k)
(u, k , m) (m, k, k) Tu ::; Tm, m E la>b, qk 2 qm

26

S2
(XUkmVZ)

(u, k, v)
(u, k, z)

(u, m, m)
(u, m, v)
(u, m, z)
(u, Vi , v2)
(u, v, z)

(u, z1 , z2)
(k , k , k)
(k, k, m)
(k, k, v)
(k, k, z)

(k, m, m)
(k, m, v)
(k, m, z)
(k, V1 , V2)
(k, v , z)

(k, Z1 , Z2)
(m, m , m)
(m, m, v)
(m, m, z)
(m, vi , v2)
(m, v , z)

(m, zi , z2)
(Vi , V2 , V3)
(Vi , V2 , z)
(V , Z1 , z2)
(z1 , Z2 , Z3)

Table 5: (continued)

S1
(XmYkZ)

(m, k , k)
(m, k, z)
(m, m, k)
(m, m, k)
(m, m, z)
(m, V1 , k)
(m, v , z)

(m, z1 , z2)
(k, k, k)
(m, k, k)
(m, k, k)
(m, k, z)
(m, m, k)
(m, m, k)
(m, m, z)
(m, Vi , k)
(m, v , z)

(m, z1 , z2)
(m, m, m)
(m, m, v)
(m, m, z)
(m, v1 , v2)
(m, v , z)

(m, z1 , z2)
(v1 , v2 , v3)
(v1 , v2 , z)
(V , Zi , Z2)
(z1 , z2 , z3)

proof
ru � rm, m E la>bi V � la>b , qk � qv
ru � rm, m E la>bi V � la>b
ru � rm, U � la<b, k E la<b, qk � qm
ru � rm, U � la<b, k E la�b, qk � qv
ru � rm, U � la<b, k E la<b
ru � rm, U � la<b, k E la<b, qk � qv2
ru � rm, U � la<bi k E la<b - -

ru � rm

rk � rm, m E la>b, qk � qm
rk � rm, m E la>b, V � la>b, qk � qv
rk � rm, m E la>b, V � la>b
rk � r m, k E la<b, qk � qm
rk � r m, k E la<b, qk � qv
rk � r m, k E la<b
rk � rm, k E la<b, qk � qv2
rk � rm, k E la<b
rk � rm

27

References

[1] Cheng, J . , H. Kise, and H. Matsumoto (1997) . A branch and bound algorithm
with fuzzy inference for a permutation flowshop scheduling problem. European
J. Oper. Res. 96, 578-590.

[2] Grabowski, J. (1980) . On two-machine scheduling with release and due dates to
minimize maximum lateness. Opsearch 17, 133-154.

[3] Grabowski, J . , E. Skubalska, and C. Smutnicki (1983) . On flow shop scheduling
with release and due dates to minimize maximum lateness. J. Oper. Res. Soc.
34, 615-620.

[4] Hariri, A.M., and C.N. Potts (1983) . An algorithm for single machine sequencing
with release dates to minimize total weighted completion time. Discrete Appl.
Math. 5, 99-109.

[5] Johnson, S.M. (1954) . Optimal two- and three-stage production schedules with
setup times included. Naval Res. Logist. Quart. l , 61-68.

[6] Lageweg, B.J . , J.K. Lenstra, and A.H.G. Rinnooy Kan (1978) . A general bound­
ing scheme for the permutation flowshop problem. Oper. Res. 26, 53-67.

[7] Lawler, E.L. , J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys (1989) .
Sequencing and scheduling: Algorithms and complexity. Report BS-R8909, CWI
Amsterdam.

[8] Lenstra, J .K. , A.H.G. l}innooy Kan, and P. Brucker (1977) . Complexity of ma­
chine scheduling problems. Annals of Disc. Math. l, 343-362.

[9] Monma, C.L. (1978) . Properties and efficient algorithms for certain classes of
sequencing problems, Ph. D. Thesis, Cornell University, Ithaca, New York.

[10] Pinedo, M. (1995) SCHEDULING: Theory, Algorithms and Systems, Prentice
Hall, Englewood Cliffs, N .J.

[11] Potts, C.N. (1980) . An adaptive branching rule for the permutation flow-shop
problem. European J. Oper. Res. 5, 19-25.

[12] Tadei, R. , J .N.D. Gupta, F. Della Croce, and M. Cortesi (1998) . Minimising
makespan in the two-machine flow-shop with release times. J. Oper. Res. Soc.
49, 77-85 .

[13] Taillard, E. (1993) . Benchmarks for basic scheduling problems. European J. Oper.
Res. 64, 278-285 .

28

Faculty of Business
McMaster University

WORKING PAPERS - RECENT RELEASES

41 1 . Harish C . Jain and S . Muthuchidambaram, "Bill 40 Amendments to Ontario Labour
Relations Act: An Overview and Evaluation" , June, 1995 .

4 12 . Jiang Chan and George Steiner, "Discrete Lot Streaming in Three-Machine Flow Shops" ,
July, 1 995 .

4 1 3 . J . Brimberg, A. Mehrez and G.O. Wesolowsky, "Allocation of Queueing Facilities Using
a Minimax Criterion" , January, 1 996.

4 14 . Isik Zeytinoglu and Jeanne Norris, "Global Diversity in Employment Relationships: A
Typology of Flexible Employment" , March, 1996.

4 15 . N . Archer, "Characterizing World Wide Web Search Strategies" , April, 1996.

4 16. J. Rose, " Immediacy and Saliency in Remedying Employer Opposition to Union
Organizing Campaigns" , July, 1996.

417. Roy J. Adams and Parbudyal Singh, "Worker Rights Under NAFT A: Experience With the
North American Agreement on Labor Cooperation" , September, 1996.

4 1 8 . George Steiner and Paul Stephenson, "Subset-Restricted Interchange for Dynamic Min­
Max Scheduling Problems" , September, 1996.

419 . Robert F. Love and Halit U ster, "Comparison of the Properties and the Performance of
the Criteria Used to Evaluate the Accuracy of Distance Predicting Functions" , November,
1996.

420. Harish C. Jain and Simon Taggar, "The Status of Employment Equity in Canada" ,
December, 1996.

421 . Harish C . Jain and Parbudyal Singh, "Beyond The Rhetoric: An Assessment of the
Political Arguments and Legal Principles on Strike Replacement Laws in North America" ,
January, 1997.

422. Jason Schwandt, "Electronic Data Interchange: An Overview of Its Origins, Status, and
Future" , March, 1997.

423 . Christopher K. Bart with John C. Tabone, "Mission Statement Rationales and
Organizational Alignment in the Not-for-profit Healthcare Sector" , November, 1997.

424. Harish C. Jain, Michael Piczak, I�ik Urla Zeytinoglu, "Workplace Substance Testing - An
Exploratory Study" , November, 1 997.

425 . S . Suarga, Yufei Yuan, Joseph B. Rose, and Norman Archer, "Web-based Collective
Bargaining Support System: A Valid Process Support Tool for Remote Negotiation " ,
January, 1998.

426. Pawan S . Budhwar and Harish C. Jain, "Evaluating Levels of Strategic Integration and
Development of Human Resource Management in Britain " , March, 1998.

427. Halit Uster and Robert F. Love, "Application of Weighted Sums of Order p to Distance
Estimation" , April, 1998.

428 . Halit Uster and Robert F. Love, "On the Directional Bias o f the fbp-norm" , April, 1 998.

429 . Milena Head, Norm Archer, and Yufei Yuan , "MEMOS : A World Wide Web Navigation
Aid " , October, 1 998.

430. Harish C. Jain and Parbudyal Singh, "The Effects of the Use of Strike Replacement
Workers on Strike Duration in Canada" , February, 1999.

431 . Parbudyal Singh and Harish C. Jain, "Strike Replacements in the United States, Canada
and Mexico: A Review of the Law and Empirical Research" , February, 1999.

432. John W. Medcof and Jeremy Boyko, "Reinforcing , Revising and Reconciling Attributions
in the Employment Interview" , March, 1999.

433 . Norm Archer, "World Wide Web Business Catalogs in Business-to-Business
Procurement" , March, 1999.

434. Diwakar Gupta and Saifallah Benjaafar, "Make-to-order, Make-to-stock, or Delay Product
Differentiation? - A Common Framework for Modeling and Analysis" , April, 1999.

435 . Harish C. Jain, Parbudyal Singh and Carol Agocs, "Recruitment, Selection and Promotion
of Visible Minorities and Aboriginals in Selected Canadian Police Services" , April, 1999.

436. Harish C. Jain and Angus Bowmaker-Falconer, "Employment Equity/ Affirmative Action
Codes of Practice and Best Practices in USA, Britain, Canada and Other Selected
Countries" , May, 1999.

437. Diwakar Gupta, Yavuz Giinalay, and Mandyam M. Srinivasan, "On the Relationship
Between Preventive Maintenance and Manufacturing System Performance" , June, 1999.

438 . Jinliang Cheng, George Steiner, and Paul Stephenson, "A Fast Algorithm to Minimize
Makespan for the Two-Machine Flow-Shop Problem with Release Times" , June, 1999.

	1235145
	1235145_2

